WO2023246699A1 - 信号处理方法、信号处理系统、信号处理装置、存储介质 - Google Patents

信号处理方法、信号处理系统、信号处理装置、存储介质 Download PDF

Info

Publication number
WO2023246699A1
WO2023246699A1 PCT/CN2023/101074 CN2023101074W WO2023246699A1 WO 2023246699 A1 WO2023246699 A1 WO 2023246699A1 CN 2023101074 W CN2023101074 W CN 2023101074W WO 2023246699 A1 WO2023246699 A1 WO 2023246699A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
signal processing
digital
sampling point
Prior art date
Application number
PCT/CN2023/101074
Other languages
English (en)
French (fr)
Inventor
王珊
韦兆碧
张兴民
段亚娟
孟博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023246699A1 publication Critical patent/WO2023246699A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of signal processing technology, in particular to a signal processing method, a signal processing system, a signal processing device, and a storage medium.
  • full-duplex technology for transmitting and receiving at the same frequency at the same time
  • full-duplex technology for transmitting and receiving adjacent sub-bands of the frequency band at the same time
  • the transmitted signal is received by the receiving link, and the magnitude of the transmitted signal is stronger than the power of the received signal, causing the received signal to be severely interfered by the transmitted signal.
  • Embodiments of the present application provide a signal processing method, a signal processing system, a signal processing device, and a storage medium.
  • inventions of the present application provide a signal processing method applied to a full-duplex signal processing system.
  • the signal processing system includes a radio frequency module, a digital module and a baseband module.
  • the radio frequency module includes The first antenna module and the second antenna module, the digital module is connected to the radio frequency module, the baseband module is connected to the digital module, and the signal processing method includes: obtaining the baseband module The first signal sent out and the second signal received by the first antenna module, wherein the first signal and the second signal are transmitted on the same link, and the first signal and the second signal are The second signal is transmitted at the same time; the first signal and the second signal are time-delay aligned; channel estimation is performed based on the time-delay aligned first signal and the second signal to obtain an interference reference signal; obtain the third signal received by the second antenna module, wherein the third signal and the second signal are not transmitted on the same link, and the third signal and the second signal are on the same Transmit in time; perform cancellation processing on the third signal according to the interference reference signal to
  • embodiments of the present application also provide a signal processing system, including: a radio frequency module.
  • the radio frequency module includes a first antenna module and a second antenna module.
  • the first antenna module and the The second antenna module is configured to transmit a first signal, the first antenna module is configured to receive a second signal, and the second antenna module is configured to receive a third signal;
  • the digital module The digital module is connected to the radio frequency module, and the digital module is configured to perform the signal processing method as described above;
  • a baseband module the baseband module is connected to the digital module, and the baseband module
  • the group is configured to transmit a first signal and receive said target signal.
  • embodiments of the present application also provide a signal processing device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • a signal processing device including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the As above The signal processing method described above.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the signal processing method as described above.
  • Figure 1 is a flow chart of a signal processing method provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of the method of step S120 in Figure 1;
  • FIG. 3 is a flow chart of the method of step S220 in Figure 2;
  • FIG 4 is a flow chart of another method of step S130 in Figure 1;
  • FIG. 5 is a flow chart of the method of step S150 in Figure 1;
  • Figure 6 is a schematic structural diagram of a first antenna module in a full-duplex signal processing system provided by another embodiment of the present application.
  • Figure 7 is a schematic structural diagram of anti-interference processing in related art.
  • the system includes a transmitting signal circuit, a receiving signal circuit and a digital intermediate frequency module.
  • the receiving signal includes an interference signal caused by the transmitting signal. Therefore, an interference signal extraction circuit is provided in the system to extract the interference signal.
  • the interference signal The signal extraction circuit includes an additional analog-to-digital conversion circuit, an additional analog receiving amplification link, and the power supply and control links supporting the additional link. Afterwards, the received signal is offset in the digital intermediate frequency. This method requires additional settings.
  • the hardware link greatly increases the complexity and cost of PCB (Printed Circuit Board) used in full-duplex technology applications.
  • the present application provides a signal processing method, a full-duplex signal processing system, a signal processing device and a computer-readable storage medium, including acquiring a first signal sent by a baseband module and a second signal received by a first antenna module. signal, wherein the first signal and the second signal are transmitted on the same link, and the first signal and the second signal are transmitted at the same time; the first signal and the second signal are time-delay aligned; according to the time-delay alignment Perform channel estimation on the first signal and the second signal to obtain the interference reference signal; obtain the third signal received by the second antenna module, where the third signal and the second signal are not transmitted on the same link, and the third signal and the third signal are not transmitted on the same link.
  • the two signals are transmitted at the same time; the third signal is offset according to the interference reference signal to obtain a target signal for transmission to the baseband module.
  • anti-interference processing is performed on the signal in the digital module, and the signal is offset by referring to the channel characteristics between different links that send signals at the same time, so as to improve the signal-to-noise ratio of the received signal.
  • Figure 1 is a flow chart of a signal processing method provided by an embodiment of the present application.
  • the signal processing method is applied to a full-duplex signal processing system.
  • the signal processing system includes a radio frequency module, a digital module and a baseband. module, radio frequency module
  • the group includes a first antenna module and a second antenna module, the digital module is connected to the radio frequency module, and the baseband module is connected to the digital module.
  • the signal processing method may include but is not limited to step S110, step S120, and step S130. , step S140, step S150.
  • Step S110 Obtain the first signal sent by the baseband module and the second signal received by the first antenna module, where the first signal and the second signal are transmitted on the same link, and the first signal and the second signal are transmitted on the same link. transmission at the same time.
  • the first signal and the second signal are transmitted on the same link. That is to say, the first signal and the second signal are transmitted on the same link between the digital module and the radio frequency module to obtain the first signal. and the second signal are to facilitate obtaining the target signal in subsequent steps.
  • the first signal sent by the baseband module may be a digital signal
  • the second signal received by the first antenna module is an analog signal
  • the digital module obtains the third signal received by the first antenna module.
  • the second signal can be converted into a digital signal through a digital-to-analog converter, thereby improving the anti-interference ability of the second signal.
  • Step S120 Delay align the first signal and the second signal.
  • delay alignment of the first signal and the second signal refers to aligning the start time of the first signal with the start time of the second signal.
  • the effective start time refers to the start time of the useful signal in the signal. , it can be understood that the initial time of the received signal is not necessarily the effective start time. Since the first signal causes interference to the second signal, it is determined that the interference signals in the first signal and the second signal are of the same origin. When the effective start time of the first signal is aligned with the effective start time of the second signal, the first signal The time delays between the first signal and the second signal are all aligned, which facilitates channel estimation of the first signal and the second signal in subsequent steps, thereby achieving the purpose of improving the calculation efficiency of channel estimation.
  • delay alignment of the first signal and the second signal may be performed by using any delay alignment algorithm in the related art, which will not be detailed here. limited.
  • Step S130 Perform channel estimation based on the delay-aligned first signal and the second signal to obtain an interference reference signal.
  • the first signal is the sent signal
  • the second signal is the received signal.
  • the channel estimation can use any channel estimation method in the related art, such as estimation based on the reference signal, that is, based on the estimation of the first signal and the second signal, the channel of the link can be obtained Characteristic conditions and interference reference signals are enough, and there are no specific limitations here.
  • Step S140 Obtain the third signal received by the second antenna module, where the third signal and the second signal are not transmitted on the same link, but the third signal and the second signal are transmitted at the same time.
  • the third signal refers to the signal received by the second antenna module.
  • the third signal may be an analog signal.
  • the purpose of obtaining the third signal is to facilitate obtaining the target signal in subsequent steps.
  • the third signal and the second signal are not transmitted on the same link. Then, the third signal and the first signal are not transmitted on the same link. Since the second signal and the second signal are transmitted at the same time, the third signal and the second signal are received at the same time, and both the third signal and the second signal are interfered by the first signal. Therefore, the interference signal of the third signal and the third signal.
  • the interference signals of the two signals are of the same origin, and the third signal can be offset by the interference reference signal to obtain the target signal, thereby improving the signal-to-noise ratio of the received signal.
  • Step S150 Perform cancellation processing on the third signal according to the interference reference signal to obtain a target signal for transmission to the baseband module.
  • the interference reference signal can characterize the channel characteristics of the transmission link of the first signal and the second signal.
  • the source of the channel interference suffered by the third signal is also the first signal.
  • the interference signal included in the third signal is of the same source as the interference signal of the second signal, and only differs in amplitude and phase.
  • the third signal is offset according to the interference reference signal, thereby eliminating the interference signal in the third signal and obtaining a target signal for transmission to the baseband module, thereby improving the signal-to-noise ratio of the received signal.
  • the target signal is obtained in the digital module, thereby transmitting the target signal to the baseband module.
