WO2021098825A1 - 链路预均衡补偿方法及装置、存储介质、电子装置 - Google Patents

链路预均衡补偿方法及装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2021098825A1
WO2021098825A1 PCT/CN2020/130428 CN2020130428W WO2021098825A1 WO 2021098825 A1 WO2021098825 A1 WO 2021098825A1 CN 2020130428 W CN2020130428 W CN 2020130428W WO 2021098825 A1 WO2021098825 A1 WO 2021098825A1
Authority
WO
WIPO (PCT)
Prior art keywords
unevenness
equalization
coefficient
compensation
carriers
Prior art date
Application number
PCT/CN2020/130428
Other languages
English (en)
French (fr)
Inventor
刘谈
赵峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2022520297A priority Critical patent/JP7394217B2/ja
Priority to US17/637,892 priority patent/US11777768B2/en
Priority to EP20889025.1A priority patent/EP4064631A4/en
Publication of WO2021098825A1 publication Critical patent/WO2021098825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/10Compensating for variations in line balance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular, to a link pre-equalization compensation method and device, storage medium, and electronic device.
  • the base station is mainly composed of a centralized unit (CU), a distributed unit (DU), and an active antenna processing unit (AAU).
  • CU centralized unit
  • DU distributed unit
  • AAU active antenna processing unit
  • the form of AAU itself It is also developing in the direction of multi-carrier and ultra-wideband to meet the higher adaptability requirements of customers for AAU.
  • the frequency interval between carriers on the frequency band will also follow. As it becomes larger and larger, the problem of flatness within and between carriers of the link will become more prominent.
  • the 5G ultra-wideband scenario has problems such as uneven links, and no effective technical solutions have been proposed.
  • the embodiments of the present disclosure provide a link pre-equalization compensation method and device, a storage medium, and an electronic device to at least solve the problems of link unevenness in 5G ultra-wideband scenarios in related technologies.
  • a link pre-equalization compensation method which includes: when an active antenna base station AAU is powered on, analyzing a pre-stored offline compensation table to obtain multiple sub-carrier radio frequency chains The first unevenness equalization coefficient of the sub-carrier and the second unevenness equalization coefficient of the wave control link of the plurality of sub-carriers, wherein each sub-carrier of the plurality of sub-carriers corresponds to a first unevenness Degree equalization coefficient and a second unevenness equalization coefficient; combining the first unevenness equalization coefficients of the multiple sub-carriers and the second unevenness equalization coefficients of the multiple sub-carriers to obtain the combined carrier unevenness Coefficient; Perform equalization compensation on the link according to the combined carrier unevenness coefficient, wherein the equalization compensation is used to improve the flatness of the signal in the entire link.
  • a link pre-equalization compensation device including: a parsing unit, configured to analyze and obtain from a pre-stored offline compensation table when the active antenna base station AAU is powered on The multiple first unevenness equalization coefficients of the radio frequency link of each subcarrier and the multiple second unevenness equalization coefficients of the wave control link of each subcarrier, wherein each of the subcarriers Each of the sub-carriers corresponds to a first unevenness equalization coefficient and a second unevenness equalization coefficient; the combining unit is configured to combine the plurality of first unevenness equalization coefficients and the plurality of second unevenness equalization coefficients Coefficient to obtain the combined carrier unevenness coefficient; the processing unit is configured to perform equalization compensation on the link according to the combined carrier unevenness coefficient, wherein the equalization compensation is used to improve the flatness of the signal in the entire link degree.
  • a computer-readable storage medium including a stored program, wherein the link pre-equalization compensation described in any one of the above is executed when the program is running. method.
  • the storage medium includes a stored program, wherein the link pre-equalization compensation method described in any one of the above is executed when the program runs.
