WO2023093612A1 - 无源互调pim抵消方法、装置及计算机设备 - Google Patents

无源互调pim抵消方法、装置及计算机设备 Download PDF

Info

Publication number
WO2023093612A1
WO2023093612A1 PCT/CN2022/132567 CN2022132567W WO2023093612A1 WO 2023093612 A1 WO2023093612 A1 WO 2023093612A1 CN 2022132567 W CN2022132567 W CN 2022132567W WO 2023093612 A1 WO2023093612 A1 WO 2023093612A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
uplink
baseband signal
uplink baseband
radio frequency
Prior art date
Application number
PCT/CN2022/132567
Other languages
English (en)
French (fr)
Inventor
童煊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023093612A1 publication Critical patent/WO2023093612A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present application relates to the technical field of communications, and in particular to a passive intermodulation PIM cancellation method, device and computer equipment.
  • PIM Passive Intermodulation
  • the baseband processing unit (Base band Unit, referred to as BBU) is used to directly model the baseband signal to be sent to the radio remote unit (Radio Remote Unit, referred to as RRU).
  • BBU Base band Unit
  • RRU Radio Remote Unit
  • This method cannot accurately restore the actual value of the RRU.
  • the characteristics of the transmitted signal so the RRU is further used to quickly return a lot of information to the offset mode, which is used to accurately restore the transmitted signal of the RRU, and then further modeled.
  • This method has a large performance improvement, but because the interface The message Many, which greatly increase the complexity of system interface message transmission, and also reduce the transmission bandwidth and interface rate of the interface.
  • the present application provides a passive intermodulation PIM cancellation method, the method comprising: receiving a downlink baseband signal from a baseband processing unit BBU; receiving a first uplink baseband signal from a remote radio unit RRU, the first An uplink baseband signal is obtained by converting the wireless signal from the antenna by the RRU; performing digital intermediate frequency processing according to the downlink baseband signal to obtain a first downlink radio frequency signal; according to the first downlink radio frequency signal and the first downlink radio frequency signal An uplink baseband signal is subjected to passive intermodulation cancellation modeling processing to obtain a signal to be canceled; according to the signal to be canceled, a second uplink baseband signal corresponding to the first uplink baseband is determined, wherein the second uplink baseband The signal represents a PIM-eliminated signal of the first uplink baseband signal; and the second uplink baseband signal is sent to the BBU.
  • the present application provides a passive intermodulation PIM cancellation device, which includes: a first receiving module, configured to receive a downlink baseband signal from a baseband processing unit BBU; a second receiving module, configured to receive a radio frequency pull The first uplink baseband signal of the remote unit RRU, the first uplink baseband signal is obtained by converting the wireless signal from the antenna by the RRU; the digital intermediate frequency processing module is configured to perform digital intermediate frequency processing according to the downlink baseband signal, Obtain the first downlink radio frequency signal; the passive intermodulation cancellation modeling processing module is configured to perform passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal, and obtain the pending Cancellation signal; the cancellation processing module determines a second uplink baseband signal corresponding to the first uplink baseband according to the signal to be canceled, wherein the second uplink baseband signal represents that the first uplink baseband signal has been eliminated by PIM The following signal; a sending module configured to send the second uplink baseband
  • the present application provides a computer device, the computer device includes a memory and a processor, the memory stores computer-readable instructions, and the computer-readable instructions are executed by one or more of the processors , causing one or more of the processors to execute the steps of any one of the methods described in the first aspect above.
  • the present application also provides a computer-readable storage medium, the storage medium can be read and written by a processor, the storage medium stores computer instructions, and the computer-readable instructions are read and written by one or more processors When executed, one or more processors are made to execute the steps of any one of the methods described in the first aspect above.
  • FIG. 1 is a schematic structural diagram of a passive intermodulation PIM cancellation device provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a passive intermodulation PIM cancellation method provided by an embodiment of the present application
  • Fig. 3 is a schematic flow chart of the sub-steps of step S130 in Fig. 2;
  • Fig. 4 is a schematic flow chart of the sub-steps of step S140 in Fig. 2;
  • Fig. 5 is a schematic flow chart of the sub-steps of step S150 in Fig. 2;
  • FIG. 6 is a schematic flow chart of another sub-step of step S140 in FIG. 2;
  • FIG. 7 is a schematic flow chart of another sub-step of step S150 in FIG. 2;
  • FIG. 8 is a schematic flowchart of another sub-step of step S150 in FIG. 2;
  • FIG. 9 is a block diagram of digital intermediate frequency processing provided by an embodiment of the present application.
  • Fig. 10 is a block diagram of an offset technology provided by an embodiment of the present application.
  • Fig. 11 is a block diagram of an offset technology provided by another embodiment of the present application.
  • Fig. 12 is a block diagram of an offset technology provided by another embodiment of the present application.
  • Fig. 13 is a block diagram of an offset technology provided by another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the embodiment of the present application provides a passive intermodulation PIM cancellation method, device, and computer equipment, by receiving the downlink baseband signal from the baseband unit BBU and receiving the first uplink baseband signal from the remote radio unit RRU, and performing digital processing according to the downlink baseband signal Intermediate frequency processing to obtain the first downlink radio frequency signal, and then perform passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal to obtain the signal to be canceled, and then determine the signal corresponding to the first downlink radio frequency signal according to the signal to be canceled
  • the second uplink baseband signal of the uplink baseband, the above-mentioned signal after PIM cancellation can be obtained without returning the RRU information, and the signal after PIM cancellation is sent to the BBU to reduce the interference to the received signal, thereby improving the quality of the received signal .
  • FIG. 1 shows a schematic structural diagram of a passive intermodulation PIM cancellation device provided by an embodiment of the present application.
  • the device includes: a first receiving module 110, a second receiving module 140, a digital intermediate frequency processing module 120, a passive intermodulation cancellation modeling processing module 130, a cancellation processing module 150, and a sending module 160.
  • the first receiving module 110 receives the downlink baseband signal from the baseband processing unit BBU
  • the second receiving module 140 receives the first uplink baseband signal from the remote radio unit RRU
  • the digital intermediate frequency processing module 120 performs digital intermediate frequency processing on the downlink baseband signal, and outputs the first
  • the passive intermodulation cancellation modeling processing module 130 performs passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal, and outputs the signal to be canceled.
  • signal determine a second uplink baseband signal corresponding to the first uplink baseband
  • the second uplink baseband signal is a signal after PIM cancellation
  • the sending module 160 sends the second uplink baseband signal to the BBU.
  • the passive intermodulation cancellation modeling processing module 130 of the above-mentioned device does not need the return information of the RRU, and can generate the signal to be canceled through the processing of the cancellation processing module 150, and then obtain the signal after PIM cancellation according to the signal to be canceled, reducing the impact of PIM on the uplink
  • the interference of the received signal of the link improves the quality of the received signal.
  • the above-mentioned PIM canceling device is set between the BBU and the RRU, and is connected to the BBU and the RRU through an optical fiber.
