WO2023248542A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2023248542A1
WO2023248542A1 PCT/JP2023/007858 JP2023007858W WO2023248542A1 WO 2023248542 A1 WO2023248542 A1 WO 2023248542A1 JP 2023007858 W JP2023007858 W JP 2023007858W WO 2023248542 A1 WO2023248542 A1 WO 2023248542A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
vaporizer
line
boiler
heat medium
Prior art date
Application number
PCT/JP2023/007858
Other languages
English (en)
French (fr)
Inventor
原栄 崔
俊郎 藤森
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2023547889A priority Critical patent/JPWO2023248542A1/ja
Publication of WO2023248542A1 publication Critical patent/WO2023248542A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines

Definitions

  • the present disclosure relates to a power generation system.
  • This application claims the benefit of priority based on Japanese Patent Application No. 2022-101752 filed on June 24, 2022, the contents of which are incorporated into this application.
  • Patent Document 1 discloses a power generation system that uses ammonia as fuel.
  • ammonia is stored in liquid state.
  • Liquid ammonia is vaporized and burned in a gaseous state in a boiler.
  • Steam from the boiler spins a turbine and generator.
  • Water vapor is condensed to water in a condenser.
  • seawater is used to condense water vapor in a condenser. After passing through the condenser, the seawater passes through a vaporizer and is used to vaporize ammonia.
  • the present disclosure aims to provide a power generation system that can improve power generation efficiency.
  • a power generation system includes a boiler that burns fuel containing ammonia, a turbine that is cyclically connected to the boiler and driven by steam from the boiler, and a turbine that is cyclically connected to the boiler and the turbine.
  • a condenser that cools steam discharged from a turbine and supplies condensed water to a boiler, an ammonia supply source, and a vaporizer connected to the boiler, an ammonia supply source.
  • At least one line is a first line that directly connects the vaporizer and the condenser, a first heat medium flows through the first line, and the first heat medium is cooled by liquid ammonia in the vaporizer.
  • a first line may be included that conveys the medium to the condenser.
  • the at least one line is a first line connected to the condenser, through which the first heat transfer medium flows, and a second line cyclically connected to the vaporizer. a second line through which a second heat medium flows, and a heat exchanger disposed between the first line and the second line, the heat exchanger being cooled by liquid ammonia in the vaporizer;
  • the heat exchanger may be included in which the first heat medium flowing through the first line is cooled by the second heat medium flowing through the second line.
  • At least one line is a second line that cyclically connects the vaporizer and the condenser, a second heat medium flows through the second line, and a second heat medium is cooled by liquid ammonia in the vaporizer.
  • a second line may be included that conveys the medium to the condenser.
  • FIG. 1 is a schematic diagram showing a power generation system according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a power generation system according to a second embodiment.
  • FIG. 3 is a schematic diagram showing a power generation system according to a third embodiment.
  • FIG. 4 is a schematic diagram showing a power generation system according to a fourth embodiment.
  • FIG. 1 is a schematic diagram showing a power generation system 10 according to the first embodiment.
  • the power generation system 10 may also be simply referred to as a "system.”
  • solid arrows indicate the flow of liquid
  • dashed arrows indicate the flow of gas.
  • the system 10 includes, for example, a tank (ammonia supply source) 1, a vaporizer 2, a boiler 3, a turbine generator 4, and a condenser 5.
  • the components of the system 10 are not limited to these, and the system 10 may further include other components.
  • Tank 1 stores ammonia. Specifically, tank 1 stores liquid ammonia. Tank 1 is connected to vaporizer 2 by flow path L1. Liquid ammonia in the tank 1 is supplied to the vaporizer 2 through the flow path L1. A first pump P1 for sending liquid ammonia is provided in the flow path L1.
  • the vaporizer 2 heats liquid ammonia from the tank 1 using a heat medium flowing through a flow path L4, which will be described in detail later.
  • the vaporizer 2 exchanges heat between the heat medium and liquid ammonia.
  • the heated liquid ammonia vaporizes into gaseous ammonia.
  • the vaporizer 2 is connected to the boiler 3 by a flow path L2.
  • the vaporized ammonia is supplied to the boiler 3 through the flow path L2.
  • the boiler 3 burns fuel containing gaseous ammonia from the vaporizer 2.
  • the boiler 3 may burn a mixed fuel containing ammonia and other fuel such as pulverized coal. Further, for example, the boiler 3 may burn only ammonia. Further, for example, the boiler 3 may burn only fuel other than ammonia, if necessary.
  • the boiler 3 heats water using heat from combustion to generate steam.
  • the turbine generator 4 includes a turbine 41 and a generator 42.
  • the turbine 41 is cyclically connected to the boiler 3 through the circulation flow path L3. Steam generated in the boiler 3 is supplied to the turbine 41 through the circulation path L3. The turbine 41 is rotated by steam from the boiler 3. Generator 42 is connected to turbine 41 . The generator 42 rotates together with the turbine 41 and generates electricity.
  • the condenser 5 is cyclically connected to the turbine 41 through a circulation path L3. Further, the condenser 5 is connected to the vaporizer 2 through a flow path L4. The condenser 5 cools the steam discharged from the turbine 41 by the heat medium flowing through the flow path L4. Steam condenses into water. The condensed water is fed back to the boiler 3 and heated to steam. A second pump P2 for circulating water is provided in the circulation path L3.