  • the second signal and the third signal are transmitted at the same time, and the second signal and the third signal include the same
  • the target signal therefore, only needs to transmit the target signal obtained by canceling the third signal to the baseband module.
  • the interference reference signal can represent the interference signal in the second signal.
  • the cancellation process can be to directly subtract the interference reference signal from the third signal, or it can be to first obtain the inverse signal of the interference reference signal, so as to The inverse signal is added to the third signal to obtain the target signal.
  • the first signal sent by the baseband module and the second signal received by the first antenna module are obtained, where the first signal and the second signal are obtained.
  • Two signals are transmitted on the same link, and the first signal and the second signal are transmitted at the same time; the first signal and the second signal are time-delay aligned; the channel is performed based on the time-delay aligned first signal and the second signal.
  • Estimate and obtain the interference reference signal obtain the third signal received by the second antenna module, where the third signal and the second signal are not transmitted on the same link, and the third signal and the second signal are transmitted at the same time; according to The interference reference signal cancels the third signal to obtain the target signal for transmission to the baseband module.
  • the interference reference signal is obtained through the first signal and the second signal, thereby performing the interference processing on the third signal.
  • the target signal is obtained through cancellation, which saves the cost of adding additional hardware links, solves the problem of how to extract the interference signal from the leaked interference signal, and prevents damage to the received signal during the cancellation process, which can improve the signal-to-noise ratio of the received signal. the goal of.
  • the interference reference signal cannot directly cancel the second signal. This is because the interference reference signal is obtained from the first signal and the second signal after channel estimation and can characterize the transmission of the first signal and the second signal. Depending on the channel characteristics of the link, canceling the second signal based on the interference reference signal will cause the target signal to disappear, making it impossible to obtain the target signal.
  • Step S120 may also include but is not limited to step S210, step S220, step S230, step S240, step S250 and step S260.
  • Step S210 Sample the first signal at a preset time interval to obtain a first sampling point.
  • the preset time interval can be any time distance in the related technology. For example: for a first signal lasting six seconds, the data of the second second, the data of the fourth second, the data of the sixth second in the first signal are respectively processed. Seconds of data are sampled, that is, the first signal is sampled at an interval of two seconds, and three first sampling points can be obtained. Sampling the first signal at preset time intervals refers to sampling the first signal at preset time intervals to obtain the first sampling point. In one embodiment, sampling the first signal may include taking the starting position of the first signal as the first sampling point, and then sampling once every preset time interval, and finally obtaining multiple first sampling points. The number of sampling points can be any number, and is not specifically limited here. The first sampling point is obtained to facilitate time delay alignment of the first signal and the second signal in subsequent steps.
  • Step S220 Compare the values of adjacent first sampling points to obtain the first key value.
  • the first sampling point is a sampling point obtained by sampling at a preset time interval in the first signal.
  • the values of adjacent first sampling points are compared to obtain the first key value.
  • the first key value represents the adjacent The difference in values between the two first sampling points and the first key value are obtained to facilitate obtaining the delay difference in subsequent steps.
  • the value of the first sampling point when the first signal is a digital signal, the value of the first sampling point is 0 or 1; when the first The signal is an analog signal, and the value of the first sampling point can be any value.
  • Step S230 Sampling the second signal at preset time intervals to obtain second sampling points, where the number of first sampling points is the same as the number of second sampling points.
  • the preset time length can be any time distance in the related technology.
  • Sampling the second signal at preset time intervals refers to sampling the second signal at preset time intervals to obtain the second sampling point.
  • sampling the second signal may include taking the starting position of the second signal as the first sampling point, and then sampling once every preset time interval, and finally obtaining multiple second sampling points.
  • the number of sampling points can be any number, and the second sampling point is obtained to facilitate time delay alignment of the first signal and the second signal in subsequent steps.
  • the number of second sampling points is the same as the number of first sampling points. That is to say, when the lengths of the first signal and the second signal are inconsistent, it is only necessary to collect the same number of sampling points. This is to facilitate obtaining the delay difference in subsequent steps.
  • Step S240 Compare the values of adjacent second sampling points to obtain the second key value.
  • the second sampling point is a sampling point obtained by sampling at a preset time interval in the second signal.
  • the values of adjacent second sampling points are compared to obtain a second key value.
  • the second key value represents the adjacent
  • the second key value is obtained from the difference in values between the two second sampling points in order to facilitate obtaining the delay difference in subsequent steps.
  • the value of the second sampling point when the second signal is a digital signal, the value of the second sampling point is 0 or 1; when the second signal is an analog signal, the value of the second sampling point can be any value.
  • Step S250 Obtain the delay difference according to the first key value and the second key value.
  • the first key value represents the difference in values between two adjacent first sampling points
  • the second key value represents the difference in values between two adjacent second sampling points. Since the first sampling point The point is a point obtained by sampling at a preset time interval in the first signal.
  • the second sampling point is a point obtained by sampling at a preset time interval in the second signal.
  • the first key value represents the change of the first signal.
  • the second key value represents the change of the second signal. Since the first signal and the second signal are transmitted in the same link, and the first signal and the second signal are transmitted at the same time, therefore, the interference signal in the second signal and The first signal has the same origin, but differs in amplitude and phase.
  • the delay difference between the first signal and the second signal can be obtained based on the first key value and the second key value.
  • both the first signal and the second signal are digital signals, and the first key value and the second key value each include multiple values. According to the changing trend of the difference between the first key value and the second key value, The changing trend of the difference. When the trends are the same, it means that the signals at the corresponding positions are corresponding. Therefore, the delay difference can be obtained.
  • Step S260 Align the first signal and the second signal according to the delay difference.
  • the delay difference refers to the delay difference between the first signal and the second signal.
  • the delay difference can be obtained based on the first key value and the second key value.
  • the first signal and the second signal are aligned.
  • the first sampling point is the starting position of the signal.
  • the first signal may be divided according to the first key value and the second key value.
  • the starting position is aligned with the starting position of the second signal, thereby achieving the purpose of aligning the first signal and the second signal. Aligning the first signal and the second signal can facilitate subsequent channel estimation and improve the accuracy of the channel estimation. .
  • the first signal is sampled at a first distance to obtain the first sampling point; the values of adjacent first sampling points are compared, Obtain the first key value; sample the second signal at a first distance to obtain second sampling points, where the number of first sampling points is the same as the number of second sampling points; combine the values of adjacent second sampling points Compare and get the second key value; according to the first key value and the second key value to obtain the delay difference; align the first signal and the second signal according to the delay difference.
  • the difference between the first sampling point and the second sampling point can be , can achieve the purpose of aligning the first signal and the second signal, thereby improving the accuracy of channel estimation, and achieving the purpose of improving the signal-to-noise ratio of the received signal.
  • the signal processing method is further described.
  • the first sampling point includes an adjacent first adjacent sampling point and a second adjacent sampling point.
  • Step S220 may also include but not It is limited to step S310.
  • Step S310 When the value of the first adjacent sampling point is greater than the value of the second adjacent sampling point, set the first key value to 1. When the value of the first adjacent sampling point is less than the value of the second adjacent sampling point, Set the first key value to -1.
  • the first adjacent sampling point and the second adjacent sampling point are two adjacent first sampling points.
  • the first adjacent sampling point is in front or behind the second adjacent sampling point.
  • the first key value When the first adjacent sampling point When the value of the adjacent sampling point is greater than the value of the second adjacent sampling point, set the first key value to 1. When the value of the first adjacent sampling point is less than the value of the second adjacent sampling point, set the first key value to -1, saves the process of calculating the values of sampling points, thereby achieving the purpose of improving calculation efficiency.
  • the first key value when the first signal is a digital signal and the value of the first sampling point is 0 or 1, the first key value can be the value of the first adjacent sampling point minus the second adjacent sampling point. value, so that the obtained value can be 1 or -1, which can facilitate obtaining the delay difference value according to the first key value and the second key value in subsequent steps.
  • the value of the first sampling point can be any value. It is only necessary to compare the value of the first adjacent sampling point with the value of the second adjacent sampling point. Thus, the first key value can be obtained, saving the process of calculating the value of the sampling point, thereby achieving the purpose of improving calculation efficiency.
  • the first key value is set to 1.
  • the value of the first adjacent sampling point is If the value of the sampling point is smaller than the value of the second adjacent sampling point, the first key value is set to -1.
  • the delay difference value can be obtained based on the first key value and the second key value. This can be done by dividing the first key value and Multiply the second key value. Since the value of the first key value is -1 or 1, the value of the second key value is also -1 or 1. When the product of the first key value and the second key value is both 1, It means that the first signal and the second signal have been aligned, so that the delay difference can be easily determined and the calculation efficiency can be improved.
