WO2023248786A1 - パルプモールド成形品 - Google Patents

パルプモールド成形品 Download PDF

Info

Publication number
WO2023248786A1
WO2023248786A1 PCT/JP2023/021012 JP2023021012W WO2023248786A1 WO 2023248786 A1 WO2023248786 A1 WO 2023248786A1 JP 2023021012 W JP2023021012 W JP 2023021012W WO 2023248786 A1 WO2023248786 A1 WO 2023248786A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
molded product
mold
pulp molded
fiber length
Prior art date
Application number
PCT/JP2023/021012
Other languages
English (en)
French (fr)
Inventor
萌 石井
幸司 坂入
寿郎 武井
雄斗 藤本
Original Assignee
Toppanホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppanホールディングス株式会社 filed Critical Toppanホールディングス株式会社
Publication of WO2023248786A1 publication Critical patent/WO2023248786A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J5/00Manufacture of hollow articles by transferring sheets, produced from fibres suspensions or papier-mâché by suction on wire-net moulds, to couch-moulds

Definitions

  • the present invention relates to pulp molded products.
  • paper containers are being used instead of plastic containers and metal containers for storing toiletry products, drinks, food, and the like.
  • liquid paper containers such as milk containers
  • gable-top paper container which is made of paperboard coated with polyethylene resin on both sides of the paper and has a gable roof shape at the top.
  • Such paper containers not only contribute to resource and energy conservation, but also contribute to environmental conservation by being easy to recycle or incinerate when disposed of. Therefore, paper containers have become popular in various fields.
  • paper containers are formed by folding and pasting paperboard, the manufacturing process is complicated and the manufacturing cost increases.
  • paper containers such as those described above have a low degree of freedom in shape, and therefore have problems such as not being able to fully demonstrate the appeal of the product based on the shape of the container.
  • One method for increasing the degree of freedom in the shape of paper containers is a pulp mold, which manufactures molded products from a slurry containing pulp and water.
  • a pulp mold typically pulp in a slurry is deposited onto a paper mold to form a pulp layer, the pulp layer is dehydrated, and then it is dried in an oven.
  • Molded products obtained by this technology that is, pulp molded products, have excellent physical properties such as heat resistance, cold resistance, and moisture absorption and desorption properties, which are characteristics of paper packaging materials, and are suitable for paper trays for food. It has come to be widely used as a fixed cushioning material for containers, fruits, etc. (Patent Document 1).
  • An object of the present invention is to provide a pulp molded product that is less likely to cause variations in volume from molded product to molded product when used as a container.
  • a pulp molded article in which the average fiber length of the pulp is within the range of 1.3 to 2.0 mm, and the standard deviation of the surface height in the flat part is 0.9 mm or less. be done.
  • a pulp molded product according to the above aspect in which the proportion of fibers having a fiber length of 1 mm or less in the pulp is within the range of 25 to 45%.
  • a pulp molded product according to any one of the above aspects, in which the average ratio of fiber length to fiber width of the pulp is within a range of 65 to 95.
  • the pulp suspension obtained by dispersing the pulp in water is molded into a pulp molded article according to any of the above aspects, and the pulp suspension has a Canadian standard freeness in the range of 570 to 675 mL. is provided.
  • a pulp molded product according to any of the above aspects, which has a specific tensile strength of 30 N ⁇ m/g or more.
  • a pulp molded product according to any of the above aspects, which has a bending modulus of elasticity of 1600 MPa or more.
  • a pulp molded product according to any of the above aspects, having an ISO compressive strength of 12 kN/m or more.
  • a pulp molded article according to any of the above aspects, which has an opening and tapers in a direction away from the opening.
  • a pulp molded product according to any of the above aspects, which is a container.
  • a slurry containing water and pulp having an average fiber length in the range of 1.3 to 2.0 mm is prepared, and the pulp is placed on a three-dimensional paper mold. depositing a pulp layer to form a pulp layer; dewatering the pulp layer to obtain an intermediate molded product; sandwiching the undried intermediate molded product between a male mold and a female mold; 1.
  • a method for producing a pulp molded product which comprises heating at a temperature in the range of 160 to 200° C. while applying pressure in the range of 0 to 10 MPa.
  • depositing the pulp on the paper mold includes preparing a cover body as a hollow body having an opening, and fixing the paper mold in the opening. , immersing the paper mold fixed in the opening into the slurry, and reducing the pressure in a space surrounded by the cover body and the paper mold immersed in the slurry.
  • FIG. 1 is a perspective view showing a pulp molded product according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a manufacturing apparatus that can be used to manufacture the pulp molded product of FIG. 1.
  • FIG. 3 is a diagram showing a pulp layer forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing an example of a pulp layer formed on a paper mold.
  • FIG. 5 is a diagram showing a dewatering process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 6 is a diagram showing a process of conveying a pulp layer in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 7 is a diagram showing a hot press forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 1 is a perspective view showing a pulp molded product according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a manufacturing apparatus that can be used to manufacture the
  • FIG. 8 is a cross-sectional view schematically showing an example of a pulp molded product obtained by a hot press process.
  • FIG. 9 is a diagram showing a conveyance process of a pulp molded product in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 10 is a diagram showing a state in which the conveyance process of FIG. 9 has been completed.
  • FIG. 1 is a perspective view showing a pulp molded product according to an embodiment of the present invention.
  • the pulp molded article MP2 shown in FIG. 1 has an opening and tapers in a direction away from the opening.
  • This pulp molded product MP2 is a container.
  • This pulp molded product MP2 includes a bottom part and a side wall part, and is open at the top.
  • the bottom has a disc shape.
  • the bottom may have a shape other than a circle when orthogonally projected onto a plane perpendicular to the depth direction of the container, for example, a polygonal shape such as a square shape.
  • the side wall portion has a cylindrical shape extending upward from the edge of the bottom portion.
  • the diameter of the side wall increases from the bottom toward the opening.
  • the inner and outer surfaces of the sidewalls may be perpendicular to the top surface of the bottom.
  • the pulp molded product MP2 in which the side wall portion increases in diameter from the bottom toward the opening, is advantageous in achieving high mold releasability and is easy to stack.
  • the volume of a laminate formed by stacking a plurality of pulp molded products MP2 can be reduced.
  • the pulp molded article MP2 may have various shapes such as a cup shape, a bowl shape, a tray shape, and a box shape.
  • the pulp molded product MP2 does not need to be a container as long as it is a three-dimensional molded product, that is, a molded product that has a three-dimensional shape rather than a two-dimensional shape like a sheet.
  • the pulp molded article MP2 preferably has a thickness of 1.5 mm or less, more preferably 1.3 mm or less. Although there is no particular lower limit for the thickness, one example is 0.6 mm or more.
  • the thickness of the pulp molded article MP2 is the thickness of the wall portion of the pulp molded article MP2, here, the thickness of the bottom and side wall portions. When the thickness of the wall portion is different between the bottom portion and the side wall portion, the thickness of the pulp molded product MP2 is the thickness of the thinner of the bottom portion and the side wall portion.
  • the thickness of the pulp molded article MP2 is a value obtained by the following method. That is, five test pieces are cut out from arbitrary positions of the pulp molded article MP2. The thickness of each test piece is then measured. For example, a thickness gauge manufactured by Mitutoyo is used to measure the thickness. The thickness of the pulp molded product MP2 is the average value of the measurement results obtained for five test pieces.
  • the pulp molded article MP2 has a standard deviation of the surface height in the flat part of 0.9 mm or less.
  • the standard deviation of the surface height in the plane part of the pulp molded product MP2 is preferably 0.8 mm or less, more preferably 0.7 mm or less.
  • the lower limit of the standard deviation of height is zero, according to one example 0.3 mm, and according to another example 0.4 mm.
  • the surface has a smooth shape with few irregularities.
  • the pulp molded article MP2 with fewer irregularities on the surface can be used as a container, making it difficult for variations in volume to occur from one molded article to another.
  • the pulp molded article MP2 has few irregularities on the surface, it has excellent cosmetic properties and is easy to form a printing layer and a coating layer.
  • the pulp molded product MP2 has few irregularities on the surface, it is difficult to become bulky when stacked, and it is possible to stack them in an orderly manner.
  • the standard deviation of the surface height in the flat part of the pulp molded article MP2 is a value obtained by the following method.
  • STL data is acquired using a 3D scanner for at least a partial area of the planar part of the pulp molded product MP2.
  • the STL data is data that expresses the surface shape of at least a portion of the region as a collection of minute triangles arranged so as to be connected to each other, and includes the coordinates of the vertices of the triangles.
  • the Z coordinates (coordinates in the height direction) of vertices located within a specific area are extracted, and the standard deviation is calculated.
  • the "specific area” refers to a flat area of one surface constituting the container that does not include intentionally provided uneven portions.
  • the "specific area” is a flat area representative of the molded product, and can have any shape or area. If the above-mentioned planar area is selected as the "specific area", the same standard deviation value can be obtained regardless of its shape or area.
  • STL data is acquired using Artec EVA (Artec 3D), and the STL data is analyzed using Artec Studio (Artec 3D).
  • the number of STL data points to be acquired varies automatically depending on the shape and area, but for example, if STL data is acquired using a 150 mm square as the "specific area", approximately 2400 points will be obtained. data is obtained.
  • standard deviation of the height of one surface of a flat part is different from the standard deviation of the height of the other surface of that flat part, the larger standard deviation is defined as "the height of the surface of that flat part”.
  • standard deviation of surface height in a flat portion is also referred to as “dispersion of surface height.”
  • the average fiber length of the pulp is within the range of 1.3 to 2.0 mm, preferably within the range of 1.3 to 1.7 mm.
  • the strength of the pulp molded product MP2 will decrease.
  • the average fiber length of the pulp is short, it becomes easy to increase the density of the pulp molded article MP2, and the strength thereof also increases.
  • the average fiber length of the pulp is short, distortion is likely to occur in the pulp molded product MP2 during drying, and as a result, unevenness is likely to occur on the surface of the pulp molded product MP2.
  • the average fiber length of the pulp is excessively shortened, it becomes difficult to complete the drying process in a short period of time during production, or cracks and mold releasability are likely to occur due to insufficient drying.
  • the average fiber length of pulp is a value obtained by the following method. That is, first, a 5 g test piece is obtained from the pulp molded product MP2. Next, this test piece is cut into small pieces and soaked in 500 mL of water overnight. This is then stirred with a stirrer to disintegrate the pulp from each other. In this way, a dispersion containing pulp is obtained. Next, 10 g of this dispersion is taken and diluted with water. This dilution is performed so that the total mass is 200 g. Using the sample thus obtained, the fiber length is measured according to JIS P8226-2:2011 "Pulp - Fiber length measurement method by optical automatic analysis - Part 2: Non-polarization method". The average fiber length of pulp refers to the length weighted average fiber length LL .
  • the proportion of fibers having a fiber length of 1 mm or less in the pulp is preferably in the range of 25 to 45%.
  • the proportion of fibers with a fiber length of 1 mm or less in the pulp refers to the proportion of the number (number) of fibers with a fiber length of 1 mm or less in the total number (number) of fibers in the pulp. More preferably, this proportion is in the range of 30 to 42%.
  • this ratio makes it easier to increase the density of the pulp molded product MP2, and also increases its strength.
  • this ratio is increased, distortion tends to occur in the pulp molded article MP2 during drying, and as a result, unevenness tends to occur on the surface of the pulp molded article MP2.
  • this ratio is excessively increased, it becomes difficult to complete the drying process in a short period of time during production, or cracks and mold releasability are likely to occur due to insufficient drying.
  • this ratio is decreased, the strength of the pulp molded article MP2 is decreased.
  • the proportion of fibers having a fiber length of 1 mm or less in the pulp is obtained by the following method. First, a 5 g test piece is obtained from the pulp molded article MP2. Next, this test piece is cut into small pieces and soaked in 500 mL of water overnight. This is then stirred with a stirrer to disintegrate the pulp from each other. In this way, a dispersion containing pulp is obtained. Next, 10 g of this dispersion is taken and diluted with water. This dilution is performed so that the total mass is 200 g.
  • the fiber length is measured according to JIS P8226-2:2011 "Pulp - Fiber length measurement method by optical automatic analysis - Part 2: Non-polarization method”. From the frequency distribution of fiber length obtained by this fiber length measurement, the proportion of fibers with a fiber length of 1.0 mm or less in the pulp is determined.
  • the average ratio L/W of the fiber length L to the fiber width W of the pulp is preferably within the range of 65 to 95. More preferably, the average ratio of fiber length to fiber width of the pulp is within the range of 70 to 93%.
  • the average ratio L/W refers to the ratio L L /L W of the length weighted average fiber length L L to the length weighted average width L W.
  • the length-weighted average width LW is obtained in the same manner as the length-weighted average fiber length LL , except that the fiber width is measured instead of the fiber length.
  • ratio L/W By reducing the ratio L/W, it becomes easier to increase the density of the pulp molded article MP2, and its strength also increases.
  • the ratio L/W is made small, distortion tends to occur in the pulp molded article MP2 during drying, and as a result, unevenness tends to occur on the surface of the pulp molded article MP2.
  • the ratio L/W is excessively small, it becomes difficult to complete drying in a short period of time during production, or cracks and mold releasability are likely to occur due to insufficient drying.
  • the pulp suspension obtained by dispersing pulp in water preferably has a Canadian standard freeness within the range of 570 to 675 mL, more preferably within the range of 600 to 670 mL. preferable.
  • the Canadian Standard Freeness of a pulp suspension is an indicator of the degree of drainage of the pulp.
  • the above Canadian standard freeness is a value obtained by the following method.
  • a test piece is obtained from the pulp molded product MP2, and a dispersion containing pulp is obtained by the same method as above.
  • this dispersion liquid is diluted with water so that the solid content concentration is 0.3% by mass to obtain an aqueous suspension of pulp.
  • measurements are carried out as specified in JIS P8121-2:2012 "Pulp - Freeness Test Method - Part 2: Canadian Standard Freeness Method".
  • a Canadian Free Tester manufactured by Kumagai Riki Kogyo Co., Ltd. is used.
  • the measured value is corrected by referring to the correction table for the temperature of the suspension measured in advance. In this way, the Canadian Standard Freeness is obtained.
  • the pulp molded product MP2 preferably has a specific tensile strength of 30 N ⁇ m/g or more, more preferably 40 N ⁇ m/g or more. Although there is no upper limit to the specific tensile strength of the pulp molded product MP2, according to one example, it is 60 N ⁇ m/g or less. That is, when the pulp molded product MP2 has a high specific tensile strength, it has the strength to withstand a large tensile load.
  • the above specific tensile strength is a value obtained by the following method. First, a test piece having a rectangular shape with a width of 15 mm and a length of 40 mm is cut out from a portion of the pulp molded article MP2 whose surface is not curved. Next, the thickness and mass of this test piece are measured. Next, using this test piece, measurements are performed as specified in JIS P8113:2006 "Paper and Paperboard - Testing Methods for Tensile Properties - Part 2: Constant Speed Stretching Method". Here, the strips are gripped so that the interval between the grippers is 20 mm. Furthermore, the moving speed of these gripping tools, ie, the elongation speed of the test piece, is 20 mm/min. The specific tensile strength is the average value of the values obtained from three measurements.
  • the pulp molded product MP2 preferably has a bending elastic modulus of 1600 MPa or more, more preferably 2000 MPa or more. Although there is no particular upper limit for the bending elastic modulus, one example is 3000 MPa. That is, when the pulp molded article MP2 has a large bending modulus, it has a strength that can withstand a large bending stress.
  • a test piece having a rectangular shape with a width of 10 mm and a length of 40 mm is cut out from a portion of the pulp molded product MP2 whose surface is not curved. Next, the thickness and mass of this test piece are measured. Next, using this test piece, measurements are performed as specified in JIS K7171:2006 "Plastics - How to determine bending properties.” Here, a strip was placed on a test stand with a distance between tests of 30 mm, supported at two points, and a measuring indenter was lowered at a rate of 2 mm/min to the center of the strip. The bending elastic modulus was determined from the obtained stress-strain curve. The bending elastic modulus is the average value of the values obtained by three measurements.
  • the pulp molded product MP2 preferably has an ISO compressive strength of 12 kN/m or more, more preferably 15 kN or more. Although there is no particular upper limit for the ISO compressive strength, one example is 30 kN. That is, when the pulp molded article MP2 has a high ISO compressive strength, buckling is less likely to occur when a load is applied, such as when the contents are filled and stacked when used as a container.
  • the compressive strength is a value obtained by the method specified in JIS P8126:2015 "Compressive strength test method - ring crush method”.
  • ISO compressive strength is the maximum load obtained when a long and thin test piece bent into a cylindrical shape (ring shape) is sandwiched between parallel upper and lower compression plates and buckled by applying a compressive load. It is calculated by dividing by the length of the test piece.
  • ISO compressive strength is also referred to as "ISO ring crush compressive strength.”
  • an elongated test piece is prepared by cutting out a strip-shaped test piece with a width of 15 mm and a length of 145 mm from the pulp molded product MP2.
  • the pulp molded product MP2 preferably has a density of 0.6 g/cm 3 or more, more preferably 0.7 g/cm 3 or more. There is no upper limit to the density of the pulp molded product MP2, but according to one example, it is 1.5 g/cm 3 or less.
  • a high density means that the denseness of the pulp mold is improved, and it is considered to be an element that resists when force is applied from the outside, which in turn contributes to improving the strength.
  • the above density is a value obtained by the following method. That is, a square or rectangular test piece is cut out from a portion of the pulp molded article MP2 whose surface is not curved, and its dimensions, mass, and thickness are measured. Calculate the density from the obtained value.
  • the pulp molded article MP2 can further contain a paper strength enhancer such as polyacrylamide. Use of a paper strength enhancer can increase the strength of the pulp molded product MP2.
  • FIG. 2 is a diagram schematically showing an example of a manufacturing apparatus that can be used to manufacture the pulp molded product of FIG. 1.
  • the manufacturing apparatus 1 shown in FIG. 2 includes a support 10, a first station 20, a second station 30, and a third station 40.
  • the support body 10 includes a frame body and a rail installed on the top of the frame body.
  • the first station 20 includes a container 210, a lifting device 220, a cover body 230, a paper mold 240, a moving device 250, a lifting device 260, and an upper mold 270.
  • the container 210 is installed within the frame of the support 10. Container 210 is open at the top. Container 210 contains slurry S containing pulp and water.
  • the lifting device 220 is attached to the frame of the support 10 above the container 210.
  • the lifting device 220 includes, for example, a hydraulic cylinder.
  • the lifting device 220 supports the cover body 230.
  • the lifting device 220 can raise and lower the cover body 230 at the opening of the container 210.
  • the cover body 230 is a hollow body with an opening at the top.
  • a pump (not shown) is connected to the cover body 230.
  • the paper mold 240 is fixed to the opening of the cover body 230. Specifically, the paper die 240 is fixed to the opening of the cover body 230 so that a space adjacent to one surface thereof is surrounded by the paper die 240 and the cover body 230.
  • the paper mold 240 is a mold that is liquid permeable.
  • the paper mold 240 has a three-dimensional shape. That is, the paper mold 240 has one or more convex portions and/or one or more concave portions on the surface on which pulp is deposited.
  • the outer surface of the paper mold 240 that is, the back surface of the surface adjacent to the space, has a shape corresponding to a pulp molded product.
  • the paper mold 240 is a male mold with a protruding upper surface.
  • the paper mold 240 includes, for example, a paper mold main body having a large number of through holes and an outer surface having a shape corresponding to a pulp molded product, and a paper mold main body provided on the outer surface of the paper mold main body along this outer surface. It includes a mesh body.
  • the paper mold body is made of a hard material such as metal.
  • the moving device 250 is movable between the first station 20 and the second station 30 along the rails of the support 10.
  • the moving device 250 includes, for example, a motor as a power source.
  • a lifting device 260 is attached to the moving device 250 and can be moved between the first station 20 and the second station 30.
  • the lifting device 260 is attached to the moving device 250 as described above.
  • the lifting device 260 includes, for example, a hydraulic cylinder.
  • the lifting device 260 supports an upper mold 270.
  • the lifting device 260 can raise and lower the upper die 270.
  • the upper die 270 is a holder that sandwiches a pulp layer, which will be described later, between it and the papermaking die 240 and holds the pulp layer by vacuum suction.
  • the upper die 270 is made of a hard material such as metal.
  • the lower surface of the upper mold 270 has a shape corresponding to the outer surface of the paper mold 240.
  • the upper mold 270 is a female mold with a concave lower surface.
  • the upper mold 270 has, for example, a large number of through holes with one end open on the lower surface and the other end connected to a pump.
  • the second station 30 is provided near the first station 20.
  • the second station 30 includes a table 310, a lower mold 320, a moving device 330, a press device 340, and an upper mold 350.
  • the stand 310 is installed within the frame of the support 10.
  • a lower mold 320 is installed on the stand 310.
  • the lower mold 320 is a mold that is permeable to gas and/or liquid.
  • the lower die 320 is made of a hard material such as metal.
  • the lower mold 320 has an upper surface that corresponds to the outer surface of the paper mold 240.
  • the lower mold 320 is a male mold with a protruding upper surface.
  • the lower die 320 has, for example, a large number of through holes, and has a smooth surface having a shape corresponding to the outer surface of the papermaking die 240.
  • the moving device 330 is movable between the second station 30 and a fourth station (not shown) along the rails of the support body 10.
  • the moving device 330 includes, for example, a motor as a power source.
  • a press device 340 is attached to the moving device 330, and can be transferred between the second station 30 and the fourth station.
  • the press device 340 is attached to the moving device 330 as described above.
  • Press device 340 includes, for example, a hydraulic cylinder.
  • the press device 340 supports an upper die 350.
  • the press device 340 can raise and lower the upper die 350.
  • the upper mold 350 is a mold that does not have gas permeability or liquid permeability.
  • the upper die 350 is made of a hard material such as metal.
  • the lower surface of the upper mold 350 has a shape corresponding to the outer surface of the paper mold 240.
  • the upper mold 350 is a female mold with a concave lower surface.
  • the upper die 350 has a smooth surface that has a shape corresponding to the outer surface of the papermaking die 240.
  • the second station 30 further includes a heater and a pump (none of which are shown).
  • the heater heats at least one of the lower mold 320 and the upper mold 350.
  • the pump is connected to the lower space of the lower mold 320.
  • the third station 40 is provided near the second station 30.
  • the third station 40 includes a table 410, a moving device 420, a lifting device 430, and a holder 440.
  • the stand 410 is installed within the frame of the support 10. A pulp molded product is placed on the stand 410.
  • the moving device 420 is movable between the second station 30 and the third station 40 along the rails of the support 10.
  • the moving device 420 includes, for example, a motor as a power source.
  • a lifting device 430 is attached to the moving device 420 and can be moved between the second station 30 and the third station 40.
  • the lifting device 430 is attached to the moving device 420 as described above.
  • the lifting device 430 includes, for example, a hydraulic cylinder.
  • the lifting device 430 supports a holder 440.
  • the lifting device 430 can raise and lower the holder 440.
  • the holder 440 is a holder that holds a pulp molded product, which will be described later, by vacuum suction.
  • the lower surface of the holder 440 has a shape corresponding to the outer surface of the paper mold 240.
  • the holder 440 has a concave lower surface.
  • the holder 440 has, for example, a number of through holes with one end open at the bottom surface and the other end connected to a pump.
  • a pulp molded product MP2 is manufactured using, for example, the manufacturing apparatus 1 described above. This will be explained with reference to FIGS. 1 to 10.
  • FIG. 3 is a diagram showing a pulp layer forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing an example of a pulp layer formed on a paper mold.
  • FIG. 5 is a diagram showing a dewatering process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 6 is a diagram showing a process of conveying a pulp layer in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 7 is a diagram showing a hot press forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 8 is a cross-sectional view schematically showing an example of a pulp molded product obtained by a hot press process.
  • FIG. 9 is a diagram showing a conveyance process of a pulp molded product in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 10 is a diagram showing a state in which the conveyance process of FIG. 9 has been completed.
  • slurry S is prepared.
  • slurry S contains pulp and water.
  • Slurry S is a suspension in which pulp is dispersed in water and has a high viscosity.
  • the pulp contained in the slurry S has substantially the same characteristics as described above for the pulp contained in the pulp molded product MP2.
  • the type of pulp used for slurry S is not particularly limited, but examples include wood pulp, non-wood pulp, and waste paper, with wood pulp and non-wood pulp being preferred. Furthermore, from the viewpoint of environmental considerations such as forest conservation and utilization of unused resources, it is preferable to use non-wood pulp.
  • wood pulp can be made from chemical pulp such as kraft pulp (KP), sulfite pulp (SP), or soda pulp (AP); semi-chemical pulp (SCP) or chemical ground wood pulp. Examples include semi-chemical pulps such as (CGP); mechanical pulps such as groundwood pulp (GP) and thermomechanical pulp (TMP). Among these, it is preferable to use chemical pulp.
  • wood pulp includes softwood pulp and hardwood pulp.
  • softwood pulp include pulps obtained from Abies, Pinus, and the like.
  • hardwood pulp include pulps obtained from the genus Acacia, genus Eucalyptus, genus Beech, genus Asus (for example, poplar), and the like.
  • Non-wood pulp is obtained from fibers harvested from plant skins, stems, leaves, and leaf sheaths. Specifically, pulps obtained from cotton linters, cotton, linen, hemp, ramie, straw, esparto, manila hemp, xyzal hemp, jute, flax, kenaf, bamboo, sugar cane, ganpi, mitsumata, kozo, and mulberry are used. Can be mentioned. Among these, bamboo and sugarcane pulps are preferred. These pulps can be used alone or in a mixture of two or more in any ratio.
  • Pulp has different fiber lengths depending on its raw material and manufacturing method.
  • pulp made from sugarcane generally has a shorter average fiber length than pulp made from bamboo.
  • the average fiber length of the pulp can be adjusted by any method, for example, by mechanical treatment such as beating or crushing. Therefore, a pulp having certain characteristics can be obtained, for example, by selecting an appropriate pulp from a plurality of types of pulp, or by appropriately combining two or more types of pulp.
  • a hot pressing step is performed on an undried pulp layer. That is, a hot pressing process is performed on a pulp layer having a high water content. Therefore, if the average fiber length of the pulp is too short, the water evaporation rate tends to be uneven during the hot pressing process, and uneven shrinkage occurs during drying, which can cause wrinkles, cracks, or surface irregularities. .
  • the pulp content of the slurry S is preferably in the range of 0.01 to 3.0% by mass, more preferably in the range of 0.01 to 0.5% by mass.
  • the pulp content is low, it is difficult to achieve high productivity. If the pulp content is high, variations in the thickness of the pulp layer and variations in surface height may become large.
  • Slurry S can further contain additives.
  • additives organic low-molecular materials, organic polymer materials, inorganic materials, or combinations thereof can be used, such as agents that impart water resistance or oil resistance, paper strength enhancers, and drainage properties. Examples include improvers and fillers, but additives may be selected according to the required performance of the pulp mold container.
  • the proportion of the additive in the total of the pulp and the additive is preferably 10% by mass or less, more preferably 5% by mass or less. That is, the proportion of pulp in the total solid content contained in the slurry S is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the slurry S is supplied into the container 210.
  • the cover body 230 is lowered by the lifting device 220, so that the upper surface of the paper mold 240 is positioned sufficiently below the liquid level of the slurry S.
  • the paper mold 240 installed on the top of the cover body 230 is immersed in the slurry.
  • the pump is driven to reduce the pressure in the space surrounded by the cover body 230 and the paper mold 240. This causes the slurry S to flow across the paper mold 240 and deposit pulp on the paper mold 240.
  • the pulp layer MP1 is formed on the paper mold 240, as shown in FIG.
  • the cover body 230 is raised by the lifting device 220, as shown in FIG. 5, so that the lower part of the paper mold 240 is positioned sufficiently above the liquid level of the slurry S. Thereby, the pulp layer MP1 is dehydrated under reduced pressure.
  • the lifting device 260 is driven to lower the upper die 270 until its lower surface contacts the pulp layer MP1. Note that the pulp layer MP1 is not depicted in FIG. This dehydration process is performed without heating either the upper die 270 or the papermaking die 240.
  • the depressurization time in the dehydration step is preferably within the range of 1 to 60 seconds, and more preferably within the range of 1 to 10 seconds.
  • the moisture content of the pulp layer MP1 immediately after dehydration is preferably in the range of 40 to 90% by mass, more preferably in the range of 50 to 70% by mass. If the water content is low, the movement of fibers in the in-plane direction within the pulp layer may become insufficient during the hot pressing process. If the moisture content is high, fibers will move excessively in the in-plane direction within the pulp layer during the hot pressing process, or during the period from the end of the dehydration process to the start of the hot pressing process. In this case, the shape retention of the pulp layer MP1 may become insufficient.
  • the pump After stopping the depressurization of the space and the pressurization, the pump is driven to cause the upper die 270 to adsorb and hold the pulp layer MP1. Note that the suction by the pump and the upper die 270 does not cause further dehydration of the pulp layer MP1.
  • the lifting device 260 is driven to raise the upper mold 270, as shown in FIG. As a result, the pulp layer MP1 is peeled off from the paper mold 240.
  • the moving devices 250 and 330 are driven to move the press device 340 and the upper mold 350 from the second station 30 to the fourth station, and move the lifting device 260 and the upper mold 270 to the It is moved from the first station 20 to the second station 30.
  • the lifting device 260 is driven to lower the upper mold 270 until the pulp layer MP1 comes into contact with the lower mold 320.
  • the suction by the pump and the upper mold 270 is stopped, and the pulp layer MP1 is released from the upper mold 270.
  • the lifting device 260 is driven to raise the upper die 270. In this way, the pulp layer MP1 is transferred from the first station 20 to the second station 30, and the pulp layer MP1 is placed on the lower mold 320.
  • the moving devices 250 and 330 are driven to move the lifting device 260 and the upper mold 270 from the second station 30 to the first station 20, as shown in FIG. It is moved from the fourth station to the second station 30.
  • the press device 340 is driven to lower the upper die 350 as shown in FIG.
  • the pulp layer MP1 sandwiched between the upper mold 350 and the lower mold 320 is pressurized.
  • the heater is driven to heat the pulp layer MP1.
  • the pump is driven to suction and remove water and/or water vapor from the space sandwiched between the upper mold 350 and the lower mold 320.
  • the surface shape of the pulp layer MP1 is adjusted, and the pulp layer MP1 is densified and dried.
  • a pulp molded article MP2 shown in FIG. 8 is obtained.
  • the press pressure is preferably within the range of 1 to 10 MPa, more preferably within the range of 1.2 to 8 MPa. If the press pressure is low, there is a possibility that a pulp molded article MP2 with high strength cannot be obtained. If the press pressure is excessively high, unevenness on the surface of the pulp molded product MP2, that is, variations in surface height are likely to occur.
  • the heating temperature of the pulp layer MP1 that is, the temperature of the upper die 350 or the lower die 320 heated by the heater, is preferably within the range of 160 to 200°C, and preferably within the range of 165 to 190°C. It is more preferable that the If the heating temperature is low, it will take a long time to dry the pulp layer MP1. When the heating temperature is increased, the shrinkage of the pulp layer MP1 due to drying becomes larger, and as a result, there is a possibility that the distortion in the pulp molded product MP2 becomes larger. This distortion leads to irregularities on the surface of the pulp molded article MP2, that is, variations in surface height.
  • heating by the heater may be performed on only one of the upper mold 350 and the lower mold 320, or may be performed on both.
  • the heater heats only one of the upper mold 350 and the lower mold 320, the temperatures thereof become approximately equal due to heat conduction from one to the other. Therefore, in any case, the drying of the pulp layer MP1 proceeds almost simultaneously over its entire thickness. Therefore, no distortion occurs in the pulp molded product MP2 due to the difference in drying speed.
  • the elevating device 430 is driven to raise the holder 440 with the pulp molded article MP2 being sucked and held by the holder 440.
  • the moving devices 330 and 420 are driven to move the lifting device 430 and the holder 440 from the second station 30 to the third station 40, as shown in FIG. It is moved from the fourth station to the second station 30.
  • the suction by the pump and the holder 440 is stopped, and the pulp molded product MP2 is released from the holder 440.
  • the pulp molded product MP2 is transferred from the second station 30 to the third station 40, and the pulp molded product MP2 is placed on the stand 410. In the manner described above, a pulp molded product MP2 is manufactured.
  • the pulp molded product MP2 is subjected to post-processing, for example, printing such as pattern printing and plain printing, coating, or a combination thereof.
  • the coating layer formed by post-treatment may be, for example, a layer containing a chemical that imparts water resistance or oil resistance, a layer filled with a material that imparts heat insulation, a layer foamed with a foaming agent, or a combination thereof. be.
  • the pulp layer will have irregularities with large height differences on its surface due to its shrinkage. Also, in such a method, the pulp layer is not sufficiently densified and therefore the pulp molded article has a high porosity. Therefore, in this case, it is not possible to produce a pulp molded product with excellent surface properties.
  • the difference in height of the unevenness that occurs on the surface due to drying is It can be made smaller by subsequent humidification and hot press treatment.
  • the porosity can be reduced by humidification and hot press treatment.
  • the difference in height of the unevenness that occurs on the surface due to drying using an oven is very large, it cannot be sufficiently reduced by subsequent humidification and hot press treatment. Further, even if humidification and hot press treatment are performed after drying, it is difficult to sufficiently reduce the porosity.
  • the pulp layer MP1 is dried in the hot press step. That is, in the above method, after the dehydration step, the hot pressing step is performed without passing through the drying step.
  • the pulp one having an average fiber length within the above-mentioned range is used.
  • the upper die 350 and the lower die 320 prevent deformation of the pulp layer MP1 due to drying.
  • the hot pressing step is performed on the pulp layer MP1 that has a high moisture content and the average fiber length of the pulp is within the above-mentioned range, the movement of fibers in the in-plane direction within the pulp layer MP1 is moderate. can occur. Therefore, the pulp layer MP1 can be made denser while suppressing variations in thickness and variations in surface height.
  • a pulp molded article MP2 having excellent surface properties can be manufactured. Specifically, a pulp molded product MP2 with less unevenness on the surface, that is, with less variation in surface height is obtained.
  • a pulp molded article MP2 is used as a container, it is difficult to cause variations in volume from one molded article to another.
  • the pulp molded product MP2 has excellent cosmetic properties and is easy to form a printing layer and a coating layer. Moreover, such pulp molded products MP2 do not easily become bulky when stacked, and can be stacked in an orderly manner.
  • General pulp molded articles can be manufactured by methods other than the first method. However, it is difficult to manufacture the above-mentioned pulp molded product MP2 having excellent surface properties by a method other than the first method. This will be explained below using an example of another method (hereinafter referred to as the second method).
  • a female mold is prepared as a paper mold.
  • This paper mold consists of a paper mold main body with a large number of through holes and a recessed upper surface in a shape corresponding to a pulp molded product, and a mesh body provided on the inner surface of the paper mold main body along this inner surface. Contains.
  • a slurry containing pulp and water is supplied into the cavity of the paper mold to fill the inside of the paper mold with the slurry. Further, the supply of slurry into the paper mold is continued to deposit pulp on the net body. The slurry is supplied into the paper mold so that the slurry inside the paper mold is pressurized.
  • the pulp layer is pressed with the paper mold and the male upper mold to dehydrate the pulp layer.
  • This dehydration step is performed without heating either the upper mold or the paper mold.
  • the moisture content of the pulp layer immediately after dehydration is the same as the moisture content of the pulp layer MP1 immediately after dehydration in the first method.
  • the pulp layer is adsorbed and held on the upper mold, and the upper mold is raised in this state. Thereby, the pulp layer is peeled off from the paper mold.
  • the upper mold holding the pulp layer by suction is moved to the position of the lower mold, which is a female mold. Subsequently, the upper mold is lowered until the pulp layer comes into contact with the lower mold. Then, stop the suction and release the pulp layer from the upper mold. In this way, the pulp layer is placed on the lower mold.
  • a pulp layer is sandwiched between an upper mold and a lower mold for hot press, and the pulp layer between them is pressurized.
  • the heater is driven to heat the pulp layer.
  • the pump is driven to suction and remove water and/or water vapor from the space sandwiched between the upper mold and the lower mold.
  • a pulp molded product is obtained as described above.
  • a flow of slurry circulating within the paper mold may occur during the period from the start of supply of slurry into the paper mold until the inside of the paper mold is completely filled with slurry.
  • This circulating flow may prevent settling of the pulp.
  • the second method since it is necessary to fill the inside of the paper mold with slurry, it is not possible to adopt a structure in which water is quickly discharged from the paper mold. Therefore, after the inside of the paper mold is completely filled with slurry, even if the pressure of the slurry is increased, the circulating flow of the slurry will not be sufficient to prevent the pulp from settling, and the pulp will not settle in the slurry inside the paper mold. occurs.
  • the amount of pulp deposited on the side wall of the paper mold is larger in the lower part than in the upper part. If the slurry is supplied until a sufficient amount of pulp is deposited above the side walls of the paper mold, an excessive amount of pulp will be deposited at the bottom of the paper mold. If excessive pulp is deposited, the variation in the amount of pulp deposited will increase. For example, there can be a large difference in the amount of pulp deposited near the through holes provided in the paper mold body and at locations away from them.
  • a paper mold 240 is installed on the top of the cover body 230, and these composites are immersed in the slurry S.
  • the depth of the slurry S is much larger than the height of the paper mold 240. Therefore, even if pulp sedimentation occurs in the slurry S, the pulp concentration does not differ greatly between the upper position of the paper mold 240 and the lower position of the paper mold 240. Therefore, according to the first method, pulp can be deposited substantially uniformly on the paper mold 240, and a pulp molded product MP2 with small variations in surface height can be manufactured.
  • the pulp layer MP1 is sandwiched between one of the upper mold 350 and the lower mold 320 and an elastic body, and this is applied.
  • the elastic body deforms. Therefore, sufficient pressure is not applied to the pulp layer MP1, making it impossible to obtain a pulp molded article with excellent surface properties.
  • the pulp molded product has a large variation in surface height.
  • FIGS. 2 to 10 are provided to facilitate understanding of a method for manufacturing a pulp molded product according to an embodiment of the present invention.
  • the method described above can also be carried out using manufacturing equipment having other configurations.
  • the upper mold 270 and the upper mold 350 are female molds
  • the paper mold 240 and the lower mold 320 are male molds.
  • the upper mold 270 and the upper mold 350 may be male molds
  • the paper mold 240 and the lower mold 320 may be female molds.
  • various modifications can be made to the manufacturing apparatus 1 and manufacturing method described above.
  • Example 1 Manufacturing of pulp molded products (Example 1) A slurry consisting of pulp and water was prepared using a pulper. Bamboo pulp was used as the pulp, with an average fiber length of 1.7 mm, a ratio of 30% of the pulp having fiber lengths of 1 mm or less, and a fiber length/fiber width ratio of 93. The pulp content of the slurry was 0.2% by mass.
  • a pulp molded article was manufactured by the method described with reference to FIGS. 2 to 10 (ie, the first method).
  • the dehydration step was performed such that the moisture content of the pulp layer immediately after dehydration was 68% by mass.
  • the hot pressing step was carried out at a heating temperature of 180° C., a pressing pressure of 1.3 MPa, and a pressing time of 120 seconds.
  • the clearance between the upper mold and the lower mold was set to 1.0 mm so that a pulp molded product with a wall thickness of 1.0 mm was obtained.
  • a container was manufactured as a pulp molded product.
  • Example 2 The pulp is a mixture of 70% by mass of bamboo pulp and 30% by mass of sugarcane pulp, the average fiber length is 1.3 mm, the proportion of fibers in the pulp that is 1 mm or less is 41%, and the fiber length / A pulp molded article was produced in the same manner as in Example 1, except that a fiber having a fiber width ratio of 72 was used.
  • Example 3 The pulp is a mixture of 60% by mass of softwood pulp and 40% by mass of sugarcane pulp, the average fiber length is 1.8 mm, the proportion of fibers in the pulp that is 1 mm or less is 36%, and the fiber length / A pulp molded article was produced in the same manner as in Example 1, except that a fiber having a fiber width ratio of 65 was used.
  • the pulp is a mixture of 50% by mass bamboo pulp and 50% by mass sugarcane pulp, the average fiber length is 1.2 mm, the proportion of fiber length in the pulp is 1 mm or less is 48%, fiber length / A pulp molded article was produced in the same manner as in Example 1, except that a fiber having a fiber width ratio of 61 was used.
  • the pulp is a mixture of 30% by mass bamboo pulp and 70% by mass sugarcane pulp, the average fiber length is 1.1 mm, the proportion of fiber length in the pulp is 1 mm or less is 57%, and the fiber length / A pulp molded article was produced in the same manner as in Example 1, except that a fiber having a fiber width ratio of 49 was used.
  • Example 3 Same as Example 1, except that softwood pulp was used as the pulp, with an average fiber length of 2.3 mm, a ratio of 17% of the pulp having a fiber length of 1 mm or less, and a fiber length/fiber width ratio of 80. A pulp molded article was produced in a similar manner.
  • the obtained pulp molded products had a small standard deviation of the surface height in the flat part. This indicates that no distortion occurred during drying, or even if distortion occurred during drying, the magnitude of the distortion was small. Since such pulp molded products have almost no distortion during drying, it is possible to reduce variations in volume between molded products.
  • Comparative Examples 1 and 2 the obtained pulp molded products had a large standard deviation of the surface height in the flat part. This indicates that large distortions occurred during drying. In such pulp molded products, the magnitude of distortion during drying varies among the molded products, and therefore the volume also varies between the molded products.
  • SYMBOLS 1... Manufacturing device 10... Support body, 20... First station, 30... Second station, 40... Third station, 210... Container, 220... Lifting device, 230... Cover body, 240... Paper mold, 250... Movement Device, 260... Lifting device, 270... Upper die, 310... Stand, 320... Lower die, 330... Moving device, 340... Pressing device, 350... Upper die, 410... Stand, 420... Moving device, 430... Elevating device, 440... Holder, MP1... Pulp layer, MP2... Pulp molded product, S... Slurry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Paper (AREA)

Abstract

パルプモールド成形品は、パルプの平均繊維長が1.3乃至2.0mmの範囲内にあり、平面部における表面の高さの標準偏差が0.9mm以下である。

Description

パルプモールド成形品
 本発明は、パルプモールド成形品に関する。
 近年、廃棄物の増加等に関連した環境問題が多発している。これに鑑み、トイレタリー製品、飲料及び食品などの収納には、プラスチック容器や金属容器に代わり、紙製容器が使用されつつある。例えば、牛乳容器等の液体用紙製容器としては、紙の両面にポリエチレン樹脂をコートした板紙からなり、上部が切妻屋根型を有する容器、所謂、ゲーブルトップ紙容器がある。そのような紙製容器は、省資源や省エネルギーに貢献するものであるのに加え、廃棄に際してもリサイクルや焼却し易いなど環境保全に貢献するものである。それ故、紙製容器は、様々な分野で普及している。
 しかしながら、上記のような紙製容器は、板紙を折り曲げ、貼り合わせて成形されるものであることから、製造工程が複雑であり、製造コストが嵩む。また、上記のような紙製容器は、その形状の自由度が低いため、容器の形状に基づく商品の訴求力を充分に発揮できないなどの問題があった。
 紙製容器の形状の自由度を高める手段の1つとして、パルプと水とを含んだスラリーから成形品を製造するパルプモールドがある。パルプモールドでは、一般的に、スラリー中のパルプを抄型上に堆積させてパルプ層を形成し、このパルプ層を脱水し、その後、これを炉内で乾燥させる。この技術によって得られる成形品、即ち、パルプモールド成形品は、紙系包装材の物性面での特徴である、耐熱性、耐寒性及び吸放湿性等に優れており、食品用の紙製トレー容器や果物などの固定緩衝材等として広く使用されるようになってきている(特許文献1)。
日本国特開2008-285188号公報
 本発明は、容器として使用した際に、成形品ごとに容積のばらつきを生じにくいパルプモールド成形品を提供することを目的とする。
 本発明の一側面によると、パルプの平均繊維長が1.3乃至2.0mmの範囲内にあり、平面部における表面の高さの標準偏差が0.9mm以下であるパルプモールド成形品が提供される。
 本発明の他の側面によると、前記パルプに占める繊維長が1mm以下であるものの割合が、25乃至45%の範囲内にある上記側面に係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、前記パルプの繊維幅に対する繊維長の比の平均が、65乃至95の範囲内にある上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、前記パルプを水に分散させてなるパルプ懸濁液は、カナダ標準ろ水度が570乃至675mLの範囲内にある上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、比引張強さが30N・m/g以上である上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、曲げ弾性率が1600MPa以上である上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、ISO圧縮強さが12kN/m以上である上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、開口部を有し、前記開口部から離れる方向へ先細りしている上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、容器である上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、平均繊維長が1.3乃至2.0mmの範囲内にあるパルプと水とを含んだスラリーを準備することと、立体形状を有する抄型上に前記パルプを堆積させてパルプ層を形成することと、前記パルプ層を脱水して中間成形品を得ることと、未乾燥の前記中間成形品を、雄型と雌型との間に挟んで、1.0乃至10MPaの範囲内の圧力で加圧しながら、160乃至200℃の範囲内の温度で加熱することとを含んだパルプモールド成形品の製造方法が提供される。
 本発明の更に他の側面によると、前記抄型上への前記パルプの堆積は、開口部を有する中空体としてのカバー体を準備することと、前記開口部に前記抄型を固定することと、前記開口部に固定された前記抄型を前記スラリー中に浸漬させることと、前記カバー体と前記スラリー中に浸漬させている前記抄型とによって囲まれた空間を減圧することとを含んだ上記側面に係るパルプモールド成形品の製造方法が提供される。
 本発明の更に他の側面によると、前記抄型が前記カバー体の上方に位置するように前記抄型を前記スラリー中へ浸漬させる上記側面に係るパルプモールド成形品の製造方法が提供される。
 本発明によれば、容器として使用した際に、成形品ごとに容積のばらつきを生じにくいパルプモールド成形品を提供することが可能となる。
図1は、本発明の一実施形態に係るパルプモールド成形品を示す斜視図である。 図2は、図1のパルプモールド成形品の製造に利用可能な製造装置の一例を概略的に示す図である。 図3は、図2の装置を用いたパルプモールド成形におけるパルプ層形成工程を示す図である。 図4は、抄型上に形成されたパルプ層の一例を概略的に示す断面図である。 図5は、図2の装置を用いたパルプモールド成形における脱水工程を示す図である。 図6は、図2の装置を用いたパルプモールド成形におけるパルプ層の搬送工程を示す図である。 図7は、図2の装置を用いたパルプモールド成形における熱プレス形成工程を示す図である。 図8は、熱プレス工程によって得られるパルプモールド成形品の一例を概略的に示す断面図である。 図9は、図2の装置を用いたパルプモールド成形におけるパルプモールド成形品の搬送工程を示す図である。 図10は、図9の搬送工程を完了した状態を示す図である。
 以下に、本発明の実施形態について、図面を参照しながら説明する。以下に説明する実施形態は、上記側面の何れかをより具体化したものである。以下に記載する事項は、単独でまたは複数を組み合わせて、上記側面の各々に組み入れることができる。
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、下記の構成部材の材質、形状、および構造等によって限定されるものではない。本発明の技術的思想には、請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 なお、同様または類似した機能を有する要素については、以下で参照する図面において同一の参照符号を付し、重複する説明は省略する。また、図面は模式的なものであり、或る方向の寸法と別の方向の寸法との関係、および、或る部材の寸法と他の部材の寸法との関係等は、現実のものとは異なり得る。
 <1>パルプモールド成形品
 図1は、本発明の一実施形態に係るパルプモールド成形品を示す斜視図である。 
 図1に示すパルプモールド成形品MP2は、開口部を有し、開口部から離れる方向へ先細りしている。このパルプモールド成形品MP2は、容器である。このパルプモールド成形品MP2は、底部と側壁部とを含んでおり、上部で開口している。
 底部は、円盤形状を有している。底部は、容器の深さ方向に対して垂直な平面への正射影が、円以外の形状を、例えば、四角形状などの多角形状を有していてもよい。
 側壁部は、底部の縁から上方へ伸びた筒形状を有している。側壁部は、底部から開口部へ向けて拡径している。側壁部の内面及び外面は、底部の上面に対して垂直であってもよい。但し、側壁部が底部から開口部へ向けて拡径しているパルプモールド成形品MP2は、高い離型性を実現するうえで有利であるとともに、積み重ね易い。また、このような形状の場合、複数のパルプモールド成形品MP2を重ねてなる積層物の体積を小さくすることができる。
 パルプモールド成形品MP2は、カップ形状、ボウル形状、トレー形状、及び箱形状などの様々な形状を有し得る。パルプモールド成形品MP2は、立体成形品、即ち、シートのように二次元形状を有するものではなく、三次元形状を有する成形品であれば、容器でなくてもよい。
 パルプモールド成形品MP2は、厚さが1.5mm以下であることが好ましく、1.3mm以下であることがより好ましい。厚さの下限値は特にないが、一例によれば、0.6mm以上である。パルプモールド成形品MP2の厚さは、パルプモールド成形品MP2の壁部の厚さ、ここでは、底部及び側壁部の厚さである。壁部の厚さが底部と側壁部とで異なっている場合、パルプモールド成形品MP2の厚さは、底部及び側壁部のうちより薄いものの厚さである。
 ここで、パルプモールド成形品MP2の厚さは、以下の方法によって得られる値である。即ち、パルプモールド成形品MP2の任意の位置から5つの試験片を切り出す。次いで、各試験片について、厚さを測定する。厚さの測定には、例えば、ミツトヨ社製のシックネスゲージを使用する。パルプモールド成形品MP2の厚さは、5つの試験片について得られた測定結果の平均値とする。
 パルプモールド成形品MP2は、平面部における表面の高さの標準偏差が0.9mm以下である。パルプモールド成形品MP2の平面部における表面の高さの標準偏差は、好ましくは0.8mm以下、より好ましくは0.7mm以下である。高さの標準偏差の下限値は、ゼロであり、一例によれば0.3mmであり、他の例によれば0.4mmである。
 パルプモールド成形品MP2の平面部における表面の高さの標準偏差が0.9mm以下であると、表面が、凹凸の少ない滑らかな形状を有している。このように表面に凹凸が少ないパルプモールド成形品MP2は、容器として使用した際に、成形品ごとに容積のばらつきを生じにくくすることができる。また、かかるパルプモールド成形品MP2は、表面に凹凸が少ないため、美粧性に優れるとともに、印刷層やコーティング層の形成が容易である。また、かかるパルプモールド成形品MP2は、表面に凹凸が少ないため、積み重ねたときに嵩高くなり難い上に、整然と積み重ねることが可能である。
 ここで、パルプモールド成形品MP2の平面部における表面の高さの標準偏差は、以下の方法によって得られる値である。
 先ず、パルプモールド成形品MP2の平面部の少なくとも一部の領域について、3Dスキャナーを用いてSTLデータを取得する。ここで、STLデータは、上記少なくとも一部の領域の表面形状を、互いに連なるように配置された微小な三角形の集合体で表現するデータであって、三角形の頂点の座標を含んでいる。次に、取得されたSTLデータのうち、特定の領域内に位置した頂点のZ座標(高さ方向の座標)を抽出し、標準偏差を算出する。ここで、「特定の領域」は、容器を構成する1面のうち、意図的に設けられた凹凸部分を含まない平面領域をいう。「特定の領域」は、成型品を代表する平面領域であり、形状や面積は任意である。「特定の領域」として上述の平面領域を選択すれば、その形状や面積に関係なく同じ標準偏差の値を得ることができる。
 具体的には、Artec EVA(Artec 3D社)を用いてSTLデータを取得し、Artec Studio(Artec 3D社)を用いてSTLデータを解析する。取得されるSTLデータの点の数は、形状や面積により自動的に変動するが、例えば、「特定の領域」として150mm角の正方形を使用してSTLデータを取得した場合には、約2400点のデータが取得される。
 なお、平面部の一方の表面の高さの標準偏差と、その平面部の他方の表面の高さの標準偏差とが異なっている場合、より大きな標準偏差を、「その平面部における表面の高さの標準偏差」とする。本明細書において、「平面部における表面の高さの標準偏差」は、「表面の高さのばらつき」ともいう。
 パルプモールド成形品MP2において、パルプの平均繊維長は、1.3乃至2.0mmの範囲内にあり、1.3乃至1.7mmの範囲内にあることが好ましい。
 パルプの平均繊維長が長いと、パルプモールド成形品MP2の強度が低下する。パルプの平均繊維長が短いと、パルプモールド成形品MP2の密度を高くすることが容易になり、また、その強度が高くなる。しかしながら、パルプの平均繊維長が短いと、乾燥時にパルプモールド成形品MP2に歪が生じ易く、これにより、パルプモールド成形品MP2の表面に凹凸が生じ易い。また、パルプの平均繊維長を過剰に短くすると、その製造時の乾燥を短時間で完了することが難しくなるか、又は、乾燥不良に起因した亀裂や離型性の低下を生じ易くなる。
 ここで、パルプの平均繊維長は、以下の方法によって得られる値である。即ち、先ず、パルプモールド成形品MP2から、5gの試験片を取得する。次に、この試験片を細かく千切り、500mLの水に一晩浸漬させる。次いで、これを撹拌機で撹拌して、パルプを互いから離解させる。このようにして、パルプを含んだ分散液を得る。次に、この分散液から10gを採取し、これを水で希釈する。この希釈は、合計質量が200gとなるように行う。このようにして得られた試料を使用して、JIS P8226-2:2011「パルプ-光学的自動分析法による繊維長測定方法-第2部:非偏光法」に従って繊維長測定を行う。パルプの平均繊維長は、長さ加重平均繊維長Lを指す。
 パルプモールド成形品MP2において、パルプに占める繊維長が1mm以下であるものの割合は、25乃至45%の範囲内にあることが好ましい。パルプに占める繊維長が1mm以下であるものの割合は、パルプの全繊維数(本)に占める、繊維長が1mm以下である繊維の数(本)の割合を指す。この割合は、30乃至42%の範囲内にあることがより好ましい。
 この割合を大きくすると、パルプモールド成形品MP2の密度を高くすることが容易になり、また、その強度が高くなる。しかしながら、この割合を大きくすると、乾燥時にパルプモールド成形品MP2に歪が生じ易く、これにより、パルプモールド成形品MP2の表面に凹凸が生じ易くなる。また、この割合を過剰に大きくすると、その製造時の乾燥を短時間で完了することが難しくなるか、又は、乾燥不良に起因した亀裂や離型性の低下を生じ易くなる。この割合を小さくすると、パルプモールド成形品MP2の強度が低下する。
 パルプに占める繊維長が1mm以下であるものの割合は、以下の方法によって得る。
 先ず、パルプモールド成形品MP2から、5gの試験片を取得する。次に、この試験片を細かく千切り、500mLの水に一晩浸漬させる。次いで、これを撹拌機で撹拌して、パルプを互いから離解させる。このようにして、パルプを含んだ分散液を得る。次に、この分散液から10gを採取し、これを水で希釈する。この希釈は、合計質量が200gとなるように行う。
 このようにして得られた試料を使用して、JIS P8226-2:2011「パルプ-光学的自動分析法による繊維長測定方法-第2部:非偏光法」に従って繊維長測定を行う。この繊維長測定によって得られる繊維長の頻度分布から、パルプに占める繊維長が1.0mm以下であるものの割合を求める。
 パルプモールド成形品MP2において、パルプの繊維幅Wに対する繊維長Lの比L/Wの平均は、65乃至95の範囲内にあることが好ましい。パルプの繊維幅に対する繊維長の比の平均は、70乃至93%の範囲内にあることがより好ましい。
 比L/Wの平均は、長さ加重平均幅Lに対する長さ加重平均繊維長Lの比L/Lを指す。長さ加重平均幅Lは、繊維長の代わりに繊維幅を測定すること以外は、長さ加重平均繊維長Lと同様の方法によって得られる。
 比L/Wを小さくすると、パルプモールド成形品MP2の密度を高くすることが容易になり、また、その強度が高くなる。しかしながら、比L/Wを小さくすると、乾燥時にパルプモールド成形品MP2に歪が生じ易く、これにより、パルプモールド成形品MP2の表面に凹凸が生じ易くなる。また、比L/Wを過剰に小さくすると、その製造時の乾燥を短時間で完了することが難しくなるか、又は、乾燥不良に起因した亀裂や離型性の低下を生じ易くなる。
 パルプモールド成形品MP2において、パルプを水に分散させてなるパルプ懸濁液は、カナダ標準ろ水度が570乃至675mLの範囲内にあることが好ましく、600乃至670mLの範囲内にあることがより好ましい。パルプ懸濁液のカナダ標準ろ水度は、パルプの水切れの程度を表す指標である。
 カナダ標準ろ水度が大きいと、パルプモールド成形品MP2は強度が低下する傾向にある。カナダ標準ろ水度が小さいと、パルプモールド成形品MP2は強度が高くなるが、乾燥時にパルプモールド成形品MP2に歪が生じ易く、これにより、パルプモールド成形品MP2の表面に凹凸が生じ易い。また、カナダ標準ろ水度が小さいと、その製造時における乾燥に長い時間を要する傾向にある。
 ここで、上記のカナダ標準ろ水度は、以下の方法によって得られる値である。先ず、パルプモールド成形品MP2から試験片を取得し、上記と同様の方法により、パルプを含んだ分散液を得る。次に、この分散液を、固形分濃度が0.3質量%となるように水で希釈して、パルプの水懸濁液を得る。次いで、この懸濁液1Lを使用して、JIS P8121-2:2012「パルプ-ろ水度試験方法-第2部:カナダ標準ろ水度法」に規定された測定を行う。この測定には、例えば、熊谷理機工業社製のカナディアンフリーテスターを使用する。また、測定値は、予め測定しておいた懸濁液の温度を補正表へ参照することにより補正する。このようにして、カナダ標準ろ水度を得る。
 パルプモールド成形品MP2は、比引張強さが30N・m/g以上であることが好ましく、40N・m/g以上であることがより好ましい。なお、パルプモールド成形品MP2の比引張強さに上限値はないが、一例によれば、60N・m/g以下である。即ち、パルプモールド成形品MP2は、比引張強さが大きいと、大きな引張荷重に耐える強度を有している。
 ここで、上記の比引張強さは、以下の方法によって得られる値である。先ず、パルプモールド成形品MP2のうち表面が湾曲していない部分から、幅が15mmであり、長さが40mmの短冊形状を有している試験片を切り出す。次に、この試験片の厚さ及び質量を測定する。次いで、この試験片を使用して、JIS P8113:2006「紙及び板紙-引張特性の試験方法-第2部:定速伸張法」に規定された測定を行う。ここでは、掴み具の間隔が20mmとなるように短冊を掴む。また、それら掴み具の移動速度、即ち、試験片の伸長速度は20mm/分とする。比引張強さは、3回の測定によって得られた値の平均値とする。
 パルプモールド成形品MP2は、曲げ弾性率が1600MPa以上であることが好ましく、2000MPa以上であることがより好ましい。なお、曲げ弾性率の上限値は特にないが、一例によれば、3000MPaである。即ち、パルプモールド成形品MP2は、曲げ弾性率が大きいと、大きな曲げ応力に耐える強度を有している。
 パルプモールド成形品MP2のうち表面が湾曲していない部分から、幅が10mmであり、長さが40mmの短冊形状を有している試験片を切り出す。次に、この試験片の厚さ及び質量を測定する。次いで、この試験片を使用して、JIS K7171:2006「プラスチック-曲げ特性の求め方」に規定された測定を行う。ここでは、試験間距離が30mmとした試験台に短冊を設置し2点で支え、短冊の中央に測定圧子を2mm/minで降下させた。得られた応力-歪み曲線から曲げ弾性率を求めた。曲げ弾性率は、3回の測定によって得られた値の平均値とする。
 パルプモールド成形品MP2は、ISO圧縮強さが12kN/m以上であることが好ましく、15kN以上であることがより好ましい。なお、ISO圧縮強さの上限値は特にないが、一例によれば、30kNである。即ち、パルプモールド成形品MP2は、ISO圧縮強さが大きいと、容器として使用した際に内容物が充填され積み重ねられた場合など、荷重がかかった場合に座屈が生じにくい。
 ここで、圧縮強さは、JIS P8126:2015「圧縮強さ試験方法-リングクラッシュ法」で規定される方法によって得られる値である。ISO圧縮強さは、円筒状(リング状)に曲げた細長い試験片を、平行な上下圧縮板の間に挟み、圧縮荷重を加えて座屈させたときの最大荷重を取得し、得られた最大荷重を試験片の長さで除することで求められる。ISO圧縮強さは、「ISOリングクラッシュ圧縮強さ」ともいう。この試験方法において、細長い試験片は、パルプモールド成形品MP2から、幅が15mmであり、長さが145mmの短冊形状を有している試験片を切り出すことにより準備する。
 パルプモールド成形品MP2は、密度が0.6g/cm以上であることが好ましく、0.7g/cm以上であることがより好ましい。なお、パルプモールド成形品MP2の密度に上限値はないが、一例によれば、1.5g/cm以下である。密度が高いことは、パルプモールドの稠密性が向上することを意味し、外部から力が加わった際に抵抗する要素となり、ひいては強度の向上にも貢献すると考えられる。
 ここで、上記の密度は、以下の方法によって得られる値である。即ち、パルプモールド成形品MP2のうち表面が湾曲していない部分から、正方形又は長方形の試験片を切り出し、寸法、質量、及び厚さを計測する。得られた値から密度を算出する。
 パルプモールド成形品MP2は、ポリアクリルアミドなどの紙力増強剤を更に含むことができる。紙力増強剤を使用すると、パルプモールド成形品MP2の強度を高めることができる。
 <2>パルプモールド成形品の製造装置
 次に、パルプモールド成形品MP2の製造に利用可能な製造装置について説明する。
 図2は、図1のパルプモールド成形品の製造に利用可能な製造装置の一例を概略的に示す図である。
 図2に示す製造装置1は、支持体10と、第1ステーション20と、第2ステーション30と、第3ステーション40とを含んでいる。
 支持体10は、枠体と、その上部に設置されたレールとを含んでいる。
 第1ステーション20は、容器210と、昇降装置220と、カバー体230と、抄型240と、移動装置250と、昇降装置260と、上型270とを含んでいる。
 容器210は、支持体10の枠体内に設置されている。容器210は、上部で開口している。容器210は、パルプと水とを含んだスラリーSを収容している。
 昇降装置220は、容器210よりも上方で、支持体10の枠体に取り付けられている。昇降装置220は、例えば、油圧シリンダを含む。昇降装置220は、カバー体230を支持している。昇降装置220は、カバー体230を、容器210の開口部の位置で昇降させ得る。
 カバー体230は、上部に開口部を有する中空体である。カバー体230には、図示しないポンプが接続されている。
 抄型240は、カバー体230の開口部に固定されている。具体的には、抄型240は、その一方の面と隣接した空間が、抄型240とカバー体230とによって囲まれるように、カバー体230の開口部に固定されている。
 抄型240は、液体透過性を有する型である。抄型240は、立体形状を有している。即ち、抄型240は、パルプが堆積する面に、1以上の凸部及び/又は1以上の凹部を有している。具体的には、抄型240の外面、即ち、上記空間と隣接した面の裏面は、パルプモールド成形品に対応した形状を有している。ここでは、抄型240は、上面が突き出た雄型である。
 抄型240は、例えば、多数の貫通孔が設けられ、外面がパルプモールド成形品に対応した形状を有している抄型本体と、抄型本体の外面上に、この外面に沿うように設けられた網体とを含んでいる。抄型本体は、金属などの硬質材料からなる。
 移動装置250は、支持体10のレールに沿って、第1ステーション20と第2ステーション30との間で移動可能である。移動装置250は、動力源として、例えば、モータを含んでいる。移動装置250には、昇降装置260が取り付けられており、これを第1ステーション20と第2ステーション30との間で移送し得る。
 昇降装置260は、上記の通り、移動装置250に取り付けられている。昇降装置260は、例えば、油圧シリンダを含む。昇降装置260は、上型270を支持している。昇降装置260は、上型270を昇降させ得る。
 上型270は、抄型240との間に後述するパルプ層を挟み、パルプ層を真空吸着式で保持する保持具である。上型270は、金属などの硬質材料からなる。上型270の下面は、抄型240の上記外面に対応した形状を有している。ここでは、上型270は、下面が凹んだ雌型である。上型270は、例えば、一端が下面で開口し、他端がポンプに接続された多数の貫通孔を有している。
 第2ステーション30は、第1ステーション20の近傍に設けられている。第2ステーション30は、台310と、下型320と、移動装置330と、プレス装置340と、上型350とを含んでいる。
 台310は、支持体10の枠体内に設置されている。台310上には、下型320が設置されている。
 下型320は、気体及び/又は液体透過性を有する型である。下型320は、金属などの硬質材料からなる。下型320は、上面が抄型240の上記外面に対応した形状を有している。ここでは、下型320は、上面が突き出た雄型である。下型320は、例えば、多数の貫通孔を有し、抄型240の上記外面に対応した形状を有している面が滑らかである。
 移動装置330は、支持体10のレールに沿って、第2ステーション30と図示しない第4ステーションとの間で移動可能である。移動装置330は、動力源として、例えば、モータを含んでいる。移動装置330は、第2ステーション30に位置している場合には、ロック機構により、上下、左右及び前後方向の移動が規制され得る。また、移動装置330には、プレス装置340が取り付けられており、これを第2ステーション30と第4ステーションとの間で移送し得る。
 プレス装置340は、上記の通り、移動装置330に取り付けられている。プレス装置340は、例えば、油圧シリンダを含む。プレス装置340は、上型350を支持している。プレス装置340は、上型350を昇降させ得る。
 上型350は、気体透過性及び液体透過性を有していない型である。上型350は、金属などの硬質材料からなる。上型350の下面は、抄型240の上記外面に対応した形状を有している。ここでは、上型350は、下面が凹んだ雌型である。上型350は、抄型240の上記外面に対応した形状を有している面が滑らかである。
 第2ステーション30は、ヒータ及びポンプを更に含んでいる(何れも図示せず)。ヒータは、下型320及び上型350の少なくとも一方を加熱する。ポンプは、下型320の下部空間に接続されている。
 第3ステーション40は、第2ステーション30の近傍に設けられている。第3ステーション40は、台410と、移動装置420と、昇降装置430と、保持具440とを含んでいる。
 台410は、支持体10の枠体内に設置されている。台410上には、パルプモールド成形品が配置される。
