WO2023248833A1 - パルプモールド成形品 - Google Patents

パルプモールド成形品 Download PDF

Info

Publication number
WO2023248833A1
WO2023248833A1 PCT/JP2023/021550 JP2023021550W WO2023248833A1 WO 2023248833 A1 WO2023248833 A1 WO 2023248833A1 JP 2023021550 W JP2023021550 W JP 2023021550W WO 2023248833 A1 WO2023248833 A1 WO 2023248833A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
molded product
mold
pulp molded
paper
Prior art date
Application number
PCT/JP2023/021550
Other languages
English (en)
French (fr)
Inventor
幸司 坂入
萌 石井
晃 本橋
Original Assignee
Toppanホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppanホールディングス株式会社 filed Critical Toppanホールディングス株式会社
Publication of WO2023248833A1 publication Critical patent/WO2023248833A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/34Trays or like shallow containers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J3/00Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J5/00Manufacture of hollow articles by transferring sheets, produced from fibres suspensions or papier-mâché by suction on wire-net moulds, to couch-moulds

Definitions

  • the present invention relates to pulp molded products.
  • paper containers are being used instead of plastic containers and metal containers for storing toiletry products, drinks, food, and the like.
  • liquid paper containers such as milk containers
  • gable-top paper container which is made of paperboard coated with polyethylene resin on both sides of the paper and has a gable roof shape at the top.
  • Such paper containers not only contribute to resource and energy conservation, but also contribute to environmental conservation by being easy to recycle or incinerate when disposed of. Therefore, paper containers have become popular in various fields.
  • paper containers are formed by folding and pasting paperboard, the manufacturing process is complicated and the manufacturing cost increases.
  • paper containers such as those described above have a low degree of freedom in shape, and therefore have problems such as not being able to fully demonstrate the appeal of the product based on the shape of the container.
  • One method for increasing the degree of freedom in the shape of paper containers is a pulp mold, which manufactures molded products from a slurry containing pulp and water.
  • a pulp mold typically pulp in a slurry is deposited onto a paper mold to form a pulp layer, the pulp layer is dehydrated, and then it is dried in an oven.
  • Molded products obtained by this technology that is, pulp molded products, have excellent physical properties such as heat resistance, cold resistance, and moisture absorption and desorption properties, which are characteristics of paper packaging materials, and are suitable for paper trays for food. It has come to be widely used as a fixed cushioning material for containers, fruits, etc. (Patent Document 1).
  • An object of the present invention is to provide a pulp molded product that is less likely to buckle even when a load is applied, such as when the containers are filled with contents and stacked when used as containers.
  • a pulp molded article having a thickness of 1.5 mm or less and an ISO ring crush compressive strength in the range of 6 to 25 kN/m.
  • a pulp molded product according to the above aspect which has a density within the range of 0.5 to 1.15 g/cm 3 .
  • a pulp molded product according to any of the above aspects, in which the average fiber length of the pulp is within the range of 0.7 to 3.0 mm.
  • any of the above aspects wherein the density is within the range of 0.5 to 1.15 g/cm 3 and the average fiber length of the pulp is within the range of 0.7 to 3.0 mm.
  • a pulp molded product according to the invention is provided.
  • a pulp molded article according to any of the above aspects, which includes non-wood pulp.
  • a pulp molded article according to any of the above aspects, which has an opening and tapers in a direction away from the opening.
  • a pulp molded product according to any of the above aspects, which is a container.
  • the steps include: preparing a slurry containing pulp and water; depositing the pulp on a paper mold having a three-dimensional shape to form a pulp layer; The intermediate molded product is dehydrated to obtain an intermediate molded product, and the undried intermediate molded product is sandwiched between a male mold and a female mold and heated at a pressure of 120 to 250 MPa while applying pressure within a range of 0.5 to 10 MPa.
  • a method of manufacturing a pulp molded article is provided, the method comprising: heating at a temperature within the range of °C.
  • FIG. 1 is a perspective view showing a pulp molded product according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a manufacturing apparatus that can be used to manufacture the pulp molded product of FIG. 1.
  • FIG. 3 is a diagram showing a pulp layer forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing an example of a pulp layer formed on a paper mold.
  • FIG. 5 is a diagram showing a dewatering process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 6 is a diagram showing a process of conveying a pulp layer in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 7 is a diagram showing a hot press forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 1 is a perspective view showing a pulp molded product according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a manufacturing apparatus that can be used to manufacture the
  • FIG. 8 is a cross-sectional view schematically showing an example of a pulp molded product obtained by a hot press process.
  • FIG. 9 is a diagram showing a conveyance process of a pulp molded product in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 10 is a diagram showing a state in which the conveyance process of FIG. 9 has been completed.
  • FIG. 1 is a perspective view showing a pulp molded product according to an embodiment of the present invention.
  • the pulp molded article MP2 shown in FIG. 1 has an opening and tapers in a direction away from the opening.
  • This pulp molded article MP2 is a container.
  • This pulp molded product MP2 includes a bottom part and a side wall part, and is open at the top.
  • the bottom has a disc shape.
  • the bottom may have a shape other than a circle when orthogonally projected onto a plane perpendicular to the depth direction of the container, for example, a polygonal shape such as a square shape.
  • the side wall portion has a cylindrical shape extending upward from the edge of the bottom portion.
  • the diameter of the side wall increases from the bottom toward the opening.
  • the inner and outer surfaces of the sidewalls may be perpendicular to the top surface of the bottom.
  • the pulp molded product MP2 in which the side wall portion increases in diameter from the bottom toward the opening, is advantageous in achieving high mold releasability and is easy to stack.
  • the volume of a laminate formed by stacking a plurality of pulp molded products MP2 can be reduced.
  • the pulp molded article MP2 may have various shapes such as a cup shape, a bowl shape, a tray shape, and a box shape.
  • the pulp molded product MP2 does not need to be a container as long as it is a three-dimensional molded product, that is, a molded product that has a three-dimensional shape rather than a two-dimensional shape like a sheet.
  • the pulp molded product MP2 has a thickness of 1.5 mm or less.
  • the thickness of the pulp molded product MP2 is preferably 1.2 mm or less, more preferably 1 mm or less. Although there is no particular lower limit for the thickness, one example is 0.6 mm or more.
  • the thickness of the pulp molded article MP2 is the thickness of the wall portion of the pulp molded article MP2, here, the thickness of the bottom and side wall portions. When the thickness of the wall portion is different between the bottom portion and the side wall portion, the thickness of the pulp molded product MP2 is the thickness of the thinner of the bottom portion and the side wall portion.
  • the thickness of the pulp molded article MP2 is a value obtained by the following method. That is, five test pieces are cut out from arbitrary positions of the pulp molded product MP2. The thickness of each test piece is then measured. For example, a thickness gauge manufactured by Mitutoyo is used to measure the thickness. The thickness of the pulp molded product MP2 is the average value of the measurement results obtained for five test pieces.
  • the pulp molded product MP2 has an ISO ring crush compressive strength in the range of 6 to 25 kN/m.
  • the ISO ring crush compressive strength of the pulp molded article MP2 is preferably in the range of 8 to 24 kN/m, more preferably in the range of 9 to 24 kN/m.
  • the ISO ring crush compressive strength of the pulp molded product MP2 is a value obtained by the method specified in JIS P8126:2015 "Compressive strength test method - ring crush method”. Compressive strength is calculated by placing a long and thin test piece bent into a cylindrical shape (ring shape) between upper and lower parallel compression plates, applying a compressive load to buckle it, obtaining the maximum load, and calculating the maximum load obtained. It is found by dividing by the length of the test piece. In this test method, the elongated test piece is prepared by cutting out a strip-shaped test piece with a width of 15 mm and a length of 145 mm from the pulp molded product MP2.
  • the ISO ring crush compressive strength of the pulp molded product MP2 is high, buckling is unlikely to occur even when a load is applied.
  • the ISO ring crush compressive strength of the pulp molded product MP2 is too large, it will be easily damaged when an impact load is applied, such as when it is dropped.
  • the pulp molded product MP2 has a small thickness, buckling does not easily occur even when a load is applied. For example, when the pulp molded product MP2 is used as a container, buckling is unlikely to occur even if the pulp molded product MP2 is filled with contents and the pulp molded products MP2 are stacked. In addition, the pulp molded article MP2 is not easily damaged even when subjected to an impact load. Further, since the pulp molded product MP2 has a small thickness, it is not bulky when stacked and is lightweight. Therefore, the pulp molded article MP2 is convenient during storage and use. Furthermore, making the wall portion of the pulp molded article MP2 thinner is advantageous in that drying during its manufacture can be completed in a short time.
  • the density of the pulp molded article MP2 is preferably within the range of 0.5 to 1.15 g/cm 3 , more preferably within the range of 0.6 to 1.15 g/cm 3 .
  • High density means that the viscosity of the pulp mold improves, and it becomes an element of resistance when force is applied from the outside, and is thought to contribute to improving strength such as ISO ring crush compressive strength. .
  • the density is too high, the hardness will increase, making it more likely to break when an impact load is applied, such as when falling.
  • the above density is a value obtained by the following method. That is, a square or rectangular test piece is cut out from a portion of the pulp molded article MP2 whose surface is not curved, and its dimensions, mass, and thickness are measured. Calculate the density from the obtained value.
  • the pulp molded article MP2 preferably has a basis weight within the range of 550 to 980 g/m 2 , more preferably within the range of 580 to 950 g/m 2 .
  • a high basis weight means that the densities of the pulp mold are improved, which is an element of resistance when external force is applied, and is thought to contribute to improving strength such as ISO ring crush compressive strength. It will be done. However, if the basis weight is too high, the hardness will increase, making it more likely to be damaged when an impact load is applied, such as when falling.
  • the above basis weight is a value obtained by the following method. That is, as in the case of obtaining the density value, a square or rectangular test piece is cut out from a portion of the pulp molded product MP2 whose surface is not curved, and its dimensions and mass are measured. Calculate the basis weight from the obtained value.
  • the average fiber length of the pulp is preferably within the range of 0.7 to 3.0 mm, and more preferably within the range of 1 to 2 mm.
  • the strength such as the ISO ring crush compressive strength of the pulp molded product MP2 will decrease.
  • the average fiber length of the pulp is short, it becomes easy to increase the density of the pulp molded product MP2, and the strength such as ISO ring crush compressive strength becomes high.
  • the average fiber length of the pulp is short, distortion is likely to occur in the pulp molded product MP2 during drying, and as a result, unevenness is likely to occur on the surface of the pulp molded product MP2.
  • the average fiber length of the pulp is excessively shortened, it becomes difficult to complete the drying process in a short period of time during production, or cracks and mold releasability are likely to occur due to insufficient drying.
  • the average fiber length of pulp is a value obtained by the following method. That is, first, a 5 g test piece is obtained from the pulp molded product MP2. Next, this test piece is cut into small pieces and soaked in 500 mL of water overnight. This is then stirred with a stirrer to disintegrate the pulp from each other. In this way, a dispersion containing pulp is obtained. Next, 10 g of this dispersion is taken and diluted with water. This dilution is performed so that the total mass is 200 g. Using the sample thus obtained, the fiber length is measured according to JIS P8226-2:2011 "Pulp - Fiber length measurement method by optical automatic analysis - Part 2: Non-polarization method". The average fiber length of pulp refers to the length weighted average fiber length LL .
  • the pulp suspension obtained by dispersing the pulp contained in the pulp molded article MP2 in water preferably has a Canadian standard freeness (CSF) of 700 mL or less, more preferably 680 mL or less.
  • CSF Canadian standard freeness
  • the strength of the pulp molded product MP2 such as the ISO ring crush compressive strength, tends to decrease.
  • the above Canadian standard freeness is preferably 500 mL or more, more preferably 550 mL or more. If the Canadian standard freeness is low, the pulp molded product MP2 will have high strength such as ISO ring crush compressive strength, but the pulp molded product MP2 will be easily distorted during drying, and this will cause the pulp molded product MP2 to become distorted during drying. Unevenness tends to occur on the surface of MP2. Furthermore, if the Canadian Standard Freeness is low, drying during production tends to take a long time.
  • the above Canadian standard freeness is a value obtained by the following method.
  • a test piece is obtained from the pulp molded product MP2, and a dispersion containing pulp is obtained by the same method as above.
  • this dispersion liquid is diluted with water so that the solid content concentration is 0.3% by mass to obtain an aqueous suspension of pulp.
  • measurements are carried out as specified in JIS P8121-2:2012 "Pulp - Freeness Test Method - Part 2: Canadian Standard Freeness Method".
  • a Canadian Free Tester manufactured by Kumagai Riki Kogyo Co., Ltd. is used.
  • the measured value is corrected by referring to the correction table for the temperature of the suspension measured in advance. In this way, the Canadian Standard Freeness is obtained.
  • the compressive strength of the pulp molded article MP2 is preferably 0.65 kN or more, more preferably 0.7 kN or more. Although there is no particular upper limit for the compressive strength, one example is 2.2 kN. That is, when the pulp molded product MP2 has a high compressive strength, compressive deformation is unlikely to occur even when a load is applied. For example, when the pulp molded product MP2 is used as a container, compressive deformation is unlikely to occur even if the pulp molded product MP2 is filled with contents and the pulp molded products MP2 are stacked.
  • the compressive strength is the maximum compressive load at which the molded product retains its shape when the load applied in the vertical direction is increased in the method specified in JIS Z0212:1998 "Packaged cargo and containers - Compression test method". be.
  • JIS Z0212:1998 Packaged cargo and containers - Compression test method.
  • the pulp molded article MP2 can further contain a paper strength enhancer such as polyacrylamide. Use of a paper strength enhancer can increase the strength of the pulp molded product MP2.
  • the pulp molded product MP2 produced using a paper strength enhancer has a higher nitrogen content than the pulp molded product MP2 produced without using a paper strength enhancer.
  • the nitrogen content of the pulp molded product MP2 produced using the paper strength agent is 300 ⁇ g/g or more according to one example, and 500 ⁇ g/g or more according to another example. There is no upper limit to the nitrogen content of the pulp molded product MP2, but according to one example, it is 1000 ⁇ g/g or less.
