WO2019140668A1 - 信道状态信息csi测量的方法、终端设备和网络设备 - Google Patents

信道状态信息csi测量的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019140668A1
WO2019140668A1 PCT/CN2018/073521 CN2018073521W WO2019140668A1 WO 2019140668 A1 WO2019140668 A1 WO 2019140668A1 CN 2018073521 W CN2018073521 W CN 2018073521W WO 2019140668 A1 WO2019140668 A1 WO 2019140668A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
qcl
type
terminal device
measurement
Prior art date
Application number
PCT/CN2018/073521
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/073521 priority Critical patent/WO2019140668A1/zh
Priority to EP18901612.4A priority patent/EP3637629B1/en
Priority to CN201880039307.9A priority patent/CN110832784B/zh
Priority to TW108101959A priority patent/TW201933808A/zh
Publication of WO2019140668A1 publication Critical patent/WO2019140668A1/zh
Priority to US16/739,804 priority patent/US11172394B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method, a terminal device, and a network device for channel state information CSI measurement.
  • CSI-RS Channel State Information
  • CSI-RS Channel State Information-Reference for channel measurement.
  • Signal, CSI-RS and CSI-RS for interference measurement should satisfy the quasi co-location of spatial parameters, such as spatial quasi co-location, or quasi-co-location with respect to spatial reception parameters. How the UE uses the QCL hypothesis for CSI measurement is a problem that needs to be studied.
  • the embodiment of the present application provides a method, a terminal device, and a network device for measuring channel state information CSI, which is beneficial to improving the receiving performance of the terminal device.
  • a method for channel state information CSI measurement comprising: a terminal device assuming that a first channel state information reference signal CSI-RS and a second CSI-RS have a quasi co-location association with respect to a spatial receiving parameter,
  • the first CSI-RS and the second CSI-RS are respectively a reference signal used for channel measurement in one CSI measurement and a reference signal used for interference measurement; the terminal device according to the first CSI-RS and the second CSI
  • This CSI measurement is performed by the QCL information between the RSs.
  • the network device does not configure a first type of QCL hypothesis between the first CSI-RS and the second CSI-RS, and the first type of QCL assumes that the corresponding parameter is a spatial receiving parameter.
  • the terminal device can directly perform CSI measurement according to the first type of QCL assumption made by itself.
  • the network device does not configure a second type of QCL hypothesis between the first CSI-RS and the second CSI-RS, where the second type of QCL assumes that the corresponding parameter includes the following parameters. At least one parameter: Doppler shift, Doppler spread, average delay, and delay spread.
  • the method further includes: receiving, by the terminal device, first configuration information that is sent by the network device, where the first configuration information is used to indicate that the network device is in the first CSI-RS and the second CSI a second type of QCL configuration configured between the RSs, the corresponding parameters of the second type of QCL hypothesis include at least one of the following parameters: Doppler shift, Doppler spread, average delay, and delay spread;
  • the terminal device performs the CSI measurement according to the QCL information between the first CSI-RS and the second CSI-RS, and includes: a parameter corresponding to the second type QCL hypothesis indicated by the terminal device according to the first configuration information, and the The CSI measurement is performed by a spatial reception parameter between the first CSI-RS and the second CSI-RS with a QCL association assumed by the terminal device.
  • the method further includes: the terminal device receiving the second configuration information sent by the network device, where the second configuration information is used to indicate that the network device is the second CSI-RS
  • the configuration of the first type of QCL assumes that the parameter corresponding to the first type of QCL hypothesis is a spatial receiving parameter; the terminal device performs the CSI measurement according to the QCL information between the first CSI-RS and the second CSI-RS, including If the first type of QCL indicated by the second configuration information is assumed to be a first type of QCL hypothesis between the first CSI-RS and the second CSI-RS, the terminal device according to the first CSI-RS and the first The CSI measurement between the two CSI-RSs performs the CSI measurement, and the method includes: the terminal device performing the CSI measurement according to the parameter corresponding to the first type of QCL hypothesis indicated by the second configuration information.
  • the method further includes: if the first type of QCL indication indicated by the second configuration information is not the first type of QCL hypothesis between the first CSI-RS and the second CSI-RS, The terminal device determines that the second configuration information is configuration information that is not expected to be received.
  • the terminal device performs the CSI measurement according to the QCL information between the first CSI-RS and the second CSI-RS, including: the terminal device has a QCL association according to the terminal device hypothesis.
  • the spatial reception parameter between the first CSI-RS and the second CSI-RS performs the CSI measurement.
  • the second configuration information is further used to indicate a second type of QCL hypothesis configured between the first CSI-RS and the second CSI-RS, and the second type of QCL assumes a corresponding parameter. Also including at least one of the following parameters: Doppler shift, Doppler spread, average delay, and delay spread; the terminal device according to the first CSI-RS and the second CSI-RS
  • the QCL information performs the CSI measurement, and the method includes: the terminal device according to the spatial reception parameter between the first CSI-RS and the second CSI-RS with a QCL association and the second type of QCL hypothesis indicated by the second configuration information The parameters are taken for this CSI measurement.
  • the first CSI-RS is a non-zero power CSI-RS for channel measurement
  • the second CSI-RS is a non-zero power CSI-RS for interference measurement.
  • a second aspect provides a method for measuring channel state information (CSI), the method comprising: the network device transmitting, to the terminal device, configuration information, where the configuration information is used to indicate the first channel state information reference signal CSI-RS or the second CSI-
  • the QCL association relationship of the RS includes a first type of QCL hypothesis and/or a second type of QCL hypothesis
  • the corresponding parameter of the first type of QCL hypothesis is a spatial receiving parameter
  • the corresponding parameters of the second type of QCL hypothesis include the following At least one of the parameters: Doppler shift, Doppler spread, average delay, and delay spread
  • the first CSI-RS and the second CSI-RS are used for channel in one CSI measurement, respectively The measured reference signal and the reference signal used for the interference measurement.
  • the QCL association relationship is a QCL hypothesis between the first CSI-RS and the second CSI-RS.
  • the first CSI-RS is a non-zero power CSI-RS for channel measurement
  • the second CSI-RS is a non-zero power CSI-RS for interference measurement.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a computer storage medium for storing the method in any of the above possible implementations of the first aspect or the first aspect, or any possible implementation of the second or second aspect
  • Computer software instructions for use in the method of the present invention including programs designed to perform the various aspects described above.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect, or the second Aspect or method of any alternative implementation of the second aspect.
  • the names of the terminal devices and the network devices are not limited to the devices themselves. In actual implementation, these devices may appear under other names. As long as the functions of the respective devices are similar to the present application, they are within the scope of the claims and their equivalents.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 shows a schematic block diagram of a method of CSI measurement in an embodiment of the present application.
  • FIG. 3 shows another schematic block diagram of a method of CSI measurement in an embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 5 shows a schematic block diagram of a network device of an embodiment of the present application.
  • FIG. 6 shows another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 shows another schematic block diagram of a network device of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system, and a low-density signature (Low). Density Signature (LDS) system, etc., of course, the SCMA system and the LDS system may also be referred to as other names in the communication field; further, the technical solution of the embodiment of the present application can be applied to multi-carrier using non-orthogonal multiple access technology.
  • SCMA sparse code multiple access
  • LDS Density Signature
  • Orthogonal Frequency Division Multiplexing OFDM
  • Filter Bank Multi-Carrier FBMC
  • General Frequency Division Multiplexing Generalized Frequency Division Multiplexing (OFDM)) Frequency Division Multiplexing (GFDM)
  • Filtered Orthogonal Frequency Division Multiplexing Filtered-OFDM, F-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system. And may be an evolved base station (eNB or eNodeB) in the LTE system, or may be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be The embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • CRAN cloud radio access network
  • the embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the large-scale characteristic that is, the QCL information mentioned herein includes at least one of the following parameters: Doppler shift, Doppler spread, average delay, At least one of a delay spread and a spatial Rx parameter. That is, when the two antenna ports are QCL, this means that the large-scale characteristics of the radio channel of one antenna port correspond to the large-scale characteristics of the radio channel of the other antenna port.