 移動装置420は、支持体10のレールに沿って、第2ステーション30と第3ステーション40との間で移動可能である。移動装置420は、動力源として、例えば、モータを含んでいる。移動装置420には、昇降装置430が取り付けられており、これを第2ステーション30と第3ステーション40との間で移送し得る。
 昇降装置430は、上記の通り、移動装置420に取り付けられている。昇降装置430は、例えば、油圧シリンダを含む。昇降装置430は、保持具440を支持している。昇降装置430は、保持具440を昇降させ得る。
 保持具440は、後述するパルプモールド成形品を真空吸着式で保持する保持具である。保持具440の下面は、抄型240の上記外面に対応した形状を有している。ここでは、保持具440は、下面が凹んだ形状を有している。保持具440は、例えば、一端が下面で開口し、他端がポンプに接続された多数の貫通孔を有している。
 <3>パルプモールド成形品の製造方法
 本発明の一実施形態に係る製造方法では、例えば、上記の製造装置1を用いてパルプモールド成形品MP2を製造する。これについて、図1乃至図10を参照しながら説明する。
 図3は、図2の装置を用いたパルプモールド成形におけるパルプ層形成工程を示す図である。図4は、抄型上に形成されたパルプ層の一例を概略的に示す断面図である。図5は、図2の装置を用いたパルプモールド成形における脱水工程を示す図である。図6は、図2の装置を用いたパルプモールド成形におけるパルプ層の搬送工程を示す図である。図7は、図2の装置を用いたパルプモールド成形における熱プレス形成工程を示す図である。図8は、熱プレス工程によって得られるパルプモールド成形品の一例を概略的に示す断面図である。図9は、図2の装置を用いたパルプモールド成形におけるパルプモールド成形品の搬送工程を示す図である。図10は、図9の搬送工程を完了した状態を示す図である。
 この方法では、先ず、スラリーSを準備する。 
 スラリーSは、上記の通り、パルプと水とを含んでいる。スラリーSは、パルプが水に分散され、高い粘度を有する懸濁液である。スラリーSが含んでいるパルプは、パルプモールド成形品MP2が含んでいるパルプについて上述したのとほぼ同様の特徴を有している。
 スラリーSに使用するパルプの種類に、特に制限はないが、木材パルプ、非木材パルプ、古紙が例示され、木材パルプ、非木材パルプが好ましい。さらに、森林保全や未利用資源の活用など環境配慮の視点から、非木材パルプを用いることが好ましい。
 パルプはその調製法の違いにより、例えば木材パルプであれば、クラフトパルプ(KP)、サルファイトパルプ(SP)、ソーダパルプ(AP)等の化学パルプ;セミケミカルパルプ(SCP)、ケミグランドウッドパルプ(CGP)等の半化学パルプ;砕木パルプ(GP)、サーモメカニカルパルプ(TMP)等の機械パルプが例示される。この中でも化学パルプを使用することが好ましい。
 木材パルプとしては、原料により、針葉樹パルプおよび広葉樹パルプが挙げられる。針葉樹パルプとしては、モミ属、マツ属等から得られるパルプが例示される。また、広葉樹パルプとしては、アカシア属、ユーカリ属、ブナ属、ヤマナラシ属(たとえば、ポプラ)等から得られるパルプが例示される。
 非木材パルプは、植物の皮、茎、葉、葉鞘から採取した繊維から得られる。具体的には、コットンリンター、木綿、リネン、大麻、ラミー、わら、エスパルト、マニラ麻、ザイザル麻、黄麻、亜麻、ケナフ、竹、サトウキビ、がんぴ、みつまた、こうぞ、桑から得られるパルプが挙げられる。なかでも、竹、サトウキビのパルプが好ましい。これらのパルプを単独で、又は2種以上を任意の割合で混合して使用することができる。
 パルプは、その原料や製造方法に応じて、繊維長等が異なっている。例えば、一般に、サトウキビを原料とするパルプは、竹を原料とするパルプと比較して、平均繊維長が短い。また、パルプの平均繊維長は、任意の手法により、例えば、叩解や粉砕などの機械的な処理により調節することができる。従って、或る特徴を有しているパルプは、例えば、複数種のパルプの中から適当なものを選択すること、又は、2種以上のパルプを適宜組み合わせることにより得ることができる。
 この方法では、未乾燥のパルプ層に対して熱プレス工程を実施する。即ち、水分含有量が大きいパルプ層に対して熱プレス工程を実施する。それ故、パルプの平均繊維長が短すぎると、熱プレス工程において、水分蒸発速度のムラが生じ易くなり、乾燥時に偏った収縮が生じることで、皺、亀裂又は表面の凹凸などの要因となり得る。
 パルプの平均繊維長が長ければ、熱プレス工程において、パルプ層内での乾燥のムラが生じる可能性は低い。それ故、外観上の不良や表面の凹凸が生じたパルプモールド成形品が製造されるのを防止できる。
 スラリーSのパルプ含有量は、0.01乃至3.0質量%の範囲内にあることが好ましく、0.01乃至0.5質量%の範囲内にあることがより好ましい。パルプ含有量が小さいと、高い生産性を達成することが難しい。パルプ含有量が大きいと、パルプ層の厚さのばらつきや表面の高さのばらつきが大きくなる可能性がある。
 スラリーSは、添加剤を更に含むことができる。添加剤としては、有機系低分子材料、有機系高分子材料、無機系材料、又はそれらの組み合わせを使用することができ、例えば耐水性や耐油性を付与する薬剤、紙力増強剤、濾水性向上剤、填料などが挙げられるが、パルプモールド容器としての要求性能に応じた添加剤を選定すればよい。パルプと添加剤との合計に占める添加剤の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。即ち、スラリーSが含む全固形分に占めるパルプの割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
 次に、スラリーSを容器210内へ供給する。次いで、図3に示すように、昇降装置220によりカバー体230を下降させて、抄型240の上面をスラリーSの液面よりも十分に下方へ位置させる。これにより、カバー体230の上部に設置された抄型240をスラリー中に浸漬させる。この状態でポンプを駆動して、カバー体230と抄型240とによって囲まれた空間を減圧する。これにより、抄型240を横切るスラリーSの流れを生じさせ、抄型240上にパルプを堆積させる。以上のようにして、図4に示すように、抄型240上にパルプ層MP1を形成する。
 次に、ポンプを駆動したまま、図5に示すように、昇降装置220によりカバー体230を上昇させて、抄型240の下部をスラリーSの液面よりも十分に上方へ位置させる。これにより、パルプ層MP1を減圧脱水する。次に、昇降装置260を駆動して、上型270を、その下面がパルプ層MP1に接触するまで下降させる。なお、図5には、パルプ層MP1は描いていない。この脱水工程は、上型270及び抄型240の何れも加熱することなしに行う。
 脱水工程における減圧時間は、1乃至60秒の範囲内にあることが好ましく、1乃至10秒の範囲内にあることがより好ましい。
 脱水直後のパルプ層MP1の水分含有量は、40乃至90質量%の範囲内にあることが好ましく、50乃至70質量%の範囲内にあることがより好ましい。水分含有量が小さいと、熱プレス工程において、パルプ層内での面内方向への繊維の移動が不十分となる可能性がある。水分含有量が大きいと、熱プレス工程において、パルプ層内での面内方向への繊維の移動が過剰となるか、又は、脱水工程を終了してから熱プレス工程を開始するまでの期間内において、パルプ層MP1の形状保持性が不十分となる可能性がある。
 上記空間の減圧及び上記の加圧を停止した後、ポンプを駆動して、上型270にパルプ層MP1を吸着保持させる。なお、ポンプと上型270とによる吸引は、パルプ層MP1の更なる脱水を生じさせるものではない。
 次いで、上型270にパルプ層MP1を吸着保持させた状態で昇降装置260を駆動して、図2に示すように、上型270を上昇させる。これにより、パルプ層MP1を抄型240から剥離する。
 次に、移動装置250及び330を駆動して、図6に示すように、プレス装置340及び上型350を第2ステーション30から第4ステーションへ移動させるとともに、昇降装置260及び上型270を第1ステーション20から第2ステーション30へ移動させる。続いて、昇降装置260を駆動して、パルプ層MP1が下型320と接触するまで上型270を下降させる。その後、ポンプと上型270とによる吸引を停止して、上型270からパルプ層MP1を解放する。次いで、昇降装置260を駆動して、上型270を上昇させる。このようにして、パルプ層MP1を第1ステーション20から第2ステーション30へ移送するとともに、パルプ層MP1を下型320上に載置する。
 次に、移動装置250及び330を駆動して、図2に示すように、昇降装置260及び上型270を第2ステーション30から第1ステーション20へ移動させるとともに、プレス装置340及び上型350を第4ステーションから第2ステーション30へ移動させる。続いて、プレス装置340を駆動して、図7に示すように上型350を下降させる。そして、上型350と下型320とによって、それらの間に挟まれたパルプ層MP1を加圧する。また、これとともに、ヒータを駆動してパルプ層MP1を加熱する。更に、これとともに、ポンプを駆動して、上型350と下型320とによって挟まれた空間から水及び/又は水蒸気を吸引除去する。これにより、パルプ層MP1の表面形状を整えるとともに、パルプ層MP1を緻密化及び乾燥させる。以上のようにして、図8に示すパルプモールド成形品MP2を得る。
 なお、この熱プレス工程を開始する直前におけるパルプ層MP1の水分含有量は、脱水工程を終了した直後におけるパルプ層MP1の水分含有量とほぼ等しい。
 この熱プレス工程において、プレス圧は、1乃至10MPaの範囲内であることが好ましく、1.2乃至8MPaの範囲内であることがより好ましい。プレス圧が低いと、強度の高いパルプモールド成形品MP2が得られない可能性がある。プレス圧が過剰に高いと、パルプモールド成形品MP2の表面の凹凸、即ち表面の高さのばらつきを生じ易い。
 この熱プレス工程において、パルプ層MP1の加熱温度、即ち、ヒータによって加熱する上型350又は下型320の温度は、160乃至200℃の範囲内にあることが好ましく、165乃至190℃の範囲内にあることがより好ましい。加熱温度が低いと、パルプ層MP1の乾燥に長時間を要する。加熱温度を高くすると、乾燥に伴うパルプ層MP1の収縮がより大きくなり、その結果、パルプモールド成形品MP2における歪がより大きくなる可能性がある。この歪は、パルプモールド成形品MP2の表面の凹凸、即ち表面の高さのばらつきにつながる。
 上記の通り、ヒータによる加熱は、上型350及び下型320の一方に対してのみ行ってもよく、双方に対して行ってもよい。ヒータによる加熱を、上型350及び下型320の一方に対してのみ行った場合、一方から他方への熱伝導により、それらの温度はほぼ等しくなる。それ故、何れの場合であっても、パルプ層MP1の乾燥は、その厚さ全体に亘ってほぼ同時に進行する。従って、パルプモールド成形品MP2には、乾燥速度の相違に起因した歪は生じない。
 熱プレス工程におけるプレス時間は、加熱温度や成形品の形状等にもよるが、30乃至180秒の範囲内にあることが好ましく、60乃至150秒の範囲内にあることがより好ましい。
 上記の熱プレス工程を終了するに当たり、上型350が上昇するようにプレス装置340を駆動すると、パルプモールド成形品MP2は上型350から剥離する。
 次に、移動装置330及び420を駆動して、図9に示すように、プレス装置340及び上型350を第2ステーション30から第4ステーションへ移動させるとともに、昇降装置430及び保持具440を第3ステーション40から第2ステーション30へ移動させる。続いて、昇降装置430を駆動して、保持具440がパルプモールド成形品MP2と接触するまで保持具440を下降させる。下型内部からエアーを噴出させてパルプモールド成形品MP2を下型から離型させ、その後、ポンプを駆動して、保持具440にパルプモールド成形品MP2を吸着保持させる。
 次いで、保持具440にパルプモールド成形品MP2を吸着保持させた状態で昇降装置430を駆動して、保持具440を上昇させる。続いて、移動装置330及び420を駆動して、図10に示すように、昇降装置430及び保持具440を第2ステーション30から第3ステーション40へ移動させるとともに、プレス装置340及び上型350を第4ステーションから第2ステーション30へ移動させる。続いて、ポンプと保持具440とによる吸引を停止して、保持具440からパルプモールド成形品MP2を解放する。このようにして、パルプモールド成形品MP2を第2ステーション30から第3ステーション40へ移送するとともに、パルプモールド成形品MP2を台410上に載置する。
 以上のようにして、パルプモールド成形品MP2を製造する。
 その後、必要に応じて、パルプモールド成形品MP2に対して、後処理、例えば、絵柄印刷及び無地印刷等の印刷、コーティング、又はそれらの組み合わせを行う。後処理によって形成するコーティング層は、例えば、耐水性や耐油性を付与する薬剤を含んだ層、断熱性を付与する材料が充填された層、発泡剤によって発泡させた層、又はそれらの組み合わせである。後処理を行うことにより、例えば、パルプモールド成形品MP2の美粧性を更に高めることや、パルプモールド成形品MP2に新たな機能を付与することができる。
 上記の方法により得られるパルプモールド成形品MP2は、表面性状に優れており、とりわけ、表面に凹凸が少ない点で優れている。この理由について、以下に説明する。
 熱プレス工程の代わりに、オーブンを使用した乾燥を行った場合、パルプ層には、その収縮によって、表面に高低差が大きな凹凸を生じる。また、このような方法では、パルプ層は十分に緻密化されず、それ故、パルプモールド成形品は高い多孔度を有する。従って、この場合、表面性状に優れたパルプモールド成形品を製造することはできない。
 また、脱水工程後に、オーブンを使用した乾燥を行い、この乾燥品を必要に応じて加湿して、これを熱プレス処理に供した場合、乾燥に伴って表面に生じた凹凸の高低差は、その後の加湿及び熱プレス処理によって小さくすることができる。また、加湿及び熱プレス処理によって、多孔度を小さくすることができる。しかしながら、オーブンを使用した乾燥に伴って表面に生じる凹凸の高低差は非常に大きいため、その後の加湿及び熱プレス処理によって十分に小さくすることはできない。また、乾燥後に加湿及び熱プレス処理を行っても、多孔度を十分に低下させることは難しい。
 図2乃至図10を参照しながら説明した方法では、熱プレス工程において、パルプ層MP1を乾燥させる。即ち、上記の方法では、脱水工程後に、乾燥工程を経ることなしに、熱プレス工程を実施する。そして、パルプとしては、平均繊維長が上述した範囲内にあるものを使用する。
 熱プレス工程前に乾燥工程を行わないので、パルプ層MP1の表面に、高低差が大きな凹凸を生じることはない。熱プレス工程では、乾燥に伴うパルプ層MP1の変形を、上型350及び下型320が防止する。また、熱プレス工程は、水分含有量が高く且つパルプの平均繊維長が上述した範囲内にあるパルプ層MP1に対して行うので、パルプ層MP1内での面内方向への繊維の移動が適度に生じ得る。このため、厚さのばらつきや表面の高さのばらつきを抑えながら、パルプ層MP1を緻密化することができる。
 従って、図2乃至図10を参照しながら説明した方法(以下、第1方法ともいう)によると、表面性状に優れたパルプモールド成形品MP2を製造することができる。具体的には、表面に凹凸が少ない、即ち表面の高さのばらつきが小さいパルプモールド成形品MP2が得られる。かかるパルプモールド成形品MP2は、容器として使用した際に、成形品ごとに容積のばらつきを生じにくい。また、パルプモールド成形品MP2は、美粧性に優れるとともに、印刷層やコーティング層の形成が容易である。また、かかるパルプモールド成形品MP2は、積み重ねたときに嵩高くなり難い上に、整然と積み重ねることが可能である。
 一般的なパルプモールド成形品は、第1方法以外の他の方法によって製造することができる。しかし、表面性状に優れた上述のパルプモールド成形品MP2は、第1方法以外の他の方法によって製造することは難しい。このことを、他の方法の例(以下、第2方法という)を挙げて以下で説明する。
 第2方法では、先ず、抄型として、雌型を準備する。この抄型は、多数の貫通孔が設けられ、上面がパルプモールド成形品に対応した形状に凹んだ抄型本体と、抄型本体の内面上に、この内面に沿うように設けられた網体とを含んでいる。
 次に、この抄型を、その開口部が上方を向くように設置する。次いで、抄型のキャビティ内へパルプと水とを含んだスラリーを供給して、抄型内をスラリーで満たす。更に、抄型内へのスラリーの供給を継続して、網体上にパルプを堆積させる。抄型内へのスラリーの供給は、抄型内のスラリーが加圧状態になるように行う。
 十分な量のパルプが網体上に堆積した後、抄型内へのスラリーの供給を停止する。続いて、抄型内に残留している水を抄型から排出させる。例えば、抄型内へ空気を圧入して、抄型内に残留している水を抄型から排出させる。
 次に、抄型と雄型である上型とでパルプ層を押圧して、パルプ層を脱水する。この脱水工程は、上型及び抄型の何れも加熱することなしに行う。脱水直後におけるパルプ層の水分含有量は、第1方法における脱水直後におけるパルプ層MP1の水分含有量と同様とする。
 次いで、上型にパルプ層を吸着保持させ、この状態で上型を上昇させる。これにより、パルプ層を抄型から剥離する。
 次に、パルプ層を吸着保持している上型を、雌型である下型の位置まで移動させる。続いて、パルプ層が下型と接触するまで上型を下降させる。その後、吸引を停止して、上型からパルプ層を解放する。このようにして、パルプ層を下型上に載置する。
 次に、熱プレス用の上型と下型との間にパルプ層を挟み、それらの間のパルプ層を加圧する。また、これとともに、ヒータを駆動してパルプ層を加熱する。更に、これとともに、ポンプを駆動して、上型と下型とによって挟まれた空間から水及び/又は水蒸気を吸引除去する。第2方法では、以上のようにして、パルプモールド成形品を得る。
 第2方法では、抄型内へのスラリーの供給を開始してから抄型内がスラリーで完全に満たされるまでの期間においては、抄型内を循環するスラリーの流れを生じ得る。この循環流は、パルプの沈降を防止し得る。しかしながら、第2方法では、抄型内をスラリーで満たす必要があるため、抄型には、水が速やかに排出される構造を採用することができない。それ故、抄型内がスラリーで完全に満たされた後は、スラリーの圧力を高めても、パルプの沈降を防止できるほどのスラリーの循環流は生じず、抄型内のスラリーにおいてパルプの沈降を生じる。
 その結果、抄型の側壁部に堆積するパルプの量は、上方と比較して、下方においてより多くなる。そして、抄型の側壁部の上方に十分な量のパルプが堆積するまでスラリーを供給すると、抄型の底部には過剰な量のパルプが堆積することになる。パルプを過剰に堆積させると、パルプの堆積量のばらつきが大きくなる。例えば、抄型本体に設けられた貫通孔の近傍とそれらから離れた位置とで、パルプの堆積量に大きな相違を生じ得る。
 このように、第2方法では、パルプの堆積量に大きなばらつきを生じる。熱プレス処理の際には、パルプ層内で繊維が面内方向へ移動し得るが、各繊維の移動は狭い範囲に限られる。即ち、パルプ堆積量のばらつきは、熱プレス処理の際の繊維の移動によって解消されるものではない。それ故、第2方法によると、表面に凹凸が少ない、即ち表面の高さのばらつきが小さいパルプモールド成形品を製造することはできない。
 これに対し、第1方法では、カバー体230の上部に抄型240を設置し、これらの複合体をスラリーS中に浸漬させる。スラリーSの深さは、抄型240の高さと比較して遥かに大きい。それ故、スラリーSにおいてパルプの沈降を生じても、抄型240の上部の位置と抄型240の下部の位置とで、パルプ濃度は大きくは相違しない。従って、第1方法によると、抄型240上にパルプを略均一に堆積させることができ、表面の高さのばらつきが小さいパルプモールド成形品MP2を製造することができる。
 なお、第1方法において、パルプ層MP1を上型350及び下型320によって加圧する代わりに、上型350及び下型320の一方と弾性体との間にパルプ層MP1を挟んで、これを加圧した場合、弾性体の変形を生じる。それ故、パルプ層MP1に十分な圧力が加わらず、表面性状に優れたパルプモールド成形品を得ることができない。
 また、言うまでもないが、第2方法において、熱プレス処理に使用する上型及び下型の一方を弾性体に変更しても、表面性状に優れたパルプモールド成形品を得ることはできない。この場合、上記の通り、パルプモールド成形品は、表面の高さのばらつきが大きくなる。
 なお、図2乃至図10は、本発明の一実施形態に係るパルプモールド成形品の製造方法の理解を容易にするためのものである。上述した方法は、他の構造を有する製造装置を使用して実施することも可能である。例えば、製造装置1では、上型270及び上型350は雌型であり、抄型240及び下型320は雄型である。上型270及び上型350は雄型であり、抄型240及び下型320は雌型であってもよい。このように、上記の製造装置1及び製造方法には、様々な変形が可能である。
 以下に、本発明の具体例を記載する。本発明は、これらの具体例に限定されるものではない。
 <1>パルプモールド成形品の製造
 (例1)
 パルパーを用いて、パルプと水とからなるスラリーを調製した。パルプとしては、平均繊維長が1.7mm、パルプに占める繊維長が1mm以下であるものの割合が30%、繊維長/繊維幅の比が93である竹パルプを使用した。スラリーのパルプ含有量は0.2質量%とした。
 このスラリーを使用して、図2乃至図10を参照しながら説明した方法(即ち、第1方法)により、パルプモールド成形品を製造した。ここでは、脱水工程は、脱水直後のパルプ層の水分含有量が68質量%となるように行った。熱プレス工程は、加熱温度を180℃、プレス圧を1.3MPa、プレス時間を120秒として行った。脱水工程及び熱プレス工程では、壁部の厚さが1.0mmのパルプモールド成形品が得られるように、上型と下型とのクリアランスを1.0mmとした。 
 以上のようにして、パルプモールド成形品として容器を製造した。
 (例2)
 パルプとして、70質量%の竹パルプと30質量%のサトウキビパルプとの混合物であって、平均繊維長が1.3mm、パルプに占める繊維長が1mm以下であるものの割合が41%、繊維長/繊維幅の比が72であるものを使用したこと以外は、例1と同様の方法によりパルプモールド成形品を製造した。
 (例3)
 パルプとして、60質量%の針葉樹パルプと40質量%のサトウキビパルプとの混合物であって、平均繊維長が1.8mm、パルプに占める繊維長が1mm以下であるものの割合が36%、繊維長/繊維幅の比が65であるものを使用したこと以外は、例1と同様の方法によりパルプモールド成形品を製造した。
 (比較例1)
 パルプとして、50質量%の竹パルプと50質量%のサトウキビパルプとの混合物であって、平均繊維長が1.2mm、パルプに占める繊維長が1mm以下であるものの割合が48%、繊維長/繊維幅の比が61であるものを使用したこと以外は、例1と同様の方法によりパルプモールド成形品を製造した。
 (比較例2)
 パルプとして、30質量%の竹パルプと70質量%のサトウキビパルプとの混合物であって、平均繊維長が1.1mm、パルプに占める繊維長が1mm以下であるものの割合が57%、繊維長/繊維幅の比が49であるものを使用したこと以外は、例1と同様の方法によりパルプモールド成形品を製造した。
 (比較例3)
 パルプとして、平均繊維長が2.3mm、パルプに占める繊維長が1mm以下であるものの割合が17%、繊維長/繊維幅の比が80である針葉樹パルプを使用したこと以外は、例1と同様の方法によりパルプモールド成形品を製造した。
 <2>評価
 例1乃至3並びに比較例1乃至3において製造したパルプモールド成形品の各々について、上述した方法により各種測定を行った。以下の表1に結果を記載する。
Figure JPOXMLDOC01-appb-T000001
 例1乃至3と比較例1乃至3との対比から明らかなように、平均繊維長が所定の範囲内にあるパルプを用いて、第1方法によりパルプモールド成形品を製造した場合、平面部における表面の高さの標準偏差が小さいパルプモールド成形品を製造することができた。このようなパルプモールド成形品は、比引張強さ、曲げ弾性率、圧縮強さの評価で実証されるとおり、高い強度を有していた。すなわち、例1乃至3では、平面部における表面の高さの標準偏差が小さい上に高い強度を有するパルプモールド成形品を製造することができた。
 一方、平均繊維長が所定の範囲内よりも短いパルプを用いて、第1方法によりパルプモールド成形品を製造した場合、高い強度を有しているが、平面部における表面の高さの標準偏差が大きいパルプモールド成形品が得られた。また、平均繊維長が所定の範囲内よりも長いパルプを用いて、第1方法によりパルプモールド成形品を製造した場合、平面部における表面の高さの標準偏差が小さいが、強度が低いパルプモールド成形品が得られた。
 例1乃至3では、得られたパルプモールド成形品は、平面部における表面の高さの標準偏差が小さかった。これは、乾燥時に歪を生じなかったか、又は、乾燥時に歪を生じるとしても、その大きさは僅かであったことを示す。かかるパルプモールド成形品は、乾燥時の歪がほとんどないため、成形品間で容積のばらつきを小さくすることができる。一方、比較例1及び2では、得られたパルプモールド成形品は、平面部における表面の高さの標準偏差が大きかった。これは、乾燥時に大きな歪を生じたことを示す。かかるパルプモールド成形品は、乾燥時の歪の大きさが成形品間でばらつくため、容積も成形品間でばらつくことになる。
 1…製造装置、10…支持体、20…第1ステーション、30…第2ステーション、40…第3ステーション、210…容器、220…昇降装置、230…カバー体、240…抄型、250…移動装置、260…昇降装置、270…上型、310…台、320…下型、330…移動装置、340…プレス装置、350…上型、410…台、420…移動装置、430…昇降装置、440…保持具、MP1…パルプ層、MP2…パルプモールド成形品、S…スラリー。

Claims (12)

  1.  パルプの平均繊維長が1.3乃至2.0mmの範囲内にあり、平面部における表面の高さの標準偏差が0.9mm以下であるパルプモールド成形品。
  2.  前記パルプに占める繊維長が1mm以下であるものの割合が、25乃至45%の範囲内にある請求項1に記載のパルプモールド成形品。
  3.  前記パルプの繊維幅に対する繊維長の比の平均が、65乃至95の範囲内にある請求項1に記載のパルプモールド成形品。
  4.  前記パルプを水に分散させてなるパルプ懸濁液は、カナダ標準ろ水度が570乃至675mLの範囲内にある請求項1に記載のパルプモールド成形品。
  5.  比引張強さが30N・m/g以上である請求項1に記載のパルプモールド成形品。
  6.  曲げ弾性率が1600MPa以上である請求項1に記載のパルプモールド成形品。
  7.  ISO圧縮強さが12kN/m以上である請求項1に記載のパルプモールド成形品。
  8.  開口部を有し、前記開口部から離れる方向へ先細りしている請求項1に記載のパルプモールド成形品。
  9.  容器である請求項1に記載のパルプモールド成形品。
  10.  平均繊維長が1.3乃至2.0mmの範囲内にあるパルプと水とを含んだスラリーを準備することと、
     立体形状を有する抄型上に前記パルプを堆積させてパルプ層を形成することと、
     前記パルプ層を脱水して中間成形品を得ることと、
     未乾燥の前記中間成形品を、雄型と雌型との間に挟んで、1.0乃至10MPaの範囲内の圧力で加圧しながら、160乃至200℃の範囲内の温度で加熱することと
    を含んだパルプモールド成形品の製造方法。
  11.  前記抄型上への前記パルプの堆積は、
     開口部を有する中空体としてのカバー体を準備することと、
     前記開口部に前記抄型を固定することと、
     前記開口部に固定された前記抄型を前記スラリー中に浸漬させることと、
     前記カバー体と前記スラリー中に浸漬させている前記抄型とによって囲まれた空間を減圧することと
    を含んだ請求項10に記載のパルプモールド成形品の製造方法。
  12.  前記抄型が前記カバー体の上方に位置するように前記抄型を前記スラリー中へ浸漬させる請求項11に記載のパルプモールド成形品の製造方法。
PCT/JP2023/021012 2022-06-24 2023-06-06 パルプモールド成形品 WO2023248786A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101965A JP2024002639A (ja) 2022-06-24 2022-06-24 パルプモールド成形品
JP2022-101965 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248786A1 true WO2023248786A1 (ja) 2023-12-28

Family

ID=89379661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021012 WO2023248786A1 (ja) 2022-06-24 2023-06-06 パルプモールド成形品

Country Status (2)

Country Link
JP (1) JP2024002639A (ja)
WO (1) WO2023248786A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158299A (ja) * 1994-12-01 1996-06-18 Honshu Paper Co Ltd モールディング成形体
JP2000303399A (ja) * 1998-12-28 2000-10-31 Kao Corp パルプモールド成形体
JP2010084267A (ja) * 2008-09-30 2010-04-15 Toyota Tsusho Corp パルプモールド成形体の製造方法、パルプモールド成形体および成形型
JP2016156108A (ja) * 2015-02-25 2016-09-01 花王株式会社 パルプモールド成形体の製造方法
WO2022138563A1 (ja) * 2020-12-25 2022-06-30 凸版印刷株式会社 パルプモールド成形品及びその製造方法
WO2023013642A1 (ja) * 2021-08-02 2023-02-09 凸版印刷株式会社 パルプモールド成形品及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158299A (ja) * 1994-12-01 1996-06-18 Honshu Paper Co Ltd モールディング成形体
JP2000303399A (ja) * 1998-12-28 2000-10-31 Kao Corp パルプモールド成形体
JP2010084267A (ja) * 2008-09-30 2010-04-15 Toyota Tsusho Corp パルプモールド成形体の製造方法、パルプモールド成形体および成形型
JP2016156108A (ja) * 2015-02-25 2016-09-01 花王株式会社 パルプモールド成形体の製造方法
WO2022138563A1 (ja) * 2020-12-25 2022-06-30 凸版印刷株式会社 パルプモールド成形品及びその製造方法
WO2023013642A1 (ja) * 2021-08-02 2023-02-09 凸版印刷株式会社 パルプモールド成形品及びその製造方法

Also Published As

Publication number Publication date
JP2024002639A (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2023013642A1 (ja) パルプモールド成形品及びその製造方法
RU2715652C2 (ru) Фасонный лоток или тарелка из волокнистого материала и способ его изготовления
AU2005310066B2 (en) A method and a machine for making fibre products from stock and a new type of fibre product
JP6460737B2 (ja) Cnfの成形方法及びその成形方法によって得られるcnf成形体
US20230331425A1 (en) Pulp molded product and method of producing the same
FI72926C (fi) Dekorativt laminat som har framstaellts genom anvaendning av hoegt tryck och innehaoller luftlagd bana samt foerfarande foer framstaellning av denna.
FR3015214A1 (ja)
JP6313513B1 (ja) セルロースナノファイバー成形体
JP6313512B1 (ja) セルロースナノファイバー成形体
WO2023145458A1 (ja) パルプモールド成形品
WO2023248786A1 (ja) パルプモールド成形品
WO2023248833A1 (ja) パルプモールド成形品
JP6756571B2 (ja) セルロースナノファイバー成形体の製造方法
JP7248176B2 (ja) パルプモールド成形品及びその製造方法
JP7248175B2 (ja) パルプモールド成形品及びその製造方法
WO2023013641A1 (ja) パルプモールド成形品及びその製造方法
WO2023145457A1 (ja) パルプモールド成形品
WO2023145541A1 (ja) パルプモールド成形品
JP2024038851A (ja) パルプモールド成形品及びエンボス加工済みパルプモールド成形品
CN117716088A (zh) 纸浆模塑成形品及其制造方法
CN117716089A (zh) 纸浆模塑成形品及其制造方法
KR102562465B1 (ko) 종이 빨대 제작에 적합한 용지 및 그 제조 방법
JP2022088217A (ja) セルロースナノファイバー含有成形体及びその製造方法
JP2018062728A (ja) セルロースナノファイバー成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826973

Country of ref document: EP

Kind code of ref document: A1