CN112970232B - 干扰消除的方法、设备及系统 - Google Patents

干扰消除的方法、设备及系统 Download PDF

Info

Publication number
CN112970232B
CN112970232B CN201880099151.3A CN201880099151A CN112970232B CN 112970232 B CN112970232 B CN 112970232B CN 201880099151 A CN201880099151 A CN 201880099151A CN 112970232 B CN112970232 B CN 112970232B
Authority
CN
China
Prior art keywords
signal
interference
self
cancellation
interference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880099151.3A
Other languages
English (en)
Other versions
CN112970232A (zh
Inventor
蔡梦
李昆
马剑涛
曹萍
蒋红丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN112970232A publication Critical patent/CN112970232A/zh
Application granted granted Critical
Publication of CN112970232B publication Critical patent/CN112970232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/0328Arrangements for operating in conjunction with other apparatus with interference cancellation circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits

Abstract

本申请实施例提供干扰消除的方法、设备及系统,涉及微波技术领域,可以在对中频电缆的传输带宽进行提速时克服现有的方案频谱效率低、中频电缆的传输带宽有限的问题。方法包括:第一设备向第二设备发送第一信号,第一信号包括第一发送信号和第一导频信号;第一设备获取第二信号,第二信号包括第一自干扰信号、第二导频信号、以及来自第二设备的第二接收信号;第一设备根据第一导频信号和第二导频信号,提取第一自干扰信号的抖动信息;第一设备根据第一发送信号和第一自干扰信号的抖动信息进行自干扰信号重建,得到第一自干扰信号的抵消信号;第一设备根据第一自干扰信号的抵消信号,将第一自干扰信号从第二接收信号中消除。

