WO2023248532A1 - バッテリパック - Google Patents

バッテリパック Download PDF

Info

Publication number
WO2023248532A1
WO2023248532A1 PCT/JP2023/006220 JP2023006220W WO2023248532A1 WO 2023248532 A1 WO2023248532 A1 WO 2023248532A1 JP 2023006220 W JP2023006220 W JP 2023006220W WO 2023248532 A1 WO2023248532 A1 WO 2023248532A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
resistor
battery pack
switch
electric circuit
Prior art date
Application number
PCT/JP2023/006220
Other languages
English (en)
French (fr)
Inventor
保生 藤井
和晃 小山
龍彦 堀田
由子 永守
亮太 木村
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023248532A1 publication Critical patent/WO2023248532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a battery pack installed in a hybrid system.
  • Hybrid systems that use a combination of an engine, motor, and battery are being developed for industrial machinery, automobiles, etc. in response to demands for lower pollution and conservation of fossil fuel resources.
  • a hybrid system includes, for example, an internal combustion engine that uses fossil fuel to generate power, a motor that assists the internal combustion engine, and a battery, such as a lithium ion battery, that supplies electric power to the motor.
  • a battery pack containing, for example, a lithium ion battery is used as a power source to drive a motor.
  • Lithium-ion batteries undergo a deterioration phenomenon in which their full charge capacity decreases due to long-term storage or long-term use.
  • the degree of deterioration of a lithium ion battery can be easily diagnosed periodically using a deterioration diagnostic device during vehicle inspection.
  • Patent Document 1 discloses a cell deterioration diagnosis method for a vehicle battery.
  • Patent Document 2 discloses a battery condition determination system and a battery condition determination method that allow a server device to determine the deterioration condition of a battery installed in a vehicle.
  • Patent Document 3 discloses a deterioration determination device and a deterioration determination method for a secondary battery, which is realized by an ECU (Engine Control Unit) installed in an electric vehicle such as an electric vehicle or a hybrid vehicle. .
  • ECU Engine Control Unit
  • Patent Document 1 Patent Document 2, and Patent Document 3
  • a control device, a detection device, etc. for detecting physical quantities (current, voltage, etc.) related to the battery state are installed in the vehicle. , is required separately from the battery pack. Therefore, there is a problem in that it is difficult to diagnose battery deterioration using a single battery pack. That is, there is a problem in that battery deterioration diagnosis can only be performed when the battery pack is installed in the hybrid system.
  • JP2011-257372A Japanese Patent Application Publication No. 2021-86654 International Publication No. 2011/125213
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery pack that can perform battery deterioration diagnosis by itself.
  • a first aspect of the present invention is a battery pack installed in a hybrid system, which includes: a battery that supplies power to a motor of the hybrid system; a resistor electrically connected to the battery by an electric circuit; and a switch provided in the electric circuit between the battery and the resistor to open and close the electric circuit between the battery and the resistor;
  • the battery pack is characterized by comprising: a control unit that diagnoses the degree of deterioration of the battery based on voltage fluctuations of the battery when flowing from the battery toward the resistor.
  • a resistor is included in the battery pack and electrically connected to the battery by an electric circuit. Further, a switch is provided in the electric circuit between the battery and the resistor, and opens and closes the electric circuit between the battery and the resistor. Therefore, when the switch closes the electrical circuit between the battery and the resistor, current flows from the battery to the resistor.
  • the control unit provided in the battery pack executes control to close the switch according to the input signal, and evaluates the degree of battery deterioration based on the voltage fluctuation of the battery when current flows from the battery to the resistor. Diagnose.
  • the battery pack according to the first aspect of the present invention can perform deterioration diagnosis of the battery included in the battery pack by itself.
  • the battery pack according to the first aspect of the present invention can perform battery deterioration diagnosis with the battery pack alone, battery deterioration diagnosis can be performed using a signal input to the control unit at any timing. For example, even if there is no opportunity for a regular inspection such as a vehicle inspection, the degree of deterioration of the battery can be diagnosed at any timing. This makes the replacement timing of the battery included in the battery pack more clear.
  • a second aspect of the present invention is the battery according to the first aspect of the present invention, wherein the control unit executes control to automatically open the switch when a predetermined time has elapsed after closing the switch. It's a pack.
  • control unit can suppress the occurrence of overdischarge abnormality of the battery.
  • a third aspect of the present invention is the battery pack according to the first or second aspect of the present invention, wherein the control section includes an internal circuit that detects the voltage value of the battery.
  • the control unit can detect the battery voltage value using an internal circuit built into the control unit itself, even if a detection unit for detecting the battery voltage value is not separately provided. .
  • the structure of the battery pack can be simplified and the battery pack can be made smaller.
  • a fourth aspect of the present invention is provided in the electric circuit between the positive terminal of the battery and the resistor in any one of the first to third aspects of the present invention, a positive side contactor that opens and closes the electrical circuit between the battery, and a positive contactor that is provided in the electrical circuit between the negative terminal of the battery and the resistor and opens and closes the electrical circuit between the negative terminal and the resistor.
  • the switch that opens and closes the electric circuit between the battery and the resistor opens and closes the electric circuit between the positive contactor and the resistor and the electric circuit between the negative contactor and the resistor. provided in at least one of them. Therefore, even if an abnormality such as an overcurrent abnormality occurs in the electrical circuit, at least one of the positive contactor and negative contactor opens, and the electrical circuit upstream of the switch is cut off from the battery's perspective. Ru. Thereby, the safety of the battery pack can be improved.
  • a fifth aspect of the present invention is based on the fourth aspect of the present invention, further comprising a current value detection section that is provided in the electric circuit and detects a current value flowing through the electric circuit, and the control section is configured to detect the current value.
  • control is executed to open the switch, and control is executed to open at least one of the positive contactor and the negative contactor. It's a battery pack.
  • the control unit when the control unit detects an overcurrent abnormality based on the current value acquired from the current value detection unit, the control unit executes control to open the switch. Furthermore, upon detecting an overcurrent abnormality based on the current value acquired from the current value detection section, the control section executes control to open at least one of the positive contactor and the negative contactor. Thereby, even if the switch is welded and cannot be opened, for example, the control unit can more reliably interrupt the electric circuit by opening at least one of the positive contactor and the negative contactor. Thereby, the safety of the battery pack can be further improved.
  • control section has a storage section that stores data on the voltage fluctuation, and the control section has a storage section that stores the data of the voltage fluctuation.
  • the battery pack is characterized in that the degree of deterioration is diagnosed based on data.
  • the control unit diagnoses the degree of deterioration based on the battery voltage fluctuation data stored in the storage unit, so that the degree of deterioration of the battery can be estimated with higher accuracy. , the timing of battery replacement can be made clearer.
  • FIG. 1 is a block diagram showing a hybrid system equipped with a battery pack according to an embodiment of the present invention. It is a flow chart showing an example of operation of battery deterioration diagnosis performed by the battery pack according to the present embodiment.