  • RSs Reference Signals
  • the large-scale characteristics of the radio channels of one antenna port may be the radio channels of the other antenna port. Large scale features are substituted.
  • the UE can estimate the large-scale parameter of the quasi-co-location from A, so that B can use the large-scale parameter for subsequent operating. For example, the UE can perform the following operations:
  • the UE can equally apply the power-delay overview, delay spread, and Doppler spectrum and Doppler spread estimation results of the radio channel for one antenna port for A Wiener filter for channel estimation of a radio channel of an antenna port.
  • the UE can perform time and frequency synchronization on one antenna port and then apply the same synchronization to demodulation for another antenna port.
  • the UE may average the Reference Signal Receiving Power (RSRP) measurements of two or more antenna ports.
  • RSRP Reference Signal Receiving Power
  • the UE can apply the beam information used by the signal transmitted by one antenna port to the signal transmitted by the other antenna port.
  • the beams used by the UE to receive signals on two antenna ports may be the same.
  • the network can be configured with some resources for CSI measurements. It mainly includes CSI-RS resources for channel measurement and CSI-RS resources for interference measurement.
  • the UE makes a QCL hypothesis on the CSI-RS resources used for channel measurement and the spatial parameters of the CSI-RS resources used for interference measurement. That is, CSI-RS resources for channel measurement and CSI-RS for interference measurement have spatial QCL, or CSI-RS resources for channel measurement and CSI-RS for interference measurement with respect to spatial reception parameters QCL association.
  • the network can also perform QCL hypothetical configuration for CSI-RS resources. Taking A as the reference signal and B as the target signal as an example, in the B or B-containing set configuration, the configuration of the corresponding QCL hypothesis can be carried.
  • the specific configuration can be as follows:
  • A1 and parameter types X1, A2 and parameter type X2 it can be considered that A1 and B are quasi-co-located with respect to parameter type X1, and A2 and B are quasi-co-located with respect to parameter type X2.
  • the parameter type X, the parameter type X1, and the parameter type X2 may be at least one of the above-mentioned large-scale characteristics.
  • FIG. 2 shows a schematic block diagram of a method 100 of CSI measurement in an embodiment of the present application. As shown in FIG. 2, the method 100 includes some or all of the following:
  • the terminal device assumes that the first channel state information reference signal CSI-RS and the second CSI-RS have a quasi-co-located QCL association with respect to the spatial receiving parameter, where the first CSI-RS and the second CSI-RS are respectively in one CSI.
  • the terminal device performs the CSI measurement according to the QCL information between the first CSI-RS and the second CSI-RS.
  • the UE first assumes a CSI-RS for channel measurement and a CSI-RS spatial QCL for interference measurement, or a CSI-RS for channel measurement and a CSI-RS for interference measurement.
  • the spatial reception parameters have a QCL association. That is, the UE may measure another type of CSI-RS based on spatial reception parameters of any one of the two types of CSI-RS. For example, the UE may receive a CSI-RS for interference measurement using a receive beam of a CSI-RS for channel measurement, or the UE may also perform CSI for interference measurement using a receive beam of a CSI-RS for channel measurement. Beam measurement of RS.
  • the QCL hypothesis can be divided into two categories.
  • the parameters corresponding to the first type of QCL hypothesis can be spatial receiving parameters, and the parameters corresponding to the second type of QCL hypothesis can be Doppler shift, Doppler spread, average delay and delay. At least one of the time extensions.
  • the UE performs at least the first type of QCL hypothesis.
  • the CSI-RS used for channel measurement that is, the first CSI-RS in this paper is used as a reference signal
  • the CSI-RS used for interference measurement that is, the second CSI-RS in this document is a target signal, for example, a detailed description
  • the technical solution of the embodiment of the present application is described in detail below.
  • the network device may not configure the first type of QCL hypothesis for the second CSI-RS, and the UE may perform the CSI measurement according to the first type of QCL hypothesis performed by the UE.
  • the UE may perform CSI measurement using a spatial reception parameter between the first CSI-RS and the second CSI-RS with QCL association that it assumes. That is, the UE may use the spatial reception parameter of the first CSI-RS as the spatial reception parameter of the second CSI-RS, that is, the interference measurement may be performed using the spatial reception parameter of the first CSI-RS.
  • the network device may not configure the second type of QCL hypothesis for the second CSI-RS, and the UE may perform CSI measurement without using the second type of QCL hypothesis.
  • the UE may also perform a second type of QCL hypothesis of the second CSI-RS.
  • the UE can perform CSI measurement according to the second CSI-RS hypothesis assumed by the UE.
  • the UE may also perform CSI measurements without using the second type of QCL hypothesis. For example, the UE may perform CSI interference measurements without using the second type of QCL hypothesis.
  • the UE may also not perform the first type of QCL hypothesis and/or the second type of QCL hypothesis of the second CSI-RS.
  • the network device may configure a first type of QCL hypothesis and/or a second type of QCL hypothesis for the second CSI-RS.
  • the method further includes: receiving, by the terminal device, first configuration information that is sent by the network device, where the first configuration information is used to indicate that the network device is in the first CSI-RS and the first A second type of QCL configuration configured between two CSI-RSs, the corresponding parameters of the second type of QCL hypothesis include at least one of the following parameters: Doppler shift, Doppler spread, average delay, and delay
  • the CSI measurement is performed by the terminal device according to the QCL information between the first CSI-RS and the second CSI-RS, and includes: a parameter corresponding to the second type of QCL hypothesis indicated by the terminal device according to the first configuration information.
  • the CSI measurement is performed with a spatial reception parameter between the first CSI-RS and the second CSI-RS that is associated with the QCL as determined by the terminal device.
  • the UE performs the first type of QCL hypothesis for the second CSI-RS, and the network device only configures the second type of QCL hypothesis for the second CSI-RS, then the UE can perform the first type of QCL hypothesis and the network device according to itself.
  • the second type of QCL configured assumes a CSI measurement.
  • the UE may also perform the first type of QCL hypothesis for the second CSI-RS, and also perform the second type of QCL hypothesis for the second CSI-RS, and the network device also configures the second type for the second CSI-RS.
  • the QCL assumes that the UE can perform CSI measurements based on the first type of QCL assumptions made by the UE and the second type of QCL configured by the network equipment.
  • the method further includes: receiving, by the terminal device, second configuration information that is sent by the network device, where the second configuration information is used to indicate that the network device is configured for the second CSI-RS.
  • a type of QCL assumes that the parameter corresponding to the first type of QCL hypothesis is a spatial receiving parameter; the terminal device performs the CSI measurement according to the QCL information between the first CSI-RS and the second CSI-RS, including:
  • the first type of QCL indicated by the second configuration information is assumed to be a first type of QCL hypothesis between the first CSI-RS and the second CSI-RS, and the first type of QCL hypothesis indicated by the terminal device according to the second configuration information.
  • the corresponding parameters are used to perform the CSI measurement.
  • the method further includes: if the first type of QCL indicated by the second configuration information is not the first type of QCL between the first CSI-RS and the second CSI-RS It is assumed that the terminal device determines that the second configuration information is configuration information that is not expected to be received. Further, the terminal device performs the CSI measurement according to the spatial reception parameter between the first CSI-RS and the second CSI-RS with the QCL association assumed by the terminal device.
  • the UE may also perform the first type of QCL hypothesis for the second CSI-RS, and also perform the second type of QCL hypothesis for the second CSI-RS, and the network device also configures the first type for the second CSI-RS.
  • the QCL hypothesis and the second type of QCL hypothesis then the UE first needs to determine whether the first type of QCL hypothesis performed by the UE and the first type of QCL hypothesis indicated by the network device are QCL associations belonging to the same two CSI-RSs, if With the same QCL association between the two CSI-RSs, the UE can directly measure the CSI according to the first type of QCL hypothesis and the second type of QCL hypothesis configured by the network device.
  • the UE considers that the configuration of the received network device is a wrong configuration, and the UE may not use The first type of QCL hypothesis that the network device is configured for the second CSI-RS.
  • the UE may also perform CSI measurement directly on the first type of QCL hypothesis using the UE and the second type of QCL hypothesis of the network device configuration.
  • the first CSI-RS is a non-zero power CSI-RS (Non-Zero Power CSI-RS) for channel measurement
