WO2019100296A1 - 传输信号的方法、终端设备和网络设备 - Google Patents

传输信号的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019100296A1
WO2019100296A1 PCT/CN2017/112718 CN2017112718W WO2019100296A1 WO 2019100296 A1 WO2019100296 A1 WO 2019100296A1 CN 2017112718 W CN2017112718 W CN 2017112718W WO 2019100296 A1 WO2019100296 A1 WO 2019100296A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
csi
power control
uplink signal
indication information
Prior art date
Application number
PCT/CN2017/112718
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2020119492A priority Critical patent/RU2738221C1/ru
Priority to AU2017440897A priority patent/AU2017440897B2/en
Priority to CA3083010A priority patent/CA3083010A1/en
Priority to SG11202004644QA priority patent/SG11202004644QA/en
Priority to BR112020010070-6A priority patent/BR112020010070A2/pt
Priority to CN201780095753.7A priority patent/CN111201815A/zh
Priority to JP2020527875A priority patent/JP6999811B2/ja
Priority to EP21195374.0A priority patent/EP3965481B1/en
Priority to EP17933143.4A priority patent/EP3709720B1/en
Priority to PCT/CN2017/112718 priority patent/WO2019100296A1/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to FIEP21195374.0T priority patent/FI3965481T3/fi
Priority to CN202010423295.9A priority patent/CN111542105B/zh
Priority to ES17933143T priority patent/ES2899626T3/es
Priority to KR1020207014287A priority patent/KR102356351B1/ko
Priority to EP24156875.7A priority patent/EP4366400A2/en
Priority to MX2020005215A priority patent/MX2020005215A/es
Publication of WO2019100296A1 publication Critical patent/WO2019100296A1/zh
Priority to US16/879,592 priority patent/US10945218B2/en
Priority to US17/158,544 priority patent/US11432245B2/en
Priority to AU2021209147A priority patent/AU2021209147B2/en
Priority to US17/816,037 priority patent/US11758485B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, a terminal device, and a network device for transmitting signals.
  • the power control of the terminal is of great significance in terms of power saving and suppression of inter-cell interference. Therefore, how to improve the accuracy of the uplink power control is a problem that has been studied.
  • the embodiments of the present application provide a method for transmitting a signal, a terminal device, and a network device, which are beneficial to improving the accuracy of uplink power control, thereby improving system transmission performance.
  • a method for transmitting a signal comprising: determining, by a terminal device, channel state information corresponding to a target uplink signal, reference signal CSI-RS resource indication information; and determining, by the terminal device, the CSI-RS resource indication information Determining a power control parameter of the uplink signal of the target; the terminal device determines a transmit power of the target uplink signal according to the power control parameter; and the terminal device sends the target uplink signal to the network device according to the transmit power.
  • the CSI-RS resource indication information may be indication information for indicating a CSI-RS resource.
  • the network device can be configured in advance or one or more CSI-RS resources are agreed by the protocol.
  • the network device can also configure different CSI-RS resources in advance or different CSI-RS resource indication information corresponding to a set of independent power control parameters.
  • a set of independent power control parameters includes values of at least one power control parameter.
  • the power control parameter may be any one of a calculation formula of the transmission power or any combination of a plurality of parameters.
  • Determining the transmission power of the target uplink signal by referring to the power control parameter corresponding to the CSI-RS resource indication information sent by the network device is beneficial to improving the accuracy of the uplink power control, thereby improving the performance of the system transmission.
  • the target uplink signal is a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, or a sounding reference signal SRS.
  • the target uplink signal is a non-codebook precoding based PUSCH or a sounding reference for obtaining a transmission parameter of the non-codebook precoding based PUSCH.
  • Signal SRS Signal
  • the CSI-RS resource indicated by the CSI-RS resource indication information is used to obtain a precoding matrix or a transmit beam of the target uplink signal, or used to obtain a first corresponding to the target uplink signal. Precoding matrix or transmit beam of SRS.
  • the first SRS is an SRS for acquiring a transmission parameter of the target uplink signal, or the first SRS is an SRS resource carried in a downlink control information DCI for scheduling the target uplink signal. Indicates the SRS transmitted on the SRS resource indicated by the information.
  • the method further includes: receiving, by the terminal device, first information sent by the network device, where the first information carries the CSI-RS resource indication information; and the terminal device determines, corresponding to the target uplink signal,
  • the CSI-RS resource indication information includes: the terminal device determines the CSI-RS resource indication information from the first information.
  • the first information is a DCI used to schedule the PUSCH or a downlink signaling used to configure, trigger, or activate a second SRS corresponding to the PUSCH.
  • the second SRS is an SRS for acquiring a transmission parameter of the PUSCH, or the second SRS is an SRS resource indicated by SRS resource indication information included in a DCI for scheduling the PUSCH. SRS transmitted on.
  • the transmission parameter includes at least one of the following information: a frequency domain resource used, a layer number, a precoding matrix, a modulation and coding mode, and a transmit beam.
  • the first information is downlink signaling used to configure, trigger, or activate the SRS.
  • the method further includes: receiving, by the terminal device, configuration information sent by the network device, where the configuration information is used to indicate a correspondence between at least one CSI-RS resource and at least one set of power control parameters, where At least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, where each group of power control parameters includes a value of at least one power control parameter; the terminal device according to the CSI- The RS resource indication information is used to determine the power control parameter of the target uplink signal, and the terminal device determines the power control parameter according to the CSI-RS resource indication information and the configuration information.
  • the method further includes: receiving, by the terminal device, configuration information sent by the network device, where the configuration information is used to indicate a correspondence between at least one CSI-RS resource indication information and at least one group of power control parameters
  • the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, each of the at least one set of power control parameters includes a value of at least one power control parameter; the terminal device determines, according to the CSI-RS resource indication information, a power control parameter of the target uplink signal
  • the method includes: determining, by the terminal device, the power control parameter according to the CSI-RS resource indication information and the configuration information.
  • the power control parameter includes at least one of the following information: a path loss value used to calculate the transmit power, and a downlink signal used to measure a path loss value used to calculate the transmit power. Information, open loop power control parameters and closed loop power control parameters.
  • the open loop power control parameter includes a value of the target power Po, a value of the path loss weighting factor a, an index of the target power Po, or an index of the path loss weighting factor a.
  • the closed loop power control parameter includes an index of a closed loop power control process.
  • the method before the determining, by the terminal device, the CSI-RS resource indication information corresponding to the target uplink signal, the method further includes: determining, by the terminal device, the power control parameter preconfigured by the network device The transmit power of the uplink signal.
  • a second aspect provides a method for transmitting a signal, where the method includes: the network device transmitting, to the terminal device, channel state information-reference signal CSI-RS resource indication information corresponding to the target uplink signal, where the CSI-RS resource indication information is used. Determining, by the terminal device, a power control parameter of the target uplink signal; the network device receiving the target uplink signal sent by the terminal device based on the power control parameter.
  • the target uplink signal is a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, or a sounding reference signal SRS.
  • the target uplink signal is a physical uplink shared channel PUSCH based on non-codebook precoding or a sounding reference signal used to obtain a transmission parameter of a physical uplink shared channel PUSCH based on non-codebook precoding. SRS.
  • the CSI-RS resource indicated by the CSI-RS resource indication information is used to obtain a precoding matrix or a transmit beam of the target uplink signal, or used to obtain a first corresponding to the target uplink signal. Precoding matrix or transmit beam of SRS.
  • the first SRS is an SRS for acquiring a transmission parameter of the target uplink signal, or the first SRS is an SRS resource carried in a downlink control information DCI for scheduling the target uplink signal. Indicates the SRS transmitted on the SRS resource indicated by the information.
  • the CSI-RS resource is carried in the downlink control information DCI for scheduling the PUSCH or in the downlink signaling for configuring, triggering or activating the second SRS corresponding to the PUSCH.
  • the second SRS is an SRS for obtaining a transmission parameter of the PUSCH, or the second SRS is an SRS resource indicated by SRS resource indication information included in a DCI for scheduling the PUSCH. SRS transmitted on.
  • the transmission parameter includes at least one of the following information: a frequency domain resource used, a layer number, a precoding matrix, a modulation and coding mode, and a transmit beam.
  • the CSI-RS resource indication information is carried in the downlink signaling used to configure, trigger, or activate the SRS.
  • the method further includes: sending, by the network device, configuration information, where the configuration information is used to indicate a correspondence between the at least one CSI-RS resource and at least one set of power control parameters, where
  • the at least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, and each of the at least one set of power control parameters includes a value of the at least one power control parameter.
  • the method further includes: sending, by the network device, the configuration information, where the configuration information is used to indicate a correspondence between the at least one CSI-RS resource indication information and the at least one set of power control parameters,
  • the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, and each of the at least one set of power control parameters includes a value of the at least one power control parameter.
  • the power control parameter includes at least one of the following information: a path loss value used to calculate the transmit power, and a downlink signal used to measure a path loss value used to calculate the transmit power. Information, open loop power control parameters and closed loop power control parameters.
  • the open loop power control parameter includes a value of the target power Po, a value of the path loss weighting factor a, an index of the target power Po, or an index of the path loss weighting factor a.
  • the closed loop power control parameter includes an index of a closed loop power control process.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device includes means for performing the second Aspect or method unit of any of the possible implementations of the second aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a computer storage medium for storing the method in any of the above possible implementations of the first aspect or the first aspect, or any possible implementation of the second or second aspect
  • Computer software instructions for use in the method of the present invention including programs designed to perform the various aspects described above.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect, or the second Aspect or method of any alternative implementation of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a method of transmitting a signal according to an embodiment of the present application.
  • FIG. 3 shows another schematic block diagram of a method of transmitting a signal according to an embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 5 shows a schematic block diagram of a network device of an embodiment of the present application.
  • FIG. 6 shows another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 shows another schematic block diagram of a network device of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system, and a low-density signature (Low). Density Signature (LDS) system, etc., of course, the SCMA system and the LDS system may also be referred to as other names in the communication field; further, the technical solution of the embodiment of the present application can be applied to multi-carrier using non-orthogonal multiple access technology.
  • SCMA sparse code multiple access
  • LDS Density Signature
  • Orthogonal Frequency Division Multiplexing OFDM
  • Filter Bank Multi-Carrier FBMC
  • General Frequency Division Multiplexing Generalized Frequency Division Multiplexing (OFDM)) Frequency Division Multiplexing (GFDM)
  • Filtered Orthogonal Frequency Division Multiplexing Filtered-OFDM, F-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system.
  • the LTE system may also be an evolved base station (Evolutional NodeB, eNB or eNodeB), or may be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network.
  • the device may be a relay station, an access point, an in-vehicle device, a wearable device, a network device in a future 5G network, or a network device in a future evolved PLMN network, and the like.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • uplink power control is of great significance in terms of power saving and suppression of inter-cell interference. Therefore, uplink power control is a key part of LTE.
  • the uplink power control in the cell includes powers for controlling a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a sounding reference signal (SRS).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • Two uplink transmission modes are introduced in the NR: a codebook-based transmission method and a non-codebook-based transmission method.
  • the uplink beam used for transmission is notified to the terminal through the beam indication information in the scheduling information.
  • different power control parameters are required.
  • the beam indication information is associated with an uplink power control parameter, and the corresponding power control parameter can be determined by the beam indication information.
  • the association relationship is notified to the terminal in advance by RRC signaling.
  • the network side may configure a corresponding CSI-RS resource for the uplink SRS or the PUSCH.
  • the terminal obtains downlink channel information based on the CSI-RS resource, obtains uplink channel information based on the downlink channel information and channel reciprocity, and calculates a precoding matrix of the uplink SRS or PUSCH according to the uplink channel information.
  • the uplink beam used for the transmission can also be obtained by the terminal through the uplink and downlink beam correspondence, that is, the terminal can obtain the transmission beam of the uplink signal by using the receiving beam of the downlink signal, and does not need the beam indication on the network side. How the terminal determines the corresponding power control parameters for different transmit beams at this time is a problem.
  • FIG. 2 shows a schematic block diagram of a method 100 of transmitting a signal in an embodiment of the present application. As shown in FIG. 2, the method 100 includes some or all of the following:
  • the terminal device determines channel state information-reference signal CSI-RS resource indication information corresponding to the target uplink signal.
  • the terminal device determines, according to the CSI-RS resource indication information, the target uplink signal. Power control parameters;
  • the terminal device determines, according to the power control parameter, a transmit power of the target uplink signal.
  • the terminal device sends the target uplink signal to the network device according to the sending power.
  • the network device may be configured in advance or one or more Channel State Information-Reference Signals (CSI-RS) resources are agreed by the protocol, and the CSI-RSs sent on different CSI-RS resources may be configured. Different beams are used, and the network device may also be configured in advance or agreed by the protocol to correspond to the one or more CSI-RS resources and power control parameters or one or more CSI-RS resource indication information and power control parameters.
  • CSI-RS resource or each CSI-RS resource indication information may correspond to a set of independent power control parameters.