  • the downlink baseband signal sent by the BBU is sent to the PIM canceling device and to the RRU.
  • the above-mentioned PIM canceling device is received through the public
  • the radio interface Common Public Radio Interface, referred to as CPRI
  • CPRI is the public specification of the interface and is committed to the standardization of baseband and radio frequency interfaces. Wireless communication between different devices.
  • the PIM cancellation device may also receive signals from the BBU and RRU through other interfaces, which will not be described here.
  • the first receiving module 110 and the second receiving module 140 are internally provided with receiving circuits capable of receiving and processing the transmission signals of the BBU and RRU; the first uplink baseband signal and the second uplink baseband signal are digital baseband signals, Wherein, the baseband signal includes a digital baseband signal and an analog baseband signal.
  • the transmission between the PIM canceling device and the BBU and RRU is a digital baseband signal; the first downlink radio frequency signal is a modulated signal, which has Radio waves with a certain transmission frequency can modulate the signal according to different needs, which is convenient for calculation and solution.
  • the above-mentioned PIM cancellation device can be applied to wireless communication systems of various standards such as 2G, 3G, 4G, 5G, etc.; it is suitable for including various forms of macro base stations, micro base stations, RRUs, etc.
  • the PIM cancellation device is connected to at least one BBU and at least one RRU, and can handle the intermodulation of a single antenna of the RRU itself, the intermodulation of multiple antennas of the RRU itself, and the passive intermodulation between multiple RRUs.
  • the PIM cancellation device shown in Figure 1 does not constitute a limitation to the embodiment of the application, and may include more or fewer modules than shown in the figure, or combine certain components, or have different Part placement.
  • FIG. 2 shows a schematic flowchart of a passive intermodulation PIM cancellation method provided by an embodiment of the present application, and the PIM cancellation method is applied to a PIM cancellation device.
  • the wireless communication system includes at least one BBU connected to the PIM cancellation device and at least one RRU connected thereto. Taking one BBU and one RRU as examples, the processing procedure of the passive intermodulation PIM cancellation method according to the embodiment of the present application is described.
  • the PIM cancellation method includes but not limited to step S110, step S120, step S130, step S140, step S150 and step S160.
  • Step S110 receiving a downlink baseband signal from a baseband processing unit BBU.
  • the signal sent by the BBU is processed by the CPRI interface to obtain the downlink baseband signal, and the downlink baseband signal can also be received through other interfaces, which can realize the processing of the downlink baseband signal, so as to recover more accurate RRU transmission signals later.
  • the number of downlink baseband signals is N, where N is greater than 1. It is understandable that N can also be equal to 1. When N is equal to 1, it indicates that the transmitted signal has only one carrier signal, and the correlation calculation and solution for this channel of carrier signal are performed later; N can also be 0. When N is 0, it indicates that At this time, there is no signal transmission on the line. This situation may be caused by power failure or other reasons that data transmission between devices cannot be performed.
  • N is greater than 1, multiple carrier signals are transmitted on the line, and time division multiplexing, frequency division multiplexing, or a combination of the two is used to realize multi-channel carrier signal transmission and increase the information transmission rate.
  • Step S120 receiving the first uplink baseband signal from the remote radio unit RRU, where the first uplink baseband signal is obtained by transforming the wireless signal from the antenna by the RRU.
  • the number of first uplink baseband signals is N, where N is greater than 1. It is understandable that N can also be equal to 1. When N is equal to 1, it indicates that the transmitted signal has only one carrier signal, and subsequent correlation calculations are performed on this channel of carrier signal; N can also be 0. When N is 0, it indicates that this When there is no signal transmission on the line, this situation may be due to power failure or other reasons that cause data transmission between devices to fail.
  • N is greater than 1, multiple carrier signals are transmitted on the line, and time division multiplexing, frequency division multiplexing, or a combination of the two is used to realize multi-channel carrier signal transmission and increase the information transmission rate.
  • the RRU may receive wireless signals transmitted from one antenna, or may receive wireless signals transmitted from multiple antennas, convert the above wireless signals into baseband signals through radio frequency processing, and then perform CPRI interface processing on the baseband signals. Obtain the first uplink baseband signal. By converting the transmission signal, it is convenient for subsequent calculation and solution.
  • radio frequency processing includes a digital analog converter (Digital Analog Converter, referred to as DAC), etc., using a DAC conversion module to convert wireless signals into baseband signals.
  • radio frequency processing can also perform signal modulation on baseband signals , so as to obtain the first uplink baseband signal, and transmit the first uplink baseband signal to the PIM canceling device, so that the subsequent PIM canceling device performs PIM canceling on the first uplink baseband signal.
  • DAC Digital Analog Converter
  • Step S130 performing digital intermediate frequency processing according to the downlink baseband signal to obtain a first downlink radio frequency signal.
  • performing digital intermediate frequency processing according to the downlink baseband signal, obtaining the first downlink radio frequency signal includes but is not limited to the following steps:
  • Step S131 for each downlink baseband signal, perform digital intermediate frequency processing respectively to obtain a second downlink radio frequency signal corresponding to the downlink baseband signal.
  • the digital intermediate frequency processing includes: signal shaping, interpolation filtering, frequency shift processing, time delay processing and phase modulation. Since the number of downlink baseband signals is N, and N is greater than 1, N may also be equal to 1. When the downlink baseband signal from the BBU is received, the downlink baseband signal is expressed as x 1...N , and the digital intermediate frequency processing is performed on the downlink baseband signal. When N is 1, there is only one carrier signal, and only one carrier signal is processed. Signal shaping, interpolation filtering, and frequency shift processing; when N is greater than 1, including multiple carrier signals, digital intermediate frequency processing is performed on each carrier signal.
  • each carrier signal of different formats is subjected to corresponding out-of-band suppression.
  • out-of-band suppression refers to the degree of suppression of signals outside the passband, which is realized through different filters. , which will not be described here; the shaped signal obtained through out-of-band suppression is a low sampling rate signal, and then the shaped signal is interpolated and filtered to obtain a high sampling rate signal; then it is judged whether each signal is in its frequency band, if not in the frequency band If it is in the middle of the frequency band, then the signal after interpolation filtering will be frequency-shifted.
  • the second downlink radio frequency signal is the modulated signal, which is convenient for subsequent calculation and solution.
  • the above-mentioned processing of each carrier signal is applicable to the downlink radio frequency signal with only one carrier signal.
  • the correlation calculation can be performed directly based on the first uplink baseband signal.
  • the calculation method is similar to that of each channel above, and will not be described here.
  • the second downlink radio frequency signal is obtained, which is convenient for subsequent calculation and solution.
  • Step S132 combining N channels of second downlink radio frequency signals to obtain a first downlink radio frequency signal.
  • the adjusted signals of each channel are obtained, and the signals of each channel are added together for combination, or mixed operation is used for combination, so as to obtain the first downlink radio frequency signal, for example, mixed operation It can be a combination of addition and multiplication, or a combination of other operations.