  • the second CSI-RS It is a non-zero power CSI-RS and/or CSI based interference measurement (CSI-IM) for interference measurement.
  • CSI-IM CSI based interference measurement
  • the method of CSI measurement in the embodiment of the present application is advantageous for improving the receiving performance of the UE.
  • FIG. 3 shows a schematic block diagram of a method 200 of CSI measurement in an embodiment of the present application. As shown in FIG. 3, the method 200 includes some or all of the following:
  • the network device sends, to the terminal device, configuration information, where the configuration information is used to indicate a QCL association relationship between the first channel state information reference signal CSI-RS or the second CSI-RS, where the QCL association relationship includes the first type of QCL hypothesis.
  • the first type of QCL hypothesis corresponding parameter is a spatial receiving parameter
  • the second type of QCL hypothesis corresponding parameter includes at least one of the following parameters: Doppler shift, Doppler spread, average delay and delay spread, the first CSI-RS and the second CSI-RS are reference signals for channel measurement and reference signals for interference measurement in one CSI measurement, respectively .
  • the method of CSI measurement in the embodiment of the present application is advantageous for improving the receiving performance of the UE.
  • the QCL association relationship is a QCL hypothesis between the first CSI-RS and the second CSI-RS.
  • the first CSI-RS is a non-zero power CSI-RS for channel measurement
  • the second CSI-RS is a non-zero power CSI-RS for interference measurement.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • FIG. 4 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • the hypothesis unit 310 is configured to assume that the first channel state information reference signal CSI-RS and the second CSI-RS have a quasi co-location QCL association with respect to the spatial reception parameter, where the first CSI-RS and the second CSI-RS are respectively a reference signal for channel measurement and a reference signal for interference measurement in one CSI measurement;
  • the measuring unit 320 is configured to perform the CSI measurement according to the QCL information between the first CSI-RS and the second CSI-RS.
  • the terminal device in the embodiment of the present application is advantageous for improving the receiving performance of the UE.
  • the network device does not configure a first type of QCL hypothesis between the first CSI-RS and the second CSI-RS, and the first type of QCL assumes that the corresponding parameter is a spatial receiving parameter.
  • the network device does not configure a second type of QCL hypothesis between the first CSI-RS and the second CSI-RS, and the second type of QCL assumes that the corresponding parameter includes the following parameters. At least one of the parameters: Doppler shift, Doppler spread, average delay, and delay spread.
  • the terminal device further includes: a first receiving unit, configured to receive first configuration information that is sent by the network device, where the first configuration information is used to indicate that the network device is in the first CSI a second type of QCL hypothesis configured between the RS and the second CSI-RS, the corresponding parameter of the second type of QCL hypothesis comprising at least one of the following parameters: Doppler shift, Doppler spread, average Delaying and delay extension; the measuring unit is specifically configured to: the parameter corresponding to the second type of QCL hypothesis indicated by the first configuration information, and the first CSI-RS and the second with the QCL association assumed by the terminal device
  • the CSI measurement is performed by a spatial reception parameter between the CSI-RSs.
  • the terminal device further includes: a second receiving unit, configured to receive second configuration information that is sent by the network device, where the second configuration information is used to indicate that the network device is the second CSI
  • the first type of QCL of the first type of QCL is assumed to be a spatial receiving parameter; the measuring unit is specifically configured to: if the first type of QCL indicated by the second configuration information is assumed to be the first CSI-
  • the first type of QCL between the RS and the second CSI-RS assumes that the CSI measurement is performed according to a parameter corresponding to the first type of QCL hypothesis indicated by the second configuration information.
  • the terminal device further includes: a determining unit, configured to: if the first type of QCL indicated by the second configuration information is not the first CSI-RS and the second CSI-RS The first type of QCL hypothesis determines that the second configuration information is configuration information that is not expected to be received.
  • the measuring unit is specifically configured to: perform the CSI according to a spatial receiving parameter between the first CSI-RS and the second CSI-RS with a QCL association assumed by the terminal device. measuring.
  • the second configuration information is further used to indicate a second type of QCL hypothesis configured between the first CSI-RS and the second CSI-RS, where the second type of QCL hypothesis corresponds
  • the parameter further includes at least one of the following parameters: Doppler shift, Doppler spread, average delay, and delay spread; the measuring unit is specifically configured to: according to the first CSI-RS having a QCL association
  • the CSI measurement is performed by a parameter corresponding to the spatial reception parameter between the second CSI-RS and the second type of QCL hypothesis indicated by the second configuration information.
  • the first CSI-RS is a non-zero power CSI-RS for channel measurement
  • the second CSI-RS is a non-zero power CSI-RS for interference measurement.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 300 respectively implement the terminal in the method of FIG. 2
  • the corresponding process of the device is not described here for brevity.
  • FIG. 5 shows a schematic block diagram of a network device 400 of an embodiment of the present application.
  • the network device 400 includes:
  • the sending unit 410 is configured to send, to the terminal device, configuration information, where the configuration information is used to indicate a QCL association relationship of the first channel state information reference signal CSI-RS or the second CSI-RS, where the QCL association relationship includes the first class.
  • the QCL hypothesis and/or the second type of QCL hypothesis, the first type of QCL hypothesis corresponding parameter is a spatial receiving parameter, and the second type QCL hypothesis corresponding parameter includes at least one of the following parameters: Doppler frequency Shift, Doppler spread, average delay, and delay spread, the first CSI-RS and the second CSI-RS are reference signals used for channel measurement in one CSI measurement and for interference measurement, respectively Reference signal.
  • the network device in the embodiment of the present application is advantageous for improving the receiving performance of the UE.
  • the QCL association relationship is a QCL hypothesis between the first CSI-RS and the second CSI-RS.
  • the first CSI-RS is a non-zero power CSI-RS for channel measurement
  • the second CSI-RS is a non-zero power CSI-RS for interference measurement.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the network device 400 respectively implement the network in the method of FIG.
  • the corresponding process of the device is not described here for brevity.
  • the embodiment of the present application further provides a terminal device 500, which may be the terminal device 300 in FIG. 4, which can be used to execute the content of the terminal device corresponding to the method 100 in FIG. .
  • the terminal device 500 includes an input interface 510, an output interface 520, a processor 530, and a memory 540.
  • the input interface 510, the output interface 520, the processor 530, and the memory 540 can be connected by a bus system.
  • the memory 540 is for storing programs, instructions or code.
  • the processor 530 is configured to execute a program, an instruction or a code in the memory 540 to control the input interface 510 to receive a signal, control the output interface 520 to send a signal, and complete the operations in the foregoing method embodiments.
  • the terminal device in the embodiment of the present application is advantageous for improving the receiving performance of the UE.
  • the processor 530 may be a central processing unit (CPU), and the processor 530 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 540 can include read only memory and random access memory and provides instructions and data to the processor 530. A portion of the memory 540 may also include a non-volatile random access memory. For example, the memory 540 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 530 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 540, and the processor 530 reads the information in the memory 540 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the hypothesis unit, the measurement unit, and the determination unit in the terminal device 300 may be implemented by the processor 530 in FIG. 6, the first receiving unit and the second receiving unit of the terminal device 300.
  • the embodiment of the present application further provides a network device 600, which may be the network device 400 in FIG. 5, which can be used to execute the content of the network device corresponding to the method 200 in FIG. .
  • the network device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the network device in the embodiment of the present application is advantageous for improving the receiving performance of the UE.
  • the processor 630 may be a central processing unit (CPU), and the processor 630 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the transmitting unit in the network device 400 can be implemented by the output interface 620 in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信道状态信息CSI测量的方法、终端设备和网络设备,该方法包括:终端设备假设第一信道状态信息参考信号CSI-RS与第二CSI-RS关于空间接收参数具有准共址QCL关联,该第一CSI-RS和该第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量。本申请实施例的方法、终端设备和网络设备,有利于改善UE的接收性能。