  • the flow path (first line) L4 directly connects the vaporizer 2 and the condenser 5.
  • a heat medium (first heat medium) flows through the flow path L4.
  • the flow path L4 is configured such that the heat medium flows from the vaporizer 2 to the condenser 5.
  • a third pump P3 that sends the heat medium in a direction from the vaporizer 2 to the condenser 5 is provided in the flow path L4.
  • the third pump P3 may pump seawater from the sea as the heat medium. If seawater is used as a heat medium, the seawater may be discharged into the sea after passing through the condenser 5. Alternatively or additionally, the third pump P3 may pump water from a river as a heat carrier. If river water is used as a heat transfer medium, the water may be discharged into the river after passing through the condenser 5. Alternatively or additionally, the third pump P3 may receive water from a cooling tower as a heat transfer medium, for example if the system 10 is constructed far from the sea and rivers. If water from a cooling tower is used as a heat transfer medium, the water may be recycled and reused.
  • the heat medium is not limited to these, and other fluids may be used.
  • the flow path L4 branches into a flow path L41 and a flow path L42 at a position upstream of the vaporizer 2.
  • a valve (not shown) may be provided at the branch point to adjust the flow rate of steam flowing through the flow path L41 and the flow path L42.
  • the flow path L41 and the flow path L42 merge with each other at a position downstream of the vaporizer 2.
  • the vaporizer 2 is provided in the flow path L41.
  • the flow path L42 bypasses the vaporizer 2. In other embodiments, the flow path L42 may not be provided.
  • Liquid ammonia in the tank 1 is supplied to the vaporizer 2 through the flow path L1.
  • the vaporizer 2 heats liquid ammonia with the heat medium flowing through the flow path L4.
  • the heated liquid ammonia vaporizes into gaseous ammonia.
  • the vaporized ammonia is supplied to the boiler 3 through the flow path L2.
  • the boiler 3 burns fuel containing gaseous ammonia from the vaporizer 2.
  • the boiler 3 heats water using heat from combustion to generate steam.
  • Steam generated in the boiler 3 is supplied to the turbine 41 through the circulation path L3.
  • the turbine 41 is rotated by steam from the boiler 3.
  • the generator 42 rotates together with the turbine 41 and generates electricity.
  • the condenser 5 cools the steam discharged from the turbine 41 by the heat medium flowing through the flow path L4. Steam condenses into water. The condensed water is fed back to the boiler 3 and heated to steam.
  • the heat medium flows in a direction from the vaporizer 2 to the condenser 5. Therefore, the heat medium cooled by liquid ammonia in the vaporizer 2 is supplied to the condenser 5. That is, the flow path L4 transmits the cooling energy of the liquid ammonia flowing through the vaporizer 2 to the condenser 5. For this reason, the steam flowing through the condenser 5 is cooled more, and the pressure inside the condenser 5 is lowered more than when a heat medium such as seawater is directly supplied to the condenser 5. . According to such a configuration, more steam can be drawn into the condenser 5 from the turbine 41, and the operating conditions of the turbine 41 can be expanded. Therefore, the power generation efficiency of the system 10 is improved.
  • the system 10 as described above includes a boiler 3 that burns fuel containing ammonia, a turbine 41 that is cyclically connected to the boiler 3 and driven by steam from the boiler 3, and a cyclically connected boiler 3 and turbine 41.
  • a condenser 5 connected to the condenser 5, which cools steam discharged from the turbine 41 and supplies condensed water to the boiler 3, and a vaporizer connected to the tank 1 and the boiler 3. 2, the vaporizer 2 heats liquid ammonia from the tank 1 and supplies the heated ammonia to the boiler 3, and the flow path L4 thermally connects the vaporizer 2 and the condenser 5.
  • a flow path L4 is provided for transmitting the cooling energy of liquid ammonia flowing through the vaporizer 2 to the condenser 5.
  • the cooling energy of the liquid ammonia flowing through the vaporizer 2 is used for condensing water in the condenser 5. Therefore, compared to the case where a heat medium such as seawater is directly supplied to the condenser 5, the steam flowing through the condenser 5 is cooled more and the pressure inside the condenser 5 is further reduced. Therefore, more steam can be drawn into the condenser 5 from the turbine 41, and the operating conditions of the turbine 41 can be expanded. As a result, the power generation efficiency of the system 10 can be improved.
  • the line that thermally connects the vaporizer 2 and the condenser 5 is the flow path L4 that directly connects the vaporizer 2 and the condenser 5; It includes a flow path L4 through which a heat medium flows and sends the heat medium cooled by liquid ammonia in the vaporizer 2 to the condenser 5.
  • the cooling of the vapor can be adjusted to avoid insufficient or excessive cooling of the vapor, for example, by adjusting the flow rate of the heating medium and not depending on the flow rate of liquid ammonia passing through the vaporizer 2. can be avoided. Therefore, the operating conditions of the turbine 41 can be finely adjusted.
  • FIG. 2 is a schematic diagram showing a power generation system 10A according to the second embodiment.
  • the system 10A differs from the system 10 of the first embodiment in that a circulation flow path (second line) L5 and a heat exchanger 6 are added between the vaporizer 2 and the condenser 5.
  • system 10A may be the same as system 10.
  • the flow path L4 passes through the heat exchanger 6 instead of the vaporizer 2.
  • the circulation flow path L5 connects the vaporizer 2 and the heat exchanger 6 in a cyclic manner.
  • a heat medium (second heat medium) flows through the circulation flow path L5.
  • a fourth pump P4 for circulating the heat medium is provided in the circulation path L5.