  • the signal processing method is further explained.
  • the first sampling point includes an adjacent first adjacent sampling point and a second adjacent sampling point.
  • Step S130 may also include but not It is limited to step S410 and step S420.
  • Step S410 Perform channel estimation based on the delay-aligned first signal and the second signal to obtain a correlation matrix.
  • the channel estimation may be an estimation based on the first signal and the second signal. Since the first signal and the second signal are time-delay aligned, and the first signal and the second signal are transmitted on the same link, the first signal The signal and the second signal are transmitted at the same time.
  • the interference signal in the second signal has the same origin as the first signal.
  • Channel estimation is performed on the first signal and the second signal to obtain a correlation matrix.
  • the correlation matrix can characterize the second signal. Correlation between the interference signal and the first signal in , obtaining the correlation matrix can facilitate obtaining the interference reference signal in subsequent steps.
  • Step S420 Obtain the interference reference signal according to the first signal and the correlation matrix.
  • the interference signal in the second signal can be expressed as X*H. Since the third signal and the second signal are transmitted at the same time, the third signal has the same useful signal as the second signal, The channel characteristics of the link where the third signal is transmitted are basically consistent with the channel characteristics of the link where the second signal is transmitted.
  • the interference signal in the third signal can also be expressed as Cancel to obtain the useful signal in the third signal, thereby reducing the interference caused by the transmitted signal to the received signal and achieving the purpose of improving the signal-to-noise ratio of the received signal.
  • the interference reference signal can be obtained, thereby reducing the interference of the transmitted signal on the received signal and achieving the purpose of improving the signal-to-noise ratio of the received signal.
  • the interference reference signal is obtained from the first signal and the correlation matrix.
  • the interference reference signal will also cancel the useful signal in the second signal. Since the second signal The signal and the third signal are transmitted at the same time. The second signal and the third signal have the same useful signal. In subsequent steps, the interference reference signal is used to offset the third signal to obtain the useful signal, which can achieve the purpose of receiving the useful signal. Purpose.
  • the signal processing method is further explained.
  • the first sampling point includes an adjacent first adjacent sampling point and a second adjacent sampling point.
  • Step S150 may also include but not Limited to step S510.
  • Step S510 Subtract the interference reference signal and the third signal to obtain a target signal for transmission to the baseband module.
  • the target signal refers to the signal received by the radio frequency module that has not yet passed through the transmission link.
  • the useful signal in the third signal is the target signal. Since the interference reference signal can represent the interference signal of the second signal, the third signal The channel characteristics between the transmission link of the second signal and the transmission link of the third signal are basically the same. By directly subtracting the interference reference signal from the third signal, the purpose of canceling the interference signal in the third signal can be achieved.
  • the target signal transmitted to the baseband module.
  • the digital module cancels the third signal according to the interference reference signal to obtain the target signal, and the target signal is transmitted to the baseband module through the digital module, thereby achieving the purpose of signal transmission.
  • the interference reference signal is directly subtracted from the third signal to obtain the target signal for transmission to the baseband module. According to the solution of the embodiment of the present application, no The interference reference signal needs to be further processed, which can improve the efficiency of calculation.
  • an embodiment of the present application also provides a full-duplex signal processing system, including a radio frequency module, a digital module and a baseband module.
  • the radio frequency module includes a first antenna module and a second antenna module. Both the first antenna module and the second antenna module may be provided with a receiving antenna and a transmitting antenna. That is to say, the receiving antenna and the transmitting antenna share the same antenna. state.
  • the first signal is transmitted by the baseband module, and both the first antenna module and the second antenna module are configured to transmit the first signal. That is to say, the first signal passes through the transmission link corresponding to the first antenna module and the second antenna module. The corresponding transmit link of the antenna module is then sent out.
  • the first antenna module is configured to receive the second signal, and the second antenna module is configured to receive the third signal. It can be understood that for the radio frequency module, the second signal and the third signal are received through different antenna modules. , the second signal and the third signal are transmitted on different links.
  • the digital module is connected to the radio frequency module.
  • the digital module can transmit the first signal, the second signal and the third signal, and the digital module is configured to perform the above signal processing method.
  • the third signal can be processed.
  • the three signals are subjected to anti-interference processing and the target signal is obtained.
  • the target signal refers to the useful signal received by the first antenna module and the second antenna module in the third signal that has not been transmitted through the link.
  • the digital module performs the above The signal processing method in the embodiment, for example, performs the above-described method steps S110 to S150 in Figure 1, method steps S210 to S260 in Figure 2, method step S310 in Figure 3, and method steps S410 to S410 in Figure 4. S420, method step S510 in Figure 5.
  • the baseband module is connected to the digital module.
  • the baseband module is configured to transmit a first signal and receive a target signal.
  • the first signal can be used to perform anti-interference processing on the received signal, thereby improving the target signal received by the baseband module. signal-to-noise ratio.
  • FIG. 6 shows a schematic diagram of the connection structure of the first antenna module.
  • An antenna module includes a transmitting antenna and a receiving antenna.
  • the radio frequency module is connected to a digital module.
  • the digital module The module is connected to the first antenna module.
  • the connected link includes a transmitting link and a receiving link.
  • the first signal in the transmitting link causes interference to the second signal in the receiving link.
  • the digital The module obtains the interference reference signal based on the first signal and the second signal, and then cancels the third signal to obtain the target signal.
  • the radio frequency module further includes a filter module.
  • the filter module is connected to the radio frequency module.
  • the filter module is connected to the first antenna module.
  • the filter module is connected to the second antenna module.
  • the filter modules are configured to suppress spurious and blocked signals.
  • the filter module refers to any filter module in the related art.
  • the filter module can be set on the receiving link, and multiple filter modules can be set to communicate with the first antenna module respectively.
  • the first and second antenna modules are connected, so that preliminary anti-interference processing can be performed on the second signal and the third signal, and spurious signals and blocking signals caused by other factors such as medium interference, receiving frequency band interference, etc. can be suppressed.
  • the radio frequency module further includes a digital-to-analog converter and an analog-to-digital converter.
  • the digital-to-analog converter is configured to convert the first signal into an analog signal.
  • the analog-to-digital converter is configured to convert the second signal to the second signal.
  • the third signal is converted into a digital signal.
  • the digital-to-analog converter can be any digital-to-analog converter in the related art
  • the analog-to-digital converter can be any analog-to-digital converter in the related art.
  • the digital-to-analog converter and the analog-to-digital converter are arranged in the radio frequency analog group, the first signal is sent by the baseband module.
  • the first signal is originally a digital signal.
  • the digital-to-analog converter can be set in the transmitting link to convert the first signal into an analog signal; the second signal and the third signal are first received when they are first received. is an analog signal.
  • the signals are all digital signals, which can facilitate the digital module to perform anti-interference processing on the signal, improve the calculation efficiency of the processing, thereby achieving the purpose of improving the signal-to-noise ratio of the received signal.
  • an embodiment of the present application also provides a signal processing device.
  • the signal processing device includes: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor and memory may be connected via a bus or other means.
  • memory can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory may include high-speed random access memory and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory may include memory located remotely from the processor, and the remote memory may be connected to the processor through a network. Examples of the above-mentioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the signal processing methods of the above embodiments are stored in the memory.
  • the signal processing methods in the above embodiments are executed, for example, the above-described steps in Figure 1 are executed.
  • one embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Execution by a processor in the device embodiment can cause the above-mentioned processor to perform the signal processing method in the above-described embodiment, for example, perform the above-described method steps S110 to S150 in Figure 1 and method steps S210 to S260 in Figure 2 ,image 3 Method step S310 in , method steps S410 to S420 in FIG. 4 , and method step S510 in FIG. 5 .
  • Embodiments of the present application include: acquiring a first signal sent by a baseband module and a second signal received by a first antenna module, where the first signal and the second signal are transmitted on the same link, and the first signal and the second signal are The two signals are transmitted at the same time; the first signal and the second signal are time-delay aligned; channel estimation is performed based on the time-delay aligned first signal and the second signal to obtain the interference reference signal; the reception of the second antenna module is obtained The third signal is received, wherein the third signal and the second signal are not transmitted on the same link, and the third signal and the second signal are transmitted at the same time; the third signal is canceled according to the interference reference signal to obtain Target signal transmitted to the baseband module.
  • anti-interference processing is performed on the signal in the digital module, and the signal is offset by referring to the channel characteristics between different links that send signals at the same time, so as to improve the signal-to-noise ratio of the received signal.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired signal and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any signal delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)