Description

信道状态信息CSI测量的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种信道状态信息CSI测量的方法、终端设备和网络设备。
背景技术
在一次信道状态信息(Channel State Information,CSI)测量中,UE需要进行一定的准共址(Quasi co-location,QCL)假设,而用于信道测量的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)和用于干扰测量的CSI-RS应该满足空间参数的准共址,例如可以是空间准共址,或者关于空间接收参数准共址。UE如何使用QCL假设进行CSI测量是需要研究的问题。
发明内容
有鉴于此,本申请实施例提供了一种信道状态信息CSI测量的方法、终端设备和网络设备,有利于改善终端设备的接收性能。
第一方面,提供了一种信道状态信息CSI测量的方法,该方法包括:终端设备假设第一信道状态信息参考信号CSI-RS与第二CSI-RS关于空间接收参数具有准共址关联,该第一CSI-RS和该第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量。
在一种可能的实现方式中,网络设备不在该第一CSI-RS与该第二CSI-RS之间配置第一类QCL假设,该第一类QCL假设对应的参数为空间接收参数。
可选地,终端设备可以直接根据自己进行的第一类QCL假设进行CSI的测量。
在一种可能的实现方式中,该网络设备不在该第一CSI-RS与该第二CSI-RS之间配置第二类QCL假设,该第二类QCL假设对应的参数包括的以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展。
在一种可能的实现方式中,该方法还包括:该终端设备接收网络设备发送的第一配置信息,该第一配置信息用于指示该网络设备在该第一CSI-RS与该第二CSI-RS之间配置的第二类QCL假设,该第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:该终端设备根据该第一配置信息指示的第二类QCL假设对应的参数和该终端设备假设的具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数进行该CSI测量。
在一种可能的实现方式中,该方法还包括:该方法还包括:该终端设备接收网络设备发送的第二配置信息,该第二配置信息用于指示该网络设备为该第二CSI-RS配置的第一类QCL假设,该第一类QCL假设对应的参数为空间接收参数;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:若该第二配置信息指示的第一类QCL假设为该第一CSI-RS与该第二CSI-RS之间的第一类QCL假设,该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:该终端设备根据该第二配置信息指示的第一类QCL假设对应的参数进行该CSI测量。
在一种可能的实现方式中,该方法还包括:若该第二配置信息指示的第一类QCL假设非该第一CSI-RS与该第二CSI-RS之间的第一类QCL假设,该终端设备确定该第二配置信息为不期望接收的配置信息。
在一种可能的实现方式中,该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:该终端设备根据该终端设备假设的具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数进行该CSI测量。
在一种可能的实现方式中,该第二配置信息还用于指示为该第一CSI-RS和第二CSI-RS之间配置的第二类QCL假设,该第二类QCL假设对应的参数还包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:该终端设备根据具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数和该第二配置信息指示的第二类QCL假设对应的参数进行该CSI测量。
在一种可能的实现方式中,该第一CSI-RS为用于信道测量的非零功率CSI-RS,该第二CSI-RS为用于干扰测量的非零功率CSI-RS。
第二方面,提供了一种信道状态信息CSI测量的方法,该方法包括:网络设备向终端设备发送配置信息,该配置信息用于指示第一信道状态信息参考信号CSI-RS或第二CSI-RS的QCL关联关系,该QCL关联关系包括第一类QCL假设和/或第二类QCL假设,该第一类QCL假设对应的参数为空间接收参数,该第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展,该第一CSI-RS和该第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号。
在一种可能的实现方式中,该QCL关联关系为第一CSI-RS与该第二CSI-RS之间的QCL假设。
在一种可能的实现方式中,该第一CSI-RS为用于信道测量的非零功率CSI-RS,该第二CSI-RS为用于干扰测量的非零功率CSI-RS。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上 述各方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法,或者上述第二方面或第二方面的任一可选的实现方式中的方法。
本申请中,终端设备以及网络设备等的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了本申请实施例的CSI测量的方法的示意性框图。
图3示出了本申请实施例的CSI测量的方法的另一示意性框图。
图4示出了本申请实施例的终端设备的示意性框图。
图5示出了本申请实施例的网络设备的示意性框图。
图6示出了本申请实施例的终端设备的另一示意性框图。
图7示出了本申请实施例的网络设备的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入 技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
对于两个天线端口,如果通过天线端口之一发送符号的无线电信道的大 尺度特性可从通过另一天线端口发送符号的无线电信道推断,则这两个天线端口可被视为准共址。所述大尺度特性,即本文中提到的QCL信息包括以下参数中的至少一种:多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、平均时延(average delay)、延时扩展(delay spread)和以及空间接收参数(Spatial Rx parameter)中的至少一种。即当两个天线端口为QCL时,这意味着一个天线端口的无线电信道的大尺度特性对应于另一个天线端口的无线电信道的大尺度特性。考虑发送参考信号(Reference Signal,RS)的多个天线端口,当发送两种不同类型的RS的天线端口为QCL时,一个天线端口的无线电信道的大尺度特性可由另一天线端口的无线电信道的大尺度特性代替。
假设A为参考信号,B为目标信号,如果B关于上述大尺度参数与A准共址,则UE可以从A估算出该准共址的大尺度参数,从而B可以利用该大尺度参数进行后续操作。例如,UE可以执行以下操作:
关于时延扩展和多普勒扩展,UE可将针对一个天线端口的无线电信道的功率-时延概述、时延扩展和多普勒频谱和多普勒扩展估计结果等同地应用于用于针对另一天线端口的无线电信道的信道估计的维纳滤波器。
关于频移和接收定时,UE可对一个天线端口执行时间和频率同步,然后将相同的同步应用于针对另一天线端口的解调。
关于平均接收功率,UE可对两个或更多天线端口的参考信号接收功率(Reference Signal Receiving Power,RSRP)测量取平均值。
关于空间接收参数,UE可以将一个天线端口传输的信号使用的波束信息应用于另一个天线端口传输的信号上。例如,UE接收两个天线端口上信号所用的波束可以相同。
而在目前的NR设计中,网络可以配置一些资源用来进行CSI测量。主要包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。在一次CSI测量中,UE对用于信道测量的CSI-RS资源以及用于干扰测量的CSI-RS资源的空间参数进行了QCL假设。也就是说,用于信道测量的CSI-RS资源以及用于干扰测量的CSI-RS具有空间QCL,或者用于信道测量的CSI-RS资源以及用于干扰测量的CSI-RS关于空间接收参数具有QCL关联。网络也可以为CSI-RS资源进行QCL假设的配置。以A为参考信号,B为目标信号为例,在B或者含有B的集合配置中,可以携带相应的QCL假设的配置, 具体配置方式可以如下形式:
包含A和参数类型X,则可以认为A和B关于参数X是准共址的。
包含A1和参数类型X1,A2和参数类型X2,则可以认为A1与B关于参数类型X1是准共址的,以及A2与B关于参数类型X2是准共址的。
其中,参数类型X、参数类型X1和参数类型X2可以是上述大尺度特性中的至少一种参数。
图2示出了本申请实施例的CSI测量的方法100的示意性框图。如图2所示,该方法100包括以下部分或全部内容:
S110,终端设备假设第一信道状态信息参考信号CSI-RS与第二CSI-RS关于空间接收参数具有准共址QCL关联,该第一CSI-RS和该第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号。
S120,该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量。
具体地,在一次CSI测量中,UE首先假设用于信道测量的CSI-RS和用于干扰测量的CSI-RS空间QCL,或用于信道测量的CSI-RS与用于干扰测量的CSI-RS关于空间接收参数具有QCL关联。也就是说,UE可以基于这两类CSI-RS中的任何一类的空间接收参数,对另一类的CSI-RS进行测量。例如,UE可以使用用于信道测量的CSI-RS的接收波束接收用于干扰测量的CSI-RS,或者UE也可以使用用于信道测量的CSI-RS的接收波束进行用于干扰测量的CSI-RS的波束测量。
可以将QCL假设分为两类,第一类QCL假设对应的参数可以是空间接收参数,而第二类QCL假设对应的参数可以是多普勒频移、多普勒扩展、平均时延和延时扩展中的至少一种。
也就是说,在本申请实施例中,UE至少进行的是第一类QCL假设。
下面以用于信道测量的CSI-RS,即本文中的第一CSI-RS为参考信号,用于干扰测量的CSI-RS,即本文中的第二CSI-RS为目标信号为例,详细描述本申请实施例的技术方案。
可选地,网络设备可以不为第二CSI-RS配置第一类QCL假设,那么UE可以根据自己进行的第一类QCL假设进行该CSI的测量。具体地,UE可以使用自己假设的具有QCL关联的第一CSI-RS与第二CSI-RS之间的空 间接收参数进行CSI的测量。也就是说,UE可以将第一CSI-RS的空间接收参数作为第二CSI-RS的空间接收参数,即可以使用第一CSI-RS的空间接收参数进行干扰测量。
可选地,网络设备也可以不为第二CSI-RS配置第二类QCL假设,那么UE可以不使用第二类QCL假设进行CSI的测量。UE也可以进行第二CSI-RS的第二类QCL假设。进而,UE就可以根据UE假设的该第二CSI-RS假设进行CSI测量。UE也可以不使用第二类QCL假设进行CSI测量。例如,UE可以不使用第二类QCL假设进行CSI干扰测量。
UE也可以不进行第二CSI-RS的第一类QCL假设和/或第二类QCL假设。网络设备可以为该第二CSI-RS配置第一类QCL假设和/或第二类QCL假设。
可选地,在本申请实施例中,该方法还包括:该终端设备接收网络设备发送的第一配置信息,该第一配置信息用于指示该网络设备在该第一CSI-RS与该第二CSI-RS之间配置的第二类QCL假设,该第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:该终端设备根据该第一配置信息指示的第二类QCL假设对应的参数和该终端设备假设的具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数进行该CSI测量。
例如,UE为第二CSI-RS进行了第一类QCL假设,网络设备只为第二CSI-RS配置了第二类QCL假设,那么UE就可以根据自己进行的第一类QCL假设以及网络设备配置的第二类QCL假设进行CSI的测量。再例如,UE也可以为第二CSI-RS进行了第一类QCL假设,也为第二CSI-RS进行了第二类QCL假设,并且网络设备也为第二CSI-RS配置了第二类QCL假设,那么UE可以根据UE进行的第一类QCL假设以及网络设备配置的第二类QCL进行CSI的测量。
可选地,在本申请实施例中,该方法还包括:该终端设备接收网络设备发送的第二配置信息,该第二配置信息用于指示该网络设备为该第二CSI-RS配置的第一类QCL假设,该第一类QCL假设对应的参数为空间接收参数;该终端设备根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量,包括:若该第二配置信息指示的第一类QCL假设为该第一CSI-RS与 该第二CSI-RS之间的第一类QCL假设,该终端设备根据该第二配置信息指示的第一类QCL假设对应的参数进行该CSI测量。
可选地,在本申请实施例中,该方法还包括:若该第二配置信息指示的第一类QCL假设非该第一CSI-RS与该第二CSI-RS之间的第一类QCL假设,该终端设备确定该第二配置信息为不期望接收的配置信息。进一步地,该终端设备根据该终端设备假设的具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数进行该CSI测量。
再例如,UE也可以为第二CSI-RS进行了第一类QCL假设,也为第二CSI-RS进行了第二类QCL假设,并且网络设备也为第二CSI-RS配置了第一类QCL假设和第二类QCL假设,那么UE首先需要判断UE进行的第一类QCL假设和网络设备指示的第一类QCL假设是不是属于相同的两个CSI-RS之间的QCL关联,如果是相同的两个CSI-RS之间的QCL关联,那么UE就可以直接根据网络设备配置的第一类QCL假设和第二类QCL假设进行CSI的测量。如果UE进行的第一类QCL假设和第二类QCL假设不是属于相同的两个CSI-RS之间的QCL关联,那么UE则认为接收到的网络设备的配置是一个错误的配置,UE可以不用管网络设备为第二CSI-RS配置的第一类QCL假设。UE也可以直接就使用UE进行的第一类QCL假设以及网络设备配置的第二类QCL假设进行CSI的测量。
可选地,在本申请实施例中,该第一CSI-RS为用于信道测量的非零功率CSI-RS(Non-Zero Power CSI-RS,NZP CSI-RS),该第二CSI-RS为用于干扰测量的非零功率CSI-RS和/或CSI干扰测量(CSI based interference measurement,CSI-IM)。
因此,本申请实施例的CSI测量的方法,有利于改善UE的接收性能。
图3示出了本申请实施例的CSI测量的方法200的示意性框图。如图3所示,该方法200包括以下部分或全部内容:
S210,网络设备向终端设备发送配置信息,所述配置信息用于指示第一信道状态信息参考信号CSI-RS或第二CSI-RS的QCL关联关系,所述QCL关联关系包括第一类QCL假设和/或第二类QCL假设,所述第一类QCL假设对应的参数为空间接收参数,所述第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展,所述第一CSI-RS和所述第二CSI-RS分别为在一次CSI测量中用于信道测量 的参考信号和用于干扰测量的参考信号。
因此,本申请实施例的CSI测量的方法,有利于改善UE的接收性能。
可选地,在本申请实施例中,所述QCL关联关系为第一CSI-RS与所述第二CSI-RS之间的QCL假设。
