WO2023248409A1 - 受光モジュール及びその製造方法 - Google Patents

受光モジュール及びその製造方法 Download PDF

Info

Publication number
WO2023248409A1
WO2023248409A1 PCT/JP2022/025037 JP2022025037W WO2023248409A1 WO 2023248409 A1 WO2023248409 A1 WO 2023248409A1 JP 2022025037 W JP2022025037 W JP 2022025037W WO 2023248409 A1 WO2023248409 A1 WO 2023248409A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
receiving module
dielectric substrate
module according
stem
Prior art date
Application number
PCT/JP2022/025037
Other languages
English (en)
French (fr)
Inventor
諒太 藤原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022569627A priority Critical patent/JPWO2023248409A5/ja
Priority to PCT/JP2022/025037 priority patent/WO2023248409A1/ja
Priority to TW112121823A priority patent/TW202408024A/zh
Publication of WO2023248409A1 publication Critical patent/WO2023248409A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Definitions

  • the present disclosure relates to a light receiving module and a method of manufacturing the same, and particularly relates to a CAN package type light receiving module used for optical communication and a method of manufacturing the same.
  • the mounting position of the lens cap cannot be adjusted to match the position of the light receiving element. Therefore, the mounting position of the light receiving element may deviate from an appropriate position with respect to the stem center axis.
  • the light-receiving diameter of the light-receiving element is made smaller in this structure, a problem arises in that the reception sensitivity deteriorates due to a decrease in the light-receiving sensitivity and a decrease in the axis misalignment tolerance. Furthermore, an increase in the amount of returned light due to reflection on the light-receiving surface causes a problem in that the amount of light return attenuation increases.
  • Patent Document 1 discloses a technique using a dielectric substrate on which a wiring pattern is formed. This reduces the amount of noise inside the TO-CAN structure by removing the bonding wires between the lead pin and the capacitor and between the amplifier and the lead pin.
  • a dielectric substrate provided with a passage hole is mounted together with a light receiving element.
  • This passage hole is mounted so as to pass through the power lead pin and the output lead pin on the stem. That is, the diameter of the passage hole through which each lead pin passes must have a sufficient margin relative to the diameter of each lead pin. Therefore, in addition to variations in the mounting of the light-receiving elements on the dielectric substrate, there is a problem in that mounting variations in the light-receiving elements occur due to the gap between each lead pin and the passage hole.
  • the present disclosure suppresses variations in the mounting position of the light receiving element with respect to the stem by physically bringing the recess provided in the dielectric substrate into contact with the lead pin.
  • a first aspect of the present disclosure includes a light-receiving element, a dielectric substrate on which the light-receiving element is mounted and having two recesses, and a stem in which two output lead pins are sealed in through-holes.
  • the light receiving module has a recess physically contacting two output lead pins.
  • a second aspect of the present disclosure is a method for manufacturing a light receiving element module including a light receiving element, an amplifier, a dielectric substrate having two recesses, and a stem on which two output lead pins are mounted.
  • the method includes a first step of mounting the amplifier on a dielectric substrate, and a second step of mounting the dielectric substrate on the stem so that the two recesses and the two output lead pins are in physical contact with each other.
  • the method is a method for manufacturing a light receiving element module.
  • variations in the mounting position of the light receiving element with respect to the stem are suppressed by bringing the recess of the dielectric substrate into contact with the lead pin.
  • FIG. 2 is a top view showing a CAN package type light receiving module according to Embodiment 1 of the present disclosure.
  • 1 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 1 of the present disclosure.
  • 1 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 1 of the present disclosure.
  • FIG. 7 is a top view showing a CAN package type light receiving module according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a top view showing a CAN package type light receiving module according to Embodiment 3 of the present disclosure.
  • FIG. 7 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 3 of the present disclosure.
  • FIG. 7 is a top view showing a CAN package type light receiving module according to Embodiment 4 of the present disclosure.
  • FIG. 7 is a top view showing a CAN package type light receiving module according to Embodiment 5 of the present disclosure.
  • FIG. 7 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 5 of the present disclosure.
  • a CAN package type light receiving module will be described with reference to the drawings. Identical or corresponding components may be given the same reference numerals and repeated descriptions may be omitted. Note that this disclosure is not limited to this embodiment.
  • FIG. 1 is a top view showing a CAN package type light receiving module according to Embodiment 1 of the present disclosure.
  • the light receiving module 100 according to the first embodiment includes a stem 1.
  • the stem 1 is made of metal and has electrical conductivity. Further, the stem 1 has a flat plate shape and has a through hole in the thickness direction.
  • the stem 1 includes power lead pins 2a, 2b, 2c and output lead pins 3a, 3b.
  • the power lead pins 2a, 2b, 2c and the output lead pins 3a, 3b are insulated from the stem 1 by being sealed to the through hole of the stem 1 via an insulating material 4.