  • 7 is a graph showing an example of the behavior of battery voltage fluctuation when current flows from the battery toward the resistor. It is a graph showing an example of a change in the degree of deterioration of a battery according to the number of years of use of the battery.
  • FIG. 1 is a block diagram showing a hybrid system equipped with a battery pack according to an embodiment of the present invention.
  • Hybrid system 10 shown in FIG. 1 includes an engine 1, a motor generator 2, and a battery pack 40.
  • the motor generator 2 of this embodiment is an example of the "motor" of the present invention.
  • the engine 1 is a multi-cylinder diesel engine, such as a turbocharged, high-output three-cylinder engine or a four-cylinder engine. However, the engine 1 is not limited to a diesel engine.
  • the engine 1 includes an ECU (Engine Control Unit) 150.
  • ECU 150 controls the operation of engine 1 and also controls motor generator 2 by communicating with motor generator 2 via, for example, CAN (Controller Area Network).
  • the motor generator 2 operates with electric power supplied from the battery pack 40 to support the engine 1 when power is required, such as when starting or accelerating an industrial machine or the like on which the hybrid system 10 is mounted.
  • the hybrid system 10 is mounted on, for example, industrial machines including construction machines such as forklifts and agricultural machines such as tractors.
  • the motor generator 2 converts the kinetic energy of an industrial machine or the like on which the hybrid system 10 is mounted into electrical energy, using regenerative braking or the like, to generate electricity.
  • the motor generator 2 has a built-in inverter. However, the inverter does not necessarily have to be built into the motor generator 2, and may be provided separately from the motor generator 2.
  • the battery pack 40 includes a battery 50, a resistor 45, a switch 46, and a BMU (Battery Management Unit) 85.
  • Battery 50 is provided as a drive power source for motor generator 2 and supplies electric power to motor generator 2.
  • Battery 50 has a positive terminal 51 and a negative terminal 52.
  • Examples of the battery 50 include a 48V high voltage lithium ion battery (LiB).
  • the battery 50 is not limited to a lithium ion battery. Further, the voltage of the battery 50 is not limited to 48V, and may be 48V or higher.
  • the resistor 45 is electrically connected to the battery 50 by an electric circuit. Specifically, as shown in FIG. 1, the resistor 45 is connected to the positive wiring 174 connected to the positive terminal 51 of the battery 50, and the negative wiring 175 connected to the negative terminal 52 of the battery 50. It is connected to the. That is, the positive electrode wiring 174 is a wiring that electrically connects the positive electrode terminal 51 of the battery 50 and the resistor 45. The negative electrode wiring 175 is a wiring that electrically connects the negative electrode terminal 52 of the battery 50 and the resistor 45.
  • the motor generator 2 is connected to a positive branch wiring 176 branched from the positive wiring 174 and to a negative branch wiring 177 branched from the negative wiring 175. That is, as shown in FIG. 1, the electric circuit in which the resistor 45 and the motor generator 2 are connected to the battery 50 constitutes a parallel circuit.
  • the resistor 45 is used to discharge the battery 50 when the BMU 85 diagnoses the degree of deterioration of the battery 50, that is, to cause current to flow from the battery 50.
  • the details will be described later.
  • the BMU 85 of this embodiment is an example of the "control unit" of the present invention.
  • the switch 46 is provided in the electric circuit between the battery 50 and the resistor 45. Specifically, as shown in FIG. 1, the switch 46 is provided on the positive electrode wiring 174. That is, the electric circuit between the battery 50 and the resistor 45 includes the positive electrode wiring 174. More specifically, the switch 46 is provided on the positive wiring 174 between the positive contactor 75 and the resistor 45. Note that the switch 46 may be provided on the negative electrode wiring 175. In this case, the electric circuit between battery 50 and resistor 45 includes negative electrode wiring 175. More specifically, the switch 46 may be provided on the negative wiring 175 between the negative contactor 76 and the resistor 45.
  • the switch 46 is electrically connected to the BMU 85 by a signal line 185, and opens and closes the electric circuit between the battery 50 and the resistor 45, that is, the positive wiring 174, based on a control signal transmitted from the BMU 85 through the signal line 185. I do.
  • the battery pack 40 further includes a positive contactor 75, a negative contactor 76, a current value detection section 65, and a fuse 95.
  • the positive contactor 75 is provided in the electrical circuit between the positive terminal 51 of the battery 50 and the resistor 45, that is, in the positive wiring 174.
  • the positive contactor 75 is electrically connected to the ECU 150 by a signal line 181, and opens and closes the positive wiring 174 based on a control signal transmitted from the ECU 150 through the signal line 181.
  • the positive electrode side contactor 75 may be electrically connected to the BMU 85. In this case, the positive contactor 75 opens and closes the positive wiring 174 based on the control signal transmitted from the BMU 85.
  • the negative electrode side contactor 76 is provided in the electric circuit between the negative electrode terminal 52 of the battery 50 and the resistor 45, that is, in the negative electrode wiring 175.
  • the negative contactor 76 is electrically connected to the BMU 85 through a signal line 182 and opens and closes the negative wiring 175 based on a control signal transmitted from the BMU 85 through the signal line 182.
  • the negative electrode side contactor 76 may be electrically connected to the ECU 150. In this case, the negative contactor 76 opens and closes the negative wiring 175 based on a control signal transmitted from the ECU 150.
  • the BMU 85 is electrically connected to the battery 50 through a signal line 183 and detects the voltage value of the battery 50 based on a signal transmitted from the battery 50 through the signal line 183. Specifically, the BMU 85 detects the voltage value of each cell built into the battery 50 using an internal circuit built into the BMU 85 itself, and detects the sum of the voltage values of each cell as the voltage value of the battery 50. do.
  • the BMU 85 monitors the state of the battery 50 and can detect an abnormality in the battery 50 based on a signal transmitted from the battery 50 through the signal line 183. For example, the BMU 85 detects the voltage value of the battery 50 based on a signal transmitted from the battery 50 through the signal line 183, and detects an overcharge abnormality and an overdischarge abnormality.
  • the BMU 85 is electrically connected to the current value detection unit 65 by a signal line 184 and acquires the current value from the current value detection unit 65 through the signal line 184.
  • the current value detection section 65 is provided in the positive electrode wiring 174 and detects the current value flowing through the positive electrode wiring 174. That is, the BMU 85 acquires the value of the current flowing through the positive wiring 174 from the current value detection unit 65 through the signal line 184.
  • the BMU 85 detects an overcurrent abnormality based on the current value obtained from the current value detection unit 65 through the signal line 184. Alternatively, the BMU 85 detects an overtemperature abnormality based on the cell temperature obtained from a CMU (Cell Management Unit; not shown).
  • BMU 85 is electrically connected to the ECU 150 through a signal line 193 and controls the negative contactor 76 based on a control signal transmitted from the ECU 150 through the signal line 193.
  • ECU 150 and BMU 85 communicate with each other via CAN, for example, and monitor each other's status.
  • BMU 85 has a storage section 851.
  • the fuse 95 is provided in the positive wiring 174 between the current value detection section 65 and the positive contactor 75.
  • the fuse 95 interrupts the electrical circuit, ie, the positive wiring 174, when an overcurrent flows through the positive wiring 174.
  • the BMU 85 of the battery pack 40 executes control to close the switch 46 in response to an input signal 86 related to a deterioration diagnosis instruction for the battery 50.
  • the input signal 86 is input to the BMU 85 from a service person or a user at an arbitrary timing using a CAN or an analog switch.
  • arbitrary timing include, for example, timing in the production process or inspection process before the battery pack 40 is shipped from the factory.
  • an example of "arbitrary timing” includes, for example, the timing of a regular inspection or an irregular inspection after the battery pack 40 is incorporated into the hybrid system 10 and installed in an actual machine.