可选地,在本申请实施例中,所述第一CSI-RS为用于信道测量的非零功率CSI-RS,所述第二CSI-RS为用于干扰测量的非零功率CSI-RS。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。并且相关内容在上述方法100中已经作了详尽描述,为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的CSI测量的方法,下面将结合图4至图7,描述根据本申请实施例的CSI测量的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图4示出了本申请实施例的终端设备300的示意性框图。如图4所示,该终端设备300包括:
假设单元310,用于假设第一信道状态信息参考信号CSI-RS与第二CSI-RS关于空间接收参数具有准共址QCL关联,该第一CSI-RS和该第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号;
测量单元320,用于根据该第一CSI-RS与该第二CSI-RS之间的QCL信息进行该CSI测量。
因此,本申请实施例的终端设备,有利于改善UE的接收性能。
可选地,在本申请实施例中,网络设备不在该第一CSI-RS与该第二CSI-RS之间配置第一类QCL假设,该第一类QCL假设对应的参数为空间 接收参数。
可选地,在本申请实施例中,该网络设备不在该第一CSI-RS与该第二CSI-RS之间配置第二类QCL假设,该第二类QCL假设对应的参数包括的以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展。
可选地,在本申请实施例中,该终端设备还包括:第一接收单元,用于接收网络设备发送的第一配置信息,该第一配置信息用于指示该网络设备在该第一CSI-RS与该第二CSI-RS之间配置的第二类QCL假设,该第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;该测量单元具体用于:根据该第一配置信息指示的第二类QCL假设对应的参数和该终端设备假设的具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数进行该CSI测量。
可选地,在本申请实施例中,该终端设备还包括:第二接收单元,用于接收网络设备发送的第二配置信息,该第二配置信息用于指示该网络设备为该第二CSI-RS配置的第一类QCL假设,该第一类QCL假设对应的参数为空间接收参数;该测量单元具体用于:若该第二配置信息指示的第一类QCL假设为该第一CSI-RS与该第二CSI-RS之间的第一类QCL假设,根据该第二配置信息指示的第一类QCL假设对应的参数进行该CSI测量。
可选地,在本申请实施例中,该终端设备还包括:确定单元,用于若该第二配置信息指示的第一类QCL假设非该第一CSI-RS与该第二CSI-RS之间的第一类QCL假设,确定该第二配置信息为不期望接收的配置信息。
可选地,在本申请实施例中,该测量单元具体用于:根据该终端设备假设的具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数进行该CSI测量。
可选地,在本申请实施例中,该第二配置信息还用于指示为该第一CSI-RS和第二CSI-RS之间配置的第二类QCL假设,该第二类QCL假设对应的参数还包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;该测量单元具体用于:根据具有QCL关联的该第一CSI-RS与该第二CSI-RS之间的空间接收参数和该第二配置信息指示的第二类QCL假设对应的参数进行该CSI测量。
可选地,在本申请实施例中,该第一CSI-RS为用于信道测量的非零功 率CSI-RS,该第二CSI-RS为用于干扰测量的非零功率CSI-RS。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中终端设备的相应流程,为了简洁,在此不再赘述。
图5示出了本申请实施例的网络设备400的示意性框图。如图5所示,该网络设备400包括:
发送单元410,用于向终端设备发送配置信息,所述配置信息用于指示第一信道状态信息参考信号CSI-RS或第二CSI-RS的QCL关联关系,所述QCL关联关系包括第一类QCL假设和/或第二类QCL假设,所述第一类QCL假设对应的参数为空间接收参数,所述第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展,所述第一CSI-RS和所述第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号。
因此,本申请实施例的网络设备,有利于改善UE的接收性能。
可选地,在本申请实施例中,所述QCL关联关系为第一CSI-RS与所述第二CSI-RS之间的QCL假设。
可选地,在本申请实施例中,所述第一CSI-RS为用于信道测量的非零功率CSI-RS,所述第二CSI-RS为用于干扰测量的非零功率CSI-RS。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3方法中网络设备的相应流程,为了简洁,在此不再赘述。
如图6所示,本申请实施例还提供了一种终端设备500,该终端设备500可以是图4中的终端设备300,其能够用于执行与图2中方法100对应的终端设备的内容。该终端设备500包括:输入接口510、输出接口520、处理器530以及存储器540,该输入接口510、输出接口520、处理器530和存储器540可以通过总线系统相连。该存储器540用于存储包括程序、指令或代码。该处理器530,用于执行该存储器540中的程序、指令或代码,以控制输入接口510接收信号、控制输出接口520发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的终端设备,有利于改善UE的接收性能。
应理解,在本申请实施例中,该处理器530可以是中央处理单元(Central  Processing Unit,CPU),该处理器530还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器540可以包括只读存储器和随机存取存储器,并向处理器530提供指令和数据。存储器540的一部分还可以包括非易失性随机存取存储器。例如,存储器540还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器530中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器540,处理器530读取存储器540中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,终端设备300中的假设单元、测量单元和确定单元可以由图6中的处理器530实现,终端设备300的第一接收单元和第二接收单元。
如图7所示,本申请实施例还提供了一种网络设备600,该网络设备600可以是图5中的网络设备400,其能够用于执行与图3中方法200对应的网络设备的内容。该网络设备600包括:输入接口610、输出接口620、处理器630以及存储器640,该输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。该存储器640用于存储包括程序、指令或代码。该处理器630,用于执行该存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的网络设备,有利于改善UE的接收性能。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central Processing Unit,CPU),该处理器630还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific  Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,网络设备400中的发送单元可以由图7中的输出接口620实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (24)