  • N represents 1
  • the obtained first downlink radio frequency signal is convenient for subsequent calculation and solution.
  • Step S140 performing passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal, to obtain a signal to be canceled.
  • Fig. 4 and Fig. 9 perform passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal to obtain the signal to be canceled, including but not limited to the following steps:
  • Step S141 for each channel of the first uplink baseband signal, respectively perform digital intermediate frequency processing to obtain a first uplink radio frequency signal corresponding to the first uplink baseband signal.
  • N can also be equal to 1.
  • the first uplink baseband signal is expressed as r 1...N , and each channel of the first uplink baseband signal is subjected to signal shaping, interpolation filtering , frequency shift processing, time delay processing and phase modulation, N is equal to 1 is similar to the above-mentioned first uplink baseband signal of each road after signal shaping, interpolation filtering, and frequency shift processing, and the first uplink baseband signal is the same as that of the embodiment of step S131 The processing process is similar, and will not be repeated here.
  • the first uplink radio frequency signal r′ 1...N corresponding to the first uplink baseband signal is obtained.
  • the first uplink radio frequency signal is a modulated signal with a certain transmission frequency of radio waves, which can be used according to different needs. The signal is modulated to facilitate calculation and solution.
  • Step S142 Obtain a signal to be canceled corresponding to the first uplink baseband signal according to the first downlink radio frequency signal and the first uplink radio frequency signal.
  • the first downlink radio frequency signal obtained in step S131 is modeled and solved with each first uplink radio frequency signal obtained in step S141, according to the first downlink radio frequency signal x' and the first uplink radio frequency signal
  • Each carrier signal r′ 1...N is modeled, and the obtained signal to be canceled is expressed as Among them, ci is the mixing coefficient of the standard intermodulation signal obtained by the least mean square algorithm or the least square algorithm, and the single carrier signal may be divided into q segments during transmission, and q is the number of segments included in each carrier signal , g is the modeling mapping function.
  • the passive intermodulation cancellation modeling process is performed to obtain the signal to be canceled, including but not limited to the following steps:
  • Step S143 for each channel of the first uplink baseband signal, respectively perform digital intermediate frequency processing to obtain a first uplink radio frequency signal corresponding to the first uplink baseband signal.
  • N can also be equal to 1.
  • the first uplink baseband signal is expressed as r 1...N , and each channel of the first uplink baseband signal is subjected to signal shaping, interpolation filtering , frequency shift processing, time delay processing and phase modulation, N is equal to 1 and is similar to the first uplink baseband signal of each path above through signal shaping, interpolation filtering, and frequency shift processing, and the first uplink baseband signal is processed with the embodiment of step S131 The process is similar and will not be repeated here.
  • the first uplink radio frequency signal r′ 1...N corresponding to the first uplink baseband signal is obtained.
  • the first uplink radio frequency signal is a modulated signal with a certain transmission frequency of radio waves, which can be used according to different needs. The signal is modulated to facilitate calculation and solution.
  • Step S144 combining N channels of first uplink radio frequency signals to obtain a second uplink radio frequency signal.
  • the adjusted signals of each channel are obtained, and the signals of each channel are added together for combination, or mixed operation can be used for combination, so as to obtain the second uplink radio frequency signal.
  • the mixed operation can be It is a combination of addition and multiplication, and it can also be a combination of other operations.
  • the second uplink radio frequency signal represents a combined signal, which is a modulated signal and has a radio wave with a certain transmission frequency, and can modulate the signal according to different requirements, which is convenient for calculation and solution.
  • Step S145 Determine a combined signal to be canceled according to the first downlink radio frequency signal and the second uplink radio frequency signal.
  • Step S150 Determine a second uplink baseband signal corresponding to the first uplink baseband according to the signal to be canceled, wherein the second uplink baseband signal represents a PIM-cancelled signal of the first uplink baseband signal.
  • Step S151 performing radio frequency intermediate frequency processing on the signal to be canceled, subtracting the first uplink baseband signal from the signal to be canceled after radio frequency intermediate frequency processing, to obtain a second uplink baseband signal corresponding to the first uplink baseband signal.
  • each channel of the signal to be canceled is in the middle of the frequency band.
  • the canceled signal without radio frequency intermediate frequency processing cannot be sent directly, therefore, the radio frequency intermediate frequency processing is performed on the canceled signal, which is similar to the radio frequency intermediate frequency processing process of the signal to be canceled, and will not be described here to obtain the second uplink baseband signal.
  • Step S152 subtracting the second uplink radio frequency signal from the combined signal to be canceled to obtain a third uplink radio frequency signal.
  • the third uplink radio frequency signal represents the combined and canceled signal, which is a modulated signal with a certain transmission frequency, and can modulate the signal according to different requirements, which is convenient for calculation and solution.
  • Step S153 performing demultiplexing processing and RF intermediate frequency processing on the third uplink radio frequency signal to obtain a second uplink baseband signal corresponding to each first uplink baseband signal.
  • the demultiplexing processing of the third uplink radio frequency signal includes adopting any one of empirical mode decomposition (empirical mode decomposition, EMD for short) or wavelet decomposition, and then the demultiplexed signal is subjected to radio frequency intermediate frequency processing, and The RF intermediate frequency processing of the above-mentioned signal to be canceled is similar, and will not be repeated here.
  • Step S154 performing splitting processing and radio frequency intermediate frequency processing on the combined signal to be canceled to obtain a signal to be canceled corresponding to each first uplink baseband signal.
  • the combined signal to be canceled is divided by EMD or wavelet decomposition to obtain each channel to be cancelled, and then each channel to be canceled is subjected to radio frequency intermediate frequency processing, which is different from the above signal to be cancelled.
  • the radio frequency intermediate frequency processing is similar, and will not be described here.
  • the signal to be canceled corresponding to each first uplink baseband signal s"' is obtained, and the signal to be canceled can be obtained through the above modeling method without returning the RRU signal.
  • Step S155 subtracting the first uplink baseband signal from the corresponding signal to be canceled to determine the second uplink baseband signal corresponding to the first uplink baseband signal.
  • Step S160 sending the second uplink baseband signal to the BBU.
  • the second uplink baseband signal is obtained through the above steps S151, S153 and S155.
  • the second uplink baseband signal is a signal after PIM cancellation and can be directly sent to the BBU, which improves the quality of the transmission signal.
  • FIG. 14 shows a computer device 900 provided by an embodiment of the present application.
  • the computer device 900 may be a server or a terminal, and the internal structure of the computer device 900 includes but is not limited to:
  • memory 910 configured to store programs
  • the processor 920 is configured to execute the program stored in the memory 910.
  • the processor 920 executes the program stored in the memory 910, the processor 920 is configured to execute the above passive intermodulation PIM cancellation method.
  • the processor 920 and the memory 910 may be connected through a bus or in other ways.
  • the memory 910 can be configured to store non-transitory software programs and non-transitory computer-executable programs, such as the passive intermodulation PIM cancellation method described in any embodiment of the present application.