  • FIG. 1 is a block diagram of the hardware structure of a terminal of a link pre-equalization compensation method according to an embodiment of the present disclosure
  • Fig. 2 is a flowchart of an exemplary link pre-equalization compensation method according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart of an exemplary pre-equalization compensation method for signal flatness of an ultra-wideband AAU link according to an embodiment of the present disclosure
  • Fig. 4 is a structural block diagram of an exemplary pre-equalization compensation device for AAU link signal flatness according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an exemplary implementation flow of pre-equalization compensation according to an embodiment of the present disclosure
  • Fig. 6 is a structural block diagram of an exemplary link pre-equalization compensation device according to an embodiment of the present disclosure
  • Fig. 7 is another structural block diagram of an exemplary link pre-equalization compensation device according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structure block diagram of a terminal of a link pre-equalization compensation method according to an embodiment of the present disclosure.
  • the terminal 10 may include one or more (only one is shown in FIG.
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • the memory 104 configured to store data
  • the aforementioned terminal may further include a transmission device 106 and an input/output device 108 configured as a communication function.
  • the terminal 10 may also include more or fewer components than those shown in FIG. 1, or have the same functions as those shown in FIG. 1 or different configurations with more functions than those shown in FIG. 1.
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the link pre-equalization compensation method in the embodiments of the present disclosure.
  • the processor 102 runs the computer programs stored in the memory 104 , So as to perform various functional applications and data processing, that is, to achieve the above methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may also include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the terminal 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of an exemplary link pre-equalization compensation method according to an embodiment of the present disclosure, such as As shown in Figure 2, the method includes the following steps:
  • Step S202 When the active antenna base station AAU is powered on, analyze the pre-stored offline compensation table to obtain the first unevenness equalization coefficient of the radio frequency link of the multiple sub-carriers and the wave of the multiple sub-carriers. Controlling the second unevenness equalization coefficient of the link, wherein each sub-carrier of the plurality of sub-carriers corresponds to a first unevenness equalization coefficient and a second unevenness equalization coefficient;
  • Step S204 Combine the first unevenness equalization coefficients of the multiple sub-carriers and the second unevenness equalization coefficients of the multiple sub-carriers to obtain a combined carrier unevenness coefficient;
  • Step S206 Perform equalization compensation on the link according to the combined carrier unevenness coefficient, where the equalization compensation is used to improve the flatness of the signal in the entire link.
  • the active antenna base station AAU when the active antenna base station AAU is powered on, the first unevenness equalization coefficient of the radio frequency link of multiple sub-carriers and the first unevenness equalization coefficient of the multiple sub-carriers are obtained from the pre-stored offline compensation table.
  • the second unevenness equalization coefficient of the wave control link wherein each sub-carrier of the multiple sub-carriers corresponds to a first unevenness equalization coefficient and a second unevenness equalization coefficient;
  • the first unevenness equalization coefficient of the sub-carrier and the second unevenness equalization coefficients of the multiple sub-carriers are used to obtain the combined carrier unevenness coefficient;
  • the link is equalized and compensated according to the combined carrier unevenness coefficient , Wherein the equalization compensation is used to improve the flatness of the signal in the entire link.
  • the method further includes: obtaining the first unevenness equalization coefficient of the radio frequency link of the multiple sub-carriers by at least one of the following: a signal source, a spectrum analyzer, and Obtain the second unevenness equalization coefficients of the wave control links of the plurality of sub-carriers through at least one of the following: vector network analyzer, scanning frame probe; according to the first unevenness equalization coefficients of the plurality of sub-carriers And a second unevenness equalization coefficient to generate the offline compensation.
  • the above step S204 may be implemented in the following manner: combining the first unevenness equalization coefficients of the multiple sub-carriers and the second unevenness equalization coefficients of the multiple sub-carriers , Obtaining the unevenness coefficient of the combined carrier, including: combining the first unevenness equalization coefficient and the second unevenness equalization coefficient of any one of the sub-carriers to obtain the unevenness coefficient of any one of the sub-carriers; The unevenness coefficient of each of the sub-carriers obtains the unevenness coefficient of the combined carrier.