  1. 一种信道状态信息CSI测量的方法,其特征在于,包括:
    终端设备假设第一信道状态信息参考信号CSI-RS与第二CSI-RS关于空间接收参数具有准共址QCL关联,所述第一CSI-RS和所述第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号;
    所述终端设备根据所述第一CSI-RS与所述第二CSI-RS之间的QCL信息进行所述CSI测量。
  2. 根据权利要求1所述的方法,其特征在于,网络设备不在所述第一CSI-RS与所述第二CSI-RS之间配置第一类QCL假设,所述第一类QCL假设对应的参数为空间接收参数。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备不在所述第一CSI-RS与所述第二CSI-RS之间配置第二类QCL假设,所述第二类QCL假设对应的参数包括的以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于指示所述网络设备在所述第一CSI-RS与所述第二CSI-RS之间配置的第二类QCL假设,所述第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;
    所述终端设备根据所述第一CSI-RS与所述第二CSI-RS之间的QCL信息进行所述CSI测量,包括:
    所述终端设备根据所述第一配置信息指示的第二类QCL假设对应的参数和所述终端设备假设的具有QCL关联的所述第一CSI-RS与所述第二CSI-RS之间的空间接收参数进行所述CSI测量。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第二配置信息,所述第二配置信息用于指示所述网络设备为所述第二CSI-RS配置的第一类QCL假设,所述第一类QCL假设对应的参数为空间接收参数;
    所述终端设备根据所述第一CSI-RS与所述第二CSI-RS之间的QCL信息进行所述CSI测量,包括:
    若所述第二配置信息指示的第一类QCL假设为所述第一CSI-RS与所述第二CSI-RS之间的第一类QCL假设,所述终端设备根据所述第二配置信息指示的第一类QCL假设对应的参数进行所述CSI测量。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述第二配置信息指示的第一类QCL假设非所述第一CSI-RS与所述第二CSI-RS之间的第一类QCL假设,所述终端设备确定所述第二配置信息为不期望接收的配置信息。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述第一CSI-RS与所述第二CSI-RS之间的QCL信息进行所述CSI测量,包括:
    所述终端设备根据所述终端设备假设的具有QCL关联的所述第一
    CSI-RS与所述第二CSI-RS之间的空间接收参数进行所述CSI测量。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述第二配置信息还用于指示为所述第一CSI-RS和第二CSI-RS之间配置的第二类QCL假设,所述第二类QCL假设对应的参数还包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;
    所述终端设备根据所述第一CSI-RS与所述第二CSI-RS之间的QCL信息进行所述CSI测量,包括:
    所述终端设备根据具有QCL关联的所述第一CSI-RS与所述第二CSI-RS之间的空间接收参数和所述第二配置信息指示的第二类QCL假设对应的参数进行所述CSI测量。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一CSI-RS为用于信道测量的非零功率CSI-RS,所述第二CSI-RS为用于干扰测量的非零功率CSI-RS。
  10. 一种信道状态信息CSI测量的方法,其特征在于,包括:
    网络设备向终端设备发送配置信息,所述配置信息用于指示第一信道状态信息参考信号CSI-RS或第二CSI-RS的QCL关联关系,所述QCL关联关系包括第一类QCL假设和/或第二类QCL假设,所述第一类QCL假设对应的参数为空间接收参数,所述第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展,所述第一CSI-RS和所述第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号。
  11. 根据权利要求10所述的方法,其特征在于,所述QCL关联关系为第一CSI-RS与所述第二CSI-RS之间的QCL假设。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一CSI-RS为用于信道测量的非零功率CSI-RS,所述第二CSI-RS为用于干扰测量的非零功率CSI-RS。
  13. 一种终端设备,其特征在于,所述终端设备包括:
    假设单元,用于假设第一信道状态信息参考信号CSI-RS与第二CSI-RS关于空间接收参数具有准共址QCL关联,所述第一CSI-RS和所述第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号;
    测量单元,用于根据所述第一CSI-RS与所述第二CSI-RS之间的QCL信息进行所述CSI测量。
  14. 根据权利要求13所述的终端设备,其特征在于,网络设备不在所述第一CSI-RS与所述第二CSI-RS之间配置第一类QCL假设,所述第一类QCL假设对应的参数为空间接收参数。
  15. 根据权利要求14所述的终端设备,其特征在于,所述网络设备不在所述第一CSI-RS与所述第二CSI-RS之间配置第二类QCL假设,所述第二类QCL假设对应的参数包括的以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展。
  16. 根据权利要求13或14所述的终端设备,其特征在于,所述终端设备还包括:
    第一接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于指示所述网络设备在所述第一CSI-RS与所述第二CSI-RS之间配置的第二类QCL假设,所述第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;
    所述测量单元具体用于:
    根据所述第一配置信息指示的第二类QCL假设对应的参数和所述终端设备假设的具有QCL关联的所述第一CSI-RS与所述第二CSI-RS之间的空间接收参数进行所述CSI测量。
  17. 根据权利要求13所述的终端设备,其特征在于,所述终端设备还包括:
    第二接收单元,用于接收网络设备发送的第二配置信息,所述第二配置信息用于指示所述网络设备为所述第二CSI-RS配置的第一类QCL假设,所述第一类QCL假设对应的参数为空间接收参数;
    所述测量单元具体用于:
    若所述第二配置信息指示的第一类QCL假设为所述第一CSI-RS与所述第二CSI-RS之间的第一类QCL假设,根据所述第二配置信息指示的第一类QCL假设对应的参数进行所述CSI测量。
  18. 根据权利要求17所述的终端设备,其特征在于,所述终端设备还包括:
    确定单元,用于若所述第二配置信息指示的第一类QCL假设非所述第一CSI-RS与所述第二CSI-RS之间的第一类QCL假设,确定所述第二配置信息为不期望接收的配置信息。
  19. 根据权利要求18所述的终端设备,其特征在于,所述测量单元具体用于:
    根据所述终端设备假设的具有QCL关联的所述第一CSI-RS与所述第二CSI-RS之间的空间接收参数进行所述CSI测量。
  20. 根据权利要求17至19中任一项所述的终端设备,其特征在于,所述第二配置信息还用于指示为所述第一CSI-RS和第二CSI-RS之间配置的第二类QCL假设,所述第二类QCL假设对应的参数还包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展;
    所述测量单元具体用于:
    根据具有QCL关联的所述第一CSI-RS与所述第二CSI-RS之间的空间接收参数和所述第二配置信息指示的第二类QCL假设对应的参数进行所述CSI测量。
  21. 根据权利要求13至20中任一项所述的终端设备,其特征在于,所述第一CSI-RS为用于信道测量的非零功率CSI-RS,所述第二CSI-RS为用于干扰测量的非零功率CSI-RS。
  22. 一种网络设备,其特征在于,所述网络设备包括:
    发送单元,用于向终端设备发送配置信息,所述配置信息用于指示第一信道状态信息参考信号CSI-RS或第二CSI-RS的QCL关联关系,所述QCL关联关系包括第一类QCL假设和/或第二类QCL假设,所述第一类QCL假 设对应的参数为空间接收参数,所述第二类QCL假设对应的参数包括以下参数中的至少一种参数:多普勒频移、多普勒扩展、平均时延和时延扩展,所述第一CSI-RS和所述第二CSI-RS分别为在一次CSI测量中用于信道测量的参考信号和用于干扰测量的参考信号。
  23. 根据权利要求22所述的网络设备,其特征在于,所述QCL关联关系为第一CSI-RS与所述第二CSI-RS之间的QCL假设。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述第一CSI-RS为用于信道测量的非零功率CSI-RS,所述第二CSI-RS为用于干扰测量的非零功率CSI-RS。
PCT/CN2018/073521 2018-01-19 2018-01-19 信道状态信息csi测量的方法、终端设备和网络设备 WO2019140668A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2018/073521 WO2019140668A1 (zh) 2018-01-19 2018-01-19 信道状态信息csi测量的方法、终端设备和网络设备
EP18901612.4A EP3637629B1 (en) 2018-01-19 2018-01-19 Channel state information (csi) measurement method, terminal device and network device
CN201880039307.9A CN110832784B (zh) 2018-01-19 2018-01-19 信道状态信息csi测量的方法、终端设备和网络设备
TW108101959A TW201933808A (zh) 2018-01-19 2019-01-18 通道狀態訊息csi測量的方法、終端設備和網路設備
US16/739,804 US11172394B2 (en) 2018-01-19 2020-01-10 Method for channel state information CSI measurement, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073521 WO2019140668A1 (zh) 2018-01-19 2018-01-19 信道状态信息csi测量的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/739,804 Continuation US11172394B2 (en) 2018-01-19 2020-01-10 Method for channel state information CSI measurement, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2019140668A1 true WO2019140668A1 (zh) 2019-07-25