  • the processor 920 executes the non-transitory software programs and instructions stored in the memory 910 to implement the above passive intermodulation PIM cancellation method.
  • the memory 910 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store and execute the above passive intermodulation PIM cancellation method.
  • the memory 910 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 910 may optionally include memory located remotely relative to the processor 920, and these remote memories may be connected to the processor 920 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transient software programs and instructions required to realize the above passive intermodulation PIM cancellation method are stored in the memory 910, and when executed by one or more processors 920, the passive intermodulation provided by any embodiment of the present application is executed. PIM offset method.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are used to execute the above passive intermodulation PIM cancellation method.
  • the storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 920, for example, executed by one of the processors 920 in the computer device 900, so that the above-mentioned One or more processors 920 execute the passive intermodulation PIM cancellation method provided by any embodiment of the present application.
  • the embodiment of the present application includes: receiving a downlink baseband signal from a baseband unit BBU; receiving a first uplink baseband signal from a remote radio unit RRU, where the first uplink baseband signal is obtained by converting a wireless signal from an antenna by the RRU; Perform digital intermediate frequency processing according to the downlink baseband signal to obtain a first downlink radio frequency signal; perform passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal to obtain a signal to be canceled ; According to the signal to be canceled, determine a second uplink baseband signal corresponding to the first uplink baseband, wherein the second uplink baseband signal represents a signal after PIM cancellation of the first uplink baseband signal; The second uplink baseband signal is sent to the BBU.
  • the solution of the embodiment of the present application by receiving the downlink baseband signal from the baseband unit BBU and the first uplink baseband signal from the remote radio unit RRU, digital intermediate frequency processing is performed according to the downlink baseband signal to obtain the first downlink radio frequency signal, Then perform passive intermodulation cancellation modeling processing according to the first downlink radio frequency signal and the first uplink baseband signal to obtain a signal to be canceled, and then determine the signal corresponding to the first uplink baseband according to the signal to be canceled.
  • the second uplink baseband signal, the above-mentioned signal after PIM cancellation can be obtained without returning the RRU information, and the second uplink baseband signal is sent to the BBU, that is to say, the solution of the embodiment of the present application can be On the basis of not needing to return the RRU information, the interference of the PIM to the received signal of the uplink is reduced, thereby improving the quality of the received signal.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as or other transport mechanism, and may include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无源互调PIM抵消方法、装置及计算机设备。所述方法包括:接收来自基带处理单元BBU的下行基带信号(S110);接收射频拉远单元RRU的第一上行基带信号(S120);根据所述下行基带信号进行数字中频处理,得到第一下行射频信号(S130);根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号(S140);根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,其中,所述第二上行基带信号表征所述第一上行基带信号经过PIM消除后的信号(S150);将所述第二上行基带信号发送给所述BBU(S160)。

Description

无源互调PIM抵消方法、装置及计算机设备
相关申请的交叉引用
本申请基于申请号为202111395881.8、申请日为2021年11月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,特别涉及一种无源互调PIM抵消方法、装置及计算机设备。
背景技术