Description

干扰消除的方法、设备及系统
技术领域
本申请涉及微波技术领域,尤其涉及干扰消除的方法、设备及系统。
背景技术
如图1所示,现有的微波架构以分体式为主,即室外单元(outdoor unit,ODU)与室内单元(indoor unit,IDU)分离,两者之间的信号采用中频电缆进行传输。其中,随着移动承载带宽需求的增加,微波带宽也随之增加,例如微波带宽需要从56MHz提升到500MHz。为了保持成本优势,维持ODU与IDU之间仍然采用一根中频电缆进行连接,需要对中频电缆的传输带宽(也可以简称为中频带宽)进行提速。也就是说,对中频电缆的传输带宽进行提速是微波分体式架构继续演进的关键技术之一。然而,随着中频电缆传输带宽的提升,中频电缆的衰减也随之增大。同时,中频电缆会受到全球移动通信系统(global system formobile communications,GSM)/长期演进(long term evolution,LTE)等无线频段的干扰。因此,在对中频电缆的传输带宽进行提速时需要解决上述问题。
为解决上述问题,目前现有技术中采用频分双工(frequency-divisionduplexing,FDD)的方式对中频电缆的传输带宽进行提速。比如如图2所示,假设考虑的GSM/LTE干扰约为700-900MHz,则接收信号(RX)和发送信号(TX)可以分别位于GSM/LTE的两侧。其中,接收信号(RX)采用低频点,发送信号(TX)采用高频点。
然而,上述方案存在频谱效率低,中频电缆的传输带宽有限的问题,如何在对中频电缆的传输带宽进行提速时克服上述问题,是目前亟待解决的问题。
发明内容
本申请实施例提供干扰消除的方法、设备及系统,不仅可以在对中频电缆的传输带宽进行提速时,克服频谱效率低,中频电缆的传输带宽有限的问题,并且还可以抵消由此而产生的第一自干扰信号。其中,这里的抵消可以是部分抵消,也可以是完全抵消,在此统一说明,本申请实施例对此不作具体限定。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种干扰消除的方法,该方法包括:第一设备向第二设备发送第一信号,该第一信号包括第一发送信号和第一导频信号,其中,该第一发送信号对第一设备的接收端产生第一自干扰信号,该第一发送信号和该第一导频信号使用不同的频段;第一设备获取第二信号,该第二信号包括第一自干扰信号、第二导频信号、以及来自第二设备的第二接收信号;其中,该第二导频信号为该第一导频信号经过信道抖动后的导频信号,该第一发送信号和该第二接收信号的频段完全或部分重叠;该第二接收信号和该第二导频信号使用不同的频段;第一设备根据该第一导频信号和该第二导频信号,提取该第一自干扰信号的抖动信息;第一设备根据该第一发送信号和该第一自干扰信号的抖动信息进行自干扰信号重建,得到该第一自干扰信号的抵消信号;第一设备根据该第一自干扰信号的抵消信号,将该第一自干扰信号从第二接收信号中消除。基于本申请实施例提供的干扰消除的方法,一方面,由于收发信号(即接收信号和发送信号)对应的上下行频段可以完全重叠或者部分重叠,因此可以提升频谱效率,增大中频电缆的传输带宽。另一方面,由于收发信号对应的上下行频段可以完全重叠或者部分重,因此本发明方案中的收发信号均可以选择较低频点,因此电缆传输损耗较小,从而可以减少插损、提升电缆屏蔽性能和端口驻波性能。又一方面,考虑到收发信号对应的上下行频段可以完全重叠或者部分重叠可能导致第一发送信号对第一设备的接收端产生第一自干扰信号,而第一设备可以获取第一自干扰信号的抵消信息,并根据该第一自干扰信号的抵消信号,将第一子干扰信号从来自第二设备的第二接收信号中消除,因此可以减少由此而产生的第一自干扰信号。
在一种可能的设计中,第一设备根据该第一发送信号和该第一自干扰信号的抖动信息进行自干扰信号重建,包括:第一设备根据该第一发送信号和该第一自干扰信号的抖动信息,进行近端干扰信号的重建,其中,该近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。即,基于本申请实施例提供的干扰消除的方法,可以重建近端干扰信号,从而可以抵消近端干扰信号。
在一种可能的设计中,第一设备根据该第一发送信号和该第一自干扰信号的抖动信息进行自干扰信号重建,包括:第一设备确定需要进行X次远端反射干扰信号的抵消,X为正整数;第一设备根据该第一发送信号和该第一自干扰信号的抖动信息,进行近端干扰信号的重建以及第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,该近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。即,基于本申请实施例提供的干扰消除的方法,不仅可以重建近端干扰信号,从而可以抵消近端干扰信号;并且可以重建X次远端反射干扰信号,从而可以抵消X次远端反射干扰信号。
在一种可能的设计中,第一设备根据该第一发送信号和该第一自干扰信号的抖动信息,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:第一设备根据该第一发送信号和该第一自干扰信号的抖动信息,结合X个延时参数,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建;其中,该X个延时参数中的第f个延时参数用于第1次远端反射干扰信号至第X次远端反射干扰信号中第f次远端反射干扰信号的重建,f为大于或者等于1的正整数。即,本申请实施例提供的方案中,结合第f个延时参数进行第f次远端反射干扰信号的重建。也就是说,本申请实施例提供的干扰消除的方法在进行远端反射干扰信号的重建时,考虑到各个远端反射干扰信号与近端干扰信号之间的时延因素,从而可以使得重建的第一自干扰信号与实际的第一自干扰信号更为接近,进而可以获得更准确的第一自干扰信号的抵消信号。
在一种可能的设计中,第一设备确定需要进行X次远端反射干扰信号的抵消,包括:第一设备获取第k个延时参数和第(k+1)个延时参数,其中,该第k个延时参数为第k次远端反射干扰信号的延时参数,该第(k+1)个延时参数为第(k+1)次远端反射干扰信号的延时参数,k为大于或者等于1的正整数;第一设备根据该第k个延时参数和该第(k+1)个延时参数,确定连接该第一设备和该第二设备的中频电缆的长度;第一设备根据该中频电缆的长度确定需要进行X次远端反射干扰信号的抵消。基于本申请实施例提供的干扰消除的方法,第一设备可以确定需要进行X次远端反射干扰信号的抵消。
在一种可能的设计中,第一设备根据中频电缆的长度确定需要进行X次远端反射干扰信号的抵消,包括:第一设备根据中频电缆的长度确定第一自干扰信号的抵消需求量为0时对应的一个或多个阈值;若中频电缆的长度不大于第一阈值,第一设备确定需要进行X次远端反射干扰信号的抵消,X为当前所有远端反射干扰信号的重建链路的个数,第一阈值为一个或多个阈值中的最小值;或者,若中频电缆的长度不小于第二阈值,第一设备确定需要进行1次远端反射干扰信号的抵消,第二阈值为一个或多个阈值中的最大值;或者,若中频电缆的长度大于第三阈值,并且小于第四阈值,第一设备确定需要进行X次远端反射干扰信号的抵消,其中,第三阈值为将一个或多个阈值按照由大至小的顺序排序后得到的第X个阈值,第四阈值为将一个或多个阈值按照由大至小的顺序排序后得到的第(X-1)个阈值,X为大于或者等于2的正整数。基于本申请实施例提供的干扰消除的方法,第一设备可以根据中频电缆的长度确定需要进行多少次远端反射干扰信号的抵消。
在一种可能的设计中,第一设备获取第t个延时参数,t=k或者t=k+1,包括:第一设备调整第t个延时模块对应的延时参数,将接收第二接收信号的最小均方误差MSE最大时对应的延时参数确定为第t个延时参数。基于本申请实施例提供的干扰消除的方法,第一设备可以获取第t个延时参数。
在一种可能的设计中,第一设备进行近端干扰信号的重建,包括:第一设备通过近端干扰信号的重建链路进行近端干扰信号的重建。
在一种可能的设计中,第一设备进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:第一设备通过X条远端反射干扰信号的重建链路进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,该X条远端反射干扰信号的重建链路中的第y条远端反射干扰信号的重建链路用于第y次远端反射干扰信号的重建,y为小于或者等于X的正整数。
在一种可能的设计中,第一设备根据该第一导频信号和该第二导频信号,提取该第一自干扰信号的抖动信息,包括:第一设备将该第二导频信号转换为窄带导频信号;第一设备根据该第一导频信号,从该窄带导频信号中提取该第一自干扰信号的抖动信息。基于本申请实施例提供的干扰消除的方法,第一设备可以提取出第一自干扰信号的抖动信息。
在一种可能的设计中,第一设备根据该第一导频信号和该第二导频信号,提取该第一自干扰信号的抖动信息,包括:第一设备将该第二导频信号转换为单音导频信号;第一设备根据该第一导频信号,从该单音导频信号中提取该第一自干扰信号的抖动信息。基于本申请实施例提供的干扰消除的方法,第一设备可以提取出第一自干扰信号的抖动信息。
在一种可能的设计中,第一自干扰信号的抖动信息包括该第一自干扰信号的相位抖动信息、或该第一自干扰信号的幅度抖动信息中的至少一个。
在一种可能的设计中,第一发送信号包括第一载波信号和第二载波信号,该第二载波信号的中心频点大于全球移动通信系统GSM/长期演进LTE干扰的频点;该第二载波信号对该第一设备的接收端产生自干扰噪声;相应的,该第二信号中还包括该自干扰噪声;该方法还包括:第一设备根据该第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到该自干扰噪声的抵消信号;第一设备根据该自干扰噪声的抵消信号,将该自干扰噪声从第二接收信号中消除。基于本申请实施例提供的干扰消除的方法,可以抵消第二载波信号的自干扰噪声,从而提升第二载波信号中有用信号的信噪比。
在一种可能的设计中,第一设备根据该第一发送信号和该第二干扰抵消误差参考值进行自干扰噪声重建,得到该自干扰噪声的抵消信号,包括:第一设备根据该第二干扰抵消误差参考值,确定用于进行模拟自干扰噪声重建的重建参数;第一设备根据该重建参数和该第一发送信号进行模拟自干扰噪声重建,得到该自干扰噪声的模拟抵消信号;相应的,第一设备根据该自干扰噪声的抵消信号,将该自干扰噪声从第二接收信号中消除,包括:第一设备根据该自干扰噪声的模拟抵消信号,将该自干扰噪声从第二接收信号中消除。
在一种可能的设计中,第一设备根据该第一发送信号和该第二干扰抵消误差参考值进行自干扰噪声重建,得到该自干扰噪声的抵消信号,包括:第一设备根据该第一发送信号和该第二干扰抵消误差参考值进行数字自干扰噪声重建,得到该自干扰噪声的数字抵消信号;相应的,第一设备根据该自干扰噪声的抵消信号,将该自干扰噪声从第二接收信号中消除,包括:第一设备根据该自干扰噪声的数字抵消信号,将该自干扰噪声从第二接收信号中消除。
在一种可能的设计中,第一发送信号对该第一设备的接收端产生第一自干扰信号,包括:第一发送信号对该第一设备的接收端产生第二自干扰信号,该第二自干扰信号包括该第一自干扰信号;第一设备获取第二信号,包括:第一设备获取第三信号,该第三信号包括第二导频信号、该第二接收信号和该第二自干扰信号;第一设备根据该第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到该第二自干扰信号的抵消信号;第一设备根据该第二自干扰信号的抵消信号,将该第二自干扰信号从第二接收信号中消除,得到该第二信号。考虑到当中频电缆的传输距离较长,或者传输的信号带宽较大时(例如通过特殊的屏蔽层来解决GSM/LTE干扰,从而不需要避开这些干扰,传输较大的带宽),接收信号的功率较低。基于本申请实施例提供的干扰消除的方法,可以在第一设备获取第二信号之前,进行一次干扰信号的抵消,从而可以提升第一设备接收来自第二设备的第二接收信号的信干噪比。
在一种可能的设计中,第一设备根据第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到第二自干扰信号的抵消信号,包括:第一设备根据第一发送信号和第三干扰抵消误差参考值进行数字自干扰信号重建,得到第二自干扰信号的数字抵消信号;第一设备将第二自干扰信号的数字抵消信号转换为第二自干扰信号的模拟抵消信号;相应的,第一设备根据第二自干扰信号的抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号,包括:第一设备根据第二自干扰信号的模拟抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号对应的模拟信号;第一设备将第二信号对应的模拟信号经过ADC转换为第二信号。基于本申请实施例提供的干扰消除的方法,第一设备可以获取第二信号。
在一种可能的设计中,该第一设备为室内单元IDU,该第二设备为室外单元ODU;或者,该第一设备为ODU,该第二设备为IDU。
第二方面,提供一种第一设备,该第一设备包括:复用器、抖动提取子模块、第一干扰重建子模块和第一干扰消除子模块;该复用器,用于获取第一发送信号和第一导频信号,并将该第一发送信号和该第一导频信号复用成第一信号向第二设备发送;其中,该第一发送信号对该第一设备的接收端产生第一自干扰信号,该第一发送信号和该第一导频信号使用不同的频段;该抖动提取子模块,用于获取第一导频信号和第二信号,该第二信号包括该第一自干扰信号、第二导频信号、以及来自第二设备的第二接收信号;其中,该第二导频信号为该第一导频信号经过信道抖动后的导频信号,该第一发送信号和该第二接收信号的频段完全或部分重叠;该第二接收信号和该第二导频信号使用不同的频段;该抖动提取子模块,还用于根据该第一导频信号和该第二导频信号,提取该第一自干扰信号的抖动信息;该第一干扰重建子模块,用于获取该第一发送信号和该第一自干扰信号的抖动信息,并根据该第一发送信号和该第一自干扰信号的抖动信息进行自干扰信号重建,得到该第一自干扰信号的抵消信号;该第一干扰消除子模块,用于获取该第二信号和该第一自干扰信号的抵消信号,并根据该第一自干扰信号的抵消信号,将第一自干扰信号从第二接收信号中消除。基于本申请实施例提供的第一设备,一方面,由于收发信号(即接收信号和发送信号)对应的上下行频段可以完全重叠或者部分重叠,因此可以提升频谱效率,增大中频电缆的传输带宽。另一方面,由于收发信号对应的上下行频段可以完全重叠或者部分重,因此本发明方案中的收发信号均可以选择较低频点,因此电缆传输损耗较小,从而可以减少插损、提升电缆屏蔽性能和端口驻波性能。又一方面,考虑到收发信号对应的上下行频段可以完全重叠或者部分重叠可能导致第一发送信号对第一设备的接收端产生第一自干扰信号,而第一设备可以获取第一自干扰信号的抵消信息,并根据该第一自干扰信号的抵消信号,将该第一自干扰信号从来自第二设备的第二接收信号中消除,因此可以减少由此而产生的第一自干扰信号。
在一种可能的设计中,该第一干扰重建子模块具体用于:根据该第一发送信号和该第一自干扰信号的抖动信息,进行近端干扰信号的重建,其中,该近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。即,基于本申请实施例提供的第一设备,可以重建近端干扰信号,从而可以抵消近端干扰信号。