  • the power lead pins 2a, 2b, 2c and the output lead pins 3a, 3b are made of metal and have electrical conductivity.
  • the insulating material 4 is made of, for example, insulating glass.
  • the stem 1 includes a dielectric substrate 5 on the main stem surface 1a.
  • the dielectric substrate 5 is in physical contact with the output lead pins 3a and 3b through the semicircular depression 6 formed therein. Thereby, the position of the dielectric substrate 5 with respect to the stem 1 is fixed in the Y-axis direction, the X-axis direction, and the rotation direction with respect to the stem center axis. As a result, variations in the mounting of the dielectric substrate 5 on the stem 1 are suppressed.
  • the dielectric substrate 5 may be made of alumina, aluminum nitride, or the like.
  • the stem 1 also includes electronic components 16a and 16b on the main stem surface 1a.
  • the electronic components 16a and 16b are, for example, capacitors, resistors, inductors, etc. for cutting external noise.
  • the power lead pin 2a, the electronic component 16a, and the electrode pad 11c formed on the upper surface of the amplifier 9 are connected to each other by a bonding wire 17.
  • the voltage necessary to drive the amplifier 9 is supplied via the bonding wire 17 from the power supply lead pin 2a to the electronic component 16a and the electrode pad 11c in this order.
  • the power lead pin 2c, the electronic component 16b, and the electrode pad 14 are connected by a bonding wire 18.
  • the voltage necessary to drive the light receiving element 10 is supplied via the bonding wire 18 from the power lead pin 2c to the electronic component 16b and the electrode pad 14 in this order.
  • FIG. 2 is a first cross-sectional view showing a CAN package type light receiving module according to Embodiment 1 of the present disclosure.
  • FIG. 2 shows a cross-sectional view of the light receiving module 100 according to the first embodiment taken along the line AA.
  • a first on-board wiring 7 is formed on the dielectric substrate 5.
  • the first on-board wiring 7 is arranged from the vicinity of the semicircular depression 6 to the center of the dielectric substrate 5. Further, the first on-board wiring 7 and the output lead pins 3a, 3b are joined with a conductive material 8.
  • the conductive material 8 may be made of, for example, solder, conductive paste, conductive adhesive, or the like.
  • FIG. 3 is a second cross-sectional view showing the CAN package type light receiving module according to Embodiment 1 of the present disclosure.
  • FIG. 3 shows a cross-sectional view of the light receiving module 100 of FIG. 1 taken along line BB.
  • An amplifier 9 and a light receiving element 10 are mounted on the dielectric substrate 5 via a conductive material 8.
  • Amplifier 9 is, for example, a transimpedance amplifier.
  • Electrode pads 11a and 11b formed on the upper surface 9a of the amplifier 9 and one end of the first on-board wiring 7 are electrically connected to each other via a bonding wire 12.
  • Electrode pads 11a and 11b are differential output terminals for outputting electrical signals from amplifier 9.
  • the signal pad 13 formed on the top surface 9a of the amplifier 9 and the electrode pad 14 formed on the top surface 10a of the light receiving element 10 are electrically connected to each other via a bonding wire 15.
  • the electrical signal amplified by the amplifier 9 is thereby outputted from the output lead pins 3a, 3b via the electrode pads 11a, 11b, the bonding wire 12, the first wiring 7 on the substrate, and the conductive material 8. Further, the electrical signal converted from the optical signal by the light receiving element 10 is input to the amplifier 9 via the electrode pad 14, the bonding wire 15, and the signal pad 13.
  • the light receiving element 10 and the amplifier 9 are mounted on the dielectric substrate 5.
  • the dielectric substrate 5 is mounted on the stem 1. At this time, the dielectric substrate 5 is pressed against the output lead pins 3a and 3b in order to bring the semicircular recess 6 into contact with the output lead pins 3a and 3b. At this time, the light receiving element 10 is mounted on the dielectric substrate 5 in the first step. Further, the output lead pins 3a and 3b are mounted on the stem 1 in advance. Therefore, this step can suppress variations in the mounting position of the light receiving element 10 with respect to the stem 1.
  • the semicircular depression 6 provided in the dielectric substrate 5 and the output lead pins 3a and 3b are electrically connected.
  • electronic components 16a and 16b are mounted on stem 1.
  • the electronic components 16a and 16b and the first on-board wiring 7 provided on the dielectric substrate 5 are connected by wire bonding. Thereby, the light receiving element 10, the amplifier 9, and the first on-board wiring 7 are electrically connected.
  • the semicircular depression 6 provided in the dielectric substrate 5 physically contacts the output lead pins 3a and 3b. Thereby, variations in the mounting position of the light receiving element 10 with respect to the stem 1 can be suppressed. That is, the light-receiving element 10 mounted on the dielectric substrate 5 can be accurately placed at an appropriate position where both improvement in light-receiving sensitivity and reduction in light return loss can be achieved.
  • FIG. 4 is a top view showing a CAN package type light receiving module according to Embodiment 2 of the present disclosure.
  • FIG. 5 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 2 of the present disclosure.
  • FIG. 5 shows a sectional view taken along line CC of the light receiving module 200 according to the second embodiment.
  • the light receiving module 200 differs from the first embodiment in that the light receiving element 10 is flip-chip mounted on the dielectric substrate 5.
  • the light receiving module 200 includes second on-board wiring 19a and 19b on the dielectric substrate 5.
  • the light receiving element 10 is flip-chip mounted on the second substrate wirings 19a and 19b.
  • preliminary solder is first patterned on the dielectric substrate 5.
  • the metal pattern of the light receiving element is bonded to the patterned solder. In this way, in flip-chip mounting, mounting accuracy can be improved by aligning and bonding patterns.
  • the second on-board wiring 19a and 19b and the light receiving element 10 are electrically connected. Further, the second on-board wiring 19a and the signal pad 13 of the amplifier 9 are connected with a bonding wire 20. Therefore, the electrical signal converted from the optical signal by the light receiving element 10 is input to the amplifier 9. Further, the second on-board wiring 19b and the electronic component 16b are connected by a bonding wire 21. Therefore, the voltage necessary to drive the light receiving element 10 is supplied via the power lead pin 2c, the electronic component 16b, the second on-board wiring 19b, and the electrode pad 14.
  • the light receiving element 10 is flip-chip mounted on the second on-board wiring 19a and 19b. Since flip-chip mounting has high mounting accuracy, this reduces the mounting position shift of the light receiving element 10 on the dielectric substrate. Furthermore, this implementation reduces the length of the bonding wire between the amplifier 9 and the light receiving element 10, so that frequency response characteristics in a high frequency band can be improved.
  • FIG. 6 is a top view showing a CAN package type light receiving module according to Embodiment 3 of the present disclosure.
  • FIG. 7 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 3 of the present disclosure.
  • FIG. 7 shows a sectional view taken along line DD of the light receiving module 300 according to the third embodiment.
  • the light receiving module 300 according to the third embodiment differs from the second embodiment in that the amplifier 9 is flip-chip mounted on the dielectric substrate 5.
  • the light receiving module 300 includes a third on-board wiring 22 on the dielectric substrate 5.
  • the amplifier 9 is flip-chip mounted on the top surface 7a of the first on-board wiring 7 on the dielectric substrate 5, the top surface of the second on-board wiring 19a, and the top surface 22a of the third on-board wiring 22. .
  • the electrical signal converted by the light receiving element 10 is input to the amplifier 9 via the second on-board wiring 19a.
  • the electrical signal amplified by the amplifier 9 is outputted from the output lead pins 3a, 3b via the electrode pads 11a, 11b, the first wiring 7 on the substrate, and the conductive material 8.
  • the third on-board wiring 22 is electrically connected to an electrode pad 11c (not shown). Further, the third on-board wiring 22 is connected to the electronic component 16a by a bonding wire 23. Therefore, the voltage necessary to drive the amplifier 9 is supplied to the amplifier 9 via the power supply lead pin 2a, the electronic component 16a, the bonding wire 23, and the third on-board wiring 22.
  • the amplifier 9 is flip-chip mounted on the first on-board wiring 7, the second on-board wiring 19a, and the third on-board wiring 22 on the dielectric substrate 5. This makes it possible to remove the bonding wire between the amplifier 9 and the light receiving element 10 and the bonding wire between the amplifier 9 and the first on-board wiring 7, thereby improving the frequency response characteristics in the high frequency band. Can be done.
  • FIG. 8 is a top view showing a CAN package type light receiving module according to Embodiment 4 of the present disclosure.
  • the light receiving module 400 according to the fourth embodiment differs from the third embodiment in that the recess formed in the dielectric substrate 5 has a V-shape.
  • a V-shaped recess 24 is formed in the dielectric substrate 5 to match the spacing between the output lead pins 3a and 3b. Further, on the dielectric substrate 5, a fourth on-board wiring 25 is formed. The fourth on-board wiring 25 is arranged from the vicinity of the V-shaped depression 24 to the center of the dielectric substrate 5. Further, the fourth on-board wiring 25 and the output lead pins 3a and 3b are joined with a conductive material 8.
  • the amplifier 9 is flip-chip mounted on the fourth on-board wiring 25, and the electrical signal amplified by the amplifier 9 is transmitted via the electrode pads 11a, 11b, the fourth on-board wiring 24, and the conductive material 8. , are output from the output lead pins 3a and 3b.
  • the light-receiving element 10 can be arranged with respect to the stem 1 at an appropriate position where both improvement in light-receiving sensitivity and reduction in light return loss can be achieved.
  • FIG. 9 is a top view showing a CAN package type light receiving module according to Embodiment 5 of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a CAN package type light receiving module according to Embodiment 5 of the present disclosure.
  • FIG. 10 shows a sectional view taken along line EE of a light receiving module 500 according to the fifth embodiment.
  • the light receiving module 500 differs from the third embodiment in that the stem 1 is provided with a step for suppressing lateral displacement of the dielectric substrate 5.
  • a depression 26 having a width equal to or larger than the width of the dielectric substrate 5 is formed in the main surface 1a of the stem.
  • the light-receiving element 10 can be arranged with respect to the stem 1 at an appropriate position where both improvement in light-receiving sensitivity and reduction in light return loss can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本開示は受光モジュール(100)及びその製造方法に関し、受光素子(10)をステム(1)に対して適切な位置に配置できる受光モジュール(100)及びその製造方法を提供することを目的とする。本開示の受光モジュール(100)は、受光素子(10)と、受光素子(10)を搭載し、2つの窪み(6)を有する誘電体基板(5)と、2本の出力リードピン(3a,3b)が貫通孔に封着されているステム(1)とを備え、2つの窪み(6)が2本の出力リードピン(3a,3b)と物理的に接触している。

Description

受光モジュール及びその製造方法
 本開示は、受光モジュール及びその製造方法に関し、特に光通信に用いるCANパッケージ型受光モジュール及びその製造方法に関する。
 光ファイバを用いた有線通信では、データ容量の増大に伴い、高速通信に対応可能かつ受信感度の高い受光モジュールが求められている。受光モジュールの応答を高速化するためには、受光素子の受光径を小さくすることで、周波数応答速度を上げる必要がある。
 しかし、光通信用受光モジュールで多く採用されているTO-CAN構造では、受光素子の位置に合わせてレンズキャップの実装位置を調整することができない。そのため、受光素子の実装位置が、ステム中心軸に対して適切な位置からずれることがある。
 そのため、この構造で受光素子の受光径を小さくすると、受光感度の低下、軸ずれ許容量の減少により受信感度が劣化する課題が発生する。また、受光面の反射によって戻り光が増加することで、光反射減衰量が増大する課題が発生する。
 特許文献1では、上述の課題を解決するため、配線パターンが形成された誘電体基板を用いる技術が開示されている。これにより、リードピンとコンデンサ間及び増幅器とリードピン間のボンディングワイヤを除去することで、TO-CAN構造の内部におけるノイズ量を低減している。
日本特開2012-114342号公報
 上述の技術では、受光素子と共に、通過孔を設けた誘電体基板を実装する。この通過孔は、ステム上の電源リードピン及び出力リードピンを貫通するように実装する。すなわち、各リードピンを貫通させる通過孔の直径は、各リードピンの直径に対して十分余裕のある寸法でなければならない。そのため、誘電体基板に対する受光素子の実装ばらつきに加え、各リードピンと通過孔の空隙の分だけ、受光素子の実装ばらつきが生じる課題があった。
 本開示は上述の課題を解決するため、誘電体基板に設けた窪みとリードピンを物理的に接触させることで、ステムに対する受光素子の実装位置ばらつきを抑制する。これにより、受光素子をステムに対して適切な位置に配置できる受光モジュール及びその製造方法を提供することを目的とする。
 本開示の第一の態様は、受光素子と、受光素子を搭載し、2つの窪みを有する誘電体基板と、2本の出力リードピンが貫通孔に封着されているステムとを備え、2つの窪みが2本の出力リードピンと物理的に接触している受光モジュールであることが好ましい。
 本開示の第二の態様は、受光素子と、増幅器と、2つの窪みを有する誘電体基板と、2本の出力リードピンを搭載するステムを備える受光素子モジュールの製造方法であって、受光素子及び増幅器を、誘電体基板の上に搭載する第一の工程と、2つの窪みと2本の出力リードピンとが物理的に接触するよう、誘電体基板をステムに搭載する第二の工程とを備える受光素子モジュールの製造方法であることが好ましい。
 本開示の第一及び第二の態様によれば、誘電体基板の窪みをリードピンに接触させることで、ステムに対する受光素子の実装位置ばらつきを抑制する。これにより、受光素子をステムに対して適切な位置に配置できる受光モジュール及びその製造方法を提供できる。
本開示の実施の形態1に係るCANパッケージ型受光モジュールを示す上面図である。 本開示の実施の形態1に係るCANパッケージ型受光モジュールを示す断面図である。 本開示の実施の形態1に係るCANパッケージ型受光モジュールを示す断面図である。 本開示の実施の形態2に係るCANパッケージ型受光モジュールを示す上面図である。 本開示の実施の形態2に係るCANパッケージ型受光モジュールを示す断面図である。 本開示の実施の形態3に係るCANパッケージ型受光モジュールを示す上面図である。 本開示の実施の形態3に係るCANパッケージ型受光モジュールを示す断面図である。 本開示の実施の形態4に係るCANパッケージ型受光モジュールを示す上面図である。 本開示の実施の形態5に係るCANパッケージ型受光モジュールを示す上面図である。 本開示の実施の形態5に係るCANパッケージ型受光モジュールを示す断面図である。
 本開示の実施の形態に係るCANパッケージ型受光モジュールについて、図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。なお、この実施の形態により、この開示が限定されるものではない。
実施の形態1
 図1は、本開示の実施の形態1に係るCANパッケージ型受光モジュールを示す上面図である。実施の形態1に係る受光モジュール100は、ステム1を備える。ステム1は金属から構成され、導通性を有する。またステム1は平板状であり、厚さ方向に貫通孔を有する。
 ステム1は、電源リードピン2а、2b、2c及び出力リードピン3a、3bを備える。電源リードピン2а、2b、2c及び出力リードピン3a、3bは、絶縁素材4を介してステム1の貫通孔に封着されることで、ステム1と絶縁されている。電源リードピン2а、2b、2c及び出力リードピン3a、3bは、金属から構成され、導通性を有する。絶縁素材4は、例えば絶縁性ガラス等から構成される。
 ステム1は、ステム主面1aに誘電体基板5を備える。誘電体基板5は、形成されている半円状の窪み6により、出力リードピン3a及び3bと物理的に接触している。これにより、ステム1に対する誘電体基板5の位置は、Y軸方向、X軸方向及びステム中心軸に対する回転方向に対して固定される。その結果、ステム1に対する誘電体基板5の実装ばらつきが抑制される。なお誘電体基板5は、アルミナや窒化アルミニウム等で構成されていても良い。
 またステム1は、ステム主面1aに電子部品16a及び16bを備える。電子部品16a及び16bは、例えば外部からのノイズをカットするためのコンデンサや抵抗、インダクタ等である。電源リードピン2a、電子部品16a、増幅器9の上面に形成された電極パッド11cは、互いにボンディングワイヤ17で接続されている。増幅器9の駆動に必要な電圧は、電源リードピン2aから電子部品16a、電極パッド11cの順に、ボンディングワイヤ17を介して供給される。また、電源リードピン2c、電子部品16b、電極パッド14は、ボンディングワイヤ18で接続されている。受光素子10の駆動に必要な電圧は、電源リードピン2cから電子部品16b、電極パッド14の順に、ボンディングワイヤ18を介して供給される。
 図2は、本開示の実施の形態1に係るCANパッケージ型受光モジュールを示す第一の断面図である。この図2は、実施の形態1に係る受光モジュール100のA-A線における断面図を示している。
 誘電体基板5上には、第一の基板上配線7が形成されている。第一の基板上配線7は、半円状の窪み6の近傍から誘電体基板5の中央にかけて配置されている。また、第一の基板上配線7と出力リードピン3a、3bは、導電材料8で接合されている。導電材料8は例えば、はんだ、導電性ペースト、導電性接着剤等で構成されていても良い。
 また図3は、本開示の実施の形態1に係るCANパッケージ型受光モジュールを示す第二の断面図である。この図3は、図1の受光モジュール100のB-B線における断面図を示している。
 誘電体基板5上には、増幅器9と受光素子10が導電材料8を介して実装されている。増幅器9は、例えばトランスインピーダンスアンプである。そして、増幅器9の上面9aに形成された電極パッド11a、11bと第一の基板上配線7の一端とが、ボンディングワイヤ12を介して互いに電気的に接続されている。電極パッド11a、11bは、増幅器9の電気信号を出力するための差動出力端子である。
 また、増幅器9の上面9aに形成された信号パッド13と、受光素子10の上面10aに形成された電極パッド14は、ボンディングワイヤ15を介して互いに電気的に接続されている。
 これにより増幅器9で増幅された電気信号は、電極パッド11a、11b、ボンディングワイヤ12、第一の基板上配線7、導電材料8を介して、出力リードピン3a、3bから出力される。また、受光素子10によって光信号から変換された電気信号は、電極パッド14、ボンディングワイヤ15、信号パッド13を介して増幅器9に入力される。
 本構成では、誘電体基板5に設けた二箇所の半円状の窪み6を、二本の出力リードピン3a及び3bと物理的に接触させている。これにより、ステム1に対する受光素子10の実装位置ばらつきを抑制することができる。すなわち、誘電体基板5上に実装されている受光素子10を、受光感度の向上と光反射減衰量の低減が両立可能である適切な位置に、精度良く配置することができる。
 続けて、受光モジュール100の製造方法を説明する。第一の工程では、受光素子10及び増幅器9が、誘電体基板5上に搭載される。
 第二の工程では、誘電体基板5が、ステム1上に搭載される。この際、半円状の窪み6と出力リードピン3a及び3bを接触させるため、誘電体基板5が出力リードピン3а及び3bに押し付けられる。このとき、誘電体基板5には、第一の工程で受光素子10が搭載されている。また、出力リードピン3а及び3bは、事前にステム1に搭載されている。そのため、この工程により、ステム1に対する受光素子10の実装位置ばらつきを抑制することができる。
 第三の工程では、誘電体基板5に設けた半円状の窪み6と出力リードピン3а及び3bが、電気的に接続される。第四の工程では、電子部品16a及び16bが、ステム1に搭載される。
 第五の工程では、電子部品16a及び16bと、誘電体基板5上に設けられた第一の基板上配線7が、ワイヤボンディングにより接続される。これにより、受光素子10、増幅器9、及び第一の基板上配線7が、電気的に接続される。
 以上のように、本開示の製造方法では、誘電体基板5に設けた半円状の窪み6が、出力リードピン3a及び3bと物理的に接触する。これにより、ステム1に対する受光素子10の実装位置ばらつきを抑制することができる。すなわち、誘電体基板5上に実装されている受光素子10を、受光感度の向上と光反射減衰量の低減が両立可能である適切な位置に、精度良く配置することができる。
実施の形態2
 図4は、本開示の実施の形態2に係るCANパッケージ型受光モジュールを示す上面図である。また図5は、本開示の実施の形態2に係るCANパッケージ型受光モジュールを示す断面図である。この図5は、実施の形態2に係る受光モジュール200のC-Cにおける断面図を示している。受光モジュール200は、受光素子10を誘電体基板5上にフリップチップ実装した構成を有する点が、実施の形態1と異なる。
 受光モジュール200は、誘電体基板5上に第二の基板上配線19a及び19bを備える。受光素子10は、第二の基板上配線19a及び19bの上にフリップチップ実装されている。このフリップチップ実装では、まず誘電体基板5上に予備はんだをパターニングする。そして、パターニングしたはんだに、受光素子のメタルパターンを接着する。このように、フリップチップ実装では、パターン同士を合わせて接着することで、実装精度を高めることができる。
 また、第二の基板上配線19a及び19bと受光素子10は、電気的に接続されている。さらに、第二の基板上配線19aと増幅器9の信号パッド13は、ボンディングワイヤ20で接続されている。そのため、受光素子10で光信号から変換された電気信号は、増幅器9に入力される。また、第二の基板上配線19bと電子部品16bは、ボンディングワイヤ21で接続されている。そのため受光素子10の駆動に必要な電圧は、電源リードピン2c、電子部品16b、第二の基板上配線19b、電極パッド14を介して供給される。
 本構成では、第二の基板上配線19a及び19b上に受光素子10がフリップチップ実装される。フリップチップ実装は実装精度が高いことから、これにより、誘電体基板上での受光素子10の実装位置ずれが軽減される。また、この実装により、増幅器9と受光素子10間のボンディングワイヤの長さが短くなるため、高周波帯域での周波数応答特性を向上させることができる。
実施の形態3
 図6は、本開示の実施の形態3に係るCANパッケージ型受光モジュールを示す上面図である。また図7は、本開示の実施の形態3に係るCANパッケージ型受光モジュールを示す断面図である。この図7は、実施の形態3に係る受光モジュール300のD-Dにおける断面図を示している。実施の形態3に係る受光モジュール300は、増幅器9を誘電体基板5上にフリップチップ実装した構成を有する点が、実施の形態2と異なる。
 受光モジュール300は、誘電体基板5上に第三の基板上配線22を備える。増幅器9は、誘電体基板5上の第一の基板上配線7の上面7a、第二の基板上配線19aの上面、第三の基板上配線22の上面22aの上にフリップチップ実装されている。これにより、受光素子10で変換された電気信号が、第二の基板上配線19aを介して増幅器9に入力される。また、増幅器9で増幅された電気信号は、電極パッド11a、11b、第一の基板上配線7、導電材料8を介して、出力リードピン3a、3bから出力される。
 また、第三の基板上配線22は、図示しない電極パッド11cと電気的に接続されている。さらに、第三の基板上配線22は、電子部品16aとボンディングワイヤ23で接続されている。このため、増幅器9の駆動に必要な電圧は、電源リードピン2a、電子部品16a、ボンディングワイヤ23、第三の基板上配線22を介して増幅器9に供給される。
 本構成では、増幅器9が、誘電体基板5上の第一の基板上配線7、第二の基板上配線19a、及び第三の基板上配線22の上にフリップチップ実装される。これにより、増幅器9と受光素子10とのボンディングワイヤ、及び増幅器9と第一の基板上配線7とのボンディングワイヤを除去することが可能になるため、高周波帯域での周波数応答特性を向上させることができる。
実施の形態4
 図8は、本開示の実施の形態4に係るCANパッケージ型受光モジュールを示す上面図である。実施の形態4に係る受光モジュール400は、誘電体基板5に形成された窪みがV字形状である構成を有する点が、実施の形態3と異なる。
 受光モジュール400では、誘電体基板5に、出力リードピン3a及び3bの間隔に合わせて設けられたV字形状の窪み24が形成されている。また、誘電体基板5上には、第四の基板上配線25が形成されている。第四の基板上配線25は、V字形状の窪み24の近傍から誘電体基板5の中央にかけて配置されている。また、第四の基板上配線25と出力リードピン3a、3bは導電材料8で接合されている。増幅器9は、第四の基板上配線25上にフリップチップ実装されており、増幅器9で増幅された電気信号は、電極パッド11a、11b、第四の基板上配線24、導電材料8を介して、出力リードピン3a、3bから出力される。
 本構成では、誘電体基板5にV字形状の窪み24を形成することにより、出力リードピン3a及び3bとの接触が容易となる。そのため、ステム1に対して、受光素子10を、受光感度の向上と光反射減衰量の低減が両立可能である適切な位置に配置することができる。
実施の形態5
 図9は本開示の実施の形態5に係るCANパッケージ型受光モジュールを示す上面図である。また図10は、本開示の実施の形態5に係るCANパッケージ型受光モジュールを示す断面図である。この図10は、実施の形態5に係る受光モジュール500のE-Eにおける断面図を示している。受光モジュール500は、ステム1に誘電体基板5の横ずれを抑制する段差が設けられた構成を有する点が、実施の形態3と異なる。
 受光モジュール500では、ステム主面1aに、誘電体基板5の幅と同じ又はそれ以上の幅の窪み26が形成される。
 本構成によれば、誘電体基板5をステム1に実装する際、誘電体基板の側面5aが窪み26の側面26aと接触するため、横方向の実装位置ずれを補正することができる。これにより、ステム1に対して、受光素子10を、受光感度の向上と光反射減衰量の低減が両立可能である適切な位置に配置することができる。
1 ステム
2 電源リードピン
2a 電源リードピン
2b 電源リードピン
2c 電源リードピン
3 出力リードピン
3a 出力リードピン
3b 出力リードピン
5 誘電体基板
7 第一の基板上配線
8 導電材料
9 増幅器
10 受光素子
16a 電子部品
16b 電子部品
19a 第二の基板上配線
19b 第二の基板上配線
100 受光モジュール
200 受光モジュール
300 受光モジュール
400 受光モジュール
500 受光モジュール

Claims (14)

  1.  受光素子と、
     前記受光素子を搭載し、2つの窪みを有する誘電体基板と、
     2本の出力リードピンが貫通孔に封着されているステムと、
     を備え、
     前記2つの窪みが前記2本の出力リードピンと物理的に接触している
     受光モジュール。
  2.  前記ステムを貫通する電源リードピンを有し、
     前記誘電体基板が、
     前記出力リードピンと導電材料で接合された第一の基板上配線と、
     前記第一の基板上配線と電気的に接続された増幅器と
     を有する
     請求項1に記載の受光モジュール。
  3.  前記誘電体基板が、第二の基板上配線を有し、
     前記受光素子が前記第二の基板上配線の上にフリップチップ実装される
     請求項1に記載の受光モジュール。
  4.  前記増幅器が、前記第一の基板上配線の上にフリップチップ実装される
     請求項2に記載の受光モジュール。
  5.  前記増幅器がトランスインピーダンスアンプである
     請求項2または4の何れか一項に記載の受光モジュール。
  6.  前記窪みが半円状である、請求項1に記載の受光モジュール。
  7.  前記窪みがV字型である、請求項1に記載の受光モジュール。
  8.  前記ステムが、前記誘電体基板の幅と同じまたはそれ以上の幅の溝を有し、
     前記誘電体基板が前記溝の間に実装される
     請求項1に記載の受光モジュール。
  9.  前記導電材料が、はんだ、導電性ペーストまたは導電性接着剤のうち少なくとも一つである
     請求項2に記載の受光モジュール。
  10.  前記誘電体基板が、アルミナまたは窒化アルミニウムで構成される
     請求項1に記載の受光モジュール。
  11.  受光素子と、増幅器と、2つの窪みを有する誘電体基板と、2本の出力リードピンを搭載するステムを備える受光素子モジュールの製造方法であって、
     前記受光素子及び前記増幅器を、前記誘電体基板の上に搭載する第一の工程と、
     前記2つの窪みと前記2本の出力リードピンとが物理的に接触するよう、前記誘電体基板を前記ステムに搭載する第二の工程と
     を備える受光モジュールの製造方法。
  12.  前記誘電体基板が第一の基板上配線を備え、
     前記第一の基板上配線と前記出力リードピンとを導電材料で接続する第三の工程と、
     前記ステムに電子部品を搭載する第四の工程と、
     前記電子部品と前記第一の基板上配線とを電気的に接続する第五の工程と
     を備える請求項11に記載の受光モジュールの製造方法。
  13.  前記誘電体基板が第二の基板上配線を備え、
     前記受光素子を前記第二の基板上配線の上にフリップチップ実装する
     請求項11に記載の受光モジュールの製造方法。
  14.  前記増幅器を前記第一の基板上配線の上にフリップチップ実装する
     請求項12に記載の受光モジュールの製造方法。
PCT/JP2022/025037 2022-06-23 2022-06-23 受光モジュール及びその製造方法 WO2023248409A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022569627A JPWO2023248409A5 (ja) 2022-06-23 受光モジュールの製造方法
PCT/JP2022/025037 WO2023248409A1 (ja) 2022-06-23 2022-06-23 受光モジュール及びその製造方法
TW112121823A TW202408024A (zh) 2022-06-23 2023-06-12 受光模組及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025037 WO2023248409A1 (ja) 2022-06-23 2022-06-23 受光モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023248409A1 true WO2023248409A1 (ja) 2023-12-28

Family

ID=89379283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025037 WO2023248409A1 (ja) 2022-06-23 2022-06-23 受光モジュール及びその製造方法

Country Status (2)

Country Link
TW (1) TW202408024A (ja)
WO (1) WO2023248409A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185799A (ja) * 1999-12-22 2001-07-06 Nec Kansai Ltd レーザダイオード用ステムの製造方法
JP2007042756A (ja) * 2005-08-01 2007-02-15 Sony Corp 光デバイスと光通信装置
JP2007073664A (ja) * 2005-09-06 2007-03-22 Fuji Xerox Co Ltd 光送受信モジュールおよび光通信装置
JP2007150241A (ja) * 2005-11-24 2007-06-14 Korea Electronics Telecommun 光送受信モジュール用パッケージ
JP2007201213A (ja) * 2006-01-27 2007-08-09 Opnext Japan Inc 光受信モジュール
US20110122905A1 (en) * 2009-11-23 2011-05-26 Seminex Corporation Semiconductor laser assembly and packaging system
JP2019515492A (ja) * 2016-04-28 2019-06-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド トランジスタアウトラインcan(TO−can)型光送受信器
WO2019176912A1 (ja) * 2018-03-15 2019-09-19 三菱電機株式会社 半導体モジュールおよびその製造方法
JP2019186379A (ja) * 2018-04-10 2019-10-24 日本ルメンタム株式会社 光モジュール
WO2021001914A1 (ja) * 2019-07-02 2021-01-07 三菱電機株式会社 半導体レーザ装置
WO2021014568A1 (ja) * 2019-07-23 2021-01-28 三菱電機株式会社 To-can型光送信モジュール
WO2021166215A1 (ja) * 2020-02-21 2021-08-26 三菱電機株式会社 半導体レーザ装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185799A (ja) * 1999-12-22 2001-07-06 Nec Kansai Ltd レーザダイオード用ステムの製造方法
JP2007042756A (ja) * 2005-08-01 2007-02-15 Sony Corp 光デバイスと光通信装置
JP2007073664A (ja) * 2005-09-06 2007-03-22 Fuji Xerox Co Ltd 光送受信モジュールおよび光通信装置
JP2007150241A (ja) * 2005-11-24 2007-06-14 Korea Electronics Telecommun 光送受信モジュール用パッケージ
JP2007201213A (ja) * 2006-01-27 2007-08-09 Opnext Japan Inc 光受信モジュール
US20110122905A1 (en) * 2009-11-23 2011-05-26 Seminex Corporation Semiconductor laser assembly and packaging system
JP2019515492A (ja) * 2016-04-28 2019-06-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド トランジスタアウトラインcan(TO−can)型光送受信器
WO2019176912A1 (ja) * 2018-03-15 2019-09-19 三菱電機株式会社 半導体モジュールおよびその製造方法
JP2019186379A (ja) * 2018-04-10 2019-10-24 日本ルメンタム株式会社 光モジュール
WO2021001914A1 (ja) * 2019-07-02 2021-01-07 三菱電機株式会社 半導体レーザ装置
WO2021014568A1 (ja) * 2019-07-23 2021-01-28 三菱電機株式会社 To-can型光送信モジュール
WO2021166215A1 (ja) * 2020-02-21 2021-08-26 三菱電機株式会社 半導体レーザ装置

Also Published As

Publication number Publication date
JPWO2023248409A1 (ja) 2023-12-28
TW202408024A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
JP5580994B2 (ja) 光モジュール
US11340412B2 (en) Optical module
JP3250496B2 (ja) 光素子実装基板
JP6055661B2 (ja) 光モジュール及び光送受信装置
US10332937B2 (en) Semiconductor device having a protruding interposer edge face
WO2016047417A1 (ja) 電子モジュール
JP5504712B2 (ja) 高速伝送用回路基板の接続構造
JP2019046922A (ja) 光モジュール及び光伝送装置
JPH07294777A (ja) 光モジュール
CN110637399B (zh) 光模块及其制造方法
WO2023248409A1 (ja) 受光モジュール及びその製造方法
JP2006059883A (ja) インターフェイスモジュール付lsiパッケージ
JP2004093606A (ja) 光モジュール及び光伝送装置
JP4699138B2 (ja) 光半導体素子モジュール及びその製造方法
CN115508956A (zh) 倾斜基板高带宽光引擎
JP4798863B2 (ja) 光電気配線基板
JP4035640B2 (ja) 光学式エンコーダ
JP7300625B2 (ja) 半導体装置の実装構造、光モジュール、及び半導体装置の実装構造の製造方法
WO2022009259A1 (ja) 光受信モジュール
CA2305954A1 (en) Package for high-frequency device
WO2022041253A1 (zh) 光电装置和光电集成方法
WO2021009912A1 (ja) 光電ファイバおよび通信装置
JPH09219575A (ja) 光素子実装構造
JP6001415B2 (ja) 光装置用基板および光装置
JP2005044966A (ja) 光半導体モジュールと光半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947970

Country of ref document: EP

Kind code of ref document: A1