无源互调(PassiveInter Modulation,简称PIM),它代表两个或者两个以上信号通过一个具有非线性特性的无源器件传输时产生的交调产物,通常是由于电缆连接松动、接器不干净、双工器件性能不好或天线老化等原因造成。在通信系统中,PIM会降低接收机灵敏度,甚至完全阻塞通信,随着5G信息的普及,不同载波交调产生的PIM也在随之增加,利用频率规划避免PIM的传统方法变得越来越不可行。
相关技术中,采用基带处理单元(Base band Unit,简称BBU)直接对将要发送给射频拉远单元(Radio Remote Unit,简称RRU)的基带信号直接建模,这种方法不能准确恢复出RRU的实际发射信号特征,于是,进一步采用RRU给抵消模快回传诸多信息,用于准确还原RRU的发射信号,进而进一步建模,这种方法具有较大的性能提升,但由于接口要回传的消息较多,极大增加了系统接口消息传输的复杂度,同时也降低了接口的传输带宽和接口速率。
发明内容
本申请实施例的技术方案如下。
第一方面,本申请提供了一种无源互调PIM抵消方法,所述方法包括:接收来自基带处理单元BBU的下行基带信号;接收射频拉远单元RRU的第一上行基带信号,所述第一上行基带信号由所述RRU对来自天线的无线信号进行变换得到;根据所述下行基带信号进行数字中频处理,得到第一下行射频信号;根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号;根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,其中,所述第二上行基带信号表征所述第一上行基带信号经过PIM消除后的信号;将所述第二上行基带信号发送给所述BBU。
第二方面,本申请提供了无源互调PIM抵消装置,该装置包括:第一接收模块,被设置为接收来自基带处理单元BBU的下行基带信号;第二接收模块,被设置为接收射频拉远单元RRU的第一上行基带信号,所述第一上行基带信号由所述RRU对来自天线的无线信号进行变换得到;数字中频处理模块,被设置为根据所述下行基带信号进行数字中频处理,得到第一下行射频信号;无源互调抵消建模处理模块,被设置为根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号;抵消处理模块,根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,其中,所述第二上行基带信号表征所述第一上行基带信号经过PIM消除后的信号;发送模块,被设置为将所述第二上行基带信号发送给所述BBU。
第三方面,本申请提供了一种计算机设备,所述计算机设备包括存储器和处理器,所述 存储器中存储有计算机可读指令,所述计算机可读指令被一个或多个所述处理器执行时,使得一个或多个所述处理器执行如上第一方面描述的任一项所述方法的步骤。
第四方面,本申请还提供了一种计算机可读存储介质,所述存储介质可被处理器读写,所述存储介质存储有计算机指令,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行如上第一方面描述的任一项所述方法的步骤。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请的一个实施例提供的无源互调PIM抵消装置的结构示意图;
图2是本申请的一个实施例提供的无源互调PIM抵消方法的流程示意图;
图3是图2中步骤S130的子步骤流程示意图;
图4是图2中步骤S140的子步骤流程示意图;
图5是图2中步骤S150的子步骤流程示意图;
图6是图2中步骤S140的另一个子步骤流程示意图;
图7是图2中步骤S150的另一个子步骤流程示意图;
图8是图2中步骤S150的另一个子步骤流程示意图;
图9是本申请的一个实施例提供的数字中频处理的框图;
图10是本申请的一个实施例提供的抵消技术的框图;
图11是本申请的另一个实施例提供的抵消技术的框图;
图12是本申请的另一个实施例提供的抵消技术的框图;
图13是本申请的另一个实施例提供的抵消技术的框图;
图14是本申请实施例提供的计算机设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种无源互调PIM抵消方法、装置及计算机设备,通过接收来自基带单元BBU的下行基带信和接收射频拉远单元RRU的第一上行基带信号,根据下行基带信号进行数字中频处理,得到第一下行射频信号,然后根据第一下行射频信号和第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号,进而根据待抵消信号,确定对应于第一上行基带的第二上行基带信号,上述不需要回传RRU的信息就可以得到PIM抵消后的信号,将PIM抵消后的信号发送给BBU,减小对接收信号的干扰,从而提高接收信号质量。
下面结合附图,对本申请实施例作进一步阐述。
参见图1,图1示出了本申请实施例提供的一种无源互调PIM抵消装置的结构示意图。在图1的示例中,该装置包括:第一接收模块110、第二接收模块140、数字中频处理模块120、无源互调抵消建模处理模块130、抵消处理模块150和发送模块160,第一接收模块110接收来自基带处理单元BBU的下行基带信号,第二接收模块140接收射频拉远单元RRU的第一上行基带信号,数字中频处理模块120对下行基带信号进行数字中频处理,输出第一下行射频信号,无源互调抵消建模处理模块130根据第一下行射频信号和第一上行基带信号进行无源互调抵消建模处理,输出待抵消信号,抵消处理模块150根据待抵消信号,确定对应于第一上行基带的第二上行基带信号,第二上行基带信号为PIM抵消后的信号,发送模块160将第二上行基带信号发送给BBU。上述装置的无源互调抵消建模处理模块130无需RRU的回传信息,通过抵消处理模块150处理就能够产生待抵消信号,随后根据待抵消信号得到PIM抵消后的信号,减少了PIM对上行链路接收信号的干扰,提高了接收信号质量。
需要说明的是,上述PIM抵消装置设置在BBU和RRU之间,通过光纤与BBU和RRU连接,BBU发送的下行基带信号一路发送给PIM抵消设备,一路发送给RRU,上述PIM抵消装置接收经过公共无线电接口(Common Public Radio Interface,简称CPRI)处理过的BBU发送的信号和接收经过CPRI接口处理过的RRU发送的信号,其中CPRI是接口的公共规范,致力于基带、射频接口的标准化,从而能够在不同的设备之间进行无线通信。PIM抵消装置也可以通过其他接口接收来自BBU和RRU的信号,这里不作赘述。
还需要说明的是,第一接收模块110和第二接收模块140内部设置有接收电路,能够接收和处理BBU和RRU的传输信号;第一上行基带信号和第二上行基带信号为数字基带信号,其中,基带信号包括数字基带信号和模拟基带信号,在本实施例中,PIM抵消装置与BBU和RRU之间的传输皆为数字基带信号;第一下行射频信号是经过调制过的信号,拥有一定发射频率的电波,能够根据不同需求对信号进行调制,方便进行计算求解。
还需要说明的是,上述PIM抵消装置可应用于2G、3G、4G、5G等各种制式的无线通信系统;适用于包括各种形式的宏基站,微基站,RRU等。除此之外,PIM抵消装置连接至少一个BBU和至少一个RRU,可处理包括RRU自身单天线的互调、RRU自身多天线间的互调、以及多个RRU之间产生的无源互调。
本申请实施例描述的装置以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的PIM抵消装置并不构成对本申请实施例的限定,可以包括比图示更多或更少的模块,或者组合某些部件,或者不同的部件布置。
根据上述PIM抵消装置,下面对本申请的PIM抵消方法的各个实施例进行说明。
如图2所示,图2示出了本申请一个实施例提供的无源互调PIM抵消方法的流程示意图,该PIM抵消方法应用于PIM抵消装置。无线通信系统包括与PIM抵消装置连接的至少一个BBU及其连接的至少一个RRU,现以一个BBU和一个RRU为例,说明本申请实施例的无源互调PIM抵消方法的处理过程。该PIM抵消方法包括但不限于有步骤S110、步骤S120、步骤S130、步骤S140、步骤S150和步骤S160。
步骤S110,接收来自基带处理单元BBU的下行基带信号。
可以理解的是,BBU发送的信号经过CPRI接口处理得到下行基带信号,也可以通过其 他接口接收下行基带信号,能够实现对下行基带信号进行处理,以便后续恢复较为准确的RRU传输信号。
在一实施例中,下行基带信号的数量为N,其中,N大于1。可以理解的是,N也可以等于1,当N等于1时,表明传输的信号只有一路载波信号,后续对这一路载波信号进行相关计算求解;N也可以为0,当N为0时,表明此时线路上没有信号传输,出现此状况可能因为断电或者其他原因造成设备之间无法进行数据传输。当N大于1时,线路上传输多路载波信号,采用时分复用、频分复用或者两者的结合等,以实现多路载波信号传输,提高信息传输速率。
步骤S120,接收射频拉远单元RRU的第一上行基带信号,第一上行基带信号由RRU对来自天线的无线信号进行变换得到。
在一实施例中,第一上行基带信号的数量为N,其中,N大于1。可以理解的是,N也可以等于1,当N等于1时,表明传输的信号只有一路载波信号,后续对这一路载波信号进行相关计算;N也可以为0,当N为0时,表明此时线路上没有信号传输,出现此状况可能因为断电或者其他原因造成设备之间无法进行数据传输。当N大于1时,线路上传输多路载波信号,采用时分复用、频分复用或者两者的结合等,以实现多路载波信号传输,提高信息传输速率。
需要说明的是,RRU可能接收来自一个天线传输的无线信号,也可能接收来自多个天线传输的无线信号,对上述无线信号经过射频处理变换为基带信号,然后将该基带信号进行CPRI接口处理,得到第一上行基带信号。通过对传输信号进行转换,以便后续计算求解。
还需要说明的是,射频处理包括数模转换器(Digital Analog Converter,简称DAC)等,采用DAC转换模块将无线信号转换为基带信号,除此之外,射频处理还能够对基带信号进行信号调制,从而得到第一上行基带信号,并将第一上行基带信号传输给PIM抵消装置,以便后续PIM抵消装置对第一上行基带信号进行PIM抵消。
步骤S130,根据下行基带信号进行数字中频处理,得到第一下行射频信号。
参考图3和图9,根据下行基带信号进行数字中频处理,得到第一下行射频信号包括但不限于有以下步骤:
步骤S131,对于每一路下行基带信号,分别进行数字中频处理,得到与下行基带信号对应的第二下行射频信号。
在一实施例中,数字中频处理包括:信号成型、插值滤波、移频处理、时延处理和相位调制。由于下行基带信号的数量为N,N大于1,N也可以等于1。当接收到来自BBU的下行基带信号,下行基带信号表示为x 1...N,对该下行基带信号进行数字中频处理,当N为1时,只有一路载波信号,只对这一路载波信号进行信号成型、插值滤波、移频处理;当N大于1时,包括多路载波信号,对每一路载波信号进行数字中频处理。以多路载波信号,说明上述数字中频处理过程,将每一路不同制式的载波信号进行相应的带外抑制,其中,带外抑制是指对通带以外信号的抑制程度,通过不同的滤波器实现,这里不作赘述;经过带外抑制得到的成型信号为低采样率信号,然后对成型信号进行插值滤波得到高采样率信号;随后判断每一路信号是否处在其所在频段的位置,若不在所在频段的中间位置,则对插值滤波后的信号进行移频处理,若在所在频段的中间位置,则无需再对信号进行移频处理。
在本实施例中,本申请在上述处理的基础上增加了信号时延和相位调制计算,其中,将 时延记为τ,相位记为φ,对上述处理后的信号进行时延和相位调整,将调整的信号表示为(τ 1=[τ 1112...τ 1N],φ 1=[φ 1112...φ 1N]),将其与第一上行基带信号进行相关性计算,相关系数记为ρ 1;然后进行第二次时延和相位调整,表示为(τ 2=[τ 2122...τ 2N],φ 2=[φ 2122...φ 2N]),再进行相关性计算,相关系数记为ρ 2;依次类推,经过M次信号调整,表示为(τ M=[τ M1M2...τ MN],φ M=[φ M1M2...φ MN]),其中,M能够按照需求进行配置,相关系数记为ρ M。通过对比ρ 12...ρ M,选取当中的最大值并且确定与该最大值相对应的τ和φ的值,得到对应的参数,从而得到经过调整后的多路第二下行射频信号。第二下行射频信号是经过上述调制过的信号,方便后续计算求解。上述对每一路载波信号的处理适用于只有一路载波信号的下行射频信号,在进行信号时延和相位调制计算时,无需计算最高相关性,直接根据第一上行基带信号进行相关性计算即可,与上述每一路的计算方式类似,这里不作赘述,最后得到第二下行射频信号,方便后续计算求解。
步骤S132,将N路第二下行射频信号进行合路,得到第一下行射频信号。
可以理解的是,经过步骤S131得到每一路调整后的信号,将各路信号相加进行合路,也可以是混合运算进行合路,从而得到第一下行射频信号,示例性地,混合运算可以为加法和乘法的结合,也可以为其他运算的结合。第一下行射频信号表示为x′=f(x′ 1,x′ 2...x′ N),其中,N表示N路相对应的下行基带信号、f为合路运算映射函数。当N为1时,无需进行合路处理,第一下行射频信号表示为x′=x′ 1,得到的第一下行射频信号方便后续计算求解。
步骤S140,根据第一下行射频信号和第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号。
参考图4和图9,根据第一下行射频信号和第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号,包括但不限于有以下步骤:
步骤S141,对于每一路第一上行基带信号,分别进行数字中频处理,得到与第一上行基带信号对应的第一上行射频信号。
可以理解的是,由于N大于1,N也可以等于1,当N大于1时,第一上行基带信号表示为r 1...N,将每一路第一上行基带信号经过信号成型、插值滤波、移频处理、时延处理和相位调制,N等于1是与上述每一路第一上行基带信号经过信号成型、插值滤波、移频处理类似,该第一上行基带信号与步骤S131的实施例的处理过程类似,这里不作赘述。经过数字中频处理得到与第一上行基带信号对应的第一上行射频信号r′ 1...N,第一上行射频信号是经过调制过的信号,拥有一定发射频率的电波,能够根据不同需求对信号进行调制,方便进行计算求解。
步骤S142,根据第一下行射频信号和第一上行射频信号,得到与第一上行基带信号对应的待抵消信号。
可以理解的是,将步骤S131得到第一下行射频信号分别与步骤S141中得到的每一路第一上行射频信号进行建模求解,根据第一下行射频信号x′和第一上行射频信号的每一路载波信号r′ 1...N进行建模,得到的待抵消信号,表示为
Figure PCTCN2022132567-appb-000001
其中,c i为通过最小均方算法或最小二乘算法等算法获得的标准互调信号的混合系数、单路载波信号在传输过程中可能分为q段,q为每一路载波信号包括的段数、g为建模映射函数。若为一路载波信号,则s 1=c 1×g(x′),通过上述步骤S132和本实施例能够恢复出较为准确的信号,并且能够根据恢复的信号进行建模得到待抵消信号,以便后续计算。
参考图6和图9,根据第一下行射频信号和第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号,包括但不限于有以下步骤:
步骤S143,对于每一路第一上行基带信号,分别进行数字中频处理,得到与第一上行基带信号对应的第一上行射频信号。
可以理解的是,由于N大于1,N也可以等于1,当N大于1时,第一上行基带信号表示为r 1...N,将每一路第一上行基带信号经过信号成型、插值滤波、移频处理、时延处理和相位调制,N等于1是与上述每一路第一上行基带信号经过信号成型、插值滤波、移频处理类似,该第一上行基带信号与步骤S131的实施例处理过程类似,这里不作赘述。经过数字中频处理得到与第一上行基带信号对应的第一上行射频信号r′ 1...N,第一上行射频信号是经过调制过的信号,拥有一定发射频率的电波,能够根据不同需求对信号进行调制,方便进行计算求解。
步骤S144,将N路第一上行射频信号进行合路,得到第二上行射频信号。
可以理解的是,经过步骤S143得到每一路调整后的信号,将各路信号相加进行合路,也可以是混合运算进行合路,从而得到第二上行射频信号,示例性地,混合运算可以为加法和乘法的结合,也可以为其他运算的结合。第二上行射频信号表示为r″=f(r″ 1,r″ 2...r″ N),其中,N表示N路相对应的第一上行基带信号、f为合路运算映射函数,得到的第二上行射频信号。其中,第二上行射频信号表示合路的信号,为经过调制过的信号,拥有一定发射频率的电波,能够根据不同需求对信号进行调制,方便进行计算求解。
步骤S145,根据第一下行射频信号和第二上行射频信号,确定合路的待抵消信号。
可以理解的是,将步骤S131得到的第一下行射频信号分别与步骤S144中得到第二上行射频信号进行建模求解,根据上述步骤得到第一下行射频信号x′和第二上行射频信号r″进行建模,确定合路的待抵消信号,表示为s′=f(s 1,s 2...s N),其中,N表示N路的待抵消信号、f为合路运算映射函数、s N表示某一路待抵消信号,
Figure PCTCN2022132567-appb-000002
通过上述步骤S132和本实施例能够恢复出较为准确的信号,并且能够根据恢复的信号进行建模得到待抵消信号,以便后续计算。
步骤S150,根据待抵消信号,确定对应于第一上行基带的第二上行基带信号,其中,第二上行基带信号表征第一上行基带信号经过PIM消除后的信号。
参考图5、图10和图11,根据待抵消信号,确定对应于第一上行基带的第二上行基带信号,包括但不限于有以下步骤:
步骤S151,对待抵消信号进行射频中频处理,将第一上行基带信号与经过射频中频处理的待抵消信号进行相减,得到与第一上行基带信号对应的第二上行基带信号。
可以理解的是,由于待抵消信号根据数字中频处理后的信号计算得到,各路该待抵消信号皆在所在频段的中间位置,为了能够与未经过处理的第一上行基带信号进行信号抵消,先对抵消信号进行射频中频处理,判断得到每一路待抵消信号之前是否进行移频处理,使其处在其所在频段的位置,若进行移频处理,则进行相反的操作恢复原所在频段位置,若没有进行移频处理,则直接进行后续处理;然后对该待抵消信号进行低采样滤波以及信号成型等处理,得到经过射频中频处理的待抵消信号s″ N=Φ(s),其中,Φ表示射频中频处理映射函数;随后将第一上行基带信号与经过射频中频处理的待抵消信号进行相减,得到对应于第一上行基带的第二上行基带信号,表示为r out=r 1...N-s″ N,其中,r out为各路抵消后的信号,r 1...N为 各路第一上行基带信号,s″ N为射频中频处理后的各路待抵消信号。通过上述抵消,能够减少上行链路的干扰,提高传输信号质量。
还可以理解的是,将第一上行射频信号r′ 1...N与每一路待抵消信号s进行相减得到抵消后的信号,表示为r out1=r′ 1...N-s,未经射频中频处理的抵消后的信号不能直接发送,因此,将该抵消后的信号进行射频中频处理,与上述待抵消信号的射频中频处理过程类似,这里不作赘述,得到第二上行基带信号。通过上述抵消,能够减少上行链路的干扰,提高传输信号质量。
参考图7和图12,根据待抵消信号,确定对应于第一上行基带的第二上行基带信号,包括但不限于有以下步骤:
步骤S152,将第二上行射频信号与合路的待抵消信号进行相减,得到第三上行射频信号。
可以理解的是,将第二上行射频信号r″与合路的待抵消信号s′相减,得到第三上行射频信号,表示为r' out=r″-s′,其中,r' out为合路抵消后的信号。其中,第三上行射频信号表示合路的抵消后的信号,为经过调制过的信号,拥有一定发射频率的电波,能够根据不同需求对信号进行调制,方便进行计算求解。
步骤S153,对第三上行射频信号进行分路处理和射频中频处理,得到每一路第一上行基带信号对应的第二上行基带信号。
可以理解的是,对第三上行射频信号进行分路处理包括采用经验模态分解(empirical mode decomposition,简称EMD)或者小波分解任意一种,然后将分路后的信号再经过射频中频处理,与上述待抵消信号的射频中频处理类似,这里不作赘述,得到每一路第一上行基带信号对应的第二上行基带信号,表示为r out1=Ψ(r′ out),其中,Ψ表示分路处理和射频中频处理映射函数。通过上述抵消,能够减少上行链路的干扰,提高传输信号质量。
参考图8和图13,根据待抵消信号,确定对应于第一上行基带的第二上行基带信号,包括但不限于有以下步骤:
步骤S154,对合路的待抵消信号进行分路处理和射频中频处理,得到每一路第一上行基带信号对应的待抵消信号。
可以理解的是,对合路的待抵消信号采用EMD或者小波分解任意一种进行分路处理,得到各路待抵消信号,然后对各路待抵消信号进行射频中频处理,与上述待抵消信号的射频中频处理类似,这里不作赘述,最后得到每一路第一上行基带信号对应的待抵消信号s″′,无需回传的RRU信号便能通过上述建模方式得到的待抵消信号。
步骤S155,将第一上行基带信号与对应的待抵消信号进行相减,确定第一上行基带信号对应的第二上行基带信号。
可以理解的是,将第一上行基带信号r 1...N与对应的待抵消信号s″′进行相减,得到第一上行基带信号对应的第二上行基带信号,表示为r out=r 1...N-s″′,其中,r 1...N表示各路第一上行基带信号,s″′表示合路的待抵消信号经过分路处理和射频中频处理后的与每一路第一上行基带信号对应的待抵消信号
步骤S160,将第二上行基带信号发送给BBU。
可以理解的是,经过上述步骤S151、步骤S153和步骤S155得到第二上行基带信号,该第二上行基带信号为完成PIM抵消后的信号,能够直接发送给BBU,提高了传输信号质量。
需要说明的是,上述步骤皆为以一个BBU和RRU为例说明信号处理过程,上述PIM抵 消方法也适用于多个BBU和多个RRU之间的传输信号处理、一个BBU和多个RRU之间的传输信号处理或者其他情况下的无源互调抵消处理,具有较好的泛化性。
参考图14,图14示出了本申请实施例提供的计算机设备900。该计算机设备900可以是服务器或者终端,该计算机设备900的内部结构包括但不限于:
存储器910,被设置为存储程序;
处理器920,被设置为执行存储器910存储的程序,当处理器920执行存储器910存储的程序时,处理器920被设置为执行上述的无源互调PIM抵消方法。
处理器920和存储器910可以通过总线或者其他方式连接。
存储器910作为一种非暂态计算机可读存储介质,可被设置为存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的无源互调PIM抵消方法。处理器920通过运行存储在存储器910中的非暂态软件程序以及指令,从而实现上述的无源互调PIM抵消方法。
存储器910可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的无源互调PIM抵消方法。此外,存储器910可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器910可选包括相对于处理器920远程设置的存储器,这些远程存储器可以通过网络连接至该处理器920。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的无源互调PIM抵消方法所需的非暂态软件程序以及指令存储在存储器910中,当被一个或者多个处理器920执行时,执行本申请任意实施例提供的无源互调PIM抵消方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的无源互调PIM抵消方法。
在一实施例中,该存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器920执行,比如,被上述计算机设备900中的一个处理器920执行,可使得上述一个或多个处理器920执行本申请任意实施例提供的无源互调PIM抵消方法。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本申请实施例包括:接收来自基带单元BBU的下行基带信号;接收射频拉远单元RRU的第一上行基带信号,所述第一上行基带信号由所述RRU对来自天线的无线信号进行变换得到;根据所述下行基带信号进行数字中频处理,得到第一下行射频信号;根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号;根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,其中,所述第二上行基带信号表征所述第一上行基带信号经过PIM消除后的信号;将所述第二上行基带信号发送给所述BBU。根据本申请实施例的方案,通过接收来自基带单元BBU的下行基带信和接收射频拉远单元RRU的第一上行基带信号,根据所述下行基带信号进行数字中频处理,得到第一下行射频信号,然后根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号,进而根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,上述不需要回传RRU的信息就可以得到PIM抵消后的信号,将所述第二上 行基带信号发送给所述BBU,即是说,本申请实施例的方案能够在不需要回传RRU信息的基础上减小PIM对上行链路接收信号的干扰,从而提高接收信号质量。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的。共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种无源互调PIM抵消方法,所述方法包括:
    接收来自基带处理单元BBU的下行基带信号;
    接收射频拉远单元RRU的第一上行基带信号,所述第一上行基带信号由所述RRU对来自天线的无线信号进行变换得到;
    根据所述下行基带信号进行数字中频处理,得到第一下行射频信号;
    根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号;
    根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,其中,所述第二上行基带信号表征所述第一上行基带信号经过PIM消除后的信号;
    将所述第二上行基带信号发送给所述BBU。
  2. 根据权利要求1所述的方法,其中所述下行基带信号的数量为N,其中,N大于1;
    根据所述下行基带信号进行数字中频处理,得到第一下行射频信号,包括:
    对于每一路所述下行基带信号,分别进行数字中频处理,得到与所述下行基带信号对应的第二下行射频信号;
    将N路所述第二下行射频信号进行合路,得到所述第一下行射频信号。
  3. 根据权利要求2所述的方法,其中所述第一上行基带信号的数量为N,其中,N大于1;
    所述根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号,包括:
    对于每一路所述第一上行基带信号,分别进行所述数字中频处理,得到与所述第一上行基带信号对应的第一上行射频信号;
    根据所述第一下行射频信号和所述第一上行射频信号,得到与所述第一上行基带信号对应的所述待抵消信号。
  4. 根据权利要求3所述的方法,其中所述根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,包括:
    对所述待抵消信号进行射频中频处理,将所述第一上行基带信号与经过射频中频处理的所述待抵消信号进行相减,得到与所述第一上行基带信号对应的所述第二上行基带信号。
  5. 根据权利要求2所述的方法,其中所述第一上行基带信号的数量为N,其中,N大于1;
    所述根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号,包括:
    对于每一路所述第一上行基带信号,分别进行所述数字中频处理,得到与所述第一上行基带信号对应的所述第一上行射频信号;
    将N路所述第一上行射频信号进行合路,得到第二上行射频信号;
    根据所述第一下行射频信号和所述第二上行射频信号,确定合路的待抵消信号。
  6. 根据权利要求5所述的方法,其中所述根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,包括:
    将所述第二上行射频信号与所述合路的待抵消信号进行相减,得到第三上行射频信号;
    对所述第三上行射频信号进行分路处理和所述射频中频处理,得到每一路所述第一上行基带信号对应的所述第二上行基带信号。
  7. 根据权利要求5所述的方法,其中所述根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,还包括:
    对所述合路的待抵消信号进行分路处理和所述射频中频处理,得到每一路所述第一上行基带信号对应的所述待抵消信号;
    将所述第一上行基带信号与对应的所述待抵消信号进行相减,确定所述第一上行基带信号对应的所述第二上行基带信号。
  8. 根据权利要求2-7任一项所述的方法,其中所述数字中频处理包括:信号成型、插值滤波、移频处理、时延处理和相位调制。
  9. 一种无源互调PIM抵消装置,包括:
    第一接收模块,被设置为接收来自基带处理单元BBU的下行基带信号;
    第二接收模块,被设置为接收射频拉远单元RRU的第一上行基带信号,所述第一上行基带信号由所述RRU对来自天线的无线信号进行变换得到;
    数字中频处理模块,被设置为根据所述下行基带信号进行数字中频处理,得到第一下行射频信号;
    无源互调抵消建模处理模块,被设置为根据所述第一下行射频信号和所述第一上行基带信号进行无源互调抵消建模处理,得到待抵消信号;
    抵消处理模块,被设置为根据所述待抵消信号,确定对应于所述第一上行基带的第二上行基带信号,其中,所述第二上行基带信号表征所述第一上行基带信号经过PIM消除后的信号;
    发送模块,被设置为将所述第二上行基带信号发送给所述BBU。
  10. 一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被一个或多个所述处理器执行时,使得一个或多个所述处理器执行如权利要求1至8中任一项所述方法的步骤。
  11. 一种计算机可读存储介质,可被处理器读写,所述存储介质存储有计算机指令,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行如权利要求1至8中任一项所述方法的步骤。
PCT/CN2022/132567 2021-11-23 2022-11-17 无源互调pim抵消方法、装置及计算机设备 WO2023093612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111395881.8A CN116155318A (zh) 2021-11-23 2021-11-23 无源互调pim抵消方法、装置及计算机设备
CN202111395881.8 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023093612A1 true WO2023093612A1 (zh) 2023-06-01

Family

ID=86372372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132567 WO2023093612A1 (zh) 2021-11-23 2022-11-17 无源互调pim抵消方法、装置及计算机设备

Country Status (2)

Country Link
CN (1) CN116155318A (zh)
WO (1) WO2023093612A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858355A (zh) * 2013-12-17 2014-06-11 华为技术有限公司 降低互调干扰的方法和设备
CN106301417A (zh) * 2016-11-01 2017-01-04 北京理工大学 一种基于稀疏分数阶傅立叶变换的无源互调干扰对消方法
US20200021323A1 (en) * 2018-07-15 2020-01-16 Ubiqam Ltd. Systems and methods for cancellation of passive intermodulation (pim) for a wireless network receiver
US20210160887A1 (en) * 2019-11-25 2021-05-27 Solid, Inc. Communication device and operating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858355A (zh) * 2013-12-17 2014-06-11 华为技术有限公司 降低互调干扰的方法和设备
CN106301417A (zh) * 2016-11-01 2017-01-04 北京理工大学 一种基于稀疏分数阶傅立叶变换的无源互调干扰对消方法
US20200021323A1 (en) * 2018-07-15 2020-01-16 Ubiqam Ltd. Systems and methods for cancellation of passive intermodulation (pim) for a wireless network receiver
US20210160887A1 (en) * 2019-11-25 2021-05-27 Solid, Inc. Communication device and operating method thereof

Also Published As

Publication number Publication date
CN116155318A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2017036412A1 (en) Interference phase estimate system and method
US10742356B2 (en) Multi-window fast convolution processing
US9614634B2 (en) Method and device for cancelling a narrow band interference in a single carrier signal and computer program
WO2019201350A1 (zh) 信号处理方法及装置
US8792598B1 (en) Coexistence of multiple communication technologies on a single device
CN111245750B (zh) 频偏估计方法、装置及存储介质
CN112204892B (zh) 毫米波(mmwave)系统和方法
CN115298978B (zh) 用于谐波干扰消除的基带芯片和无线通信方法
US20190124662A1 (en) Reducing bit rate requirement over an uplink fronthaul link
US20220182087A1 (en) Network device and method therein for handling passive intermodulation signals in a wireless communications network
WO2021092816A1 (zh) 互调干扰信号的重构方法和装置
CN110611628B (zh) 信号处理方法、网络设备及计算机可读存储介质
US10181867B2 (en) Crest factor reduction in a radio transmitter
WO2019140668A1 (zh) 信道状态信息csi测量的方法、终端设备和网络设备
WO2020220196A1 (zh) 控制谐波干扰的方法和装置
WO2023093612A1 (zh) 无源互调pim抵消方法、装置及计算机设备
WO2019245598A1 (en) Filter modelling for pim cancellation
WO2021098825A1 (zh) 链路预均衡补偿方法及装置、存储介质、电子装置
WO2015043673A1 (en) Mechanism for improving receiver sensitivity
WO2019129013A1 (zh) 一种校正装置及方法
US11799509B2 (en) Delay-line based transceiver calibration
WO2018049674A1 (zh) 信号处理方法和信号处理装置
WO2023246699A1 (zh) 信号处理方法、信号处理系统、信号处理装置、存储介质
US11558447B2 (en) Communication system, network-side apparatus, transmission function changing method and program
WO2023109856A1 (zh) 通信收发器、信号收发方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897695

Country of ref document: EP

Kind code of ref document: A1