  • the "arbitrary timing" after the battery pack 40 is mounted on the actual machine is preferably a timing when the motor generator 2 is not operating.
  • the BMU 85 can diagnose the degree of deterioration of the battery 50 at a timing when the voltage of the battery 50 is relatively stable. Thereby, the BMU 85 can diagnose the degree of deterioration of the battery 50 more stably and with higher accuracy.
  • the BMU 85 executes control to automatically open the switch 46.
  • the "predetermined time” is, for example, approximately 8 seconds or more and 12 seconds or less. However, the "predetermined time” is not limited to 8 seconds or more and 12 seconds or less.
  • the BMU 85 diagnoses the degree of deterioration of the battery 50 based on voltage fluctuations of the battery 50 when current flows from the battery 50 toward the resistor 45. Note that the timing at which the BMU 85 diagnoses the degree of deterioration of the battery 50 does not necessarily have to be after the BMU 85 opens the switch 46, but may be before the BMU 85 opens the switch 46. That is, the BMU 85 may diagnose the degree of deterioration of the battery 50 while the switch 46 is closed.
  • the battery deterioration diagnosis sequence of this embodiment is stored in advance in the storage unit 851 of the BMU 85.
  • FIG. 2 is a flowchart illustrating an operation example of battery deterioration diagnosis performed by the battery pack according to the present embodiment.
  • FIG. 3 is a graph showing an example of the behavior of battery voltage fluctuation when current flows from the battery toward the resistor.
  • FIG. 4 is a graph showing an example of a change in the degree of deterioration of a battery depending on the number of years of use of the battery.
  • step S1 shown in FIG. 2 the BMU 85 determines whether a signal related to a deterioration diagnosis instruction for the battery 50 (ie, input signal 86: see FIG. 1) has been input to the BMU 85. Examples of the timing at which the input signal 86 is input to the BMU 85 are as described above with respect to FIG.
  • step S1 If a signal related to a deterioration diagnosis instruction for the battery 50 is input to the BMU 85 (step S1: YES), the BMU 85 executes control to close the switch 46 in step S2. Subsequently, in step S3, the BMU 85 determines whether an overcurrent abnormality has been detected based on the current value acquired from the current value detection unit 65.
  • step S7 the BMU 85 executes control to open the switch 46 and closes the positive contactor 75. and control to open at least one of the negative electrode side contactors 76 is executed.
  • the BMU 85 can more reliably interrupt the electric circuit.
  • the switch 46 is welded and cannot be opened, the BMU 85 can more reliably interrupt the electric circuit by opening at least one of the positive contactor 75 and the negative contactor 76.
  • the safety of the battery pack 40 can be further improved.
  • step S4 the BMU 85 determines whether a predetermined time has elapsed since the switch 46 was closed.
  • the "predetermined time” is, for example, approximately 8 seconds or more and 12 seconds or less. However, the "predetermined time” is not limited to 8 seconds or more and 12 seconds or less.
  • step S4 If the predetermined time has not passed since the BMU 85 closed the switch 46 (step S4: NO), the BMU 85 executes the process described above regarding step S3. On the other hand, if a predetermined period of time has elapsed since the BMU 85 closed the switch 46 (step S4: YES), the BMU 85 executes control to automatically open the switch 46 in step S5.
  • step S6 the BMU 85 diagnoses the degree of deterioration of the battery 50 based on the voltage fluctuation of the battery 50 when current flows from the battery 50 toward the resistor 45.
  • the voltage value of the battery 50 detected by the BMU 85 fluctuates.
  • the BMU 85 stores voltage fluctuation data of the battery 50 when current flows from the battery 50 toward the resistor 45 in the storage unit 851 as a map M1.
  • the map M1 illustrated in FIG. 3 shows an example of the cell voltage of the battery 50 with 100% SOH (State of Health) and an example of the cell voltage of the battery 50 with 95% SOH.
  • SOH is an index indicating the degree of deterioration of the battery (i.e., health level and state of deterioration)
  • SOH Full charge capacity at the time of deterioration (Ah) / Initial full charge capacity (Ah) x 100 It is expressed as That is, SOH is the ratio of full charge capacity at the time of deterioration (capacity change rate) when the initial full charge capacity of the battery is 100%.
  • the BMU 85 estimates the degree of deterioration H of the battery 50 based on the voltage fluctuation data of the battery 50 in the map M1 stored in the storage unit 851.
  • the degree of deterioration H of the battery 50 estimated by the BMU 85 is graphed as illustrated in FIG. 4 .
  • the vertical axis represents the capacity change rate (percentage) of the battery, and the horizontal axis represents the number of years of use.
  • the "capacity change rate" on the vertical axis of the graph illustrated in FIG. 4 corresponds to the SOH (State Of Health) described above.
  • the service person or the user can check the degree of deterioration H of the battery 50 as a graph, numerical value, notification light, etc. on the display section (not shown) provided on the battery pack 40 or on an external display, etc., as necessary. It is possible to do so. For example, when the capacity change rate of the battery 50 becomes less than or equal to a predetermined value, the BMU 85 executes a process of lighting up an indicator lamp indicating the replacement timing of the battery 50, and notifies the replacement timing of the battery 50. Can be done.
  • the resistor 45 is provided in the battery pack 40 and is electrically connected to the battery 50 by an electric circuit.
  • a switch 46 is provided on the positive electrode wiring 174 between the battery 50 and the resistor 45, and opens and closes the positive electrode wiring 174 between the battery 50 and the resistor 45. Therefore, when switch 46 closes positive electrode wiring 174 between battery 50 and resistor 45, current flows from battery 50 toward resistor 45.
  • the BMU 85 provided in the battery pack 40 executes control to close the switch 46 according to the input signal 86, and based on the voltage fluctuation of the battery 50 when current flows from the battery 50 toward the resistor 45. The degree of deterioration of the battery 50 is diagnosed.
  • the battery pack 40 according to the present embodiment can perform a deterioration diagnosis of the battery 50 included in the battery pack 40 by using the battery pack 40 alone.
  • the battery pack 40 according to the present embodiment can diagnose the deterioration of the battery 50 with the battery pack 40 alone, the deterioration of the battery 50 can be diagnosed by the signal input to the BMU 85 (i.e., the input signal 86) at any timing.
  • the degree of deterioration of the battery 50 can be diagnosed at any timing even if there is no opportunity for regular inspection such as a vehicle inspection. This makes the timing for replacing the battery 50 included in the battery pack 40 more clear.
  • the BMU 85 executes control to automatically open the switch 46 after a predetermined period of time has passed since the switch 46 is closed, it is possible to suppress the occurrence of an overdischarge abnormality of the battery 50.
  • the BMU 85 detects the voltage value of the battery 50 using an internal circuit built into the BMU 85 itself. can do. Thereby, the structure of the battery pack 40 can be simplified, and the battery pack 40 can be made smaller.
  • a switch 46 that opens and closes an electric circuit between the battery 50 and the resistor 45 is connected to a positive wiring 174 between the positive contactor 75 and the resistor 45 and a negative wiring 175 between the negative contactor 76 and the resistor 45. provided in at least one of the following. Therefore, even if an abnormality such as an overcurrent abnormality occurs in the electric circuit, at least one of the positive contactor 75 and the negative contactor 76 opens, causing the electricity to flow upstream of the switch 46 from the perspective of the battery 50. The circuit is interrupted. Thereby, the safety of the battery pack 40 can be improved.
  • the BMU 85 diagnoses the degree of deterioration based on data on voltage fluctuations of the battery 50 stored in the storage unit 851, the degree of deterioration of the battery 50 can be estimated with higher accuracy, and the timing for replacing the battery 50 is can be made more clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】単体でバッテリの劣化診断を行うことができるバッテリパックを提供すること。 【解決手段】バッテリパック40は、ハイブリッドシステム10のモータ2に電力を供給するバッテリ50と、電気回路によりバッテリ50に電気的に接続される抵抗45と、バッテリ50と抵抗45との間における電気回路174に設けられ、バッテリ50と抵抗45との間における電気回路174の開閉を行うスイッチ46と、入力信号86に応じてスイッチ46を閉じる制御を実行し、電流がバッテリ50から抵抗45に向かって流れたときのバッテリ50の電圧変動に基づいてバッテリ50の劣化度合いを診断する制御部85と、を備える。