Abstract

本申请公开了一种信号处理方法、信号处理系统、信号处理装置、存储介质,该信号处理方法包括:获取基带模组发送出去的第一信号和第一天线模组接收到的第二信号,第一信号和第二信号在同一链路进行传输,第一信号和第二信号在同一时间进行传输(S110);将第一信号和第二信号进行时延对齐(S120);根据时延对齐后的第一信号和第二信号进行信道估计,得到干扰参考信号(S130);获取第二天线模组接收到的第三信号,第三信号和第二信号不在同一链路进行传输,第三信号和第二信号在同一时间进行传输(S140);根据干扰参考信号对第三信号进行抵消处理,得到用于传输至基带模组的目标信号(S150)。

Description

信号处理方法、信号处理系统、信号处理装置、存储介质
相关申请的交叉引用
本申请基于申请号为202210695587.7、申请日为2022年06月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及信号处理技术领域,尤其是一种信号处理方法、信号处理系统、信号处理装置、存储介质。
背景技术
近年来,无线通信业务量的爆炸增长,使得频谱带宽资源短缺问题变得越来越严重。因此,各通信供应商和研究学者都在寻求增强频谱效率的方案,其中收发同时同频的全双工技术,及同时收发频段相邻子带的全双工技术是目前的焦点技术。然而,全双工技术中,发射信号被接收链路接收到,且该发射信号的量级比接收信号的功率要强,导致接收信号受到发射信号的严重干扰。
发明内容
本申请实施例提供了一种信号处理方法、信号处理系统、信号处理装置、存储介质。
第一方面,本申请实施例提供了一种信号处理方法,应用于全双工的信号处理系统,所述信号处理系统包括射频模组、数字模组和基带模组,所述射频模组包括第一天线模组和第二天线模组,所述数字模组与所述射频模组连接,所述基带模组与所述数字模组连接,所述信号处理方法包括:获取所述基带模组发送出去的第一信号和所述第一天线模组接收到的第二信号,其中,所述第一信号和所述第二信号在同一链路进行传输,所述第一信号和所述第二信号在同一时间进行传输;将所述第一信号和所述第二信号进行时延对齐;根据时延对齐后的所述第一信号和所述第二信号进行信道估计,得到干扰参考信号;获取所述第二天线模组接收到的第三信号,其中,所述第三信号和所述第二信号不在同一链路进行传输,所述第三信号和所述第二信号在同一时间进行传输;根据所述干扰参考信号对所述第三信号进行抵消处理,得到用于传输至所述基带模组的目标信号。
第二方面,本申请实施例还提供了一种信号处理系统,包括:射频模组,所述射频模组包括第一天线模组和第二天线模组,所述第一天线模组和所述第二天线模组均被设置为发射第一信号,所述第一天线模组被设置为接收第二信号,所述第二天线模组被设置为接收第三信号;数字模组,所述数字模组与所述射频模组连接,所述数字模组被设置为执行如上所述的信号处理方法;基带模组,所述基带模组与所述数字模组连接,所述基带模组被设置为发射第一信号和接收所述目标信号。
第三方面,本申请实施例还提供了一种信号处理装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所 述的信号处理方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的信号处理方法。
附图说明
图1是本申请一个实施例提供的信号处理方法的流程图;
图2是图1中步骤S120的方法的流程图;
图3是图2中步骤S220的方法的流程图;
图4是图1中步骤S130的另一方法的流程图;
图5是图1中步骤S150的方法的流程图;
图6是本申请另一个实施例提供的全双工的信号处理系统中第一天线模组的结构示意图;
图7是相关技术中的抗干扰处理的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
参照图7,相关技术中,系统包括有发射信号电路、接收信号电路以及数字中频模块,接收信号包括发射信号导致的干扰信号,因此,在系统设置有干扰信号提取电路以提取该干扰信号,干扰信号提取电路包括额外的模数转换电路、额外模拟接收放大链路及该额外链路配套的供电和控制链路等,之后,再在数字中频中对接收信号进行抵消,这种方式需要设置额外的硬件链路,大大增加了全双工技术应用的PCB(Printed Circuit Board,印刷电路板)复杂度和成本。
本申请提供了一种信号处理方法、全双工的信号处理系统、信号处理装置和计算机可读存储介质,包括获取基带模组发送出去的第一信号和第一天线模组接收到的第二信号,其中,第一信号和第二信号在同一链路进行传输,第一信号和第二信号在同一时间进行传输;将第一信号和第二信号进行时延对齐;根据时延对齐后的第一信号和第二信号进行信道估计,得到干扰参考信号;获取第二天线模组接收到的第三信号,其中,第三信号和第二信号不在同一链路进行传输,第三信号和第二信号在同一时间进行传输;根据干扰参考信号对第三信号进行抵消处理,得到用于传输至基带模组的目标信号。根据本申请实施例的方案,在数字模组对信号进行抗干扰处理,参照同时发送信号的不同链路之间的信道特征,对信号进行抵消,达到提高接收的信号的信噪比的目的。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的信号处理方法的流程图,该信号处理方法应用于全双工的信号处理系统,信号处理系统包括射频模组、数字模组和基带模组,射频模 组包括第一天线模组和第二天线模组,数字模组与射频模组连接,基带模组与数字模组连接,该信号处理方法可以包括但不限于有步骤S110、步骤S120、步骤S130、步骤S140、步骤S150。
步骤S110:获取基带模组发送出去的第一信号和第一天线模组接收到的第二信号,其中,第一信号和第二信号在同一链路进行传输,第一信号和第二信号在同一时间进行传输。
本步骤中,第一信号和第二信号在同一链路进行传输,即是说,第一信号和第二信号在数字模组与射频模组之间的同一链路进行传输,获取第一信号和第二信号是为了便于后续步骤中得到目标信号。
本申请另一个实施例中,基带模组发送出去的第一信号可以是数字信号,第一天线模组接收到的第二信号是模拟信号,数字模组获取第一天线模组接收到的第二信号之后,可以经过数模转换器将第二信号转换成数字信号,从而能够提高第二信号的抗干扰能力。
步骤S120:将第一信号和第二信号进行时延对齐。
本步骤中,将第一信号和第二信号进行时延对齐,指的是将第一信号的开始时间与第二信号的开始时间进行对齐,有效开始时间指的是信号中有用信号的开始时间,可以理解的是,接收到的信号的初始时间不一定是有效开始时间。由于第一信号对第二信号造成干扰,从而确定第一信号和第二信号中的干扰信号是同源的,当第一信号的有效开始时间与第二信号的有效开始时间对齐,第一信号与第二信号之间的时延就已经全部对齐,从而能够便于后续步骤中对第一信号以及第二信号进行信道估计,达到提高信道估计的计算效率的目的。
本申请另一个实施例中,将第一信号和第二信号进行时延对齐,可以是通过相关技术中的任意时延对齐算法将第一信号和第二信号进行时延对齐,在此不作具体限定。
步骤S130:根据时延对齐后的第一信号和第二信号进行信道估计,得到干扰参考信号。
本步骤中,当第一信号和第二信号之间的时延已经对齐,由于第一信号和第二信号在同一链路进行传输,第一信号是发送出去的信号,第二信号是接收进来的信号,对第一信号和第二信号进行信道估计,可以得到第一信号和第二信号的传输链路的信道特征,根据信道特征可以得到干扰参考信号,从而便于后续步骤中对第三信号进行抵消以得到目标信号。
本申请另一个实施例中,信道估计可以采用相关技术中的任意信道估计方法,例如基于参考信号的估计,即是说,基于第一信号和第二信号的估计,能够得到该链路的信道特征情况以及干扰参考信号即可,在此不作具体限定。
步骤S140:获取第二天线模组接收到的第三信号,其中,第三信号和第二信号不在同一链路进行传输,第三信号和第二信号在同一时间进行传输。
本步骤中,第三信号指的是第二天线模组接收到的信号,第三信号可以是模拟信号,获取第三信号是为了便于后续步骤中得到目标信号。
本申请另一个实施例中,第三信号和第二信号不在同一链路进行传输,那么,第三信号和第一信号也不在同一链路进行传输。由于第二信号和第二信号在同一时间进行传输,第三信号和第二信号同时被接收,第三信号和第二信号均受到第一信号的干扰,因此,第三信号的干扰信号和第二信号的干扰信号是同源的,可以通过干扰参考信号对第三信号进行抵消,从而得到目标信号,达到提高接收信号的信噪比的目的。
步骤S150:根据干扰参考信号对第三信号进行抵消处理,得到用于传输至基带模组的目标信号。
本步骤中,干扰参考信号能够表征第一信号和第二信号的传输链路的信道特征,由于第 三信号受到的信道干扰的来源也是第一信号,第三信号包括的干扰信号与第二信号的干扰信号是同源的,仅仅是幅度和相位有所区别。根据干扰参考信号对第三信号进行抵消处理,从而能够消除第三信号中的干扰信号,得到用于传输至基带模组的目标信号,达到提高接收信号的信噪比的目的。
本申请另一个实施例中,在数字模组中得到目标信号,从而将目标信号传输至基带模组,第二信号和第三信号在同一时间进行传输,第二信号和第三信号包含有相同的目标信号,因此,只需要将对第三信号抵消后得到的目标信号传输至基带模组即可。
本申请又一个实施例中,干扰参考信号能够表征第二信号中的干扰信号,抵消处理可以是干扰参考信号与第三信号直接相减,也可以是先获取干扰参考信号的反信号,从而将该反信号与第三信号相加,从而达到得到目标信号的目的。
本实施例中,通过采用包括有上述步骤S110至步骤S150的信号处理方法,获取基带模组发送出去的第一信号和第一天线模组接收到的第二信号,其中,第一信号和第二信号在同一链路进行传输,第一信号和第二信号在同一时间进行传输;将第一信号和第二信号进行时延对齐;根据时延对齐后的第一信号和第二信号进行信道估计,得到干扰参考信号;获取第二天线模组接收到的第三信号,其中,第三信号和第二信号不在同一链路进行传输,第三信号和第二信号在同一时间进行传输;根据干扰参考信号对第三信号进行抵消处理,得到用于传输至基带模组的目标信号,根据本申请实施例的方案,通过第一信号和第二信号得到干扰参考信号,从而对第三信号进行抵消从而得到目标信号,节省了增加额外硬件链路的成本,解决了如何从泄露干扰信号中提取干扰信号,并在抵消过程中防止损伤接收信号的问题,能够达到提高接收的信号的信噪比的目的。
值得注意的是,干扰参考信号不可以直接对第二信号进行抵消,这是因为干扰参考信号是由第一信号和第二信号经过信道估计后得到,能够表征第一信号和第二信号的传输链路的信道特征,根据干扰参考信号对第二信号进行抵消,会导致目标信号也消失,从而不能够达到得到目标信号的目的。
在一实施例中,如图2所示,对信号处理方法进行进一步的说明,步骤S120还可以包括但不限于有步骤S210、步骤S220、步骤S230、步骤S240、步骤S250和步骤S260。
步骤S210:间隔预设时长对第一信号进行采样,得到第一采样点。
本步骤中,间隔预设时长可以是相关技术中的任意时间距离,例如:对于一段持续六秒的第一信号,分别对第一信号中第二秒的数据、第四秒的数据、第六秒的数据进行采样,即间隔两秒对第一信号进行采样,可以得到三个第一采样点。间隔预设时长对第一信号进行采样,指的是在第一信号上分别间隔预设时长进行采样以获得第一采样点。在一个实施方式中,对第一信号进行采样,可以是将第一信号的开始位置作为第一个采样点,之后每间隔预设时长进行一次采样,最后得到多个第一采样点,第一采样点的数量可以是任意数量个,在此不作具体限定,得到第一采样点是为了便于后续步骤中将第一信号和第二信号进行时延对齐。
步骤S220:将相邻的第一采样点的值进行比较,得到第一关键值。
本步骤中,第一采样点是第一信号中间隔预设时长采样得到的采样点,将相邻的第一采样点的值进行比较,得到第一关键值,第一关键值表征相邻的两个第一采样点之间的值的差异,得到第一关键值是为了便于后续步骤中得到时延差值。
本申请另一个实施例中,当第一信号是数字信号,第一采样点的值是0或者1;当第一 信号是模拟信号,第一采样点的值可以是任意值。
步骤S230:间隔预设时长对第二信号进行采样,得到第二采样点,其中,第一采样点的数量和第二采样点的数量相同。
本步骤中,预设时长可以是相关技术中的任意时间距离,间隔预设时长对第二信号进行采样,指的是在第二信号上分别间隔预设时长进行采样以获得第二采样点。在一个实施方式中,对第二信号进行采样,可以是将第二信号的开始位置作为第一个采样点,之后每间隔预设时长进行一次采样,最后得到多个第二采样点,第二采样点的数量可以是任意数量个,得到第二采样点是为了便于后续步骤中将第一信号和第二信号进行时延对齐。
本申请另一个实施例中,第二采样点的数量与第一采样点的数量相同,即是说,当第一信号和第二信号的长度不一致,只需要采集相同数量的采样点即可,这样是为了便于后续步骤中得到时延差值。
步骤S240:将相邻的第二采样点的值进行比较,得到第二关键值。
本步骤中,第二采样点是第二信号中间隔预设时长采样得到的采样点,将相邻的第二采样点的值进行比较,得到第二关键值,第二关键值表征相邻的两个第二采样点之间的值的差异,得到第二关键值是为了便于后续步骤中得到时延差值。
本申请另一个实施例中,当第二信号是数字信号,第二采样点的值是0或者1;当第二信号是模拟信号,第二采样点的值可以是任意值。
步骤S250:根据第一关键值和第二关键值得到时延差值。
本步骤中,第一关键值表征相邻的两个第一采样点之间的值的差异,第二关键值表征相邻的两个第二采样点之间的值的差异,由于第一采样点是在第一信号中间隔预设时长的采样得到的点,第二采样点是在第二信号中间隔预设时长的采样得到的点,第一关键值表示第一信号的变化情况,第二关键值表示第二信号的变化情况,由于第一信号和第二信号在同一链路中进行传输,第一信号和第二信号在同一时间进行传输,因此,第二信号中的干扰信号和第一信号是同源的,只是幅度和相位有差异,可以根据第一关键值和第二关键值得到第一信号和第二信号之间的时延差值。
在一个实施例中,第一信号和第二信号均是数字信号,第一关键值和第二关键值均包括多个值,根据第一关键值的差值的变化趋势以及第二关键值的差值的变化趋势,当趋势相同,则表示相应位置的信号是对应的,因此,可以得到时延差值。
步骤S260:根据时延差值将第一信号和第二信号对齐。
本步骤中,时延差值指的是第一信号和第二信号之间的时延差值,时延差值可以是根据第一关键值和第二关键值得到,根据时延差值将第一信号和第二信号对齐,在一个实施方式中,对信号的采样操作中,第一个采样点均是信号的开始位置,可以是根据第一关键值和第二关键值将第一信号的开始位置与第二信号的开始位置对齐,从而能够达到将第一信号和第二信号对齐的目的,将第一信号和第二信号对齐后能够便于后续的信道估计,提高信道估计的准确性。
本实施例中,通过采用包括有上述步骤S210至步骤S260的信号处理方法,间隔第一距离对第一信号进行采样,得到第一采样点;将相邻的第一采样点的值进行比较,得到第一关键值;间隔第一距离对第二信号进行采样,得到第二采样点,其中,第一采样点的数量和第二采样点的数量相同;将相邻的第二采样点的值进行比较,得到第二关键值;根据第一关键 值和第二关键值得到时延差值;根据时延差值将第一信号和第二信号对齐,根据本申请实施例的方案,能够根据第一采样点和第二采样点之间的差异,能够达到将第一信号和第二信号对齐的目的,从而提高信道估计的准确性,达到提高接收信号的信噪比的目的。
在一实施例中,如图3所示,对信号处理方法进行进一步的说明,第一采样点包括相邻的第一相邻采样点和第二相邻采样点,步骤S220还可以包括但不限于有步骤S310。
步骤S310:当第一相邻采样点的值大于第二相邻采样点的值,将第一关键值设置为1,当第一相邻采样点的值小于第二相邻采样点的值,将第一关键值设置为-1。
本步骤中,第一相邻采样点和第二相邻采样点是相邻的两个第一采样点,第一相邻采样点在第二相邻采样点的前面或者后面,当第一相邻采样点的值大于第二相邻采样点的值,将第一关键值设置为1,当第一相邻采样点的值小于第二相邻采样点的值,将第一关键值设置为-1,节省了对采样点的值进行计算的过程,从而能够达到提高计算的效率的目的。
本申请另一个实施例中,当第一信号是数字信号,第一采样点的值是0或者1,第一关键值可以是将第一相邻采样点的值减去第二相邻采样点的值,从而可以使得得到的值为1或者-1,从而能够便于后续步骤中根据第一关键值和第二关键值得到时延差值。
本申请又一个实施例中,当第一信号是模拟信号,第一采样点的值可以是任意值,只需要将第一相邻采样点的值和第二相邻采样点的值进行比较,从而能够得到第一关键值,节省了对采样点的值进行计算的过程,从而能够达到提高计算的效率的目的。
本实施例中,通过采用包括有上述步骤S310的信号处理方法,当第一相邻采样点的值大于第二相邻采样点的值,将第一关键值设置为1,当第一相邻采样点的值小于第二相邻采样点的值,将第一关键值设置为-1,根据本申请实施例的方案,只需要将第一相邻采样点的值与第二相邻采样点的值进行比较即可得到第一关键值,节省了对采样点的值进行计算的过程,从而能够达到提高计算的效率的目的。
值得注意的是,对于第二采样点也可以是采用相同的计算方式,从而得到第二关键值,根据第一关键值和第二关键值得到时延差值,可以是将第一关键值与第二关键值相乘,由于第一关键值的取值是-1或者1,第二关键值的取值也是-1或者1,当第一关键值与第二关键值的乘积均是1,则表示第一信号和第二信号已经对齐,从而能够便于判断时延差值,达到提高计算效率的目的。
在一实施例中,如图4所示,对信号处理方法进行进一步的说明,第一采样点包括相邻的第一相邻采样点和第二相邻采样点,步骤S130还可以包括但不限于有步骤S410和步骤S420。
步骤S410:根据时延对齐后的第一信号和第二信号进行信道估计,得到相关性矩阵。
本步骤中,信道估计可以是基于第一信号和第二信号的估计,由于第一信号和第二信号经过时延对齐,并且,第一信号和第二信号在同一链路进行传输,第一信号和第二信号在同一时间进行传输,第二信号中的干扰信号与第一信号同源,对第一信号和第二信号进行信道估计,得到相关性矩阵,相关性矩阵能够表征第二信号中的干扰信号与第一信号的相关性,得到相关性矩阵能够便于后续步骤中得到干扰参考信号。
步骤S420:根据第一信号以及相关性矩阵,得到干扰参考信号。
本步骤中,设第一信号为X,相关性矩阵为H,则第二信号中的干扰信号可以表示为X*H。由于第三信号和第二信号在同一时间进行传输,第三信号具有和第二信号相同的有用信号, 第三信号传输的链路的信道特征与第二信号的链路的信道特征基本一致,第三信号中的干扰信号也可以表示为X*H,得到干扰参考信号能够用于与第三信号进行抵消以得到第三信号中的有用信号,从而能够减少发送的信号对接收到的信号产生干扰的情况,达到提高接受信号的信噪比的目的。
本实施例中,通过采用包括有上述步骤S410至S420的信号处理方法,根据时延对齐后的第一信号和第二信号进行信道估计,得到相关性矩阵;根据第一信号以及相关性矩阵,得到干扰参考信号,根据本申请实施例的方案,能够得到干扰参考信号,从而能够减少发送的信号对接收到的信号产生干扰的情况,达到提高接受信号的信噪比的目的。
值得注意的是,干扰参考信号由第一信号与相关性矩阵得到,当干扰参考信号用于与第二信号进行抵消,干扰参考信号会对第二信号中的有用信号也进行抵消,由于第二信号和第三信号在同一时间进行传输,第二信号与第三信号具有相同的有用信号,后续步骤中将干扰参考信号用于第三信号的抵消就可以得到有用信号,能够达到接收有用信号的目的。
在一实施例中,如图5所示,对信号处理方法进行进一步的说明,第一采样点包括相邻的第一相邻采样点和第二相邻采样点,步骤S150还可以包括但不限于有步骤S510。
步骤S510:将干扰参考信号与第三信号相减,得到用于传输至基带模组的目标信号。
本步骤中,目标信号指的是射频模组接收到的暂未经过传输链路的信号,第三信号中的有用信号即为目标信号,由于干扰参考信号能够表征第二信号的干扰信号,第二信号的传输链路与第三信号的传输链路之间的信道特征基本一致,直接将干扰参考信号与第三信号相减,就可以达到抵消第三信号中的干扰信号的目的,得到用于传输至基带模组的目标信号。
本申请另一个实施例中,在数字模组根据干扰参考信号对第三信号进行抵消,从而得到目标信号,目标信号经过数字模组传输至基带模组,从而达到信号传输的目的。
本实施例中,通过采用包括有上述步骤S510的信号处理方法,直接将干扰参考信号与第三信号相减,得到用于传输至基带模组的目标信号,根据本申请实施例的方案,不需要干扰参考信号进行进一步处理,能够提高计算的效率。
再者,本申请的一个实施例还提供了一种全双工的信号处理系统,包括射频模组、数字模组和基带模组。
射频模组包括第一天线模组和第二天线模组,第一天线模组和第二天线模组均可以是设置有接收天线和发射天线,即是说,接收天线和发射天线共天线的状态。第一信号由基带模组发射,第一天线模组和第二天线模组均被设置为发射第一信号,即是说,第一信号经过第一天线模组对应的发射链路与第二天线模组的对应的发射链路,然后发送出去。第一天线模组被设置为接收第二信号,第二天线模组被设置为接收第三信号,可以理解的是,对于射频模组,通过不同的天线模组接收第二信号和第三信号,第二信号和第三信号在不同的链路上进行传输。
数字模组与射频模组连接,数字模组可以传输第一信号、第二信号和第三信号,并且,数字模组被设置为执行如上的信号处理方法,执行该信号处理方法后能够对第三信号进行抗干扰处理并得到目标信号,目标信号指的是在第三信号中,第一天线模组和第二天线模组接收到的未经过链路传输的有用信号,数字模组执行上述实施例中的信号处理方法,例如,执行以上描述的图1中的方法步骤S110至S150、图2中的方法步骤S210至S260、图3中的方法步骤S310、图4中的方法步骤S410至S420、图5中的方法步骤S510。
基带模组与数字模组连接,基带模组被设置为发射第一信号和接收目标信号,第一信号可以用于对接收到的信号进行抗干扰处理,从而提高基带模组接收到的目标信号的信噪比。
本申请另一个实施例中,参照图6,图6表示的是第一天线模组的连接结构示意图,对于一个天线模组,包括发射天线和接收天线,射频模组与数字模组连接,数字模组与第一天线模组连接,连接的链路包括发射链路和接收链路,发射链路中的第一信号对接收链路的第二信号造成干扰,当接收到第二信号,数字模组根据第一信号以及第二信号得到干扰参考信号,再对第三信号进行抵消以得到目标信号。
在一实施例中,射频模组还包括滤波器模组,滤波器模组与射频模组连接,滤波器模组与第一天线模组连接,滤波器模组与第二天线模组连接,滤波器模组被设置为抑制杂散信号和阻塞信号。
可以理解的是,滤波器模组指的是相关技术中的任意滤波器模组,滤波器模组可以设置在接收链路上,可以设置有多个滤波器模组以分别与第一天线模组、第二天线模组连接,从而能够对第二信号和第三信号进行初步的抗干扰处理,抑制其他因素例如介质干扰、接收频段干扰等引起的杂散信号和阻塞信号。
在一实施例中,射频模组还包括数模转换器和模数转换器,数模转换器被设置为将第一信号转为模拟信号,模数转换器被设置为将第二信号和所述第三信号转换为数字信号。
可以理解的是,数模转换器可以是相关技术中的任意数模转换器,模数转换器可以是相关技术中的任意模数转换器,数模转换器和模数转换器设置在射频模组,第一信号由基带模组发送,第一信号原来是数字信号,数模转换器可以设置在发射链路以将第一信号转为模拟信号;第二信号和第三信号在刚接收时是模拟信号,模数转换器可以是多个并分别设置在接收链路上以将第二信号和所述第三信号转换为数字信号,根据本申请实施例的方案,使得在数字模组上的信号均是数字信号,能够便于数字模组对信号进行抗干扰处理,提高了处理的计算效率,从而达到提高接收信号的信噪比的目的。
另外,本申请的一个实施例还提供了一种信号处理装置,该信号处理装置包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网、组合。
实现上述实施例的信号处理方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的信号处理方法,例如,执行以上描述的图1中的方法步骤S110至S150、图2中的方法步骤S210至S260、图3中的方法步骤S310、图4中的方法步骤S410至S420、图5中的方法步骤S510。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述装置实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的信号处理方法,例如,执行以上描述的图1中的方法步骤S110至S150、图2中的方法步骤S210至S260、图3 中的方法步骤S310、图4中的方法步骤S410至S420、图5中的方法步骤S510。
本申请实施例包括:获取基带模组发送出去的第一信号和第一天线模组接收到的第二信号,其中,第一信号和第二信号在同一链路进行传输,第一信号和第二信号在同一时间进行传输;将第一信号和第二信号进行时延对齐;根据时延对齐后的第一信号和第二信号进行信道估计,得到干扰参考信号;获取第二天线模组接收到的第三信号,其中,第三信号和第二信号不在同一链路进行传输,第三信号和第二信号在同一时间进行传输;根据干扰参考信号对第三信号进行抵消处理,得到用于传输至基带模组的目标信号。根据本申请实施例的方案,在数字模组对信号进行抗干扰处理,参照同时发送信号的不同链路之间的信道特征,对信号进行抵消,达到提高接收的信号的信噪比的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件、适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信号(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信号并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信号递送介质。