在一种可能的设计中,该第一干扰重建子模块具体用于:确定需要进行X次远端反射干扰信号的抵消,X为正整数;根据该第一发送信号和该第一自干扰信号的抖动信息,进行近端干扰信号的重建以及第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,该近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。即,基于本申请实施例提供的第一设备,不仅可以重建近端干扰信号,从而可以抵消近端干扰信号;并且可以重建X次远端反射干扰信号,从而可以抵消X次远端反射干扰信号。
在一种可能的设计中,该第一干扰重建子模块用于根据该第一发送信号和该第一自干扰信号的抖动信息,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:根据该第一发送信号和该第一自干扰信号的抖动信息,结合X个延时参数,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建;其中,该X个延时参数中的第f个延时参数用于第1次远端反射干扰信号至第X次远端反射干扰信号中第f次远端反射干扰信号的重建,f为大于或者等于1的正整数。即,本申请实施例提供的方案中,结合第f个延时参数进行第f次远端反射干扰信号的重建。也就是说,本申请实施例提供的第一设备在进行远端反射干扰信号的重建时,考虑到各个远端反射干扰信号与近端干扰信号之间的时延因素,从而可以使得重建的第一自干扰信号与实际的第一自干扰信号更为接近,进而可以获得更准确的第一自干扰信号的抵消信号。
在一种可能的设计中,该第一干扰重建子模块用于确定需要进行X次远端反射干扰信号的抵消,包括:获取第k个延时参数和第(k+1)个延时参数,其中,该第k个延时参数为第k次远端反射干扰信号的延时参数,该第(k+1)个延时参数为第(k+1)次远端反射干扰信号的延时参数,k为大于或者等于1的正整数;根据该第k个延时参数和该第(k+1)个延时参数,确定连接该第一设备和该第二设备的中频电缆的长度;根据该中频电缆的长度确定需要进行X次远端反射干扰信号的抵消。基于该方案,第一设备可以确定需要进行X次远端反射干扰信号的抵消。
在一种可能的设计中,第一干扰重建子模块用于根据中频电缆的长度确定需要进行X次远端反射干扰信号的抵消,包括:用于根据中频电缆的长度确定第一自干扰信号的抵消需求量为0时对应的一个或多个阈值;若中频电缆的长度不大于第一阈值,确定需要进行X次远端反射干扰信号的抵消,X为当前所有远端反射干扰信号的重建链路的个数,第一阈值为一个或多个阈值中的最小值;或者,若中频电缆的长度不小于第二阈值,确定需要进行1次远端反射干扰信号的抵消,第二阈值为一个或多个阈值中的最大值;或者,若中频电缆的长度大于第三阈值,并且小于第四阈值,确定需要进行X次远端反射干扰信号的抵消,其中,第三阈值为将一个或多个阈值按照由大至小的顺序排序后得到的第X个阈值,第四阈值为将一个或多个阈值按照由大至小的顺序排序后得到的第(X-1)个阈值,X为大于或者等于2的正整数。基于本申请实施例提供的方案,第一设备可以根据中频电缆的长度确定需要进行多少次远端反射干扰信号的抵消。
在一种可能的设计中,该第一干扰重建子模块用于获取第t个延时参数,t=k或者t=k+1,包括:用于调整第t个延时模块对应的延时参数,将接收第二接收信号的最小均方误差MSE最大时对应的延时参数确定为第t个延时参数。基于本申请实施例提供的方案,第一设备可以获取第t个延时参数。
在一种可能的设计中,该第一干扰重建子模块用于进行近端干扰信号的重建,包括:用于通过近端干扰信号的重建链路进行近端干扰信号的重建。
在一种可能的设计中,该第一干扰重建子模块用于进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:用于通过X条远端反射干扰信号的重建链路进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,该X条远端反射干扰信号的重建链路中的第y条远端反射干扰信号的重建链路用于第y次远端反射干扰信号的重建,y为小于或者等于X的正整数。
在一种可能的设计中,该抖动提取子模块具体用于:将该第二信号转换为窄带导频信号;根据该第一导频信号,从该窄带导频信号中提取该第一自干扰信号的抖动信息。基于本申请实施例提供的方案,第一设备可以提取出第一自干扰信号的抖动信息。
在一种可能的设计中,该抖动提取子模块具体用于:将该第二信号转换为单音导频信号;根据该第一导频信号,从该单音导频信号中提取该第一自干扰信号的抖动信息。基于本申请实施例提供的方案,第一设备可以提取出第一自干扰信号的抖动信息。
在一种可能的设计中,该第一自干扰信号的抖动信息包括该第一自干扰信号的相位抖动信息、或该第一自干扰信号的幅度抖动信息中的至少一个。
在一种可能的设计中,该第一发送信号包括第一载波信号和第二载波信号,该第二载波信号的中心频点大于全球移动通信系统GSM/长期演进LTE干扰的频点;该第二载波信号对第一设备的接收端产生自干扰噪声;相应的,该第二信号中还包括该自干扰噪声;该第一设备还包括:第二干扰重建子模块和第二干扰消除子模块;该第二干扰重建子模块,用于根据该第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到该自干扰噪声的抵消信号;该第二干扰消除子模块,用于获取第二信号和该自干扰噪声的抵消信号,并根据该自干扰噪声的抵消信号,将该自干扰噪声从第二接收信号中消除。
在一种可能的设计中,该第二干扰重建子模块具体用于:根据该第二干扰抵消误差参考值,确定用于进行模拟自干扰噪声重建的重建参数;根据该重建参数和该第一发送信号进行模拟自干扰噪声重建,得到该自干扰噪声的模拟抵消信号;相应的,该第二干扰消除子模块具体用于:获取第二信号和该自干扰噪声的模拟抵消信号,并根据该自干扰噪声的模拟抵消信号,将该自干扰噪声从第二接收信号中消除。基于该方案,可以抵消第二载波信号的自干扰噪声,从而提升第二载波信号中有用信号的信噪比。
在一种可能的设计中,该第二干扰重建子模块具体用于:根据该第一发送信号和该第二干扰抵消误差参考值进行数字自干扰噪声重建,得到该自干扰噪声的数字抵消信号;相应的,该第二干扰消除子模块具体用于:获取第二信号和该自干扰噪声的数字抵消信号,并根据该自干扰噪声的数字抵消信号,将该自干扰噪声从第二接收信号中消除。
在一种可能的设计中,该第一设备还包括:第三干扰重建子模块和第三干扰消除子模块;该第一发送信号对该第一设备的接收端产生第一自干扰信号,包括:该第一发送信号对该第一设备的接收端产生第二自干扰信号,该第二自干扰信号包括该第一自干扰信号;该第三干扰重建子模块,用于获取第一发送信号,并根据该第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到该第二自干扰信号的抵消信号;该第三干扰消除子模块,用于获取第三信号和第二自干扰信号的抵消信号,该第三信号包括第二导频信号、第二接收信号和第二自干扰信号,并根据该第二自干扰信号的抵消信号,将第二自干扰信号从第二接收信号中消除,得到该第二信号;相应的,该抖动提取子模块,用于获取第二信号,包括:该抖动提取子模块,用于接收来自该第三干扰消除子模块的该第二信号。基于本申请实施例提供的方案,可以在第一设备获取第二信号之前,进行一次干扰信号的抵消,从而可以提升第一设备接收第二信号中的第二接收信号的信干噪比。
在一种可能的设计中,第一设备还包括模数转换器ADC;该第三干扰重建子模块用于根据第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到第二自干扰信号的抵消信号,包括:用于根据第一发送信号和第三干扰抵消误差参考值进行数字自干扰信号重建,得到第二自干扰信号的数字抵消信号;第一设备将第二自干扰信号的数字抵消信号转换为第二自干扰信号的模拟抵消信号;相应的,该第三干扰消除子模块用于根据第二自干扰信号的抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号,包括:用于根据第二自干扰信号的模拟抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号对应的模拟信号;该ADC,用于将第二信号对应的模拟信号转换为第二信号。基于本申请实施例提供的方案,第一设备可以获取第二信号。
在一种可能的设计中,该第一设备为室内单元IDU,该第二设备为室外单元ODU;或者,该第一设备为ODU,该第二设备为IDU。
其中,上述第二方面以及第二方面中任一种可能的设计所带来的技术效果可参考上述第一方面,在此不再赘述。
第三方面,提供一种第一设备,该第一设备包括处理器,该处理器用于执行上述第一方面任一项所述的干扰消除的方法。
其中,上述第三方面以及第三方面中任一种可能的设计所带来的技术效果可参考上述第一方面,在此不再赘述。
第四方面,提供一种微波传输系统,该微波传输系统包括第一设备、第二设备、以及连接该第一设备和该第二设备的中频电缆;其中,该第一设备为室内单元IDU,该第二设备为室外单元ODU;或者,该第一设备为ODU,该第二设备为IDU;该第一设备,用于向第二设备发送第一信号,该第一信号包括第一发送信号和第一导频信号,其中,该第一发送信号对该第一设备的接收端产生第一自干扰信号,该第一发送信号和该第一导频信号使用不同的频段;该第二设备,用于通过该中频电缆向该第一设备发送第二接收信号;该第一设备,还用于获取第二信号,该第二信号包括该第一自干扰信号、第二导频信号、以及来自该第二设备的第二接收信号;其中,该第二导频信号为第一导频信号经过信道抖动后的导频信号,该第一发送信号和该第二接收信号的频段完全或部分重叠;该第二接收信号和该第二导频信号使用不同的频段;该第一设备,还用于根据该第一导频信号和该第二导频信号,提取该第一自干扰信号的抖动信息;该第一设备,还用于根据该第一发送信号和该第一自干扰信号的抖动信息进行自干扰信号重建,得到该第一自干扰信号的抵消信号;该第一设备,还用于根据该第一自干扰信号的抵消信号,将该第一自干扰信号从第二接收信号中消除。
其中,上述第四方面所带来的技术效果可参考上述第一方面,在此不再赘述。
附图说明
图1为现有技术提供的分体式微波架构的示意图;
图2为现有技术提供的采用FDD方式对中频电缆的传输带宽进行提速的频谱示意图;
图3为本申请实施例提供的具体应用场景示意图;
图4为本申请实施例提供的干扰消除方法的流程示意图;
图5a为本申请实施例提供的频谱示意图一;
图5b为本申请实施例提供的频谱示意图二;
图5c为本申请实施例提供的频谱示意图三;
图6为本申请实施例提供的一种IDU302和ODU301的结构示意图;
图7为本申请实施例提供的一种干扰重建子模块3022d的结构示意图;
图8为本申请实施例提供的5D电缆的抵消量需求曲线;
图9为本申请实施例提供的确定所需的远端反射干扰信号的重建链路的个数的流程示意图;
图10为本申请实施例提供的一种反射延时估计方法流程示意图;
图11为本申请实施例提供的抖动提取子模块3022c的结构示意图一;
图12为本申请实施例提供的抖动提取子模块3022c的结构示意图二;
图13为本申请实施例提供的IDU302的另一种结构示意图;
图14为本申请实施例提供的干扰噪声抑制模块3028的结构示意图;
图15为本申请实施例提供的IDU302的又一种结构示意图;
图16为本申请实施例提供的IDU302的又一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
如图3所示,为本发明方案的具体应用场景示意图。其中,本发明方案用于分体式微波传输系统30中。该分体式微波传输系统30主要包括ODU301、IDU302、微波天线303和中频电缆304。
其中,ODU301的主要功能是完成信号的变频和放大。具体功能如下:在发送方向,ODU301将传送的模拟中频信号经过上变频和放大,转换成特定频率的射频信号后,向微波天线303发送。在接收方向,ODU301将从微波天线303接收的射频信号经过下变频和放大,转换成模拟中频信号向IDU302发送。
IDU302的主要功能是将接收到的模拟中频信号进行解调和数字化处理,分解成数字信号。在发送端,也会将基带数字信号调制成可以发射的模拟中频信号。
中频电缆304的主要功能是连接IDU302与ODU301。
微波天线303主要提供射频信号的定向收发功能,实现ODU301产生或接收的射频信号与大气空间的射频信号之间的转换。在发送方向上,微波天线303将ODU301输出的射频信号转换为具有方向性的射频信号,向空间辐射。在接收方向上,微波天线303接收空间的射频信号,将射频信号进行聚焦,传送给ODU301。其中,微波天线303与室外单元301通过馈电波导相连接。
其中,本申请实施例中的接收方向是指微波传输系统30的接收方向,是指信号从微波天线303到IDU302,如图3中的方向1;本申请实施例中的发送方向是指微波传输系统30的发送方向,是指信号从IDU302到微波天线303,如图3中的方向2,在此统一说明,以下不再赘述。
其中,本申请实施例中的模拟中频信号是指基带数字信号经过上变频和数模转换后的模拟信号;或者,本申请实施例中的模拟中频信号是指射频信号经过下变频和数模转换后的模拟信号。
为方便描述,本申请实施例中,可以将IDU302称之为第一设备,ODU301称之为第二设备;或者,可以将IDU302称之为第二设备,ODU301称之为第一设备。其中,第一设备除了具备上述功能之外,还可以执行如图4所示的干扰消除的方法,包括如下步骤S401-S405:
S401、第一设备向第二设备发送第一信号。
其中,第一信号包括第一发送信号和第一导频信号,第一发送信号对第一设备的接收端产生第一自干扰信号,第一发送信号和第一导频信号使用不同的频段。
S402、第一设备获取第二信号。
其中,该第二信号包括上述第一自干扰信号、第二导频信号、以及来自第二设备的第二接收信号。其中,第二导频信号为第一导频信号经过信道抖动后的导频信号,第一发送信号和第二接收信号的频段完全或部分重叠;第二接收信号和第二导频信号使用不同的频段。
S403、第一设备根据第一导频信号和第二导频信号,提取第一自干扰信号的抖动信息。
其中,本申请实施例中,第一自干扰信号的抖动信息是指第(n+1)个采样点相对于第n个采样点发生的信号幅度或者相位变化。示例性的,该抖动信息可以包括相位抖动信息或者幅度抖动信息中的至少一个。
S404、第一设备根据第一发送信号和第一自干扰信号的抖动信息进行自干扰信号重建,得到第一自干扰信号的抵消信号。
S405、第一设备根据第一自干扰信号的抵消信号,将第一自干扰信号从第二接收信号中消除。
也就是说,本申请实施例中,可以通过上下行频段完全重叠或者部分重叠的方式实现中频电缆的传输带宽的提速,同时可以抵消由此而产生的第一自干扰信号。其中,这里的抵消可以是部分抵消,也可以是完全抵消,在此统一说明,本申请实施例对此不作具体限定。
示例性的,本发明的收发信号(即接收信号和发送信号,以下简称收发信号)的频谱示意图可以如图5a、图5b或图5c所示。其中,在图5a或图5b中,收发信号均可以选择较低频点,区别在于:图5a中收发信号完全重叠,图5b中收发信号部分重叠。在图5c中,将本发明与载波聚合(carrier aggregation,CA)技术结合起来,实现更大带宽的中频传输(如,聚合后中频电缆的传输带宽>600MHz)。例如,CA包含2个载波信号,一个载波信号的中心频点f1=310MHz,另外一个载波信号的中心频点f2=1.25GHz,即收发信号不仅可以选择较低频点,且可以选择较高频点,并且收发信号完全重叠。当然,在图5c中,收发信号也可以部分重叠,在此不再详细赘述。