  • the nitrogen content of the pulp molded article MP2 is obtained by the following method. First, two test pieces are taken from arbitrary positions on the pulp molded article MP2. The mass of each test piece is 10 mg. Next, each test piece is measured by the chemiluminescence method specified in JIS K2609:1998 "Crude oil and petroleum products - Nitrogen analysis test method". For this measurement, for example, TN-2100H manufactured by Nitto Seiko Airalytech Co., Ltd. can be used. The nitrogen content is the average value of the measurement results obtained for two test pieces. In addition, the above-mentioned pulp molded product MP2 can maintain high strength even if the paper strength enhancer is omitted.
  • FIG. 2 is a diagram schematically showing an example of a manufacturing apparatus that can be used to manufacture the pulp molded product of FIG. 1.
  • the manufacturing apparatus 1 shown in FIG. 2 includes a support 10, a first station 20, a second station 30, and a third station 40.
  • the support body 10 includes a frame body and a rail installed on the top of the frame body.
  • the first station includes a container 210, a lifting device 220, a cover body 230, a paper mold 240, a moving device 250, a lifting device 260, and an upper mold 270.
  • the container 210 is installed within the frame of the support 10. Container 210 is open at the top. Container 210 contains slurry S containing pulp and water.
  • the lifting device 220 is attached to the frame of the support 10 above the container 210.
  • the lifting device 220 includes, for example, a hydraulic cylinder.
  • the lifting device 220 supports the cover body 230.
  • the lifting device 220 can raise and lower the cover body 230 at the opening of the container 210.
  • the cover body 230 is a hollow body with an opening at the top.
  • a pump (not shown) is connected to the cover body 230.
  • the paper mold 240 is fixed to the opening of the cover body 230. Specifically, the paper die 240 is fixed to the opening of the cover body 230 so that a space adjacent to one surface thereof is surrounded by the paper die 240 and the cover body 230.
  • the paper mold 240 is a mold that is liquid permeable.
  • the paper mold 240 has a three-dimensional shape. That is, the paper mold 240 has one or more convex portions and/or one or more concave portions on the surface on which pulp is deposited.
  • the outer surface of the paper mold 240 that is, the back surface of the surface adjacent to the space, has a shape corresponding to a pulp molded product.
  • the paper mold 240 is a male mold with a protruding upper surface.
  • the paper mold 240 includes, for example, a paper mold main body having a large number of through holes and an outer surface having a shape corresponding to a pulp molded product, and a paper mold main body provided on the outer surface of the paper mold main body along this outer surface. It includes a mesh body.
  • the paper mold body is made of a hard material such as metal.
  • the moving device 250 is movable between the first station 20 and the second station 30 along the rails of the support 10.
  • the moving device 250 includes, for example, a motor as a power source.
  • a lifting device 260 is attached to the moving device 250 and can be moved between the first station 20 and the second station 30.
  • the lifting device 260 is attached to the moving device 250 as described above.
  • the lifting device 260 includes, for example, a hydraulic cylinder.
  • the lifting device 260 supports an upper mold 270.
  • the lifting device 260 can raise and lower the upper die 270.
  • the upper die 270 is a holder that sandwiches a pulp layer, which will be described later, between it and the papermaking die 240 and holds the pulp layer by vacuum suction.
  • the upper die 270 is made of a hard material such as metal.
  • the lower surface of the upper mold 270 has a shape corresponding to the outer surface of the paper mold 240.
  • the upper mold 270 is a female mold with a concave lower surface.
  • the upper mold 270 has, for example, a large number of through holes with one end open on the lower surface and the other end connected to a pump.
  • the second station 30 is provided near the first station 20.
  • the second station 30 includes a table 310, a lower mold 320, a moving device 330, a press device 340, and an upper mold 350.
  • the stand 310 is installed within the frame of the support body 10.
  • a lower mold 320 is installed on the stand 310.
  • the lower mold 320 is a mold that is permeable to gas and/or liquid.
  • the lower die 320 is made of a hard material such as metal.
  • the lower mold 320 has an upper surface that corresponds to the outer surface of the paper mold 240.
  • the lower mold 320 is a male mold with a protruding upper surface.
  • the lower die 320 has, for example, a large number of through holes, and has a smooth surface having a shape corresponding to the outer surface of the papermaking die 240.
  • the moving device 330 is movable between the second station 30 and a fourth station (not shown) along the rails of the support body 10.
  • the moving device 330 includes, for example, a motor as a power source.
  • a press device 340 is attached to the moving device 330, and can be transferred between the second station 30 and the fourth station.
  • the press device 340 is attached to the moving device 330 as described above.
  • Press device 340 includes, for example, a hydraulic cylinder.
  • the press device 340 supports an upper die 350.
  • the press device 340 can raise and lower the upper die 350.
  • the upper mold 350 is a mold that does not have gas permeability or liquid permeability.
  • the upper die 350 is made of a hard material such as metal.
  • the lower surface of the upper mold 350 has a shape corresponding to the outer surface of the paper mold 240.
  • the upper mold 350 is a female mold with a concave lower surface.
  • the upper die 350 has a smooth surface that has a shape corresponding to the outer surface of the papermaking die 240.
  • the second station 30 further includes a heater and a pump (none of which are shown).
  • the heater heats at least one of the lower mold 320 and the upper mold 350.
  • the pump is connected to the lower space of the lower mold 320.
  • the third station 40 is provided near the second station 30.
  • the third station 40 includes a table 410, a moving device 420, a lifting device 430, and a holder 440.
  • the stand 410 is installed within the frame of the support 10. A pulp molded product is placed on the stand 410.
  • the moving device 420 is movable between the second station 30 and the third station 40 along the rails of the support 10.
  • the moving device 420 includes, for example, a motor as a power source.
  • a lifting device 430 is attached to the moving device 420 and can be moved between the second station 30 and the third station 40.
  • the lifting device 430 is attached to the moving device 420 as described above.
  • the lifting device 430 includes, for example, a hydraulic cylinder.
  • the lifting device 430 supports a holder 440.
  • the lifting device 430 can raise and lower the holder 440.
  • the holder 440 is a holder that holds a pulp molded product, which will be described later, by vacuum suction.
  • the lower surface of the holder 440 has a shape corresponding to the outer surface of the paper mold 240.
  • the holder 440 has a concave lower surface.
  • the holder 440 has, for example, a number of through holes with one end open at the bottom surface and the other end connected to a pump.
  • a pulp molded product MP2 is manufactured using, for example, the manufacturing apparatus 1 described above. This will be explained with reference to FIGS. 1 to 10.
  • FIG. 3 is a diagram showing a pulp layer forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing an example of a pulp layer formed on a paper mold.
  • FIG. 5 is a diagram showing a dewatering process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 6 is a diagram showing a process of conveying a pulp layer in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 7 is a diagram showing a hot press forming process in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 8 is a cross-sectional view schematically showing an example of a pulp molded product obtained by a hot press process.
  • FIG. 9 is a diagram showing a conveyance process of a pulp molded product in pulp molding using the apparatus shown in FIG. 2.
  • FIG. 10 is a diagram showing a state in which the conveyance process of FIG. 9 has been completed.
  • slurry S is prepared.
  • slurry S contains pulp and water.
  • Slurry S is a suspension in which pulp is dispersed in water and has a high viscosity.
  • the pulp contained in the slurry S has substantially the same characteristics as described above for the pulp contained in the pulp molded product MP2.
  • pulp used for slurry S.
  • the pulp include bleached softwood kraft pulp (NBKP) or unbleached kraft pulp (NUKP) and bleached hardwood kraft pulp (LBKP) or unbleached kraft pulp (LUKP), which are commonly used as raw material pulp in paper manufacturing.
  • NKP bleached softwood kraft pulp
  • NUKP unbleached kraft pulp
  • LLKP bleached hardwood kraft pulp
  • LLKP unbleached kraft pulp
  • Non-wood pulps such as straw, cotton, kenaf, bamboo and sugarcane can be used alone or in combination of two or more in any proportion.
  • the pulp preferably contains non-wood pulp, and more preferably contains non-wood pulp as a main component (that is, in an amount greater than 50% by mass in the pulp).
  • Non-wood pulp is superior in that it is possible to produce a pulp molded article MP2 with strength comparable to that of wood pulp, and in addition, in that it can reduce environmental burden.
  • Pulp has different fiber lengths depending on its raw material and manufacturing method.
  • pulp made from sugarcane generally has a shorter average fiber length than pulp made from bamboo.
  • the average fiber length of the pulp can be adjusted by any method, for example, by mechanical treatment such as beating or crushing. Therefore, a pulp having certain characteristics can be obtained, for example, by selecting an appropriate pulp from a plurality of types of pulp, or by appropriately combining two or more types of pulp.
  • a hot pressing step is performed on an undried pulp layer. That is, a hot pressing process is performed on a pulp layer having a high water content. Therefore, if the average fiber length of the pulp is too short, the rate of water evaporation tends to be uneven during the hot pressing process, and unbalanced shrinkage occurs during drying, which can lead to wrinkles, cracks, or a decrease in strength. .
  • the pulp content of the slurry S is preferably in the range of 0.01 to 3.0% by mass, more preferably in the range of 0.01 to 0.5% by mass.
  • the pulp content is low, it is difficult to achieve high productivity.
  • a high pulp content can lead to high variations in the thickness of the pulp layer.
  • Slurry S can further contain additives.
  • additives organic low-molecular materials, organic polymer materials, inorganic materials, or combinations thereof can be used, such as agents that impart water resistance or oil resistance. It is sufficient to select a drug according to the required performance of the container.
  • the proportion of the additive in the total of the pulp and the additive is preferably 10% by mass or less, more preferably 5% by mass or less. That is, the proportion of pulp in the total solid content contained in the slurry S is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the slurry S is supplied into the container 210.
  • the cover body 230 is lowered by the lifting device 220, so that the upper surface of the paper mold 240 is positioned sufficiently below the liquid level of the slurry S.
  • the paper mold 240 installed on the top of the cover body 230 is immersed in the slurry.
  • the pump is driven to reduce the pressure in the space surrounded by the cover body 230 and the paper mold 240. This causes the slurry S to flow across the paper mold 240 and deposit pulp on the paper mold 240.
  • the pulp layer MP1 is formed on the paper mold 240, as shown in FIG.
  • the cover body 230 is raised by the lifting device 220, as shown in FIG. 5, so that the lower part of the paper mold 240 is positioned sufficiently above the liquid level of the slurry S. Thereby, the pulp layer MP1 is dehydrated under reduced pressure.
  • the lifting device 260 is driven to lower the upper die 270 until its lower surface contacts the pulp layer MP1. Note that the pulp layer MP1 is not depicted in FIG. This dehydration process is performed without heating either the upper die 270 or the papermaking die 240.
  • the depressurization time in the dehydration step is preferably within the range of 1 to 60 seconds, and more preferably within the range of 1 to 10 seconds.
  • the moisture content of the pulp layer MP1 immediately after dehydration is preferably in the range of 40 to 90% by mass, more preferably in the range of 50 to 70% by mass. If the water content is low, the movement of fibers in the in-plane direction within the pulp layer may become insufficient during the hot pressing process. If the moisture content is high, fibers will move excessively in the in-plane direction within the pulp layer during the hot pressing process, or during the period from the end of the dehydration process to the start of the hot pressing process. In this case, the shape retention of the pulp layer MP1 may become insufficient.
  • the pump After stopping the depressurization of the space and the pressurization, the pump is driven to cause the upper die 270 to adsorb and hold the pulp layer MP1. Note that the suction by the pump and the upper mold 270 does not cause further dehydration of the pulp layer MP1.
  • the lifting device 260 is driven to raise the upper mold 270, as shown in FIG. As a result, the pulp layer MP1 is peeled off from the paper mold 240.
  • the moving devices 250 and 330 are driven to move the press device 340 and the upper mold 350 from the second station 30 to the fourth station, and move the lifting device 260 and the upper mold 270 to the It is moved from the first station 20 to the second station 30.
  • the lifting device 260 is driven to lower the upper mold 270 until the pulp layer MP1 comes into contact with the lower mold 320.
  • the suction by the pump and the upper mold 270 is stopped, and the pulp layer MP1 is released from the upper mold 270.
  • the lifting device 260 is driven to raise the upper die 270. In this way, the pulp layer MP1 is transferred from the first station 20 to the second station 30, and the pulp layer MP1 is placed on the lower mold 320.
  • the moving devices 250 and 330 are driven to move the lifting device 260 and the upper mold 270 from the second station 30 to the first station 20, as shown in FIG. It is moved from the fourth station to the second station 30.
  • the press device 340 is driven to lower the upper die 350 as shown in FIG.
  • the pulp layer MP1 sandwiched between the upper mold 350 and the lower mold 320 is pressurized.
  • the heater is driven to heat the pulp layer MP1.
  • the pump is driven to suction and remove water and/or water vapor from the space sandwiched between the upper mold 350 and the lower mold 320.
  • the surface shape of the pulp layer MP1 is adjusted, and the pulp layer MP1 is densified and dried.
  • a pulp molded article MP2 shown in FIG. 8 is obtained.
  • the moisture content of the pulp layer MP1 immediately before starting this hot pressing process is approximately equal to the moisture content of the pulp layer MP1 immediately after finishing the dehydration process.
  • the press pressure is preferably within the range of 0.5 to 10 MPa, more preferably within the range of 1 to 9.5 MPa. If the press pressure is low, there is a possibility that a pulp molded article MP2 with high strength cannot be obtained. If the press pressure is excessively high, variations in the thickness of the pulp molded article MP2 are likely to occur.
  • the heating temperature of the pulp layer MP1 that is, the temperature of the upper mold 350 or the lower mold 320 heated by the heater, is preferably within the range of 120 to 250°C, and preferably within the range of 150 to 200°C. It is more preferable that the If the heating temperature is low, it will take a long time to dry the pulp layer MP1. When the heating temperature is increased, the shrinkage of the pulp layer MP1 due to drying becomes larger, and as a result, there is a possibility that the distortion in the pulp molded product MP2 becomes larger.
  • heating by the heater may be performed on only one of the upper mold 350 and the lower mold 320, or may be performed on both.
  • the heater heats only one of the upper mold 350 and the lower mold 320, the temperatures thereof become approximately equal due to heat conduction from one to the other. Therefore, in any case, the drying of the pulp layer MP1 proceeds almost simultaneously over its entire thickness. Therefore, no distortion occurs in the pulp molded product MP2 due to the difference in drying speed.
  • the pressing time in the hot pressing step depends on the heating temperature, the shape of the molded product, etc., it is preferably within the range of 10 to 300 seconds, and more preferably within the range of 20 to 200 seconds.
  • the moving devices 330 and 420 are driven to move the press device 340 and upper mold 350 from the second station 30 to the fourth station, and move the lifting device 430 and the holder 440 3 station 40 to the second station 30.