Family

ID=67301907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073521 WO2019140668A1 (zh) 2018-01-19 2018-01-19 信道状态信息csi测量的方法、终端设备和网络设备

Country Status (5)

Country Link
US (1) US11172394B2 (zh)
EP (1) EP3637629B1 (zh)
CN (1) CN110832784B (zh)
TW (1) TW201933808A (zh)
WO (1) WO2019140668A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157761A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Techniques for activating semi-persistent configuration for channel state indicator resource sets
US11368956B2 (en) * 2018-04-05 2022-06-21 Qualcomm Incorporated Radio link management under bandwidth part switching
US10944659B2 (en) * 2018-10-05 2021-03-09 Qualcomm Incorporated Delay spread and average delay quasi-collocation sources for positioning reference signals
CN114586312A (zh) * 2022-01-11 2022-06-03 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973399A (zh) * 2013-01-31 2014-08-06 中兴通讯股份有限公司 一种生成载波配置信息的方法及网络侧设备及用户设备
CN104205660A (zh) * 2012-03-30 2014-12-10 三星电子株式会社 用于高级无线网络的信道状态信息导频设计的装置和方法
EP2933942A1 (en) * 2012-12-17 2015-10-21 LG Electronics Inc. Method of receiving downlink signal, user device, method of transmitting downlink signal, and base station
CN105025519A (zh) * 2014-04-30 2015-11-04 电信科学技术研究院 干扰信号测量方法及相关设备
CN105101307A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 异质网中邻小区传输参数的配置方法、系统及相关设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121002A (ko) * 2013-02-21 2015-10-28 엘지전자 주식회사 무선 통신 시스템에서 대규모 mimo를 위한 안테나 포트 간 qcl 설정 방법 및 이를 위한 장치
WO2017119741A1 (ko) * 2016-01-08 2017-07-13 엘지전자 주식회사 무선통신 시스템에서 단말이 기지국으로 부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
JP6562981B2 (ja) * 2016-07-29 2019-08-21 華碩電腦股▲ふん▼有限公司 無線通信システムにおけるビーム操作のためのチャネル状態情報報告のための方法及び装置
US11101951B2 (en) * 2016-09-29 2021-08-24 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus therefor
EP3345312A1 (en) * 2016-09-30 2018-07-11 Telefonaktiebolaget LM Ericsson (PUBL) Quasi co-location for beamforming
KR20190068623A (ko) * 2016-11-04 2019-06-18 텔레폰악티에볼라겟엘엠에릭슨(펍) 하나 이상의 빔 쌍 링크를 사용하는 제어 정보의 송신

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205660A (zh) * 2012-03-30 2014-12-10 三星电子株式会社 用于高级无线网络的信道状态信息导频设计的装置和方法
EP2933942A1 (en) * 2012-12-17 2015-10-21 LG Electronics Inc. Method of receiving downlink signal, user device, method of transmitting downlink signal, and base station
CN103973399A (zh) * 2013-01-31 2014-08-06 中兴通讯股份有限公司 一种生成载波配置信息的方法及网络侧设备及用户设备
CN105025519A (zh) * 2014-04-30 2015-11-04 电信科学技术研究院 干扰信号测量方法及相关设备
CN105101307A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 异质网中邻小区传输参数的配置方法、系统及相关设备

Also Published As

Publication number Publication date
EP3637629A1 (en) 2020-04-15
US11172394B2 (en) 2021-11-09
CN110832784A (zh) 2020-02-21
TW201933808A (zh) 2019-08-16
EP3637629B1 (en) 2021-04-14
US20200154299A1 (en) 2020-05-14
CN110832784B (zh) 2022-01-11
EP3637629A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
US11736250B2 (en) Method for transmitting reference signal, and communication device
TWI751294B (zh) 傳輸訊號的方法、終端設備和網路設備
WO2019100296A1 (zh) 传输信号的方法、终端设备和网络设备
WO2019000321A1 (zh) 用于传输信号的方法、终端设备和网络设备
US11172394B2 (en) Method for channel state information CSI measurement, terminal device and network device
WO2019080107A1 (zh) 传输物理上行控制信道pucch的方法、终端设备和网络设备
CN110603768A (zh) 信号处理的方法和装置
TWI759558B (zh) 用於傳輸信號的方法、網路設備和終端設備
US20200059913A1 (en) Signal processing method and apparatus
US11425759B2 (en) Method for link reconfiguration and terminal device
WO2018072062A1 (zh) 信息传输方法和装置
WO2018120099A1 (zh) 传输信息的方法、网络设备和终端设备
WO2019136717A1 (zh) 用于功率控制的方法、终端设备和网络设备
WO2023024875A1 (zh) 一种测量信道信息的方法、网络设备、中继设备及终端
WO2019033392A1 (zh) 信号传输的方法、终端设备和网络设备
CN114650600A (zh) 资源配置方法、装置、网络节点和存储介质
JP7328421B2 (ja) 電力制御のための方法、端末デバイス及びネットワークデバイス
WO2019028904A1 (zh) 无线通信的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018901612

Country of ref document: EP

Effective date: 20200110

NENP Non-entry into the national phase

Ref country code: DE