由于收发信号对应的上下行频段可以完全重叠或者部分重叠,因此可以提升频谱效率,增大中频电缆的传输带宽。此外,由图5a、图5b或图5c可以看出,与图2相比,由于本发明方案中的收发信号均可以选择较低频点,因此电缆传输损耗较小,从而可以减少插损、提升电缆屏蔽性能和端口驻波性能。
示例性的,假设现有的FDD方案中的接收与发送频点分别为310MHz和1.25GHz,本发明采用的收发频点均为310MHz,则对应不同的中频电缆,中频电缆传输时产生的衰减分别如表一所示。
表一
Figure GDA0003567923280000101
由表一可以看出,本发明方案相对于现有的FDD方案,中频电缆传输时产生的衰减较小。比如,对于5D电缆,现有FDD方案中,中频电缆传输时产生的衰减为每120m衰减34.4dB,而本发明方案中,中频电缆传输时产生的衰减为每120m衰减17.7dB,因此,本发明方案相对于现有FDD方案每120m衰减减少34.4-17.7=16.7dB。或者,对于RG8电缆,现有FDD方案中,中频电缆传输时产生的衰减为每180m衰减33.9dB,而本发明方案中,中频电缆传输时产生的衰减为每180m衰减15.8dB,因此,本发明方案相对于现有FDD方案每180m衰减减少33.9-15.8=18.1dB。或者,对于1/2超柔电缆,现有FDD方案中,中频电缆传输时产生的衰减为每300m衰减39.6dB,而本发明方案中,中频电缆传输时产生的衰减为每300m衰减18.7dB,因此,本发明方案相对于现有FDD方案每300m衰减减少39.6-18.7=20.9dB。
下面将对图4所示的实施例提供的干扰消除的方法进行展开说明。
如图6所示,为本申请实施例提供的一种IDU302和ODU301的结构示意图。
其中,IDU302包括中频板、主控交换时钟板以及业务板等单板。
图6中仅是示例性的给出了中频板的结构示意图,包括调制解调模块3021、干扰信号抑制模块3022、数模转换器(digital to analog converter,DAC)3023、模数转换器(analog to digital converter,ADC)3024、滤波器3025、滤波器3026和合路器3027。
其中,如图6所示,干扰信号抑制模块3022可以包括发送导频子模块3022a、复用器3022b、抖动提取子模块3022c、干扰重建子模块3022d和干扰消除子模块3022e。可选的,干扰信号抑制模块3022还可以包括干扰通道选择子模块3022k、反射延时估计子模块3022m、或干扰抵消误差计算子模块3022n中的一个或多个。例如,干扰信号抑制模块3022还可以包括干扰抵消误差计算子模块3022n;或者,干扰信号抑制模块3022还可以包括反射延时估计子模块3022m;或者,干扰信号抑制模块3022还可以包括干扰通道选择子模块3022k和反射延时估计子模块3022m;或者,干扰信号抑制模块3022还可以包括干扰抵消误差计算子模块3022n、干扰通道选择子模块3022k和反射延时估计子模块3022m。其中,干扰信号抑制模块3022是否包括干扰抵消误差计算子模块3022n取决于自干扰信号重建的算法。比如,若通过自适应算法进行自干扰信号重建,则干扰信号抑制模块3022可以不包括干扰抵消误差计算子模块3022n。此外,本申请实施例中的干扰抵消误差计算子模块3022n也可以称之为接收信号强度指示(received signal strength indicator,RSSI)计算子模块,在此统一说明,以下不再赘述。
ODU301包括中频模块3012和射频模块3011。
其中,中频模块3012包括:DAC3012a、ADC3012b、干扰信号抑制模块3012c、DAC3012d、滤波器3012e、合路器3012f、滤波器3012m和ADC3012n。其中,如图6所示,干扰信号抑制模块3012c包括发送导频子模块3012c1、复用器3012c2、抖动提取子模块3012c3、干扰重建子模块3012c4和干扰消除子模块3012c5。可选的,干扰信号抑制模块3012c还可以包括干扰通道选择子模块3012c6、反射延时估计子模块3012c7、或干扰抵消误差计算子模块3012c8中的一个或多个。例如,干扰信号抑制模块3012c还可以包括干扰抵消误差计算子模块3012c8;或者,干扰信号抑制模块3012c还可以包括反射延时估计子模块3012c7;或者,干扰信号抑制模块3012c还可以包括干扰通道选择子模块3012c6和反射延时估计子模块3012c7;或者,干扰信号抑制模块3012c还可以包括干扰抵消误差计算子模块3012c8、干扰通道选择子模块3012c6和反射延时估计子模块3012c7。其中,干扰信号抑制模块3012c是否包括干扰抵消误差计算子模块3012c8取决于自干扰信号重建的算法。比如,若通过自适应算法进行自干扰信号重建,则干扰信号抑制模块3012c可以不包括干扰抵消误差计算子模块3012c8。
如图6所示,在IDU302侧:调制解调模块3021的输出端分别连接复用器3022b和干扰重建子模块3022d的输入端;发送导频子模块3022a的输出端分别连接复用器3022b和抖动提取子模块3022c的输入端;复用器3022b的输出端连接DAC3023的输入端;DAC3023的输出端连接滤波器3025的输入端;滤波器3025的输出端连接合路器3027的输入端;合路器3027的输出端连接滤波器3026的输入端;滤波器3026的输出端连接ADC3024的输入端;ADC3024的输出端分别连接干扰消除子模块3022e和抖动提取子模块3022c的输入端;抖动提取子模块3022c的输出端连接干扰重建子模块3022d的输入端;干扰重建子模块3022d的输出端连接干扰消除子模块3022e的输入端;干扰消除子模块3022e的输出端连接调制解调模块3021的输入端。
可选的,如图6所示,若干扰信号抑制模块3022包括干扰通道选择子模块3022k、反射延时估计子模块3022m和干扰抵消误差计算子模块3022,则干扰消除子模块3022e的输出端还可以连接干扰抵消误差计算子模块3022n的输入端。干扰抵消误差计算子模块3022n的输出端可以连接干扰重建子模块3022d的输入端,可选的,干扰抵消误差计算子模块3022n的输出端可以连接反射延时估计子模块3022m的输入端。反射延时估计子模块3022m的输出端可以分别连接干扰通道选择子模块3022k和干扰重建子模块3022d的输入端。干扰通道选择子模块3022k的输出端可以连接干扰重建子模块3022d的输入端。当然,若干扰信号抑制模块3022不包括干扰抵消误差计算子模块3022,则干扰消除子模块3022e的输出端还可以直接连接至干扰重建子模块3022d的输入端和反射延时估计子模块3022m的输入端,本申请实施例对此不作具体限定。
在ODU301侧:射频模块3011的输出端连接ADC3012b的输入端;ADC3012b的输出端分别连接复用器3012c2和干扰重建子模块3012c4的输入端;发送导频子模块3012c1的输出端分别连接复用器3012c2和抖动提取子模块3012c3的输入端;复用器3012c2的输出端连接DAC3012d的输入端;DAC3012d的输出端连接滤波器3012e的输入端;滤波器3012e的输出端连接合路器3012f的输入端;合路器3012f的输出端连接滤波器3012m的输入端;滤波器3012m的输出端连接ADC3012n的输入端;ADC3012n的输出端分别连接干扰消除子模块3012c5和抖动提取子模块3012c3的输入端;抖动提取子模块3012c3的输出端连接干扰重建子模块3012c4的输入端;干扰重建子模块3012c4的输出端连接干扰消除子模块3012c5的输入端;干扰消除子模块3012c5的输出端连接DAC3012a的输入端;DAC3012a的输出端连接射频模块3011的输入端。
可选的,如图6所示,若干扰信号抑制模块3012c包括干扰通道选择子模块3012c6、反射延时估计子模块3012c7和干扰抵消误差计算子模块3012c8,则干扰消除子模块3012c5的输出端还可以连接干扰抵消误差计算子模块3012c8的输入端。干扰抵消误差计算子模块3012c8的输出端可以连接干扰重建子模块3012c4的输入端,可选的,干扰抵消误差计算子模块3012c8的输出端可以连接反射延时估计子模块3012c7的输入端。反射延时估计子模块3012c7的输出端可以分别连接干扰通道选择子模块3012c8和干扰重建子模块3012c4的输入端。干扰通道选择子模块3012c8的输出端可以连接干扰重建子模块3012c4的输入端。当然,若干扰信号抑制模块3012c不包括干扰抵消误差计算子模块3012c8,则干扰消除子模块3012c5的输出端还可以直接连接至干扰重建子模块3012c4的输入端和反射延时估计子模块3012c7的输入端,如图6中的虚线所示,本申请实施例对此不作具体限定。
由图6可以看出,本申请实施例中,采用合路器3027连接IDU302的发送端与接收端,采用合路器3012f连接OD301U的发送端与接收端。其中,合路器3027与合路器3012f通过中频电缆304连接,合路信号送入中频电缆3024。
需要说明的是,如图6所示,本申请实施例中,IDU302的发送端是指调制解调模块3021的输出端与合路器3027的输入端之间的部分;IDU302的接收端是指合路器3027的输出端与调制解调模块3021的输入端之间的部分。ODU301的发送端是指射频模块3011的输出端与合路器3012f的输入端之间的部分;ODU302的接收端是指合路器3012f的输出端与射频模块3011的输入端之间的部分,其中,这里的射频模块3011的输出端是指接收方向上射频模块3011的输出端,这里的射频模块3011的输入端是指发送方向上射频模块3011的输入端,在此统一说明,以下不再赘述。
可选的,本申请实施例中的合路器(包括合路器3027与合路器3012f)也可以称之为功分器,可以实现收发隔离(例如20dB),本申请实施例对此不作具体限定。
示例性的,以第一设备为IDU302,第二设备为ODU301为例。具体的,将第一设备和第二设备的收发信号的频段完全或部分重叠。
其中,在IDU302侧,调制解调模块3021生成基带数字信号,记作信号1;发送导频子模块3022a生成第一导频信号。在发送信号1时加入第一导频信号,复用器3022b用于将信号1与第一导频信号复用成一路信号,记作信号2。
信号2经过DAC3023转换为模拟信号,记作信号3。
信号3经过滤波器3025滤波得到信号4,信号4中包括IDU发送导频1和IDU发送信号,如图6中的频谱1所示。其中,这里的IDU发送导频1为第一导频信号经过发送导频子模块3022a和滤波器3025之间的信道之后的导频信号。在发送导频子模块3022a和滤波器3025之间的信道影响较小的情况下,IDU发送导频1可以视为第一导频信号。
可选的,本申请实施例中的第一导频信号可以是单音导频载波或者调制的窄带导频载波,用于估计IDU302向ODU301发送第一发送信号时产生的第一自干扰信号的抖动信息,提升自干扰抵消能力,具体实现将结合下述实施例中的图11和图12中进行描述,在此不再赘述。
其中,这里的第一发送信号可以为信号1、信号2、信号3或者信号4中的任意一个信号,在此统一说明,以下不再赘述。
其中,信号4经过合路器3027之后,一部分信号(记作信号5)送入中频电缆304进入ODU301的接收端,另外一部分信号(包括第二导频信号和第一发送信号对IDU302的接收端产生的第一自干扰信号,其中,第二导频信号为第一导频信号经过IDU302的发送端与IDU302的接收端之间的信道抖动后得到的导频信号)进入IDU302的接收端。同时,IDU302的接收端还可以获取ODU301的发送端通过中频电缆304向IDU302的接收端发送的信号,记作信号6。即,如图6所示,IDU302的接收端可以获取信号7。信号7包括第一发送信号对IDU302的接收端产生的第一自干扰信号、第二导频信号、以及信号6。信号6包括来自ODU301的第二接收信号以及来自ODU301的第三导频信号。其中,第一自干扰信号和第二接收信号由于频段部分或完全重叠,因此无法单独检测到。也即是说,IDU302的接收侧可以检测到第二信号,第二信号包括第二导频信号、第三导频信号、第一自干扰信号和第二接收信号。这里的第二导频信号、第三导频信号、第一自干扰信号和第二接收信号均为模拟信号。假设第二导频信号记作IDU发送导频2,第三导频信号记作ODU发送导频3,则信号7对应的频谱示意图如图6中的频谱2所示(图6中示例性的以收发信号的频段完全重叠为例进行示意)。
其中,本申请实施例中的第一发送信号和第二接收信号的频段完全或部分重叠。
其中,本申请实施例中的第二导频信号的频段与第二接收信号的频段不同,并且第一导频信号的频段与第一发送信号的频段不同。这样可以避免第一导频信号被第一发送信号干扰,第二导频信号被第二接收信号干扰,进而导致导频信噪比不高。
其中,如图6所示,本申请实施例中的第一自干扰信号可以包括近端收发隔离的干扰信号I11、近端反射的干扰信号I13和远端反射干扰信号I12。其中,远端反射干扰信号I12可以包括一次或多次反射的远端反射干扰信号,如包括第1次远端反射的干扰信号I121、第2次远端反射的干扰信号I122、……、第P次远端反射的干扰信号I12P,P为远端反射的次数,P为正整数。
其中,信号7经过滤波器3026之后得到信号8,信号8经过ADC3024转换为数字信号,记作信号9。以忽略合路器3027与抖动提取子模块3022c之间的信道影响为例进行说明,则信号9中包括第二导频信号、第三导频信号、第一自干扰信号和第二接收信号。这里的第二导频信号、第三导频信号、第一自干扰信号和第二接收信号均为数字信号。
第一导频信号和信号9通过抖动提取子模块3022c可以提取到第一自干扰信号的抖动信息。具体的,考虑到第一导频信号和第一发送信号经过了相同的从IDU302的发送端与IDU302的接收端之间的信道,而第二导频信号是第一导频信号经过信道抖动后得到的,因此,抖动提取子模块3022c从信号9中检测出第二导频信号,根据第二导频信号和第一导频信号的差异可以得到信道的抖动情况,进而根据将该信道的抖动情况可以确定出第一自干扰信号的抖动信息。
抖动提取子模块3022c提取到第一自干扰信号的抖动信息之后,将第一自干扰信号的抖动信息输入干扰重建子模块3022d。进而,干扰重建子模块3022d根据输入的信号1和第一自干扰信号的抖动信息可以进行自干扰信号重建,得到第一自干扰信号的抵消信号之后,将第一自干扰信号的抵消信号输入干扰消除子模块3022e。
干扰消除子模块3022根据输入的第一自干扰信号的抵消信号和信号9,可以将第一自干扰信号从第二接收信号中消除,得到信号10之后输入调制解调模块3021,可选的输入干扰重建子模块3022d。其中,干扰消除子模块3022将第一自干扰信号从第二接收信号中消除之前或者之后可以滤除信号9中的第三导频信号和第二导频信号,因此输出的信号10的对应的频谱示意图如图6中的频谱3所示。其中,频谱3不包括导频信号。
需要说明的是,频谱3示例性的以第一自干扰信号被完全抵消,仅包括来自ODU301的第二接收信号为例进行说明。当然,在实际场景中,第一自干扰信号不一定可以被完全抵消,可能仅是在一定程度上减少一部分干扰,此时信号10对应的频谱示意图中可能还包括未被抵消的自干扰信号,本申请实施例对此不作具体限定。