  • the lifting device 430 is driven to lower the holder 440 until it comes into contact with the pulp molded product MP2. Air is blown out from inside the lower mold to release the pulp molded product MP2 from the lower mold, and then the pump is driven to cause the holder 440 to adsorb and hold the pulp molded product MP2.
  • the elevating device 430 is driven to raise the holder 440 with the pulp molded article MP2 being sucked and held by the holder 440.
  • the moving devices 330 and 420 are driven to move the lifting device 430 and the holder 440 from the second station 30 to the third station 40, as shown in FIG. It is moved from the fourth station to the second station 30.
  • the suction by the pump and the holder 440 is stopped, and the pulp molded article MP2 is released from the holder 440.
  • the pulp molded article MP2 is transferred from the second station 30 to the third station 40, and the pulp molded article MP2 is placed on the stand 410. In the manner described above, a pulp molded article MP2 is manufactured.
  • the pulp molded product MP2 is subjected to post-processing, for example, printing such as pattern printing and plain printing, coating, or a combination thereof.
  • the coating layer formed by post-treatment may be, for example, a layer containing a chemical that imparts water resistance or oil resistance, a layer filled with a material that imparts heat insulation, a layer foamed with a foaming agent, or a combination thereof. be.
  • the pulp molded article MP2 obtained by the above method has excellent surface properties, particularly in that there are few irregularities on the surface. The reason for this will be explained below.
  • the pulp layer will have irregularities with large height differences on its surface due to its shrinkage. Also, in such a method, the pulp layer is not sufficiently densified and therefore the pulp molded article has a high porosity. Therefore, in this case, it is not possible to produce a pulp molded product with excellent surface properties.
  • the difference in height of the unevenness that occurs on the surface due to drying is It can be made smaller by subsequent humidification and hot press treatment.
  • the porosity can be reduced by humidification and hot press treatment.
  • the difference in height of the unevenness that occurs on the surface due to drying using an oven is very large, it cannot be sufficiently reduced by subsequent humidification and hot press treatment. Further, even if humidification and hot press treatment are performed after drying, it is difficult to sufficiently reduce the porosity.
  • the pulp layer MP1 is dried in the hot press step. That is, in the above method, the hot pressing step is performed after the dehydration step without passing through the drying step.
  • the pulp one having an average fiber length within the above-mentioned range is used.
  • the upper die 350 and the lower die 320 prevent deformation of the pulp layer MP1 due to drying.
  • the hot pressing step is performed on the pulp layer MP1 that has a high moisture content and the average fiber length of the pulp is within the above-mentioned range, the movement of fibers in the in-plane direction within the pulp layer MP1 is moderate. may occur. Therefore, the pulp layer MP1 can be made denser while suppressing variations in thickness.
  • a pulp molded article MP2 having excellent surface properties can be manufactured. Specifically, a pulp molded article MP2 with few irregularities on the surface is obtained. Such a pulp molded article MP2 has excellent cosmetic properties and is easy to form a printing layer and a coating layer.
  • General pulp molded articles can be manufactured by methods other than the first method. However, it is difficult to manufacture the above-mentioned pulp molded product MP2 having excellent surface properties by a method other than the first method. This will be explained below using an example of another method (hereinafter referred to as the second method).
  • a female mold is prepared as a paper mold.
  • This paper mold consists of a paper mold main body with a large number of through holes and a recessed upper surface in a shape corresponding to a pulp molded product, and a mesh body provided on the inner surface of the paper mold main body along this inner surface. Contains.
  • a slurry containing pulp and water is supplied into the cavity of the paper mold to fill the inside of the paper mold with the slurry. Further, the supply of slurry into the paper mold is continued to deposit pulp on the net body. The slurry is supplied into the paper mold so that the slurry inside the paper mold is pressurized.
  • the pulp layer is pressed with the paper mold and the male upper mold to dehydrate the pulp layer.
  • This dehydration step is performed without heating either the upper mold or the paper mold.
  • the moisture content of the pulp layer immediately after dehydration is the same as the moisture content of the pulp layer MP1 immediately after dehydration in the first method.
  • the pulp layer is adsorbed and held on the upper mold, and the upper mold is raised in this state. Thereby, the pulp layer is peeled off from the paper mold.
  • the upper mold holding the pulp layer by suction is moved to the position of the lower mold, which is a female mold. Subsequently, the upper mold is lowered until the pulp layer comes into contact with the lower mold. Then, stop the suction and release the pulp layer from the upper mold. In this way, the pulp layer is placed on the lower mold.
  • a pulp layer is sandwiched between an upper mold and a lower mold for hot press, and the pulp layer between them is pressurized.
  • the heater is driven to heat the pulp layer.
  • the pump is driven to suction and remove water and/or water vapor from the space sandwiched between the upper mold and the lower mold.
  • a pulp molded product is obtained as described above.
  • a flow of slurry circulating within the paper mold may occur during the period from the start of supply of slurry into the paper mold until the inside of the paper mold is completely filled with slurry.
  • This circulating flow may prevent settling of the pulp.
  • the second method since it is necessary to fill the inside of the paper mold with slurry, it is not possible to adopt a structure in which water is quickly discharged from the paper mold. Therefore, after the inside of the paper mold is completely filled with slurry, even if the pressure of the slurry is increased, the circulating flow of the slurry will not be sufficient to prevent the pulp from settling, and the pulp will not settle in the slurry inside the paper mold. occurs.
  • the amount of pulp deposited on the side wall of the paper mold is larger in the lower part than in the upper part. If the slurry is supplied until a sufficient amount of pulp is deposited above the side walls of the paper mold, an excessive amount of pulp will be deposited at the bottom of the paper mold. If excessive pulp is deposited, the variation in the amount of pulp deposited will increase. For example, there can be a large difference in the amount of pulp deposited near the through holes provided in the paper mold body and at locations away from them.
  • a paper mold 240 is installed on the top of the cover body 230, and these composites are immersed in the slurry S.
  • the depth of the slurry S is much larger than the height of the paper mold 240. Therefore, even if pulp sedimentation occurs in the slurry S, the pulp concentration does not differ greatly between the upper position of the paper mold 240 and the lower position of the paper mold 240. Therefore, according to the first method, the pulp can be deposited substantially uniformly on the paper mold 240, and the pulp molded product MP2 with less unevenness on the surface can be manufactured.
  • the pulp layer MP1 is sandwiched between one of the upper mold 350 and the lower mold 320 and an elastic body, and this is applied.
  • the elastic body deforms. Therefore, sufficient pressure is not applied to the pulp layer MP1, making it impossible to obtain a pulp molded article with excellent surface properties.
  • FIGS. 2 to 10 are provided to facilitate understanding of a method for manufacturing a pulp molded product according to an embodiment of the present invention.
  • the method described above can also be carried out using manufacturing equipment having other configurations.
  • the upper mold 270 and the upper mold 350 are female molds
  • the paper mold 240 and the lower mold 320 are male molds.
  • the upper mold 270 and the upper mold 350 may be male molds
  • the paper mold 240 and the lower mold 320 may be female molds.
  • various modifications can be made to the manufacturing apparatus 1 and manufacturing method described above.
  • Example 1 Manufacturing of pulp molded products (Example 1) A slurry consisting of pulp and water was prepared using a pulper. Bamboo pulp with an average fiber length of 1.6 mm was used as the pulp. The pulp content of the slurry was 0.3% by mass.
  • a pulp molded article was manufactured by the method described with reference to FIGS. 2 to 10 (ie, the first method).
  • the dehydration step was performed such that the water content of the pulp layer immediately after dehydration was 60% by mass.
  • the hot pressing step was performed at a heating temperature of 180° C., a pressing pressure of 1.2 MPa, and a pressing time of 80 seconds.
  • the clearance between the upper mold and the lower mold was set to 1.1 mm so that a pulp molded product with a wall thickness of 1.1 mm was obtained.
  • a container was manufactured as a pulp molded product.
  • the obtained pulp molded product had a wall thickness of 1.1 mm, a density of 0.71 g/cm 3 , and a basis weight of 780 g/m 2 .
  • Example 2 A pulp molded product was produced in the same manner as in Example 1, except that the amount of pulp deposited was adjusted, the clearance between the upper mold and the lower mold was 0.9 mm, and the pressing time was 82 seconds.
  • the obtained pulp molded article had a wall thickness of 0.9 mm, a density of 0.94 g/cm 3 , and a basis weight of 850 g/m 2 .
  • Example 3 In Example 3, the pulp is a mixture of 70% by mass of bamboo pulp (average fiber length: 1.6mm) and 30% by mass of sugarcane pulp (average fiber length: 0.9mm), and the average fiber length is 1. .4 mm was used.
  • a pulp molded product was produced in the same manner as in Example 1, except that the above pulp was used, the amount of accumulated pulp was adjusted, and the clearance between the upper mold and the lower mold was set to 1.0 mm.
  • the obtained pulp molded product had a wall thickness of 1.0 mm, a density of 0.63 g/cm 3 , and a basis weight of 600 g/m 2 .
  • Example 4 A pulp molded product was produced in the same manner as in Example 3, except that the amount of pulp deposited was adjusted and the clearance between the upper mold and the lower mold was 0.7 mm.
  • the obtained pulp molded product had a wall thickness of 0.7 mm, a density of 0.93 g/cm 3 , and a basis weight of 653 g/m 2 .
  • Example 5 A pulp molded product was produced in the same manner as in Example 3, except that the amount of pulp deposited was adjusted, the clearance between the upper and lower molds was 1.1 mm, and the pressing time was 100 seconds.
  • the obtained pulp molded product had a wall thickness of 1.1 mm, a density of 0.78 g/cm 3 , and a basis weight of 860 g/m 2 .
  • Example 6 A pulp molded product was produced in the same manner as in Example 3, except that the amount of pulp deposited was adjusted, the clearance between the upper mold and the lower mold was 1.05 mm, and the pressing time was 110 seconds.
  • the obtained pulp molded product had a wall thickness of 1.05 mm, a density of 0.89 g/cm 3 , and a basis weight of 930 g/m 2 .
  • Example 7 A pulp molded product was produced in the same manner as in Example 3, except that the amount of pulp deposited was adjusted, the clearance between the upper die and the lower die was 0.9 mm, the press pressure was 5.7 MPa, and the press time was 110 seconds. was manufactured.
  • the obtained pulp molded product had a wall thickness of 0.9 mm, a density of 1.02 g/cm 3 , and a basis weight of 910 g/m 2 .
  • Example 8 A pulp molded product was produced in the same manner as in Example 3, except that the amount of accumulated pulp was adjusted, the clearance between the upper die and the lower die was 0.8 mm, the press pressure was 9.6 MPa, and the press time was 110 seconds. was manufactured.
  • the obtained pulp molded product had a wall thickness of 0.8 mm, a density of 1.10 g/cm 3 , and a basis weight of 935 g/m 2 .
  • Example 9 the pulp is a mixture of 50% by mass of bamboo pulp (average fiber length: 1.6mm) and 50% by mass of sugarcane pulp (average fiber length: 0.9mm), and the average fiber length is 1. .3 mm was used. Pulp molding was carried out in the same manner as in Example 1, except that the above pulp was used, the amount of accumulated pulp was adjusted, the clearance between the upper mold and the lower mold was 0.9 mm, and the pressing time was 130 seconds. manufactured a product. The obtained pulp molded product had a wall thickness of 0.9 mm, a density of 1.10 g/cm 3 , and a basis weight of 930 g/m 2 .
  • Example 10 the pulp is a mixture of 20% by mass of bamboo pulp (average fiber length: 1.6mm) and 80% by mass of sugarcane pulp (average fiber length: 0.9mm), and the average fiber length is 1. .1 mm was used. Pulp molding was carried out in the same manner as in Example 1, except that the above pulp was used, the amount of accumulated pulp was adjusted, the clearance between the upper and lower molds was 0.8 mm, and the pressing time was 150 seconds. manufactured a product. The obtained pulp molded product had a wall thickness of 0.8 mm, a density of 1.15 g/cm 3 , and a basis weight of 930 g/m 2 .
  • Example 11 softwood pulp with an average fiber length of 2.5 mm was used as the pulp. Pulp molding was carried out in the same manner as in Example 1, except that the above pulp was used, the amount of accumulated pulp was adjusted, the clearance between the upper and lower molds was 0.9 mm, and the pressing time was 82 seconds. manufactured a product.
  • the obtained pulp molded product had a wall thickness of 0.9 mm, a density of 0.94 g/cm 3 , and a basis weight of 860 g/m 2 .
  • Comparative example 1 In Comparative Example 1, the pulp was a mixture of 70% by mass of bamboo pulp (average fiber length: 1.6 mm) and 30% by mass of sugarcane pulp (average fiber length: 0.9 mm), and the average fiber length was One with a diameter of 1.4 mm was used. The same method as Example 1 except that the above pulp was used, the amount of pulp deposited was adjusted, the clearance between the upper die and the lower die was 1.5 mm, the press pressure was 0 MPa, and the press time was 600 seconds. A pulp molded product was produced. The obtained pulp molded article had a wall thickness of 1.5 mm, a density of 0.46 g/cm 3 , and a basis weight of 690 g/m 2 .
  • Comparative example 2 In Comparative Example 1, the pulp was a mixture of 70% by mass of bamboo pulp (average fiber length: 1.6 mm) and 30% by mass of sugarcane pulp (average fiber length: 0.9 mm), and the average fiber length was One with a diameter of 1.4 mm was used. Same as Example 1 except that the above pulp was used, the amount of pulp deposited was adjusted, the clearance between the upper die and the lower die was 1.0 mm, the press pressure was 5.7 MPa, and the press time was 150 seconds. A pulp molded article was manufactured by the method described in the following. The obtained pulp molded product had a wall thickness of 1.0 mm, a density of 1.79 g/cm 3 , and a basis weight of 1700 g/m 2 .
  • Examples 1 to 11 it was possible to produce pulp molded articles having a thickness of 1.5 mm or less and an ISO ring crush compressive strength within the range of 6 to 25 kN/m.
  • the pulp molded products of Examples 1 to 11 had high compressive strength in the case of a box shape and excellent strength against drop impact. Although the pulp molded products of Examples 1 to 11 were small in thickness, they had excellent strength.
  • Comparative Example 1 a pulp molded product was produced that had a thickness of 1.5 mm or less but an ISO ring crush compressive strength of less than 6 kN/m.
  • the pulp molded product of Comparative Example 1 also had low compressive strength in the case of a box shape.
  • Comparative Example 2 a pulp molded article having a thickness of 1.5 mm or less but an ISO ring crush compressive strength of more than 25 kN/m was produced.
  • the pulp molded product of Comparative Example 2 had high hardness as evident from the density and basis weight values, and was damaged or cracked when subjected to a drop impact.
  • SYMBOLS 1... Manufacturing device 10... Support body, 20... First station, 30... Second station, 40... Third station, 210... Container, 220... Lifting device, 230... Cover body, 240... Paper mold, 250... Movement Device, 260... Lifting device, 270... Upper die, 310... Stand, 320... Lower die, 330... Moving device, 340... Pressing device, 350... Upper die, 410... Stand, 420... Moving device, 430... Elevating device, 440... Holder, MP1... Pulp layer, MP2... Pulp molded product, S... Slurry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Paper (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

パルプモールド成形品は、厚さが1.5mm以下であり、ISOリングクラッシュ圧縮強さが6乃至25kN/mの範囲内にある。

Description

パルプモールド成形品
 本発明は、パルプモールド成形品に関する。
 近年、廃棄物の増加等に関連した環境問題が多発している。これに鑑み、トイレタリー製品、飲料及び食品などの収納には、プラスチック容器や金属容器に代わり、紙製容器が使用されつつある。例えば、牛乳容器等の液体用紙製容器としては、紙の両面にポリエチレン樹脂をコートした板紙からなり、上部が切妻屋根型を有する容器、所謂、ゲーブルトップ紙容器がある。そのような紙製容器は、省資源や省エネルギーに貢献するものであるのに加え、廃棄に際してもリサイクルや焼却し易いなど環境保全に貢献するものである。それ故、紙製容器は、様々な分野で普及している。
 しかしながら、上記のような紙製容器は、板紙を折り曲げ、貼り合わせて成形されるものであることから、製造工程が複雑であり、製造コストが嵩む。また、上記のような紙製容器は、その形状の自由度が低いため、容器の形状に基づく商品の訴求力を充分に発揮できないなどの問題があった。
 紙製容器の形状の自由度を高める手段の1つとして、パルプと水とを含んだスラリーから成形品を製造するパルプモールドがある。パルプモールドでは、一般的に、スラリー中のパルプを抄型上に堆積させてパルプ層を形成し、このパルプ層を脱水し、その後、これを炉内で乾燥させる。この技術によって得られる成形品、即ち、パルプモールド成形品は、紙系包装材の物性面での特徴である、耐熱性、耐寒性及び吸放湿性等に優れており、食品用の紙製トレー容器や果物などの固定緩衝材等として広く使用されるようになってきている(特許文献1)。
日本国特開2008-285188号公報
 本発明は、容器として使用した際に内容物が充填され容器が積み重ねられた場合など、荷重がかかった場合であっても座屈が生じにくいパルプモールド成形品を提供することを目的とする。
 本発明の一側面によると、厚さが1.5mm以下であり、ISOリングクラッシュ圧縮強さが6乃至25kN/mの範囲内にあるパルプモールド成形品が提供される。
 本発明の他の側面によると、密度が0.5乃至1.15g/cmの範囲内にある上記側面に係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、パルプの平均繊維長が0.7乃至3.0mmの範囲内にある上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、密度が0.5乃至1.15g/cmの範囲内にあり、パルプの平均繊維長が0.7乃至3.0mmの範囲内にある上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、非木材パルプを含む上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、開口部を有し、前記開口部から離れる方向へ先細りしている上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、容器である上記側面の何れかに係るパルプモールド成形品が提供される。
 本発明の更に他の側面によると、パルプと水とを含んだスラリーを準備することと、立体形状を有する抄型上に前記パルプを堆積させてパルプ層を形成することと、前記パルプ層を脱水して中間成形品を得ることと、未乾燥の前記中間成形品を、雄型と雌型との間に挟んで、0.5乃至10MPaの範囲内の圧力で加圧しながら、120乃至250℃の範囲内の温度で加熱することとを含んだパルプモールド成形品の製造方法が提供される。
 本発明によれば、容器として使用した際に内容物が充填され容器が積み重ねられた場合など、荷重がかかった場合であっても座屈が生じにくいパルプモールド成形品を提供することが可能となる。
図1は、本発明の一実施形態に係るパルプモールド成形品を示す斜視図である。 図2は、図1のパルプモールド成形品の製造に利用可能な製造装置の一例を概略的に示す図である。 図3は、図2の装置を用いたパルプモールド成形におけるパルプ層形成工程を示す図である。 図4は、抄型上に形成されたパルプ層の一例を概略的に示す断面図である。 図5は、図2の装置を用いたパルプモールド成形における脱水工程を示す図である。 図6は、図2の装置を用いたパルプモールド成形におけるパルプ層の搬送工程を示す図である。 図7は、図2の装置を用いたパルプモールド成形における熱プレス形成工程を示す図である。 図8は、熱プレス工程によって得られるパルプモールド成形品の一例を概略的に示す断面図である。 図9は、図2の装置を用いたパルプモールド成形におけるパルプモールド成形品の搬送工程を示す図である。 図10は、図9の搬送工程を完了した状態を示す図である。
 以下に、本発明の実施形態について、図面を参照しながら説明する。以下に説明する実施形態は、上記側面の何れかをより具体化したものである。以下に記載する事項は、単独でまたは複数を組み合わせて、上記側面の各々に組み入れることができる。
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、下記の構成部材の材質、形状、および構造等によって限定されるものではない。本発明の技術的思想には、請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 なお、同様または類似した機能を有する要素については、以下で参照する図面において同一の参照符号を付し、重複する説明は省略する。また、図面は模式的なものであり、或る方向の寸法と別の方向の寸法との関係、および、或る部材の寸法と他の部材の寸法との関係等は、現実のものとは異なり得る。
 <1>パルプモールド成形品
 図1は、本発明の一実施形態に係るパルプモールド成形品を示す斜視図である。 
 図1に示すパルプモールド成形品MP2は、開口部を有し、開口部から離れる方向へ先細りしている。このパルプモールド成形品MP2は、容器である。このパルプモールド成形品MP2は、底部と側壁部とを含んでおり、上部で開口している。
 底部は、円盤形状を有している。底部は、容器の深さ方向に対して垂直な平面への正射影が、円以外の形状を、例えば、四角形状などの多角形状を有していてもよい。
 側壁部は、底部の縁から上方へ伸びた筒形状を有している。側壁部は、底部から開口部へ向けて拡径している。側壁部の内面及び外面は、底部の上面に対して垂直であってもよい。但し、側壁部が底部から開口部へ向けて拡径しているパルプモールド成形品MP2は、高い離型性を実現するうえで有利であるとともに、積み重ね易い。また、このような形状の場合、複数のパルプモールド成形品MP2を重ねてなる積層物の体積を小さくすることができる。
 パルプモールド成形品MP2は、カップ形状、ボウル形状、トレー形状、及び箱形状などの様々な形状を有し得る。パルプモールド成形品MP2は、立体成形品、即ち、シートのように二次元形状を有するものではなく、三次元形状を有する成形品であれば、容器でなくてもよい。
 パルプモールド成形品MP2は、厚さが1.5mm以下である。パルプモールド成形品MP2の厚さは、好ましくは1.2mm以下、より好ましくは1mm以下である。厚さの下限値は特にないが、一例によれば、0.6mm以上である。パルプモールド成形品MP2の厚さは、パルプモールド成形品MP2の壁部の厚さ、ここでは、底部及び側壁部の厚さである。壁部の厚さが底部と側壁部とで異なっている場合、パルプモールド成形品MP2の厚さは、底部及び側壁部のうちより薄いものの厚さである。
 ここで、パルプモールド成形品MP2の厚さは、以下の方法によって得られる値である。即ち、パルプモールド成形品MP2の任意の位置から5つの試験片を切り出す。次いで、各試験片について、厚さを測定する。厚さの測定には、例えば、ミツトヨ社製のシックネスゲージを使用する。パルプモールド成形品MP2の厚さは、5つの試験片について得られた測定結果の平均値とする。
 パルプモールド成形品MP2は、ISOリングクラッシュ圧縮強さが6乃至25kN/mの範囲内にある。パルプモールド成形品MP2のISOリングクラッシュ圧縮強さは、好ましくは8乃至24kN/m、より好ましくは9乃至24kN/mの範囲内にある。
 ここで、パルプモールド成形品MP2のISOリングクラッシュ圧縮強さは、JIS P8126:2015「圧縮強さ試験方法-リングクラッシュ法」で規定される方法によって得られる値である。圧縮強さは、円筒状(リング状)に曲げた細長い試験片を、平行な上下圧縮板の間に挟み、圧縮荷重を加えて座屈させたときの最大荷重を取得し、得られた最大荷重を試験片の長さで除することで求められる。なお、この試験方法において、細長い試験片は、パルプモールド成形品MP2から、幅が15mm、長さが145mmの短冊形状を有している試験片を切り出すことにより準備する。
 したがって、パルプモールド成形品MP2のISOリングクラッシュ圧縮強さが大きいと、荷重がかかった場合であっても座屈が生じにくい。ただし、パルプモールド成形品MP2のISOリングクラッシュ圧縮強さが大きすぎると、落下時等の衝撃荷重がかかった場合に破損しやすくなる。
 パルプモールド成形品MP2は、厚さが小さいにも拘わらず、荷重がかかった場合であっても座屈が生じにくい。例えば、パルプモールド成形品MP2を容器として使用した際に、パルプモールド成形品MP2に内容物を充填し、パルプモールド成形品MP2を積み重ねた場合などであっても、座屈が生じにくい。加えて、パルプモールド成形品MP2は、衝撃荷重がかかった場合であっても破損しにくい。また、パルプモールド成形品MP2は、厚さが小さいため、積み重ねた場合に嵩張らず、軽量である。そのため、パルプモールド成形品MP2は、保管時や使用時の利便性がよい。また、パルプモールド成形品MP2の壁部を薄くすることは、その製造時の乾燥を短時間で完了可能とするうえで有利である。
 パルプモールド成形品MP2は、密度が0.5乃至1.15g/cmの範囲内にあることが好ましく、0.6乃至1.15g/cmの範囲内にあることがより好ましい。密度が高いことは、パルプモールドの稠密性が向上することを意味し、外部から力が加わった際に抵抗する要素となり、ひいてはISOリングクラッシュ圧縮強さ等の強度の向上にも貢献すると考えられる。ただし、密度が高すぎると、硬さが増すため、落下時等の衝撃荷重がかかった場合に破損しやすくなる。
 ここで、上記の密度は、以下の方法によって得られる値である。即ち、パルプモールド成形品MP2のうち表面が湾曲していない部分から、正方形又は長方形の試験片を切り出し、寸法、質量、及び厚さを計測する。得られた値から密度を算出する。
 パルプモールド成形品MP2は、坪量が550乃至980g/mの範囲内にあることが好ましく、580乃至950g/mの範囲内にあることがより好ましい。坪量が高いことは、パルプモールドの稠密性が向上することを意味し、外部から力が加わった際に抵抗する要素となり、ひいてはISOリングクラッシュ圧縮強さ等の強度の向上にも貢献すると考えられる。ただし、坪量が高すぎると、硬さが増すため、落下時等の衝撃荷重がかかった場合に破損しやすくなる。
 ここで、上記の坪量は、以下の方法によって得られる値である。即ち、密度の値を取得する場合と同様、パルプモールド成形品MP2のうち表面が湾曲していない部分から、正方形又は長方形の試験片を切り出し、寸法及び質量を計測する。得られた値から坪量を算出する。
 パルプモールド成形品MP2において、パルプの平均繊維長は、0.7乃至3.0mmの範囲内にあることが好ましく、1乃至2mmの範囲内にあることがより好ましい。
 パルプの平均繊維長が長いと、パルプモールド成形品MP2においてISOリングクラッシュ圧縮強さ等の強度が低下する。パルプの平均繊維長が短いと、パルプモールド成形品MP2の密度を高くすることが容易になり、また、ISOリングクラッシュ圧縮強さ等の強度が高くなる。しかしながら、パルプの平均繊維長が短いと、乾燥時にパルプモールド成形品MP2に歪が生じ易く、これにより、パルプモールド成形品MP2の表面に凹凸が生じ易い。また、パルプの平均繊維長を過剰に短くすると、その製造時の乾燥を短時間で完了することが難しくなるか、又は、乾燥不良に起因した亀裂や離型性の低下を生じ易くなる。
 ここで、パルプの平均繊維長は、以下の方法によって得られる値である。即ち、先ず、パルプモールド成形品MP2から、5gの試験片を取得する。次に、この試験片を細かく千切り、500mLの水に一晩浸漬させる。次いで、これを撹拌機で撹拌して、パルプを互いから離解させる。このようにして、パルプを含んだ分散液を得る。次に、この分散液から10gを採取し、これを水で希釈する。この希釈は、合計質量が200gとなるように行う。このようにして得られた試料を使用して、JIS P8226-2:2011「パルプ-光学的自動分析法による繊維長測定方法-第2部:非偏光法」に従って繊維長測定を行う。パルプの平均繊維長は、長さ加重平均繊維長Lを指す。
 パルプモールド成形品MP2が含んでいるパルプを水に分散させてなるパルプ懸濁液は、カナダ標準ろ水度(CSF)が700mL以下であることが好ましく、680mL以下であることがより好ましい。カナダ標準ろ水度が大きいと、パルプモールド成形品MP2は、ISOリングクラッシュ圧縮強さ等の強度が低下する傾向にある。
 上記のカナダ標準ろ水度は、500mL以上であることが好ましく、550mL以上であることがより好ましい。カナダ標準ろ水度が小さいと、パルプモールド成形品MP2は、ISOリングクラッシュ圧縮強さ等の強度が高くなるが、乾燥時にパルプモールド成形品MP2に歪が生じ易く、これにより、パルプモールド成形品MP2の表面に凹凸が生じ易い。また、カナダ標準ろ水度が小さいと、その製造時における乾燥に長い時間を要する傾向にある。
 ここで、上記のカナダ標準ろ水度は、以下の方法によって得られる値である。先ず、パルプモールド成形品MP2から試験片を取得し、上記と同様の方法により、パルプを含んだ分散液を得る。次に、この分散液を、固形分濃度が0.3質量%となるように水で希釈して、パルプの水懸濁液を得る。次いで、この懸濁液1Lを使用して、JIS P8121-2:2012「パルプ-ろ水度試験方法-第2部:カナダ標準ろ水度法」に規定された測定を行う。この測定には、例えば、熊谷理機工業社製のカナディアンフリーテスターを使用する。また、測定値は、予め測定しておいた懸濁液の温度を補正表へ参照することにより補正する。このようにして、カナダ標準ろ水度を得る。
 パルプモールド成形品MP2は、圧縮強さが0.65kN以上であることが好ましく、0.7kN以上であることがより好ましい。なお、圧縮強さの上限値は特にないが、一例によれば、2.2kNである。即ち、パルプモールド成形品MP2は、圧縮強さが大きいと、荷重がかかった場合であっても圧縮変形が生じにくい。例えば、パルプモールド成形品MP2を容器として使用した際に、パルプモールド成形品MP2に内容物を充填し、パルプモールド成形品MP2を積み重ねた場合などであっても、圧縮変形が生じにくい。
 ここで、圧縮強さは、JIS Z0212:1998「包装貨物及び容器-圧縮試験方法」で規定される方法において、上下方向に加える荷重を大きくした場合に成形品が形状を保持する最大圧縮荷重である。この試験では、成形品として、底面が150mmの辺を有する正方形であり、4つの壁面が高さ40mmを有する箱形状のパルプモールド成形品を用いる。
 パルプモールド成形品MP2は、ポリアクリルアミドなどの紙力増強剤を更に含むことができる。紙力増強剤を使用すると、パルプモールド成形品MP2の強度を高めることができる。
 紙力増強剤を使用して製造したパルプモールド成形品MP2は、紙力増強剤を使用せずに製造したパルプモールド成形品MP2と比較して、窒素含有量が多い。紙力増強剤を使用して製造したパルプモールド成形品MP2の窒素含有量は、一例によれば300μg/g以上であり、他の例によれば500μg/g以上である。なお、パルプモールド成形品MP2の窒素含有量に上限値はないが、一例によれば、1000μg/g以下である。
 パルプモールド成形品MP2の窒素含有量は、以下の方法によって得る。先ず、パルプモールド成形品MP2の任意の位置から2つの試験片を採取する。各試験片の質量は10mgとする。次に、各試験片について、JIS K2609:1998「原油及び石油製品-窒素分析試験法」において規定される化学発光法による測定を行う。この測定には、例えば、日東精工エアナリテック社製のTN-2100Hを使用することができる。窒素含有量は、2つの試験片について得られた測定結果の平均値とする。なお、上述したパルプモールド成形品MP2は、紙力増強剤を省略しても高い強度を維持することができる。
 <2>パルプモールド成形品の製造装置
 次に、パルプモールド成形品MP2の製造に利用可能な製造装置について説明する。
 図2は、図1のパルプモールド成形品の製造に利用可能な製造装置の一例を概略的に示す図である。
 図2に示す製造装置1は、支持体10と、第1ステーション20と、第2ステーション30と、第3ステーション40とを含んでいる。
 支持体10は、枠体と、その上部に設置されたレールとを含んでいる。
 第1ステーションは、容器210と、昇降装置220と、カバー体230と、抄型240と、移動装置250と、昇降装置260と、上型270とを含んでいる。
 容器210は、支持体10の枠体内に設置されている。容器210は、上部で開口している。容器210は、パルプと水とを含んだスラリーSを収容している。
 昇降装置220は、容器210よりも上方で、支持体10の枠体に取り付けられている。昇降装置220は、例えば、油圧シリンダを含む。昇降装置220は、カバー体230を支持している。昇降装置220は、カバー体230を、容器210の開口部の位置で昇降させ得る。
 カバー体230は、上部に開口部を有する中空体である。カバー体230には、図示しないポンプが接続されている。
 抄型240は、カバー体230の開口部に固定されている。具体的には、抄型240は、その一方の面と隣接した空間が、抄型240とカバー体230とによって囲まれるように、カバー体230の開口部に固定されている。
 抄型240は、液体透過性を有する型である。抄型240は、立体形状を有している。即ち、抄型240は、パルプが堆積する面に、1以上の凸部及び/又は1以上の凹部を有している。具体的には、抄型240の外面、即ち、上記空間と隣接した面の裏面は、パルプモールド成形品に対応した形状を有している。ここでは、抄型240は、上面が突き出た雄型である。
 抄型240は、例えば、多数の貫通孔が設けられ、外面がパルプモールド成形品に対応した形状を有している抄型本体と、抄型本体の外面上に、この外面に沿うように設けられた網体とを含んでいる。抄型本体は、金属などの硬質材料からなる。
 移動装置250は、支持体10のレールに沿って、第1ステーション20と第2ステーション30との間で移動可能である。移動装置250は、動力源として、例えば、モータを含んでいる。移動装置250には、昇降装置260が取り付けられており、これを第1ステーション20と第2ステーション30との間で移送し得る。
 昇降装置260は、上記の通り、移動装置250に取り付けられている。昇降装置260は、例えば、油圧シリンダを含む。昇降装置260は、上型270を支持している。昇降装置260は、上型270を昇降させ得る。
 上型270は、抄型240との間に後述するパルプ層を挟み、パルプ層を真空吸着式で保持する保持具である。上型270は、金属などの硬質材料からなる。上型270の下面は、抄型240の上記外面に対応した形状を有している。ここでは、上型270は、下面が凹んだ雌型である。上型270は、例えば、一端が下面で開口し、他端がポンプに接続された多数の貫通孔を有している。
 第2ステーション30は、第1ステーション20の近傍に設けられている。第2ステーション30は、台310と、下型320と、移動装置330と、プレス装置340と、上型350とを含んでいる。
 台310は、支持体10の枠体内に設置されている。台310上には、下型320が設置されている。
 下型320は、気体及び/又は液体透過性を有する型である。下型320は、金属などの硬質材料からなる。下型320は、上面が抄型240の上記外面に対応した形状を有している。ここでは、下型320は、上面が突き出た雄型である。下型320は、例えば、多数の貫通孔を有し、抄型240の上記外面に対応した形状を有している面が滑らかである。
 移動装置330は、支持体10のレールに沿って、第2ステーション30と図示しない第4ステーションとの間で移動可能である。移動装置330は、動力源として、例えば、モータを含んでいる。移動装置330は、第2ステーション30に位置している場合には、ロック機構により、上下、左右及び前後方向の移動が規制され得る。また、移動装置330には、プレス装置340が取り付けられており、これを第2ステーション30と第4ステーションとの間で移送し得る。
 プレス装置340は、上記の通り、移動装置330に取り付けられている。プレス装置340は、例えば、油圧シリンダを含む。プレス装置340は、上型350を支持している。プレス装置340は、上型350を昇降させ得る。
 上型350は、気体透過性及び液体透過性を有していない型である。上型350は、金属などの硬質材料からなる。上型350の下面は、抄型240の上記外面に対応した形状を有している。ここでは、上型350は、下面が凹んだ雌型である。上型350は、抄型240の上記外面に対応した形状を有している面が滑らかである。
 第2ステーション30は、ヒータ及びポンプを更に含んでいる(何れも図示せず)。ヒータは、下型320及び上型350の少なくとも一方を加熱する。ポンプは、下型320の下部空間に接続されている。
 第3ステーション40は、第2ステーション30の近傍に設けられている。第3ステーション40は、台410と、移動装置420と、昇降装置430と、保持具440とを含んでいる。
 台410は、支持体10の枠体内に設置されている。台410上には、パルプモールド成形品が配置される。
 移動装置420は、支持体10のレールに沿って、第2ステーション30と第3ステーション40との間で移動可能である。移動装置420は、動力源として、例えば、モータを含んでいる。移動装置420には、昇降装置430が取り付けられており、これを第2ステーション30と第3ステーション40との間で移送し得る。
 昇降装置430は、上記の通り、移動装置420に取り付けられている。昇降装置430は、例えば、油圧シリンダを含む。昇降装置430は、保持具440を支持している。昇降装置430は、保持具440を昇降させ得る。
 保持具440は、後述するパルプモールド成形品を真空吸着式で保持する保持具である。保持具440の下面は、抄型240の上記外面に対応した形状を有している。ここでは、保持具440は、下面が凹んだ形状を有している。保持具440は、例えば、一端が下面で開口し、他端がポンプに接続された多数の貫通孔を有している。
 <3>パルプモールド成形品の製造方法
 本発明の一実施形態に係る製造方法では、例えば、上記の製造装置1を用いてパルプモールド成形品MP2を製造する。これについて、図1乃至図10を参照しながら説明する。
 図3は、図2の装置を用いたパルプモールド成形におけるパルプ層形成工程を示す図である。図4は、抄型上に形成されたパルプ層の一例を概略的に示す断面図である。図5は、図2の装置を用いたパルプモールド成形における脱水工程を示す図である。図6は、図2の装置を用いたパルプモールド成形におけるパルプ層の搬送工程を示す図である。図7は、図2の装置を用いたパルプモールド成形における熱プレス形成工程を示す図である。図8は、熱プレス工程によって得られるパルプモールド成形品の一例を概略的に示す断面図である。図9は、図2の装置を用いたパルプモールド成形におけるパルプモールド成形品の搬送工程を示す図である。図10は、図9の搬送工程を完了した状態を示す図である。
 この方法では、先ず、スラリーSを準備する。 
 スラリーSは、上記の通り、パルプと水とを含んでいる。スラリーSは、パルプが水に分散され、高い粘度を有する懸濁液である。スラリーSが含んでいるパルプは、パルプモールド成形品MP2が含んでいるパルプについて上述したのとほぼ同様の特徴を有している。
 スラリーSに使用するパルプの種類に、特に制限はない。パルプとしては、例えば、製紙において原料パルプとして通常に使用される、針葉樹の晒クラフトパルプ(NBKP)又は未晒クラフトパルプ(NUKP)及び広葉樹の晒クラフトパルプ(LBKP)又は未晒クラフトパルプ(LUKP)等の木材パルプや、ワラ、木綿、ケナフ、竹及びサトウキビ等の非木材パルプを、単独で又は2種以上を任意の割合で混合して使用することができる。
 パルプとしては、非木材パルプを含むことが好ましく、非木材パルプを主成分として(即ち、パルプ中50質量%より多い量で)含むことがより好ましい。非木材パルプは、木材パルプと同程度の強度のパルプモールド成形品MP2を製造することができる点に加えて、環境負荷を低減することができる点で優れている。
 パルプは、その原料や製造方法に応じて、繊維長等が異なっている。例えば、一般に、サトウキビを原料とするパルプは、竹を原料とするパルプと比較して、平均繊維長が短い。また、パルプの平均繊維長は、任意の手法により、例えば、叩解や粉砕などの機械的な処理により調節することができる。従って、或る特徴を有しているパルプは、例えば、複数種のパルプの中から適当なものを選択すること、又は、2種以上のパルプを適宜組み合わせることにより得ることができる。
 この方法では、未乾燥のパルプ層に対して熱プレス工程を実施する。即ち、水分含有量が大きいパルプ層に対して熱プレス工程を実施する。それ故、パルプの平均繊維長が短すぎると、熱プレス工程において、水分蒸発速度のムラが生じ易くなり、乾燥時に偏った収縮が生じることで、皺、亀裂又は強度の低下などの要因となり得る。
 パルプの平均繊維長が長ければ、熱プレス工程において、パルプ層内での乾燥のムラが生じる可能性は低い。それ故、外観上の不良や強度の低下が生じたパルプモールド成形品が製造されるのを防止できる。
 スラリーSのパルプ含有量は、0.01乃至3.0質量%の範囲内にあることが好ましく、0.01乃至0.5質量%の範囲内にあることがより好ましい。パルプ含有量が小さいと、高い生産性を達成することが難しい。パルプ含有量が大きいと、パルプ層の厚さのばらつきが大きくなる可能性がある。
 スラリーSは、添加剤を更に含むことができる。添加剤としては、有機系低分子材料、有機系高分子材料、無機系材料、又はそれらの組み合わせを使用することができ、例えば耐水性や耐油性を付与する薬剤などが挙げられるが、パルプモールド容器としての要求性能に応じた薬剤を選定すればよい。パルプと添加剤との合計に占める添加剤の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。即ち、スラリーSが含む全固形分に占めるパルプの割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
 次に、スラリーSを容器210内へ供給する。次いで、図3に示すように、昇降装置220によりカバー体230を下降させて、抄型240の上面をスラリーSの液面よりも十分に下方へ位置させる。これにより、カバー体230の上部に設置された抄型240をスラリー中に浸漬させる。この状態でポンプを駆動して、カバー体230と抄型240とによって囲まれた空間を減圧する。これにより、抄型240を横切るスラリーSの流れを生じさせ、抄型240上にパルプを堆積させる。以上のようにして、図4に示すように、抄型240上にパルプ層MP1を形成する。
 次に、ポンプを駆動したまま、図5に示すように、昇降装置220によりカバー体230を上昇させて、抄型240の下部をスラリーSの液面よりも十分に上方へ位置させる。これにより、パルプ層MP1を減圧脱水する。次に、昇降装置260を駆動して、上型270を、その下面がパルプ層MP1に接触するまで下降させる。なお、図5には、パルプ層MP1は描いていない。この脱水工程は、上型270及び抄型240の何れも加熱することなしに行う。
 脱水工程における減圧時間は、1乃至60秒の範囲内にあることが好ましく、1乃至10秒の範囲内にあることがより好ましい。
 脱水直後のパルプ層MP1の水分含有量は、40乃至90質量%の範囲内にあることが好ましく、50乃至70質量%の範囲内にあることがより好ましい。水分含有量が小さいと、熱プレス工程において、パルプ層内での面内方向への繊維の移動が不十分となる可能性がある。水分含有量が大きいと、熱プレス工程において、パルプ層内での面内方向への繊維の移動が過剰となるか、又は、脱水工程を終了してから熱プレス工程を開始するまでの期間内において、パルプ層MP1の形状保持性が不十分となる可能性がある。
 上記空間の減圧及び上記の加圧を停止した後、ポンプを駆動して、上型270にパルプ層MP1を吸着保持させる。なお、ポンプと上型270とによる吸引は、パルプ層MP1の更なる脱水を生じさせるものではない。
 次いで、上型270にパルプ層MP1を吸着保持させた状態で昇降装置260を駆動して、図2に示すように、上型270を上昇させる。これにより、パルプ層MP1を抄型240から剥離する。
 次に、移動装置250及び330を駆動して、図6に示すように、プレス装置340及び上型350を第2ステーション30から第4ステーションへ移動させるとともに、昇降装置260及び上型270を第1ステーション20から第2ステーション30へ移動させる。続いて、昇降装置260を駆動して、パルプ層MP1が下型320と接触するまで上型270を下降させる。その後、ポンプと上型270とによる吸引を停止して、上型270からパルプ層MP1を解放する。次いで、昇降装置260を駆動して、上型270を上昇させる。このようにして、パルプ層MP1を第1ステーション20から第2ステーション30へ移送するとともに、パルプ層MP1を下型320上に載置する。
 次に、移動装置250及び330を駆動して、図2に示すように、昇降装置260及び上型270を第2ステーション30から第1ステーション20へ移動させるとともに、プレス装置340及び上型350を第4ステーションから第2ステーション30へ移動させる。続いて、プレス装置340を駆動して、図7に示すように上型350を下降させる。そして、上型350と下型320とによって、それらの間に挟まれたパルプ層MP1を加圧する。また、これとともに、ヒータを駆動してパルプ層MP1を加熱する。更に、これとともに、ポンプを駆動して、上型350と下型320とによって挟まれた空間から水及び/又は水蒸気を吸引除去する。これにより、パルプ層MP1の表面形状を整えるとともに、パルプ層MP1を緻密化及び乾燥させる。以上のようにして、図8に示すパルプモールド成形品MP2を得る。
 なお、この熱プレス工程を開始する直前におけるパルプ層MP1の水分含有量は、脱水工程を終了した直後におけるパルプ層MP1の水分含有量とほぼ等しい。
 この熱プレス工程において、プレス圧は、0.5乃至10MPaの範囲内であることが好ましく、1乃至9.5MPaの範囲内であることがより好ましい。プレス圧が低いと、強度の高いパルプモールド成形品MP2が得られない可能性がある。プレス圧が過剰に高いと、パルプモールド成形品MP2の厚さにばらつきを生じ易い。
 この熱プレス工程において、パルプ層MP1の加熱温度、即ち、ヒータによって加熱する上型350又は下型320の温度は、120乃至250℃の範囲内にあることが好ましく、150乃至200℃の範囲内にあることがより好ましい。加熱温度が低いと、パルプ層MP1の乾燥に長時間を要する。加熱温度を高くすると、乾燥に伴うパルプ層MP1の収縮がより大きくなり、その結果、パルプモールド成形品MP2における歪がより大きくなる可能性がある。
 上記の通り、ヒータによる加熱は、上型350及び下型320の一方に対してのみ行ってもよく、双方に対して行ってもよい。ヒータによる加熱を、上型350及び下型320の一方に対してのみ行った場合、一方から他方への熱伝導により、それらの温度はほぼ等しくなる。それ故、何れの場合であっても、パルプ層MP1の乾燥は、その厚さ全体に亘ってほぼ同時に進行する。従って、パルプモールド成形品MP2には、乾燥速度の相違に起因した歪は生じない。
 熱プレス工程におけるプレス時間は、加熱温度や成形品の形状等にもよるが、10乃至300秒の範囲内にあることが好ましく、20乃至200秒の範囲内にあることがより好ましい。
 上記の熱プレス工程を終了するに当たり、上型350が上昇するようにプレス装置340を駆動すると、パルプモールド成形品MP2は上型350から剥離する。
 次に、移動装置330及び420を駆動して、図9に示すように、プレス装置340及び上型350を第2ステーション30から第4ステーションへ移動させるとともに、昇降装置430及び保持具440を第3ステーション40から第2ステーション30へ移動させる。続いて、昇降装置430を駆動して、保持具440がパルプモールド成形品MP2と接触するまで保持具440を下降させる。下型内部からエアーを噴出させてパルプモールド成形品MP2を下型から離型させ、その後、ポンプを駆動して、保持具440にパルプモールド成形品MP2を吸着保持させる。
 次いで、保持具440にパルプモールド成形品MP2を吸着保持させた状態で昇降装置430を駆動して、保持具440を上昇させる。続いて、移動装置330及び420を駆動して、図10に示すように、昇降装置430及び保持具440を第2ステーション30から第3ステーション40へ移動させるとともに、プレス装置340及び上型350を第4ステーションから第2ステーション30へ移動させる。続いて、ポンプと保持具440とによる吸引を停止して、保持具440からパルプモールド成形品MP2を解放する。このようにして、パルプモールド成形品MP2を第2ステーション30から第3ステーション40へ移送するとともに、パルプモールド成形品MP2を台410上に載置する。
 以上のようにして、パルプモールド成形品MP2を製造する。
 その後、必要に応じて、パルプモールド成形品MP2に対して、後処理、例えば、絵柄印刷及び無地印刷等の印刷、コーティング、又はそれらの組み合わせを行う。後処理によって形成するコーティング層は、例えば、耐水性や耐油性を付与する薬剤を含んだ層、断熱性を付与する材料が充填された層、発泡剤によって発泡させた層、又はそれらの組み合わせである。後処理を行うことにより、例えば、パルプモールド成形品MP2の美粧性を更に高めることや、パルプモールド成形品MP2に新たな機能を付与することができる。
 上記の方法により得られるパルプモールド成形品MP2は、表面性状に優れており、とりわけ、表面に凹凸が少ない点で優れている。この理由について、以下に説明する。
 熱プレス工程の代わりに、オーブンを使用した乾燥を行った場合、パルプ層には、その収縮によって、表面に高低差が大きな凹凸を生じる。また、このような方法では、パルプ層は十分に緻密化されず、それ故、パルプモールド成形品は高い多孔度を有する。従って、この場合、表面性状に優れたパルプモールド成形品を製造することはできない。
 また、脱水工程後に、オーブンを使用した乾燥を行い、この乾燥品を必要に応じて加湿して、これを熱プレス処理に供した場合、乾燥に伴って表面に生じた凹凸の高低差は、その後の加湿及び熱プレス処理によって小さくすることができる。また、加湿及び熱プレス処理によって、多孔度を小さくすることができる。しかしながら、オーブンを使用した乾燥に伴って表面に生じる凹凸の高低差は非常に大きいため、その後の加湿及び熱プレス処理によって十分に小さくすることはできない。また、乾燥後に加湿及び熱プレス処理を行っても、多孔度を十分に低下させることは難しい。
 図2乃至図10を参照しながら説明した方法では、熱プレス工程において、パルプ層MP1を乾燥させる。即ち、上記の方法では、脱水工程後に、乾燥工程を経ることなしに、熱プレス工程を実施する。そして、パルプとしては、平均繊維長が上述した範囲内にあるものを使用する。
 熱プレス工程前に乾燥工程を行わないので、パルプ層MP1の表面に、高低差が大きな凹凸を生じることはない。熱プレス工程では、乾燥に伴うパルプ層MP1の変形を、上型350及び下型320が防止する。また、熱プレス工程は、水分含有量が高く且つパルプの平均繊維長が上述した範囲内にあるパルプ層MP1に対して行うので、パルプ層MP1内での面内方向への繊維の移動が適度に生じ得る。このため、厚さのばらつきを抑えながら、パルプ層MP1を緻密化することができる。
 従って、図2乃至図10を参照しながら説明した方法(以下、第1方法ともいう)によると、表面性状に優れたパルプモールド成形品MP2を製造することができる。具体的には、表面に凹凸が少ないパルプモールド成形品MP2が得られる。そのようなパルプモールド成形品MP2は、美粧性に優れるとともに、印刷層やコーティング層の形成が容易である。
 一般的なパルプモールド成形品は、第1方法以外の他の方法によって製造することができる。しかし、表面性状に優れた上述のパルプモールド成形品MP2は、第1方法以外の他の方法によって製造することは難しい。このことを、他の方法の例(以下、第2方法という)を挙げて以下で説明する。
 第2方法では、先ず、抄型として、雌型を準備する。この抄型は、多数の貫通孔が設けられ、上面がパルプモールド成形品に対応した形状に凹んだ抄型本体と、抄型本体の内面上に、この内面に沿うように設けられた網体とを含んでいる。
 次に、この抄型を、その開口部が上方を向くように設置する。次いで、抄型のキャビティ内へパルプと水とを含んだスラリーを供給して、抄型内をスラリーで満たす。更に、抄型内へのスラリーの供給を継続して、網体上にパルプを堆積させる。抄型内へのスラリーの供給は、抄型内のスラリーが加圧状態になるように行う。
 十分な量のパルプが網体上に堆積した後、抄型内へのスラリーの供給を停止する。続いて、抄型内に残留している水を抄型から排出させる。例えば、抄型内へ空気を圧入して、抄型内に残留している水を抄型から排出させる。
 次に、抄型と雄型である上型とでパルプ層を押圧して、パルプ層を脱水する。この脱水工程は、上型及び抄型の何れも加熱することなしに行う。脱水直後におけるパルプ層の水分含有量は、第1方法における脱水直後におけるパルプ層MP1の水分含有量と同様とする。
 次いで、上型にパルプ層を吸着保持させ、この状態で上型を上昇させる。これにより、パルプ層を抄型から剥離する。
 次に、パルプ層を吸着保持している上型を、雌型である下型の位置まで移動させる。続いて、パルプ層が下型と接触するまで上型を下降させる。その後、吸引を停止して、上型からパルプ層を解放する。このようにして、パルプ層を下型上に載置する。
 次に、熱プレス用の上型と下型との間にパルプ層を挟み、それらの間のパルプ層を加圧する。また、これとともに、ヒータを駆動してパルプ層を加熱する。更に、これとともに、ポンプを駆動して、上型と下型とによって挟まれた空間から水及び/又は水蒸気を吸引除去する。第2方法では、以上のようにして、パルプモールド成形品を得る。
 第2方法では、抄型内へのスラリーの供給を開始してから抄型内がスラリーで完全に満たされるまでの期間においては、抄型内を循環するスラリーの流れを生じ得る。この循環流は、パルプの沈降を防止し得る。しかしながら、第2方法では、抄型内をスラリーで満たす必要があるため、抄型には、水が速やかに排出される構造を採用することができない。それ故、抄型内がスラリーで完全に満たされた後は、スラリーの圧力を高めても、パルプの沈降を防止できるほどのスラリーの循環流は生じず、抄型内のスラリーにおいてパルプの沈降を生じる。
 その結果、抄型の側壁部に堆積するパルプの量は、上方と比較して、下方においてより多くなる。そして、抄型の側壁部の上方に十分な量のパルプが堆積するまでスラリーを供給すると、抄型の底部には過剰な量のパルプが堆積することになる。パルプを過剰に堆積させると、パルプの堆積量のばらつきが大きくなる。例えば、抄型本体に設けられた貫通孔の近傍とそれらから離れた位置とで、パルプの堆積量に大きな相違を生じ得る。
 このように、第2方法では、パルプの堆積量に大きなばらつきを生じる。熱プレス処理の際には、パルプ層内で繊維が面内方向へ移動し得るが、各繊維の移動は狭い範囲に限られる。即ち、パルプ堆積量のばらつきは、熱プレス処理の際の繊維の移動によって解消されるものではない。それ故、第2方法によると、表面に凹凸が少ないパルプモールド成形品を製造することはできない。
 これに対し、第1方法では、カバー体230の上部に抄型240を設置し、これらの複合体をスラリーS中に浸漬させる。スラリーSの深さは、抄型240の高さと比較して遥かに大きい。それ故、スラリーSにおいてパルプの沈降を生じても、抄型240の上部の位置と抄型240の下部の位置とで、パルプ濃度は大きくは相違しない。従って、第1方法によると、抄型240上にパルプを略均一に堆積させることができ、表面に凹凸が少ないパルプモールド成形品MP2を製造することができる。
 なお、第1方法において、パルプ層MP1を上型350及び下型320によって加圧する代わりに、上型350及び下型320の一方と弾性体との間にパルプ層MP1を挟んで、これを加圧した場合、弾性体の変形を生じる。それ故、パルプ層MP1に十分な圧力が加わらず、表面性状に優れたパルプモールド成形品を得ることができない。
 また、言うまでもないが、第2方法において、熱プレス処理に使用する上型及び下型の一方を弾性体に変更しても、表面性状に優れたパルプモールド成形品を得ることはできない。
 なお、図2乃至図10は、本発明の一実施形態に係るパルプモールド成形品の製造方法の理解を容易にするためのものである。上述した方法は、他の構造を有する製造装置を使用して実施することも可能である。例えば、製造装置1では、上型270及び上型350は雌型であり、抄型240及び下型320は雄型である。上型270及び上型350は雄型であり、抄型240及び下型320は雌型であってもよい。このように、上記の製造装置1及び製造方法には、様々な変形が可能である。
 以下に、本発明の具体例を記載する。本発明は、これらの具体例に限定されるものではない。
 <1>パルプモールド成形品の製造
 (例1)
 パルパーを用いて、パルプと水とからなるスラリーを調製した。パルプとしては、平均繊維長が1.6mmの竹パルプを使用した。スラリーのパルプ含有量は0.3質量%とした。
 このスラリーを使用して、図2乃至図10を参照しながら説明した方法(即ち、第1方法)により、パルプモールド成形品を製造した。ここでは、脱水工程は、脱水直後のパルプ層の水分含有量が60質量%となるように行った。熱プレス工程は、加熱温度を180℃、プレス圧を1.2MPa、プレス時間を80秒として行った。脱水工程及び熱プレス工程では、壁部の厚さが1.1mmのパルプモールド成形品が得られるように、上型と下型とのクリアランスを1.1mmとした。 
 以上のようにして、パルプモールド成形品として容器を製造した。得られたパルプモールド成形品は、壁部の厚さが1.1mm、密度が0.71g/cm、坪量が780g/mであった。
 (例2)
 パルプ堆積量を調整し、上型と下型とのクリアランスを0.9mmとし、プレス時間を82秒としたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.9mm、密度が0.94g/cm、坪量が850g/mであった。
 (例3)
 例3では、パルプとして、70質量%の竹パルプ(平均繊維長:1.6mm)と30質量%のサトウキビパルプ(平均繊維長:0.9mm)との混合物であって、平均繊維長が1.4mmであるものを使用した。上記パルプを使用したことと、パルプ堆積量を調整し、上型と下型とのクリアランスを1.0mmとしたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが1.0mm、密度が0.63g/cm、坪量が600g/mであった。
 (例4)
 パルプ堆積量を調整し、上型と下型とのクリアランスを0.7mmとしたこと以外は例3と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.7mm、密度が0.93g/cm、坪量が653g/mであった。
 (例5)
 パルプ堆積量を調整し、上型と下型とのクリアランスを1.1mmとし、プレス時間を100秒としたこと以外は例3と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが1.1mm、密度が0.78g/cm、坪量が860g/mであった。
 (例6)
 パルプ堆積量を調整し、上型と下型とのクリアランスを1.05mmとし、プレス時間を110秒としたこと以外は例3と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが1.05mm、密度が0.89g/cm、坪量が930g/mであった。
 (例7)
 パルプ堆積量を調整し、上型と下型とのクリアランスを0.9mmとし、プレス圧を5.7MPa、プレス時間を110秒としたこと以外は例3と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.9mm、密度が1.02g/cm、坪量が910g/mであった。
 (例8)
 パルプ堆積量を調整し、上型と下型とのクリアランスを0.8mmとし、プレス圧を9.6MPa、プレス時間を110秒としたこと以外は例3と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.8mm、密度が1.10g/cm、坪量が935g/mであった。
 (例9)
 例9では、パルプとして、50質量%の竹パルプ(平均繊維長:1.6mm)と50質量%のサトウキビパルプ(平均繊維長:0.9mm)との混合物であって、平均繊維長が1.3mmであるものを使用した。上記パルプを使用したことと、パルプ堆積量を調整し、上型と下型とのクリアランスを0.9mmとし、プレス時間を130秒としたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.9mm、密度が1.10g/cm、坪量が930g/mであった。
 (例10)
 例10では、パルプとして、20質量%の竹パルプ(平均繊維長:1.6mm)と80質量%のサトウキビパルプ(平均繊維長:0.9mm)との混合物であって、平均繊維長が1.1mmであるものを使用した。上記パルプを使用したことと、パルプ堆積量を調整し、上型と下型とのクリアランスを0.8mmとし、プレス時間を150秒としたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.8mm、密度が1.15g/cm、坪量が930g/mであった。
 (例11)
 例11では、パルプとして、平均繊維長が2.5mmの針葉樹パルプを使用した。上記パルプを使用したことと、パルプ堆積量を調整し、上型と下型とのクリアランスを0.9mmとし、プレス時間を82秒としたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが0.9mm、密度が0.94g/cm、坪量が860g/mであった。
 (比較例1)
 比較例1では、パルプとして、70質量%の竹パルプ(平均繊維長:1.6mm)と30質量%のサトウキビパルプ(平均繊維長:0.9mm)との混合物であって、平均繊維長が1.4mmであるものを使用した。上記パルプを使用したことと、パルプ堆積量を調整し、上型と下型とのクリアランスを1.5mmとし、プレス圧を0MPa、プレス時間を600秒としたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが1.5mm、密度が0.46g/cm、坪量が690g/mであった。
 (比較例2)
 比較例1では、パルプとして、70質量%の竹パルプ(平均繊維長:1.6mm)と30質量%のサトウキビパルプ(平均繊維長:0.9mm)との混合物であって、平均繊維長が1.4mmであるものを使用した。上記パルプを使用したことと、パルプ堆積量を調整し、上型と下型とのクリアランスを1.0mmとし、プレス圧を5.7MPa、プレス時間を150秒としたこと以外は例1と同様の方法により、パルプモールド成形品を製造した。得られたパルプモールド成形品は、壁部の厚さが1.0mm、密度が1.79g/cm、坪量が1700g/mであった。
 <2>評価
 例1乃至11並びに比較例1乃至2において製造したパルプモールド成形品の各々について、上述した方法により各種測定を行った。「ISOリングクラッシュ圧縮強さ」は、上記のとおり、JIS P8126:2015「圧縮強さ試験方法-リングクラッシュ法」で規定される方法に従って測定した。この測定において、試験片は、パルプモールド成形品から、幅が15mm、長さが145mmの短冊形状を有している試験片を切り出すことにより準備した。「圧縮強さ」は、上記のとおり、JIS Z0212:1998「包装貨物及び容器-圧縮試験方法」で規定される方法に従って測定した。「落下時の破損/割れ」は、サンプルとして幅150mm、奥行150mm、高さ50mmの角箱形状の成型品を用い、サンプルを120センチメートルの高さから地面に落下させたときに、サンプルに破損または割れが発生したか否かを目視で観察することにより評価した。
 以下の表1および表2に結果を記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 例1乃至11では、厚さが1.5mm以下であり、ISOリングクラッシュ圧縮強さが6乃至25kN/mの範囲内にあるパルプモールド成形品を製造することができた。例1乃至11のパルプモールド成形品は、箱形状の場合の圧縮強さも大きく、落下衝撃に対する強度も優れていた。例1乃至11のパルプモールド成形品は、厚さが小さいが、優れた強度を有していた。
 一方、比較例1では、厚さが1.5mm以下であるが、ISOリングクラッシュ圧縮強さが6kN/mより小さいパルプモールド成形品が製造された。比較例1のパルプモールド成形品は、箱形状の場合の圧縮強さも小さかった。比較例2では、厚さが1.5mm以下であるが、ISOリングクラッシュ圧縮強さが25kN/mより大きいパルプモールド成形品が製造された。比較例2のパルプモールド成形品は、密度や坪量の値から明らかなとおり硬さが大きく、落下衝撃に対して破損や割れが生じた。
 1…製造装置、10…支持体、20…第1ステーション、30…第2ステーション、40…第3ステーション、210…容器、220…昇降装置、230…カバー体、240…抄型、250…移動装置、260…昇降装置、270…上型、310…台、320…下型、330…移動装置、340…プレス装置、350…上型、410…台、420…移動装置、430…昇降装置、440…保持具、MP1…パルプ層、MP2…パルプモールド成形品、S…スラリー。

Claims (8)

  1.  厚さが1.5mm以下であり、ISOリングクラッシュ圧縮強さが6乃至25kN/mの範囲内にあるパルプモールド成形品。
  2.  密度が0.5乃至1.15g/cmの範囲内にある請求項1に記載のパルプモールド成形品。
  3.  パルプの平均繊維長が0.7乃至3.0mmの範囲内にある請求項1に記載のパルプモールド成形品。
  4.  密度が0.5乃至1.15g/cmの範囲内にあり、パルプの平均繊維長が0.7乃至3.0mmの範囲内にある請求項1に記載のパルプモールド成形品。
  5.  非木材パルプを含む請求項1に記載のパルプモールド成形品。
  6.  開口部を有し、前記開口部から離れる方向へ先細りしている請求項1に記載のパルプモールド成形品。
  7.  容器である請求項1に記載のパルプモールド成形品。
  8.  パルプと水とを含んだスラリーを準備することと、
     立体形状を有する抄型上に前記パルプを堆積させてパルプ層を形成することと、
     前記パルプ層を脱水して中間成形品を得ることと、
     未乾燥の前記中間成形品を、雄型と雌型との間に挟んで、0.5乃至10MPaの範囲内の圧力で加圧しながら、120乃至250℃の範囲内の温度で加熱することと
    を含んだパルプモールド成形品の製造方法。
PCT/JP2023/021550 2022-06-24 2023-06-09 パルプモールド成形品 WO2023248833A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101951A JP2024002629A (ja) 2022-06-24 2022-06-24 パルプモールド成形品
JP2022-101951 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248833A1 true WO2023248833A1 (ja) 2023-12-28

Family

ID=89379669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021550 WO2023248833A1 (ja) 2022-06-24 2023-06-09 パルプモールド成形品

Country Status (2)

Country Link
JP (1) JP2024002629A (ja)
WO (1) WO2023248833A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181200A (ja) * 1997-09-08 1999-03-26 Nippon Paper Ind Co Ltd モールディング成形体の製造方法
JP2001055219A (ja) * 2000-01-01 2001-02-27 Kao Corp パルプモールド中空成形体
JP2002201598A (ja) * 2000-05-31 2002-07-19 Oji Paper Co Ltd 成形加工原紙及びそれを用いた紙製成形容器
JP2003113600A (ja) * 2001-08-03 2003-04-18 Kao Corp パルプモールド成形体
WO2023013642A1 (ja) * 2021-08-02 2023-02-09 凸版印刷株式会社 パルプモールド成形品及びその製造方法
JP2023108430A (ja) * 2022-01-25 2023-08-04 凸版印刷株式会社 パルプモールド成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181200A (ja) * 1997-09-08 1999-03-26 Nippon Paper Ind Co Ltd モールディング成形体の製造方法
JP2001055219A (ja) * 2000-01-01 2001-02-27 Kao Corp パルプモールド中空成形体
JP2002201598A (ja) * 2000-05-31 2002-07-19 Oji Paper Co Ltd 成形加工原紙及びそれを用いた紙製成形容器
JP2003113600A (ja) * 2001-08-03 2003-04-18 Kao Corp パルプモールド成形体
WO2023013642A1 (ja) * 2021-08-02 2023-02-09 凸版印刷株式会社 パルプモールド成形品及びその製造方法
JP2023108430A (ja) * 2022-01-25 2023-08-04 凸版印刷株式会社 パルプモールド成形品

Also Published As

Publication number Publication date
JP2024002629A (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
AU2005310066B2 (en) A method and a machine for making fibre products from stock and a new type of fibre product
JP6911005B2 (ja) 繊維材料からの成形トレイ又はプレート及びその製造方法
WO2023013642A1 (ja) パルプモールド成形品及びその製造方法
WO2022138563A1 (ja) パルプモールド成形品及びその製造方法
WO2023145458A1 (ja) パルプモールド成形品
WO2023248833A1 (ja) パルプモールド成形品
WO2023248786A1 (ja) パルプモールド成形品
WO2023145541A1 (ja) パルプモールド成形品
JP7248175B2 (ja) パルプモールド成形品及びその製造方法
WO2023145457A1 (ja) パルプモールド成形品
JP7248176B2 (ja) パルプモールド成形品及びその製造方法
WO2023013641A1 (ja) パルプモールド成形品及びその製造方法
JP2024038851A (ja) パルプモールド成形品及びエンボス加工済みパルプモールド成形品
CN117716089A (zh) 纸浆模塑成形品及其制造方法
CN117716088A (zh) 纸浆模塑成形品及其制造方法
KR101392867B1 (ko) 발포용 원지 및 이의 제조방법
KR102562465B1 (ko) 종이 빨대 제작에 적합한 용지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827019

Country of ref document: EP

Kind code of ref document: A1