  • the second heat medium may be brine containing sodium chloride.
  • the second heat medium is not limited to this, and other fluids may be used.
  • the second heat transfer medium may be a fluid having a freezing point lower than that of the first heat transfer medium.
  • the heat exchanger 6 is arranged between the flow path L4 and the circulation flow path L5.
  • the heat exchanger 6 exchanges heat between the first heat medium flowing through the flow path L4 and the second heat medium flowing through the circulation flow path L5.
  • the second heat medium circulates between the vaporizer 2 and the heat exchanger 6. Therefore, the second heat medium cooled by liquid ammonia in the vaporizer 2 is supplied to the heat exchanger 6.
  • the heat exchanger 6 cools the first heat medium flowing through the flow path L4 by the second heat medium flowing through the circulation flow path L5.
  • the first heat medium flows in a direction from the heat exchanger 6 toward the condenser 5. Therefore, the first heat medium cooled by the second heat medium in the heat exchanger 6 is supplied to the condenser 5. That is, the circulation flow path L5, the heat exchanger 6, and the flow path L4 transmit the cooling energy of the liquid ammonia flowing through the vaporizer 2 to the condenser 5. For this reason, the steam flowing through the condenser 5 is cooled more, and the pressure inside the condenser 5 is lowered more than when a heat medium such as seawater is directly supplied to the condenser 5. .
  • the line that thermally connects the vaporizer 2 and the condenser 5 is a flow path L4 connected to the condenser 5, and the first heat medium flows through the flow path L4. , a flow path L4, and a circulation flow path L5 cyclically connected to the vaporizer 2, in which a second heat medium flows, a circulation flow path L5, and a flow path L4 and a circulation flow path.
  • cooling of the steam can be adjusted, for example, by adjusting the flow rate of the second heat medium in addition to adjusting the flow rate of the first heat medium. Therefore, the operating status of the turbine 41 can be adjusted more finely.
  • FIG. 3 is a schematic diagram showing a power generation system 10B according to the third embodiment.
  • the system 10B differs from the system 10A of the second embodiment in that the flow path L4 and the heat exchanger 6 are not provided. In other respects, system 10B may be the same as system 10A.
  • the circulation flow path L5 passes through the condenser 5 instead of the heat exchanger 6.
  • the circulation flow path L5 connects the vaporizer 2 and the condenser 5 in a cyclic manner.
  • the second heat medium circulates between the vaporizer 2 and the condenser 5. Therefore, the second heat medium cooled by liquid ammonia in the vaporizer 2 is supplied to the condenser 5.
  • the condenser 5 cools the steam flowing through the condenser 5 by the second heat medium flowing through the circulation path L5. That is, the circulation path L5 transmits the cooling energy of the liquid ammonia flowing through the vaporizer 2 to the condenser 5. For this reason, the steam flowing through the condenser 5 is cooled more, and the pressure inside the condenser 5 is lowered more than when a heat medium such as seawater is directly supplied to the condenser 5. .
  • the line that thermally connects the vaporizer 2 and the condenser 5 is a circulation passage L5 that cyclically connects the vaporizer 2 and the condenser 5,
  • the second heat medium flows through the path L5, and includes a circulation path L5 that sends the second heat medium cooled by liquid ammonia in the vaporizer 2 to the condenser 5.
  • cooling of the steam can be adjusted, for example, by adjusting the flow rate of the second heat medium. Therefore, the operating status of the turbine 41 can be finely adjusted.
  • the first heat medium such as seawater is not used. Therefore, there is no leakage of liquid ammonia into seawater.
  • FIG. 4 is a schematic diagram showing a power generation system 10C according to the fourth embodiment.
  • the circulation flow path L5 is provided in parallel with the flow path L4 between the vaporizer 2 and the condenser 5, and the heat exchanger 6 is not provided.
  • the configuration is different from the system 10A.
  • system 10C may be the same as system 10A. From another perspective, it can be said that the system 10C includes a combination of the flow path L4 of the first embodiment and the circulation flow path L5 of the third embodiment.
  • the line that thermally connects the vaporizer 2 and the condenser 5 is a flow path L4 that directly connects the vaporizer 2 and the condenser 5; It includes a flow path L4 through which the first heat medium flows and sends the first heat medium cooled by liquid ammonia in the vaporizer 2 to the condenser 5.
  • the line that thermally connects the vaporizer 2 and the condenser 5 is a circulation passage L5 that cyclically connects the vaporizer 2 and the condenser 5, and the circulation passage L5 is connected to the circulation passage L5.
  • It includes a circulation flow path L5 through which a second heat medium flows and sends the second heat medium cooled by liquid ammonia in the vaporizer 2 to the condenser 5.
  • cooling of the steam can be adjusted, for example, by adjusting the flow rates of both the first heat medium and the second heat medium. Therefore, the operating status of the turbine 41 can be adjusted more finely.
  • system 10B of the third embodiment may include an additional flow path that passes through the condenser 5 without passing through the vaporizer 2, and seawater or river water may flow through this flow path.
  • the present disclosure can promote the use of ammonia, which leads to reduced CO2 emissions, so that it can, for example, support Goal 7 of the Sustainable Development Goals (SDGs) for affordable, reliable, sustainable and modern energy. and Goal 13: “Take urgent action to combat climate change and its impacts.”
  • SDGs Sustainable Development Goals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

発電システム10は、アンモニアを含む燃料を燃焼するボイラ3と、ボイラ3と循環的に接続され、ボイラ3からの蒸気によって駆動されるタービン41と、ボイラ3およびタービン41と循環的に接続される復水器5であって、タービン41から排出される蒸気を冷却し、凝縮された水をボイラ3に供給する、復水器5と、アンモニア供給源1およびボイラ3と接続される気化器2であって、アンモニア供給源1からの液体アンモニアを加熱し、加熱されたアンモニアをボイラ3に供給する、気化器2と、気化器2と復水器5とを熱的に接続する少なくとも1つのラインL4であって、気化器2を流れる液体アンモニアの冷熱エネルギを、復水器5に伝える、少なくとも1つのラインL4と、を備える。

Description

発電システム
 本開示は、発電システムに関する。本出願は2022年6月24日に提出された日本特許出願第2022-101752号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 アンモニアは、COを放出しない燃料として知られている。例えば、特許文献1は、アンモニアを燃料として使用する発電システムを開示する。このシステムでは、アンモニアは液体状態で貯蔵される。液体アンモニアは気化され、ボイラにおいて気体状態で燃焼される。ボイラからの水蒸気は、タービンおよび発電機を回転させる。水蒸気は、復水器において水に凝縮される。このシステムでは、復水器において水蒸気を凝縮するために、海水が使用される。復水器を通過した後に、海水は、気化器を通り、アンモニアの気化に使用される。
国際公開第2020/184612号
 上記のようなシステムでは、発電効率をさらに向上することが望まれる。
 本開示は、発電効率を向上することができる発電システムを提供することを目的とする。
 本開示の一態様に係る発電システムは、アンモニアを含む燃料を燃焼するボイラと、ボイラと循環的に接続され、ボイラからの蒸気によって駆動されるタービンと、ボイラおよびタービンと循環的に接続される復水器であって、タービンから排出される蒸気を冷却し、凝縮された水をボイラに供給する、復水器と、アンモニア供給源およびボイラと接続される気化器であって、アンモニア供給源からの液体アンモニアを加熱し、加熱されたアンモニアをボイラに供給する、気化器と、気化器と復水器とを熱的に接続する少なくとも1つのラインであって、気化器を流れる液体アンモニアの冷熱エネルギを、復水器に伝える、少なくとも1つのラインと、を備える。
 少なくとも1つのラインは、気化器と復水器とを直接的に接続する第1ラインであって、当該第1ラインを第1熱媒体が流れ、気化器において液体アンモニアによって冷却される第1熱媒体を、復水器に送る、第1ラインを含んでもよい。
 少なくとも1つのラインは、復水器に接続される第1ラインであって、当該第1ラインを第1熱媒体が流れる、第1ラインと、気化器に循環的に接続される第2ラインであって、当該第2ラインを第2熱媒体が流れる、第2ラインと、第1ラインと第2ラインとの間に配置される熱交換器であって、気化器において液体アンモニアによって冷却されかつ第2ラインを流れる第2熱媒体によって、第1ラインを流れる第1熱媒体を冷却する、熱交換器と、を含んでもよい。
 少なくとも1つのラインは、気化器と復水器とを循環的に接続する第2ラインであって、当該第2ラインを第2熱媒体が流れ、気化器において液体アンモニアによって冷却される第2熱媒体を、復水器に送る、第2ラインを含んでもよい。
 本開示によれば、発電効率を向上することができる。
図1は、第1実施形態に係る発電システムを示す概略図である。 図2は、第2実施形態に係る発電システムを示す概略図である。 図3は、第3実施形態に係る発電システムを示す概略図である。 図4は、第4実施形態に係る発電システムを示す概略図である。
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す具体的な寸法、材料および数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
 図1は、第1実施形態に係る発電システム10を示す概略図である。以下、発電システム10は、単に「システム」とも称され得る。図1において、実線の矢印は液体の流れを示し、破線の矢印は気体の流れを示す。システム10は、例えば、タンク(アンモニア供給源)1と、気化器2と、ボイラ3と、タービン発電機4と、復水器5と、を備える。システム10の構成要素はこれらに限定されず、システム10は、その他の構成要素をさらに備えてもよい。
 タンク1は、アンモニアを貯蔵する。具体的には、タンク1は、液体アンモニアを貯蔵する。タンク1は、流路L1によって気化器2に接続される。タンク1内の液体アンモニアは、流路L1によって気化器2に供給される。流路L1には、液体アンモニアを送るための第1ポンプP1が設けられる。