此外,可选的,如图6所示,若干扰信号抑制模块3022包括干扰通道选择子模块3022k、反射延时估计子模块3022m和干扰抵消误差计算子模块3022n,则信号10可以输入干扰抵消误差计算子模块3022n,得到的干扰抵消误差参考值同时送入反射延时估计子模块3022m和干扰重建子模块3022d。反射延时估计子模块3022m输出的延时参数同时送入干扰通道选择子模块3022k和干扰重建子模块3022d。当然,若干扰信号抑制模块3022不包括干扰抵消误差计算子模块3022n,则信号10可以直接输入干扰重建子模块3022d和反射延时估计子模块3022m,本申请实施例对此不作具体限定。
上述示例以IDU302的工作原理为例进行说明。其中,对应的干扰消除的方法可以通过IDU302中的干扰信号抑制模块3022实现。
ODU301的工作原理与IDU302的工作原理类似,区别比如在于,在ODU侧:在接收方向,复用器3012c2的一路输入信号为第一导频信号,另外一路输入信号为将射频模块3011从微波天线303接收的射频信号经过ADC3012b进行模数转换后的数字信号。在发送方向,从干扰消除子模块3012c5输出的信号一路经过DAC3012a进行数模转换,得到模拟信号之后,通过射频模块3011向微波天线303发送。此外,ODU301中的发送导频子模块3012c1输出的第一导频信号和IDU302中的发送导频子模块3022a输出的第一导频信号的频点不同,这样可以避免ODU301中的发送导频子模块3012c1输出的第一导频信号和IDU302中的发送导频子模块3022a输出的第一导频信号之间相互干扰,进而导致导频信噪比不高。其余相关描述可参考IDU302的工作原理,在此不再赘述。
需要说明是,由于本申请实施例提供的干扰消除的方法主要通过IDU302中的干扰信号抑制模块3022或者ODU301中的干扰信号抑制模块3012c实现,而IDU302中的干扰信号抑制模块3022的工作原理与ODU301中的干扰信号抑制模块3012c的工作原理相同,因此为了不重复说明,下述示例中均以IDU302中的干扰消除为例进行说明,在此统一说明,以下不再赘述。
综上,基于本申请实施例提供的干扰消除的方法,可以在提升频谱效率,增大中频电缆的传输带宽的同时,减少产生的自干扰信号。此外,在发送方向,ODU301中的射频模块3011中包括功率放大器(power amplifier,PA),基于本申请实施例提供的干扰消除的方法,经过PA之后的发送信号不含导频信号,满足发送频谱模板要求。
可选的,一种可能的实现方式中,第一设备根据第一发送信号和第一自干扰信号的抖动信息进行自干扰信号重建(步骤S404),可以包括:第一设备根据第一发送信号和第一自干扰信号的抖动信息,进行近端干扰信号的重建,其中近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。
或者,可选的,另一种可能的实现方式中,第一设备根据第一发送信号和第一自干扰信号的抖动信息进行自干扰信号重建(步骤S404),可以包括:第一设备确定需要进行X次远端反射干扰信号的抵消,X为正整数;第一设备根据第一发送信号和第一自干扰信号的抖动信息,进行近端干扰信号的重建以及第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。
可选的,本申请实施例中,第一设备根据第一发送信号和第一自干扰信号的抖动信息,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:第一设备根据第一发送信号和第一自干扰信号的抖动信息,结合X个延时参数,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建;其中,X个延时参数中的第f个延时参数用于第1次远端反射干扰信号至第X次远端反射干扰信号中第f次远端反射干扰信号的重建,f为大于或者等于1的正整数。
为了实现上述自干扰信号重建,示例性的,如图7所示,为本申请实施例提供的一种干扰重建子模块3022d的结构示意图。该干扰重建子模块3022d用于构建上述第一自干扰信号,包括一条近端干扰信号的重建链路,记作重建链路1,用于进行近端干扰信号的重建,从而抵消近端干扰信号,如近端收发隔离的干扰信号I11和近端反射的干扰信号I13。可选的,干扰重建子模块3022d还可以包括一条或多条远端反射干扰信号的重建链路,如图7中的重建链路2、重建链路3、……、重建链路(P+1),P为远端反射的次数,P条远端反射干扰信号的重建链路中的第y条远端反射干扰信号的重建链路用于第y次远端反射干扰信号的重建,从而抵消第y次远端反射干扰信号,y为小于或者等于P的正整数。例如,通过重建链路2可以进行第1次远端反射的干扰信号I121的重建,从而抵消第1次远端反射的干扰信号I121;通过重建链路3可以进行第2次远端反射的干扰信号I122的重建,从而抵消第2次远端反射的干扰信号I122,以此类推,通过重建链路(P+1)可以进行第P次远端反射的干扰信号I12P的重建,从而抵消第P次远端反射的干扰信号I12P
可选的,本申请实施例中的每条重建链路均可以通过均衡器来实现。其中,通过均衡器来模拟信道冲击响应,进而将第一发送信号(这里以第一发送信号为信号1为例进行说明)与信道进行卷积即可获得与上述第一自干扰信号类似的干扰信号。
此外,如图7所示,该干扰重建子模块3022d还包括与每条重建链路对应的抖动补偿单元。例如,该干扰重建子模块3022d还包括与重建链路1对应的抖动补偿单元1,与重建链路2对应的抖动补偿单元2,与重建链路3对应的抖动补偿单元3、……、以及与重建链路(P+1)对应的抖动补偿单元(P+1)。
其中,每条重建链路通过自适应算法实现相应的自干扰信号的重建,通过对应的抖动补偿单元抑制相应的自干扰信号的抖动。比如,重建链路1通过自适应算法实现近端干扰信号的重建,通过抖动补偿单元1抑制近端干扰信号的抖动。或者,比如,重建链路2通过自适应算法实现第1次远端反射的干扰信号I121的重建,通过抖动补偿单元2抑制第1次远端反射的干扰信号I121的抖动,依次类推,在此不再一一赘述。
可选的,本申请实施例中的自适应算法例如可以是最小均方(least meansquare,LMS)或者递归最小二乘方(recursive least square,RLS)等算法,通过干扰抵消误差参考值最小化准则实现重建链路抽头系数的自适应更新,本申请实施例对此不作具体限定。
此外,如图7所示,该干扰重建子模块3022d还可以包括加法器,该加法器用于将各重建链路的重建自干扰信号进行处理,得到第一自干扰信号的抵消信号之后,送入干扰消除子模块3022e。
可选的,若图6中的干扰信号抑制单元3022包括反射延时估计子模块3022m,则如图7所示,该干扰重建子模块3022d还包括与每条远端反射干扰信号的重建链路对应的延时单元。如包括与重建链路2对应的延时单元1、与重建链路3对应的延时单元2、……、以及与重建链路(P+1)对应的延时单元P。其中,这些延时单元主要用于每条重建链路的时间同步。
可选的,若图6中的干扰信号抑制单元3022包括干扰通道选择子模块3022m,则如图7所示,该干扰重建子模块3022d还包括与每条远端反射干扰信号的重建链路对应的开关单元。如包括与重建链路2对应的开关单元1和开关单元2、与重建链路3对应的开关单元3和开关单元4、……、以及与重建链路(P+1)对应的开关单元(2P-1)和开关单元2P。其中,这些开关单元通过干扰通道选择子模块3022k进行自动控制,可以实现相应的重建链路的关断或激活,从而降低功耗。可选的,也可以通过开关单元将重建链路用于调制解调模块3021中的接收有用信号的驻波干扰消除。
其中,该干扰重建子模块3022d中各单元的连接方式,以及该干扰重建子模块3022d中的单元与IDU302中的调制解调模块3021、干扰通道选择子模块3022k、反射延时估计子模块3022m、干扰抵消误差计算子模块3022n、干扰消除子模块3022e以及抖动提取子模块3022c的连接方式可参考图7所示的实施例,在此不再赘述。
需要说明的是,在图7所示的干扰重建子模块3022d中包括开关单元的情况下,开关单元2、开关单元4、……、开关单元2P的输出端连接调制解调模块3021的输入端,以用于主信号驻波干扰的消除,在此统一说明,以下不再赘述。
需要说明的是,图7中仅是示例性的以每个重建链路的输出端连接对应的抖动补偿单元的输入端为例进行示意。当然,图7中的各单元或者各模块也可以有其他的连接方式,例如,也可以是每个重建链路的输入端连接对应的抖动补偿单元的输出端,本申请实施例对此不作具体限定。
基于图7所示的干扰重建子模块3022d,可以实现上述自干扰信号重建。
可选的,本申请实施例中,第一设备确定需要进行X次远端反射干扰信号的抵消,包括:第一设备获取第k个延时参数和第(k+1)个延时参数,其中,第k个延时参数为第k次远端反射干扰信号的延时参数,第(k+1)个延时参数为第(k+1)次远端反射干扰信号的延时参数,k为大于或者等于1的正整数;第一设备根据第k个延时参数和第(k+1)个延时参数,确定连接第一设备和第二设备的中频电缆的长度;第一设备根据中频电缆的长度确定需要进行X次远端反射干扰信号的抵消。
可选的,第一设备根据中频电缆的长度确定需要进行X次远端反射干扰信号的抵消,包括:第一设备根据中频电缆的长度确定第一自干扰信号的抵消需求量为0时对应的一个或多个阈值;若中频电缆的长度不大于第一阈值,第一设备确定需要进行X次远端反射干扰信号的抵消,X为当前所有远端反射干扰信号的重建链路的个数,第一阈值为一个或多个阈值中的最小值;或者,若中频电缆的长度不小于第二阈值,第一设备确定需要进行1次远端反射干扰信号的抵消,第二阈值为一个或多个阈值中的最大值;或者,若中频电缆的长度大于第三阈值,并且小于第四阈值,第一设备确定需要进行X次远端反射干扰信号的抵消,其中,第三阈值为将一个或多个阈值按照由大至小的顺序排序后得到的第X个阈值,第四阈值为将一个或多个阈值按照由大至小的顺序排序后得到的第(X-1)个阈值,X为大于或者等于2的正整数。
示例性的,结合图7,假设当前所有远端反射干扰信号的重建链路的个数P=3,则干扰重建子模块3022d中的延时单元1可以获取延时参数1,记作DLY1;干扰重建子模块3022d中的延时单元2可以获取延时参数2,记作DLY2,则中频电缆的长度L=[(DLY2-DLY1)*c]/2,其中c是光速(3x108m/s)。具体的,对于不同的线缆材料,对应不同的抵消量需求曲线,例如,5D电缆的抵消量需求曲线如图8所示。可以看出,第一自干扰信号的抵消需求量为0时对应两个阈值,分别为Lth1=20(m),Lth2=80(m)。其中,当估计的线缆长度小于等于Lth1时,确定需要进行3次远端反射干扰信号的抵消,即,使得3条远端反射干扰信号的重建链路全部用于第一自干扰信号的抵消;若线缆长度小于等于Lth2且大于Lth1,则确定需要进行2次远端反射干扰信号的抵消,即,使得第1条远端反射干扰信号的重建链路(如图7中的重建链路2)和第2条远端反射干扰信号的重建链路(如图7中的重建链路3)用于第一自干扰信号的抵消,关闭1条远端反射干扰信号的重建链路(如图7中未示出的重建链路4)或者让这1条远端反射干扰信号的重建链路参与主信号驻波抵消;否则,确定需要进行1次远端反射干扰信号的抵消,即,使得第1条远端反射干扰信号的重建链路(如图7中的重建链路2)用于第一自干扰信号的抵消,关闭2条远端反射干扰信号的重建链路(如图7中的重建链路3和未示出的重建链路4)或者让这2条远端反射干扰信号的重建链路参与主信号驻波抵消,具体如图9所示。
可选的,上述示例在计算中频电缆的长度时以k=1为例进行说明,当然,k的取值也可以为2,即中频电缆的长度也可以通过如下公式计算得出:L=[(DLY3-DLY2)*c]/2,其中,DLY3为第3个延时参数,可以由图7中的干扰重建子模块3022d中的延时单元3获得,本申请实施例对此不作具体限定。
可选的,本申请实施例中,图7中的反射延时估计子模块3022m可以为图7中的延时单元提供延时参数。第一设备获取第t个延时参数,t=k或者t=k+1,包括:第一设备调整第t个延时模块对应的延时参数,将接收第二接收信号的最小均方误差(mean square error,MSE)最大时对应的延时参数确定为第t个延时参数。
示例性的,一种反射延时估计方法如图10所示。首先,配置延时单元的初始化延时值DLY1至DLYP,其中P为远端反射的次数,也可以看作图7中延时单元的个数。其中,延时单元1的延时调整范围是D1-D2,延时单元2的延时调整范围是D3-D4,依此类推。调整延时单元1的延时参数,增加1拍延时(即1个采样时钟)直到边界则反向减少一拍延时,或者减少1拍延时直到边界则反向增加一拍延时,使得接收有用信号的MSE最大,得到延时单元1的延时参数;然后采用同样的方式找到延时单元2至延时单元P的延时参数。
可选的,本申请实施例中,第一设备也可以调整第t个延时模块对应的延时参数,将第一干扰抵消误差参考值最小时对应的延时参数确定为第t个延时参数,其中,第一干扰抵消误差参考值可以由图7中的干扰抵消误差计算子模块3022n输入,本申请实施例对此不作具体限定。
可选的,本申请实施例中,第一设备根据第一导频信号和第二导频信号,提取第一自干扰信号的抖动信息(步骤S403),可以包括:第一设备将第二导频信号转换为窄带导频信号;第一设备根据第一导频信号,从窄带导频信号中提取第一自干扰信号的抖动信息。
示例性的,以第一自干扰信号的抖动信息包括第一自干扰信号的相位抖动信息和第一自干扰信号的幅度抖动信息为例,则图6中的抖动提取子模块3022c对应的一种可能的实现方式如图11所示,包括导频滤波器、导频均衡器、锁相环、一阶均衡器、延时单元以及加法器1和加法器2。其中,该抖动提取子模块3022c中各单元的连接方式,以及该抖动提取子模块3022c中的单元与IDU302中的发送导频子模块3022a、ADC3024和干扰重建子模块3022d的连接方式可参考图11所示的实施例,在此不再赘述。
具体的,在图11中,ADC3024输出的信号(对应图6中的信号9)通过导频滤波器获得窄带导频信号。以发送导频子模块3022a输出的第一导频信号作为参考,通过导频均衡器以及锁相环可以提取出相位抖动信息;通过一阶均衡器可以提取出幅度抖动信息。
或者,可选的,本申请实施例中,第一设备根据第一导频信号和第二导频信号,提取第一自干扰信号的抖动信息(步骤S402),可以包括:第一设备将第二导频信号转换为单音导频信号;第一设备根据第一导频信号,从单音导频信号中提取第一自干扰信号的抖动信息。
示例性的,以第一自干扰信号的抖动信息包括第一自干扰信号的相位抖动信息和第一自干扰信号的幅度抖动信息为例,则图6中的抖动提取子模块3022c对应的另一种可能的实现方式如图12所示,包括导频滤波器、一阶均衡器以及加法器。其中,该抖动提取子模块3022c中各单元的连接方式,以及该抖动提取子模块3022c中的单元与IDU302中的发送导频子模块3022a、ADC3024和干扰重建子模块3022d的连接方式可参考图12所示的实施例,在此不再赘述。
具体的,在图12中,ADC3024输出的信号(对应图6中的信号9)通过导频滤波器获得单音导频信号。以发送导频子模块3022a输出的第一导频信号作为参考,通过一阶均衡器可以提取出相位抖动信息和幅度抖动信息。
可选的,本申请实施例图11或图12中的导频均衡器以及一阶均衡器可以采用LMS,RLS等算法实现。提取出来的相位抖动信息与幅度抖动信息可以送入干扰重建子模块3022d进行相位与幅度的抖动补偿。