Claims (10)

  1. 一种信号处理方法,应用于全双工的信号处理系统,所述信号处理系统包括射频模组、数字模组和基带模组,所述射频模组包括第一天线模组和第二天线模组,所述数字模组与所述射频模组连接,所述基带模组与所述数字模组连接,所述信号处理方法包括:
    获取所述基带模组发送出去的第一信号和所述第一天线模组接收到的第二信号,其中,所述第一信号和所述第二信号在同一链路进行传输,所述第一信号和所述第二信号在同一时间进行传输;
    将所述第一信号和所述第二信号进行时延对齐;
    根据时延对齐后的所述第一信号和所述第二信号进行信道估计,得到干扰参考信号;
    获取所述第二天线模组接收到的第三信号,其中,所述第三信号和所述第二信号不在同一链路进行传输,所述第三信号和所述第二信号在同一时间进行传输;
    根据所述干扰参考信号对所述第三信号进行抵消处理,得到用于传输至所述基带模组的目标信号。
  2. 根据权利要求1所述的信号处理方法,其中,所述将所述第一信号和所述第二信号进行时延对齐,包括:
    间隔预设时长对所述第一信号进行采样,得到第一采样点;
    将相邻的所述第一采样点的值进行比较,得到第一关键值;
    间隔所述预设时长对所述第二信号进行采样,得到第二采样点,其中,所述第一采样点的数量和所述第二采样点的数量相同;
    将相邻的所述第二采样点的值进行比较,得到第二关键值;
    根据所述第一关键值和所述第二关键值得到时延差值;
    根据所述时延差值将第一信号和所述第二信号对齐。
  3. 根据权利要求2所述的信号处理方法,其中,所述第一采样点包括相邻的第一相邻采样点和第二相邻采样点,所述将相邻的所述第一采样点的值进行比较,得到第一关键值,包括:
    当所述第一相邻采样点的值大于所述第二相邻采样点的值,将第一关键值设置为1,当所述第一相邻采样点的值小于所述第二相邻采样点的值,将第一关键值设置为-1。
  4. 根据权利要求1所述的信号处理方法,其中,所述根据时延对齐后的所述第一信号和所述第二信号进行信道估计,得到干扰参考信号,包括:
    根据时延对齐后的所述第一信号和所述第二信号进行信道估计,得到相关性矩阵;
    根据所述第一信号以及所述相关性矩阵,得到干扰参考信号。
  5. 根据权利要求1所述的信号处理方法,其中,所述根据所述干扰参考信号对所述第三信号进行抵消处理,得到用于传输至所述基带模组的目标信号,包括:
    将所述干扰参考信号与所述第三信号相减,得到用于传输至所述基带模组的目标信号。
  6. 一种全双工的信号处理系统,包括:
    射频模组,所述射频模组包括第一天线模组和第二天线模组,所述第一天线模组和所述第二天线模组均被设置为发射第一信号,所述第一天线模组被设置为接收第二信号,所述第二天线模组被设置为接收第三信号;
    数字模组,所述数字模组与所述射频模组连接,所述数字模组被设置为执行如权利要求1至5任意一项所述的信号处理方法;
    基带模组,所述基带模组与所述数字模组连接,所述基带模组被设置为发射所述第一信号和接收所述目标信号。
  7. 根据权利要求6所述的信号处理系统,其中,所述射频模组还包括滤波器模组,所述滤波器模组与所述射频模组连接,所述滤波器模组与所述第一天线模组连接,所述滤波器模组与所述第二天线模组连接,所述滤波器模组被设置为抑制杂散信号和阻塞信号。
  8. 根据权利要求6所述的信号处理系统,其中,所述射频模组还包括数模转换器和模数转换器,所述数模转换器被设置为将所述第一信号转为模拟信号,所述模数转换器被设置为将所述第二信号和所述第三信号转换为数字信号。
  9. 一种信号处理装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至5任意一项所述的信号处理方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至5任意一项所述的信号处理方法。
PCT/CN2023/101074 2022-06-20 2023-06-19 信号处理方法、信号处理系统、信号处理装置、存储介质 WO2023246699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210695587.7 2022-06-20
CN202210695587.7A CN117294411A (zh) 2022-06-20 2022-06-20 信号处理方法、信号处理系统、信号处理装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023246699A1 true WO2023246699A1 (zh) 2023-12-28

Family

ID=89243218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101074 WO2023246699A1 (zh) 2022-06-20 2023-06-19 信号处理方法、信号处理系统、信号处理装置、存储介质

Country Status (2)

Country Link
CN (1) CN117294411A (zh)
WO (1) WO2023246699A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873399A (zh) * 2012-12-11 2014-06-18 华为技术有限公司 信号干扰处理方法、装置及中继设备
CN104954307A (zh) * 2015-05-21 2015-09-30 电子科技大学 一种同时同频全双工极限自干扰抵消系统
CN114204962A (zh) * 2020-09-18 2022-03-18 上海华为技术有限公司 接收信号的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873399A (zh) * 2012-12-11 2014-06-18 华为技术有限公司 信号干扰处理方法、装置及中继设备
CN104954307A (zh) * 2015-05-21 2015-09-30 电子科技大学 一种同时同频全双工极限自干扰抵消系统
CN114204962A (zh) * 2020-09-18 2022-03-18 上海华为技术有限公司 接收信号的方法和装置

Also Published As

Publication number Publication date
CN117294411A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US10256864B2 (en) Full-duplex self-interference cancellation systems
US9130747B2 (en) Software radio frequency canceller
CN103427874B (zh) 多径环境下大发射功率同时同频自干扰抵消系统及方法
US8036606B2 (en) Method and apparatus for interference cancellation
US8433015B2 (en) System for and method of removing unwanted inband signals from a received communication signal
CA2885222C (en) Envelope feedback interference reduction and data throughput maximization
US11956001B2 (en) Millimeter wave (mmWave) system and methods
US10090870B1 (en) Signal detection and power measurement with multi-band filter to mitigate narrowband interference
CN112970232B (zh) 干扰消除的方法、设备及系统
US10440720B2 (en) Co-channel interference cancellation method and apparatus
US20160285504A1 (en) All-analog and hybrid radio interference cancelation using cables, attenuators and power splitters
CN109600144B (zh) 自激抵消方法、装置和系统
WO2023246699A1 (zh) 信号处理方法、信号处理系统、信号处理装置、存储介质
US20170026216A1 (en) Cancellation Pulse Generator Scheduling Method and System
US20240113921A1 (en) Transmit spur detection and mitigation for wireless communications devices
US20050136868A1 (en) UWB transmitting and receiving device for removing an unnecessary carrier component in a transmission signal spectrum
CN112769454B (zh) 干扰消除装置、同时同频全双工系统和无线终端
CN103346827B (zh) 稳健gsc波束形成器及其波束优化方法
KR20050030032A (ko) 시분할 다중 통신방식 수신기의 dc 옵셋 제거 장치
TW201438409A (zh) 無線接收系統及其信號處理方法
WO2023093612A1 (zh) 无源互调pim抵消方法、装置及计算机设备
WO2016191992A1 (zh) 干扰信号抵消装置及方法
US20060018368A1 (en) Channel estimation system for a wideband code division multiple access (WCDMA) communication system
US10142041B2 (en) Homodyne receiver calibration
US7924903B2 (en) Method and device for blind dehopping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826347

Country of ref document: EP

Kind code of ref document: A1