WO2023249112A1 - 記録用紙 - Google Patents

記録用紙 Download PDF

Info

Publication number
WO2023249112A1
WO2023249112A1 PCT/JP2023/023357 JP2023023357W WO2023249112A1 WO 2023249112 A1 WO2023249112 A1 WO 2023249112A1 JP 2023023357 W JP2023023357 W JP 2023023357W WO 2023249112 A1 WO2023249112 A1 WO 2023249112A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
print
recording paper
mass
receiving layer
Prior art date
Application number
PCT/JP2023/023357
Other languages
English (en)
French (fr)
Inventor
優佳 北村
祐太郎 菅俣
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Publication of WO2023249112A1 publication Critical patent/WO2023249112A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings

Definitions

  • the present invention relates to recording paper.
  • inkjet printers have become capable of producing images that are comparable to multicolor offset printing and color electrophotography.
  • inkjet printers have become widely popular because they have lower running costs for color printing than electrophotographic printers.
  • inkjet printers that use water-based inks, which are less likely to cause environmental and safety problems than oil-based inks, have become mainstream.
  • inkjet printers that use solvent-based inks are also preferred due to their water resistance and good ink fixability.
  • Various studies have been made regarding printing by inkjet printers using solvent-based inks, for example, in Patent Documents 2 and 3.
  • Patent Document 2 discloses that on a support, at least one substance having an average particle diameter of 2 to 17 ⁇ m and selected from amorphous silica, alumina, alumina hydrate, aluminosilicate, and hydrotalcite group minerals is coated.
  • An inkjet recording medium comprising an ink-receiving layer containing a pigment and an adhesive, the adhesive containing a vinyl chloride-vinyl acetate copolymer is described. .
  • Patent Document 3 discloses that an oil-based ink-receptive gloss layer mainly composed of a vinyl chloride-acrylic copolymer having a glass transition temperature of 20 to 55° C. is formed on at least one surface of a support, and the oil-based ink-receptive gloss layer is formed on at least one surface of a support.
  • the 75 degree specular gloss of the layer surface specified in JIS P 8142:2005 "75 degree specular gloss test method" is 20 to 70%
  • the 75 degree specular gloss of the printed image forming area with oil-based ink is 20% to 70%.
  • a semi-gloss oil-based inkjet recording sheet is described which is characterized by having a specular gloss of 75 degrees or higher.
  • the surface of the print-receiving layer has a high liquid absorption rate, but if the liquid absorption rate is too fast, the ink color may fade or the surface of the print-receptive layer may It has also been found that granular patterns may occur due to bubbles ejected from the openings on the surface.
  • the ink receiving layer in Patent Document 2 is a coating layer containing a pigment, but although a certain level of ink drying performance can be obtained with the pigment coating as in Patent Document 2, water and dirt tend to adhere to it, and the strength of the receiving layer is reduced. may be relatively low. Moreover, print quality such as scratch resistance may be deteriorated thereby.
  • a receiving layer containing a vinyl chloride copolymer as in Patent Document 3 printing is done by corroding the vinyl chloride copolymer with the solvent absorbed from the ink and fixing the pigment, so there is no waviness caused by the solvent. , blocking may occur, and adverse effects on weather resistance may occur.
  • the present invention aims to provide recording paper that has excellent printing quality and drying properties, and is also excellent in weather resistance, so that it does not require water-resistant or anti-fouling treatment even when printed matter is exposed outdoors for a long period of time. purpose.
  • a recording paper having a coating layer, a print receiving layer and a liquid absorbing layer in this order,
  • the coat layer contains an aqueous binder as a resin component
  • Both the print receiving layer and the liquid absorbing layer are porous layers containing a thermoplastic resin
  • the liquid absorption rate on the surface of the print receiving layer side is 5 to 25 cc/m 2 ⁇ 0.5 s,
  • the liquid absorption amount is 10 cc/m 2 or more
  • a recording paper wherein the content of the inorganic filler in the coating layer is 9 parts by mass or less based on 100 parts by mass of the aqueous binder. 2.
  • the recording paper according to item 1 wherein the print receiving layer has a porosity of 30 to 50%, and the liquid absorbing layer has a porosity of 40 to 60%. 3. 3. The recording paper according to 1 or 2 above, wherein the print-receiving layer and the liquid-absorbing layer are both stretch layers containing filler. 4. 4. The recording paper according to any one of 1 to 3 above, wherein the print-receiving layer has a filler content of 45 to 75% by mass. 5. 5. The recording paper according to any one of 1 to 4 above, which contains a hydrophobized surface-treated filler as a filler in the print-receiving layer. 6. 6.
  • FIG. 1 is a sectional view showing an example of recording paper according to this embodiment.
  • (meth)acrylic refers to both acrylic and methacrylic.
  • (meth)acrylate refers to both acrylate and methacrylate.
  • the recording paper according to the present embodiment is a recording paper having a coat layer, a print receiving layer, and a liquid absorbent layer in this order, wherein the coat layer contains an aqueous binder as a resin component, and the print receiving layer and the liquid absorbent layer include a water-based binder as a resin component.
  • Each layer is a porous layer containing a thermoplastic resin, and has a liquid absorption rate of 5 to 25 cc/m 2 ⁇ 0.5 s on the surface on the print receiving layer side, and a liquid absorption amount of 10 cc/m 2 or more. and the content of the inorganic filler in the coating layer is 9 parts by mass or less based on 100 parts by mass of the aqueous binder.
  • FIG. 1 is a cross-sectional view showing an example of recording paper according to this embodiment.
  • the recording paper 1 has a coating layer 13, a print receiving layer 12, and a liquid absorbing layer 11 in this order.
  • the liquid-absorbing layer 11 is preferably provided in contact with the print-receiving layer 12 .
  • the recording paper according to this embodiment preferably includes a support layer 10 on the side opposite to the print-receiving layer 12 when viewed from the liquid-absorbing layer 11. Further, it is preferable that a back layer 9 is further provided on the surface opposite to the print-receiving layer 12 when viewed from the liquid-absorbing layer 11 .
  • FIG. 1 is a cross-sectional view showing an example of recording paper according to this embodiment.
  • the recording paper 1 has a coating layer 13, a print receiving layer 12, and a liquid absorbing layer 11 in this order.
  • the liquid-absorbing layer 11 is preferably provided in contact with the print-receiving layer 12 .
  • the recording paper according to this embodiment preferably includes a
  • FIG. 1 is a diagram illustrating a recording paper 1 including a coat layer 13, a print receiving layer 12, a liquid absorbing layer 11, a support layer 10, and a back layer 9.
  • the "print-receiving layer side surface" of the recording paper means the surface of the recording paper on the print-receiving layer side when viewed from the liquid-absorbing layer. In other words, this corresponds to the surface of the recording paper on the coat layer side.
  • the recording paper according to this embodiment has a liquid absorption speed of 5 to 25 cc/m 2 ⁇ 0.5 s on the surface on the print-receiving layer side.
  • the liquid absorption speed is 5 cc/m 2 ⁇ 0.5 s or more, preferably 7 cc/m 2 ⁇ 0.5 s or more, more preferably more than 10 cc/m 2 ⁇ 0.5 s, and 12 cc/m 2 ⁇ 0.5 s or more. is more preferable, and 13 cc/m 2 ⁇ 0.5 s or more is particularly preferable.
  • the liquid absorption rate is equal to or higher than the above value, ink drying properties during printing can be improved, and furthermore, bleeding in printing can be suppressed.
  • the liquid absorption speed is 25 cc/m 2 ⁇ 0.5 s or less, preferably 20 cc/m 2 ⁇ 0.5 s or less.
  • the liquid absorption rate on the surface of the print receiving layer side is determined by Japan Tappi No. It is the amount of liquid transfer measured in accordance with the liquid absorption test method using the Bristow method described in 51:2000, and means the amount of absorption per unit area 500 milliseconds after dropping the measurement solution.
  • the liquid absorption amount of the recording paper according to this embodiment is 10 cc/m 2 or more, preferably 13 cc/m 2 or more, more preferably 15 cc/m 2 or more, even more preferably 16 cc/m 2 or more, and 18 cc/m 2
  • the above is particularly preferable.
  • the amount of liquid absorbed is equal to or greater than the above value, drying performance can be improved.
  • the liquid absorption amount is preferably 100 cc/m 2 or less, more preferably 90 cc/m 2 or less.
  • the liquid absorption amount of the recording paper refers to the value measured for the amount of liquid absorbed from the surface of the print-receiving layer side, and is the Cobb water absorption value measured based on the provisions of JIS P8140:1998.
  • diethylene glycol ethyl methyl ether is used instead of water as the test solvent, and the contact time is 60 seconds.
  • the liquid absorption rate on the surface on the print receiving layer side is 5 to 25 cc/m 2 ⁇ 0.5 s, and the liquid absorption amount is 10 cc/m 2 or more. That is, in this embodiment, it is preferable that both the liquid absorption rate and the liquid absorption amount are within the above ranges. As mentioned above, the present inventors have found that even if the liquid absorption capacity is relatively large, if the liquid absorption rate is relatively slow, sufficient drying performance may not be obtained.
  • the surface of the print-receiving layer has a high liquid absorption rate, but if the liquid absorption rate is too fast, the ink color may fade or the surface of the print-receptive layer may It has also been found that granular patterns may occur due to bubbles being ejected from the openings on the surface.
  • the recording paper has a print-receiving layer, a liquid-absorbing layer, and a predetermined coating layer, the liquid-absorbing speed of the surface of the recording paper on the print-receiving layer side is within a specific range, and the liquid-absorbing It has been discovered that when the amount is at least a specific value, a recording paper with good print quality, drying properties, and weather resistance can be obtained.
  • both the print-receiving layer and the liquid-absorbing layer are stretched layers containing filler.
  • both the print-receptive layer and the liquid-absorbent layer can be made into stretched layers. This is preferable because the manufacturing process can be simplified and manufacturing costs can be suppressed.
  • a coating layer containing a pigment and a binder is provided on the surface of a base material such as paper.
  • a base material such as paper.
  • calcium carbonate or kaolin is generally used as a pigment, but such coating layers contain a large amount of pigment and are therefore brittle and easily break when bent. Moreover, the surface gloss is likely to be lost due to the pigment component.
  • the print-receiving layer is a layer made porous by stretching, it is easy to make it sufficiently porous with a smaller amount of filler than the above-mentioned coating layer, and it is easy to satisfy the desired liquid absorption rate and amount. .
  • the porous layer thus obtained is resistant to bending.
  • the print-receiving layer is formed by stretching, it is preferable to use the materials described below because the various physical properties described above can be easily achieved. Further, preferred embodiments of the liquid absorbing layer will also be described later.
  • the coating layer contains an aqueous binder as a resin component.
  • aqueous binder as a resin component
  • printability such as adhesion with ink can be improved.
  • the antistatic agent described below is excluded from the aqueous binder.
  • the water-based binder include water-soluble resins and water-dispersible resins (aqueous resin emulsions).
  • the coating layer contains a water-dispersible resin, the liquid absorption rate can be adjusted to be higher than that of other water-based binders such as water-soluble resins.
  • the aqueous binder is preferably an ionic binder, more preferably a cationic binder, from the viewpoint of improving adhesion with the ink.
  • the cation equivalent is preferably 5 meq/g or less, more preferably 4 meq/g or less, and even more preferably 3 meq/g or less.
  • the coat layer can be formed by preparing a coating liquid for forming a coat layer containing an aqueous binder and applying the coating liquid to the surface of the laminated film.
  • the content of the resin component in the coating layer is preferably more than 80% by mass from the viewpoint of improving smoothness, more preferably 85% by mass or more, even more preferably 90% by mass or more, even if it is 100% by mass. good.
  • the content of the resin component in the coat layer refers to the solid content ratio of the total of these resin components in the coat layer, when the coat layer contains a resin component such as an antistatic agent in addition to the aqueous binder. say.
  • the coating layer may be made of only an aqueous binder, only an aqueous binder, an inorganic filler, and an auxiliary component described below, or a water-based binder and an auxiliary agent component to be described later. It may consist only of an auxiliary component.
  • the dry solid content (coating amount after drying) of the coating layer is preferably 0.05 g/m2 or more, more preferably 0.08 g/ m2 or more, and even more preferably 0.05 g/ m2 or more, from the viewpoint of improving adhesion with ink. .1 g/m2 or more .
  • the dry solid content (coating amount after drying) of the coating layer is preferably 10 g/ m2 or less, more preferably 5 g/m2 or less.
  • water-soluble resins include urethane resins, (meth)acrylic acid resins, and ethyleneimine polymers.
  • aqueous resin emulsion examples include urethane resin emulsion, (meth)acrylic acid resin, and olefin resin emulsion.
  • the (meth)acrylic acid resin more preferably has an amino group, a quaternary ammonium salt structure, or a phosphonium salt structure, and even more preferably an amino group or a quaternary ammonium salt structure.
  • the content (solid content) of the water-soluble resin in the coating layer is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of improving adhesion with ink. , more preferably 25% by mass or more, particularly preferably 30% by mass or more. From the viewpoint of promoting ink penetration into the porous layer (print receiving layer and liquid absorbing layer) and obtaining drying properties and image clarity, the content (solid content) of the water-soluble resin in the coating layer is 100% by mass. The content may be 95% by mass or less, or 91% by mass or less.
  • ethyleneimine polymers include polyethyleneimine, poly(ethyleneimine-urea), ethyleneimine adducts of polyamine polyamides, modified products or hydroxides of these, and the like.
  • modified products include alkyl modified products, cycloalkyl modified products, aryl modified products, allyl modified products, aralkyl modified products, benzyl modified products, cyclopentyl modified products, cycloaliphatic hydrocarbon modified products, and glycidol.
  • modified forms include modified forms.
  • the coating layer may further contain an ethyleneimine polymer. When the coating layer contains an ethyleneimine polymer, it has a strong affinity with various printing inks, especially ultraviolet curable inks, and therefore printability is easily improved.
  • the content of the ethyleneimine polymer in the coating layer is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 25% by mass or more, from the viewpoint of improving adhesion with the ink.
  • the upper limit of the content is not particularly limited, but may be 100% by mass or less, 90% by mass or less, or 80% by mass or less.
  • the content (solid content) of the water-dispersible resin in the coating layer is preferably 20% by mass or more, more preferably 30% by mass or more, from the viewpoint of ink fixability. It is more preferably 40% by mass or more, even more preferably 60% by mass or more, particularly preferably 80% by mass or more.
  • the upper limit of the content may be 100% by mass.
  • the average particle diameter of the water-dispersible resin in the coating layer is preferably 5 ⁇ m or less from the viewpoint of promoting ink penetration into the porous layer (print receiving layer and liquid absorbing layer) and obtaining drying properties and image clarity. , more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, even more preferably 0.5 ⁇ m or less, particularly preferably 0.2 ⁇ m or less.
  • the minimum film forming temperature (MFT) of the water-dispersible resin is preferably 100°C or less.
  • MFT is preferably 80°C or lower, more preferably 40°C or lower, and even more preferably 10°C or lower.
  • the lower limit is not particularly specified, but is usually -20°C or higher.
  • the content of the inorganic filler in the coat layer is 9 parts by mass or less based on 100 parts by mass of the aqueous binder. That is, the coating layer does not contain an inorganic filler, or if it does, the content thereof is 9 parts by mass or less. If the content of the inorganic filler is 9 parts by mass or less per 100 parts by mass of the aqueous binder, it becomes difficult to fill the pores opened on the surface of the print-receiving layer, so the printing ink easily penetrates into the porous layer. It becomes easier to obtain drying properties and image clarity.
  • the content of the inorganic filler is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, even more preferably 0.1 parts by mass or less, and it is particularly preferred that no inorganic filler is contained. Further, from the same viewpoint, the content of the inorganic filler in the coating layer is preferably 9 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass or less based on 100 parts by mass of the resin component.
  • the content of the inorganic filler in the coating layer is 9 parts by mass or less, preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 0.1 parts by mass based on 100 parts by mass of the aqueous binder. part or less, particularly preferably 0 part by mass (excluding).
  • the content of the inorganic filler in the coating layer is 0.1 parts by mass per 100 parts by mass of the aqueous binder. It is preferably at least 0.2 parts by mass, more preferably at least 0.3 parts by mass.
  • the inorganic filler that may be contained in the coating layer is not particularly limited, and may be the same as the inorganic particles described below as a filler that may be contained in the print-receiving layer or the like.
  • the coating layer may contain an antistatic agent from the viewpoint of preventing dust adhesion due to charging and transport failure during printing and improving handling properties as a recording paper.
  • an antistatic agent from the viewpoint of preventing dust adhesion due to charging and transport failure during printing and improving handling properties as a recording paper.
  • polymer-type antistatic agents are preferred from the viewpoint of reducing surface contamination due to bleed-out.
  • the polymer type antistatic agent is not particularly limited, and cationic, anionic, amphoteric, or nonionic antistatic agents can be used, and these can be used alone or in combination of two or more types. .
  • Examples of the cationic antistatic agent include antistatic agents having an ammonium salt structure, a phosphonium salt structure, and the like.
  • Examples of anionic antistatic agents include antistatic agents having the structure of alkali metal salts (lithium salts, sodium salts, potassium salts, etc.) of sulfonic acid, phosphoric acid, carboxylic acid, and the like.
  • the anionic antistatic agent may be an antistatic agent having an alkali metal salt structure such as acrylic acid, methacrylic acid, or (anhydrous) maleic acid in its molecular structure.
  • amphoteric antistatic agent is an antistatic agent containing the structures of both a cationic antistatic agent and an anionic antistatic agent in the same molecule.
  • amphoteric antistatic agents include betaine antistatic agents.
  • nonionic antistatic agents include ethylene oxide polymers having an alkylene oxide structure and polymers having an ethylene oxide polymerization component in the molecular chain.
  • Other antistatic agents include polymer type antistatic agents having boron in their molecular structure.
  • a cation type antistatic agent is preferable, a nitrogen-containing polymer type antistatic agent is more preferable, an antistatic agent having an ammonium salt structure is even more preferable, and a tertiary or quaternary ammonium salt is preferable.
  • Acrylic resins having a structure are particularly preferred, and acrylic resins having a quaternary ammonium salt structure are most preferred.
  • the content of the antistatic agent in the coating layer is preferably 0.01 part by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the aqueous binder. , more preferably 2 parts by mass or more.
  • the content of the antistatic agent in the coating layer is preferably 150 parts by mass or less, and preferably 140 parts by mass or less, based on 100 parts by mass of the aqueous binder. is more preferable, and even more preferably 130 parts by mass or less.