基于图11或图12所示的抖动提取子模块3022c,可以提取第一自干扰信号的抖动信息。
示例性的,在上述第一自干扰信号被完全消除的情况下,假设中频频点(即信号在中频电缆上传输时选择的频点,大于微波带宽的一半)为310MHz。IDU302的发射功率为0dBm,IDU302发送端的信噪比(signal to noise ratio,SNR)=55dB,合路器的隔离度为20dB,则噪声泄露到IDU302的接收端的功率为0-55-20=(-75d)dB。另外,在中频频点为310MHz时,5D中频电缆传输120m时衰减17.7dB。假设ODU301的发射功率为0dBm,图6中合路器3027、合路器3012f的插损之和约为7dB,则ODU301的发送信号经过中频电缆传输后的总衰减量为17.7+7=24.7dB。因此,IDU302接收到有用信号的SNR为SNR=(-24.7)-(-75)=50.3dB。由于4K正交幅度调制(quadrature amplitude modulation,QAM)无误码工作的SNR阈值为41.5dB,因此基于本发明方案,还可以支持高调模式的传输。
需要说明的是,上述示例仅是以第一自干扰信号被完全抵消为例进行说明。当然,在实际场景中,第一自干扰信号不一定可以被完全抵消,可能仅是在一定程度上减少一部分干扰,本申请实施例对此不作具体限定。
可选的,在图5c所示的收发信号的频谱示意图中,对于f2=1.25GHz而言,IDU302的发射功率为0dBm,IDU302发送端的SNR=55dB,合路器隔离度20dB,则噪声泄露到IDU302的接收端的功率为0-55-20=(-75d)dB。另外,在中频频点为1.25GHz时,5D中频电缆传输120m时衰减34.4dB。假设ODU301的发射功率为0dBm,合路器1、合路器2的插损之和约为7dB,则ODU301的发送信号经过中频电缆传输后的总衰减量为34.4+7=41.4dB。因此,IDU302接收到有用信号的SNR为SNR=(-41.4)-(-75)=33.6dB。由于4K QAM无误码工作的SNR阈值为41.5dB,因此此时难以支持高调模式的传输。也就是说,由于f2频点较高,通过中频电缆的衰减较大,导致f2载波有用信号的SNR较低,因此影响IDU302的接收性能。
为了提升SNR,需要抵消f2频点载波的自干扰噪声,上述实施例中给出的方案可以抵消第一自干扰信号,但是不能抵消f2频点载波对第一设备的接收端产生的自干扰噪声。也就是说,上述第一设备的接收端获取的第二信号中还包括f2频点载波对第一设备的接收端产生的自干扰噪声。基于此,在第一发送信号包括第一载波信号和第二载波信号,第二载波信号的中心频点大于GSM/LTE干扰的频点时,本申请实施例提供的干扰消除的方法还可以包括:第一设备根据第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到自干扰噪声的抵消信号;第一设备根据自干扰噪声的抵消信号,将自干扰噪声从第二接收信号中消除。
可选的,一种可能的实现方式中,第一设备根据第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到自干扰噪声的抵消信号,包括:第一设备根据第二干扰抵消误差参考值,确定用于进行模拟自干扰噪声重建的重建参数;第一设备根据重建参数和第一发送信号进行模拟自干扰噪声重建,得到自干扰噪声的模拟抵消信号。相应的,第一设备根据自干扰噪声的抵消信号,将自干扰噪声从第二接收信号中消除,包括:第一设备根据自干扰噪声的模拟抵消信号,将自干扰噪声从第二接收信号中消除。
其中,为了实现上述自干扰噪声的抵消,示例性的,如图13所示,为本申请实施例提供的IDU302的另一种结构示意图。该IDU302相对于图6中所示的IDU302,增加了干扰噪声抑制模块3028。其中,如图13所示,干扰噪声抑制模块3028包括耦合器3028a、模拟干扰重建子模块3028b、干扰消除子模块3028c、干扰抵消误差计算子模块3028d以及参数搜索子模块3028e。其中,滤波器3025的输出端连接耦合器3028a的输入端;耦合器3028a的输出端分别连接合路器3027与模拟干扰重建子模块3028b的输入端;合路器3027的输出端连接干扰消除子模块3028c的输入端;干扰消除子模块3028c的输出端分别连接干扰抵消误差计算子模块3028d和滤波器3026的输入端;干扰抵消误差计算子模块3028d的输出端连接参数搜索子模块3028e的输入端;参数搜索子模块3028e的输出端连接模拟干扰重建子模块3028b的输入端;模拟干扰重建子模块3028b的输出端连接干扰消除子模块3028c的输入端。
可选的,本申请实施例中,参数搜索子模块3028e可以采用多种方式实现,例如通过梯度下降法或牛顿法等,本申请实施例对此不作具体限定。
可选的,本申请实施例中,干扰消除子模块3028c的功能可以由耦合器或者加法器或者减法器来实现,本申请实施例对此不作具体限定。
具体的,假设第一发送信号为信号1,则在图13中,信号1经过复用器3022b、DAC3023、滤波器3025与耦合器3028a之后可以得到信号11,其中,耦合器3028a用于对滤波器3025输出的信号耦合出信号11。进而,模拟干扰重建子模块3028b根据信号11以及参数搜索子模块3028e确定的重建参数进行模拟自干扰噪声重建,得到自干扰噪声的模拟抵消信号之后,将自干扰噪声的模拟抵消信号发送给干扰消除子模块3028c,由干扰消除子模块3028c根据自干扰噪声的模拟抵消信号,将自干扰噪声从第二接收信号中消除。其中,参数搜索子模块3028e根据干扰抵消误差计算子模块3028d提供的第二干扰抵消误差参考值以及搜索的参数确定重建参数。
示例性的,本申请实施例中,图13中模拟干扰重建子模块3028b的结构示意图可以如图14所示,包括滤波器、移相器/延时器组、以及衰减器/放大器组。其中,模拟干扰重建子模块3028b中各单元的连接方式以及模拟干扰重建子模块3028b中的各单元与参数搜索子模块3028e、耦合器3028a、以及干扰消除子模块3028c的连接方式可参考图14,在此不再赘述。
其中,模拟干扰重建子模块3028b中的滤波器用来滤除高频载波,通过移相器/延时器组之后进入衰减器/放大器组,由衰减器/放大器组输出自干扰噪声的模拟抵消信号。
其中,上述自干扰噪声的抵消方法不仅可以抵消自干扰噪声,而且可以在第二信号进入ADC3024之前降低f2频点载波的自干扰,从而可以解决自干扰信号较大,导致接收机ADC3024过载的问题。
可选的,另一种可能的实现方式中,第一设备根据第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到自干扰噪声的抵消信号,包括:第一设备根据第一发送信号和第二干扰抵消误差参考值进行数字自干扰噪声重建,得到自干扰噪声的数字抵消信号。相应的,第一设备根据自干扰噪声的抵消信号,对自干扰噪声进行消除,包括:第一设备根据自干扰噪声的数字抵消信号,将自干扰噪声从第二接收信号中消除。
其中,为了实现上述自干扰噪声的抵消,示例性的,如图15所示,为本申请实施例提供的IDU302的又一种结构示意图。该IDU302相对于图6中所示的IDU302,增加了干扰噪声抑制模块3029和耦合器30210。其中,如图15所示,干扰噪声抑制模块3029包括滤波器3029a、低噪声放大器(low noise amplifier,LNA)3029b、ADC3029c、数字干扰重建子模块3029d、干扰消除子模块3029e、以及干扰抵消误差计算子模块3029f。其中,滤波器3025的输出端连接耦合器30210的输入端;耦合器30210的输出端分别连接滤波器3029a和合路器3027的输入端;滤波器3029a的输出端连接LNA3029b的输入端;LNA3029b的输出端连接ADC3029c的输入端;ADC3029c的输出端连接数字干扰重建子模块3029d的输入端;数字干扰重建子模块3029d的输出端连接干扰消除子模块3029e的输入端;ADC3024的输出端连接干扰消除子模块3029e的输入端;干扰消除子模块3029e的输出端分别连接干扰抵消误差计算子模块3029f、抖动提取子模块3022c和干扰消除子模块3022e的输入端;干扰抵消误差计算子模块3029f的输出端连接数字干扰重建子模块3029d的输入端。
具体的,假设第一发送信号为信号1,则在图15中,信号1经过复用器3022b、DAC3023、滤波器3025、耦合器30210、滤波器3029a、LNA3029b和ADC3029c之后可以得到信号12。其中,耦合器30210用于对滤波器3025输出的信号进行耦合。滤波器3029a用于对耦合器30210输出的信号进行滤波。LNA3029b用于对滤波器3029a输出的信号进行放大;ADC3029c用于对LNA3029b输出的信号进行模数转换,得到数字信号。也就是说,可以通过一个接收反馈链路将高频部分经过ADC3029c送入数字部分。进而,数字干扰重建子模块3029d根据信号12以及第二干扰抵消误差参考值进行数字自干扰噪声重建,得到自干扰噪声的数字抵消信号之后,将自干扰噪声的数字抵消信号发送给干扰消除子模块3029e,由干扰消除子模块3029e根据自干扰噪声的数字抵消信号,将自干扰噪声从第二接收信号消除。
其中,在图15中,当ADC3029c位宽足够时,上述自干扰噪声的抵消方法还可以解决宽带自干扰噪声抵消的问题。此外,图15中的干扰噪声抑制模块3029也可以降低f2频点载波的自干扰信号,本申请实施例对此不作具体限定。
可选的,本申请实施例中,当中频电缆的传输距离较长,或者传输的信号带宽较大时(例如通过特殊的屏蔽层来解决GSM/LTE干扰,从而不需要避开这些干扰,传输较大的带宽),接收信号的功率较低。此时,可以在接收信号进入ADC3024之前进行一次干扰信号的抵消。也就是说,第一发送信号对第一设备的接收端产生第一自干扰信号,可以包括:第一发送信号对第一设备的接收端产生第二自干扰信号,该第二自干扰信号包括第一自干扰信号。相应的,第一设备获取第二信号,可以包括:第一设备获取第三信号,第三信号包括第二导频信号、第二接收信号和第二自干扰信号;第一设备根据第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到第二自干扰信号的抵消信号;第一设备根据第二自干扰信号的抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号。
一种可能的实现方式中,第一设备根据第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到第二自干扰信号的抵消信号,包括:第一设备根据第一发送信号和第三干扰抵消误差参考值进行数字自干扰信号重建,得到第二自干扰信号的数字抵消信号;第一设备将第二自干扰信号的数字抵消信号转换为第二自干扰信号的模拟抵消信号;相应的,第一设备根据第二自干扰信号的抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号,包括:第一设备根据第二自干扰信号的模拟抵消信号,将第二自干扰信号从第二接收信号中消除,得到第二信号对应的模拟信号;第一设备将第二信号对应的模拟信号经过ADC转换为第二信号。
为了实现上述功能,示例性的,如图16所示,为本申请实施例提供的IDU302的又一种结构示意图。该IDU302相对于图6中所示的IDU302,增加了干扰信号抑制模块30211。其中,如图16所示,干扰信号抑制模块30211包括干扰重建子模块30211a、DAC30211b、干扰消除子模块30211c、干扰抵消误差计算子模块30211d、以及图6中的ADC3024。其中,复用器3022b的输出端分别连接干扰重建子模块30211a和DAC3023的输入端;干扰重建子模块30211a的输出端连接DAC30211b的输入端;DAC30211b的输出端连接干扰消除子模块30211c的输入端;干扰消除子模块30211c的输出端连接ADC3024的输入端;ADC3024的输出端分别连接干扰抵消误差计算子模块30211d和干扰消除子模块3022e的输入端。
具体的,假设第一发送信号为信号1,则在图16中,信号1经过复用器3022b之后可以得到信号2。进而,干扰重建子模块30211a根据信号2以及干扰抵消误差计算子模块30211d输出的第三干扰抵消误差参考值进行数字自干扰信号重建,得到第二自干扰信号的数字抵消信号。该第二自干扰信号的数字抵消信号经过DAC30211b进行数模转换,得到第二自干扰信号的模拟抵消信号。进而,干扰消除子模块30211c根据第二自干扰信号的模拟抵消信号,将第二自干扰信号从第二接收信号中消除,可以得到第二信号对应的模拟信号。第二信号对应的模拟信号经过ADC3024进行模数转换,即可得到上述第二信号。
其中,在图16所示的IDU302中,第二自干扰信号的消除在模拟部分,第二自干扰信号的重建在数字部分,属于数模混合干扰消除。当然,图16中的干扰信号抑制模块30211仅是一个示例,也可以设计干扰信号抑制模块30211,使得第二自干扰信号的消除和第二自干扰信号的重建均在数字部分;或者,也可以设计干扰信号抑制模块30211,使得第二自干扰信号的消除在数字部分,第二自干扰信号的重建在模拟部分,等,本申请实施例对此不作具体限定。
基于上述方案,由于可以在接收信号进入ADC3024之前进行一次干扰信号的抵消,因此不仅可以提升接收信号进入ADC3024之前的接收有用信号的信干噪比(signal tointerference plus noise ratio,SINR),而且可以降低对于ADC3024比特位数的需求。
需要说明的是,本申请实施例中的上述各技术方案在不同的应用场景中,可以单独使用,也可以组合使用,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。例如,上述图6、图13、图15或图16所示的IDU302中的干扰信号抑制模块3022,或者上述图6所示的ODU301中的干扰信号抑制模块3012c,或者上述图13中的干扰噪声抑制模块3028,或者上述图15中的干扰噪声抑制模块3029,或者上述图16中的干扰信号抑制模块30211的功能可以以硬件的方式来实现,也可以是由处理器执行软件指令(也可以称之为软件程序)的方式来实现,或者可以由硬件的方式结合处理器执行软件指令的方式来实现,本申请实施例对此不作具体限定。
可选的,本申请实施例中的处理器可以是一个中央处理器(central processingunit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(fieldprogrammable gate array,FPGA)。
可选的,本申请实施例中的软件指令可以由相应的软件模块组成,软件模块可以被存放于只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存、只读光盘(compact disc read-only memory,CD-ROM)、寄存器、硬盘、移动硬盘、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分,本申请实施例对此不作具体限定。
其中,当使用软件指令实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