Description

バッテリパック
 本発明は、ハイブリッドシステムに搭載されるバッテリパックに関する。
 エンジンとモータとバッテリとを併用するハイブリッドシステムは、低公害化と化石燃料の省資源化との要求に伴って、産業機械や自動車等のために開発されている。ハイブリッドシステムは、例えば化石燃料を使用し動力を発生する内燃式エンジンと、内燃式エンジンを補助するモータと、モータに電力を供給する例えばリチウムイオン電池等のバッテリと、を備えている。
 ハイブリッドシステムでは、例えばリチウムイオン電池を含むバッテリパックが、モータを駆動するための電源として用いられている。リチウムイオン電池では、長期の保管や長期の使用によって満充電容量が減少していく劣化現象が生ずる。例えば、ハイブリッドシステムを有する乗用車等の自動車では、車検の時に、劣化診断装置を用いて定期的にリチウムイオン電池の劣化度合いを容易に診断することができる。
 しかし、ハイブリッドシステムを有する産業機械では、車検のような定期検査の機会がないので、リチウムイオン電池の劣化度合いの診断を定期的に行うことが困難である。例えば、ハイブリッドシステムを有する産業機械を使用するユーザは、リチウムイオン電池の劣化度合いの診断をユーザ自身で行うためには、別途高価なバッテリ劣化診断装置等のバッテリ評価装置を用意する必要がある。このように、ハイブリッドシステムを有する産業機械においてリチウムイオン電池の劣化度合いの診断を定期的に行うことが困難であるため、リチウムイオン電池の交換をするタイミングがユーザにとって不明確であるという問題がある。
 特許文献1には、車両用バッテリーのセル劣化診断方法が開示されている。特許文献2には、車両に搭載されたバッテリの劣化状態の判定を、サーバ装置において行うことができるバッテリ状態判定システムおよびバッテリ状態判定方法が開示されている。特許文献3には、例えば電気自動車やハイブリッド自動車等の電動車両に搭載されるECU(Engine Control Unit:エンジンコントロールユニット)により実現される二次電池の劣化判定装置および劣化判定方法が開示されている。
 しかし、特許文献1、特許文献2および特許文献3に記載された技術では、バッテリの状態に関する物理量(電流や電圧など)を検出するための制御装置や検出装置などが、車両に搭載されており、バッテリパックとは別に必要である。そのため、バッテリパック単体でバッテリの劣化診断を行うことが困難であるという問題がある。すなわち、バッテリパックがハイブリッドシステムに搭載されている時にしか、バッテリの劣化診断を行うことができないという問題がある。
特開2011-257372号公報 特開2021-86654号公報 国際公開第2011/125213号
 本発明は、前記事情に鑑みてなされたものであり、単体でバッテリの劣化診断を行うことができるバッテリパックを提供することを目的とする。
 本発明の第1態様は、ハイブリッドシステムに搭載されるバッテリパックであって、前記ハイブリッドシステムのモータに電力を供給するバッテリと、電気回路により前記バッテリに電気的に接続される抵抗と、前記バッテリと前記抵抗との間における前記電気回路に設けられ、前記バッテリと前記抵抗との間における前記電気回路の開閉を行うスイッチと、入力信号に応じて前記スイッチを閉じる制御を実行し、電流が前記バッテリから前記抵抗に向かって流れたときの前記バッテリの電圧変動に基づいて前記バッテリの劣化度合いを診断する制御部と、を備えたことを特徴とするバッテリパックである。
 本発明の第1態様によれば、抵抗が、バッテリパックに備えられており、電気回路によりバッテリに電気的に接続されている。また、スイッチが、バッテリと抵抗との間における電気回路に設けられており、バッテリと抵抗との間における電気回路の開閉を行う。そのため、スイッチがバッテリと抵抗との間における電気回路を閉じると、電流がバッテリから抵抗に向かって流れる。ここで、バッテリパックに備えられた制御部は、入力信号に応じてスイッチを閉じる制御を実行し、電流がバッテリから抵抗に向かって流れたときのバッテリの電圧変動に基づいてバッテリの劣化度合いを診断する。これにより、本発明の第1態様に係るバッテリパックは、バッテリパック単体でバッテリパックに備えられたバッテリの劣化診断を行うことができる。また、本発明の第1態様に係るバッテリパックは、バッテリパック単体でバッテリの劣化診断を行うことができるため、任意のタイミングで制御部に入力された信号によりバッテリの劣化診断を行うことができ、例えば車検等の定期検査の機会がない場合であっても、バッテリの劣化度合いを任意のタイミングで診断することができる。これにより、バッテリパックに備えられたバッテリの交換タイミングがより明確になる。
 本発明の第2態様は、本発明の第1態様において、前記制御部は、前記スイッチを閉じてから所定時間が経過すると、前記スイッチを自動的に開く制御を実行することを特徴とするバッテリパックである。
 本発明の第2態様によれば、制御部は、バッテリの過放電異常の発生を抑えることができる。
 本発明の第3態様は、本発明の第1態様または第2態様において、前記制御部は、前記バッテリの電圧値を検出する内部回路を内蔵することを特徴とするバッテリパックである。
 本発明の第3態様によれば、バッテリの電圧値を検出する検出部が別途設けられていなくとも、制御部は、制御部自体が内蔵する内部回路によりバッテリの電圧値を検出することができる。これにより、バッテリパックの構造を簡易化することができ、バッテリパックの小型化を図ることができる。
 本発明の第4態様は、本発明の第1態様~第3態様のいずれかにおいて、前記バッテリの正極端子と前記抵抗との間における前記電気回路に設けられ、前記正極端子と前記抵抗との間における前記電気回路の開閉を行う正極側コンタクタと、前記バッテリの負極端子と前記抵抗との間における前記電気回路に設けられ、前記負極端子と前記抵抗との間における前記電気回路の開閉を行う負極側コンタクタと、をさらに備え、前記スイッチは、前記正極側コンタクタと前記抵抗との間における前記電気回路および前記負極側コンタクタと前記抵抗との間における前記電気回路の少なくともいずれかに設けられたことを特徴とするバッテリパックである。
 本発明の第4態様によれば、バッテリと抵抗との間における電気回路の開閉を行うスイッチが、正極側コンタクタと抵抗との間における電気回路および負極側コンタクタと抵抗との間における電気回路の少なくともいずれかに設けられている。そのため、例えば過電流異常などの異常が電気回路に生じた場合であっても、正極側コンタクタおよび負極側コンタクタの少なくともいずれかが開くことで、バッテリからみてスイッチの上流側の電気回路が遮断される。これにより、バッテリパックの安全性を高めることができる。
 本発明の第5態様は、本発明の第4態様において、前記電気回路に設けられ、前記電気回路を流れる電流値を検出する電流値検出部をさらに備え、前記制御部は、前記電流値検出部から取得した電流値に基づいて過電流異常を検出すると、前記スイッチを開く制御を実行するとともに、前記正極側コンタクタおよび前記負極側コンタクタの少なくともいずれかを開く制御を実行することを特徴とするバッテリパックである。