  • the coating layer can contain other auxiliary components such as a crosslinking agent, a crosslinking accelerator, a pH adjuster, and an antifoaming agent, if necessary.
  • auxiliary components such as a crosslinking agent, a crosslinking accelerator, a pH adjuster, and an antifoaming agent, if necessary.
  • the print-receiving layer is a porous layer containing thermoplastic resin.
  • the print-receiving layer is preferably a stretched layer containing filler as described above. That is, the print-receiving layer is preferably a stretched layer containing a thermoplastic resin and a filler.
  • coloring materials such as pigments and dyes remain on the surface layer of the print-receiving layer and develop color.
  • the ink solvent passes through the print receiving layer and moves to the lower layer (liquid absorption layer).
  • thermoplastic resin used in the print-receiving layer examples include olefin polymers, polyamides, polyesters, polycarbonates, polystyrenes, poly(meth)acrylates, polyvinyl chloride, and mixed resins thereof.
  • olefin polymers are preferred from the viewpoint of excellent water resistance and solvent resistance.
  • propylene polymer As the olefin polymer, propylene polymer, ethylene polymer, etc. can be preferably used.
  • propylene-based polymers include propylene homopolymers such as isotactic homopolypropylene and syndiotactic homopolypropylene, which are made by homopolymerizing propylene, and propylene-based polymers mainly composed of propylene such as ethylene, 1-butene, 1-hexene, and 1-heptene.
  • propylene copolymers copolymerized with ⁇ -olefins such as , 1-octene, and 4-methyl-1-pentene.
  • the propylene copolymer may be a binary system or a multi-component system having ternary or more components. Further, the propylene copolymer may be a random copolymer or a block copolymer.
  • Ethylene-based polymers include, for example, high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, ethylene as a main ingredient, and ⁇ -olefins such as propylene, butene, hexene, heptene, octene, and 4-methylpentene-1.
  • Copolymerized copolymers maleic acid-modified ethylene/vinyl acetate copolymers, ethylene/vinyl acetate copolymers, ethylene/acrylic acid copolymers, ethylene/acrylic acid alkyl ester copolymers, ethylene/alkyl methacrylates Ester copolymers, metal salts of ethylene/methacrylic acid copolymers (metals include zinc, aluminum, lithium, sodium, potassium, etc.), ethylene-cyclic olefin copolymers, (anhydrous) maleic acid-modified polyethylene, (anhydrous) maleic Examples include acid-modified polypropylene.
  • (maleic anhydride) refers to both maleic anhydride and maleic acid.
  • propylene homopolymer that is, polypropylene, or high-density polyethylene is preferable from the viewpoint of improving moldability, suppressing cost, and suppressing deflection due to solvent ink.
  • (anhydrous) maleic acid-modified polyethylene or (anhydrous) maleic acid-modified polypropylene is preferable.
  • thermoplastic resins one kind can be used alone or two or more kinds can be used in combination.
  • Fillers include inorganic particles and organic particles. Inorganic particles and organic particles can be used alone or in combination. When a resin composition containing a filler and a thermoplastic resin is stretched, a large number of fine pores with particles as cores can be formed inside the stretched layer. Thereby, a porous layer can be obtained.
  • the filler content in the print-receiving layer is preferably 45% by mass or more, and 50% by mass or more, from the viewpoint of reducing the amount of resin used and reducing the environmental load, and from the viewpoint of making the pore forming property suitable. It is more preferable that On the other hand, the filler content in the print-receiving layer is preferably 75% by mass or less, more preferably 65% by mass or less, from the viewpoint of suppressing the occurrence of surface defects.
  • the filler content in the print-receiving layer is 45% by mass or more, it is possible to increase the porosity, help ink to penetrate into the liquid-absorbing layer, and increase the liquid-absorbing amount.
  • the filler content is 75% by mass or less, it is possible to prevent the porosity and liquid absorption rate from becoming excessive.
  • the average particle diameter of the filler contained in the print-receiving layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, from the viewpoint of obtaining suitable pore-forming properties and controlling the liquid absorption rate. Further, from the same viewpoint, the average particle diameter of the filler is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 0.9 ⁇ m or less. When the average particle diameter of the filler is 0.1 ⁇ m or more, the porous layer is made porous and the permeability of the ink is easily increased.
  • the average particle diameter of the filler refers to the average primary particle diameter (D50). This is the volume-based median diameter measured by laser light diffraction/scattering method.
  • inorganic particles include, but are not limited to, heavy calcium carbonate, light calcium carbonate, calcined clay, talc, titanium oxide, barium sulfate, alumina, silica, zinc oxide, zeolite, mica, glass fiber, hollow glass beads, and the like. Can be mentioned. Among them, heavy calcium carbonate, calcined clay, diatomaceous earth, etc. are cheap, and they are easy to form many pores by stretching the resin composition that forms the porous layer, and the porosity can be easily adjusted. ,preferable. In particular, heavy calcium carbonate or light calcium carbonate is preferable because its average particle size or particle size distribution can be easily adjusted to a range in which pore formation is easy. Among the above inorganic particles, one kind can be used alone or two or more kinds can be used in combination.
  • Organic particles include, but are not particularly limited to, organic particles that are incompatible with the thermoplastic resin, have a melting point or glass transition temperature higher than that of the thermoplastic resin, and are finely dispersed under the melt-kneading conditions of the thermoplastic resin. preferable.
  • thermoplastic resin contained in the print receiving layer polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, a cyclic olefin homopolymer, or a cyclic olefin
  • a resin such as a copolymer of ethylene and a resin having a melting point of 120 to 300°C or a glass transition temperature of 120 to 280°C.
  • the print-receiving layer preferably contains a hydrophobized surface-treated filler as a filler, and may contain only a hydrophobized surface-treated filler as a filler.
  • the hydrophobized surface-treated filler is preferably an inorganic particle or an organic particle whose surface has been hydrophobized with paraffin or a fatty acid having 12 to 22 carbon atoms or a salt thereof; More preferably, they are surface-treated inorganic particles or organic particles.
  • Examples of the fatty acid having 12 to 22 carbon atoms for hydrophobic surface treatment include lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, and eleostearin. Examples include acids.
  • the surface treatment method is not particularly limited, and can be carried out, for example, by introducing an aqueous solution of a treatment agent into a slurry of inorganic or organic particles.
  • surface-treated inorganic particles or organic particles that is, inorganic particles or organic particles having a surface-treated layer containing paraffin, a fatty acid having 12 to 22 carbon atoms, or a salt thereof on the surface.
  • an untreated filler without surface treatment or a hydrophilic surface-treated filler with hydrophilic surface treatment may be used in combination, as long as the effects of the present invention are not impaired.
  • the content of the hydrophobized surface treated filler in the filler contained in the print receiving layer is preferably 50% by mass or more, more preferably 60% by mass or more, and preferably 70% by mass or more. The content is more preferably 80% by mass or more, even more preferably 90% by mass or more. All of the fillers contained in the print-receiving layer may be hydrophobized surface-treated fillers.
  • the print-receiving layer can optionally contain known additives, if necessary.
  • Additives include antioxidants, light stabilizers, ultraviolet absorbers, filler dispersants, crystal nucleating agents, anti-blocking agents, plasticizers, slip agents such as fatty acid amides, dyes, pigments, mold release agents, and flame retardants.
  • known auxiliary agents include.
  • the base layer preferably contains an antioxidant, a light stabilizer, and the like.
  • the antioxidant include sterically hindered phenolic antioxidants, phosphorus antioxidants, amine antioxidants, and the like.
  • the light stabilizer examples include sterically hindered amine light stabilizers, benzotriazole light stabilizers, benzophenone light stabilizers, and the like.
  • the content of the antioxidant and light stabilizer is preferably 0.001 to 1% by mass based on the base layer.
  • the print-receiving layer is porous, and its porosity is preferably 32% or more, more preferably 34% or more, and even more preferably 35% or more. Further, the porosity of the print-receiving layer is preferably 50% or less, more preferably 45% or less. It is preferable that the porosity is in this range because it becomes easier to achieve both liquid absorption rate and surface strength.
  • the porosity is obtained as the area ratio of pores on the cross section, which is calculated by observing the cross section of the target layer using a scanning electron microscope, importing the observed image into an image analysis device, and performing image analysis on the observed area. be able to.
  • the basis weight of the print-receiving layer is preferably 1 g/m 2 or more, more preferably 1.5 g/m 2 or more, and even more preferably 2 g/m 2 or more.
  • the basis weight of the print-receiving layer is preferably 15 g/m 2 or less, more preferably 12 g/m 2 or less, even more preferably 10 g/m 2 or less. When the basis weight is within this range, it is preferable because it becomes easier to adjust the liquid absorption rate to a desired level.
  • the average pore diameter of the print-receiving layer is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and even more preferably 0.8 ⁇ m or more from the viewpoint of suppressing the liquid absorption rate from becoming too low.
  • the average pore diameter of the print-receiving layer is preferably 20 ⁇ m or less, more preferably 14 ⁇ m or less, and even more preferably 7 ⁇ m or less, from the viewpoint of suppressing a decrease in sharpness due to sinking of ink pigments.
  • the average pore diameter of the print-receiving layer is determined by the same image analysis as when determining the porosity.
  • the liquid-absorbing layer is a layer that absorbs ink that has passed through the print-receiving layer, and is preferably provided in contact with the print-receiving layer.
  • the liquid absorbing layer is a porous layer containing a thermoplastic resin, and is preferably a stretched layer containing a filler. That is, the liquid absorbing layer is preferably a stretched layer containing a thermoplastic resin and a filler.
  • thermoplastic resin used in the liquid-absorbing layer examples include the same thermoplastic resins as those listed in the section of the print-receiving layer, and among them, the preferred ones are also the same as described above.
  • the filler used in the liquid-absorbing layer the same fillers as those mentioned in the section of the print-receiving layer can be used.
  • the filler used in the liquid-absorbing layer may or may not have been subjected to at least one of the above-mentioned hydrophilic surface treatment and hydrophobic surface treatment.
  • the filler used in the liquid-absorbing layer is preferably not surface-treated from the viewpoint of obtaining a desired liquid-absorbing amount.
  • the filler content in the liquid absorption layer is preferably 45 to 70% by mass, more preferably 50 to 65% by mass.
  • the filler content is at least the above lower limit, the amount of pores in the liquid absorbing layer is likely to be sufficient.
  • the filler content is at most the above upper limit.
  • the liquid-absorbing layer may contain other arbitrary components such as the various additives mentioned above.
  • the thickness and porosity of the liquid absorbing layer may be adjusted so that the amount of liquid absorbed from the print receiving layer is 10 cc/m2 or more, and a thin layer with high porosity may be provided, or a layer with high porosity may be formed thinly. It is also possible to provide a thick layer in which the resistance is not so high. From the viewpoint of increasing the continuity and ensuring the capacity for liquid absorption, the porosity of the liquid absorption layer is preferably 40% or more, more preferably 45% or more. On the other hand, from the viewpoint of increasing productivity, the porosity is preferably 60% or less.
  • the basis weight of the liquid absorbing layer is preferably 5 g/m 2 or more, more preferably 10 g/m 2 or more, even more preferably 15 g/m 2 or more, and even more preferably 19 g/m 2 or more. Even more preferably, it is 21 g/m 2 or more. Further, the basis weight of the liquid absorbing layer is preferably 50 g/m 2 or less, more preferably 40 g/m 2 or less, and even more preferably 37.5 g/m 2 or less. It is preferable for the basis weight to be within this range because it makes it easier to adjust the amount of liquid absorbed to the desired level.
  • a support layer may be laminated on the opposite side of the liquid-absorbing layer from the print-receiving layer.
  • the recording paper By configuring the recording paper to include such a support layer, it is possible to provide the recording paper with an appropriate thickness and stiffness suitable for printing. That is, by adjusting the thickness of the support layer, it is possible to adjust the thickness of the recording paper, give it a stiffness suitable for printing, and adjust its opacity and paper feeding/discharging properties. From the viewpoint of obtaining sufficient stiffness, the thickness of the support layer is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the thickness of the support layer is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the support layer may be a single layer or a laminate of two or more layers.
  • the support layer is preferably a thermoplastic resin layer with excellent water resistance.
  • the thermoplastic resin the same resins as those mentioned in the section of the print-receiving layer can be used.
  • the support layer may contain a filler similarly to the print-receiving layer and the liquid-absorbing layer, and the support layer may be a porous layer. Further, the support layer may contain other arbitrary components such as the above-mentioned additives.
  • the back layer is preferably provided on the surface of the support layer opposite to the print-receiving layer.
  • the back layer mainly has the function of promoting evaporation of the solvent after printing from the receiving layer and suppressing the waviness of the paper surface caused by the solvent when the recording sheets are stacked and stored.
  • the same material as the print-receiving layer can be used for the back layer.
  • the filler content in the back layer if an inorganic filler and an organic filler are used together, the total amount
  • the total amount must be 5 to 60% by mass from the viewpoint of appropriate surface roughness and static friction coefficient. is preferable, and 10 to 50% by mass is more preferable.
  • the thickness of the back layer can be appropriately determined depending on the thickness of the support layer described above.
  • the thickness of the back layer is preferably 1 to 50 ⁇ m, more preferably 1 to 20 ⁇ m, and even more preferably 2 to 10 ⁇ m, from the viewpoint of developing appropriate surface roughness.
  • the porosity of the back layer is preferably 5 to 60%, more preferably 5 to 50%, and even more preferably 10 to 40%.
  • the presence of pores tends to make it possible to control the surface roughness of the back layer within a predetermined range.
  • a coating layer can also be further provided on the surface of the back layer.
  • the coating layer can contain an anchoring agent, a polymeric antistatic agent, and the like.
  • an anchor agent when an inkjet printing layer is provided on the coating layer, the adhesion between the coating layer and the inkjet printing layer tends to be improved.
  • an antistatic agent there is a tendency that the antistatic performance of the back layer side can be improved.
  • the anchoring agent include polyimine polymers and ethyleneimine adducts of polyamine polyamides.
  • examples of the polymer type antistatic agent include those having an ammonium salt structure or a phosphonium salt structure.
  • the antistatic agent is preferably 0 to 200 parts by mass, more preferably 0 to 200 parts by mass, based on 100 parts by mass of the anchoring agent in terms of solid content ratio.
  • the amount is 20 to 150 parts by weight, more preferably 30 to 100 parts by weight.
  • the recording paper is also suitable for use in bulletin boards such as posters, and in the case of use in bulletin boards, it is preferable that it has a certain degree of rigidity from the viewpoint of ease of handling during pasting.
  • the bending resistance of the recording paper is preferably 0.3 mN or more, more preferably 0.4 mN or more, and even more preferably 0.5 mN or more.
  • the bending resistance of the recording paper is preferably 10 mN or less, more preferably 5 mN or less, and even more preferably 3 mN or less. If the bending resistance of the recording paper is within the above range, the recording paper itself will have stiffness and will be easy to handle.
  • the bending resistance in this embodiment is based on the bending repulsion A method (Gurley method) according to JIS L1096:2010. Note that a specific method for measuring the bending resistance of recording paper using the Gurley method will be explained in Examples to be described later.
  • the glossiness of the surface of the recording paper on the print-receiving layer side is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more. If the glossiness of the surface of the print-receiving layer side is equal to or higher than the above lower limit, it can be said that a sufficiently high glossiness has been obtained, at least compared to recording paper using a pigment coating, etc., and the image is clear and the appearance is good. It tends to get better.
  • the glossiness in this embodiment is based on the glossiness according to JIS P 8142:1993. Note that a specific method for measuring the glossiness of the surface of the recording paper on the print-receiving layer side will be explained in Examples described later.
  • the surface strength of the print-receiving layer side is preferably 0.7 kgf/cm or more, more preferably 0.9 kgf/cm or more, and even more preferably 1.0 kgf/cm or more.
  • the surface strength of the receptor layer may be 2.0 kgf/cm or less, 1.5 kgf/cm or less, or 1.2 kgf/cm or less. If the surface strength of the print-receiving layer side is within the above range, the surface of the print-receiving layer side will be less likely to be scraped by sand etc. when the recording paper is posted outdoors, and the weather resistance will be high, so the printed image will not be visible. They tend to be able to be maintained for long periods of time. Note that a specific method for measuring the surface strength on the print-receiving layer side will be explained in Examples described later.
  • the smoothness of the surface of the print-receiving layer side is preferably 1000 seconds or more, more preferably 1300 seconds or more, and even more preferably 1800 seconds or more, from the viewpoint of clear images and good appearance. preferable.
  • the surface smoothness of the print-receiving layer side is preferably 10,000 seconds or less, more preferably 9,000 seconds or less, and even more preferably 8,000 seconds or less. preferable. Note that a specific method for measuring the smoothness of the surface of the print-receiving layer side will be explained in Examples described later.
  • the method for manufacturing the recording paper of the present invention is not particularly limited, but examples include the following method.
  • the recording paper includes a print-receiving layer, a liquid-absorbing layer, a support layer, and a back layer
  • the laminated resin that constitutes the print-receiving layer and the liquid-absorbing layer is The film may be laminated on one side of the support layer and the back layer on the other side.
  • the print-receiving layer and the liquid-absorbing layer are coextruded onto one side of the support layer using a multilayer die method using a feed block and multi-manifold, and the back layer is extruded onto the other side, followed by co-stretching.
  • a laminated resin film in which these layers are made porous may be formed, or by extruding and laminating one layer on the surface of the other layer using multiple dies, and then stretching this.
  • a laminated resin film in which both layers are made porous may be formed.
  • the support layer, liquid absorbent layer, print receiving layer, and back layer may all be coextruded and then co-stretched, or the support layer, liquid absorbent layer, and back layer may be coextruded and then the print receiving layer is formed on the surface of the liquid absorbent layer.
  • extrusion lamination is performed to form a printing receiving layer on the surface of the liquid absorption layer and a back layer on the surface of the support layer, and then co-stretching, or alternatively, the liquid absorption layer is formed on one side of the support layer.
  • the print-receiving layer is co-stretched after extrusion lamination of the back layer on the other side of the support layer, thereby making the liquid-absorbing layer and the print-receiving layer porous and laminating them with the support in parallel.
  • a known method can be used as the stretching method.
  • Film stretching methods include, for example, a longitudinal stretching method using a difference in the peripheral speed of a group of rolls, a lateral stretching method using a tenter oven, a sequential biaxial stretching method that combines these methods, a rolling method, and a combination of a tenter oven and a pantograph.
  • Examples include a simultaneous biaxial stretching method, a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, and the like.
  • a simultaneous biaxial stretching (inflation molding) method in which a molten resin is extruded into a tube shape using a circular die connected to a screw extruder and air is blown into the tube can also be used.
  • each layer may be stretched individually before being laminated, or may be stretched all together after being laminated. Alternatively, the stretched layers may be stretched again after being laminated.
  • the stretching temperature is preferably in a range equal to or higher than the glass transition temperature of the thermoplastic resin.
  • the stretching temperature must be within a range that is above the glass transition point of the amorphous portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin.
  • the temperature is preferably 2 to 60°C lower than the melting point of the thermoplastic resin.
  • the stretching ratio is usually 1.2 times or more, preferably 2 times or more, but usually 10 times or less, preferably 5 times or less.
  • the area stretching ratio is usually 1.5 times or more, preferably 4 times or more, but usually 20 times or less, preferably 12 times or less. If the stretching ratio is within the above range, there is a tendency for stable stretch forming. Also, when using a resin composition containing a thermoplastic resin and a filler, as long as the stretching ratio is within the above range, the desired porosity can be obtained, the opacity can be easily improved, and the film is less likely to break.
  • a coat layer can be formed by applying the above-mentioned coating liquid for forming a coat layer to the stretched laminated resin film and drying it.
  • the recording paper according to this embodiment can be printed on the surface on the print-receiving layer side.
  • the printing method performed on the print-receiving layer is not particularly limited, and in addition to various known plate printing methods such as gravure printing, offset printing, flexo printing, sticker printing, and screen printing, inkjet methods, electrophotographic methods, Alternatively, digital printing or fused thermal transfer printing using various printers such as liquid toner type printers can also be performed.
  • ink For printing, various types of ink, such as ultraviolet curable ink, oil-based ink, oxidative polymerization-curable ink, fused thermal transfer recording ink, water-based ink, solvent ink, powder toner, or liquid toner (electro ink), are used depending on the printing method. Ink can be used.
  • the recording paper according to this embodiment is suitably used for inkjet printing, especially inkjet printing using water-based ink or solvent ink, and especially inkjet printing using solvent ink.
  • the recording paper according to this embodiment has a print-receiving layer, a liquid-absorbing layer, and a predetermined coating layer, and has a liquid-absorbing speed within a specific range and a liquid-absorbing amount of a specific value or more, which improves print quality. , excellent drying and weather resistance.
  • Solvent-based inks generally contain a solvent and a colorant specific to solvent-based inks.
  • the solvent used in the solvent-based ink include glycol ether-based solvents such as polyoxyethylene glycol dialkyl ether, polyoxyethylene glycol monoalkyl ether, and polypropylene glycol monoalkyl ether.
  • coloring materials used in solvent-based inks include oil-soluble dyes such as naphthol dyes, azo dyes, metal complex dyes, anthraquinone dyes, quinoimine dyes, indigo dyes, cyanine dyes, quinoline dyes, nitro dyes, nitroso dyes, and benzoquinone dyes.
  • pigments carbonium dyes, naphthoquinone dyes, naphthalimide dyes, phthalocyanine dyes, perinine dyes, and the like.
  • organic pigments include insoluble azo pigments, condensed azo pigments, chelate azo pigments, perinone pigments, nitro pigments, nitroso pigments, perylene pigments, and aniline black.
  • the slurry was classified through a 350-mesh screen, and the slurry that passed through the 350-mesh screen was dried in a fluidized medium dryer (MSD-200, manufactured by Nara Kikai Seisakusho Co., Ltd.).
  • MSD-200 manufactured by Nara Kikai Seisakusho Co., Ltd.
  • the average primary particle size of the obtained calcium carbonate was measured with Microtrack (manufactured by Nikkiso Co., Ltd.) and was found to be 1.5 ⁇ m.
  • the average primary particle size of the obtained calcium carbonate was subjected to ultrasonic dispersion using an ultrasonic dispersion machine Model US-300T (manufactured by Nippon Seiki Co., Ltd.) for 60 seconds at 300 ⁇ A using ethanol as a solvent. When measured, it was 0.23 ⁇ m.
  • Coating compositions Coating liquids (coating liquids) a to d were obtained by mixing the respective materials so as to have the formulations (solid content ratio, parts by mass) shown in Table 2.
  • a blank column in Table 2 means that the solid content ratio is 0 parts by mass.
  • Example 1 After melt-kneading the resin composition a listed in Table 1 in an extruder set at 230°C, it was fed to an extrusion die set at 250°C and extruded into a sheet, which was then cooled to 60°C with a cooling device. A non-stretched sheet was obtained. This unstretched sheet was heated to 140° C. and stretched 5 times in the longitudinal direction using the difference in circumferential speed between the roll groups. Next, resin compositions c and e are melt-kneaded in an extruder set at 230°C, and then extruded into a sheet so that resin composition c is in contact with the stretched sheet and laminated on the first side of the stretched sheet.
  • resin composition a was melt-kneaded in one extruder set at 230°C, extruded into a sheet, and laminated on the second side of the stretched sheet to obtain a four-layer laminated sheet.
  • a laminated resin film having a thickness (2 ⁇ m/42 ⁇ m/46 ⁇ m/30 ⁇ m) and the number of stretching axes for each layer (1 axis/1 axis/2 axis/1 axis) was obtained.
  • the coating composition was applied to the surface of the laminated resin film so that the coating amount after drying was 0.15 g/m 2 .
  • the coating film was dried in an oven at 60° C. to form a coat layer, and the recording paper of Example 1 was obtained.
  • Examples 2-11 and 13-14 Recording sheets of Examples 2 to 11 and 13 to 14 were obtained in the same manner as in Example 1, except that the types of resin compositions and coating compositions used, and stretching conditions were changed as shown in Table 3. The thicknesses of the support layer and back layer in Examples 2 to 11 and 13 to 14 are the same as in Example 1.
  • Example 12 After melt-kneading the resin composition a listed in Table 1 in an extruder set at 230°C, it was fed to an extrusion die set at 250°C and extruded into a sheet, which was then cooled to 60°C with a cooling device. A non-stretched sheet was obtained. Next, resin compositions c and e are melt-kneaded in an extruder set at 230°C, and then extruded into a sheet so that resin composition c is in contact with the non-stretched sheet, and is applied to the first surface of the non-stretched sheet.
  • resin composition a was melt-kneaded in one extruder set at 230°C, extruded into a sheet, and laminated on the second side of the stretched sheet to obtain a 4-layer laminated sheet.
  • a laminated resin film having a thickness (2 ⁇ m/42 ⁇ m/46 ⁇ m/30 ⁇ m) and the number of stretching axes for each layer (1 axis/1 axis/1 axis/1 axis) was obtained.
  • the coating composition was applied to the surface of the laminated resin film so that the coating amount after drying was 0.15 g/m 2 .
  • the coating film was dried in an oven at 60° C. to form a coat layer, and a recording paper of Example 12 was obtained.
  • Coat layer composition c was prepared by mixing and dispersing 25 parts by mass of "Acronal YJ-2870D” manufactured by ), solid content concentration 50% by mass.
  • a coating layer composition was applied to one side of the laminated resin film obtained above and dried to form a coating layer with a thickness of 20 ⁇ m. After drying in an oven at 70° C. for 60 seconds, a coating layer with a thickness of 120 ⁇ m was obtained. Comparative Example 1 Record sheets were obtained.
  • Comparative example 2 The resin composition h listed in Table 1 was kneaded and rolled for 5 minutes using two 9-inch test rolls (steam heating type manufactured by Nishimura Koki Co., Ltd.) set at 160°C to obtain a vinyl chloride-based resin composition with a thickness of 140 ⁇ m. A resin sheet was produced (calendering). The obtained vinyl chloride resin sheet was pressed using a 37t hydraulic molding machine (manufactured by Oji Kikai Co., Ltd.) at a temperature of 170°C, applying a maximum pressure of 70 kg/cm 2 to give a mirror-like surface finish and a thickness of 140 ⁇ m. A recording paper of Comparative Example 2 was obtained.
  • a laminated resin film having a thickness (1 ⁇ m/20 ⁇ m/25 ⁇ m/25 ⁇ m) and the number of stretching axes for each layer was obtained.
  • the coating composition was applied to the surface of the laminated resin film so that the coating amount after drying was 0.15 g/m 2 .
  • the coating film was dried in an oven at 60° C. to form a coat layer, and a recording paper of Comparative Example 3 was obtained.
  • Comparative example 4 A recording paper of Comparative Example 4 was obtained in the same manner as in Example 1 except that the coating layer was not applied.
  • Comparative Examples 5 to 7 Recording sheets of Comparative Examples 5 to 7 were obtained in the same manner as in Example 1, except that the types of the resin composition and coating composition used and the stretching conditions were changed as shown in Table 3. Note that the thicknesses of the support layer and back layer in Comparative Examples 5 to 7 are the same as in Example 1.
  • Liquid absorption amount The amount of liquid absorbed by the recording paper was measured using a water absorption tester specified in JIS P 8140. First, a solvent (diethylene glycol ethyl methyl ether manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was brought into contact with the surface of the test piece on the print-receiving layer side for 60 seconds, and after removing excess solvent, the mass of the test piece was measured. Next, the measured mass of the test piece was subtracted from the mass of the original test piece, and the mass of the solvent absorbed per 1 m 2 was determined as the solvent absorption amount (cc/m 2 ).
  • a solvent diethylene glycol ethyl methyl ether manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the liquid absorption rate on the print-receiving layer side surface of the recording paper was measured using a water absorption tester specified in JIS P 8140.
  • a solvent manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethylene glycol ethyl methyl ether
  • the amount of solvent absorbed was calculated, and the value divided by the solvent contact time was determined as the liquid absorption rate. (cc/ m2 ⁇ 0.5s).
  • the surface strength of the print receiving layer side of the recording paper was measured as follows.
  • Cellophane tape manufactured by Nichiban Co., Ltd., trade name: CT-18
  • JAPAN TAPPI No. 18-2 internal bond strength test method
  • an internal bond tester trade name, manufactured by Kumagai Riki Kogyo Co., Ltd.
  • the thickness (total thickness) of the recording paper was measured in accordance with JIS K7130:1999 using a constant pressure thickness measuring device (manufactured by Techlock Co., Ltd., trade name: PG-01J).
  • the thickness of each layer on the recording paper can be determined by cooling the sample to be measured with liquid nitrogen to a temperature below -60°C, placing it on a glass plate, and using a razor blade (manufactured by Schick Japan Co., Ltd., commercially available).
  • a sample for cross-sectional observation was prepared by cutting the sample at right angles with a Proline Blade.
  • Table 3 shows the thicknesses of the print-receiving layer and the liquid-absorbing layer determined by this method. Note that since the recording papers of Comparative Examples 1 and 2 do not have a print-receiving layer and a liquid-absorbing layer, the thickness of the coating layer for Comparative Example 1 and the thickness of the support layer for Comparative Example 2 are shown in Table 3. Indicated.
  • the Gurley bending resistance of the recording paper is determined in accordance with JIS L1096:2010 using a Gurley bending resistance tester (Daiei Kagaku Seiki Seisakusho) in the MD direction of the recording paper in an environment of 23°C and 50% RH. Measurement was performed using GAS-100 (manufactured by Co., Ltd., trade name: GAS-100).
  • the Oken-type smoothness of the surface of the print-receiving layer side of the recording paper was measured using a digital Oken-type air permeability and smoothness tester (Asahi Seiko Co., Ltd.) according to JIS P 8155:2010 "Paper and paperboard - Smoothness test method - Oken method”. It was measured with "EYO-55-1M” manufactured by Co., Ltd.).
  • the average pore diameter of the print-receiving layer was determined by the following method. The surface of the target layer was observed using a scanning electron microscope, the observed image was imported into an image analysis device, and the observed area was image analyzed to determine the average pore diameter of the pores on the surface.
  • solvent inkjet printing A sample image was printed on the print-receiving layer side surface of the recording paper using a solvent inkjet printer "SureColor SC-S80650" (manufactured by Seiko Epson Corporation).
  • gauze impregnated with 20 ⁇ L of pure water at room temperature was attached to a weight with a weight of 215 g, and the surface of the printed image area was rubbed with this weight 100 times, and the degree of ink removal was visually observed. Observed. Abrasion was evaluated based on the following criteria. 5 (Good): 95% or more of the rubbed image portion remained. 4 (Good): 90% or more of the rubbed image portion remained. 3 (fair, practical lower limit): 80% or more of the rubbed image portion remained. 2 (unacceptable, not suitable for practical use): 70% or more of the rubbed image portion remained.
  • the residual rate of the rubbed image portion was less than 70%.
  • the adhesive side of cellophane tape manufactured by Nichiban Co., Ltd., trade name: Cellotape (registered trademark) CT-18
  • the residual rate of ink on the recording paper was measured using a small general-purpose image analysis device (manufactured by Nireco, model name: LUZEX-AP). was calculated.
  • the image obtained by photographing the printed surface was subjected to binarization processing, and the percentage of the area occupied by the ink was calculated as the residual rate.
  • Ink adhesion was evaluated based on the calculated residual rate of ink using the following criteria. 5 (Good): The residual rate of ink was 80% or more. 3 (fair, practical lower limit): The residual rate of ink was 50% or more and less than 80%. 1 (unacceptable, not suitable for practical use): The residual rate of ink was less than 50%.
  • Blocking A solid black color is printed on the print-receiving layer side surface of the recording paper using a solvent inkjet printer "SureColor SC-S80650" (manufactured by Seiko Epson Corporation). After being stored for one day in an atmosphere of 40° C. and 50% relative humidity, it was observed whether it was possible to pull out smoothly from the roll without causing blocking. Blocking was evaluated based on the following criteria. 5 (Good): The sample could be pulled out smoothly without any peeling sound. 3 (fair, practical lower limit): There was a peeling sound, but the appearance of the base material layer after taking it off was not impaired. 1 (unsuitable, not suitable for practical use): There was a loud peeling sound, and the appearance of the base material layer after being removed was impaired.
  • Super accelerated weathering tester manufactured by Daipra Wintes Co., Ltd., product name "Metal Weather KU-R5N-A", metal halide lamp type) and a glass filter "KF-2 filter” that transmits ultraviolet light of 295 to 450 nm ( (product name) was used.
  • the irradiance on the surface of the test piece was 90 W/m 2 and the black panel temperature was 63°C.
  • the acceleration treatment was carried out in two cycles, with one cycle consisting of 5 hours of exposure at a temperature of 63°C and a relative humidity of 50% and 3 hours of exposure at a temperature of 30°C and a relative humidity of 98%. Therefore, the radiation exposure to the printed surface was 5.18 ⁇ 10 6 J/m 2 .
  • the test piece subjected to the weather resistance promotion treatment was subjected to a friction test and evaluation in the same manner as in the case of abrasion resistance. 5 (Good): 95% or more of the rubbed image portion remained. 3 (fair, practical lower limit): 80% or more of the rubbed image portion remained. 1 (unacceptable, not suitable for practical use): The residual rate of the rubbed image portion was less than 80%.
  • the recording papers of Examples 1 to 14 were equipped with a print-receiving layer, a liquid-absorbing layer, and a predetermined coating layer, had a liquid-absorbing speed within a specific range, and had a liquid-absorbing amount of at least a specific value. As a result, we were able to achieve both excellent print quality, drying properties, and weather resistance. On the other hand, the recording papers of Comparative Examples 1 to 7 had results that were not suitable for practical use in any one or more evaluation items, and were unable to achieve both print quality, drying performance, and weather resistance.
  • Comparing Examples 1 to 3 there was a tendency for the liquid absorption rate to increase as the basis weight of the print-receiving layer decreased. Additionally, in conjunction with this, in the recording papers of Examples 1 to 3, there was a tendency for the evaluation of bleeding to be better as the liquid absorption rate increased. Comparing Examples 3 and 4, in Example 3, the basis weight of the liquid-absorbing layer was larger and the amount of liquid absorbed was larger. The recording paper of Example 3 had a better evaluation of drying properties than the recording paper of Example 4. Comparing Examples 1, 5, and 6, it is found that the type (average particle size and surface treatment) and composition of the filler used in the print-receiving layer are different, which causes the average pore size of the print-receptor layer to differ and the liquid absorption rate to change.
  • Example 10 has a larger coating amount of the coat layer after drying and a lower liquid absorption rate.
  • the recording paper of Example 1 had a better evaluation of bleeding than the recording paper of Example 10. Comparing Examples 1 and 11, the coating compositions used for the coating layers are different. The recording paper of Example 11 had a better scratch evaluation than the recording paper of Example 1 by using a water-dispersible resin in the coating composition. Comparing Examples 1 and 12, although the number of stretching axes of the support layer was different, the evaluation results for the recording sheets of Examples 1 and 12 were the same. Comparing Examples 11 and 13, the recording paper of Example 13 had a better evaluation of bleeding because the coating composition was composed only of an aqueous binder.
  • the recording paper of Comparative Example 1 has a coating layer containing a pigment, but the coating layer contains a large amount of inorganic filler.
  • the recording paper of Comparative Example 1 had an evaluation result that was not suitable for practical use in terms of abrasion resistance compared to the recording paper of Example 1 in which the coating layer did not contain an inorganic filler.
  • the recording paper of Comparative Example 2 includes a layer containing a vinyl chloride copolymer, and does not include a porous layer such as a coating layer, a print-receiving layer, or a liquid-absorbing layer.
  • the recording paper of Comparative Example 2 had evaluation results that were not suitable for practical use in terms of waviness, blocking, and weather resistance.
  • the recording paper of Comparative Example 3 does not have a porous layer, both the amount of liquid absorbed and the rate of liquid absorption are too small.
  • the recording paper of Comparative Example 2 had evaluation results that were unsuitable for practical use in terms of bleeding and drying.
  • the recording paper of Comparative Example 4 does not have a coat layer.
  • the recording paper of Comparative Example 4 had evaluation results that were not suitable for practical use in terms of density, scratching, and ink fixation.
  • the recording paper of Comparative Example 5 has too little liquid absorption.
  • the recording paper of Comparative Example 5 had an evaluation result that was not suitable for practical use regarding drying.
  • the recording paper of Comparative Example 6 has too little liquid absorption.
  • the recording paper of Comparative Example 6 had evaluation results that were unsuitable for practical use in terms of bleeding and drying.
  • the recording paper of Comparative Example 7 has a liquid absorption rate that is too high.
  • the recording paper of Comparative Example 7 had evaluation results that were not suitable for practical use in terms of density and scratches.

Landscapes

  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

本発明は、コート層、印刷受容層および吸液層をこの順で有する記録用紙であって、前記コート層は樹脂成分として水性バインダーを含み、前記印刷受容層及び前記吸液層はいずれも熱可塑性樹脂を含有する多孔質層であり、前記印刷受容層側の表面における吸液速度が5~25cc/m・0.5sであり、吸液量が10cc/m以上であり、前記コート層中の前記水性バインダー100質量部に対する無機フィラーの含有量が、9質量部以下である、記録用紙に関する。

Description

記録用紙
 本発明は、記録用紙に関する。
 インクジェット方式のプリンタは、近年、多色オフセット印刷やカラー電子写真方式と比較しても見劣りをしない画像を得られるようになってきている。加えて、インクジェット方式のプリンタは、カラー印字におけるランニングコストが電子写真方式のプリンタと比較して安いという特徴もあり、広く普及してきている。中でも、油性インクに比べて環境面や安全面に関する問題を生じにくい水性インクを利用したインクジェットプリンタは、主流になっている。
 これに伴い、インクジェット記録用紙の使用用途はポスターや製図用途にも広がってきている。このため記録用紙や記録用インクについても、従来以上に印刷品質や耐擦過性等が求められるようになっている。
 また、商業印刷などの分野においては、可変情報をデジタル化して高速に印刷する、いわゆるオンデマンド印刷方式が導入されてきており、オンデマンド印刷方式を採用しているインクジェット印刷機も登場してきている。このようなオンデマンド印刷方式においては、情報を製版することなく紙などのメディアに直接印刷することが可能なために少部数の印刷にも適している。最近では、装置の高速化又は高精細化に著しい進歩が見られることによる用途の拡大に伴い、記録用紙に対しても乾燥性の向上が強く求められている。
 例えば特許文献1には、水系インクを利用したインクジェットプリンタによる印刷に対して、HLB値が5~100の表面処理剤にて処理された炭酸カルシウム粉末を用い、液体吸収容積を特定値以上とした多孔性樹脂フィルムが提案されている。
 一方で、溶剤系インクを利用したインクジェットプリンタも耐水性やインク定着性の良さなどから好まれている。溶剤系インクを利用したインクジェットプリンタによる印刷に対しても、例えば特許文献2及び3において種々の検討がなされている。
 例えば特許文献2には、支持体上に、平均粒子径が2~17μmであり、かつ非晶質シリカ、アルミナ、アルミナ水和物、アルミノシリケートおよびハイドロタルサイト群鉱物より選ばれる少なくとも1種の顔料と、接着剤とを含有するインク受容層を設けてなるインクジェット記録媒体であり、前記接着剤が塩化ビニル-酢酸ビニル共重合体を含有することを特徴とするインクジェット記録媒体が記載されている。
 特許文献3には、支持体の少なくとも一方の面にガラス転移温度が20~55℃の塩化ビニル-アクリル共重合体を主体とする油性インク受容光沢層を形成し、かつ、該油性インク受容光沢層面のJIS P 8142:2005「75度鏡面光沢度試験方法」に規定する75度鏡面光沢度が20~70%であり、更に油性インクでの印字画像形成部の75度鏡面光沢度が白紙部の75度鏡面光沢度以上であることを特徴とするセミグロス油性インクジェット記録シートが記載されている。
日本国特開2001-164017号公報 日本国特開2001-270238号公報 日本国特開2010-234677号公報
 しかし本発明者らの検討によると、液体吸収容積が比較的大きくても、吸液速度(インク吸収速度)が比較的遅い場合は、十分な乾燥性が得られない場合があることが判明した。
 加えて、印刷時のインク乾燥性を向上する観点からは、印刷受容層側の表面の吸液速度は高いほうが好ましいが、吸液速度が速すぎると、インクの色沈みや、印刷受容層側の表面の開口部からの泡噴きによる粒状模様が生じる場合があることも判明した。
 また、特許文献2におけるインク受容層は顔料を含んだコート層であるが、特許文献2のような顔料コートでは、一定のインク乾燥性は得られるものの、水や汚れが付着しやすく受容層強度が比較的低い場合がある。また、それにより耐擦過性等の印刷品質が低下する場合がある。
 特許文献3のような塩化ビニル系共重合体を含有する受容層では、塩化ビニル系共重合体がインクから吸収した溶媒で侵されて顔料を固着することで印刷がなされるので、溶剤による波打ち、ブロッキングの発生、及び耐候性への悪影響を生じる場合がある。
 そこで、本発明は、印刷品質及び乾燥性に優れ、また、耐候性に優れることで印刷物を屋外に長期間暴露する場合にも耐水・防汚処理を必要としない、記録用紙を提供することを目的とする。
 すなわち、本発明は以下の1~8に関する。
1.コート層、印刷受容層および吸液層をこの順で有する記録用紙であって、
 前記コート層は樹脂成分として水性バインダーを含み、
 前記印刷受容層及び前記吸液層はいずれも熱可塑性樹脂を含有する多孔質層であり、
 前記印刷受容層側の表面における吸液速度が5~25cc/m・0.5sであり、
 吸液量が10cc/m以上であり、
 前記コート層中の前記水性バインダー100質量部に対する無機フィラーの含有量が、9質量部以下である、記録用紙。
2.前記印刷受容層の空孔率が30~50%であり、前記吸液層の空孔率が40~60%である、前記1に記載の記録用紙。
3.前記印刷受容層および前記吸液層が、いずれもフィラーを含有する延伸層である、前記1又は2に記載の記録用紙。
4.前記印刷受容層におけるフィラーの含有量が45~75質量%である、前記1~3のいずれか1に記載の記録用紙。
5.前記印刷受容層におけるフィラーとして、疎水化表面処理フィラーを含有する、前記1~4のいずれか1に記載の記録用紙。
6.前記印刷受容層の平均空孔径が、0.5~20μmである、前記1~5のいずれか1に記載の記録用紙。
7.前記コート層中の前記樹脂成分の含有量が80質量%を超える、前記1~6のいずれか1に記載の記録用紙。
8.前記コート層の乾燥後塗工量が0.05~5g/mである、前記1~7のいずれか1に記載の記録用紙。
 本発明によれば、印刷品質、乾燥性及び耐候性に優れる記録用紙を提供できる。
図1は、本実施形態に係る記録用紙の一例を示す断面図である。
 以下、本発明の実施形態に係る記録用紙について詳細に説明するが、本発明はこれらに限定されない。なお以下の説明において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。同様に「(メタ)アクリレート」の記載はアクリレートとメタクリレートの両方を示す。
 [記録用紙]
 本実施形態に係る記録用紙は、コート層、印刷受容層および吸液層をこの順で有する記録用紙であって、前記コート層は樹脂成分として水性バインダーを含み、前記印刷受容層及び前記吸液層はいずれも熱可塑性樹脂を含有する多孔質層であり、前記印刷受容層側の表面における吸液速度が5~25cc/m・0.5sであり、吸液量が10cc/m以上であり、前記コート層中の前記水性バインダー100質量部に対する無機フィラーの含有量が、9質量部以下である。
 図1は、本実施形態に係る記録用紙の一例を示す断面図である。図1において、記録用紙1は、コート層13、印刷受容層12および吸液層11をこの順で有する。吸液層11は、好ましくは印刷受容層12に接して設けられる。そして、後述するが、本実施形態に係る記録用紙は、吸液層11からみて印刷受容層12と反対側に支持体層10を備えることが好ましい。また、吸液層11からみて印刷受容層12と反対側の表面には、裏面層9をさらに備えることが好ましい。図1は、コート層13、印刷受容層12、吸液層11、支持体層10及び裏面層9を備える場合の記録用紙1を例示する図である。本明細書において、記録用紙の「印刷受容層側の表面」とは、記録用紙の吸液層からみて印刷受容層側の表面を意味する。換言すれば、これは記録用紙のコート層側の表面に相当する。
 本実施形態に係る記録用紙は、印刷受容層側の表面における吸液速度が5~25cc/m・0.5sである。吸液速度は5cc/m・0.5s以上であり、7cc/m・0.5s以上が好ましく、10cc/m・0.5s超がより好ましく、12cc/m・0.5s以上がさらに好ましく、13cc/m・0.5s以上が特に好ましい。吸液速度が上記値以上であることで、印刷時のインク乾燥性を向上でき、さらには、印刷の滲みを抑制できる。一方で、吸液速度は25cc/m・0.5s以下であり、20cc/m・0.5s以下が好ましい。吸液速度が上記値以下であることで、インクの色沈みや、印刷受容層側の表面の開口部からの泡噴きによる粒状模様の発生を抑制でき、且つ、印刷濃度などの印刷品質を向上できる。
 印刷受容層側の表面における吸液速度とは、Japan Tappi No.51:2000に記載のブリストー法による液体吸収性試験方法に準拠し測定される液体の転移量であり、測定溶液滴下後500ミリ秒の単位面積当たりの吸収量を意味する。
 本実施形態に係る記録用紙の吸液量は10cc/m以上であり、13cc/m以上が好ましく、15cc/m以上がより好ましく、16cc/m以上がさらに好ましく、18cc/m以上が特に好ましい。吸液量が上記値以上であることで、乾燥性を向上できる。一方で、生産性を向上する観点及びドライダウンを抑制する観点から、吸液量は100cc/m以下が好ましく、90cc/m以下がより好ましい。
 記録用紙の吸液量は、印刷受容層側の表面からの吸液量について測定される値をいい、JIS P8140:1998の規定に基づき測定される、Cobb吸水度の値である。但し、試験溶媒には水ではなくジエチレングリコールエチルメチルエーテルを用い、接触時間は60秒とする。
 本実施形態に係る記録用紙において、印刷受容層側の表面における吸液速度が5~25cc/m・0.5sであり、かつ、吸液量が10cc/m以上である。すなわち本実施形態において、吸液速度と吸液量がともに上述の範囲にあるのが好ましい。上述の通り、本発明者らは、液体吸収容積が比較的大きくても、吸液速度が比較的遅い場合は、十分な乾燥性が得られない場合があることを見出した。加えて、印刷時のインク乾燥性を向上する観点からは、印刷受容層側の表面の吸液速度は高いほうが好ましいが、吸液速度が速すぎると、インクの色沈みや、印刷受容層側の表面の開口部からの泡噴きによる粒状模様が生じる場合があることも見出された。これに対し、本発明は、記録用紙が印刷受容層、吸液層及び所定のコート層を有し、記録用紙における印刷受容層側の表面の吸液速度が特定の範囲にあり、且つ吸液量が特定値以上であることにより、印刷品質、乾燥性及び耐候性が良好な記録用紙が得られることを見出したものである。
 印刷受容層および吸液層は、いずれもフィラーを含有する延伸層であることが好ましい。例えば印刷受容層と吸液層を共押出後に共延伸する方法や、吸液層上に印刷受容層を押出ラミネートしたのち共延伸する方法によって、印刷受容層および吸液層をいずれも延伸層とすることで、製造プロセスをシンプルにでき、製造コストを抑制できるため好ましい。
 また、一般の印刷用塗工紙において、紙などの基材表面に顔料とバインダーとを含有する塗工層が設けられる。そして、適切なインク受理性を付与するために、顔料として炭酸カルシウム又はカオリンなどを用いることが一般的であるが、このような塗工層は顔料を多量に含むため脆く、折り曲げると割れやすい。また、その顔料成分により表面の光沢度が失われやすい。これに対し、印刷受容層が延伸にて多孔化された層である場合、前述の塗工層よりも少ないフィラー量で十分に多孔化させやすく、所望の吸液速度および吸液量を満たしやすい。そして、このように得られる多孔質層は曲げに強いものとなる。また、より高い光沢度が得られやすい。
 印刷受容層が延伸により成形される場合、後述する材料を使用することにより、前述の各種物性を達成しやすいため好ましい。また、吸液層の好ましい態様についても後述する。
 (コート層)
 コート層は樹脂成分として水性バインダーを含む。コート層が樹脂成分として水性バインダーを含むことにより、インクとの密着性など印刷適性を向上させることができる。ここで、水性バインダーからは後述の帯電防止剤は除かれる。水性バインダーとしては、水溶性樹脂及び水分散性樹脂(水性樹脂エマルジョン)等が挙げられる。コート層が水分散性樹脂を含むことにより、コート層の凝集力を高めて耐擦過性を向上させることができることに加え、インク中の顔料が記録用紙表面に固着しやすくなり、インク定着性を高めることができる傾向がある。また、コート層が水分散性樹脂を含むことで水溶性樹脂などほかの水性バインダーと比べて吸液速度を高く調整することができる。水性バインダーは、インクとの密着性向上の観点から、イオン性バインダーであることが好ましく、カチオン性バインダーであることがより好ましい。水性バインダーがカチオン性バインダーである場合のカチオン当量は、5meq/g以下であることが好ましく、4meq/g以下であることがより好ましく、3meq/g以下であることがさらに好ましい。
 コート層は、水性バインダーを含有するコート層形成用の塗工液を調製し、当該塗工液を積層フィルムの表面に塗工することにより形成することができる。
 コート層中の樹脂成分の含有量は、平滑性を向上する観点から80質量%を超えることが好ましく、85質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%であってもよい。なお、コート層中の樹脂成分の含有量とは、コート層が水性バインダー以外にも帯電防止剤等としての樹脂成分を含む場合、これら樹脂成分の合計の、コート層における固形分比率のことをいう。
 なお、コート層は、印刷の滲みを抑制する観点から、水性バインダーのみからなっていてもよく、水性バインダーと無機フィラーと後述の助剤成分とのみからなっていてもよく、又は、水性バインダーと助剤成分とのみからなっていてもよい。
 コート層の乾燥固形分(乾燥後塗工量)は、インクとの密着性向上の観点から、好ましくは0.05g/m以上、より好ましくは0.08g/m以上、さらに好ましくは0.1g/m以上である。多孔質層へのインクの浸透を促進し、乾燥性・画像鮮明性を得る観点から、コート層の乾燥固形分(乾燥後塗工量)は好ましくは10g/m以下、より好ましくは5g/m以下、さらに好ましくは2g/m以下、よりさらに好ましくは0.5g/m以下、特に好ましくは0.25g/m以下である。
 水溶性樹脂としては、ウレタン系樹脂、(メタ)アクリル酸系樹脂及びエチレンイミン系重合体等が挙げられる。
 水性樹脂エマルジョンとしては、ウレタン系樹脂エマルジョン、(メタ)アクリル酸系樹脂及びオレフィン系樹脂エマルジョン等が挙げられる。コート層が水溶性樹脂エマルジョンを含むことにより、インクの定着性をさらに向上させ、耐擦過性をさらに向上させることができる。
 これらは単独で又は2種以上を組み合わせて使用することができる。
 (メタ)アクリル酸系樹脂は、アミノ基、第4級アンモニウム塩構造又はホスホニウム塩構造を有することがより好ましく、アミノ基又は第4級アンモニウム塩構造を有することがさらに好ましい。
 コート層が水溶性樹脂を含む場合のコート層中の水溶性樹脂の含有量(固形分)は、インクとの密着性向上の観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上、特に好ましくは30質量%以上である。多孔質層(印刷受容層及び吸液層)へのインクの浸透を促進し、乾燥性・画像鮮明性を得る観点から、コート層中の水溶性樹脂の含有量(固形分)は100質量%以下、95質量%以下、又は91質量%以下であり得る。
 エチレンイミン系重合体としては、例えばポリエチレンイミン、ポリ(エチレンイミン-尿素)、ポリアミンポリアミドのエチレンイミン付加物、これらの変性体又は水酸化物等が挙げられる。変性体としては、例えばアルキル変性体、シクロアルキル変性体、アリール(aryl)変性体、アリル(allyl)変性体、アラルキル変性体、ベンジル変性体、シクロペンチル変性体、環状脂肪族炭化水素変性体、グリシドール変性体等が挙げられる。コート層は、さらにエチレンイミン系重合体を含有してもよい。コート層がエチレンイミン系重合体を含むことにより、各種の印刷インク、特に紫外線硬化型インクとの親和性が強いことから、印刷適性が向上しやすい。
 コート層中のエチレンイミン系重合体の含有量は、インクとの密着性向上の観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上である。上記含有量の上限は特に制限されないが、100質量%以下、90質量%以下、又は80質量%以下であり得る。
 コート層が水分散性樹脂を含む場合のコート層中の水分散性樹脂の含有量(固形分)は、インク定着性の観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、よりさらに好ましくは60質量%以上、特に好ましくは80質量%以上である。上記含有量の上限は、100質量%であってもよい。
 コート層中の水分散性樹脂の平均粒子径は、多孔質層(印刷受容層及び吸液層)へのインクの浸透を促進し、乾燥性・画像鮮明性を得る観点から、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下、よりさらに好ましくは0.5μm以下、特に好ましくは0.2μm以下である。
 水分散性樹脂の最低造膜温度(MFT:Minimum film forming temperature)は100℃以下であることが好ましい。MFTを100℃以下とすることによって、コート層の製膜性、特に常温での製膜性が良好となり、多孔質からの粒子脱落を防止しやすくなる。MFTは80℃以下であることが好ましく、40℃以下であることがより好ましく、10℃以下であることがさらに好ましい。下限は特に指定されないが、通常-20℃以上である。
 コート層は無機フィラーを含有してもよいが、コート層中の無機フィラーの含有量は水性バインダー100質量部に対して9質量部以下である。すなわち、コート層は、無機フィラーを含まないか、含む場合はその含有量が9質量部以下である。無機フィラーの含有量が、水性バインダー100質量部に対し9質量部以下であれば、印刷受容層表面に開口した空孔を埋めにくくなることから、印刷インキが多孔質層に浸透しやすくなり、乾燥性及び画像鮮明性が得られやすくなる。また、無機フィラー脱落による記録用紙の汚れや印刷画像の剥離を有効に防止することができ、多孔質層が持つ質感(紙質)をよりよく反映でき、インク密着性、耐候性及び擦過性等を改善できる。このような観点から、無機フィラーの含有量は5質量部以下が好ましく、3質量部以下がより好ましく、0.1質量部以下がさらに好ましく、無機フィラーを含有しないことが特に好ましい。また、同様の観点から、コート層中の無機フィラーの含有量は樹脂成分100質量部に対して9質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましく、0.1質量部以下であることが特に好ましい。
 コート層の無機フィラーの含有量は、水性バインダー100質量部に対し9質量部以下であり、好ましくは5質量部以下であり、より好ましくは3質量部以下であり、さらに好ましくは0.1質量部以下であり、特に好ましくは0質量部(含まない)である。
 一方、ブロッキング防止の観点からは、コート層中に若干の無機フィラーを含有することが好ましく、具体的にはコート層における無機フィラーの含有量は、水性バインダー100質量部に対し0.1質量部以上であることが好ましく、0.2質量部以上であることがより好ましく、0.3質量部以上であることがさらに好ましい。
 コート層に含有され得る無機フィラーは、特に限定されず、印刷受容層等に含有され得るフィラーとして後述する無機粒子と同様のものであることができる。
 コート層は、帯電による埃の付着及び印刷時の搬送不良を防いで、記録用紙としての取扱い性を向上させる観点から、帯電防止剤を含有してもよい。
 帯電防止剤のなかでも、ブリードアウトによる表面の汚染等を減らす観点から、ポリマー型帯電防止剤が好ましい。
 ポリマー型帯電防止剤としては、特に限定されるものではなく、カチオン型、アニオン型、両性型又はノニオン型の帯電防止剤を用いることができ、これらを単独で又は2種以上を組み合わせることができる。
 カチオン型の帯電防止剤としては、アンモニウム塩構造、ホスホニウム塩構造等を有する帯電防止剤を例示できる。アニオン型の帯電防止剤としては、スルホン酸、リン酸、カルボン酸等のアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩等。)の構造を有する帯電防止剤を例示できる。アニオン型の帯電防止剤は、分子構造中に、アクリル酸、メタクリル酸、(無水)マレイン酸等のアルカリ金属塩の構造を有する帯電防止剤であってよい。
 両性型の帯電防止剤としては、同一分子中に、カチオン型の帯電防止剤及びアニオン型の帯電防止剤の両方の構造を含有する帯電防止剤を例示できる。両性型の帯電防止剤としては、ベタイン型の帯電防止剤が挙げられる。ノニオン型の帯電防止剤としては、アルキレンオキシド構造を有するエチレンオキシド重合体、エチレンオキシド重合成分を分子鎖中に有する重合体等を例示できる。その他の帯電防止剤としては、分子構造中にホウ素を有するポリマー型帯電防止剤が挙げられる。
 なかでも、ポリマー型帯電防止剤としては、カチオン型の帯電防止剤が好ましく、窒素含有ポリマー型帯電防止剤がより好ましく、アンモニウム塩構造を有する帯電防止剤がさらに好ましく、3級又は4級アンモニウム塩構造を有するアクリル系樹脂が特に好ましく、4級アンモニウム塩構造を有するアクリル系樹脂が最も好ましい。
 コート層中の帯電防止剤の含有量は、帯電防止の観点からは、水性バインダー100質量部に対して、0.01質量部以上にすることが好ましく、1質量部以上にすることがより好ましく、2質量部以上にすることがさらに好ましい。また、コート層の耐水性の観点からは、コート層中の帯電防止剤の含有量は、水性バインダー100質量部に対して、150質量部以下にすることが好ましく、140質量部以下にすることがより好ましく、130質量部以下にすることがさらに好ましい。
 コート層は、必要に応じて、架橋剤、架橋促進剤、pH調整剤、消泡剤等のその他の助剤成分を含むことができる。
 (印刷受容層)
 印刷受容層は、熱可塑性樹脂を含有する多孔質層である。印刷受容層は、上述の通りフィラーを含有する延伸層であることが好ましい。すなわち印刷受容層は、熱可塑性樹脂とフィラーを含有する延伸層であることが好ましい。本実施形態に係る記録用紙の印刷受容層側の表面に印刷が施される場合、典型的には、顔料や染料といった色材は印刷受容層の表層に留まり発色することとなる。一方で、インク溶媒は印刷受容層を通過し、下層(吸液層)へ移動することとなる。
 <熱可塑性樹脂>
 印刷受容層に使用される熱可塑性樹脂としては、例えばオレフィン系重合体、ポリアミド、ポリエステル、ポリカーボネート、ポリスチレン、ポリ(メタ)アクリレート、ポリ塩化ビニル、及びこれらの混合樹脂等が挙げられる。なかでも、耐水性及び耐溶剤性に優れる点からは、オレフィン系重合体が好ましい。
 オレフィン系重合体としては、プロピレン系重合体、エチレン系重合体等を好ましく使用できる。
 プロピレン系重合体としては、例えばプロピレンを単独重合させたアイソタクティックホモポリプロピレン、シンジオタクティックホモポリプロピレン等のプロピレン単独重合体、プロピレンを主体とし、エチレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン等のα-オレフィン等を共重合させたプロピレン共重合体等が挙げられる。プロピレン共重合体は、2元系でもよいし、3元系以上の多元系でもよい。また、プロピレン共重合体は、ランダム共重合体でもブロック共重合体でもよい。
 エチレン系重合体としては、例えば高密度ポリエチレン、中密度ポリエチレン、直鎖線状低密度ポリエチレン、エチレンを主体とし、プロピレン、ブテン、ヘキセン、ヘプテン、オクテン、4-メチルペンテン-1等のα-オレフィンを共重合させた共重合体、マレイン酸変性エチレン・酢酸ビニル共重合体、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸アルキルエステル共重合体、エチレン・メタクリル酸アルキルエステル共重合体、エチレン・メタクリル酸共重合体の金属塩(金属は亜鉛、アルミニウム、リチウム、ナトリウム、カリウム等)、エチレン-環状オレフィン共重合体、(無水)マレイン酸変性ポリエチレン、(無水)マレイン酸変性ポリプロピレン等が挙げられる。ここで「(無水)マレイン酸」の記載は、無水マレイン酸とマレイン酸の両方を示す。
 上記オレフィン系重合体のなかでも、成形性を向上する観点、コストを抑制する観点、及び溶剤インクによるたわみを抑制する観点からは、プロピレン単独重合体すなわちポリプロピレン、又は高密度ポリエチレンが好ましい。また空孔形成性およびフィラー結着性を好適なものとする観点からは、(無水)マレイン酸変性ポリエチレンまたは(無水)マレイン酸変性ポリプロピレンが好ましい。
 上記熱可塑性樹脂のうち、1種を単独で又は2種以上を組み合わせて使用することができる。
 <フィラー>
 フィラーとしては、無機粒子および有機粒子が挙げられる。
 無機粒子及び有機粒子は、それぞれ単独で又は組み合わせて使用することができる。フィラー及び熱可塑性樹脂を含む樹脂組成物を延伸した場合、粒子を核とした微細な空孔を延伸層内部に多数形成することができる。これにより、多孔質層を得ることができる。
 印刷受容層におけるフィラーの含有量は、使用樹脂量を低減し環境負荷を低減する観点及び空孔形成性を好適なものとする観点から、45質量%以上であることが好ましく、50質量%以上であることがより好ましい。一方で、印刷受容層におけるフィラーの含有量は、表面欠陥の発生を抑制する観点から75質量%以下が好ましく、65質量%以下がより好ましい。印刷受容層におけるフィラーの含有量が45質量%以上であることにより、空孔率を高めてインクの吸液層への浸透を助け、吸液量を高めることができる。フィラーの含有量が75質量%以下であることにより、空孔率及び吸液速度が過大となることを抑制できる。
 印刷受容層に含有されるフィラーの平均粒子径は、好適な空孔形成性を得る観点及び吸液速度を制御する観点から、0.1μm以上が好ましく、0.2μm以上がより好ましい。また同様の観点から、フィラーの平均粒子径は5μm以下が好ましく、3μm以下がより好ましく、0.9μm以下がさらに好ましい。フィラーの平均粒子径が0.1μm以上であれば多孔質層を多孔としてインクの浸透性を高めやすい。フィラーの平均粒子径が5μm以下であれば粗大な空孔の形成を抑えてインクジェット印刷画像の鮮明性を高めやすく、表面強度を維持しやすい。ここで、フィラーの平均粒子径とは、平均一次粒径(D50)のことをいう。これは、レーザー光回折・散乱法によって測定される体積基準のメジアン径である。
 <<無機粒子>>
 無機粒子としては、特に限定されないが、例えば重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレイ、タルク、酸化チタン、硫酸バリウム、アルミナ、シリカ、酸化亜鉛、ゼオライト、マイカ、ガラスファイバー、中空ガラスビーズ等が挙げられる。なかでも、重質炭酸カルシウム、焼成クレイ、珪藻土等は、安価で、多孔質層を形成する樹脂組成物の延伸によって多くの空孔を形成しやすく、空孔率の調整が容易であることから、好ましい。特に、重質炭酸カルシウム又は軽質炭酸カルシウムは、その平均粒子径又は粒度分布を空孔形成しやすい範囲に調整しやすいことから、好ましい。上記無機粒子のうち、1種を単独で又は2種以上を組み合わせて使用することができる。
 <<有機粒子>>
 有機粒子としては、特に限定されないが、前記熱可塑性樹脂とは非相溶であり、融点又はガラス転移温度が熱可塑性樹脂よりも高く、熱可塑性樹脂の溶融混練条件下で微分散する有機粒子が好ましい。例えば、印刷受容層に含まれる熱可塑性樹脂としてオレフィン系樹脂を使用する場合には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ナイロン-6、ナイロン-6,6、環状オレフィンの単独重合体や環状オレフィンとエチレンとの共重合体等であり、融点が120~300℃、ないしはガラス転移温度が120~280℃である樹脂から選択して使用することが好ましい。
 <<疎水化表面処理フィラー>>
 印刷受容層は、フィラーとして疎水化表面処理フィラーを含有することが好ましく、また、フィラーとして疎水化表面処理フィラーのみを含有してもいてもよい。疎水化表面処理フィラーは、パラフィン又は炭素数12~22の脂肪酸若しくはその塩により疎水化表面処理された無機粒子又は有機粒子であることが好ましく、炭素数12~22の脂肪酸又はその塩により疎水化表面処理された無機粒子又は有機粒子であることがより好ましい。印刷受容層が疎水化表面処理フィラーを含有することにより、粗大な空孔や過大な空孔率による空孔の形成を抑制して、吸液速度が過大となることを抑制できる。
 疎水化表面処理するための上記炭素数12~22の脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、オレイン酸、リノール酸、リノレン酸、及びエレオステアリン酸等が例示できる。
 表面処理の方法は特に限定されず、例えば無機粒子又は有機粒子のスラリーに、処理剤の水溶液を導入することにより、行うことができる。これにより、表面処理された無機粒子又は有機粒子、すなわちパラフィン又は炭素数12~22の脂肪酸若しくはその塩を含有する表面処理層を表面に有する無機粒子又は有機粒子を得ることができる。
 なお、印刷受容層に含まれるフィラーとして、本発明の効果を損なわない範囲で、表面処理を施していない無処理フィラー又は親水化表面処理を施した親水化表面処理フィラーを併用してもよい。この場合、印刷受容層に含まれるフィラー中の疎水化表面処理フィラーの含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることがよりさらに好ましく、90質量%以上であることが特に好ましい。印刷受容層に含まれるフィラーのすべてが疎水化表面処理フィラーであってもよい。
 <その他の成分>
 印刷受容層は、必要に応じて公知の添加剤を任意に含むことができる。添加剤としては、酸化防止剤、光安定剤、紫外線吸収剤、フィラーの分散剤、結晶核剤、アンチブロッキング剤、可塑剤、脂肪酸アミド等のスリップ剤、染料、顔料、離型剤、難燃剤等の公知の助剤が挙げられる。
 屋外での耐久性を高める観点からは、基材層は、酸化防止剤、光安定剤等を含むことが好ましい。
 酸化防止剤としては、立体障害フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が挙げられる。
 光安定剤としては、立体障害アミン系光安定剤、ベンゾトリアゾール系光安定剤、ベンゾフェノン系光安定剤等が挙げられる。
 酸化防止剤及び光安定剤の含有量は、基材層に対して、0.001~1質量%であることが好ましい。
 印刷受容層は多孔質であり、その空孔率は32%以上であることが好ましく、34%以上であることがより好ましく、35%以上であることがさらに好ましい。また、印刷受容層の空孔率は50%以下であることが好ましく、45%以下であることがより好ましい。空孔率がこの範囲であることにより、吸液速度と表面強度を両立しやすくなるため好ましい。なお空孔率は、対象となる層の断面を走査型電子顕微鏡により観察し、画像解析装置に観察画像を取り込み、同観察領域を画像解析することによって算出した、断面上の空孔の面積率として得ることができる。
 印刷受容層の坪量は、1g/m以上であることが好ましく、1.5g/m以上であることがより好ましく、2g/m以上であることがさらに好ましい。印刷受容層の坪量は15g/m以下であることが好ましく、12g/m以下であることがより好ましく、10g/m以下であることがさらに好ましい。坪量がこの範囲であることにより、目的の吸液速度に調整しやすくなるため好ましい。
 印刷受容層の平均空孔径は、吸液速度が過小となることを抑制する観点から0.5μm以上が好ましく、0.7μm以上がより好ましく、0.8μm以上がさらに好ましい。一方で、印刷受容層の平均空孔径は、インク顔料の沈み込みによる鮮明性低下を抑制する観点から20μm以下が好ましく、14μm以下がより好ましく、7μm以下がさらに好ましい。印刷受容層の平均空孔径は、空孔率を求める際と同様の画像解析により求められる。
 (吸液層)
 吸液層は、印刷受容層を通過したインクを吸収する層であり、印刷受容層に接して設けられることが好ましい。吸液層は熱可塑性樹脂を含有する多孔質層であり、フィラーを含有する延伸層であることが好ましい。すなわち吸液層は、熱可塑性樹脂とフィラーを含有する延伸層であることが好ましい。
 <熱可塑性樹脂>
 吸液層に用いられる熱可塑性樹脂としては、印刷受容層の項で挙げたものと同様の熱可塑性樹脂が挙げられ、その中で好ましいものも上述と同様である。
 <フィラー>
 吸液層に用いられるフィラーとしては、印刷受容層の項で挙げたものと同様のフィラーが使用できる。但し、吸液層に用いられるフィラーは、上述の親水化表面処理及び疎水化表面処理の少なくとも一方が行われたものであってもよく、行われていないものであってもよい。吸液層に用いられるフィラーは、所望の吸液量を得る観点からは、表面処理が行われていないものであることが好ましい。
 吸液層におけるフィラー含有量は、好ましくは45~70質量%であり、より好ましくは50~65質量%である。フィラー含有量が上記下限値以上であることで、吸液層の空孔量が十分なものとなりやすい。一方で、層の延伸性を好適なものとする観点、表面欠陥の抑制効果を得る観点から、フィラー含有量が上記上限値以下であることが好ましい。
 <その他の成分>
 吸液層は、印刷受容層と同様に、上述した各種の添加剤など、その他任意の成分を含有していてもよい。
 吸液層の厚みと空孔率は、印刷受容層からの吸液量が10cc/m以上となるよう調整すればよく、空孔率の高い層を薄く設けてもよいし、空孔率がそれほど高くない層を厚く設けてもよい。連通性を高め、吸液可能な容量を確保する観点から、吸液層の空孔率は好ましくは40%以上、より好ましくは45%以上である。一方生産性を高める観点から、空孔率は60%以下が好ましい。
 吸液層の坪量は、5g/m以上であることが好ましく、10g/m以上であることがより好ましく、15g/m以上であることがさらに好ましく、19g/m以上であることがよりさらに好ましく、21g/m以上であることが特に好ましい。また、吸液層の坪量は、50g/m以下であることが好ましく、40g/m以下であることがより好ましく、37.5g/m以下であることがさらに好ましい。坪量がこの範囲であることにより、目的の吸液量に調整しやすくなるため好ましい。
 (支持体層)
 本実施形態に係る記録用紙において、吸液層の、印刷受容層とは反対側に、支持体層が積層されてもよい。記録用紙がかかる支持体層を備える構成であることで、記録用紙に適切な厚みを付与したり、印刷に適したコシを付与したりできる。すなわち、支持体層の厚みを調整することにより、記録用紙の厚みを調節し、印刷に適したコシを与えたり、不透明度や給排紙性を調整したりすることができる。支持体層の厚さは、十分なコシを得る観点から、15μm以上であることが好ましく、20μm以上がより好ましく、30μm以上がさらに好ましい。また、印刷時の取り扱い性を向上する観点から支持体層の厚さは400μm以下であることが好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。
 支持体層は単層でもよいし、2層以上の積層体でもよい。
 支持体層を構成する材料に特に制限は無いが、例えば、支持体層は耐水性に優れる熱可塑性樹脂層であることが好ましい。熱可塑性樹脂としては、印刷受容層の項で挙げたものと同様の樹脂が使用できる。なお支持体層は、印刷受容層および吸液層と同様に、フィラーを含有してもよく、支持体層は多孔質層であってもよい。また支持体層は、上述した添加剤など、その他任意の成分を含有していてもよい。
 (裏面層)
 裏面層は、印刷受容層とは反対側の支持体層表面に設けられることが好ましい。裏面層は、主として、記録用紙を重ねて保管する際、印刷後の溶剤が受容層から蒸散することを促進し、溶剤による紙面の波打ちを抑制する機能を有する。
 裏面層には、印刷受容層と同様の材料を用いることができる。ただし、裏面層におけるフィラーの含有量(無機フィラーと有機フィラーを併用する場合は、その合計量)は、表面粗さ及び静摩擦係数を適切なものとする観点から、5~60質量%であることが好ましく、10~50質量%がより好ましい。
 裏面層の厚みは、上述した支持体層の厚さに応じて適宜決定することができる。裏面層の厚みとしては、適当な表面粗さの発現の観点から、1~50μmが好ましく、1~20μmがより好ましく、さらに好ましくは2~10μmである。
 裏面層の空孔率は、5~60%であることが好ましく、5~50%であることがより好ましく、10~40%であることがより好ましい。空孔の存在により、裏面層の表面粗さを所定の範囲に制御することができる傾向がある。
 裏面層の表面にはさらに塗布層を設けることもできる。塗布層は、アンカー剤及びポリマー型帯電防止剤等を含むことができる。塗布層がアンカー剤を含むことにより、塗布層の上にインクジェット印刷層を設ける場合、塗布層とインクジェット印刷層との密着性を向上することができる傾向がある。また、塗布層が帯電防止剤を含むことにより、裏面層側の帯電防止性能を向上することができる傾向がある。アンカー剤としては、例えば、ポリイミン系重合体、及びポリアミンポリアミドのエチレンイミン付加物等が挙げられる。また、ポリマー型帯電防止剤としては、アンモニウム塩構造やホスホニウム塩構造を有するもの等が挙げられる。アンカー剤及び帯電防止剤を併用する場合、個々の成分の性能を十分に発揮させる観点から、固形分比率でアンカー剤100質量部に対し、帯電防止剤0~200質量部が好ましく、より好ましくは20~150質量部、さらに好ましくは30~100質量部である。
 [記録用紙の特性]
 (剛軟度)
 記録用紙はポスター等の掲示物の使用にも適しており、掲示物の使用の用途の場合は貼付時の扱いやすさの観点からある程度の剛性を有していることが好ましい。記録用紙の剛軟度は、0.3mN以上が好ましく、0.4mN以上がより好ましく、0.5mN以上がさらに好ましい。一方、記録用紙の剛軟度は、10mN以下が好ましく、5mN以下がより好ましく、3mN以下がさらに好ましい。記録用紙の剛軟度が上記範囲内であれば、記録用紙自体にコシがあって取り扱いが容易となる。また、被貼付体に貼付する際等にしわが入りにくくなる傾向がある。さらに、印刷後の波打ちを抑制することができる傾向がある。
 本実施形態における剛軟度はJIS L1096:2010による曲げ反発A法(ガーレ法)に基づくものである。
 なお、記録用紙におけるガーレ法による剛軟度の具体的な測定方法は、後述する実施例において説明する。
 (光沢度)
 記録用紙の印刷受容層側の表面の光沢度は、50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。印刷受容層側の表面の光沢度が上記下限値以上であれば、少なくとも顔料コート等を用いた記録用紙と比べて十分高い光沢度が得られていると言え、画像が鮮明となり、かつ見栄えが良くなる傾向がある。
 本実施形態における光沢度はJIS P 8142:1993による光沢度に基づくものである。
 なお、記録用紙の印刷受容層側の表面の光沢度の具体的な測定方法は、後述する実施例において説明する。
 (表面強度)
 印刷受容層側の表面強度は、0.7kgf/cm以上が好ましく、0.9kgf/cm以上がより好ましく、1.0kgf/cm以上がさらに好ましい。一方、受容層の表面強度は、2.0kgf/cm以下、1.5kgf/cm以下、又は、1.2kgf/cm以下であってもよい。印刷受容層側の表面強度が上記範囲内であれば、記録用紙を屋外に掲示した際に、砂等によって印刷受容層側の表面が削られることが少なく、耐候性が高いため、印刷絵柄を長期間維持することができる傾向がある。
 なお、印刷受容層側の表面強度の具体的な測定方法は、後述する実施例において説明する。
 (平滑度)
 印刷受容層側の表面の平滑度は、画像が鮮明となり、見栄えが良くなる観点から、1000秒以上であることが好ましく、1300秒以上であることがより好ましく、1800秒以上であることがさらに好ましい。一方、印刷受容層側の表面の平滑度は、断裁後のブロッキングを抑制する観点から、10000秒以下であることが好ましく、9000秒以下であることがより好ましく、8000秒以下であることがさらに好ましい。
 なお、印刷受容層側の表面の平滑度の具体的な測定方法は、後述する実施例において説明する。
 [製造方法]
 本発明の記録用紙の製造方法は特に限定されないが、例えば次のような方法が挙げられる。例えば、記録用紙が印刷受容層、吸液層、支持体層及び裏面層を備える場合、支持体層を構成する熱可塑性樹脂フィルムを形成した後、印刷受容層及び吸液層を構成する積層樹脂フィルムを支持体層の一方の面上に、裏面層を他方の面上に積層してもよい。その場合、印刷受容層と吸液層はフィードブロック、マルチマニホールドを使用した多層ダイス方式にて支持体層の一方の面上に共押出し、裏面層を他方の面上に押出した後、共延伸することによりこられの層が多孔化された積層樹脂フィルムを形成してもよく、また複数のダイスを使用して、一方の層表面に他方の層を押出しラミネーションし、これを延伸することにより両層が多孔化された積層樹脂フィルムを形成してもよい。
 また支持体層、吸液層、印刷受容層及び裏面層を全て共押出後に共延伸するか、支持体層と吸液層と裏面層を共押出した後、吸液層表面に印刷受容層を押出ラミネーションし、次いで共延伸するか、支持体層と吸液層と印刷受容層を共押出した後、支持体層表面に裏面層を押出ラミネーションし、次いで共延伸するか、支持体層と吸液層を共押出した後、吸液層表面に印刷受容層を、支持体層表面に裏面層をそれぞれ押出ラミネーションし、次いで共延伸するか、或いは支持体層の一方の面上に吸液層および印刷受容層を、支持体層の他方の面上に裏面層を押出ラミネーションした後共延伸することにより、吸液層および印刷受容層の多孔化と支持体との積層を並行して行ってもよい。プロセスがシンプルであること、また製造コスト抑制の点から、共押出及び/又は押出ラミネーション後に共延伸する方法で製造することが好ましい。延伸方法は、公知の方法が採用できる。
 フィルムの延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次二軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸法、又はテンターオーブンとリニアモーターの組み合わせによる同時二軸延伸法等が挙げられる。また、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時二軸延伸(インフレーション成形)法等も使用できる。複数の延伸フィルムを含む多層構造の基材を製造する場合は、各層を積層する前に個別に延伸しておいてもよいし、積層した後にまとめて延伸してもよい。また、延伸した層を積層後に再び延伸してもよい。
 延伸温度は、延伸される層に用いられる熱可塑性樹脂が、非結晶性樹脂の場合は当該熱可塑性樹脂のガラス転移点温度以上の範囲であることが好ましい。また、熱可塑性樹脂が結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂の非結晶部分のガラス転移点以上であって、かつ当該熱可塑性樹脂の結晶部分の融点以下の範囲内であることが好ましく、具体的には熱可塑性樹脂の融点よりも2~60℃低い温度が好ましい。延伸温度が熱可塑性樹脂の融点よりも2℃以上、好ましくは10℃以上、より好ましくは20℃以上低いことで、空孔率又は空孔径をより大きく制御することができ、さらには吸液量及び吸液速度を大きく制御できるため好ましい。
 また、一軸延伸の場合、その延伸倍率は、通常は1.2倍以上であり、好ましくは2倍以上である一方、通常は10倍以下であり、好ましくは5倍以下である。二軸延伸する場合の延伸倍率は、面積延伸倍率で通常は1.5倍以上であり、好ましくは4倍以上である一方、通常は20倍以下であり、好ましくは12倍以下である。
 上記延伸倍率の範囲内であれば、安定して延伸成形できる傾向がある。また熱可塑性樹脂とフィラーを含む樹脂組成物を用いる場合も、上記延伸倍率の範囲であれば、目的の空孔率が得られて不透明性が向上しやすく、フィルムの破断が起きにくい。
 また、延伸を経た積層樹脂フィルムに上述したコート層形成用の塗工液を塗工し、乾燥することで、コート層を形成できる。
 (印刷)
 本実施形態に係る記録用紙は、印刷受容層側の表面に対し印刷が施され得るものである。印刷受容層に対して行われる印刷方法としては特に限定されず、グラビア印刷、オフセット印刷、フレキソ印刷、シール印刷、スクリーン印刷等の公知の各種有版印刷のほかに、インクジェット方式、電子写真方式、又は液体トナー方式等の各種プリンタによるデジタル印刷や溶融熱転写印刷も行うことができる。
 印刷には、印刷方法に合わせて、紫外線硬化型インク、油性インク、酸化重合硬化型インク、溶融熱転写記録用インク、水性インク、溶剤インク、粉体トナー、又は液体トナー(エレクトロインキ)等の各種インクを使用することができる。
 なかでも、本実施形態に係る記録用紙は、インクジェット印刷、なかでも水性インク又は溶剤インクを用いたインクジェット印刷、特に溶剤インクを用いたインクジェット印刷に好適に用いられる。本実施形態に係る記録用紙は、印刷受容層、吸液層及び所定のコート層を有し、吸液速度が特定の範囲にあり、かつ吸液量が特定値以上であることで、印刷品質、乾燥性及び耐候性に優れる。
 溶剤系インクは一般的に、溶剤と溶剤系インク特有の色材を含む。溶剤系インクに用いられる溶剤としては、例えば、ポリオキシエチレングリコールジアルキルエーテル、ポリオキシエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのグリコールエーテル系溶剤が挙げられる。溶剤系インクに用いられる色材としては、例えば、油溶性染料としてナフトール染料、アゾ染料、金属錯塩染料、アントラキノン染料、キノイミン染料、インジゴ染料、シアニン染料、キノリン染料、ニトロ染料、ニトロソ染料、ベンゾキノン染料、カーボニウム染料、ナフトキノン染料、ナフタルイミド染料、フタロシアニン染料、ペリニン染料等が挙げられる。顔料としては、カーボンブラック、各種色顔料が使用されており、有機顔料として不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料、ペリノン顔料、ニトロ顔料、ニトロソ顔料、ペリレン顔料、及びアニリンブラック等が挙げられる。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (製造例1 親水化処理炭酸カルシウムの製造)
 環流冷却器、温度計、滴下ロート、撹拌装置およびガス導入管を備えた反応器に、ジアリルアミン塩酸塩(60%濃度の水溶液)500質量部、アクリルアミド(40%濃度の水溶液)13質量部および水40質量部を入れ、窒素ガスを流入させながら系内温度を80℃に昇温した。攪拌下で、重合開始剤として過硫酸アンモニウム(25%濃度の水溶液)30質量部を滴下ロートを用いて4時間に渡り滴下した。滴下終了後1時間反応を続け、粘稠な淡黄色液状物を得た。これを50質量部取り、500質量部のアセトン中に注ぐと白色の沈殿を生じた。沈殿を濾別しさらに2回100質量部のアセトンでよく洗浄した後、真空乾燥して白色固体状の重合体(水溶性カチオン性共重合体)を得た。得られた重合体の重量平均分子量をGPCより求めたところ55,000であった。
 次いで、重質炭酸カルシウム(平均粒子径8μm、日本セメント社製、乾式粉砕品)40質量%と水60質量%を充分に攪拌混合してスラリー状とし、上記で製造した水溶性カチオン性共重合体を重質炭酸カルシウム100質量部当たり0.06質量部加え、テーブル式アトライター型媒体攪拌ミル(直径1.5mmのガラスビーズ、充填率170%、周速10m/sec)を用いて湿式粉砕した。
 次いで、主成分が炭素数14のアルキルスルホン酸ナトリウムと炭素数16のアルキルスルホン酸ナトリウムの混合物(2質量%濃度の水溶液)50質量部を加えて攪拌した。その後、350メッシュのスクリーンを通して分級し、350メッシュを通過したスラリーを媒体流動乾燥機(株式会社奈良機械製作所製、MSD-200)で乾燥した。得られた炭酸カルシウムの平均一次粒径をマイクロトラック(日機装株式会社製)で測定したところ1.5μmであった。
 (製造例2 疎水化処理炭酸カルシウムの製造)
 BET比表面積が16m/gの合成炭酸カルシウム(軽質炭酸カルシウム)500質量部に水を加え、これを40℃で撹拌して、固形分10質量%の炭酸カルシウムスラリーを作製した。次に、90℃のラウリン酸ナトリウムの10質量%水溶液を調製し、当該調製液と炭酸カルシウムスラリーとを混合し撹拌することで、炭酸カルシウムを疎水化表面処理した。この疎水化表面処理した炭酸カルシウムスラリーを固形分が60%になるまで乾燥させた。その後、乾燥機を用いて脱水し、疎水化表面処理を施した炭酸カルシウムを得た。得られた炭酸カルシウムの平均一次粒径を、超音波分散機Model US-300T(日本精機株式会社製)を使用し、溶媒としてエタノールを使用し、300μAの条件下で60秒間、超音波分散を行い測定したところ0.23μmであった。
 (樹脂組成物)
 表1に示す配合(質量部)となるように各材料をミキサーで撹拌混合した後、押出工程を経て樹脂組成物a~hを得た。なお、表1において「MFR」はメルトフローレートを意味する。また、表1の空欄は配合比率が0質量部であることを意味する。
Figure JPOXMLDOC01-appb-T000001
 (コート組成物)
 表2に示す配合(固形分比率、質量部)となるように各材料を混合してコート組成物(塗工液)a~dを得た。表2の空欄は固形分比率が0質量部であることを意味する。
Figure JPOXMLDOC01-appb-T000002
 (実施例1)
 表1に記載の樹脂組成物aを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。この無延伸シートを140℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸した。次いで、樹脂組成物c及びeを230℃に設定した押出機にて溶融混練した後、樹脂組成物cが上記延伸シートと接するようにシート状に押し出して上記延伸シートの第1面に積層すると同時に、樹脂組成物aを230℃に設定した1台の押出機にて溶融混練した後、シート状に押し出して上記延伸シートの第2面に積層して、4層積層シートを得た。次いで、この4層積層シートを60℃まで冷却し、テンターオーブンを用いて4層積層シートを約155℃に加熱して横方向に9倍延伸した後、更に160℃まで加熱して熱処理を行った。次いで60℃に冷却し、耳部をスリットして、肉厚が120μm、各層の樹脂組成物(印刷受容層/吸液層/支持体層/裏面層=e/c/a/a)、各層厚み(2μm/42μm/46μm/30μm)、各層延伸軸数(1軸/1軸/2軸/1軸)の積層樹脂フィルムを得た。積層樹脂フィルムの表面に、乾燥後塗工量が0.15g/mとなるように、コート組成物を塗工した。60℃のオーブンにおいて塗工膜を乾燥してコート層を形成し、実施例1の記録用紙を得た。
 (実施例2~11及び13~14)
 用いた樹脂組成物及びコート組成物の種類、並びに延伸条件を表3に示す通りに変更した以外は実施例1と同様にして、実施例2~11及び13~14の記録用紙を得た。なお、実施例2~11及び13~14における支持体層及び裏面層の厚みは実施例1と同じである。
 (実施例12)
 表1に記載の樹脂組成物aを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。次いで、樹脂組成物c及びeを230℃に設定した押出機にて溶融混練した後、樹脂組成物cが上記無延伸シートと接するようにシート状に押し出して上記無延伸シートの第1面に積層すると同時に、樹脂組成物aを230℃に設定した1台の押出機にて溶融混練した後、シート状に押し出して上記延伸シートの第2面に積層して、4層積層シートを得た。次いで、この4層積層シートを60℃まで冷却し、テンターオーブンを用いて4層積層シートを約155℃に加熱して横方向に9倍延伸した後、更に160℃まで加熱して熱処理を行った。次いで60℃に冷却し、耳部をスリットして、肉厚が120μm、各層の樹脂組成物(印刷受容層/吸液層/支持体層/裏面層=e/c/a/a)、各層厚み(2μm/42μm/46μm/30μm)、各層延伸軸数(1軸/1軸/1軸/1軸)の積層樹脂フィルムを得た。積層樹脂フィルムの表面に、乾燥後塗工量が0.15g/mとなるように、コート組成物を塗工した。60℃のオーブンにおいて塗工膜を乾燥してコート層を形成し、実施例12の記録用紙を得た。
 (比較例1)