1.一种干扰消除的方法,其特征在于,所述方法包括:
第一设备向第二设备发送第一信号,所述第一信号包括第一发送信号和第一导频信号,其中,所述第一发送信号对所述第一设备的接收端产生第一自干扰信号,所述第一发送信号和所述第一导频信号使用不同的频段;其中,所述第一设备为室内单元,所述第二设备为室外单元;或者,所述第一设备为室外单元,所述第二设备为室内单元;
所述第一设备获取第二信号,所述第二信号包括所述第一自干扰信号、第二导频信号、以及来自所述第二设备的第二接收信号;其中,所述第二导频信号为所述第一导频信号经过信道抖动后的导频信号,所述第一发送信号和所述第二接收信号的频段完全或部分重叠;所述第二接收信号和所述第二导频信号使用不同的频段;
所述第一设备根据所述第一导频信号和所述第二导频信号,提取所述第一自干扰信号的抖动信息;
所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息进行自干扰信号重建,得到所述第一自干扰信号的抵消信号;
所述第一设备根据所述第一自干扰信号的抵消信号,将所述第一自干扰信号从所述第二接收信号中消除。
2.根据权利要求1所述的方法,其特征在于,所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息进行自干扰信号重建,包括:
所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息,进行近端干扰信号的重建,其中,所述近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。
3.根据权利要求1所述的方法,其特征在于,所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息进行自干扰信号重建,包括:
所述第一设备确定需要进行X次远端反射干扰信号的抵消,X为正整数;
所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息,进行近端干扰信号的重建以及第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,所述近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。
4.根据权利要求3所述的方法,其特征在于,所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:
所述第一设备根据所述第一发送信号和所述第一自干扰信号的抖动信息,结合X个延时参数,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建;其中,所述X个延时参数中的第f个延时参数用于第1次远端反射干扰信号至第X次远端反射干扰信号中第f次远端反射干扰信号的重建,f为大于或者等于1的正整数。
5.根据权利要求3所述的方法,其特征在于,所述第一设备确定需要进行X次远端反射干扰信号的抵消,包括:
所述第一设备获取第k个延时参数和第(k+1)个延时参数,其中,所述第k个延时参数为第k次远端反射干扰信号的延时参数,所述第(k+1)个延时参数为第(k+1)次远端反射干扰信号的延时参数,k为大于或者等于1的正整数;
所述第一设备根据所述第k个延时参数和所述第(k+1)个延时参数,确定连接所述第一设备和所述第二设备的中频电缆的长度;
所述第一设备根据所述中频电缆的长度确定需要进行X次远端反射干扰信号的抵消。
6.根据权利要求1-5任一项所述的方法,其特征在于,所述第一设备根据所述第一导频信号和所述第二导频信号,提取所述第一自干扰信号的抖动信息,包括:
所述第一设备将所述第二导频信号转换为窄带导频信号;
所述第一设备根据所述第一导频信号,从所述窄带导频信号中提取所述第一自干扰信号的抖动信息。
7.根据权利要求1-5任一项所述的方法,其特征在于,所述第一设备根据所述第一导频信号和所述第二导频信号,提取所述第一自干扰信号的抖动信息,包括:
所述第一设备将所述第二导频信号转换为单音导频信号;
所述第一设备根据所述第一导频信号,从所述单音导频信号中提取所述第一自干扰信号的抖动信息。
8.根据权利要求1-5任一项所述的方法,其特征在于,所述第一自干扰信号的抖动信息包括所述第一自干扰信号的相位抖动信息、或所述第一自干扰信号的幅度抖动信息中的至少一个。
9.根据权利要求1-5任一项所述的方法,其特征在于,所述第一发送信号包括第一载波信号和第二载波信号,所述第二载波信号的中心频点大于全球移动通信系统GSM/长期演进LTE干扰的频点;所述第二载波信号对所述第一设备的接收端产生自干扰噪声;相应的,所述第二信号中还包括所述自干扰噪声;所述方法还包括:
所述第一设备根据所述第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到所述自干扰噪声的抵消信号;
所述第一设备根据所述自干扰噪声的抵消信号,将所述自干扰噪声从所述第二接收信号中消除。
10.根据权利要求9所述的方法,其特征在于,所述第一设备根据所述第一发送信号和所述第二干扰抵消误差参考值进行自干扰噪声重建,得到所述自干扰噪声的抵消信号,包括:
所述第一设备根据所述第二干扰抵消误差参考值,确定用于进行模拟自干扰噪声重建的重建参数;
所述第一设备根据所述重建参数和所述第一发送信号进行模拟自干扰噪声重建,得到所述自干扰噪声的模拟抵消信号;
相应的,所述第一设备根据所述自干扰噪声的抵消信号,将所述自干扰噪声从所述第二接收信号中消除,包括:
所述第一设备根据所述自干扰噪声的模拟抵消信号,将所述自干扰噪声从所述第二接收信号中消除。
11.根据权利要求9所述的方法,其特征在于,所述第一设备根据所述第一发送信号和所述第二干扰抵消误差参考值进行自干扰噪声重建,得到所述自干扰噪声的抵消信号,包括:
所述第一设备根据所述第一发送信号和所述第二干扰抵消误差参考值进行数字自干扰噪声重建,得到所述自干扰噪声的数字抵消信号;
相应的,所述第一设备根据所述自干扰噪声的抵消信号,对所述自干扰噪声进行消除,包括:
所述第一设备根据所述自干扰噪声的数字抵消信号,将所述自干扰噪声从所述第二接收信号中消除。
12.根据权利要求1-5、10或11任一项所述的方法,其特征在于,所述第一发送信号对所述第一设备的接收端产生第一自干扰信号,包括:所述第一发送信号对所述第一设备的接收端产生第二自干扰信号,所述第二自干扰信号包括所述第一自干扰信号;
所述第一设备获取第二信号,包括:
所述第一设备获取第三信号,所述第三信号包括所述第二导频信号、所述第二接收信号和所述第二自干扰信号;
所述第一设备根据所述第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到所述第二自干扰信号的抵消信号;
所述第一设备根据所述第二自干扰信号的抵消信号,将所述第二自干扰信号从所述第二接收信号中消除,得到所述第二信号。
13.一种第一设备,其特征在于,所述第一设备包括:复用器、抖动提取子模块、第一干扰重建子模块和第一干扰消除子模块;
所述复用器,用于获取第一发送信号和第一导频信号,并将所述第一发送信号和所述第一导频信号复用成第一信号向第二设备发送;其中,所述第一发送信号对所述第一设备的接收端产生第一自干扰信号,所述第一发送信号和所述第一导频信号使用不同的频段;其中,所述第一设备为室内单元,所述第二设备为室外单元;或者,所述第一设备为室外单元,所述第二设备为室内单元;
所述抖动提取子模块,用于获取所述第一导频信号和第二信号,所述第二信号包括所述第一自干扰信号、第二导频信号、以及来自所述第二设备的第二接收信号;其中,所述第二导频信号为所述第一导频信号经过信道抖动后的导频信号,所述第一发送信号和所述第二接收信号的频段完全或部分重叠;所述第二接收信号和所述第二导频信号使用不同的频段;
所述抖动提取子模块,还用于根据所述第一导频信号和所述第二导频信号,提取所述第一自干扰信号的抖动信息;
所述第一干扰重建子模块,用于获取所述第一发送信号和所述第一自干扰信号的抖动信息,并根据所述第一发送信号和所述第一自干扰信号的抖动信息进行自干扰信号重建,得到所述第一自干扰信号的抵消信号;
所述第一干扰消除子模块,用于获取所述第二信号和所述第一自干扰信号的抵消信号,并根据所述第一自干扰信号的抵消信号,将所述第一自干扰信号从所述第二接收信号中消除。
14.根据权利要求13所述的第一设备,其特征在于,所述第一干扰重建子模块具体用于:
根据所述第一发送信号和所述第一自干扰信号的抖动信息,进行近端干扰信号的重建,其中,所述近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。
15.根据权利要求13所述的第一设备,其特征在于,所述第一干扰重建子模块具体用于:
确定需要进行X次远端反射干扰信号的抵消,X为正整数;
根据所述第一发送信号和所述第一自干扰信号的抖动信息,进行近端干扰信号的重建以及第1次远端反射干扰信号至第X次远端反射干扰信号的重建,其中,所述近端干扰信号包括近端反射的干扰信号和近端收发隔离的干扰信号。
16.根据权利要求15所述的第一设备,其特征在于,所述第一干扰重建子模块用于根据所述第一发送信号和所述第一自干扰信号的抖动信息,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建,包括:
根据所述第一发送信号和所述第一自干扰信号的抖动信息,结合X个延时参数,进行第1次远端反射干扰信号至第X次远端反射干扰信号的重建;其中,所述X个延时参数中的第f个延时参数用于第1次远端反射干扰信号至第X次远端反射干扰信号中第f次远端反射干扰信号的重建,f为大于或者等于1的正整数。
17.根据权利要求15所述的第一设备,其特征在于,所述第一干扰重建子模块用于确定需要进行X次远端反射干扰信号的抵消,包括:
获取第k个延时参数和第(k+1)个延时参数,其中,所述第k个延时参数为第k次远端反射干扰信号的延时参数,所述第(k+1)个延时参数为第(k+1)次远端反射干扰信号的延时参数,k为大于或者等于1的正整数;
根据所述第k个延时参数和所述第(k+1)个延时参数,确定连接所述第一设备和所述第二设备的中频电缆的长度;
根据所述中频电缆的长度确定需要进行X次远端反射干扰信号的抵消。
18.根据权利要求13-17任一项所述的第一设备,其特征在于,所述抖动提取子模块具体用于:
将所述第二信号转换为窄带导频信号;
根据所述第一导频信号,从所述窄带导频信号中提取所述第一自干扰信号的抖动信息。
19.根据权利要求13-17任一项所述的第一设备,其特征在于,所述抖动提取子模块具体用于:
将所述第二信号转换为单音导频信号;
根据所述第一导频信号,从所述单音导频信号中提取所述第一自干扰信号的抖动信息。
20.根据权利要求13-17任一项所述的第一设备,其特征在于,所述第一自干扰信号的抖动信息包括所述第一自干扰信号的相位抖动信息、或所述第一自干扰信号的幅度抖动信息中的至少一个。
21.根据权利要求13-17任一项所述的第一设备,其特征在于,所述第一发送信号包括第一载波信号和第二载波信号,所述第二载波信号的中心频点大于全球移动通信系统GSM/长期演进LTE干扰的频点;所述第二载波信号对所述第一设备的接收端产生自干扰噪声;相应的,所述第二信号中还包括所述自干扰噪声;所述第一设备还包括:第二干扰重建子模块和第二干扰消除子模块;
所述第二干扰重建子模块,用于根据所述第一发送信号和第二干扰抵消误差参考值进行自干扰噪声重建,得到所述自干扰噪声的抵消信号;
所述第二干扰消除子模块,还用于获取所述第二信号和所述自干扰噪声的抵消信号,并根据所述自干扰噪声的抵消信号,将所述自干扰噪声从所述第二接收信号中消除。
22.根据权利要求21所述的第一设备,其特征在于,所述第二干扰重建子模块具体用于:
根据所述第二干扰抵消误差参考值,确定用于进行模拟自干扰噪声重建的重建参数;
根据所述重建参数和所述第一发送信号进行模拟自干扰噪声重建,得到所述自干扰噪声的模拟抵消信号;
相应的,所述第二干扰消除子模块具体用于:
获取所述第二信号和所述自干扰噪声的模拟抵消信号,并根据所述自干扰噪声的模拟抵消信号,将所述自干扰噪声从所述第二接收信号中消除。
23.根据权利要求21所述的第一设备,其特征在于,所述第二干扰重建子模块具体用于:
根据所述第一发送信号和所述第二干扰抵消误差参考值进行数字自干扰噪声重建,得到所述自干扰噪声的数字抵消信号;
相应的,所述第二干扰消除子模块具体用于:
获取所述第二信号和所述自干扰噪声的数字抵消信号,并根据所述自干扰噪声的数字抵消信号,将所述自干扰噪声从所述第二接收信号中消除。
24.根据权利要求13-17、22或23任一项所述的第一设备,其特征在于,所述第一设备还包括:第三干扰重建子模块和第三干扰消除子模块;所述第一发送信号对所述第一设备的接收端产生第一自干扰信号,包括:所述第一发送信号对所述第一设备的接收端产生第二自干扰信号,所述第二自干扰信号包括所述第一自干扰信号;
所述第三干扰重建子模块,用于获取第一发送信号,并根据所述第一发送信号和第三干扰抵消误差参考值进行自干扰信号重建,得到所述第二自干扰信号的抵消信号;
所述第三干扰消除子模块,用于获取第三信号和所述第二自干扰信号的抵消信号,所述第三信号包括所述第二导频信号、所述第二接收信号和所述第二自干扰信号,并根据所述第二自干扰信号的抵消信号,将所述第二自干扰信号从所述第二接收信号中消除,得到所述第二信号;
相应的,所述抖动提取子模块,用于获取第二信号,包括:
所述抖动提取子模块,用于接收来自所述第三干扰消除子模块的所述第二信号。
25.一种第一设备,其特征在于,所述第一设备包括处理器,所述处理器用于执行上述权利要求1至权利要求12任一项所述的干扰消除的方法。
26.一种微波传输系统,其特征在于,所述微波传输系统包括第一设备、第二设备、以及连接所述第一设备和所述第二设备的中频电缆;其中,所述第一设备为室内单元,所述第二设备为室外单元;或者,所述第一设备为室外单元,所述第二设备为室内单元;
所述第一设备,用于向第二设备发送第一信号,所述第一信号包括第一发送信号和第一导频信号,其中,所述第一发送信号对所述第一设备的接收端产生第一自干扰信号,所述第一发送信号和所述第一导频信号使用不同的频段;
所述第二设备,用于通过所述中频电缆向所述第一设备发送第二接收信号;
所述第一设备,还用于获取第二信号,所述第二信号包括所述第一自干扰信号、第二导频信号和来自所述第二设备的第二接收信号;其中,所述第二导频信号为所述第一导频信号经过信道抖动后的导频信号,所述第一发送信号和所述第二接收信号的频段完全或部分重叠;所述第二接收信号和所述第二导频信号使用不同的频段;
所述第一设备,还用于根据所述第一导频信号和所述第二导频信号,提取所述第一自干扰信号的抖动信息;
所述第一设备,还用于根据所述第一发送信号和所述第一自干扰信号的抖动信息进行自干扰信号重建,得到所述第一自干扰信号的抵消信号;
所述第一设备,还用于根据所述第一自干扰信号的抵消信号,将所述第一自干扰信号从所述第二接收信号中消除。
CN201880099151.3A 2018-11-08 2018-11-08 干扰消除的方法、设备及系统 Active CN112970232B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114640 WO2020093332A1 (zh) 2018-11-08 2018-11-08 干扰消除的方法、设备及系统