  • the network device may indicate to the terminal device that the power control parameter corresponding to the CSI-RS resource or the CSI-RS resource indication information is used for the transmission of the target uplink signal, and the terminal device may perform some adjustment on the basis of the power control parameter indicated by the network device.
  • the power control parameter of the target uplink signal is determined or the power control parameter indicated by the network device may be directly determined as the power control parameter of the target uplink signal.
  • the terminal device may further determine the transmit power of the target uplink signal according to the determined power control parameter, thereby transmitting the target uplink signal to the network device according to the determined transmit power.
  • the method for transmitting a signal in the embodiment of the present application determines the transmission power of the target uplink signal by referring to the power control parameter corresponding to the CSI-RS resource indication information sent by the network device, thereby improving the accuracy of the uplink power control. Can improve the performance of system transmission.
  • the target uplink signal may be a PUSCH, a PUCCH, or an SRS.
  • the embodiment of the present application does not limit the type of the target uplink signal, and the transmission power may be determined by using the technical solution of the embodiment of the present application.
  • the target uplink signal is a non-codebook precoding based PUSCH or a sounding reference signal SRS for obtaining a transmission parameter of the non-codebook precoding based PUSCH. That is to say, the transmission of the PUSCH is based on a non-codebook transmission mode.
  • the terminal device receives the CSI-RS resource indication information sent by the network device, and the terminal device can obtain the downlink channel information according to the CSI-RS resource indicated by the CSI-RS resource indication information, and further, based on the downlink channel information and the channel reciprocity.
  • the uplink channel information is obtained, and the precoding information of the PUSCH is calculated according to the uplink channel information.
  • the terminal device can also obtain the transmit beam of the PUSCH by using the beam correspondence, that is, the receive beam of the CSI-RS can be received by the terminal device to obtain the transmit beam of the PUSCH.
  • the transmission of the SRS may also be based on a non-codebook transmission.
  • the target uplink signal may also be an SRS used to acquire transmission parameters of the PUSCH.
  • the CSI-RS resource indicated by the CSI-RS resource indication information is used to obtain a precoding matrix or a transmit beam of the target uplink signal, or is used to obtain a corresponding uplink signal corresponding to the target uplink signal.
  • the foregoing has described how the CSI-RS resource indicated by the CSI-RS resource indication information obtains a precoding matrix or a transmission beam of the PUSCH.
  • the method is also applicable to any uplink signal, for example, the foregoing PUCCH or SRS.
  • the first SRS is an SRS for acquiring a transmission parameter of the target uplink signal, or the first SRS is an SRS indicated by the SRS resource indication information carried in the downlink control information DCI for scheduling the target uplink signal. SRS transmitted on the resource.
  • the transmission parameters of the foregoing various uplink signals may be obtained by using the first SRS.
  • the transmission parameters may include at least one of the following: frequency domain resources used, number of layers, precoding matrix, modulation and coding scheme, and transmit beam. That is, after receiving the CSI-RS resource indication information, the terminal device may determine the precoding matrix or the transmit beam of the first SRS according to the indicated CSI-RS resource and channel reciprocity. After the terminal sends the first SRS based on the precoding matrix or the transmit beam, the network side may determine a transmission parameter of the target uplink signal according to the first SRS, and indicate the determined transmission parameter to the terminal, or according to the determined transmission. The parameters are scheduled for the terminal.
  • the first SRS is used to obtain the transmission parameter of the target uplink signal, and may be implemented by the number of antenna ports of the first SRS being equal to the number of transmission ports of the target uplink signal.
  • the target uplink signal is associated with the SRS, and may also be represented by the SRS resource indication information indicating the SRS resource in the Downlink Control Information (DCI) of the scheduling target uplink signal.
  • DCI Downlink Control Information
  • the SRS resource indication information carried by the DCI is used to indicate an SRS resource associated with the target uplink signal, and the SRS transmitted on the resource is the first SRS.
  • the “correspondence” in the CSI-RS resource indication information corresponding to the target uplink signal may be that the network device and the terminal device have agreed in advance or configured by the network device to indicate that the indication manner belongs to a specific one.
  • a certain domain in the Downlink Control Information (DCI) for scheduling the PUSCH may be the CSI-RS resource indication information corresponding to the PUSCH.
  • DCI Downlink Control Information
  • the CSI-RS resource indication information may be indication information for indicating a CSI-RS resource.
  • the network device and the terminal device pre-approve four types of CSI-RS resources, and pre-arrange the use of two bits to indicate the four CSI-RS resources.
  • the indication information corresponding to the CSI-RS resource 1 is 00.
  • the indication information corresponding to the CSI-RS resource 2 is 01
  • the indication information corresponding to the CSI-RS resource 3 is 10
  • the indication information corresponding to the CSI-RS resource 4 is 11.
  • the power control parameter in the embodiment of the present application may be any one of a calculation formula of the transmission power or any combination of a plurality of parameters.
  • the calculation formula of the transmission power generally includes: the maximum allowed transmission power of the terminal device, the power offset, the transmission bandwidth of the uplink signal in the subframe, the target reception power, the path loss compensation factor, the closed-loop power adjustment amount, and the path loss.
  • a set of power control parameters corresponding to each CSI-RS resource or each CSI-RS resource indication information includes a value of at least one parameter.
  • the bearer mode of the CSI-RS in the embodiment of the present application is described in detail below by taking the target uplink signal as the PUSCH and the SRS as an example.
  • the method further includes: receiving, by the terminal device, the first information sent by the network device, where the first information carries the CSI-RS resource indication information; the terminal device determines the target uplink signal
  • Corresponding CSI-RS resource indication information includes: determining, by the terminal device, the CSI-RS resource indication information from the first information.
  • the first information may be high-level signaling such as Radio Resource Control (RRC) signaling, Media Access Control (MAC) signaling, DCI signaling, system information, and the like.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • Embodiment 1 If the target uplink signal is a PUSCH, and the CSI-RS resource indication information is CSI-RS resource indication information configured by the network device for the PUSCH, the CSI-RS resource indication information may be scheduled by using DCI bearer of PUSCH.
  • Embodiment 2 If the target uplink signal is a PUSCH, and the CSI-RS resource indication information is CSI-RS resource indication information configured by the SRS corresponding to the PUSCH, the CSI-RS resource indication information may pass through the network.
  • the device configures, triggers, or activates the downlink signaling bearer of the SRS transmission.
  • the SRS is a periodic SRS
  • the CSI-RS resource indication information may be carried by configuring RRC signaling of the SRS transmission.
  • the SRS is an aperiodic SRS
  • the CSI-RS resource indication information may be carried by the DCI that triggers the SRS transmission.
  • the transmission resource of the DCI and the CSI-RS resource indicated by the CSI-RS resource indication information may be included in the same time slot.
  • the SRS is a quasi-persistent SRS, it can be activated by activating the SRS
  • the MAC signaling or the CSI-RS resource indication information is carried by RRC signaling.
  • the CSI-RS resource indication information may be configured, triggered, or activated by the network device for downlink signaling bearer of the SRS transmission. Specifically, if the SRS is a periodic SRS, the CSI-RS resource indication information may be carried by configuring RRC signaling of the SRS transmission. If the SRS is an aperiodic SRS, the CSI-RS resource indication information may be carried by the DCI that triggers the SRS transmission. At this time, the transmission resource of the DCI and the CSI-RS resource indicated by the CSI-RS resource indication information may be included in the same time slot. If the SRS is a quasi-persistent SRS, the CSI-RS resource indication information may be carried by activating MAC signaling of the SRS transmission or by using RRC signaling.
  • the method further includes: receiving, by the terminal device, configuration information sent by the network device, where the configuration information is used to indicate a correspondence between at least one CSI-RS resource and at least one set of power control parameters.
  • the at least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, where each group of power control parameters includes a value of at least one power control parameter;
  • the CSI-RS resource indication information is used to determine the power control parameter of the target uplink signal, and the terminal device determines the power control parameter according to the CSI-RS resource indication information and the configuration information.
  • the method further includes: receiving, by the terminal device, configuration information sent by the network device, where the configuration information is used to indicate at least one CSI-RS resource indication information and at least one set of power control parameters Corresponding relationship, the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, where each group of power control parameters includes a value of at least one power control parameter; the terminal device is configured according to the CSI- The RS resource indication information is used to determine the power control parameter of the target uplink signal, and the terminal device determines the power control parameter according to the CSI-RS resource indication information and the configuration information.
  • the network side pre-configures each of the at least one CSI-RS resource, or each of the at least one CSI-RS resource indication information, and the value of a corresponding set of power control parameters, Therefore, the terminal may determine the value of the corresponding set of power control parameters according to the currently indicated CSI-RS resource or the current CSI-RS resource indication information.
  • a set of power control parameters may include only one power control parameter, such as an open loop power control parameter or a path loss value, and may also include multiple parameters, such as an open loop power control parameter and a path loss value.
  • the network device and the terminal device pre-approve four kinds of CSI-RS resources, and the four CSI-RS resources respectively have independent power control parameters, and then the network device and the terminal device can also
  • the two CSI-RS resources are used to indicate the four CSI-RS resources in advance.
  • the indication information corresponding to the CSI-RS resource 1 is 00
  • the indication information corresponding to the CSI-RS resource 2 is 01
  • the CSI-RS resource 3 is used.
  • the corresponding indication information is 10, and the indication information corresponding to the CSI-RS resource 4 is 11. That is, the network device can configure the 00 corresponding power control parameter group 1, 01 corresponding to the power control parameter group 2, 10 corresponding to the power control parameter group 3, 11 corresponding to the power control parameter group 4.
  • the network device may also configure CSI-RS resource 1 corresponding power control parameter group 1, CSI-RS resource 2 corresponding power control parameter group 2, CSI-RS resource 3 corresponding power control parameter group 3, and CSI-RS resource 4 corresponding power control parameter Group 4.
  • the power control parameter group 1-4 corresponds to different values of the same group of power control parameters.
  • At least one of the CSI-RS resource and the CSI-RS resource indication information is associated with the power control parameter. That is, after receiving the CSI-RS resource indication information, the terminal device determines the power control parameter corresponding thereto according to the value of the indication information, and the terminal device may also after receiving the CSI-RS resource indication information, Determining the CSI-RS resource indicated by the indication information according to the indication information, and further determining a power control parameter corresponding thereto according to the CSI-RS resource, which is not limited in this application.
  • the power control parameter includes at least one of the following information: a path loss value used to calculate the transmit power, and a path loss value used to calculate the transmit power.
  • Downlink signal information open loop power control parameters, and closed loop power control parameters.
  • the information for measuring the downlink signal used to calculate the path loss value of the transmission power may be regarded as the path loss reference associated information. That is, it can be a subset of the downlink signals used to estimate the path loss of the target uplink signal.
  • the path loss reference association information for the PUSCH may refer to which downlink pilot signals in the configuration set of the downlink pilot signals are used for performing path loss measurement to estimate the path loss of the PUSCH.
  • the downlink signal may be a downlink signal block (SSB), a CSI-RS, or a physical broadcast channel (PBCH), and a demodulation reference signal (DMRS).
  • SSB downlink signal block
  • CSI-RS CSI-RS
  • PBCH physical broadcast channel
  • DMRS demodulation reference signal
  • the terminal performs downlink path loss measurement based on the CSI-RS resource indicated by the CSI-RS resource indication information, thereby obtaining the path loss value.
  • the terminal determines an index k of the corresponding downlink signal according to the CSI-RS resource indication information, and performs downlink path loss measurement based on the downlink signal indicated by the index k, thereby obtaining the path loss value.
  • the correspondence between the CSI-RS resource indication information and the index k of the downlink signal is pre-configured by the network side through high layer signaling.
  • the open loop power control parameter includes a value of the target power Po, a value of the path loss weighting factor a, an index j of the target power Po, or an index p of the path loss weighting factor a.
  • index j is high
  • a plurality of target power values pre-configured by the layer signaling indicates a target power
  • the index p indicates a path loss weighting factor from the plurality of path loss weighting factors pre-configured by the high layer signaling.
  • the correspondence between the value of the target power Po, the value of the path loss weighting factor a, the index j of the target power Po, and the index p of the path loss weighting factor and the CSI-RS resource indication information may be pre-configured by the high layer signaling. .
  • the closed loop power control parameter comprises an index 1 of the closed loop power control process.
  • the index 1 indicates a power control process from the at least one power control process defined in advance, and the correspondence between the index 1 and the CSI-RS resource indication information may be pre-configured by the high layer signaling.
  • the method before the determining, by the terminal device, the CSI-RS resource indication information corresponding to the target uplink signal, the method further includes: determining, by the terminal device, the power control parameter preconfigured by the network device, The transmission power of the target uplink signal.
  • the power control parameter configured by the network side for the target uplink signal is used until the CSI-RS resource indication information is received.
  • the power control parameter corresponding to the CSI-RS resource indication information is used instead of the pre-configured value on the network side.
  • FIG. 3 shows a schematic block diagram of a method 200 of transmitting a signal in an embodiment of the present application. As shown in FIG. 3, the method 200 includes some or all of the following:
  • the network device sends, to the terminal device, channel state information-reference signal CSI-RS resource indication information corresponding to the target uplink signal, where the CSI-RS resource indication information is used by the terminal device to determine a power control parameter of the target uplink signal;
  • the network device receives the target uplink signal that is sent by the terminal device according to the power control parameter.
  • the method for transmitting a signal in the embodiment of the present application determines the transmission power of the target uplink signal by referring to the power control parameter corresponding to the CSI-RS resource indication information sent by the network device, thereby improving the accuracy of the uplink power control. Can improve the performance of system transmission.
  • the target uplink signal is a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, or a sounding reference signal SRS.
  • the target uplink signal is a physical uplink shared channel PUSCH based on non-codebook precoding or a transmission parameter used to obtain a physical uplink shared channel PUSCH based on non-codebook precoding.
  • Reference signal SRS is a physical uplink shared channel PUSCH based on non-codebook precoding or a transmission parameter used to obtain a physical uplink shared channel PUSCH based on non-codebook precoding.
  • the CSI-RS resource indicated by the CSI-RS resource indication information is used to obtain a precoding matrix or a transmit beam of the target uplink signal, or is used to obtain a corresponding uplink signal corresponding to the target uplink signal.
  • the first SRS is used to obtain the SRS of the transmission parameter of the target uplink signal, or the first SRS is carried in the downlink control information DCI used to schedule the target uplink signal.
  • the SRS resource indicates the SRS transmitted on the SRS resource indicated by the information.
  • the CSI-RS resource indication information is carried in a downlink control information DCI for scheduling the PUSCH or used to configure, trigger, or activate with the PUSCH.
  • DCI downlink control information
  • the second SRS is used to obtain the SRS of the transmission parameter of the PUSCH, or the second SRS is indicated by the SRS resource indication information included in the DCI for scheduling the PUSCH. SRS transmitted on SRS resources.
  • the transmission parameter includes at least one of the following information: a frequency domain resource used, a layer number, a precoding matrix, a modulation and coding mode, and a transmit beam.
  • the CSI-RS resource indication information is carried in the downlink signaling used to configure, trigger, or activate the SRS.
  • the method further includes: the network device sending configuration information to the terminal device, where the configuration information is used to indicate a correspondence between the at least one CSI-RS resource and at least one set of power control parameters And the at least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, where each group of power control parameters includes a value of at least one power control parameter.
  • the method further includes: the network device sending, to the terminal device, configuration information, where the configuration information is used to indicate a correspondence between the at least one CSI-RS resource indication information and the at least one set of power control parameters The relationship, the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, and each of the at least one set of power control parameters includes a value of the at least one power control parameter.
  • the power control parameter includes at least one of the following information: a path loss value used to calculate the transmit power, and a path loss value used to calculate the transmit power.
  • Downlink signal information open loop power control parameters, and closed loop power control parameters.
  • the open loop power control parameter includes a value of the target power Po, a value of the path loss weighting factor a, an index of the target power Po, or an index of the path loss weighting factor a.
  • the closed loop power control parameter includes an index of a closed loop power control process.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • FIG. 4 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • the first determining unit 310 is configured to determine channel state information-reference signal CSI-RS resource indication information corresponding to the target uplink signal;
  • the second determining unit 320 is configured to determine, according to the CSI-RS resource indication information, a power control parameter of the target uplink signal.
  • a third determining unit 330 configured to determine, according to the power control parameter, a transmit power of the target uplink signal
  • the sending unit 340 is configured to send the target uplink signal to the network device according to the sending power.
  • the terminal device in the embodiment of the present application is advantageous for improving the accuracy of the power control, thereby improving the performance of the system transmission.
  • the target uplink signal is a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, or a sounding reference signal SRS.
  • the target uplink signal is a non-codebook precoding based PUSCH or a sounding reference for obtaining a transmission parameter of the non-codebook precoding based PUSCH.
  • Signal SRS Signal
  • the CSI-RS resource indicated by the CSI-RS resource indication information is used to obtain a precoding matrix or a transmit beam of the target uplink signal, or is used to obtain a corresponding uplink signal corresponding to the target uplink signal.
  • the first SRS is used to obtain the SRS of the transmission parameter of the target uplink signal, or the first SRS is carried in the downlink control information DCI used to schedule the target uplink signal.
  • the SRS resource indicates the SRS transmitted on the SRS resource indicated by the information.
  • the terminal device further includes: a first receiving unit, configured to receive first information sent by the network device, where the first information carries the CSI-RS resource indication information;
  • the determining unit is specifically configured to: determine, according to the first information, the CSI-RS resource indication information.
  • the first information is a DCI used to schedule the PUSCH or a downlink message used to configure, trigger, or activate a second SRS corresponding to the PUSCH. make.
  • the second SRS is used to obtain the SRS of the transmission parameter of the PUSCH, or the second SRS is indicated by the SRS resource indication information included in the DCI for scheduling the PUSCH. SRS transmitted on SRS resources.
  • the transmission parameter includes at least one of the following information: a frequency domain resource used, a layer number, a precoding matrix, a modulation and coding mode, and a transmit beam.
  • the first information is downlink signaling used to configure, trigger, or activate the SRS.
  • the terminal device further includes: a second receiving unit, configured to receive configuration information sent by the network device, where the configuration information is used to indicate at least one CSI-RS resource and at least one group of power Corresponding relationship of the control parameters, the at least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, where each group of power control parameters includes a value of at least one power control parameter;
  • the second determining unit is specifically configured to: determine the power control parameter according to the CSI-RS resource indication information and the configuration information.
  • the terminal device further includes: a second receiving unit, configured to receive configuration information sent by the network device, where the configuration information is used to indicate at least one CSI-RS resource indication information and at least one Corresponding relationship of the group power control parameters, the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, where each set of power control parameters includes a value of at least one power control parameter;
  • the second determining unit is specifically used for: root The power control parameter is determined according to the CSI-RS resource indication information and the configuration information.
  • the power control parameter includes at least one of the following information: a path loss value used to calculate the transmit power, and a path loss value used to calculate the transmit power.
  • Downlink signal information open loop power control parameters, and closed loop power control parameters.
  • the open loop power control parameter includes a value of the target power Po, a value of the path loss weighting factor a, an index of the target power Po, or an index of the path loss weighting factor a.
  • the closed loop power control parameter includes an index of a closed loop power control process.
  • the terminal device before the terminal device determines the CSI-RS resource indication information corresponding to the target uplink signal, the terminal device further includes: a fourth determining unit, configured to determine, by the first determining unit, Before the CSI-RS resource indication information corresponding to the target uplink signal, the power control parameter preconfigured by the network device is used to determine the transmission power of the target uplink signal.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 300 respectively implement the terminal in the method of FIG. 2
  • the corresponding process of the device is not described here for brevity.
  • FIG. 5 shows a schematic block diagram of a network device 400 of an embodiment of the present application.
  • the network device 400 includes:
  • the first sending unit 410 is configured to send, to the terminal device, channel state information-reference signal CSI-RS resource indication information corresponding to the target uplink signal, where the CSI-RS resource indication information is used by the terminal device to determine the power of the target uplink signal. control parameter;
  • the receiving unit 420 is configured to receive the target uplink signal that is sent by the terminal device according to the power control parameter.
  • the network device in the embodiment of the present application is advantageous for improving the accuracy of the power control, thereby improving the performance of the system transmission.
  • the target uplink signal is a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, or a sounding reference signal SRS.
  • the target uplink signal is a physical uplink shared channel PUSCH based on non-codebook precoding or a transmission parameter used to obtain a physical uplink shared channel PUSCH based on non-codebook precoding.
  • Reference signal SRS is a physical uplink shared channel PUSCH based on non-codebook precoding or a transmission parameter used to obtain a physical uplink shared channel PUSCH based on non-codebook precoding.
  • the CSI-RS resource indicated by the CSI-RS resource indication information is used to obtain a precoding matrix or a transmit beam of the target uplink signal, or used to obtain the target A precoding matrix or a transmit beam of the first SRS corresponding to the uplink signal.
  • the first SRS is used to obtain the SRS of the transmission parameter of the target uplink signal, or the first SRS is carried in the downlink control information DCI used to schedule the target uplink signal.
  • the SRS resource indicates the SRS transmitted on the SRS resource indicated by the information.
  • the CSI-RS resource indication information is carried in a downlink control information DCI for scheduling the PUSCH or used to configure, trigger, or activate with the PUSCH.
  • DCI downlink control information
  • the second SRS is used to obtain the SRS of the transmission parameter of the PUSCH, or the second SRS is indicated by the SRS resource indication information included in the DCI for scheduling the PUSCH. SRS transmitted on SRS resources.
  • the transmission parameter includes at least one of the following information: a frequency domain resource used, a layer number, a precoding matrix, a modulation and coding mode, and a transmit beam.
  • the CSI-RS resource indication information is carried in the downlink signaling used to configure, trigger, or activate the SRS.
  • the network device further includes: a second sending unit, configured to send, to the terminal device, configuration information, where the configuration information is used to indicate the at least one CSI-RS resource and the at least one group of power And corresponding to the control parameter, the at least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, where each group of power control parameters includes a value of the at least one power control parameter.
  • a second sending unit configured to send, to the terminal device, configuration information, where the configuration information is used to indicate the at least one CSI-RS resource and the at least one group of power And corresponding to the control parameter, the at least one CSI-RS resource includes a CSI-RS resource indicated by the CSI-RS resource indication information, where each group of power control parameters includes a value of the at least one power control parameter.
  • the network device further includes: a second sending unit, configured to send, to the terminal device, configuration information, where the configuration information is used to indicate at least one CSI-RS resource indication information and at least one group Corresponding relationship of the power control parameters, the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, and each of the at least one group of power control parameters includes a value of the at least one power control parameter.
  • a second sending unit configured to send, to the terminal device, configuration information, where the configuration information is used to indicate at least one CSI-RS resource indication information and at least one group Corresponding relationship of the power control parameters, the at least one CSI-RS resource indication information includes the CSI-RS resource indication information, and each of the at least one group of power control parameters includes a value of the at least one power control parameter.
  • the power control parameter includes at least one of the following information: a path loss value used to calculate the transmit power, and a path loss value used to calculate the transmit power.
  • Downlink signal information open loop power control parameters, and closed loop power control parameters.
  • the open loop power control parameter includes a value of the target power Po, a value of the path loss weighting factor a, an index of the target power Po, or an index of the path loss weighting factor a.
  • the closed loop power control parameter includes an index of a closed loop power control process.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the network device 400 respectively implement the network in the method of FIG.
  • the corresponding process of the device is not described here for brevity.
  • the embodiment of the present application further provides a terminal device 500, which may be the terminal device 300 in FIG. 4, which can be used to execute the content of the terminal device corresponding to the method 100 in FIG. .
  • the terminal device 500 includes an input interface 510, an output interface 520, a processor 530, and a memory 540.
  • the input interface 510, the output interface 520, the processor 530, and the memory 540 can be connected by a bus system.
  • the memory 540 is for storing programs, instructions or code.
  • the processor 530 is configured to execute a program, an instruction or a code in the memory 540 to control the input interface 510 to receive a signal, control the output interface 520 to send a signal, and complete the operations in the foregoing method embodiments.
  • the terminal device in the embodiment of the present application is advantageous for improving the accuracy of the uplink power control, thereby improving the performance of the system transmission.
  • the processor 530 may be a central processing unit (CPU), and the processor 530 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 540 can include read only memory and random access memory and provides instructions and data to the processor 530. A portion of the memory 540 may also include a non-volatile random access memory. For example, the memory 540 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 530 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 540, and the processor 530 reads the information in the memory 540 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the first determining unit and the second determining unit in the terminal device 300 may be implemented by the processor 530 of FIG. 6, and the transmitting unit of the terminal device 300 may be implemented by the output interface 520 of FIG. 6, the first receiving unit and the second of the terminal device 300.
  • the receiving unit can be implemented by the input interface 510 in FIG.
  • the embodiment of the present application further provides a network device 600, which may be the network device 400 in FIG. 5, which can be used to execute the content of the network device corresponding to the method 200 in FIG. .
  • the network device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the network device in the embodiment of the present application is advantageous for improving the accuracy of the power control, thereby improving the performance of the system transmission.
  • the processor 630 may be a central processing unit (CPU), and the processor 630 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the first sending unit and the second sending list in the network device 400 The elements may be implemented by output interface 620 in FIG. 7, and the receiving unit in network device 400 may be implemented by input interface 610 in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), and a A device that can store program code, such as a random access memory (RAM), a disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种传输信号的方法、终端设备和网络设备,该方法包括:终端设备确定与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息;该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数;该终端设备根据该功率控制参数,确定该目标上行信号的发送功率;该终端设备根据该发送功率,向网络设备发送该目标上行信号。本申请实施例的方法、终端设备和网络设备,有利于提高功率控制的准确性,从而能够提高系统传输的性能。

Description

传输信号的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种传输信号的方法、终端设备和网络设备。
背景技术
对于上行信号,终端的功率控制在节电和抑制小区间干扰两方面具有重要意义,因此,如何提高上行功率控制的准确性是一直研究的问题。
发明内容
有鉴于此,本申请实施例提供了一种传输信号的方法、终端设备和网络设备,有利于提高上行功率控制的准确性,从而能够提高系统传输的性能。
第一方面,提供了一种传输信号的方法,该方法包括:终端设备确定与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息;该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数;该终端设备根据该功率控制参数,确定该目标上行信号的发送功率;该终端设备根据该发送功率,向网络设备发送该目标上行信号。
CSI-RS资源指示信息可以是用于指示CSI-RS资源的指示信息。网络设备可以提前配置好或者通过协议约定好一个或多个CSI-RS资源,网络设备还可以提前配置好不同的CSI-RS资源或者不同的CSI-RS资源指示信息对应一组独立的功率控制参数,一组独立的功率控制参数包括至少一个功率控制参数的值。功率控制参数可以是发送功率的计算公式中的任一项或者多项参数的任意组合。
通过参考与网络设备发送的CSI-RS资源指示信息对应的功率控制参数来确定目标上行信号的发送功率,有利于提高上行功率控制的准确性,从而能够提高系统传输的性能。
在一种可能的实现方式中,该目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
在一种可能的实现方式中,该目标上行信号为基于非码本预编码的PUSCH或为用于获得基于非码本预编码的PUSCH的传输参数的探测参考 信号SRS。
在一种可能的实现方式中,该CSI-RS资源指示信息指示的CSI-RS资源用于获得该目标上行信号的预编码矩阵或发送波束,或用于获得与该目标上行信号对应的第一SRS的预编码矩阵或发送波束。
在一种可能的实现方式中,该第一SRS为用于获取该目标上行信号的传输参数的SRS,或该第一SRS为用于调度该目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的第一信息,该第一信息携带该CSI-RS资源指示信息;该终端设备确定与目标上行信号对应的CSI-RS资源指示信息,包括:该终端设备从该第一信息中,确定该CSI-RS资源指示信息。
在一种可能的实现方式中,若该目标上行信号为PUSCH,该第一信息为用于调度该PUSCH的DCI或用于配置、触发或激活与该PUSCH对应的第二SRS的下行信令。
在一种可能的实现方式中,该第二SRS为用于获取该PUSCH的传输参数的SRS,或该第二SRS为用于调度该PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
在一种可能的实现方式中,该传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
在一种可能的实现方式中,若该目标上行信号为SRS,该第一信息为用于配置、触发或激活该SRS的下行信令。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的配置信息,该配置信息用于指示至少一个CSI-RS资源与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源包括该CSI-RS资源指示信息指示的CSI-RS资源,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数,包括:该终端设备根据该CSI-RS资源指示信息以及该配置信息,确定该功率控制参数。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的配置信息,该配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源指示信息包括该 CSI-RS资源指示信息,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数,包括:该终端设备根据该CSI-RS资源指示信息以及该配置信息,确定该功率控制参数。
在一种可能的实现方式中,该功率控制参数包括以下信息中的至少一种信息:用于计算该发送功率的路损值、用于测量用于计算该发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
在一种可能的实现方式中,该开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
在一种可能的实现方式中,该闭环功率控制参数包括闭环功率控制进程的索引。
在一种可能的实现方式中,在该终端设备确定与目标上行信号对应的CSI-RS资源指示信息之前,该方法还包括:该终端设备采用该网络设备预配置的功率控制参数,确定该目标上行信号的发送功率。
第二方面,提供了一种传输信号的方法,该方法包括:网络设备向终端设备发送与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息,该CSI-RS资源指示信息用于该终端设备确定该目标上行信号的功率控制参数;该网络设备接收该终端设备基于该功率控制参数发送的该目标上行信号。
在一种可能的实现方式中,该目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
在一种可能的实现方式中,该目标上行信号为基于非码本预编码的物理上行共享信道PUSCH或为用于获得基于非码本预编码的物理上行共享信道PUSCH的传输参数的探测参考信号SRS。
在一种可能的实现方式中,该CSI-RS资源指示信息指示的CSI-RS资源用于获得该目标上行信号的预编码矩阵或发送波束,或用于获得与该目标上行信号对应的第一SRS的预编码矩阵或发送波束。
在一种可能的实现方式中,该第一SRS为用于获取该目标上行信号的传输参数的SRS,或该第一SRS为用于调度该目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
在一种可能的实现方式中,若该目标上行信号为PUSCH,该CSI-RS资 源指示信息承载于用于调度该PUSCH的下行控制信息DCI中或用于配置、触发或激活与该PUSCH对应的第二SRS的下行信令中。
在一种可能的实现方式中,该第二SRS为用于获得该PUSCH的传输参数的SRS,或该第二SRS为用于调度该PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
在一种可能的实现方式中,该传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
在一种可能的实现方式中,若该目标上行信号为SRS,该CSI-RS资源指示信息承载于用于配置、触发或激活该SRS的下行信令中。
在一种可能的实现方式中,该方法还包括:该网络设备向该终端设备发送配置信息,该配置信息用于指示该至少一个CSI-RS资源与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源包括该CSI-RS资源指示信息指示的CSI-RS资源,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
在一种可能的实现方式中,该方法还包括:该网络设备向该终端设备发送配置信息,该配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源指示信息包括该CSI-RS资源指示信息,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
在一种可能的实现方式中,该功率控制参数包括以下信息中的至少一种信息:用于计算该发送功率的路损值、用于测量用于计算该发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
在一种可能的实现方式中,该开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
在一种可能的实现方式中,该闭环功率控制参数包括闭环功率控制进程的索引。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二 方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述各方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法,或者上述第二方面或第二方面的任一可选的实现方式中的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了本申请实施例的传输信号的方法的示意性框图。
图3示出了本申请实施例的传输信号的方法的另一示意性框图。
图4示出了本申请实施例的终端设备的示意性框图。
图5示出了本申请实施例的网络设备的示意性框图。
图6示出了本申请实施例的终端设备的另一示意性框图。
图7示出了本申请实施例的网络设备的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全 球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络 设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
对于上行信号,终端的功率控制在节电和抑制小区间干扰两方面具有重要意义,因此,上行功率控制是LTE重点关注的部分。小区内的上行功率控制,分别包括控制物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)和探测参考信号(Sounding Reference Signal,SRS)的功率。
在NR中引入了两种上行传输方式:基于码本的传输方式和基于非码本的传输方式。对于基于码本的传输方式,传输所采用的上行波束是通过调度信息中的波束指示信息通知给终端的。终端采用不同的发送波束时,需要采用不同的功率控制参数。所述波束指示信息与上行的功率控制参数相关联,通过波束指示信息可以确定相应的功率控制参数。该关联关系通过RRC信令预先通知终端。
对于非码本的上行传输,网络侧可以为上行SRS或者PUSCH配置一个对应的CSI-RS资源。终端基于所述CSI-RS资源获得下行信道信息,再基于该下行信道信息和信道互易性来得到上行信道信息,根据该上行信道信息计算所述上行SRS或者PUSCH的预编码矩阵。传输采用的上行波束也可以由终端通过上下行波束对应性得到的,即终端可以通过下行信号的接收波束来得到上行信号的发送波束,不需要网络侧的波束指示。此时终端如何为不同的发送波束确定对应的功率控制参数是个问题。
图2示出了本申请实施例的传输信号的方法100的示意性框图。如图2所示,该方法100包括以下部分或全部内容:
S110,终端设备确定与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息;
S120,该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号 的功率控制参数;
S130,该终端设备根据该功率控制参数,确定该目标上行信号的发送功率;
S140,该终端设备根据该发送功率,向网络设备发送该目标上行信号。
具体地,网络设备可以提前配置好或者通过协议约定好一个或多个信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS)资源,在不同CSI-RS资源上发送的CSI-RS可以采用不同的波束,并且网络设备也可以提前配置好或者通过协议约定好该一个或多个CSI-RS资源与功率控制参数的对应关系或者一个或多个CSI-RS资源指示信息与功率控制参数的对应关系,也就是说,每一个CSI-RS资源或每一个CSI-RS资源指示信息可以对应一组独立的功率控制参数。网络设备可以向终端设备指示使用与哪个CSI-RS资源或CSI-RS资源指示信息对应的功率控制参数进行目标上行信号的传输,终端设备可以在网络设备指示的功率控制参数的基础上进行一定调整,确定目标上行信号的功率控制参数或者也可以直接将网络设备指示的功率控制参数确定为目标上行信号的功率控制参数。终端设备可以根据确定的功率控制参数进一步确定目标上行信号的发送功率,从而根据确定的发送功率向网络设备发送目标上行信号。
因此,本申请实施例的传输信号的方法,通过参考与网络设备发送的CSI-RS资源指示信息对应的功率控制参数来确定目标上行信号的发送功率,有利于提高上行功率控制的准确性,从而能够提高系统传输的性能。
目标上行信号可以是PUSCH、PUCCH或SRS等,本申请实施例对目标上行信号的类型不作限定,只要是上行信号都可以用本申请实施例技术方案确定发送功率。
进一步地,该目标上行信号为基于非码本预编码的PUSCH或为用于获得基于非码本预编码的PUSCH的传输参数的探测参考信号SRS。也就是说,该PUSCH的传输是基于非码本传输方式。例如,终端设备在接收到网络设备发送的CSI-RS资源指示信息,终端设备可以根据该CSI-RS资源指示信息指示的CSI-RS资源获得下行信道信息,再基于该下行信道信息和信道互易性来得到上行信道信息,并根据该上行信道信息计算该PUSCH的预编码信息。终端设备也可以通过波束对应性得到该PUSCH的发送波束,也就是说可以采用终端设备接收CSI-RS的接收波束来得到发送PUSCH的发送波束。 该SRS的传输也可以是基于非码本传输方式。该目标上行信号还可以是用来获取上述PUSCH的传输参数的SRS。
可选地,在本申请实施例中,该CSI-RS资源指示信息指示的CSI-RS资源用于获得该目标上行信号的预编码矩阵或发送波束,或用于获得与该目标上行信号对应的第一SRS的预编码矩阵或发送波束。
前文已经介绍过该CSI-RS资源指示信息指示的CSI-RS资源如何得到PUSCH的预编码矩阵或发送波束,该方法同样适用于任何上行信号,例如,前述PUCCH或SRS。
进一步地,该第一SRS为用于获取该目标上行信号的传输参数的SRS,或该第一SRS为用于调度该目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,上述各种上行信号的传输参数都可以通过第一SRS来获得。该传输参数可以包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。也就是说,终端设备接收到CSI-RS资源指示信息后,可以根据其指示的CSI-RS资源及信道互易性,确定出第一SRS的预编码矩阵或发送波束。终端基于该预编码矩阵或发送波束发送该第一SRS后,网络侧可以根据该第一SRS来确定目标上行信号的传输参数,并将所确定的传输参数指示给终端,或者根据所确定的传输参数对终端进行调度。所述第一SRS用于得到所述目标上行信号的传输参数,可以通过所述第一SRS的天线端口数等于所述目标上行信号的传输端口数来实现。
另外,目标上行信号与SRS关联,也可以通过在调度目标上行信号的下行控制信息(Downlink Control Information,DCI)中携带指示SRS资源的SRS资源指示信息来体现。一般地,所述DCI携带的SRS资源指示信息即用于指示与所述目标上行信号关联的SRS资源,在该资源上传输的SRS即为第一SRS。
在本申请实施例中,与目标上行信号对应的CSI-RS资源指示信息中的“对应”可以是指网络设备和终端设备预先约定好或者由网络设备配置好某种指示方式是属于特定的一种上行信号,例如,可以约定好用于调度PUSCH的下行控制信息(Downlink Control Information,DCI)中的某个特定域为该PUSCH对应的CSI-RS资源指示信息。
另外,本领域技术人员理解,CSI-RS资源指示信息可以是用于指示CSI-RS资源的指示信息。例如,网络设备和终端设备预先约定好4种CSI-RS资源,,并提前约定好采用2个bit来指示该4个CSI-RS资源,具体地,CSI-RS资源1对应的指示信息为00,CSI-RS资源2对应的指示信息为01,CSI-RS资源3对应的指示信息为10,CSI-RS资源4对应的指示信息为11。
应理解,本申请实施例中的功率控制参数可以是发送功率的计算公式中的任一项或者多项参数的任意组合。例如,发送功率的计算公式一般包括:终端设备的最大允许发射功率、功率偏移量、上行信号在子帧上的传输带宽、目标接收功率、路径损耗补偿因子、闭环功率调整量和路径损耗等。也就是说,在本申请实施例中,每一个CSI-RS资源或每一个CSI-RS资源指示信息对应的一组功率控制参数包括至少一项参数的取值。
下面将分别以目标上行信号为PUSCH和SRS为例详细描述本申请实施例中的CSI-RS的承载方式。
可选地,在本申请实施例中,该方法还包括:该终端设备接收该网络设备发送的第一信息,该第一信息携带该CSI-RS资源指示信息;该终端设备确定与目标上行信号对应的CSI-RS资源指示信息,包括:该终端设备从该第一信息中,确定该CSI-RS资源指示信息。
应理解,该第一信息可以是如无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等高层信令、DCI信令、系统信息等。
实施例1:如果所述目标上行信号为PUSCH,且所述CSI-RS资源指示信息为网络设备为所述PUSCH配置的CSI-RS资源指示信息,所述CSI-RS资源指示信息可以通过调度该PUSCH的DCI承载。
实施例2:如果该目标上行信号为PUSCH,且该CSI-RS资源指示信息为网络设备为与该PUSCH对应的SRS配置的CSI-RS资源指示信息,那么该CSI-RS资源指示信息可以通过网络设备配置、触发或激活该SRS传输的下行信令承载。具体地,如果该SRS为周期性的SRS,可以通过配置该SRS传输的RRC信令携带该CSI-RS资源指示信息。如果该SRS为非周期性的SRS,可以通过触发该SRS传输的DCI携带该CSI-RS资源指示信息。此时,该DCI的传输资源与该CSI-RS资源指示信息指示的CSI-RS资源可以包含在同一个时隙中。如果该SRS为准持续性SRS,可以通过激活该SRS传输 的MAC信令或者通过RRC信令携带该CSI-RS资源指示信息。
实施例3:如果该目标上行信号为SRS,则该CSI-RS资源指示信息可以通过网络设备配置、触发或激活该SRS传输的下行信令承载。具体地,如果该SRS为周期性的SRS,可以通过配置该SRS传输的RRC信令携带该CSI-RS资源指示信息。如果该SRS为非周期性的SRS,可以通过触发该SRS传输的DCI携带该CSI-RS资源指示信息。此时,该DCI的传输资源与该CSI-RS资源指示信息指示的CSI-RS资源可以包含在同一个时隙中。如果该SRS为准持续性SRS,可以通过激活该SRS传输的MAC信令或者通过RRC信令携带该CSI-RS资源指示信息。
可选地,在本申请实施例中,该方法还包括:该终端设备接收该网络设备发送的配置信息,该配置信息用于指示至少一个CSI-RS资源与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源包括该CSI-RS资源指示信息指示的CSI-RS资源,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数,包括:该终端设备根据该CSI-RS资源指示信息以及该配置信息,确定该功率控制参数。
可选地,在本申请实施例中,该方法还包括:该终端设备接收该网络设备发送的配置信息,该配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源指示信息包括该CSI-RS资源指示信息,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;该终端设备根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数,包括:该终端设备根据该CSI-RS资源指示信息以及该配置信息,确定该功率控制参数。
具体的,网络侧预先配置所述至少一个CSI-RS资源中的每个资源,或者所述至少一个CSI-RS资源指示信息中的每个信息,所对应的一组功率控制参数的取值,从而终端可以根据当前所指示的CSI-RS资源或者当前的CSI-RS资源指示信息来确定对应的一组功率控制参数的取值。这里,一组功率控制参数可以只包含一个功率控制参数,例如开环功率控制参数或者路损值,也可以包含多个参数,例如开环功率控制参数和路损值。
例如,网络设备和终端设备预先约定好4种CSI-RS资源,并且该4种CSI-RS资源分别都有独立的功率控制参数,那么网络设备和终端设备还可 以提前约定好采用2个bit来指示该4个CSI-RS资源,具体地,CSI-RS资源1对应的指示信息为00,CSI-RS资源2对应的指示信息为01,CSI-RS资源3对应的指示信息为10,CSI-RS资源4对应的指示信息为11。也就是说,网络设备可以配置00对应功率控制参数组1,01对应功率控制参数组2,10对应功率控制参数组3,11对应功率控制参数组4。网络设备也可以配置CSI-RS资源1对应功率控制参数组1,CSI-RS资源2对应功率控制参数组2,CSI-RS资源3对应功率控制参数组3,CSI-RS资源4对应功率控制参数组4。其中,功率控制参数组1-4对应同一组功率控制参数的不同取值情况。
CSI-RS资源和CSI-RS资源指示信息中的至少一种与功率控制参数是有对应关系的。也就是说,终端设备在接收到CSI-RS资源指示信息后,根据该指示信息的取值确定与之对应的功率控制参数,终端设备也可以是在接收到CSI-RS资源指示信息后,先根据指示信息确定该指示信息指示的CSI-RS资源,进一步地根据该CSI-RS资源确定与之对应的功率控制参数,本申请对此不构成限定。
可选地,在本申请实施例中,该功率控制参数包括以下信息中的至少一种信息:用于计算该发送功率的路损值、用于测量用于计算该发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
其中,该用于测量用于计算该发送功率的路损值的下行信号的信息可以认为是路损参考关联信息。也就是说可以是用于对目标上行信号的路径损耗进行估计的下行信号的子集。例如,针对PUSCH的路损参考关联信息可以是指下行导频信号的配置集合中的哪些下行导频信号用于进行路径损耗的测量从而估计PUSCH的路径损耗。该下行信号可以是下行同步信号块(Synchronous signal Block,SSB)、CSI-RS或者物理广播信道(Physical Broadcast Channel,PBCH)、解调参考信号(Demodulation Reference Signal,DMRS)。例如,该终端基于该CSI-RS资源指示信息所指示的CSI-RS资源进行下行路损测量,从而得到该路损值。再例如,该终端根据该CSI-RS资源指示信息确定对应的一个下行信号的索引k,基于该索引k指示的下行信号进行下行路损测量,从而得到该路损值。这里该CSI-RS资源指示信息和下行信号的索引k的对应关系由网络侧通过高层信令预先配置。
可选地,该开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引j或路损加权因子a的索引p。其中,索引j从高 层信令预先配置的多个目标功率取值中指示一个目标功率,索引p从高层信令预先配置的多个路损加权因子取值中指示一个路损加权因子。这里,目标功率Po的取值、路损加权因子a的取值、目标功率Po的索引j和路损加权因子的索引p与CSI-RS资源指示信息的对应关系可以由高层信令预先配置好。
可选地,该闭环功率控制参数包括闭环功率控制进程的索引1。其中,索引l从预先定义的至少一个功率控制进程中指示一个功率控制进程,索引l与CSI-RS资源指示信息的对应关系可以由高层信令预先配置好。
可选地,在本申请实施例中,在该终端设备确定与目标上行信号对应的CSI-RS资源指示信息之前,该方法还包括:该终端设备采用该网络设备预配置的功率控制参数,确定该目标上行信号的发送功率。
具体地,如果终端没有接收到网络侧发送的CSI-RS资源指示信息,则采用网络侧预先为所述目标上行信号配置的功率控制参数,直到接收到所述CSI-RS资源指示信息为止。具体的,接收到该CSI-RS资源指示信息后,就采用该CSI-RS资源指示信息对应的功率控制参数来代替网络侧预先配置的值。
图3示出了本申请实施例的传输信号的方法200的示意性框图。如图3所示,该方法200包括以下部分或全部内容:
S210,网络设备向终端设备发送与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息,该CSI-RS资源指示信息用于该终端设备确定该目标上行信号的功率控制参数;
S220,该网络设备接收该终端设备基于该功率控制参数发送的该目标上行信号。
因此,本申请实施例的传输信号的方法,通过参考与网络设备发送的CSI-RS资源指示信息对应的功率控制参数来确定目标上行信号的发送功率,有利于提高上行功率控制的准确性,从而能够提高系统传输的性能。
可选地,在本申请实施例中,该目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
可选地,在本申请实施例中,该目标上行信号为基于非码本预编码的物理上行共享信道PUSCH或为用于获得基于非码本预编码的物理上行共享信道PUSCH的传输参数的探测参考信号SRS。
可选地,在本申请实施例中,该CSI-RS资源指示信息指示的CSI-RS资源用于获得该目标上行信号的预编码矩阵或发送波束,或用于获得与该目标上行信号对应的第一SRS的预编码矩阵或发送波束。
可选地,在本申请实施例中,该第一SRS为用于获取该目标上行信号的传输参数的SRS,或该第一SRS为用于调度该目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,若该目标上行信号为PUSCH,该CSI-RS资源指示信息承载于用于调度该PUSCH的下行控制信息DCI中或用于配置、触发或激活与该PUSCH对应的第二SRS的下行信令中。
可选地,在本申请实施例中,该第二SRS为用于获得该PUSCH的传输参数的SRS,或该第二SRS为用于调度该PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,该传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
可选地,在本申请实施例中,若该目标上行信号为SRS,该CSI-RS资源指示信息承载于用于配置、触发或激活该SRS的下行信令中。
可选地,在本申请实施例中,该方法还包括:该网络设备向该终端设备发送配置信息,该配置信息用于指示该至少一个CSI-RS资源与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源包括该CSI-RS资源指示信息指示的CSI-RS资源,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
可选地,在本申请实施例中,该方法还包括:该网络设备向该终端设备发送配置信息,该配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源指示信息包括该CSI-RS资源指示信息,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
可选地,在本申请实施例中,该功率控制参数包括以下信息中的至少一种信息:用于计算该发送功率的路损值、用于测量用于计算该发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
可选地,在本申请实施例中,该开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
可选地,在本申请实施例中,该闭环功率控制参数包括闭环功率控制进程的索引。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。并且相关内容在上述方法100中已经作了详尽描述,为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的传输信号的方法,下面将结合图4至图7,描述根据本申请实施例的传输信号的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图4示出了本申请实施例的终端设备300的示意性框图。如图4所示,该终端设备300包括:
第一确定单元310,用于确定与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息;
第二确定单元320,用于根据该CSI-RS资源指示信息,确定该目标上行信号的功率控制参数;
第三确定单元330,用于根据该功率控制参数,确定该目标上行信号的发送功率;
发送单元340,用于根据该发送功率,向网络设备发送该目标上行信号。
因此,本申请实施例的终端设备,有利于提高功率控制的准确性,从而提高系统传输的性能。
可选地,在本申请实施例中,该目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
可选地,在本申请实施例中,该目标上行信号为基于非码本预编码的PUSCH或为用于获得基于非码本预编码的PUSCH的传输参数的探测参考 信号SRS。
可选地,在本申请实施例中,该CSI-RS资源指示信息指示的CSI-RS资源用于获得该目标上行信号的预编码矩阵或发送波束,或用于获得与该目标上行信号对应的第一SRS的预编码矩阵或发送波束。
可选地,在本申请实施例中,该第一SRS为用于获取该目标上行信号的传输参数的SRS,或该第一SRS为用于调度该目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,该终端设备还包括:第一接收单元,用于接收该网络设备发送的第一信息,该第一信息携带该CSI-RS资源指示信息;该第一确定单元具体用于:从该第一信息中,确定该CSI-RS资源指示信息。
可选地,在本申请实施例中,若该目标上行信号为PUSCH,该第一信息为用于调度该PUSCH的DCI或用于配置、触发或激活与该PUSCH对应的第二SRS的下行信令。
可选地,在本申请实施例中,该第二SRS为用于获取该PUSCH的传输参数的SRS,或该第二SRS为用于调度该PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,该传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
可选地,在本申请实施例中,若该目标上行信号为SRS,该第一信息为用于配置、触发或激活该SRS的下行信令。
可选地,在本申请实施例中,该终端设备还包括:第二接收单元,用于接收该网络设备发送的配置信息,该配置信息用于指示至少一个CSI-RS资源与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源包括该CSI-RS资源指示信息指示的CSI-RS资源,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;该第二确定单元具体用于:根据该CSI-RS资源指示信息以及该配置信息,确定该功率控制参数。
可选地,在本申请实施例中,该终端设备还包括:第二接收单元,用于接收该网络设备发送的配置信息,该配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源指示信息包括该CSI-RS资源指示信息,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;该第二确定单元具体用于:根 据该CSI-RS资源指示信息以及该配置信息,确定该功率控制参数。
可选地,在本申请实施例中,该功率控制参数包括以下信息中的至少一种信息:用于计算该发送功率的路损值、用于测量用于计算该发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
可选地,在本申请实施例中,该开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
可选地,在本申请实施例中,该闭环功率控制参数包括闭环功率控制进程的索引。
可选地,在本申请实施例中,在该终端设备确定与目标上行信号对应的CSI-RS资源指示信息之前,该终端设备还包括:第四确定单元,用于在该第一确定单元确定与目标上行信号对应的CSI-RS资源指示信息之前,采用该网络设备预配置的功率控制参数,确定该目标上行信号的发送功率。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中终端设备的相应流程,为了简洁,在此不再赘述。
图5示出了本申请实施例的网络设备400的示意性框图。如图5所示,该网络设备400包括:
第一发送单元410,用于向终端设备发送与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息,该CSI-RS资源指示信息用于该终端设备确定该目标上行信号的功率控制参数;
接收单元420,用于接收该终端设备基于该功率控制参数发送的该目标上行信号。
因此,本申请实施例的网络设备,有利于提高功率控制的准确性,从而提高系统传输的性能。
可选地,在本申请实施例中,该目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
可选地,在本申请实施例中,该目标上行信号为基于非码本预编码的物理上行共享信道PUSCH或为用于获得基于非码本预编码的物理上行共享信道PUSCH的传输参数的探测参考信号SRS。
可选地,在本申请实施例中,该CSI-RS资源指示信息指示的CSI-RS资源用于获得该目标上行信号的预编码矩阵或发送波束,或用于获得与该目 标上行信号对应的第一SRS的预编码矩阵或发送波束。
可选地,在本申请实施例中,该第一SRS为用于获取该目标上行信号的传输参数的SRS,或该第一SRS为用于调度该目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,若该目标上行信号为PUSCH,该CSI-RS资源指示信息承载于用于调度该PUSCH的下行控制信息DCI中或用于配置、触发或激活与该PUSCH对应的第二SRS的下行信令中。
可选地,在本申请实施例中,该第二SRS为用于获得该PUSCH的传输参数的SRS,或该第二SRS为用于调度该PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
可选地,在本申请实施例中,该传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
可选地,在本申请实施例中,若该目标上行信号为SRS,该CSI-RS资源指示信息承载于用于配置、触发或激活该SRS的下行信令中。
可选地,在本申请实施例中,该网络设备还包括:第二发送单元,用于向该终端设备发送配置信息,该配置信息用于指示该至少一个CSI-RS资源与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源包括该CSI-RS资源指示信息指示的CSI-RS资源,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
可选地,在本申请实施例中,该网络设备还包括:第二发送单元,用于向该终端设备发送配置信息,该配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,该至少一个CSI-RS资源指示信息包括该CSI-RS资源指示信息,该至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
可选地,在本申请实施例中,该功率控制参数包括以下信息中的至少一种信息:用于计算该发送功率的路损值、用于测量用于计算该发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
可选地,在本申请实施例中,该开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
可选地,在本申请实施例中,该闭环功率控制参数包括闭环功率控制进程的索引。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3方法中网络设备的相应流程,为了简洁,在此不再赘述。
如图6所示,本申请实施例还提供了一种终端设备500,该终端设备500可以是图4中的终端设备300,其能够用于执行与图2中方法100对应的终端设备的内容。该终端设备500包括:输入接口510、输出接口520、处理器530以及存储器540,该输入接口510、输出接口520、处理器530和存储器540可以通过总线系统相连。该存储器540用于存储包括程序、指令或代码。该处理器530,用于执行该存储器540中的程序、指令或代码,以控制输入接口510接收信号、控制输出接口520发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的终端设备,有利于提高上行功率控制的准确性,从而能够提高系统传输的性能。
应理解,在本申请实施例中,该处理器530可以是中央处理单元(Central Processing Unit,CPU),该处理器530还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器540可以包括只读存储器和随机存取存储器,并向处理器530提供指令和数据。存储器540的一部分还可以包括非易失性随机存取存储器。例如,存储器540还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器530中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器540,处理器530读取存储器540中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,终端设备300中的第一确定单元、第二确定单 元、第三确定单元以及第四确定单元可以由图6中的处理器530实现,终端设备300的发送单元可以由图6中的输出接口520实现,终端设备300的第一接收单元和第二接收单元可以由图6中的输入接口510实现。
如图7所示,本申请实施例还提供了一种网络设备600,该网络设备600可以是图5中的网络设备400,其能够用于执行与图3中方法200对应的网络设备的内容。该网络设备600包括:输入接口610、输出接口620、处理器630以及存储器640,该输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。该存储器640用于存储包括程序、指令或代码。该处理器630,用于执行该存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的网络设备,有利于提高功率控制的准确性,从而提高系统传输的性能。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central Processing Unit,CPU),该处理器630还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,网络设备400中的第一发送单元和第二发送单 元可以由图7中的输出接口620实现,网络设备400中的接收单元可以由图7中的输入接口610实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随 机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (60)

  1. 一种传输信号的方法,其特征在于,包括:
    终端设备确定与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息;
    所述终端设备根据所述CSI-RS资源指示信息,确定所述目标上行信号的功率控制参数;
    所述终端设备根据所述功率控制参数,确定所述目标上行信号的发送功率;
    所述终端设备根据所述发送功率,向网络设备发送所述目标上行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标上行信号为基于非码本预编码的PUSCH或为用于获得基于非码本预编码的PUSCH的传输参数的探测参考信号SRS。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述CSI-RS资源指示信息指示的CSI-RS资源用于获得所述目标上行信号的预编码矩阵或发送波束,或用于获得与所述目标上行信号对应的第一SRS的预编码矩阵或发送波束。
  5. 根据权利要求4所述的方法,其特征在于,所述第一SRS为用于获取所述目标上行信号的传输参数的SRS,或所述第一SRS为用于调度所述目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一信息,所述第一信息携带所述CSI-RS资源指示信息;
    所述终端设备确定与目标上行信号对应的CSI-RS资源指示信息,包括:
    所述终端设备从所述第一信息中,确定所述CSI-RS资源指示信息。
  7. 根据权利要求6所述的方法,其特征在于,若所述目标上行信号为PUSCH,所述第一信息为用于调度所述PUSCH的DCI或用于配置、触发或激活与所述PUSCH对应的第二SRS的下行信令。
  8. 根据权利要求7所述的方法,其特征在于,所述第二SRS为用于获取所述PUSCH的传输参数的SRS,或所述第二SRS为用于调度所述PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
  9. 根据权利要求3、5和8中任一项所述的方法,其特征在于,所述传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
  10. 根据权利要求6所述的方法,其特征在于,若所述目标上行信号为SRS,所述第一信息为用于配置、触发或激活所述SRS的下行信令。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个CSI-RS资源与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源包括所述CSI-RS资源指示信息指示的CSI-RS资源,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;
    所述终端设备根据所述CSI-RS资源指示信息,确定所述目标上行信号的功率控制参数,包括:
    所述终端设备根据所述CSI-RS资源指示信息以及所述配置信息,确定所述功率控制参数。
  12. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源指示信息包括所述CSI-RS资源指示信息,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;
    所述终端设备根据所述CSI-RS资源指示信息,确定所述目标上行信号的功率控制参数,包括:
    所述终端设备根据所述CSI-RS资源指示信息以及所述配置信息,确定所述功率控制参数。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述功率控制参数包括以下信息中的至少一种信息:用于计算所述发送功率的路损值、用于测量用于计算所述发送功率的路损值的下行信号的信息、开环功率 控制参数和闭环功率控制参数。
  14. 根据权利要求13所述的方法,其特征在于,所述开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
  15. 根据权利要求13所述的方法,其特征在于,所述闭环功率控制参数包括闭环功率控制进程的索引。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,在所述终端设备确定与目标上行信号对应的CSI-RS资源指示信息之前,所述方法还包括:
    所述终端设备采用所述网络设备预配置的功率控制参数,确定所述目标上行信号的发送功率。
  17. 一种传输信号的方法,其特征在于,包括:
    网络设备向终端设备发送与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息,所述CSI-RS资源指示信息用于所述终端设备确定所述目标上行信号的功率控制参数;
    所述网络设备接收所述终端设备基于所述功率控制参数发送的所述目标上行信号。
  18. 根据权利要求17所述的方法,其特征在于,所述目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
  19. 根据权利要求17或18所述的方法,其特征在于,所述目标上行信号为基于非码本预编码的物理上行共享信道PUSCH或为用于获得基于非码本预编码的物理上行共享信道PUSCH的传输参数的探测参考信号SRS。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述CSI-RS资源指示信息指示的CSI-RS资源用于获得所述目标上行信号的预编码矩阵或发送波束,或用于获得与所述目标上行信号对应的第一SRS的预编码矩阵或发送波束。
  21. 根据权利要求20所述的方法,其特征在于,所述第一SRS为用于获取所述目标上行信号的传输参数的SRS,或所述第一SRS为用于调度所述目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,若所述目标上行信号为PUSCH,所述CSI-RS资源指示信息承载于用于调度所述PUSCH的下行控制信息DCI中或用于配置、触发或激活与所述PUSCH对应的第二SRS的下行信令中。
  23. 根据权利要求22所述的方法,其特征在于,所述第二SRS为用于获得所述PUSCH的传输参数的SRS,或所述第二SRS为用于调度所述
    PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
  24. 根据权利要求19、21和23中任一项所述的方法,其特征在于,所述传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
  25. 根据权利要求17至24中任一项所述的方法,其特征在于,若所述目标上行信号为SRS,所述CSI-RS资源指示信息承载于用于配置、触发或激活所述SRS的下行信令中。
  26. 根据权利要求17至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示所述至少一个CSI-RS资源与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源包括所述CSI-RS资源指示信息指示的CSI-RS资源,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
  27. 根据权利要求17至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源指示信息包括所述CSI-RS资源指示信息,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
  28. 根据权利要求17至27中任一项所述的方法,其特征在于,所述功率控制参数包括以下信息中的至少一种信息:用于计算所述发送功率的路损值、用于测量用于计算所述发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
  29. 根据权利要求28所述的方法,其特征在于,所述开环功率控制参 数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
  30. 根据权利要求28所述的方法,其特征在于,所述闭环功率控制参数包括闭环功率控制进程的索引。
  31. 一种终端设备,其特征在于,所述终端设备包括:
    第一确定单元,用于确定与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息;
    第二确定单元,用于根据所述CSI-RS资源指示信息,确定所述目标上行信号的功率控制参数;
    第三确定单元,用于根据所述功率控制参数,确定所述目标上行信号的发送功率;
    发送单元,用于根据所述发送功率,向网络设备发送所述目标上行信号。
  32. 根据权利要求31所述的终端设备,其特征在于,所述目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
  33. 根据权利要求31或32所述的终端设备,其特征在于,所述目标上行信号为基于非码本预编码的PUSCH或为用于获得基于非码本预编码的PUSCH的传输参数的探测参考信号SRS。
  34. 根据权利要求31至33中任一项所述的终端设备,其特征在于,所述CSI-RS资源指示信息指示的CSI-RS资源用于获得所述目标上行信号的预编码矩阵或发送波束,或用于获得与所述目标上行信号对应的第一SRS的预编码矩阵或发送波束。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第一SRS为用于获取所述目标上行信号的传输参数的SRS,或所述第一SRS为用于调度所述目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
  36. 根据权利要求31至35中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第一接收单元,用于接收所述网络设备发送的第一信息,所述第一信息携带所述CSI-RS资源指示信息;
    所述第一确定单元具体用于:
    从所述第一信息中,确定所述CSI-RS资源指示信息。
  37. 根据权利要求36所述的终端设备,其特征在于,若所述目标上行信号为PUSCH,所述第一信息为用于调度所述PUSCH的DCI或用于配置、触发或激活与所述PUSCH对应的第二SRS的下行信令。
  38. 根据权利要求37所述的终端设备,其特征在于,所述第二SRS为用于获取所述PUSCH的传输参数的SRS,或所述第二SRS为用于调度所述PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
  39. 根据权利要求33、35和38中任一项所述的终端设备,其特征在于,所述传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
  40. 根据权利要求36所述的终端设备,其特征在于,若所述目标上行信号为SRS,所述第一信息为用于配置、触发或激活所述SRS的下行信令。
  41. 根据权利要求31至40中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第二接收单元,用于接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个CSI-RS资源与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源包括所述CSI-RS资源指示信息指示的CSI-RS资源,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;
    所述第二确定单元具体用于:
    根据所述CSI-RS资源指示信息以及所述配置信息,确定所述功率控制参数。
  42. 根据权利要求31至40中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第二接收单元,用于接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源指示信息包括所述CSI-RS资源指示信息,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值;
    所述第二确定单元具体用于:
    根据所述CSI-RS资源指示信息以及所述配置信息,确定所述功率控制 参数。
  43. 根据权利要求31至42中任一项所述的终端设备,其特征在于,所述功率控制参数包括以下信息中的至少一种信息:用于计算所述发送功率的路损值、用于测量用于计算所述发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
  44. 根据权利要求43所述的终端设备,其特征在于,所述开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
  45. 根据权利要求43所述的终端设备,其特征在于,所述闭环功率控制参数包括闭环功率控制进程的索引。
  46. 根据权利要求31至45中任一项所述的终端设备,其特征在于,在所述终端设备确定与目标上行信号对应的CSI-RS资源指示信息之前,所述终端设备还包括:
    第四确定单元,用于在所述第一确定单元确定与目标上行信号对应的CSI-RS资源指示信息之前,采用所述网络设备预配置的功率控制参数,确定所述目标上行信号的发送功率。
  47. 一种网络设备,其特征在于,所述网络设备包括:
    第一发送单元,用于向终端设备发送与目标上行信号对应的信道状态信息-参考信号CSI-RS资源指示信息,所述CSI-RS资源指示信息用于所述终端设备确定所述目标上行信号的功率控制参数;
    接收单元,用于接收所述终端设备基于所述功率控制参数发送的所述目标上行信号。
  48. 根据权利要求47所述的网络设备,其特征在于,所述目标上行信号为物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS。
  49. 根据权利要求47或48所述的网络设备,其特征在于,所述目标上行信号为基于非码本预编码的物理上行共享信道PUSCH或为用于获得基于非码本预编码的物理上行共享信道PUSCH的传输参数的探测参考信号
    SRS。
  50. 根据权利要求47至49中任一项所述的网络设备,其特征在于,所述CSI-RS资源指示信息指示的CSI-RS资源用于获得所述目标上行信号的预 编码矩阵或发送波束,或用于获得与所述目标上行信号对应的第一SRS的预编码矩阵或发送波束。
  51. 根据权利要求50所述的网络设备,其特征在于,所述第一SRS为用于获取所述目标上行信号的传输参数的SRS,或所述第一SRS为用于调度所述目标上行信号的下行控制信息DCI中携带的SRS资源指示信息所指示的SRS资源上传输的SRS。
  52. 根据权利要求47至51中任一项所述的网络设备,其特征在于,若所述目标上行信号为PUSCH,所述CSI-RS资源指示信息承载于用于调度所述PUSCH的下行控制信息DCI中或用于配置、触发或激活与所述PUSCH对应的第二SRS的下行信令中。
  53. 根据权利要求52所述的网络设备,其特征在于,所述第二SRS为用于获得所述PUSCH的传输参数的SRS,或所述第二SRS为用于调度所述PUSCH的DCI中包含的SRS资源指示信息所指示的SRS资源上传输的SRS。
  54. 根据权利要求49、51和53中任一项所述的网络设备,其特征在于,所述传输参数包括以下信息中的至少一项:所用的频域资源、层数、预编码矩阵、调制编码方式和发送波束。
  55. 根据权利要求47至54中任一项所述的网络设备,其特征在于,若所述目标上行信号为SRS,所述CSI-RS资源指示信息承载于用于配置、触发或激活所述SRS的下行信令中。
  56. 根据权利要求47至55中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第二发送单元,用于向所述终端设备发送配置信息,所述配置信息用于指示所述至少一个CSI-RS资源与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源包括所述CSI-RS资源指示信息指示的CSI-RS资源,所述至少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
  57. 根据权利要求47至55中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第二发送单元,用于向所述终端设备发送配置信息,所述配置信息用于指示至少一个CSI-RS资源指示信息与至少一组功率控制参数的对应关系,所述至少一个CSI-RS资源指示信息包括所述CSI-RS资源指示信息,所述至 少一组功率控制参数中每组功率控制参数包括至少一个功率控制参数的值。
  58. 根据权利要求47至57中任一项所述的网络设备,其特征在于,所述功率控制参数包括以下信息中的至少一种信息:用于计算所述发送功率的路损值、用于测量用于计算所述发送功率的路损值的下行信号的信息、开环功率控制参数和闭环功率控制参数。
  59. 根据权利要求58所述的网络设备,其特征在于,所述开环功率控制参数包括目标功率Po的值、路损加权因子a的值、目标功率Po的索引或路损加权因子a的索引。
  60. 根据权利要求58所述的网络设备,其特征在于,所述闭环功率控制参数包括闭环功率控制进程的索引。
PCT/CN2017/112718 2017-11-23 2017-11-23 传输信号的方法、终端设备和网络设备 WO2019100296A1 (zh)

Priority Applications (20)

Application Number Priority Date Filing Date Title
FIEP21195374.0T FI3965481T3 (fi) 2017-11-23 2017-11-23 Signaalin lähetysmenetelmä, päätelaite ja verkkolaite
AU2017440897A AU2017440897B2 (en) 2017-11-23 2017-11-23 Signal transmission method, terminal device and network device
SG11202004644QA SG11202004644QA (en) 2017-11-23 2017-11-23 Signal transmission method, terminal device, and network device
BR112020010070-6A BR112020010070A2 (pt) 2017-11-23 2017-11-23 método de transmissão de sinal, dispositivo terminal, e meio legível por computador não transitório
CN201780095753.7A CN111201815A (zh) 2017-11-23 2017-11-23 传输信号的方法、终端设备和网络设备
JP2020527875A JP6999811B2 (ja) 2017-11-23 2017-11-23 信号伝送の方法、端末装置、及びネットワーク装置
EP21195374.0A EP3965481B1 (en) 2017-11-23 2017-11-23 Signal transmission method and network device
CN202010423295.9A CN111542105B (zh) 2017-11-23 2017-11-23 传输信号的方法、终端设备和网络设备
PCT/CN2017/112718 WO2019100296A1 (zh) 2017-11-23 2017-11-23 传输信号的方法、终端设备和网络设备
RU2020119492A RU2738221C1 (ru) 2017-11-23 2017-11-23 Способ передачи сигналов, терминальное устройство и сетевое устройство
CA3083010A CA3083010A1 (en) 2017-11-23 2017-11-23 Signal transmission method, terminal device and network device
EP17933143.4A EP3709720B1 (en) 2017-11-23 2017-11-23 Signal transmission method, terminal device and computer readable medium
ES17933143T ES2899626T3 (es) 2017-11-23 2017-11-23 Método de transmisión de señal, dispositivo terminal y medio legible por ordenador
KR1020207014287A KR102356351B1 (ko) 2017-11-23 2017-11-23 신호를 전송하는 방법, 단말 장치와 네트워크 장치
EP24156875.7A EP4366400A2 (en) 2017-11-23 2017-11-23 Signal transmission method, terminal device, and network device
MX2020005215A MX2020005215A (es) 2017-11-23 2017-11-23 Procedimiento de transmisión de señal, dispositivo terminal y dispositivo de red.
US16/879,592 US10945218B2 (en) 2017-11-23 2020-05-20 Signal transmission method, terminal device, and network device
US17/158,544 US11432245B2 (en) 2017-11-23 2021-01-26 Signal transmission method, terminal device, and network device
AU2021209147A AU2021209147B2 (en) 2017-11-23 2021-07-26 Signal transmission method, terminal device and network device
US17/816,037 US11758485B2 (en) 2017-11-23 2022-07-29 Signal transmission method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112718 WO2019100296A1 (zh) 2017-11-23 2017-11-23 传输信号的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/879,592 Continuation US10945218B2 (en) 2017-11-23 2020-05-20 Signal transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2019100296A1 true WO2019100296A1 (zh) 2019-05-31

Family

ID=66631275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112718 WO2019100296A1 (zh) 2017-11-23 2017-11-23 传输信号的方法、终端设备和网络设备

Country Status (14)

Country Link
US (3) US10945218B2 (zh)
EP (3) EP4366400A2 (zh)
JP (1) JP6999811B2 (zh)
KR (1) KR102356351B1 (zh)
CN (2) CN111201815A (zh)
AU (2) AU2017440897B2 (zh)
BR (1) BR112020010070A2 (zh)
CA (1) CA3083010A1 (zh)
ES (1) ES2899626T3 (zh)
FI (1) FI3965481T3 (zh)
MX (1) MX2020005215A (zh)
RU (1) RU2738221C1 (zh)
SG (1) SG11202004644QA (zh)
WO (1) WO2019100296A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800861A (zh) * 2019-07-12 2020-10-20 维沃移动通信有限公司 功率控制方法及设备
CN113131980A (zh) * 2019-12-31 2021-07-16 维沃移动通信有限公司 信息上报、指示方法、终端设备和网络设备
WO2023050213A1 (zh) * 2021-09-29 2023-04-06 北京小米移动软件有限公司 通信方法、装置及存储介质
EP4096185A4 (en) * 2020-02-14 2023-05-10 Huawei Technologies Co., Ltd. INFORMATION TRANSMITTING METHOD AND DEVICE AND INFORMATION RECEIVING METHOD AND DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750269B2 (en) * 2009-10-23 2014-06-10 Electronics And Telecommunications Research Institute Method and apparatus for controlling transmission power in WLAN system
CN110035484A (zh) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点
CN110475330B (zh) * 2018-05-11 2021-05-25 电信科学技术研究院有限公司 一种上行功率控制方法、终端及网络设备
CN111082905B (zh) * 2018-10-18 2021-06-15 华为技术有限公司 信息接收、发送方法及装置
US11576060B2 (en) 2019-05-30 2023-02-07 Qualcomm Incorporated Maximum number of path loss or uplink spatial transmit beam reference signals for downlink or uplink positioning reference signals
CN113972938B (zh) * 2020-07-24 2023-08-22 华为技术有限公司 一种通信方法及装置
WO2022067823A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种上行功率控制方法及设备
WO2022075745A1 (ko) * 2020-10-06 2022-04-14 엘지전자 주식회사 전력 제어 방법 및 장치
CN115623500A (zh) * 2021-07-12 2023-01-17 中兴通讯股份有限公司 功率控制方法、装置、网络节点、终端及存储介质
CN117676873A (zh) * 2022-08-11 2024-03-08 华为技术有限公司 上行资源指示方法及通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413067A (zh) * 2011-08-18 2017-02-15 华为技术有限公司 上行功率控制的方法、用户设备和基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904944B1 (ko) * 2011-02-22 2018-10-08 엘지전자 주식회사 무선 통신 시스템에서 단말의 측정 수행 방법 및 이를 위한 장치
CN103797865A (zh) * 2011-06-17 2014-05-14 瑞典爱立信有限公司 无线设备、网络节点以及其中的方法
EP2566079B1 (en) * 2011-08-31 2013-10-02 Alcatel Lucent Method for coordinating at least one first transmission from a single-point transmitter to a single-point receiver and at least one second transmission from a multipoint transmitter or to a multipoint receiver in a radio communication system, and mobile station thereof
US9591583B2 (en) * 2012-03-17 2017-03-07 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
WO2014205630A1 (zh) * 2013-06-24 2014-12-31 华为技术有限公司 无线通信方法、装置及系统
CN104488332B (zh) * 2014-05-30 2019-05-28 华为技术有限公司 一种d2d通信中发射功率的控制方法及设备
US10660048B2 (en) * 2017-10-02 2020-05-19 Lenovo (Singapore) Pte Ltd Uplink power control
EP3864904A1 (en) * 2018-10-11 2021-08-18 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining physical uplink channel power control parameter values for use after a beam failure recovery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413067A (zh) * 2011-08-18 2017-02-15 华为技术有限公司 上行功率控制的方法、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Uplink Power Control Discussion for CoMP Scenario 4", 3GPP TSG-RAN WG1 #65 RL-111598, 13 May 2011 (2011-05-13), XP050491244 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800861A (zh) * 2019-07-12 2020-10-20 维沃移动通信有限公司 功率控制方法及设备
WO2021008342A1 (zh) * 2019-07-12 2021-01-21 维沃移动通信有限公司 功率控制方法及设备
EP3998804A4 (en) * 2019-07-12 2022-08-24 Vivo Mobile Communication Co., Ltd. POWER CONTROL METHOD AND DEVICE
CN113131980A (zh) * 2019-12-31 2021-07-16 维沃移动通信有限公司 信息上报、指示方法、终端设备和网络设备
CN113131980B (zh) * 2019-12-31 2022-06-10 维沃移动通信有限公司 信息上报、指示方法、终端设备和网络设备
EP4096185A4 (en) * 2020-02-14 2023-05-10 Huawei Technologies Co., Ltd. INFORMATION TRANSMITTING METHOD AND DEVICE AND INFORMATION RECEIVING METHOD AND DEVICE
WO2023050213A1 (zh) * 2021-09-29 2023-04-06 北京小米移动软件有限公司 通信方法、装置及存储介质

Also Published As

Publication number Publication date
EP3709720A4 (en) 2020-10-28
US11432245B2 (en) 2022-08-30
CN111542105B (zh) 2022-07-19
BR112020010070A2 (pt) 2020-11-03
AU2021209147A1 (en) 2021-08-19
US20200280929A1 (en) 2020-09-03
EP4366400A2 (en) 2024-05-08
EP3965481A1 (en) 2022-03-09
EP3709720A1 (en) 2020-09-16
KR20200071114A (ko) 2020-06-18
CA3083010A1 (en) 2019-05-31
EP3709720B1 (en) 2021-10-06
FI3965481T3 (fi) 2024-05-16
RU2738221C1 (ru) 2020-12-09
ES2899626T3 (es) 2022-03-14
JP2021503854A (ja) 2021-02-12
JP6999811B2 (ja) 2022-01-19
MX2020005215A (es) 2020-08-20
SG11202004644QA (en) 2020-06-29
AU2017440897B2 (en) 2021-05-27
EP3965481B1 (en) 2024-03-20
KR102356351B1 (ko) 2022-02-08
US10945218B2 (en) 2021-03-09
CN111201815A (zh) 2020-05-26
CN111542105A (zh) 2020-08-14
US20210153135A1 (en) 2021-05-20
AU2017440897A1 (en) 2020-06-04
US11758485B2 (en) 2023-09-12
US20220369236A1 (en) 2022-11-17
AU2021209147B2 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2019100296A1 (zh) 传输信号的方法、终端设备和网络设备
US11218974B2 (en) Method, terminal device and network device for transmitting signals
KR102352689B1 (ko) 전력 제어 방법, 단말 기기 및 네트워크 기기
US11265057B2 (en) Method, terminal device and network device for transmitting physical uplink control channel (PUCCH)
WO2019140665A1 (zh) 功率控制的方法、终端设备和网络设备
WO2018107363A1 (zh) 传输信号的方法、终端设备和网络设备
WO2019075701A1 (zh) 无线通信方法和设备
WO2019023876A1 (zh) 数据传输的方法和终端设备
WO2019140668A1 (zh) 信道状态信息csi测量的方法、终端设备和网络设备
WO2019084733A1 (zh) 用于传输信号的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207014287

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020527875

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3083010

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017440897

Country of ref document: AU

Date of ref document: 20171123

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017933143

Country of ref document: EP

Effective date: 20200611

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020010070

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020010070

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200520