 表1に記載の樹脂組成物aを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。この無延伸シートを140℃に加熱し、ロール群の周速差を利用して縦方向に5倍延伸し、単層1軸延伸シートを得た。次いで、樹脂組成物aを230℃に設定した1台の押出機にて溶融混練した後、シート状に押し出して上記延伸シートの第2面に積層して、2層積層シートを得た。次いで、この2層積層シートを60℃まで冷却し、テンターオーブンを用いて2層積層シートを約155℃に加熱して横方向に9倍延伸した後、更に160℃まで加熱して熱処理を行った。次いで60℃に冷却し、耳部をスリットして、肉厚が100μm、各層の樹脂組成物(支持体層/裏面層=a/a)、各層厚み(70μm/30μm)、各層延伸軸数(2軸/1軸)の積層樹脂フィルムを得た。
 一方、水55質量部、微粉末シリカ〔水沢化学工業(株)製「ミズカシルP-78F」、平均粒径12.5μm〕20質量部及び疎水性樹脂(アクリル系樹脂エマルジョン)〔BASFジャパン(株)製「アクロナールYJ-2870D」、固形分濃度50質量%〕25質量部を混合、分散してコート層組成物cを調製した。
 上記で得た積層樹脂フィルムの一方の面にコート層組成物を塗工、乾燥して、厚さ20μmの塗工層を設け、70℃のオーブンで60秒乾燥後、厚み120μmの比較例1の記録用紙を得た。
 (比較例2)
 表1に記載の樹脂組成物hを160℃に設定した2本の9インチのテストロール(西村工機社製蒸気加熱型)で、5分間混練し圧延して、厚みが140μmの塩化ビニル系樹脂シートを作製した(カレンダー加工)。得られた塩化ビニル系樹脂シートに、37t油圧成型機(王子機械社製)にて、170℃の温度で、最大70kg/cmの圧力をかけプレスし、表面を鏡面に仕上げ、厚み140μmの比較例2の記録用紙を得た。
 (比較例3)
 表1に記載の樹脂組成物aを230℃に設定した押出機にて溶融混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により60℃まで冷却して無延伸シートを得た。次いで、樹脂組成物c及びeを230℃に設定した押出機にて溶融混練した後、樹脂組成物cが上記無延伸シートと接するようにシート状に押し出して上記無延伸シートの第1面に積層すると同時に、樹脂組成物aを230℃に設定した1台の押出機にて溶融混練した後、シート状に押し出して上記延伸シートの第2面に積層して、4層積層シートを得た。次いで60℃に冷却し、耳部をスリットして、肉厚が71μm、各層の樹脂組成物(印刷受容層/吸液層/支持体層/裏面層=e/c/a/a)、各層厚み(1μm/20μm/25μm/25μm)、各層延伸軸数(無延伸/無延伸/無延伸/無延伸)の積層樹脂フィルムを得た。積層樹脂フィルムの表面に、乾燥後塗工量が0.15g/mとなるように、コート組成物を塗工した。60℃のオーブンにおいて塗工膜を乾燥してコート層を形成し、比較例3の記録用紙を得た。
 (比較例4)
 コート層の塗工を行わなかった以外は実施例1と同様にして、比較例4の記録用紙を得た。
 (比較例5~7)
 用いた樹脂組成物及びコート組成物の種類、並びに延伸条件を表3に示す通りに変更した以外は実施例1と同様にして、比較例5~7の記録用紙を得た。なお、比較例5~7における支持体層及び裏面層の厚みは実施例1と同じである。
 (評価)
 各実施例及び比較例で得られた記録用紙に対し、以下の測定を行った。結果を表3に示す。
 (吸液量)
 記録用紙の吸液量は、JIS P 8140で規定される吸水度試験器を用いて測定した。まず、試験片における印刷受容層側の表面に溶剤(富士フイルム和光純薬(株)製ジエチレングリコールエチルメチルエーテル)を60秒間接触させ、余分な溶剤を除去した後に試験片の質量を測定した。次いで、元の試験片の質量から測定した試験片の質量を差し引き、1mあたりに吸収した溶剤の質量を溶剤吸収量(cc/m)とした。
 (吸液速度)
 記録用紙の印刷受容層側の表面における吸液速度は、JIS P 8140で規定される吸水度試験器を用いて測定した。試験片における印刷受容層の表面に溶剤(富士フイルム和光純薬(株)製、ジエチレングリコールエチルメチルエーテル)を5秒間接触させ、溶剤吸収量を算出し、溶剤接触時間で除した値を吸液速度(cc/m・0.5s)とした。
 (表面強度)
 記録用紙の印刷受容層側の表面強度は、次のように測定した。印刷受容層側の表面にセロハンテープ(ニチバン(株)製、商品名:CT-18)を貼り付け、JAPAN TAPPI No.18-2(内部結合強さ試験方法)に準じてインターナルボンドテスター(熊谷理機工業(株)社製、商品名)を用い、インクの剥離強度を測定し、2回の測定結果の平均値を表面強度とした。
 (厚み)
 記録用紙の厚み(全厚)は、JIS K7130:1999に準拠し、定圧厚さ測定器((株)テクロック製、商品名:PG-01J)を用いて測定した。また、記録用紙における各層の厚みは、測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃(シック・ジャパン(株)製、商品名:プロラインブレード)を直角に当て切断し断面観察用の試料を作成し、得られた試料を走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)を使用して断面観察を行い、組成外観から樹脂組成物ごとの境界線を判別して、記録用紙の全厚に観察される各層厚み比率を乗算して求めた。かかる方法で求めた、印刷受容層及び吸液層の厚みを表3に示す。なお、比較例1及び比較例2の記録用紙は印刷受容層及び吸液層を備えないので、比較例1についてはコート層の厚みを、比較例2については支持体層の厚みを表3に示した。
 (剛軟度)
 記録用紙のガーレ剛軟度は、JIS L1096:2010に準拠し、温度23℃、湿度50%RHの環境下で、記録用紙のMD方向について、ガーレ剛軟度試験機(大栄科学精器製作所(株)製、商品名:GAS-100)を用いて測定した。
 (印刷受容層側の表面の光沢度)
 記録用紙の印刷受容層側の表面の光沢度は、JIS P 8142:1993に準拠して測定し、75度鏡面光沢度を測定した。
 (印刷受容層側の表面の平滑度)
 記録用紙の印刷受容層側の表面の王研式平滑度をJIS P 8155:2010「紙及び板紙-平滑度試験方法-王研法」に従って、デジタル王研式透気度、平滑度試験機(旭精工株式会社製「EYO-55-1M」)で測定した。
 (平均空孔径)
 印刷受容層の平均空孔径は次の方法で求めた。対象となる層の表面を走査型電子顕微鏡により観察し、画像解析装置に観察画像を取り込み、同観察領域を画像解析することによって算出した、表面上の空孔の平均空孔径を求めた。
(空孔率)
 印刷受容層及び吸液層の空孔率は次の方法で求めた。対象となる層の断面を走査型電子顕微鏡により観察し、各層の厚みを測定した。また、各層を構成する樹脂組成物の坪量と真密度から、空孔形成前の理論厚みを算出し、以下の計算式より空孔率を算出した。
 空孔率(%)=100×(1-理論厚み/層厚み)
Figure JPOXMLDOC01-appb-T000003
 各実施例及び比較例で得られた記録用紙について、以下の項目を評価した。結果を表4に示す。
 (溶剤インクジェット印刷)
 記録用紙の印刷受容層側の表面に、溶剤インクジェット印刷機「SureColor SC-S80650」(セイコーエプソン社製)を用いてサンプル画像を印刷した。
 (濃度)
 溶剤インクジェット印刷の後、印刷面をポータブル分光濃度計(エックスライト(株)製、商品名「508」)を用いて1試料あたり9箇所の黒色部の印刷濃度を測定し、平均値を求め、濃度を下記の基準で判定した。
 5(良好):印刷濃度の平均値が1.6以上でインク発色が良好であった。
 4(良好):印刷濃度の平均値が1.6未満、1.4以上でインク発色が良好であった。
 3(可、実用下限):印刷濃度の平均値が1.4未満、1.2以上で若干の濃度低下が見られるが問題とならない程度であった。
 2(不可、実用に適さない):印刷濃度の平均値が1.2未満、1.0以上で濃度低下が見られた。
 1(不可、実用に適さない):印刷濃度の平均値が1.0未満であった。
 (滲み)
 溶剤インクジェット印刷の後、印刷後の記録用紙上の画像の状態をルーペで拡大して目視で観察した。記録用紙の滲みは、観察した画像の状態から、下記の基準で評価した。
 5(良好):画像が鮮明であった。
 4(良好):目視では画像が鮮明であったが、ルーペによる観察ではドット面積がやや広がっていた。
 3(可):目視ではインク滲みがやや不明瞭であり、ルーペによる観察ではドット面積が広がっていた。
 2(可、実用下限):目視ではインク滲みが不明瞭であり、ルーペによる観察ではドット面積が広がっていた。
 1(不可、実用に適さない):画像にかすれが生じていた。
 (乾燥)
 溶剤インクジェット印刷の後、10分毎に印刷サンプルを任意に一枚抜出し、ベタ画像部のインクの乾燥状態を指でこすり確認した。乾燥性は下記の基準で評価した。
 5(良好):非常に乾燥が速かった。(5分以内で乾燥し、指につかなかった。)
 4(良好):非常に乾燥が速かった。(10分以内で乾燥し、指につかなかった。)
 3(可、実用下限):乾燥が速く、問題とならない程度であった。(10分超20分以内で乾燥した。)
 2(不可、実用に適さない):乾燥がやや遅く問題となる程度であった。(20分超30分以内で乾燥した。)
 1(不可、実用に適さない):乾燥が遅く問題となる程度であった。(30分を超えた時点でも乾燥しなかった。)
 (定着)
 (擦過)
 溶剤インクジェット印刷の後、画像部分を、印刷から1日後に30mm×120mmのサイズに切り取り、学振試験機(スガ試験機社製)にセットした。ドライ条件での評価として、常温下で乾燥したガーゼを荷重215gの錘に取り付け、この錘で印刷した画像部分の表面を100回擦り、インクの剥離具合を目視観察にて評価した。また、ウェット条件での評価として、常温下で20μLの純水を浸みこませたガーゼを荷重215gの錘に取り付け、この錘で印刷した画像部分の表面を100回擦り、インクの剥離具合を目視観察した。擦過は下記の基準で評価した。
 5(良好):擦った画像部分の95%以上が残存した。
 4(良好):擦った画像部分の90%以上が残存した。
 3(可、実用下限):擦った画像部分の80%以上が残存した。
 2(不可、実用に適さない):擦った画像部分の70%以上が残存した。
 1(不可、実用に適さない):擦った画像部分の残存率が70%未満であった。
 (インク密着)
 溶剤インクジェット印刷の後、印刷面に、セロハンテープ(ニチバン社製、商品名:セロテープ(登録商標)CT-18)の粘着面を貼り付け、指で3回擦って十分に密着させた。密着させたセロハンテープを180度方向に300m/minの速度で手剥離した後、小型汎用画像解析装置(ニレコ社製、型式名:LUZEX-AP)を用いて、記録用紙上のインクの残存率を算出した。具体的には、印刷面を撮影して得られた画像に2値化処理を実施し、インクが占める面積の割合を残存率として算出した。インク密着は算出したインクの残存率から、下記の基準で評価した。
 5(良好):インクの残存率が80%以上であった。
 3(可、実用下限):インクの残存率が50%以上80%未満であった。
 1(不可、実用に適さない):インクの残存率が50%未満であった。
 (波打ち)
 記録用紙の印刷受容層側表面に、溶剤インクジェット印刷機「SureColor SC-S80650」(セイコーエプソン社製)を用いてブラックベタを印刷し、印刷部分の波打ちの発生度合いを目視により下記の基準で評価した。
 5(良好):波打ちの発生が無く、極めて良好なレベルであった。
 3(可、実用下限):波打ちの発生が僅かであった。
 1(不可、実用に適さない):波打ちの発生が見られた。
 (ブロッキング)
 記録用紙の印刷受容層側表面に、溶剤インクジェット印刷機「SureColor SC-S80650」(セイコーエプソン社製)を用いてブラックベタを印刷し、印刷後の記録用紙を、ロール状に巻回して、温度40℃,相対湿度50%の雰囲気下で1日間保管した後、ロールからの引出時にブロッキングを引き起こすことなくスムースな引き出しが可能であるかを観察した。ブロッキングを下記の基準で評価した。
 5(良好):剥離音がなくスムースに引き出せた。
 3(可、実用下限):剥離音があるが、引き取り後の基材層の外観を損ねていなかった。
 1(不可、実用に適さない):大きな剥離音があり、かつ引き取り後の基材層の外観を損ねていた。
 (耐候性)
 ポスター等の用途においては、屋外使用によってインクの剥がれが発生し問題となる場合がある。しかし耐候性の評価は、実際に屋外で暴露試験を行うと、気候や天候等の種々の変動因子によって結果が振れやすい。本実施形態では、印刷物に、JIS K-7350-4に準拠して、均一な条件で耐候性の促進処理(暴露試験)を行った後に、溶剤インクジェット印刷し、インク密着の評価を行った。より具体的には、以下の条件で促進処理を行った。
 超促進耐候性試験機(ダイプラ・ウィンテス(株)製、商品名「メタルウェザー KU-R5N-A」、メタルハライドランプ式)及び295~450nmの紫外線光を透過するガラスフィルター「KF-2フィルター」(商品名)を使用した。上記の手順で印刷された記録用紙を90mm×150mmの寸法に切り取って得た試験片を、印刷面側が暴露面となるように、四方をアルミ箔テープ「AL-T」(竹内工業(株)製、商品名)でステンレス板(100mm×200mm)に貼り付けて固定し、これを試験機内に設置した。試験片の面の放射照度を90W/mとし、ブラックパネル温度を63℃とした。温度63℃、相対湿度50%での暴露5時間及び温度30℃、相対湿度98%での暴露3時間を1サイクルとして、促進処理はこれを2サイクル実施した。したがって、印刷面への放射露光量は5.18×10J/mであった。
 次いで、耐候性促進処理を施した試験片を、擦過性の場合と同様に摩擦試験及び評価を行った。
 5(良好):擦った画像部分の95%以上が残存した。
 3(可、実用下限):擦った画像部分の80%以上が残存した。
 1(不可、実用に適さない):擦った画像部分の残存率が80%未満であった。
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、実施例1~14の記録用紙は、印刷受容層、吸液層及び所定のコート層を備え、吸液速度が特定の範囲にあり、かつ吸液量が特定値以上であることで、優れた印刷品質、乾燥性及び耐候性を両立できた。一方で、比較例1~7の記録用紙は、いずれか1つ以上の評価項目において実用に適さない結果となり、印刷品質、乾燥性及び耐候性を両立できなかった。
 実施例1~3を比較すると、印刷受容層の坪量が小さくなるほど吸液速度が大きくなる傾向があった。またこれに伴って実施例1~3の記録用紙では吸液速度が大きくなるほど滲みの評価が優れる傾向があった。
 実施例3、4を比較すると、実施例3では吸液層の坪量がより大きく、吸液量がより大きい結果となった。実施例3の記録用紙では、実施例4の記録用紙に対し乾燥性の評価がより優れていた。
 実施例1、5、6を比較すると、印刷受容層に用いたフィラーの種類(平均粒子径及び表面処理)や配合が異なることで、印刷受容層の平均空孔径が異なり、吸液速度が変わる結果となった。実施例1、5、6の記録用紙では、吸液速度が小さいほど滲みの評価が優れる傾向があった。
 実施例1、7を比較すると、実施例7では支持体層に用いた樹脂組成物がフィラーを含有しない点で異なるものの、実施例1、7の記録用紙について両者の評価結果は同等であった。
 実施例1、8、9を比較すると、横延伸の温度が大きくなるほど空孔率が低下し、吸液量及び吸液速度がともに小さくなる傾向があった。これに伴って、実施例1、8、9の記録用紙では乾燥性及び滲みの評価結果に違いがみられた。
 実施例1、10を比較すると、実施例10はコート層の乾燥後塗工量がより多く、吸液速度がより小さい。実施例1の記録用紙では、実施例10の記録用紙に対し滲みの評価がより優れていた。
 実施例1、11を比較すると、コート層に用いたコート組成物が相違する。実施例11の記録用紙では、コート組成物に水分散性樹脂を用いることにより、実施例1の記録用紙に対し擦過の評価がより優れていた。
 実施例1、12を比較すると、支持体層の延伸軸数が互いに相違するものの、実施例1、12の記録用紙について両者の評価結果は同等であった。
 実施例11、13を比較すると、実施例13の記録用紙ではコート組成物が水性バインダーのみから構成されることにより滲みの評価がより優れていた。
 比較例1の記録用紙は、顔料を含むコート層を備えるものであるが、コート層中の無機フィラーの含有量が多い。比較例1の記録用紙はコート層に無機フィラーを含まない実施例1の記録用紙に対して擦過性について実用に適さない評価結果となった。
 比較例2の記録用紙は、塩化ビニル系共重合体を含有する層を備えるものであり、コート層、印刷受容層及び吸液層のような多孔質層を備える構成となっていない。比較例2の記録用紙は波打ち、ブロッキング及び耐候性について実用に適さない評価結果となった。
 比較例3の記録用紙は、多孔質層を備えないことから、吸液量及び吸液速度がいずれも小さすぎるものである。比較例2の記録用紙は滲み及び乾燥について実用に適さない評価結果となった。
 比較例4の記録用紙は、コート層を備えない。比較例4の記録用紙は濃度、擦過及びインク定着について実用に適さない評価結果となった。
 比較例5の記録用紙は、吸液量が小さすぎるものである。比較例5の記録用紙は乾燥について実用に適さない評価結果となった。
 比較例6の記録用紙は、吸液量が小さすぎるものである。比較例6の記録用紙は滲み及び乾燥について実用に適さない評価結果となった。
 比較例7の記録用紙は、吸液速度が大きすぎるものである。比較例7の記録用紙は濃度及び擦過について実用に適さない評価結果となった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は2022年6月24日付にて出願の日本特許出願(特願2022-102227)に基づくものであり、その内容はここに参照として取り込まれる。
1 記録用紙
9 裏面層
10 支持体層
11 吸液層
12 印刷受容層
13 コート層