 本発明の第5態様によれば、制御部は、電流値検出部から取得した電流値に基づいて過電流異常を検出すると、スイッチを開く制御を実行する。さらに、制御部は、電流値検出部から取得した電流値に基づいて過電流異常を検出すると、正極側コンタクタおよび負極側コンタクタの少なくともいずれかを開く制御を実行する。これにより、例えばスイッチが溶着して開くことができない場合であっても、制御部は、正極側コンタクタおよび負極側コンタクタの少なくともいずれかを開くことで電気回路をより確実に遮断できる。これにより、バッテリパックの安全性をより一層高めることができる。
 本発明の第6態様は、本発明の第1態様~第5態様のいずれかにおいて、前記制御部は、前記電圧変動のデータを蓄積する記憶部を有し、前記記憶部に蓄積された前記データに基づいて前記劣化度合いを診断することを特徴とするバッテリパックである。
 本発明の第6態様によれば、制御部は、記憶部に蓄積されたバッテリの電圧変動のデータに基づいて劣化度合いを診断するため、バッテリの劣化度合いをより高い精度で推定することができ、バッテリの交換タイミングをより明確にすることができる。
 本発明によれば、単体でバッテリの劣化診断を行うことができるバッテリパックを提供することができる。
本発明の実施形態に係るバッテリパックが搭載されたハイブリッドシステムを表すブロック図である。 本実施形態に係るバッテリパックが実行するバッテリ劣化診断の動作例を表すフローチャートである。 電流がバッテリから抵抗に向かって流れたときのバッテリの電圧変動の挙動例を示すグラフである。 バッテリの使用年数に応じたバッテリの劣化度合いの推移例を示すグラフである。
 以下に、本発明の実施形態を、図面を参照して説明する。
 なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明を適宜省略する。
 図1は、本発明の実施形態に係るバッテリパックが搭載されたハイブリッドシステムを表すブロック図である。
 図1に表したハイブリッドシステム10は、エンジン1と、モータジェネレータ2と、バッテリパック40と、を備える。本実施形態のモータジェネレータ2は、本発明の「モータ」の一例である。
 エンジン1は、例えばターボチャージを有する過給式の高出力な3気筒エンジンや4気筒エンジン等の多気筒ディーゼルエンジンである。但し、エンジン1は、ディーゼルエンジンに限定されるわけではない。エンジン1は、ECU(Engine Control Unit:エンジンコントロールユニット)150を有する。ECU150は、エンジン1の動作を制御するとともに、例えばCAN(Controller Area Network)によりモータジェネレータ2と通信を行いモータジェネレータ2を制御する。
 モータジェネレータ2は、ハイブリッドシステム10が搭載される産業機械等の発進時や加速時などパワーが必要な時に、バッテリパック40から供給される電力により稼動しエンジン1をサポートする。なお、ハイブリッドシステム10は、例えばフォークリフト等の建設機械およびトラクタ等の農業機械を含む産業機械等に搭載される。また、モータジェネレータ2は、回生ブレーキなどを利用し、ハイブリッドシステム10が搭載される産業機械等の運動エネルギーを電気エネルギーに変換して発電する。モータジェネレータ2は、インバータを内蔵している。但し、インバータは、必ずしもモータジェネレータ2に内蔵されていなくともよく、モータジェネレータ2とは別体として設けられていてもよい。
 バッテリパック40は、バッテリ50と、抵抗45と、スイッチ46と、BMU(Battery Management Unit:バッテリマネージメントユニット)85と、を有する。バッテリ50は、モータジェネレータ2の駆動電源として設けられ、モータジェネレータ2に電力を供給する。バッテリ50は、正極端子51と、負極端子52と、を有する。バッテリ50としては、例えば48Vの高電圧型のリチウムイオン電池(LiB)などが挙げられる。但し、バッテリ50は、リチウムイオン電池に限定されるわけではない。また、バッテリ50の電圧は、48Vに限定されるわけではなく、48V以上であってもよい。
 抵抗45は、電気回路によりバッテリ50に電気的に接続されている。具体的には、図1に表したように、抵抗45は、バッテリ50の正極端子51に接続された正極配線174に接続されているとともに、バッテリ50の負極端子52に接続された負極配線175に接続されている。つまり、正極配線174は、バッテリ50の正極端子51と抵抗45とを電気的に接続する配線である。負極配線175は、バッテリ50の負極端子52と抵抗45とを電気的に接続する配線である。なお、モータジェネレータ2は、正極配線174から分岐した正極分岐配線176に接続されるとともに、負極配線175から分岐した負極分岐配線177に接続される。つまり、図1に表したように、抵抗45およびモータジェネレータ2がバッテリ50に接続される電気回路は、並列回路を構成する。
 抵抗45は、BMU85がバッテリ50の劣化度合いを診断するときにバッテリ50を放電させるため、すなわちバッテリ50から電流を流すために用いられる。この詳細については、後述する。本実施形態のBMU85は、本発明の「制御部」の一例である。
 スイッチ46は、バッテリ50と抵抗45との間における電気回路に設けられている。具体的には、図1に表したように、スイッチ46は、正極配線174に設けられている。つまり、バッテリ50と抵抗45との間における電気回路は、正極配線174を含む。より具体的には、スイッチ46は、正極側コンタクタ75と抵抗45との間における正極配線174に設けられている。なお、スイッチ46は、負極配線175に設けられていてもよい。この場合には、バッテリ50と抵抗45との間における電気回路は、負極配線175を含む。より具体的には、スイッチ46は、負極側コンタクタ76と抵抗45との間における負極配線175に設けられていてもよい。
 スイッチ46は、信号線185によりBMU85に電気的に接続されており、BMU85から信号線185を通して送信される制御信号に基づいて、バッテリ50と抵抗45との間における電気回路すなわち正極配線174の開閉を行う。
 バッテリパック40は、正極側コンタクタ75と、負極側コンタクタ76と、電流値検出部65と、ヒューズ95と、をさらに有する。正極側コンタクタ75は、バッテリ50の正極端子51と抵抗45との間における電気回路すなわち正極配線174に設けられている。正極側コンタクタ75は、信号線181によりECU150に電気的に接続されており、ECU150から信号線181を通して送信される制御信号に基づいて正極配線174の開閉を行う。
 なお、正極側コンタクタ75は、BMU85に電気的に接続されていてもよい。この場合には、正極側コンタクタ75は、BMU85から送信される制御信号に基づいて正極配線174の開閉を行う。
 負極側コンタクタ76は、バッテリ50の負極端子52と抵抗45との間における電気回路すなわち負極配線175に設けられている。負極側コンタクタ76は、信号線182によりBMU85に電気的に接続されており、BMU85から信号線182を通して送信される制御信号に基づいて負極配線175の開閉を行う。
 なお、負極側コンタクタ76は、ECU150に電気的に接続されていてもよい。この場合には、負極側コンタクタ76は、ECU150から送信される制御信号に基づいて負極配線175の開閉を行う。
 BMU85は、信号線183によりバッテリ50に電気的に接続されており、バッテリ50から信号線183を通して送信される信号に基づいてバッテリ50の電圧値を検出する。具体的には、BMU85は、BMU85自体に内蔵された内部回路を用いて、バッテリ50に内蔵された各セルの電圧値を検出し、各セルの電圧値の総和をバッテリ50の電圧値として検出する。BMU85は、バッテリ50の状態を監視しており、バッテリ50から信号線183を通して送信される信号に基づいてバッテリ50の異常を検出することができる。例えば、BMU85は、バッテリ50から信号線183を通して送信される信号に基づいてバッテリ50の電圧値を検出し、過充電異常および過放電異常を検出する。