 気化器2は、詳しくは後述の流路L4を流れる熱媒体によって、タンク1からの液体アンモニアを加熱する。気化器2は、熱媒体と液体アンモニアとの間で熱交換する。加熱された液体アンモニアは、気体アンモニアへと気化する。気化器2は、流路L2によってボイラ3に接続される。気化したアンモニアは、流路L2によってボイラ3に供給される。
 ボイラ3は、気化器2からの気体アンモニアを含む燃料を燃焼する。例えば、ボイラ3は、アンモニアと、例えば微粉炭等の他の燃料と、を含む混合燃料を燃焼してもよい。また、例えば、ボイラ3は、アンモニアのみを燃焼してもよい。また、例えば、ボイラ3は、必要に応じて、アンモニア以外の他の燃料のみを燃焼してもよい。ボイラ3は、燃焼による熱によって水を加熱し、水蒸気を生成する。
 タービン発電機4は、タービン41と、発電機42と、を含む。
 タービン41は、循環流路L3によって、ボイラ3に循環的に接続される。ボイラ3で生成された水蒸気は、循環流路L3によってタービン41に供給される。タービン41は、ボイラ3からの水蒸気によって回転させられる。発電機42は、タービン41に連結される。発電機42は、タービン41と共に回転し発電する。
 復水器5は、循環流路L3によってタービン41に循環的に接続される。また、復水器5は、流路L4によって、気化器2に接続される。復水器5は、流路L4を流れる熱媒体によって、タービン41から排出される蒸気を冷却する。蒸気は、水へと凝縮する。凝縮した水は、ボイラ3へと再び供給され、水蒸気へと加熱される。循環流路L3には、水を循環させるための第2ポンプP2が設けられる。
 流路(第1ライン)L4は、気化器2と復水器5とを直接的に接続する。流路L4には、熱媒体(第1熱媒体)が流れる。流路L4は、熱媒体が気化器2から復水器5へと流れるように構成される。流路L4には、熱媒体を気化器2から復水器5に向かう方向に送る第3ポンプP3が設けられる。
 例えば、第3ポンプP3は、熱媒体として、海から海水を汲み上げてもよい。海水が熱媒体として使用される場合、海水は、復水器5を通過した後に、海に放流されてもよい。代替的にまたは追加的に、第3ポンプP3は、熱媒体として、河川から水を汲み上げてもよい。河川の水が熱媒体として使用される場合には、水は、復水器5を通過した後に、河川に放流されてもよい。代替的にまたは追加的に、例えば、システム10が海および河川から遠い場所に建設される場合には、第3ポンプP3は、熱媒体として、冷却塔から水を受けてもよい。冷却塔からの水が熱媒体として使用される場合には、水は循環されて再利用されてもよい。熱媒体はこれらに限定されず、その他の流体が使用されてもよい。
 本実施形態では、流路L4は、気化器2の上流の位置で、流路L41および流路L42に分岐する。なお、分岐点には、流路L41および流路L42を流れる蒸気の流量を調整する不図示のバルブが設けられてもよい。流路L41および流路L42は、気化器2の下流の位置で互いに合流する。気化器2は、流路L41に設けられる。流路L42は、気化器2を迂回する。他の実施形態では、流路L42は設けられなくてもよい。
 続いて、システム10の動作について説明する。
 タンク1内の液体アンモニアは、流路L1によって気化器2に供給される。気化器2は、流路L4を流れる熱媒体によって、液体アンモニアを加熱する。加熱された液体アンモニアは、気体アンモニアへと気化する。気化したアンモニアは、流路L2によってボイラ3に供給される。
 ボイラ3は、気化器2からの気体アンモニアを含む燃料を燃焼する。ボイラ3は、燃焼による熱によって水を加熱し、水蒸気を生成する。ボイラ3で生成された水蒸気は、循環流路L3によってタービン41に供給される。タービン41は、ボイラ3からの水蒸気によって回転させられる。発電機42は、タービン41と共に回転し発電する。
 復水器5は、流路L4を流れる熱媒体によって、タービン41から排出される蒸気を冷却する。蒸気は、水へと凝縮する。凝縮した水は、ボイラ3へと再び供給され、水蒸気へと加熱される。
 流路L4では、熱媒体が、気化器2から復水器5に向かう方向に流れる。したがって、気化器2において液体アンモニアによって冷却された熱媒体が、復水器5に供給される。すなわち、流路L4は、気化器2を流れる液体アンモニアの冷熱エネルギを、復水器5に伝える。このため、例えば海水等の熱媒体が直接的に復水器5に供給される場合に比して、復水器5を流れる蒸気がより冷却され、復水器5内の圧力がより低下する。このような構成によれば、タービン41からより多くの蒸気を復水器5に引き込むことができ、タービン41の運転条件を拡張することができる。したがって、システム10の発電効率が向上する。
 以上のようなシステム10は、アンモニアを含む燃料を燃焼するボイラ3と、ボイラ3と循環的に接続され、ボイラ3からの蒸気によって駆動されるタービン41と、ボイラ3およびタービン41と循環的に接続される復水器5であって、タービン41から排出される蒸気を冷却し、凝縮された水をボイラ3に供給する、復水器5と、タンク1およびボイラ3と接続される気化器2であって、タンク1からの液体アンモニアを加熱し、加熱されたアンモニアをボイラ3に供給する、気化器2と、気化器2と復水器5とを熱的に接続する流路L4であって、気化器2を流れる液体アンモニアの冷熱エネルギを、復水器5に伝える、流路L4と、を備える。このような構成によれば、気化器2を流れる液体アンモニアの冷熱エネルギが、復水器5における水の凝縮に使用される。したがって、例えば海水等の熱媒体が直接的に復水器5に供給される場合に比して、復水器5を流れる蒸気がより冷却され、復水器5内の圧力がより低下する。よって、タービン41からより多くの蒸気を復水器5に引き込むことができ、タービン41の運転条件を拡張することができる。その結果、システム10の発電効率を向上することができる。
 また、システム10では、気化器2と復水器5とを熱的に接続するラインは、気化器2と復水器5とを直接的に接続する流路L4であって、当該流路L4を熱媒体が流れ、気化器2において液体アンモニアによって冷却される熱媒体を、復水器5に送る、流路L4を含む。このような構成によれば、例えば、熱媒体の流量を調整することによって、気化器2を通る液体アンモニアの流量によらずに、蒸気の冷却を調整して蒸気の不十分なまたは過度な冷却を避けることができる。したがって、タービン41の運転条件を細かく調整することができる。
 続いて、他の実施形態について説明する。
 図2は、第2実施形態に係る発電システム10Aを示す概略図である。システム10Aは、気化器2と復水器5との間に循環流路(第2ライン)L5および熱交換器6が追加される点で、第1実施形態のシステム10と異なる。その他の点については、システム10Aは、システム10と同じであってもよい。
 本実施形態では、流路L4は、気化器2に代えて、熱交換器6を通る。循環流路L5は、気化器2と熱交換器6とを循環的に接続する。熱媒体(第2熱媒体)が、循環流路L5を流れる。循環流路L5には、熱媒体を循環させるための第4のポンプP4が設けられる。
 例えば、第2熱媒体は、塩化ナトリウムを含有するブラインであってもよい。第2熱媒体はこれに限定されず、その他の流体が使用されてもよい。例えば、第2熱媒体は、第1熱媒体の凝固点よりも低い凝固点を有する流体であってもよい。
 熱交換器6は、流路L4と循環流路L5との間に配置される。熱交換器6は、流路L4を流れる第1熱媒体と、循環流路L5を流れる第2熱媒体と、の間で熱交換する。
 続いて、システム10Aの動作を、第1実施形態のシステム10と異なる点について説明する。
 循環流路L5では、気化器2と熱交換器6との間を第2熱媒体が循環する。したがって、気化器2において液体アンモニアによって冷却された第2熱媒体が、熱交換器6に供給される。熱交換器6は、循環流路L5を流れる第2熱媒体によって、流路L4を流れる第1熱媒体を冷却する。
 流路L4では、第1熱媒体が、熱交換器6から復水器5に向かう方向に流れる。したがって、熱交換器6において第2熱媒体によって冷却された第1熱媒体が、復水器5に供給される。すなわち、循環流路L5、熱交換器6および流路L4は、気化器2を流れる液体アンモニアの冷熱エネルギを、復水器5に伝える。このため、例えば海水等の熱媒体が直接的に復水器5に供給される場合に比して、復水器5を流れる蒸気がより冷却され、復水器5内の圧力がより低下する。
 以上のようなシステム10Aによれば、第1実施形態のシステム10と同様に、タービン41からより多くの蒸気を復水器5に引き込むことができ、タービン41の運転条件を拡張することができる。したがって、システム10Aの発電効率が向上する。
 また、システム10Aでは、気化器2と復水器5とを熱的に接続するラインは、復水器5に接続される流路L4であって、当該流路L4を第1熱媒体が流れる、流路L4と、気化器2に循環的に接続される循環流路L5であって、当該循環流路L5を第2熱媒体が流れる、循環流路L5と、流路L4と循環流路L5との間に配置される熱交換器6であって、気化器2において液体アンモニアによって冷却されかつ循環流路L5を流れる第2熱媒体によって、流路L4を流れる第1熱媒体を冷却する、熱交換器6と、を含む。このような構成によれば、例えば、第1熱媒体の流量の調整に加えて、第2熱媒体の流量を調整することによって、蒸気の冷却を調整することができる。したがって、タービン41の運転状況をより細かく調整することができる。
 続いて、さらに他の実施形態について説明する。
 図3は、第3実施形態に係る発電システム10Bを示す概略図である。システム10Bは、流路L4および熱交換器6が設けられない点で、第2実施形態のシステム10Aと異なる。その他の点については、システム10Bは、システム10Aと同じであってもよい。
 本実施形態では、循環流路L5は、熱交換器6に代えて、復水器5を通る。循環流路L5は、気化器2と復水器5とを循環的に接続する。
 続いて、システム10Bの動作を、第2実施形態のシステム10Aと異なる点について説明する。
 循環流路L5では、気化器2と復水器5との間を第2熱媒体が循環する。したがって、気化器2において液体アンモニアによって冷却された第2熱媒体が、復水器5に供給される。復水器5は、循環流路L5を流れる第2熱媒体によって、復水器5を流れる蒸気を冷却する。すなわち、循環流路L5は、気化器2を流れる液体アンモニアの冷熱エネルギを、復水器5に伝える。このため、例えば海水等の熱媒体が直接的に復水器5に供給される場合に比して、復水器5を流れる蒸気がより冷却され、復水器5内の圧力がより低下する。
 以上のようなシステム10Bによれば、上記のシステム10,10Aと同様に、タービン41からより多くの蒸気を復水器5に引き込むことができ、タービン41の運転条件を拡張することができる。したがって、システム10Bの発電効率が向上する。
 また、システム10Bでは、気化器2と復水器5とを熱的に接続するラインは、気化器2と復水器5とを循環的に接続する循環流路L5であって、当該循環流路L5を第2熱媒体が流れ、気化器2において液体アンモニアによって冷却される第2熱媒体を、復水器5に送る、循環流路L5を含む。このような構成によれば、例えば、第2熱媒体の流量を調整することによって、蒸気の冷却を調整することができる。したがって、タービン41の運転状況を細かく調整することができる。また、システム10Bでは、例えば海水等の第1熱媒体が使用されない。したがって、液体アンモニアの海水への漏れがない。
 続いて、さらに他の実施形態について説明する。
 図4は、第4実施形態に係る発電システム10Cを示す概略図である。システム10Cは、循環流路L5が、気化器2と復水器5との間で流路L4に対して並列に設けられており、熱交換器6が設けられていない点で、第2実施形態のシステム10Aと異なる。その他の点については、システム10Cは、システム10Aと同じであってもよい。別の観点では、システム10Cは、第1実施形態の流路L4と、第3実施形態の循環流路L5と、の組合せを含む、ということができる。
 以上のようなシステム10Cによれば、上記のシステム10,10A,10Bと同様に、タービン41からより多くの蒸気を復水器5に引き込むことができ、タービン41の運転条件を拡張することができる。したがって、システム10Bの発電効率が向上する。
 また、システム10Cでは、気化器2と復水器5とを熱的に接続するラインは、気化器2と復水器5とを直接的に接続する流路L4であって、当該流路L4を第1熱媒体が流れ、気化器2において液体アンモニアによって冷却される第1熱媒体を、復水器5に送る、流路L4を含む。また、気化器2と復水器5とを熱的に接続するラインは、気化器2と復水器5とを循環的に接続する循環流路L5であって、当該循環流路L5を第2熱媒体が流れ、気化器2において液体アンモニアによって冷却される第2熱媒体を、復水器5に送る、循環流路L5を含む。このような構成によれば、例えば、第1熱媒体および第2熱媒体の双方の流量を調整することによって、蒸気の冷却を調整することができる。したがって、タービン41の運転状況をより細かく調整することができる。
 以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、第3実施形態のシステム10Bは、気化器2を通らずに復水器5を通る追加の流路を備えてもよく、海水または河川の水がこの流路を流れてもよい。
 本開示は、CO放出の削減につながるアンモニアの使用を促進することができるので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギへのアクセスを確保する」および目標13「気候変動とその影響に立ち向かうため、緊急対策を取る」に貢献することができる。
 1    タンク(アンモニア供給源)
 2    気化器
 3    ボイラ
 5    復水器
 6    熱交換器
 10   発電システム
 10A  発電システム
 10B  発電システム
 10C  発電システム
 41   タービン
 L4   流路(第1ライン)
 L5   循環流路(第2ライン)

Claims (4)

  1.  アンモニアを含む燃料を燃焼するボイラと、
     前記ボイラと循環的に接続され、前記ボイラからの蒸気によって駆動されるタービンと、
     前記ボイラおよび前記タービンと循環的に接続される復水器であって、前記タービンから排出される蒸気を冷却し、凝縮された水を前記ボイラに供給する、復水器と、
     アンモニア供給源および前記ボイラと接続される気化器であって、前記アンモニア供給源からの液体アンモニアを加熱し、加熱されたアンモニアを前記ボイラに供給する、気化器と、
     前記気化器と前記復水器とを熱的に接続する少なくとも1つのラインであって、前記気化器を流れる前記液体アンモニアの冷熱エネルギを、前記復水器に伝える、少なくとも1つのラインと、
     を備える、発電システム。
  2.  前記少なくとも1つのラインは、
      前記気化器と前記復水器とを直接的に接続する第1ラインであって、当該第1ラインを第1熱媒体が流れ、前記気化器において前記液体アンモニアによって冷却される前記第1熱媒体を、前記復水器に送る、第1ライン、
     を含む、請求項1に記載の発電システム。
  3.  前記少なくとも1つのラインは、
      前記復水器に接続される第1ラインであって、当該第1ラインを第1熱媒体が流れる、第1ラインと、
      前記気化器に循環的に接続される第2ラインであって、当該第2ラインを第2熱媒体が流れる、第2ラインと、
      前記第1ラインと前記第2ラインとの間に配置される熱交換器であって、前記気化器において前記液体アンモニアによって冷却されかつ前記第2ラインを流れる前記第2熱媒体によって、前記第1ラインを流れる前記第1熱媒体を冷却する、熱交換器と、
     を含む、請求項1に記載の発電システム。
  4.  前記少なくとも1つのラインは、
      前記気化器と前記復水器とを循環的に接続する第2ラインであって、当該第2ラインを第2熱媒体が流れ、前記気化器において前記液体アンモニアによって冷却される第2熱媒体を、前記復水器に送る、第2ライン、
     を含む、請求項1または2に記載の発電システム。
PCT/JP2023/007858 2022-06-24 2023-03-02 発電システム WO2023248542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023547889A JPWO2023248542A1 (ja) 2022-06-24 2023-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101752 2022-06-24
JP2022101752 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248542A1 true WO2023248542A1 (ja) 2023-12-28

Family

ID=89379415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007858 WO2023248542A1 (ja) 2022-06-24 2023-03-02 発電システム

Country Status (2)

Country Link
JP (1) JPWO2023248542A1 (ja)
WO (1) WO2023248542A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113108A (ja) * 1991-10-23 1993-05-07 Osaka Gas Co Ltd 液化天然ガスを用いる冷熱発電装置
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
JP2013217342A (ja) * 2012-04-11 2013-10-24 Toshiba Corp 蒸気タービンプラントおよびその運転方法
JP2016061227A (ja) * 2014-09-18 2016-04-25 三菱日立パワーシステムズ株式会社 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法
JP2018123756A (ja) * 2017-01-31 2018-08-09 株式会社Ihi 熱サイクル設備
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム
WO2020115822A1 (ja) * 2018-12-04 2020-06-11 中国電力株式会社 アンモニア気化器
JP2020148357A (ja) * 2019-03-11 2020-09-17 株式会社Ihi 発電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113108A (ja) * 1991-10-23 1993-05-07 Osaka Gas Co Ltd 液化天然ガスを用いる冷熱発電装置
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
JP2013217342A (ja) * 2012-04-11 2013-10-24 Toshiba Corp 蒸気タービンプラントおよびその運転方法
JP2016061227A (ja) * 2014-09-18 2016-04-25 三菱日立パワーシステムズ株式会社 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法
JP2018123756A (ja) * 2017-01-31 2018-08-09 株式会社Ihi 熱サイクル設備
JP2018200029A (ja) * 2017-05-29 2018-12-20 株式会社Ihi 発電システム
WO2020115822A1 (ja) * 2018-12-04 2020-06-11 中国電力株式会社 アンモニア気化器
JP2020148357A (ja) * 2019-03-11 2020-09-17 株式会社Ihi 発電システム

Also Published As

Publication number Publication date
JPWO2023248542A1 (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
JP7173245B2 (ja) 発電システム
JP6245404B1 (ja) 燃焼装置および発電設備
JP2012149541A (ja) 排熱回収発電装置および船舶
US11162391B2 (en) Heat cycle facility
CN102439304A (zh) 结合太阳能运行的燃气-蒸汽发电厂
US20140290244A1 (en) Binary power generation system
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
KR102220071B1 (ko) 보일러 시스템
JP2005098240A (ja) 発電システム
JP6168866B2 (ja) 液化天然ガス冷熱発電システム
KR102239301B1 (ko) 발전시스템을 구비한 부유식 해상구조물
WO2023248542A1 (ja) 発電システム
JP7351793B2 (ja) 石炭火力発電システム
KR102239300B1 (ko) 발전시스템을 구비한 부유식 해상구조물
WO2021229897A1 (ja) 温度調整システム及び温度調整方法
JP6152155B2 (ja) Lngサテライト設備
JP5013414B2 (ja) ガスタービンシステム及び発電システム
KR102403854B1 (ko) 액화가스 발전 시스템
US11359518B2 (en) Combined cycle power plant
KR102239297B1 (ko) 발전시스템을 구비한 부유식 해상구조물
WO2013136606A1 (ja) 蒸気発生システム
WO2023176050A1 (ja) ガスタービンシステム
JP2014218922A (ja) 原動機システム
KR102663870B1 (ko) 암모니아 기화 시스템, 이를 포함하는 발전 시스템 및 발전 시스템의 제어방법
WO2024053577A1 (ja) 熱機関システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023547889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826731

Country of ref document: EP

Kind code of ref document: A1