Claims (8)

  1.  コート層、印刷受容層および吸液層をこの順で有する記録用紙であって、
     前記コート層は樹脂成分として水性バインダーを含み、
     前記印刷受容層及び前記吸液層はいずれも熱可塑性樹脂を含有する多孔質層であり、
     前記印刷受容層側の表面における吸液速度が5~25cc/m・0.5sであり、
     吸液量が10cc/m以上であり、
     前記コート層中の前記水性バインダー100質量部に対する無機フィラーの含有量が、9質量部以下である、記録用紙。
  2.  前記印刷受容層の空孔率が30~50%であり、前記吸液層の空孔率が40~60%である、請求項1に記載の記録用紙。
  3.  前記印刷受容層および前記吸液層が、いずれもフィラーを含有する延伸層である、請求項1又は2に記載の記録用紙。
  4.  前記印刷受容層におけるフィラーの含有量が45~75質量%である、請求項1又は2に記載の記録用紙。
  5.  前記印刷受容層におけるフィラーとして、疎水化表面処理フィラーを含有する、
    請求項1又は2に記載の記録用紙。
  6.  前記印刷受容層の平均空孔径が、0.5~20μmである、請求項1又は2に記載の記録用紙。
  7.  前記コート層中の前記樹脂成分の含有量が80質量%を超える、請求項1又は2に記載の記録用紙。
  8.  前記コート層の乾燥後塗工量が0.05~5g/mである、請求項1又は2に記載の記録用紙。
PCT/JP2023/023357 2022-06-24 2023-06-23 記録用紙 WO2023249112A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022102227 2022-06-24
JP2022-102227 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023249112A1 true WO2023249112A1 (ja) 2023-12-28

Family

ID=89380100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023357 WO2023249112A1 (ja) 2022-06-24 2023-06-23 記録用紙

Country Status (1)

Country Link
WO (1) WO2023249112A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241489A1 (ja) * 2020-05-25 2021-12-02 株式会社ユポ・コーポレーション 多孔質層を有する積層体、及びインクジェット用紙
WO2022113846A1 (ja) * 2020-11-25 2022-06-02 株式会社ユポ・コーポレーション 積層体、インクジェット用紙及び粘着ラベル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241489A1 (ja) * 2020-05-25 2021-12-02 株式会社ユポ・コーポレーション 多孔質層を有する積層体、及びインクジェット用紙
WO2022113846A1 (ja) * 2020-11-25 2022-06-02 株式会社ユポ・コーポレーション 積層体、インクジェット用紙及び粘着ラベル

Similar Documents

Publication Publication Date Title
US6562451B2 (en) Coated film
US7754296B2 (en) Ink-jet media having an ink-vehicle permeable coating and a microporous coating
US6811837B2 (en) Porous resin film
WO2006121217A1 (ja) 二軸延伸積層ポリプロピレンフィルム及びその用途
WO2001068376A1 (fr) Papier d'enregistrement pour imprimante a jet d'encre
JP6689111B2 (ja) 記録シート
WO2001040361A1 (fr) Film en resine poreuse
WO2001042340A1 (fr) Film de resine poreux
JP6827872B2 (ja) インクジェット用記録シート
JPS62148292A (ja) 熱転写記録用画像受容シ−ト
WO2023249112A1 (ja) 記録用紙
JP7094743B2 (ja) インクジェット用記録媒体、及び、画像記録方法
JP2001225422A (ja) コーテッドフィルム
JP3836197B2 (ja) インクジェット記録用紙
JP7438402B2 (ja) 積層体、インクジェット用紙及び粘着ラベル
WO2023190415A1 (ja) 記録用紙
WO2022210605A1 (ja) 記録用紙
JP2017177795A (ja) インクジェット用記録シート及び粘着シートラベル
JPH07237366A (ja) 熱転写受像体
JP2004114676A (ja) 水系コート層を設けた樹脂延伸フィルム
JP2003251930A (ja) インクジェット記録用シート
JP2005297473A (ja) インクジェット記録用シート
JP2023071094A (ja) 記録用紙
JP2007225681A (ja) 電子写真用転写シート
JP2003170659A (ja) インクジェット記録用媒体及びインクジェット記録物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827294

Country of ref document: EP

Kind code of ref document: A1