 BMU85は、信号線184により電流値検出部65に電気的に接続されており、信号線184を通して電流値検出部65から電流値を取得する。電流値検出部65は、正極配線174に設けられており、正極配線174を流れる電流値を検出する。つまり、BMU85は、正極配線174を流れる電流値を、信号線184を通して電流値検出部65から取得する。BMU85は、信号線184を通して電流値検出部65から取得した電流値に基づいて過電流異常を検出する。あるいは、BMU85は、CMU(Cell Management Unit:セルマネージメントユニット;図示せず)から取得したセル温度に基づいて過温度異常を検出する。
 また、BMU85は、信号線193によりECU150に電気的に接続され、ECU150から信号線193を通して送信される制御信号に基づいて負極側コンタクタ76を制御する。ECU150およびBMU85は、例えばCANにより互いに通信し互いの状態を監視する。
 BMU85は、記憶部851を有する。
 ヒューズ95は、電流値検出部65と正極側コンタクタ75との間における正極配線174に設けられている。ヒューズ95は、過電流が正極配線174に流れると、電気回路すなわち正極配線174を遮断する。
 ここで、バッテリパックが産業機械に搭載される場合には、車検のような定期検査の機会がないため、バッテリ(例えばリチウムイオン電池)の劣化度合いの診断を定期的に行うことが困難である。そのため、バッテリの交換をするタイミングがユーザにとって不明確である。また、バッテリの状態に関する物理量(電流や電圧など)がバッテリパックとは異なる別の制御装置や検出装置によって検出される場合には、バッテリパック単体でバッテリの劣化診断を行うことが困難である。例えば、バッテリパックがハイブリッドシステムに搭載されている時にしか、バッテリの劣化診断を行うことができない。
 これに対して、本実施形態に係るバッテリパック40のBMU85は、バッテリ50の劣化診断指示に関する入力信号86に応じてスイッチ46を閉じる制御を実行する。入力信号86は、CANやアナログスイッチなどにより任意のタイミングでサービスマンあるいはユーザからBMU85に入力される。「任意のタイミング」の例としては、例えば、バッテリパック40が工場から出荷される前の生産工程あるいは検査工程におけるタイミングが挙げられる。また、「任意のタイミング」の例としては、例えば、バッテリパック40がハイブリッドシステム10に組み込まれて実機に搭載された後の定期検査あるいは不定期検査のタイミングが挙げられる。
 なお、バッテリパック40が実機に搭載された後における「任意のタイミング」は、モータジェネレータ2が稼動していないタイミングであることが望ましい。これによれば、BMU85は、バッテリ50の電圧が比較的安定したタイミングで、バッテリ50の劣化度合いを診断することができる。これにより、BMU85は、より安定的に、より高い精度で、バッテリ50の劣化度合いを診断することができる。
 続いて、BMU85がスイッチ46を閉じてから所定時間が経過すると、BMU85は、スイッチ46を自動的に開く制御を実行する。「所定時間」は、例えば約8秒以上、12秒以下程度である。但し、「所定時間」は、8秒以上、12秒以下に限定されるわけではない。続いて、BMU85は、電流がバッテリ50から抵抗45に向かって流れたときのバッテリ50の電圧変動に基づいてバッテリ50の劣化度合いを診断する。なお、BMU85がバッテリ50の劣化度合いを診断するタイミングは、必ずしもBMU85がスイッチ46を開いた後でなくともよく、BMU85がスイッチ46を開く前であってもよい。すなわち、BMU85は、スイッチ46を閉じているときに、バッテリ50の劣化度合いを診断してもよい。
 本実施形態のバッテリ劣化診断シーケンスは、BMU85の記憶部851に予め記憶されている。
 次に、本実施形態に係るバッテリパック40がバッテリ50の劣化度合いを診断する動作例を、図面を参照して説明する。
 図2は、本実施形態に係るバッテリパックが実行するバッテリ劣化診断の動作例を表すフローチャートである。
 図3は、電流がバッテリから抵抗に向かって流れたときのバッテリの電圧変動の挙動例を示すグラフである。
 図4は、バッテリの使用年数に応じたバッテリの劣化度合いの推移例を示すグラフである。
 図2に表したステップS1において、BMU85は、バッテリ50の劣化診断指示に関する信号(すなわち入力信号86:図1参照)がBMU85に入力されたか否かを判断する。入力信号86がBMU85に入力されるタイミングの例は、図1に関して前述した通りである。
 バッテリ50の劣化診断指示に関する信号がBMU85に入力された場合には(ステップS1:YES)、ステップS2において、BMU85は、スイッチ46を閉じる制御を実行する。続いて、ステップS3において、BMU85は、電流値検出部65から取得した電流値に基づいて過電流異常を検出したか否かを判断する。
 BMU85は、電流値検出部65から取得した電流値に基づいて過電流異常を検出した場合には(ステップS3:YES)、ステップS7において、スイッチ46を開く制御を実行するとともに、正極側コンタクタ75および負極側コンタクタ76の少なくともいずれかを開く制御を実行する。これにより、BMU85は、電気回路をより確実に遮断できる。例えば、スイッチ46が溶着して開くことができない場合であっても、BMU85は、正極側コンタクタ75および負極側コンタクタ76の少なくともいずれかを開くことで電気回路をより確実に遮断できる。これにより、バッテリパック40の安全性をより一層高めることができる。
 一方で、BMU85が過電流異常を検出しない場合には(ステップS3:NO)、ステップS4において、BMU85は、スイッチ46を閉じてから所定時間が経過したか否かを判断する。「所定時間」は、図1に関して前述した通り、例えば約8秒以上、12秒以下程度である。但し、「所定時間」は、8秒以上、12秒以下に限定されるわけではない。
 BMU85がスイッチ46を閉じてから所定時間が経過していない場合には(ステップS4:NO)、BMU85は、ステップS3に関して前述した処理を実行する。
 一方で、BMU85がスイッチ46を閉じてから所定時間が経過した場合には(ステップS4:YES)、ステップS5において、BMU85は、スイッチ46を自動的に開く制御を実行する。
 続いて、ステップS6において、BMU85は、電流がバッテリ50から抵抗45に向かって流れたときのバッテリ50の電圧変動に基づいてバッテリ50の劣化度合いを診断する。
 例えば図3に表したように、電流がバッテリ50から抵抗45へ向かって所定時間だけ流れると、BMU85により検出されるバッテリ50の電圧値が変動する。BMU85は、電流がバッテリ50から抵抗45へ向かって流れたときのバッテリ50の電圧変動データをマップM1として記憶部851に蓄積する。
 図3に例示したマップM1では、SOH(State Of Health)100%のバッテリ50のセル電圧の例と、SOH95%のバッテリ50のセル電圧の例と、が表されている。ここで、SOHとは、バッテリの劣化度合い(すなわち、健全度や劣化状態)を示す指標であり、
 
 SOH=劣化時の満充電容量(Ah)/初期の満充電容量(Ah)×100
 
で表される。すなわち、SOHは、バッテリの初期の満充電容量を100%としたときの、劣化時の満充電容量の割合(容量変化率)である。
 また、例えば、図4に示すように、BMU85は、記憶部851に蓄積されたマップM1におけるバッテリ50の電圧変動データに基づいて、バッテリ50の劣化度合いHを推定する。BMU85が推定したバッテリ50の劣化度合いHは、図4に例示するようにグラフ化される。図4に例示したグラフでは、縦軸がバッテリの容量変化率(パーセント)を表し、横軸が使用年数を表している。図4に例示したグラフの縦軸の「容量変化率」は、前述したSOH(State Of Health)に相当する。
 これにより、サービスマンまたはユーザは、必要に応じて、バッテリパック40に設けられた表示部(図示せず)あるいは外部ディスプレイ等により、バッテリ50の劣化度合いHをグラフ、数値あるいは報知光などとして確認することが可能である。例えば、BMU85は、バッテリ50の容量変化率が予め定められた値以下になった場合に、バッテリ50の交換タイミングを示す表示ランプを点灯させる処理を実行し、バッテリ50の交換タイミングを報知することができる。
 以上説明したように、本実施形態に係るバッテリパック40によれば、抵抗45が、バッテリパック40に備えられており、電気回路によりバッテリ50に電気的に接続されている。また、スイッチ46が、バッテリ50と抵抗45との間における正極配線174に設けられており、バッテリ50と抵抗45との間における正極配線174の開閉を行う。そのため、スイッチ46がバッテリ50と抵抗45との間における正極配線174を閉じると、電流がバッテリ50から抵抗45に向かって流れる。ここで、バッテリパック40に備えられたBMU85は、入力信号86に応じてスイッチ46を閉じる制御を実行し、電流がバッテリ50から抵抗45に向かって流れたときのバッテリ50の電圧変動に基づいてバッテリ50の劣化度合いを診断する。これにより、本実施形態に係るバッテリパック40は、バッテリパック40単体でバッテリパック40に備えられたバッテリ50の劣化診断を行うことができる。また、本実施形態に係るバッテリパック40は、バッテリパック40単体でバッテリ50の劣化診断を行うことができるため、任意のタイミングでBMU85に入力された信号(すなわち入力信号86)によりバッテリ50の劣化診断を行うことができ、例えば車検等の定期検査の機会がない場合であっても、バッテリ50の劣化度合いを任意のタイミングで診断することができる。これにより、バッテリパック40に備えられたバッテリ50の交換タイミングがより明確になる。
 また、BMU85は、スイッチ46を閉じてから所定時間が経過すると、スイッチ46を自動的に開く制御を実行するため、バッテリ50の過放電異常の発生を抑えることができる。
 また、本実施形態に係るバッテリパック40によれば、バッテリ50の電圧値を検出する検出部が別途設けられていなくとも、BMU85は、BMU85自体が内蔵する内部回路によりバッテリ50の電圧値を検出することができる。これにより、バッテリパック40の構造を簡易化することができ、バッテリパック40の小型化を図ることができる。
 また、バッテリ50と抵抗45との間における電気回路の開閉を行うスイッチ46が、正極側コンタクタ75と抵抗45との間における正極配線174および負極側コンタクタ76と抵抗45との間における負極配線175の少なくともいずれかに設けられている。そのため、例えば過電流異常などの異常が電気回路に生じた場合であっても、正極側コンタクタ75および負極側コンタクタ76の少なくともいずれかが開くことで、バッテリ50からみてスイッチ46の上流側の電気回路が遮断される。これにより、バッテリパック40の安全性を高めることができる。
 また、BMU85は、記憶部851に蓄積されたバッテリ50の電圧変動のデータに基づいて劣化度合いを診断するため、バッテリ50の劣化度合いをより高い精度で推定することができ、バッテリ50の交換タイミングをより明確にすることができる。
 以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。
 1:エンジン、 2:モータジェネレータ、 10:ハイブリッドシステム、 40:バッテリパック、 45:抵抗、 46:スイッチ、 50:バッテリ、 51:正極端子、 52:負極端子、 65:電流値検出部、 75:正極側コンタクタ、 76:負極側コンタクタ、 85:BMU、 86:入力信号、 95:ヒューズ、 150:ECU、 174:正極配線、 175:負極配線、 176:正極分岐配線、 177:負極分岐配線、 181:信号線、 182:信号線、 183:信号線、 184:信号線、 185:信号線、 193:信号線、 851:記憶部
 