Publications (2)

Publication Number Publication Date
CN112970232A CN112970232A (zh) 2021-06-15
CN112970232B true CN112970232B (zh) 2022-07-12

Family

ID=70611179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880099151.3A Active CN112970232B (zh) 2018-11-08 2018-11-08 干扰消除的方法、设备及系统

Country Status (4)

Country Link
US (1) US11895522B2 (zh)
EP (1) EP3866422B1 (zh)
CN (1) CN112970232B (zh)
WO (1) WO2020093332A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546897B2 (en) * 2019-03-28 2023-01-03 Mediatek Inc. Control information for wideband operation
JP2023003777A (ja) * 2021-06-24 2023-01-17 東芝テック株式会社 通信装置
CN114520988B (zh) * 2021-12-21 2024-01-12 海能达通信股份有限公司 一种静噪控制方法、装置、设备及可读存储介质
CN115996064B (zh) * 2023-03-22 2023-06-30 北京理工大学 基于多重参考信号的自适应干扰抑制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185186A (zh) * 2013-05-23 2014-12-03 华为技术有限公司 信号干扰的抑制方法及网络设备
CN104852752A (zh) * 2015-03-23 2015-08-19 香港应用科技研究院有限公司 用于高效全双工通信中的自干扰消除的系统和方法
CN106134095A (zh) * 2014-03-20 2016-11-16 华为技术有限公司 用于自干扰消除的装置和方法
CN106453171A (zh) * 2015-08-06 2017-02-22 北京大学 一种同频同时全双工系统的自干扰消除方法
CN107453782A (zh) * 2017-08-23 2017-12-08 北京银河信通科技有限公司 一种基于双时延估计的无源互调干扰对消系统及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384858B1 (en) * 1998-08-24 2002-05-07 Samsung Electronics Co., Ltd. Suppression of co-channel NTSC interference artifacts when extracting training signal for a DTV receiver equalizer
US8594253B2 (en) * 2007-11-16 2013-11-26 St-Ericsson Sa Jitter compensation
US9124475B2 (en) * 2011-09-19 2015-09-01 Alcatel Lucent Method and apparatus for interference cancellation for antenna arrays
US9184902B2 (en) * 2012-04-25 2015-11-10 Nec Laboratories America, Inc. Interference cancellation for full-duplex communications
CN103685098B (zh) * 2012-09-07 2017-04-12 华为技术有限公司 一种干扰信号的处理方法、装置和系统
CN103856423B (zh) * 2012-11-29 2017-11-17 华为技术有限公司 通信终端和自干扰信号消除方法
CN103973349B (zh) * 2013-01-30 2018-02-23 华为技术有限公司 一种信号干扰的抑制方法和装置及系统
RU2644396C2 (ru) * 2013-11-29 2018-02-12 Хуавэй Текнолоджиз Ко., Лтд. Устройство и способ для сокращения сигнала собственной помехи в системе связи
US9236996B2 (en) * 2013-11-30 2016-01-12 Amir Keyvan Khandani Wireless full-duplex system and method using sideband test signals
CN105450559B (zh) * 2014-07-31 2018-10-19 华为技术有限公司 一种自干扰信道估计方法和设备
WO2017070849A1 (zh) * 2015-10-27 2017-05-04 华为技术有限公司 一种同频干扰的消除方法及装置
CN106411337B (zh) * 2016-11-14 2019-08-06 西安华为技术有限公司 接收机系统和降低系统间干扰的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185186A (zh) * 2013-05-23 2014-12-03 华为技术有限公司 信号干扰的抑制方法及网络设备
CN106134095A (zh) * 2014-03-20 2016-11-16 华为技术有限公司 用于自干扰消除的装置和方法
CN104852752A (zh) * 2015-03-23 2015-08-19 香港应用科技研究院有限公司 用于高效全双工通信中的自干扰消除的系统和方法
CN106453171A (zh) * 2015-08-06 2017-02-22 北京大学 一种同频同时全双工系统的自干扰消除方法
CN107453782A (zh) * 2017-08-23 2017-12-08 北京银河信通科技有限公司 一种基于双时延估计的无源互调干扰对消系统及方法

Also Published As

Publication number Publication date
US11895522B2 (en) 2024-02-06
US20210258816A1 (en) 2021-08-19
EP3866422A1 (en) 2021-08-18
CN112970232A (zh) 2021-06-15
EP3866422B1 (en) 2023-11-01
EP3866422A4 (en) 2021-11-03
WO2020093332A1 (zh) 2020-05-14

Similar Documents

Publication Publication Date Title
RU2664392C2 (ru) Способ и устройство подавления помех
CN112970232B (zh) 干扰消除的方法、设备及系统
KR101883123B1 (ko) 간섭 제거 디바이스 및 방법
Duarte Full-duplex wireless: Design, implementation and characterization
US9887728B2 (en) Single channel full duplex wireless communications
US11923888B2 (en) Full-duplex self-interference cancellation method and apparatus
US9973233B2 (en) Interference cancellation apparatus and method
EP3065361B1 (en) Digital interference cancellation apparatus and method for wireless full duplex system and transceiver
US10129010B2 (en) Dual-mode radio system having a full-duplex mode and a half-duplex mode
JP2017520192A5 (zh)
US20230387950A1 (en) Full-duplex self-interference weakening method and full-duplex self-interference weakening system
US20180294826A1 (en) Radio transceiver and radio communication system
Sim et al. 60 GHz mmWave full-duplex transceiver study and over-the-air link verification
US9872294B2 (en) Base station, radio communications system, and processing method in base station
Bojja-Venkatakrishnan et al. Wideband RF and analog self-interference cancellation filter for simultaneous transmit and receive system
CN113746615B (zh) 一种通信节点在全双工模式与半双工模式间切换的方法
CN113452403B (zh) 多载波相干捕获方法、装置、电子设备及存储介质
WO2023109856A1 (zh) 通信收发器、信号收发方法、电子设备及存储介质
EP2814184B1 (en) Two stage leakage cancellation in full duplex communication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant