WO2023248641A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2023248641A1
WO2023248641A1 PCT/JP2023/017820 JP2023017820W WO2023248641A1 WO 2023248641 A1 WO2023248641 A1 WO 2023248641A1 JP 2023017820 W JP2023017820 W JP 2023017820W WO 2023248641 A1 WO2023248641 A1 WO 2023248641A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspected
unit
transport
imaging
inspection
Prior art date
Application number
PCT/JP2023/017820
Other languages
English (en)
French (fr)
Inventor
温資 岩瀬
太郎 竹内
Original Assignee
株式会社サキコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サキコーポレーション filed Critical 株式会社サキコーポレーション
Publication of WO2023248641A1 publication Critical patent/WO2023248641A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • An inspection device that inspects the appearance of a board (inspected object) on which electronic components, etc. are mounted is configured so that a single transport unit carries out the process of carrying the board into the inspection device, imaging, inspecting, tabulating, and carrying it out. (See Patent Document 1).
  • the time required for inspection can be reduced by managing the processing of carrying in and imaging the board (object to be inspected) and the processing of inspection and tabulation using different transport units. It is possible to provide an inspection device that can
  • the inspection apparatus 10 is an apparatus that inspects an object to be inspected 12 using an image of the object to be inspected obtained by imaging the object to be inspected.
  • the object to be inspected 12 is, for example, an electronic circuit board on which many electronic components are mounted.
  • the inspection device 10 determines the quality of the mounting state of electronic components based on the image of the object to be inspected. This inspection is usually performed on a plurality of inspection items for each part.
  • An inspection item is an item that requires a pass/fail judgment.
  • the inspection apparatus 10 includes an inspection table 14 for holding an inspection object 12, an imaging unit 20 for illuminating and imaging the inspection object 12, an XY stage 16 for moving the imaging unit 20 with respect to the inspection table 14, and an imaging unit 20 for illuminating and imaging the inspection object 12.
  • the apparatus includes a control unit 30 for controlling the unit 20 and the XY stage 16 and for inspecting the object 12 to be inspected.
  • Optical axis direction of the optical system of the first imaging unit 21) is defined as the Z direction.
  • the imaging unit 20 is attached to a moving table (not shown) of the XY stage 16, and is movable by the XY stage 16 in both the X direction and the Y direction.
  • the XY stage 16 is, for example, a so-called H-shaped XY stage. Therefore, the XY stage 16 includes a Y drive section that moves the moving table in the Y direction along a Y direction guide extending in the Y direction, and a Y drive section that supports the Y direction guide at both ends and moves the moving table and the Y direction guide in the X direction. It includes two X-direction guides and an X drive section that are configured to be movable.
  • the imaging unit 20 includes a first imaging section 21 that is a main camera that captures an image from a direction perpendicular to the inspection surface (substrate surface) of the object 12 to be inspected (Z-axis direction), a lighting unit 22 , and an illumination unit 22 .
  • the second imaging unit 23 is a side camera that takes images from an oblique direction (at an angle different from the Z axis) with respect to the inspection surface (substrate surface). This is to improve inspection accuracy by photographing and inspecting the object 12 from two directions.
  • the first imaging section 21, the illumination unit 22, and the second imaging section 23 may be configured as an integrated imaging unit 20.
  • the relative positions of the first imaging section 21, the illumination unit 22, and the second imaging section 23 may be fixed, or each unit may be configured to be relatively movable. good. Further, the first imaging section 21, the illumination unit 22, and the second imaging section 23 may be separate bodies and configured to be movable separately. Further, the imaging unit 20 may be provided with a projection unit that projects a pattern onto the inspection surface of the object 12 to be inspected. For example, if the projection unit is configured to project a striped pattern whose brightness changes according to a sine curve onto the object 12 to be inspected, the control unit 30 may be configured to A height map of the object to be inspected 12 can be created using the PMP (Phase Measurement Profilometry) method.
  • PMP Phase Measurement Profilometry
  • the first imaging unit 21 includes an imaging device that generates two-dimensional image data of a target object, and an optical system (for example, a lens) for forming an image on the imaging device.
  • the first imaging unit 21 is, for example, a CMOS camera.
  • the maximum field of view of the first imaging unit 21 may be smaller than the test subject placement area of the test table 14. In this case, the first imaging unit 21 images the entire subject 12 by dividing it into a plurality of partial images.
  • the control unit 30 controls the XY stage 16 so that the first imaging section 21 is moved to the next imaging position every time the first imaging section 21 captures a partial image.
  • the control unit 30 synthesizes the partial image data output from the first imaging section 21 to generate an entire image of the object to be inspected 12 (full board image data).
  • the first imaging unit 21 may include an imaging device that generates one-dimensional image data, such as a line sensor, instead of a two-dimensional imaging device. In this case, by scanning the object to be inspected 12 with the first imaging section 21, it is possible to acquire the entire image data of the object to be inspected 12.
  • the illumination unit 22 is configured to project illumination light for imaging by the first imaging section 21 and the second imaging section 23 onto the surface of the object to be inspected 12.
  • the illumination unit 22 includes one or more light sources that emit light in a wavelength or a wavelength range selected from a wavelength range detectable by the imaging elements of the first imaging unit 21 and the second imaging unit 23.
  • the illumination light is not limited to visible light, and ultraviolet light, X-rays, etc. may also be used.
  • each light source is configured to project light of different wavelengths (for example, red, blue, and green) onto the surface of the object to be inspected 12 at different projection angles.
  • the illumination unit 22 is a side illumination source that projects illumination light from an oblique direction onto the inspection surface of the inspected object 12, and in this embodiment, the upper light source 22a, the middle The lower light source 22b and the lower light source 22c are provided.
  • the side illumination sources 22a, 22b, and 22c are each ring illumination sources, surround the optical axis of the first imaging section 21, and illuminate the inspection surface of the object 12 to be inspected. It is configured to project illumination light obliquely.
  • Each of these side illumination sources 22a, 22b, and 22c may be configured by a plurality of light sources arranged in an annular shape.
  • the upper light source 22a, middle light source 22b, and lower light source 22c, which are side illumination sources, are each configured to project illumination light at different angles to the inspection surface.
  • the second imaging unit 23 is configured to take an image from an oblique direction with respect to the inspection surface (substrate surface) of the object 12 to be inspected.
  • this second imaging section 23 is also, for example, a CMOS camera.
  • the second imaging section 23 is provided between the upper light source 22a and the intermediate light source 22b, but the arrangement of the second imaging section 23 is not limited to this.
  • the second imaging unit 23 may be provided outside the light source 22c.
  • the inspection table 14 also carries the inspected object 12 passed to the inspection apparatus 10 from an upstream process into an area (hereinafter referred to as "imaging area") where the imaging unit 20 performs imaging.
  • imaging area an area where the imaging unit 20 performs imaging.
  • a transport section 40 is provided that moves the inspected objects 12 to an area for inspection and tabulation (hereinafter referred to as the “inspection and tabulation area”), and then carries out the inspected objects 12 for which the tabulation has been completed and passes them on to the next process.
  • the test total area may also be referred to as a waiting area.
  • the transport section 40 is also provided with a clamp mechanism for fixing the object to be inspected 12 when the imaging unit 20 takes an image in the imaging area. Control of the operation of the transport section 40 is performed by the control unit 30. A detailed description of the transport section 40 will be given later.
  • the control unit 30 shown in FIG. 1 centrally controls the entire device, and includes a CPU, GPU (Graphics Processing Unit), and FPU (Floating-Point Processing Unit/Floating-Point Processing Unit) of any computer. It is realized by coprocessors such as Unit), memory, and other LSIs, and software is realized by programs loaded into memory, but the functional blocks realized by their cooperation are depicted here. Therefore, these functional blocks can be implemented in various ways using only hardware, only software, or a combination thereof.
  • FIG. 1 shows an example of the configuration of the control unit 30.
  • the control unit 30 includes an inspection control section 31 and a memory 35 which is a storage section.
  • the inspection control section 31 includes a height measurement section 32, an inspection data processing section 33, and an inspection section 34.
  • the inspection device 10 also includes an input section 36 for receiving input from a user or another device, and an output section 37 for outputting information related to the inspection. are each connected to the control unit 30.
  • the input unit 36 includes, for example, input means such as a mouse and keyboard for receiving input from a user, and communication means for communicating with other devices.
  • the output unit 37 includes known output means such as a display and a printer.
  • the inspection control unit 31 is configured to execute various control processes for the inspection based on input from the input unit 36 and inspection-related information stored in the memory 35.
  • the inspection related information includes two-dimensional image data of the object to be inspected 12, a height map of the object to be inspected 12, and board inspection data.
  • the inspection data processing unit 33 creates board inspection data using the two-dimensional image data and height map of the inspected object 12, which is guaranteed to pass all inspection items.
  • the inspection unit 34 executes an inspection based on the already created board inspection data and the two-dimensional image data and height map of the object 12 to be inspected.
  • Board inspection data is inspection data created for each type of board.
  • the board inspection data is, so to speak, a collection of inspection data for each component mounted on the board.
  • the inspection data for each part includes the inspection items necessary for that part, the inspection window that is the inspection area on the image for each inspection item, and the inspection information associated with this inspection window, and the pass/fail judgment is made for each inspection item.
  • One or more inspection windows are set for each inspection item. For example, in an inspection item for determining the quality of soldering of a component, the same number of inspection windows as the number of soldering areas of the component are usually set in an arrangement corresponding to the arrangement of the soldering areas.
  • the details of the image processing are also included in the inspection data.
  • the inspection data processing unit 33 sets each item of inspection data according to the board as a board inspection data creation process. For example, the inspection data processing unit 33 automatically sets the position and size of each inspection window for each inspection item to match the component layout of the board.
  • the test data processing unit 33 may accept user input for some items of the test data. For example, the inspection data processing unit 33 may accept tuning of inspection standards by the user.
  • the inspection criteria may be set using height information.
  • the inspection control unit 31 executes imaging processing of the inspected object 12 as pre-processing for creating board inspection data.
  • the object 12 to be inspected is one that passes all inspection items.
  • the imaging process involves controlling the relative movement between the imaging unit 20 and the inspection table 14 while illuminating the object 12 with the illumination unit 22, and using the first imaging section 21 and the second imaging section 23, This is performed by sequentially capturing partial images of the object 12 to be inspected and outputting partial image data. A plurality of partial images are captured so that the entire inspected object 12 is covered.
  • the inspection control unit 31 synthesizes these plurality of partial image data and generates full board image data, which is an image including the entire inspection surface of the object 12 to be inspected.
  • the inspection control unit 31 stores the partial image data and the entire board image data in the memory 35.
  • the transport unit 40 provided in the inspection device 10 according to the present embodiment will be described below.
  • the transport section 40 is composed of a first transport unit 41 and a second transport unit 42, which are arranged in series from the entrance to the exit of the inspection apparatus 10.
  • the first conveyance unit 41 and the second conveyance unit 42 can adopt a system in which a pulley and a belt are combined (belt conveyor system) or a system in which a pulley is used.
  • the first transport unit 41 and the second transport unit 42 are belt conveyor-type transport devices
  • the first transport unit 41 supports both ends of the object to be inspected 12 in the Y direction from below, and the upper surface of the belt It is composed of a first belt conveyor 41a that moves the placed inspection object 12 from the entrance to the imaging area, and a first drive section 41b that drives the first belt conveyor 41a.
  • the second transport unit 42 supports both ends of the object to be inspected 12 in the Y direction passed from the first transport unit 41 from below, and moves the object to be inspected 12 placed on the top surface of the belt into the inspection total area. It is comprised of a second belt conveyor 42a that moves the paper to the outside from the exit and a second drive unit 42b that drives the second belt conveyor 42a.
  • the first drive section 41b and the second drive section 42b are configured to operate independently according to a command signal from the control unit 30.
  • the conveyance unit 40 is provided with a clamp mechanism composed of a fixed part 44 and a movable part 45 in the imaging area.
  • a fixing section 44 grips at least two places at each end of the object 12 in the Y direction located in the imaging area, and a fixing section 44 that holds the object 12 to be inspected from below is held together with the fixing section 44.
  • It is composed of a movable part 45 that fixes the object 12 to be inspected by sandwiching the object 12 therebetween.
  • the clamp mechanism shown here is an example, and instead of the movable part 45, the first transport unit 41 may be moved upward and fixed by sandwiching the fixed part 44 and the object to be inspected 12. good.
  • a fixing section may be provided below the object to be inspected 12, and the movable section placed above the object to be inspected may be moved downward and the object to be inspected 12 may be fixed by being sandwiched together with the fixed section. good.
  • the object to be inspected 12 may be fixed by suction.
  • the transport section 40 is composed of one transport unit.
  • the transport section 40 is composed of two transport units (the first transport unit 41 and the second transport unit 42), and the operation thereof is controlled by the control unit 30. Since it is activated by a command signal, by operating these two transport units 41 and 42 as one unit, it is possible to form one transport unit as a whole.
  • the control unit 30 When the inspected object 12 is delivered to the inspection apparatus 10 from the loading entrance, the control unit 30 operates the first transport unit 41 and the second transport unit 42 to carry the inspected object 12 into the imaging area within the inspection apparatus 10. Then, the object to be inspected 12 is fixed by the fixed part 44 and the movable part 45 (step S101).
  • the imaging area is a range in which at least a portion of the object to be inspected 12 can be imaged by moving the imaging unit 20 using the XY stage 16.
  • the field of view (FOV) of the first imaging section 21 and second imaging section 23 included in the imaging unit 20 is smaller than the object to be inspected 12, while the imaging unit 20 is moved by the XY stage 16 in this imaging area, By combining partial image data obtained by capturing a plurality of partial images of the object to be inspected 12, an entire image of the object to be inspected 12 (entire substrate image data) can be obtained.
  • the control unit 30 moves the imaging unit 20 using the XY stage 16 to acquire partial image data of the subject 12, and stores it in the memory. 35 (step S102).
  • the control unit 30 moves the imaging unit 20 and repeats the imaging process until partial image data covering the entire inspected object 12 is acquired.
  • the control unit 30 reads the acquired partial image data from the memory 35, and executes an inspection process using the read partial image data in parallel with the above-described imaging process (step S103).
  • the control unit 30 determines that all partial image data of the object to be inspected 12 has been acquired, the control unit 30 releases the fixation of the object to be inspected 12 by the fixed part 44 and the movable part 45, and moves the first transport unit 41 and the second transport unit. 42 to move the inspected object 12 to the inspection totaling area (step S104).
  • a visual inspection or the like may be performed, and when this visual inspection is performed, the inspected object 12 after the imaging process is immediately moved to the next process. It will not be carried out and you will have to wait for a while. Therefore, the object 12 to be inspected after the imaging process is made to wait in the inspection total area (step S105).
  • the control unit 30 performs aggregation process to output the results (step S106).
  • the totaled results are output to the output unit 37, the memory 35, or an external storage device (not shown).
  • the entire board image data is generated using the partial image data stored in the memory 35, and is output to the output unit 37, the memory 35, or an external storage device.
  • the memory 35 needs to have a capacity that can store at least all the partial image data of the entire inspected object 12.
  • the transport unit 40 has one transport unit (in the case of this embodiment, two transport units are operated together), the object to be inspected 12 currently being inspected is transported to the next process.
  • the time (takt time) required to inspect one inspected object 12 is T1 from the start of carry-in to the end of carry-out. becomes.
  • the transport section 40 is composed of two transport units 41 and 42 arranged in series and operating individually. Note that the inspection process is the same as when there is one transport unit.
  • the control unit 30 activates the first transport unit 41 to carry the object to be inspected 12 into the imaging area in the inspection apparatus 10, and the fixing part 44 and The object to be inspected 12 is fixed by the movable part 45 (step S201).
  • the control unit 30 moves the imaging unit 20 using the XY stage 16 to acquire partial image data of the subject 12 and stores it in the memory 35 (step S202). .
  • the control unit 30 repeats the imaging process until partial image data of the entire inspected object 12 is acquired.
  • control unit 30 reads the acquired partial image data from the memory 35, and executes an inspection process using the read partial image data in parallel with the above-described imaging process (step S203). Further, when the control unit 30 determines that all partial image data of the object 12 to be inspected has been acquired, the control unit 30 releases the fixation of the object 12 to be inspected by the fixed part 44 and the movable part 45, and The transport unit 42 is operated to move the object 12 to be inspected to the inspection totaling area (step S204), and the object 12 to be inspected is placed in a standby state (step S205). Furthermore, when the inspection process is completed, the control unit 30 performs a totaling process to output the results (step S206).
  • the totaled results are output to the output unit 37, the memory 35, or an external storage device.
  • the control unit 30 determines that there is no abnormality in the object 12 to be inspected as a result of the counting process, it operates the second transport unit 42 to carry out the object 12 to be inspected to the next process (step S207). .
  • the control unit 30 operates the first transport unit 41 to transport the next object 12 to the imaging area before the inspection process for the object 12 currently being inspected is completed (step S211).
  • the imaging process for the next object 12 to be inspected is executed (step S212), and the inspection process is executed in parallel with this imaging process (step S213).
  • control unit 30 executes a tallying process (step S216), and if it is determined that there is no abnormality in the inspected object 12 as a result of the counting process, it operates the second transport unit 42 to The inspection object 12 is carried out to the next process (step S217).
  • the inspection process is started when the imaging process of the previous object 12 to be inspected is completed, and the previous object 12 to be inspected is inspected from the imaging area in parallel with the inspection process. It can be moved to the aggregation area. Then, when the inspection process for the previous object 12 to be inspected is being executed, the next object 12 to be inspected is carried in in parallel, and when the imaging process for the next object 12 to be inspected is being executed. Since the previous inspected object 12 can be carried out at the same time, as shown in FIG. 3(b), the time required from the start of carrying in the previous inspected object 12 to the start of carrying in the next inspected object 12 becomes T2.
  • This time T2 can be shorter than the time (takt time) T1 required to test one object to be inspected 12 when there is one transport unit. Furthermore, as is clear from FIG. 3(b), since the aggregation process for the previous inspected object 12 and the imaging process for the next inspected object 12 can be executed in parallel, the two inspected objects The time T2, which is the time required to inspect 12 objects, is shorter than the time T1, which is the time required to inspect two objects 12, when there is one transport unit, and the total takt time is can be shortened. In addition, in such a configuration, when the inspection process of the next inspected object 12 and the aggregation process of the previous inspected object 12 are performed simultaneously, the memory 35 covers the entire two inspected objects 12. It is desirable to have a capacity that can store partial image data.
  • the control unit 30 controls the length of the objects 12 in the When the length (length in the direction in which 12 is conveyed) La is shorter than the length L2 of the inspection aggregation area), the conveyance section 40 is operated as two conveyance units (hereinafter referred to as "2-buffer mode"), and the inspection aggregation is performed. For the inspected object 12 that does not fit within the area (when the length La of the inspected object 12 in the X direction is longer than the length L2 of the inspection summary area), the transport section 40 is operated as one transport unit (hereinafter referred to as , referred to as "standard mode").
  • the length L1 of the imaging area in the X direction needs to be equal to or longer than the length of the largest object 12 among the objects 12 to be inspected. Since the above-mentioned board inspection data also includes the length (length La in the X direction) of the object 12 to be inspected, the control unit 30 extracts this from the board inspection data of the object 12 to be inspected. By determining the length of the object to be inspected 12, it is possible to decide whether to operate the transport unit 40 in the standard mode or in the 2-buffer mode. This allows the control unit 30 to determine the operating mode of the transport unit 40 even if objects 12 of different lengths are mixed, thereby optimizing the time (takt time) required for testing each object 12 to be inspected. As a result, the throughput of the inspection apparatus 10 can be improved.
  • a visual inspection may be performed. After the imaging process is completed, the object 12 to be inspected is moved to the inspection totaling area by the transport unit 44. Therefore, an imaging unit other than the above-mentioned imaging unit 20 may be provided in the inspection aggregation area of the inspection apparatus 10, and the control unit 30 may be configured to perform the visual inspection using this imaging unit.
  • the imaging unit 20 is arranged on the loading entrance side as an imaging area, and the loading exit side is used as an inspection aggregation area where the inspected object 12 waits.
  • the first transport unit 41 side may be used as a standby area where the inspected object 12 waits, and the imaging unit 20 may be arranged on the export exit side (second transport unit 42 side) as an imaging area for imaging, inspection, and tabulation.
  • a third transport unit (not shown) may be arranged on the transport port side of the second transport unit 42, the second transport unit 42 side may be used as an imaging area, and the third transport unit side may be used as an inspection aggregation area. If the time required for inspection by this inspection device 10 is longer than the time required for the process upstream of this inspection device 10, the takt time can be reduced by providing a waiting area upstream of the imaging area (carrying entrance side). can be shortened.
  • a third transport unit (not shown) is arranged on the loading entrance side of the first transport unit 41, the first transport unit 41 side is used as an imaging area, the second transport unit side is an inspection and aggregation area, and the third transport unit The side may be a reversing machine for reversing the object 12 to be inspected.
  • the conveyance unit 40 includes two conveyance units (a first conveyance unit 41 and a second The transport unit 42) is configured as follows. Further, a clamp mechanism consisting of a fixed part 44a and a movable part 45b is provided for the first transport unit 41, and a clamp mechanism consisting of a fixed part 44b and a movable part 45b is provided for the second transport unit 42.
  • the imaging area is set across the first transport unit 41 and the second transport unit 42.
  • the imaging unit 20 is configured to be movable by the XY stage 16 from above the first transport unit 41 to above the second transport unit 42 . Therefore, in this second embodiment, depending on the length of the object to be inspected 12, the time required for imaging processing, inspection processing, or tabulation processing, or the status of the preceding and subsequent processes of this inspection apparatus 10,
  • the control unit 30 can switch and control the operation of the first and second transport units 41 and 42 and the fixing of the object 12 to be inspected by the fixed part 44 and the movable part 45.
  • the control of the transport section 40 by the control unit 30 will be explained below using FIG. 5.
  • the lengths in the X direction of the first transport unit 41 and the second transport unit 42 will be explained as being the same, but as described in the first embodiment, it is not necessary to make them the same length. There isn't. Further, the processing performed on one inspected object 12 is as described in the first embodiment. Moreover, in FIG. 5, the first transport unit 41 and the second transport unit 42 are expressed simply.
  • the inspection aggregation process takes longer than the imaging process of the inspected object 12, the inspected object 12 can be inspected by using the first transport unit 41 side as the imaging area.
  • the takt time can be shortened.
  • the control unit 30 can switch between the standard mode and the 2-buffer mode based on the length of the inspected object 12 obtained from the board inspection data and the time required for each process. It is possible to select whether the imaging area is on the first transport unit 41 side or the second transport unit 42 side, thereby optimizing the takt time for inspection of each object to be inspected 12, As a result, the throughput of the inspection device 10 can be improved.
  • Inspection device 20 Imaging unit (imaging section) 30 Control unit (control section) 35 Memory 40 Transport section 41 First transport unit 42 Second transport unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

被検査体の搬入・撮像の処理と、検査及び集計の処理とを、異なる搬送ユニットで管理することにより、検査に要する時間(タクトタイム)を短縮することができる検査装置を提供する。 検査装置10は、撮像ユニット20と、搬送部40と、制御ユニット30と、を有し、搬送部40は、第1及び第2搬送ユニット41,42を有し、搬送ユニットの各々の作動は制御ユニット30により個別に制御可能であり、第1搬送ユニット41は撮像エリアに配置され、第2搬送ユニット42は検査集計エリア(待機エリア)に配置させる。そして、制御ユニット30は、第1搬送ユニット41により前記撮像エリアに移動させた被検査体12を撮像しているときに、第2搬送ユニット42により別の被検査体を検査集計エリアから搬出させる。

Description

検査装置
 本発明は、被検査体の外観を検査するための検査装置に関する。
 電子部品等が実装された基板(被検査体)の外観を検査する検査装置においては、この検査装置に対する基板の搬入から、撮像、検査、集計及び搬出を、1つの搬送ユニットで行うように構成されている(特許文献1参照)。
特開2014-010082号公報
 しかしながら、このような検査装置においては、検査及び集計の処理が完了するまで基板を搬出することができないため、次の基板の検査を実行することができず、次の基板が待機する時間が発生し、結果として検査装置のスループットが低下するという課題があった。
 本発明はこのような課題に鑑みてなされたものであり、検査装置内で被検査体を搬送する搬送部を直列に配列された複数の搬送ユニットで構成し、基板(被検査体)の搬入・撮像の処理と、検査及び集計の処理とを、異なる搬送ユニットで管理することにより、検査に要する時間(タクトタイム)を短縮することができる検査装置を提供することを目的とする。
 前記課題を解決するために、本発明に係る検査装置の第1の態様は、被検査体の画像データを取得する撮像部と、前記被検査体を移動させる搬送部と、前記撮像部及び前記搬送部の作動を制御する制御部と、を有し、前記搬送部は、前記被検査体を移動させる方向に直列に接続された少なくとも2つの搬送ユニットを有し、前記搬送ユニットの各々の作動は、前記制御部により個別に制御可能であり、前記搬送ユニットのうち、少なくとも1つの搬送ユニットは、前記撮像部により画像データを取得することができる撮像エリアに配置された第1搬送ユニットであり、残りの前記搬送ユニットのうち、少なくとも1つの搬送ユニットは、前記撮像エリアの前記移動させる方向の前又は後ろの待機エリアに配置された第2搬送ユニットであり、前記制御部は、前記搬送ユニットを個別に制御しているときに、前記第1搬送ユニットにより前記撮像エリアに移動させた前記被検査体を前記撮像部により撮像しているときに、前記第2搬送ユニットにより別の被検査体を前記待機エリアに搬入又は前記待機エリアから搬出させる。
 また、前記課題を解決するために、本発明に係る検査装置の第2の態様は、被検査体の画像データを取得する撮像部と、前記被検査体を移動させる搬送部と、前記撮像部及び前記搬送部の作動を制御する制御部と、を有し、前記搬送部は、前記被検査体を移動させる方向に直列に接続された少なくとも2つの搬送ユニットを有し、前記搬送ユニットの各々の作動は、前記制御部により個別に制御可能であり、前記搬送ユニットのうち、少なくとも2つの搬送ユニットは、前記撮像部により画像データを取得することができる撮像エリアに配置された第1搬送ユニット及び第2搬送ユニットであり、前記制御部は、前記搬送ユニットを個別に制御しているときに、前記第1搬送ユニット及び前記第2搬送ユニットの一方にある前記被検査体を前記撮像部により撮像しているときに、前記第1搬送ユニット及び前記第2搬送ユニットの他方により別の被検査体を移動させる。
 本発明によれば、基板(被検査体)の搬入・撮像の処理と、検査及び集計の処理とを、異なる搬送ユニットで管理することにより、検査に要する時間(タクトタイム)を短縮することができる検査装置を提供することができる。
検査装置の構成を説明するための説明図である。 上記検査装置の第1の実施形態に係る搬送部の構成を説明するための説明図である。 第1の実施形態に係る搬送部を用いた検査の流れを説明するための説明図である。 上記検査装置の第2の実施形態に係る搬送部の構成を説明するための説明図である。 第2の実施形態に係る搬送部の制御方法を説明するための説明図であって、(a)は標準モードを示し、(b)は2バッファモードにおいて第1搬送ユニットで撮像する場合を示し、(c)は2バッファモードにおいて第2搬送ユニットで撮像する場合を示す。 上記検査装置の第3の実施形態に係る搬送部の構成を説明するための説明図である。
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本実施形態に係る検査装置10の構成について説明する。この検査装置10は、被検査体12を撮像して得られる被検査体画像を使用して被検査体12を検査する装置である。被検査体12は例えば、多数の電子部品が実装されている電子回路基板である。検査装置10は、電子部品の実装状態の良否を被検査体画像に基づいて判定する。この検査は通常、各部品に対し複数の検査項目について行われる。検査項目とはすなわち良否判定を要する項目である。検査項目には例えば、部品そのものの欠品や位置ずれ、極性反転などの部品配置についての検査項目と、ハンダ付け状態や部品のリードピンの浮きなどの部品と基板との接続部についての検査項目とが含まれる。
 検査装置10は、被検査体12を保持するための検査テーブル14と、被検査体12を照明し撮像する撮像ユニット20と、検査テーブル14に対し撮像ユニット20を移動させるXYステージ16と、撮像ユニット20及びXYステージ16を制御し、被検査体12の検査を実行するための制御ユニット30と、を含んで構成される。なお説明の便宜上、図1に示すように、検査テーブル14の被検査体配置面をXY平面とし、その配置面に垂直な方向(すなわち撮像ユニット20を構成する第1の撮像部21による撮像方向(第1の撮像部21の光学系の光軸方向))をZ方向とする。
 撮像ユニット20は、XYステージ16の移動テーブル(図示せず)に取り付けられており、XYステージ16によりX方向及びY方向のそれぞれに移動可能である。XYステージ16は例えばいわゆるH型のXYステージである。よってXYステージ16は、Y方向に延びるY方向ガイドに沿って移動テーブルをY方向に移動させるY駆動部と、Y方向ガイドをその両端で支持しかつ移動テーブルとY方向ガイドとをX方向に移動可能に構成されている2本のX方向ガイド及びX駆動部と、を備える。なおXYステージ16は、撮像ユニット20をZ方向に移動させるZ移動機構をさらに備えてもよいし、撮像ユニット20を回転させる回転機構をさらに備えてもよい。検査装置10は、検査テーブル14を移動可能とするXYステージをさらに備えてもよく、この場合、撮像ユニット20を移動させるXYステージ16は省略されてもよい。また、X駆動部及びY駆動部には、リニアモータやボールねじを用いることができる。また、XYステージ16は、X方向の軸及びY方向の軸をそれぞれ1本ずつで構成してもよい。
 撮像ユニット20は、被検査体12の検査面(基板面)に対して垂直方向(Z軸方向)から撮像するメインカメラである第1の撮像部21と、照明ユニット22と、被検査体12の検査面(基板面)に対して斜め方向から(Z軸とは異なる角度で)撮像するサイドカメラである第2の撮像部23と、を含んで構成される。これは、2つの方向から被検査体12を撮影し検査することで、検査精度を上げるためのものである。本実施形態に係る検査装置10においては、第1の撮像部21、照明ユニット22、及び第2の撮像部23は一体の撮像ユニット20として構成されていてもよい。この一体の撮像ユニット20において、第1の撮像部21、照明ユニット22、及び第2の撮像部23の相対位置は固定されていてもよいし、各ユニットが相対移動可能に構成されていてもよい。また、第1の撮像部21、照明ユニット22、及び第2の撮像部23は別体とされ、別々に移動可能に構成されていてもよい。また、この撮像ユニット20に、被検査体12の検査面にパターンを投射する投射ユニットを設けてもよい。例えば、この投射ユニットからサインカーブに従って明るさが変化する縞パターンを被検査体12に投影するように構成した場合、制御ユニット30は、この縞パターンが投影された被検査体12の画像から、PMP(Phase Measurement Profilometry)法により、被検査体12の高さマップを作成することができる。
 第1の撮像部21は、対象物の2次元画像データを生成する撮像素子と、その撮像素子に画像を結像させるための光学系(例えばレンズ)とを含む。第1の撮像部21は例えばCMOSカメラである。第1の撮像部21の最大視野は、検査テーブル14の被検査体載置区域よりも小さくてもよい。この場合、第1の撮像部21は、複数の部分画像に分割して被検査体12の全体を撮像する。制御ユニット30は、第1の撮像部21が部分画像を撮像するたびに次の撮像位置へと第1の撮像部21が移動されるようXYステージ16を制御する。制御ユニット30は、第1の撮像部21から出力された部分画像データを合成して被検査体12の全体画像(基板全面画像データ)を生成する。
 なお、第1の撮像部21は、2次元の撮像素子に代えて、ラインセンサなどの1次元画像データを生成する撮像素子を備えてもよい。この場合、第1の撮像部21により被検査体12を走査することにより、被検査体12の全体画像データを取得することができる。
 照明ユニット22は、第1の撮像部21及び第2の撮像部23による撮像のための照明光を被検査体12の表面に投射するよう構成されている。照明ユニット22は、第1の撮像部21及び第2の撮像部23の撮像素子により検出可能である波長域から選択された波長または波長域の光を発する1つまたは複数の光源を備える。照明光は可視光には限られず、紫外光やX線等を用いてもよい。光源が複数設けられている場合には、各光源は異なる波長の光(例えば、赤色、青色、及び緑色)を異なる投光角度で被検査体12の表面に投光するよう構成される。
 本実施形態に係る検査装置10において、照明ユニット22は、被検査体12の検査面に対し斜め方向から照明光を投射する側方照明源であって、本実施形態では、上位光源22a、中位光源22b及び下位光源22cを備えている。なお、本実施形態に係る検査装置10においては、側方照明源22a、22b、22cはそれぞれリング照明源であり、第1の撮像部21の光軸を包囲し、被検査体12の検査面に対し斜めに照明光を投射するように構成されている。これらの側方照明源22a,22b,22cの各々は、複数の光源が円環状に配置されて構成されていてもよい。また、側方照明源である上位光源22a、中位光源22b及び下位光源22cは、それぞれ、検査面に対して異なる角度で照明光を投射するように構成されている。
 また、第2の撮像部23は被検査体12の検査面(基板面)に対して斜め方向から撮像するように構成されている。この第2の撮像部23も第1の撮像部21と同様に、例えばCMOSカメラである。
 なお、図示される実施例においては上位光源22aと中位光源22bとの間に第2の撮像部23が設けられているが、第2の撮像部23の配置はこれに限られず、例えば下位光源22cの外側に第2の撮像部23が設けられてもよい。
 また、検査テーブル14には、この検査装置10に上流の工程から渡された被検査体12を、撮像ユニット20による撮像を行うエリア(以下、「撮像エリア」と呼ぶ)に搬入し、撮像を行った後、検査及び集計を行うエリア(以下、「検査集計エリア」)に移動させ、さらに集計が完了した被検査体12を搬出して次の工程に渡す搬送部40が設けられている。なお、検査集計エリアに移動された被検査体12は、検査及び集計の処理が完了するのを待機している状態であるため、検査集計エリアを待機エリアと呼んでもよい。この搬送部40には、撮像エリアにおいて撮像ユニット20により撮像を行うときに、被検査体12を固定するためのクランプ機構も設けられている。この搬送部40の作動の制御は制御ユニット30により行われる。搬送部40の詳細な説明は後述する。
 図1に示す制御ユニット30は、本装置全体を統括的に制御するもので、ハードウエアとしては、任意のコンピュータのCPU、GPU(Graphics Processing Unit)やFPU(Floating-point Processing Unit/Floating-Point Unit)などのコプロセッサ、メモリ、その他のLSIで実現され、ソフトウエアとしてはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できる。
 図1には、制御ユニット30の構成の一例が示されている。制御ユニット30は、検査制御部31と記憶部であるメモリ35とを含んで構成される。検査制御部31は、高さ測定部32と検査データ処理部33と検査部34とを含んで構成される。また、検査装置10は、ユーザまたは他の装置からの入力を受け付けるための入力部36と、検査に関連する情報を出力するための出力部37とを備えており、入力部36及び出力部37はそれぞれ制御ユニット30に接続されている。入力部36は例えば、ユーザからの入力を受け付けるためのマウスやキーボード等の入力手段や、他の装置との通信をするための通信手段を含む。出力部37は、ディスプレイやプリンタ等の公知の出力手段を含む。
 検査制御部31は、入力部36からの入力及びメモリ35に記憶されている検査関連情報に基づいて、検査のための各種制御処理を実行するよう構成されている。検査関連情報には、被検査体12の2次元画像データ、被検査体12の高さマップ、及び基板検査データが含まれる。検査に先立って、検査データ処理部33は、すべての検査項目に合格することが保証されている被検査体12の2次元画像データ及び高さマップを使用して基板検査データを作成する。検査部34は、作成済みの基板検査データと、検査されるべき被検査体12の2次元画像データ及び高さマップとに基づいて検査を実行する。
 基板検査データは基板の品種ごとに作成される検査データである。基板検査データはいわば、その基板に実装された部品ごとの検査データの集合体である。各部品の検査データは、その部品に必要な検査項目、各検査項目についての画像上の検査区域である検査ウインドウ、及びこの検査ウインドウに対応付けられる検査情報であって、各検査項目について良否判定の基準となる検査基準を含む。検査ウインドウは各検査項目について1つまたは複数設定される。例えば部品のハンダ付けの良否を判定する検査項目においては通常、その部品のハンダ付け領域の数と同数の検査ウインドウがハンダ付け領域の配置に対応する配置で設定される。また、被検査体の画像データ(部分画像データ又は基板全面画像データ)に所定の画像処理をした画像データを使用する検査項目については、その画像処理の内容も検査データに含まれる。
 検査データ処理部33は、基板検査データ作成処理として、その基板に合わせて検査データの各項目を設定する。例えば、検査データ処理部33は、その基板の部品レイアウトに適合するように各検査ウインドウの位置及び大きさを各検査項目について自動的に設定する。検査データ処理部33は、検査データのうち一部の項目についてユーザの入力を受け付けるようにしてもよい。例えば、検査データ処理部33は、ユーザによる検査基準のチューニングを受け入れるようにしてもよい。検査基準は高さ情報を用いて設定されてもよい。
 検査制御部31は、基板検査データ作成の前処理として被検査体12の撮像処理を実行する。この被検査体12はすべての検査項目に合格しているものが用いられる。撮像処理は上述のように、照明ユニット22により被検査体12を照明しつつ撮像ユニット20と検査テーブル14との相対移動を制御し、第1の撮像部21及び第2の撮像部23により、被検査体12の部分画像を順次撮像して部分画像データを出力することにより行われる。被検査体12の全体がカバーされるように複数の部分画像が撮像される。検査制御部31は、これら複数の部分画像データを合成し、被検査体12の検査面全体を含む画像である基板全面画像データを生成する。検査制御部31は、メモリ35に部分画像データ及び基板全面画像データを記憶する。
 以下に、本実施形態に係る検査装置10に設けられた搬送部40について説明する。
(第1の実施形態)
 まず、搬送部40の第1の実施形態について図2及び図3を用いて説明する。図2に示すように、この搬送部40は、検査装置10の搬入口から搬出口に向かって直列に配置された第1搬送ユニット41と第2搬送ユニット42とで構成されている。ここで、第1搬送ユニット41及び第2搬送ユニット42は、プーリーとベルトを組み合わせた方式(ベルトコンベア方式)や、プーリーで構成した方式を採用することができる。例えば、第1搬送ユニット41及び第2搬送ユニット42がベルトコンベア方式の搬送装置である場合、第1搬送ユニット41は、被検査体12のY方向の両端を下方から支持し、ベルトの上面に載置された被検査体12を搬入口から撮像エリアに移動させる第1ベルトコンベア41aと、この第1ベルトコンベア41aを駆動する第1駆動部41bとで構成されている。また、第2搬送ユニット42は、第1搬送ユニット41から渡された被検査体12のY方向の両端を下方から支持し、ベルトの上面に載置された被検査体12を、検査集計エリアに移動させ、さらに搬出口から外部へ移動させる第2ベルトコンベア42aと、この第2ベルトコンベア42aを駆動する第2駆動部42bとで構成されている。第1駆動部41b及び第2駆動部42bは、制御ユニット30からの指令信号により各々が独立して作動するように構成されている。
 また、搬送部40は、撮像エリアに、固定部44と可動部45とから構成されるクランプ機構が設けられている。図2に示す構成においては、撮像エリアに位置する被検査体12のY方向の両端の各々において少なくとも2箇所を把持する固定部44と、被検査体12を下方から持ち上げて固定部44とともに被検査体12を挟み込むことによりこの被検査体12を固定する可動部45とから構成されている。なお、ここに示すクランプ機構は一例であり、可動部45の代わりに、第1搬送ユニット41を上方に移動させて固定部44と被検査体12を挟み込むことにより固定するように構成してもよい。あるいは、被検査体12の下方に固定部を設け、被検査体12の上方に配置した可動部を下方に移動させて固定部とともに被検査体12を挟み込むことにより固定するように構成してもよい。あるいは、固定部44と可動部45とで被検査体12を挟み込んで固定する代わりに、被検査体12を吸着して固定してもよい。
 次に、図3を用いて、第1の実施形態に係る検査装置10による被検査体12の検査の処理について説明する。
-搬送ユニットが1つの場合-
 まず、図3(a)を用いて、搬送部40が1つの搬送ユニットで構成されている場合について説明する。上述したように、本実施形態に係る検査装置10において、搬送部40は2つの搬送ユニット(第1搬送ユニット41及び第2搬送ユニット42)で構成されているが、その作動は制御ユニット30の指令信号により作動するため、これらの2つの搬送ユニット41,42を一体のものとして作動させることで、全体として1つの搬送ユニットであるとすることができる。
 搬入口から被検査体12がこの検査装置10に渡されると、制御ユニット30は第1搬送ユニット41及び第2搬送ユニット42を作動させ、被検査体12を検査装置10内の撮像エリアに搬入し、固定部44及び可動部45により被検査体12を固定する(ステップS101)。ここで撮像エリアとは、XYステージ16により撮像ユニット20を移動させて被検査体12の少なくとも一部を撮像できる範囲である。撮像ユニット20が備える第1の撮像部21及び第2の撮像部23の視野(FOV)が被検査体12より小さい場合は、この撮像エリアにおいて、撮像ユニット20をXYステージ16により移動させながら、被検査体12の複数の部分画像を撮像して得られた部分画像データを合成することにより、被検査体12の全体画像(基板全体画像データ)を取得することができる。
 撮像エリアで固定部44及び可動部45により被検査体12が固定されると、制御ユニット30は、XYステージ16により撮像ユニット20を移動させて被検査体12の部分画像データを取得し、メモリ35に記憶する(ステップS102)。制御ユニット30は、被検査体12の全体をカバーする部分画像データが取得されるまで撮像ユニット20を移動させて撮像処理を繰り返す。このように、被検査体12の全体の画像データ(基板全面画像データ)を複数の部分画像データとして取得する場合、取得した部分画像データを用いて順次検査を行うことができる。したがって、制御ユニット30は、取得された部分画像データをメモリ35から読み出し、上述した撮像処理と並行して、読み出した部分画像データを用いた検査処理を実行する(ステップS103)。
 制御ユニット30は、被検査体12の全ての部分画像データを取得したと判断すると、固定部44及び可動部45による被検査体12の固定を解除し、第1搬送ユニット41及び第2搬送ユニット42を駆動させて被検査体12を検査集計エリアに移動させる(ステップS104)。一方、検査の結果、不具合が発見されると、目視検査等が実行される場合があり、この目視検査が実行されるときは、撮像処理が終わった被検査体12は直ぐには次の工程に搬出されず、一旦待機が必要となる。そのため、撮像処理が終わった被検査体12を検査集計エリアで待機させる(ステップS105)。なお、目視検査が実行されず、次の後段の処理の準備が整っていれば待機せずに搬出される。また、制御ユニット30は、検査処理が終了すると、その結果を出力するための集計処理を行う(ステップS106)。集計された結果は、出力部37やメモリ35または外部の記憶装置(図示せず)に出力される。また、上述したように、メモリ35に記憶されている部分画像データを用いて基板全面画像データが生成され、出力部37やメモリ35または外部の記憶装置に出力される。集計処理が終了し、検査結果に異常がないと判断された場合、制御ユニット30は第1搬送ユニット41及び第2搬送ユニット42を作動させて被検査体12を次の工程に搬出する(ステップS107)。なお、集計処理において検査結果と被検査体12の基板全体画像データとを出力する場合がある。そのため、撮像処理と検査処理を並行して実行するためには、メモリ35に、少なくとも被検査体12の全体の部分画像データを全て保存することができる容量が必要である。
 また、検査が終了した被検査体12が次の工程に搬出されると、制御ユニット30は、第1及び第2搬送ユニット41,42により次の被検査体12を撮像エリアに搬入し(ステップS111)、撮像処理を行う(ステップS112)とともに検査処理を実行し(ステップS113)、撮像処理が終了すると、第1及び第2搬送ユニット41,42により被検査体12を検査集計エリアに移動させ(ステップS114)、被検査体12を待機させる(ステップS115)。また、検査処理が終了すると、集計処理を実行し(ステップS116)、目視判定等の検査後処理で異常がないと判断すると、被検査体12を第1及び第2搬送ユニット41,42により次の工程に搬出する(ステップS117)。制御ユニット30は、以降の被検査体12に対しても同じ処理を繰り返す。
 このように搬送部40の搬送ユニットが1つの場合(本実施形態の場合は、2つの搬送ユニットを一体に作動させた場合)、現在検査を行っている被検査体12を次の工程に搬出した後でないと次の被検査体12を搬入できないため、図3(a)に示すように、1つの被検査体12の検査に要する時間(タクトタイム)は、搬入開始から搬出終了までのT1となる。
-搬送ユニットが2つの場合-
 次に、図3(b)を用いて、搬送部40が、直列に配置された、個別に作動する2つの搬送ユニット41,42で構成されている場合について説明する。なお、検査の処理は、搬送ユニットが1つの場合と同じである。
 搬入口から被検査体12がこの検査装置10に渡されると、制御ユニット30は第1搬送ユニット41を作動させ、被検査体12を検査装置10内の撮像エリアに搬入し、固定部44及び可動部45により被検査体12を固定する(ステップS201)。制御ユニット30は、撮像エリアで被検査体12が固定されると、XYステージ16により撮像ユニット20を移動させて被検査体12の部分画像データを取得し、メモリ35に記憶する(ステップS202)。制御ユニット30は、被検査体12の全体の部分画像データが取得されるまで撮像処理を繰り返す。また、制御ユニット30は、取得された部分画像データをメモリ35から読み出し、上述した撮像処理と並行して読み出した部分画像データを用いた検査処理を実行する(ステップS203)。さらに、制御ユニット30は、被検査体12の全ての部分画像データを取得したと判断すると、固定部44及び可動部45による被検査体12の固定を解除し、第1搬送ユニット41及び第2搬送ユニット42を作動させて被検査体12を検査集計エリアに移動させ(ステップS204)、この被検査体12を待機状態にする(ステップS205)。また、制御ユニット30は、検査処理が終了すると、その結果を出力するための集計処理を行う(ステップS206)。集計された結果は、出力部37やメモリ35または外部の記憶装置に出力される。そして、制御ユニット30は、集計処理の結果、被検査体12に異常がないと判断すると、第2搬送ユニット42を作動させて、この被検査体12を次の工程に搬出する(ステップS207)。
 一方、現在検査を行っている被検査体12の撮像処理が終了した時点で、その被検査体12は検査集計エリアに移動させられて待機中である。このとき、被検査体12が検査集計エリアで待機しているときは、第1搬送ユニット41は使用されていない。したがって、制御ユニット30は、現在検査している被検査体12の検査処理が終了する前に、第1搬送ユニット41を作動させて次の被検査体12を撮像エリアに搬入し(ステップS211)、現在検査している被検査体12の検査処理が終了すると、次の被検査体12に対する撮像処理を実行し(ステップS212)、この撮像処理と並行して検査処理を実行する(ステップS213)。なお、撮像後直ぐに被検査体12を検査集計エリアに移動させておけば、前の被検査体12の検査処理の終了を待たずに次の被検査体12の撮像を開始することができる。また、制御ユニット30は、次の被検査体12の撮像処理が終了したときは、前の被検査体12が搬出されていることを条件に、第1搬送ユニット41及び第2搬送ユニット42を作動させて、次の被検査体12を検査集計エリアに移動させ(ステップS214)、この被検査体12を待機状態にする(ステップS215)。また、制御ユニット30は、検査処理が終了すると集計処理を実行し(ステップS216)、集計処理の結果、被検査体12に異常がないと判断すると、第2搬送ユニット42を作動させて、被検査体12を次の工程に搬出する(ステップS217)。
 このように搬送部40の搬送ユニットが2つの場合、前の被検査体12の撮像処理が終了すると検査処理を開始し、その検査処理と並行して前の被検査体12を撮像エリアから検査集計エリアへ移動させることができる。そして、前の被検査体12の検査処理が実行されているときに、並行して次の被検査体12の搬入を行い、また、次の被検査体12の撮像処理が実行されているときに、前の被検査体12の搬出を行うことができるため、図3(b)に示すように、前の被検査体12の搬入開始から次の被検査体12の搬入開始までに要する時間はT2となる。この時間T2は、搬送ユニットが1つの場合の1つの被検査体12の検査に要する時間(タクトタイム)T1より短くすることができる。また、図3(b)から明らかなように、前の被検査体12の集計処理と、次の被検査体12の撮像処理とは並行して実行することができるため、2つの被検査体12の検査に要する時間であるT2の2倍の時間は、搬送ユニットが1つの場合に2つの被検査体12の検査に要する時間であるT1の2倍の時間より短くなり、全体のタクトタイムを短くすることができる。なお、このような構成において、次の被検査体12の検査処理と前の被検査体12の集計処理とを同時に行う場合には、メモリ35は、2つの被検査体12の全体をカバーする部分画像データを記憶することができる容量を有することが望ましい。
-長さの異なる被検査体12を検査する場合-
 X方向の長さが異なる被検査体12の検査をする場合、制御ユニット30は、検査集計エリアに収まる被検査体12に対しては(被検査体12のX方向の長さ(被検査体12が搬送される方向の長さ)Laが、検査集計エリアの長さL2より短い場合)、搬送部40を2つの搬送ユニットとして作動させ(以下、「2バッファモード」と呼ぶ)、検査集計エリアに収まらない被検査体12に対しては(被検査体12のX方向の長さLaが検査集計エリアの長さL2より長い場合)、搬送部40を1つの搬送ユニットとして作動させる(以下、「標準モード」と呼ぶ)ように構成することができる。なお、撮像エリアのX方向の長さL1は、検査対象となる被検査体12のうち、最大の被検査体12の長さ以上が必要である。上述した基板検査データには、被検査体12の長さ(X方向の長さLa)も含まれているため、制御ユニット30は、これから検査を行う被検査体12の基板検査データから、この被検査体12の長さを判定し、搬送部40を、標準モードで作動させるか、2バッファモードで作動させるかを決定することができる。これにより、異なる長さの被検査体12が混ざっていても、搬送部40の作動モードを制御ユニット30が判断できるため、被検査体12ごとの検査に係る時間(タクトタイム)を最適化することができ、結果として、検査装置10のスループットを向上させることができる。
-第1の実施形態の変形例-
 上述したように、検査・集計の結果、被検査体12に不具合が発見されると、目視検査が実施される場合がある。撮像処理が終了した後、被検査体12は搬送部44により検査集計エリアに移動している。したがって、検査装置10の検査集計エリアに、上述した撮像ユニット20とは別の撮像ユニットを設け、制御部30が、目視検査をこの撮像ユニットを用いて行うように構成してもよい。
 また、上述した例では、搬入口側に撮像ユニット20を配置して撮像エリアとし、搬出口側を、被検査体12を待機させる検査集計エリアとした場合について説明したが、搬入口側(第1搬送ユニット41側)を、被検査体12を待機させる待機エリアとし、搬出口側(第2搬送ユニット42側)に撮像ユニット20を配置して撮像、検査及び集計を行う撮像エリアとしてもよい。この場合、第2搬送ユニット42の搬送口側に第3搬送ユニット(図示せず)を配置し、第2搬送ユニット42側を撮像エリアとし、第3搬送ユニット側を検査集計エリアとしてもよい。この検査装置10の上流側の工程にかかる時間よりも、この検査装置10の検査にかかる時間の方が長い場合、撮像エリアの上流側(搬入口側)に待機エリアを設けることにより、タクトタイムを短くすることができる。
 あるいは、第1搬送ユニット41の搬入口側に第3搬送ユニット(図示せず)を配置し、第1搬送ユニット41側を撮像エリア、第2搬送ユニット側を検査集計エリアとし、第3搬送ユニット側を、被検査体12を反転させる反転機としてもよい。
(第2の実施形態)
 搬送部40の第2の実施形態を、図4を用いて説明する。この第2の実施形態に係る搬送部40は、第1の実施形態と同様に、搬入口側から搬出口側に向かって直列に配置された2つの搬送ユニット(第1搬送ユニット41及び第2搬送ユニット42)を有して構成されている。また第1搬送ユニット41に対して固定部44a及び可動部45bからなるクランプ機構が設けられ、第2搬送ユニット42に対して固定部44b及び可動部45bからなるクランプ機構が設けられている。
 この第2の実施形態において、撮像エリアは、第1搬送ユニット41と第2搬送ユニット42とに跨がって設定されている。また、撮像ユニット20は、XYステージ16により、第1搬送ユニット41上から第2搬送ユニット42上まで移動可能に構成されている。そのため、この第2の実施形態では、被検査体12の長さ、撮像処理、検査処理または集計処理に必要な時間、あるいは、この検査装置10の前段や後段の工程の状況に応じて、第1及び第2搬送ユニット41,42の作動、並びに、固定部44及び可動部45による被検査体12の固定を、制御ユニット30により切り換えて制御することができる。以下に、図5を用いて、制御ユニット30による搬送部40の制御について説明する。なお、以降の説明では、第1の搬送ユニット41と第2の搬送ユニット42とのX方向の長さは同一として説明するが、第1の実施形態で説明したように同じ長さにする必要はない。また、1つの被検査体12に対して行われる処理は、第1の実施形態で説明した通りである。また、図5において、第1搬送ユニット41と第2搬送ユニット42とは、簡易な表現としている。
 まず、被検査体12のX方向の長さが、第1搬送ユニット41または第2搬送ユニット42のX方向の有効エリアの長さより長い場合は、制御ユニット30は、標準モードで第1搬送ユニット41及び第2搬送ユニット42を作動させる。この場合、図5(a)に示すように、被検査体12は撮像エリアの中央部に搬入され、固定部44a,44bと可動部45a,45bとにより固定される。
 一方、被検査体12のX方向の長さが、第1搬送ユニット41及び第2搬送ユニット42のX方向の長さ以下の場合は、制御ユニット30は、2バッファモードで第1搬送ユニット41及び第2搬送ユニット42を作動させる。この場合、図5(b)に示すように、第1搬送ユニット41側を撮像エリアにし、第2搬送ユニット42側を待機エリア(検査集計エリア)にしてもよいし、図5(c)に示すように、第1搬送ユニット41側を待機エリアにし、第2搬送ユニット42側を撮像エリア(このエリアで検査集計も行う)にしてもよい。第1搬送ユニット41側を撮像エリアにする場合、被検査体12は、第1搬送ユニット41側に配置された固定部44a及び可動部45aで被検査体12を固定する。また、第2搬送ユニット42側を撮像エリアにする場合、被検査体12は、第2搬送ユニット42側に配置された固定部44b及び可動部45bで被検査体12を固定する。
 第1の実施形態で説明したように、被検査体12の撮像処理よりも検査集計処理に時間がかかる場合には、第1搬送ユニット41側を撮像エリアにすることにより被検査体12を検査するためのタクトタイムを短くすることができる。一方、この検査装置10よりも上流側の工程の生産性を向上させたい場合には、第1搬送ユニット41側を待機エリアにし、第2搬送ユニット42側を撮像エリアにした方がタクトタイムを短くすることができる。制御ユニット30は、基板検査データから得られる被検査体12の長さや、各処理に係る時間から、標準モードにするか2バッファモードにするかを切り換えることができ、また、2バッファモードの場合は、撮像エリアを、第1搬送ユニット41側にするか第2搬送ユニット42側にするかを選択することができ、これにより、被検査体12ごとの検査のためのタクトタイムを最適化し、結果として、検査装置10のスループットを向上させることができる。
(第3の実施形態)
 上述した第1の実施形態及び第2の実施形態に係る搬送部40は、図6に示すように、2つの搬送部40a,40bが並んで設けられた、いわゆるデュアルレーンの検査装置10にも有効である。すなわち、2つの搬送部40a,40bの各々に、第1搬送ユニット41a,41bと、第2搬送ユニット42a,42bからなる2つのレーンを有する構成である。この第3の実施形態において、撮像ユニット20は、2つのレーンに共通に1つを設けてもよいが、図6に示すように、それぞれのレーンに撮像ユニット20を設けることにより、搬送部40を2バッファモードで作動させたときの方がより良い効果を得ることができる。具体的には、各々のレーンに撮像ユニット20を設けることにより、撮像ユニット20による撮像の待ち時間を発生させることなく、搬入及び撮像処理と、検査・集計及び搬出処理をそれぞれのレーンで行うことができ、各被検査体12の検査のためのタクトタイムを最適化することができ、また、検査装置10の全体のスループットを向上させることができる。
10 検査装置
20 撮像ユニット(撮像部)
30 制御ユニット(制御部)
35 メモリ
40 搬送部
41 第1搬送ユニット
42 第2搬送ユニット

Claims (9)

  1.  被検査体の画像データを取得する撮像部と、
     前記被検査体を移動させる搬送部と、
     前記撮像部及び前記搬送部の作動を制御する制御部と、を有し、
     前記搬送部は、前記被検査体を移動させる方向に直列に接続された少なくとも2つの搬送ユニットを有し、
     前記搬送ユニットの各々の作動は、前記制御部により個別に制御可能であり、
     前記搬送ユニットのうち、少なくとも1つの搬送ユニットは、前記撮像部により画像データを取得することができる撮像エリアに配置された第1搬送ユニットであり、
     残りの前記搬送ユニットのうち、少なくとも1つの搬送ユニットは、前記撮像エリアの前記移動させる方向の前又は後ろの待機エリアに配置された第2搬送ユニットであり、
     前記制御部は、
     前記搬送ユニットを個別に制御しているときに、
     前記第1搬送ユニットにより前記撮像エリアに移動させた前記被検査体を前記撮像部により撮像しているときに、前記第2搬送ユニットにより別の被検査体を前記待機エリアに搬入又は前記待機エリアから搬出させる
     検査装置。
  2.  前記制御部は、
     前記被検査体の前記移動させる方向の長さと前記搬送ユニットの前記移動させる方向の長さとを比較し、
     前記被検査体の前記長さの方が前記搬送ユニットのいずれかの前記長さより長いときは、全ての前記搬送ユニットの作動を1つの搬送ユニットとして制御し、
     前記被検査体の前記長さの方がいずれの前記搬送ユニットに対しても当該搬送ユニットの前記長さ以下のときは、前記搬送ユニットの作動を個別に制御する
     請求項1に記載の検査装置。
  3.  前記待機エリアが前記撮像エリアの後ろにあるときに、当該待機エリアに目視検査用の撮像部を有し、
     前記制御部は、前記待機エリアに前記被検査体を移動したときに、前記目視検査用の撮像部により前記被検査体の画像データを取得する
     請求項1または2に記載の検査装置。
  4.  前記待機エリアが前記撮像エリアの前にあるときに、当該待機エリアに反転機を設ける
     請求項1または2に記載の検査装置。
  5.  前記制御部は、少なくとも1つの前記被検査体の全体の画像を保存することができる容量のメモリを有する
     請求項1または2に記載の検査装置。
  6.  被検査体の画像データを取得する撮像部と、
     前記被検査体を移動させる搬送部と、
     前記撮像部及び前記搬送部の作動を制御する制御部と、を有し、
     前記搬送部は、前記被検査体を移動させる方向に直列に接続された少なくとも2つの搬送ユニットを有し、
     前記搬送ユニットの各々の作動は、前記制御部により個別に制御可能であり、
     前記搬送ユニットのうち、少なくとも2つの搬送ユニットは、前記撮像部により画像データを取得することができる撮像エリアに配置された第1搬送ユニット及び第2搬送ユニットであり、
     前記制御部は、
     前記搬送ユニットを個別に制御しているときに、
     前記第1搬送ユニット及び前記第2搬送ユニットの一方にある前記被検査体を前記撮像部により撮像しているときに、前記第1搬送ユニット及び前記第2搬送ユニットの他方により別の被検査体を移動させる
     検査装置。
  7.  前記制御部は、前記被検査体を搬入するときに、前記被検査体の撮像を行う搬送ユニットを、前記第1搬送ユニット及び前記第2搬送ユニットから選択する
     請求項6に記載の検査装置。
  8.  前記制御部は、
     前記被検査体の前記移動させる方向の長さと前記第1搬送ユニット及び前記第2搬送ユニットの前記移動させる方向の長さとを比較し、
     前記被検査体の前記長さの方が前記第1搬送ユニット及び前記第2搬送ユニットのいずれかの前記長さより長いときは、前記第1搬送ユニット及び前記第2搬送ユニットの作動を1つの搬送ユニットとして制御し、
     前記被検査体の前記長さの方が前記第1搬送ユニット及び前記第2搬送ユニットのいずれに対しても当該搬送ユニットの前記長さ以下のときは、前記第1搬送ユニット及び前記第2搬送ユニットの作動を個別に制御する
     請求項6または7に記載の検査装置。
  9.  前記制御部は、少なくとも1つの前記被検査体の全体の画像を保存することができる容量のメモリを有する
     請求項6または7に記載の検査装置。
PCT/JP2023/017820 2022-06-22 2023-05-12 検査装置 WO2023248641A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022099961A JP2024001380A (ja) 2022-06-22 2022-06-22 検査装置
JP2022-099961 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023248641A1 true WO2023248641A1 (ja) 2023-12-28

Family

ID=89379624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017820 WO2023248641A1 (ja) 2022-06-22 2023-05-12 検査装置

Country Status (2)

Country Link
JP (1) JP2024001380A (ja)
WO (1) WO2023248641A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274404A (ja) * 2004-03-25 2005-10-06 Toppan Printing Co Ltd 配線パターン検査装置および検査方法
JP2006339238A (ja) * 2005-05-31 2006-12-14 Marubeni Corp 基板搬送装置、外観検査装置、電子機器の製造方法及び電子機器の外観検査方法
JP2007258140A (ja) * 2006-02-22 2007-10-04 Toray Ind Inc ディスプレイパネルの検査方法および検査装置ならびに製造方法
JP2009208964A (ja) * 2008-02-05 2009-09-17 Olympus Corp 基板搬送装置、及び、基板搬送方法
JP2010225006A (ja) * 2009-03-25 2010-10-07 Hitachi High-Technologies Corp 交換部品提示方法および交換部品提示装置
JP2010230576A (ja) * 2009-03-27 2010-10-14 Kubota Matsushitadenko Exterior Works Ltd 不良検査方法
JP2011053787A (ja) * 2009-08-31 2011-03-17 Omron Corp 画像処理装置および画像処理プログラム
JP2011054900A (ja) * 2009-09-04 2011-03-17 Yamaha Motor Co Ltd 部品実装機、部品実装ライン
JP2021071410A (ja) * 2019-10-31 2021-05-06 日本信号株式会社 X線検査システム
JP2022120653A (ja) * 2021-02-05 2022-08-18 株式会社Screenホールディングス 撮像ユニット、撮像装置、検査装置、および撮像装置の光軸調整方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274404A (ja) * 2004-03-25 2005-10-06 Toppan Printing Co Ltd 配線パターン検査装置および検査方法
JP2006339238A (ja) * 2005-05-31 2006-12-14 Marubeni Corp 基板搬送装置、外観検査装置、電子機器の製造方法及び電子機器の外観検査方法
JP2007258140A (ja) * 2006-02-22 2007-10-04 Toray Ind Inc ディスプレイパネルの検査方法および検査装置ならびに製造方法
JP2009208964A (ja) * 2008-02-05 2009-09-17 Olympus Corp 基板搬送装置、及び、基板搬送方法
JP2010225006A (ja) * 2009-03-25 2010-10-07 Hitachi High-Technologies Corp 交換部品提示方法および交換部品提示装置
JP2010230576A (ja) * 2009-03-27 2010-10-14 Kubota Matsushitadenko Exterior Works Ltd 不良検査方法
JP2011053787A (ja) * 2009-08-31 2011-03-17 Omron Corp 画像処理装置および画像処理プログラム
JP2011054900A (ja) * 2009-09-04 2011-03-17 Yamaha Motor Co Ltd 部品実装機、部品実装ライン
JP2021071410A (ja) * 2019-10-31 2021-05-06 日本信号株式会社 X線検査システム
JP2022120653A (ja) * 2021-02-05 2022-08-18 株式会社Screenホールディングス 撮像ユニット、撮像装置、検査装置、および撮像装置の光軸調整方法

Also Published As

Publication number Publication date
JP2024001380A (ja) 2024-01-10

Similar Documents

Publication Publication Date Title
CN102412170B (zh) 多方向上反射的光源的采集系统和方法
US7751611B2 (en) Apparatus for inspecting appearance of inspection piece
CN103630549A (zh) 检测晶片的系统和方法
KR20120129547A (ko) 멀티라인센서 카메라와 다중조명을 사용한 시편 고속검사장치
JP2017122614A (ja) 画像生成方法及び検査装置
US11682113B2 (en) Multi-camera visual inspection appliance and method of use
US20070064998A1 (en) Pattern inspection apparatus, pattern inspection method, and inspection sample
US7590279B2 (en) Appearance inspection apparatus for inspecting inspection piece
WO2023248641A1 (ja) 検査装置
CN109690408B (zh) 基板角位置确定方法
TWI498543B (zh) 自動晶圓光學檢測裝置及檢測晶圓表面均勻性的方法
JPH10104165A (ja) 撮像式の評価装置
KR20080091048A (ko) 다중 표면 검사 시스템 및 방법
JP2007333672A (ja) 外観検査装置および外観検査方法
JP6358527B2 (ja) 検査装置
KR100745380B1 (ko) 플립 칩 - 볼 그리드 어레이 평면 및 입체 검사장치
JP6339849B2 (ja) 検査装置
JP2010085145A (ja) 検査装置及び検査方法
KR100417764B1 (ko) 결함검사장치 및 그 방법
JPH11230917A (ja) 欠陥検査装置
JP6456726B2 (ja) 検査装置、検査方法および検査プログラム
KR102329518B1 (ko) 에어리어 스캔 카메라를 이용하여 대면적 기판 고속 검사를 위한 리니어 멀티영상 취득 방법
JP7413234B2 (ja) 光学撮像装置、光学検査装置、および、光学検査方法
JPS6315141A (ja) 繰返しパタ−ンをもつ物品の検査方法及びその装置
JPH05188006A (ja) 表面疵検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826829

Country of ref document: EP

Kind code of ref document: A1