Claims (6)

  1.  ハイブリッドシステムに搭載されるバッテリパックであって、
     前記ハイブリッドシステムのモータに電力を供給するバッテリと、
     電気回路により前記バッテリに電気的に接続される抵抗と、
     前記バッテリと前記抵抗との間における前記電気回路に設けられ、前記バッテリと前記抵抗との間における前記電気回路の開閉を行うスイッチと、
     入力信号に応じて前記スイッチを閉じる制御を実行し、電流が前記バッテリから前記抵抗に向かって流れたときの前記バッテリの電圧変動に基づいて前記バッテリの劣化度合いを診断する制御部と、
     を備えたことを特徴とするバッテリパック。
  2.  前記制御部は、前記スイッチを閉じてから所定時間が経過すると、前記スイッチを自動的に開く制御を実行することを特徴とする請求項1に記載のバッテリパック。
  3.  前記制御部は、前記バッテリの電圧値を検出する内部回路を内蔵することを特徴とする請求項1に記載のバッテリパック。
  4.  前記バッテリの正極端子と前記抵抗との間における前記電気回路に設けられ、前記正極端子と前記抵抗との間における前記電気回路の開閉を行う正極側コンタクタと、
     前記バッテリの負極端子と前記抵抗との間における前記電気回路に設けられ、前記負極端子と前記抵抗との間における前記電気回路の開閉を行う負極側コンタクタと、
     をさらに備え、
     前記スイッチは、前記正極側コンタクタと前記抵抗との間における前記電気回路および前記負極側コンタクタと前記抵抗との間における前記電気回路の少なくともいずれかに設けられたことを特徴とする請求項1に記載のバッテリパック。
  5.  前記電気回路に設けられ、前記電気回路を流れる電流値を検出する電流値検出部をさらに備え、
     前記制御部は、前記電流値検出部から取得した電流値に基づいて過電流異常を検出すると、前記スイッチを開く制御を実行するとともに、前記正極側コンタクタおよび前記負極側コンタクタの少なくともいずれかを開く制御を実行することを特徴とする請求項4に記載のバッテリパック。
  6.  前記制御部は、前記電圧変動のデータを蓄積する記憶部を有し、前記記憶部に蓄積された前記データに基づいて前記劣化度合いを診断することを特徴とする請求項1に記載のバッテリパック。
     
PCT/JP2023/006220 2022-06-21 2023-02-21 バッテリパック WO2023248532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099518 2022-06-21
JP2022099518A JP2024000680A (ja) 2022-06-21 2022-06-21 バッテリパック

Publications (1)

Publication Number Publication Date
WO2023248532A1 true WO2023248532A1 (ja) 2023-12-28

Family

ID=89379376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006220 WO2023248532A1 (ja) 2022-06-21 2023-02-21 バッテリパック

Country Status (2)

Country Link
JP (1) JP2024000680A (ja)
WO (1) WO2023248532A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233369A (ja) * 2009-03-27 2010-10-14 Panasonic Corp 保護回路、及び電池パック
JP2012202851A (ja) * 2011-03-25 2012-10-22 Nec Energy Devices Ltd 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
US20150130471A1 (en) * 2013-11-12 2015-05-14 Ford Global Technologies, Llc Electric vehicle battery pack voltage monitoring
JP2016082764A (ja) * 2014-10-20 2016-05-16 株式会社豊田自動織機 給電路遮断装置及び給電路遮断方法
JP2021520502A (ja) * 2019-01-11 2021-08-19 エルジー・ケム・リミテッド バッテリーパック診断装置
JP2021533338A (ja) * 2019-02-22 2021-12-02 エルジー エナジー ソリューション リミテッド バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233369A (ja) * 2009-03-27 2010-10-14 Panasonic Corp 保護回路、及び電池パック
JP2012202851A (ja) * 2011-03-25 2012-10-22 Nec Energy Devices Ltd 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
US20150130471A1 (en) * 2013-11-12 2015-05-14 Ford Global Technologies, Llc Electric vehicle battery pack voltage monitoring
JP2016082764A (ja) * 2014-10-20 2016-05-16 株式会社豊田自動織機 給電路遮断装置及び給電路遮断方法
JP2021520502A (ja) * 2019-01-11 2021-08-19 エルジー・ケム・リミテッド バッテリーパック診断装置
JP2021533338A (ja) * 2019-02-22 2021-12-02 エルジー エナジー ソリューション リミテッド バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両

Also Published As

Publication number Publication date
JP2024000680A (ja) 2024-01-09

Similar Documents

Publication Publication Date Title
EP1135840B1 (en) System and method for monitoring a vehicle battery
JP4116609B2 (ja) 電源制御装置、電動車両および電池制御ユニット
US20110198920A1 (en) Vehicle power supply apparatus
KR101326508B1 (ko) 고전압 배터리시스템 전류센서의 고장진단방법
JP2013099167A (ja) 蓄電システムを搭載した車両の制御装置及び制御方法
JP2003204627A (ja) バッテリ制御装置
KR101887442B1 (ko) 절연 저항 측정 회로 진단 장치
EP3149499B1 (en) A method and system for monitoring the status of battery cells
JP7119401B2 (ja) 故障診断装置、蓄電装置、故障診断方法
KR20180023140A (ko) 파워릴레이 어셈블리의 고장제어 시스템 및 그 제어방법
WO2013094214A1 (ja) 監視システムおよび車両
WO2019208410A1 (ja) 故障診断方法、及び、蓄電素子の管理装置
JP2019518212A (ja) 電圧分配を用いたスイッチ診断装置及び方法
KR101826645B1 (ko) 배터리 관리 시스템의 고장 진단 방법
EP1598913B1 (en) System and method for monitoring a vehicle battery
WO2022221598A2 (en) Intelligent lead-acid battery system and method of operating the same
JP2019512998A (ja) バッテリー保護システムおよび方法
WO2023248532A1 (ja) バッテリパック
KR20230076683A (ko) 배터리 관리 시스템 및 배터리 관리 방법
KR101744713B1 (ko) 배터리 관리 시스템의 고장 진단 방법
KR101735738B1 (ko) 과충전 방지 장치 및 이의 고장 진단 방법
WO2023248531A1 (ja) ハイブリッドシステム
JP2017147842A (ja) ハイブリッド車両
JP2023061766A (ja) バッテリ劣化診断システム
KR20140081309A (ko) 모듈 전압 비교를 이용한 배터리 관리 시스템의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826721

Country of ref document: EP

Kind code of ref document: A1