  • the first unevenness equalization coefficient and the second unevenness equalization coefficient of any one of the sub-carriers may include:
  • the frequency and/or temperature information of any one of the sub-carriers in the link is an index, and the unevenness coefficient of the effective sub-carrier corresponding to any one of the sub-carriers of the link is determined by linear interpolation;
  • the unevenness coefficient of the effective sub-carrier, the first unevenness equalization coefficient and the second unevenness equalization coefficient of any one of the sub-carriers are combined to obtain the unevenness coefficient in any one of the sub-carrier frequency bands.
  • Performing equalization and compensation on the link according to the combined carrier unevenness coefficient includes: obtaining the combined carrier pre-equalization compensation coefficient and the compensation factor according to the combined carrier unevenness coefficient; The combined carrier pre-equalization compensation coefficient and the compensation factor perform pre-equalization compensation on the link.
  • the obtaining the combined carrier pre-equalization compensation coefficient and the compensation factor according to the combined carrier unevenness coefficient includes: normalizing the combined carrier unevenness coefficient to obtain the Co-carrier pre-equalization compensation coefficient and compensation factor.
  • the performing equalization compensation on the link according to the combined carrier pre-equalization compensation coefficient and the compensation factor includes: performing equalization compensation on the link according to the combined carrier pre-equalization compensation coefficient and the compensation factor. Frequency domain processing is performed in each sub-carrier to perform equalization compensation on the link.
  • the present disclosure provides a method for pre-equalization compensation of ultra-wideband AAU link signal flatness.
  • the method includes the following steps:
  • Step S302 link radio frequency (for example, downlink radio frequency) and wave control link offline static compensation calculation (for example, generating a compensation table);
  • link radio frequency for example, downlink radio frequency
  • wave control link offline static compensation calculation for example, generating a compensation table
  • the difference in flatness between the carriers of the data link is mainly due to the characteristics of the radio frequency components of the radio frequency link and the wave control link in a wide spectrum range. Therefore, the vector is used in advance.
  • Network analyzer, scanner probe (horn antenna) collect the flatness characteristic parameters of the wave control link device (the effect is the same as the second unevenness equalization coefficient), and use the signal source and spectrum analyzer to collect the flatness characteristic parameters of the RF link (function Same as the first unevenness equalization coefficient), pre-generate the RF and wave control link offline compensation table. After the cell is established on the AAU, read the pre-generated offline compensation table, according to the actual power of each carrier, and use The flatness compensation algorithm can obtain the compensation coefficient of each effective sub-carrier.
  • the collection of the flatness characteristic parameters of the wave control link can be collected for the main components on this link, such as a shaping chip and a power divider.
  • the offline compensation table can be stored in a normal text file or other storage format in the non-power-loss memory of AAU.
  • ordinary text can be used to store in the Flash of the AAU machine.
  • the characteristic parameter sampling step can be flexibly selected according to the characteristics of the actual device.
  • the frequency point area between the sampling points can be fitted with a fitting algorithm to ensure that there is sampled data in the full bandwidth.
  • the frequency point characteristic fitting can use a linear fitting algorithm.
  • Step S304 link (for example, downlink) unevenness pre-equalization compensation coefficient and factor calculation
  • the AAU machine After the AAU machine is powered on, it reads and parses the radio frequency link and wave control link characteristic parameter table files pre-stored in FLASH, and uses the frequency point and temperature information of the sub-carrier on the link as an index to effectively
  • the step size of sub-carrier spacing is obtained by linear interpolation method to obtain the unevenness equalization coefficient of the effective sub-carrier number corresponding to the corresponding bandwidth radio frequency and wave control link, and the sub-carrier radio frequency link and wave control link are combined by the method of direct addition in dB.
  • the frequency domain unevenness equalization coefficient can be obtained from the unevenness value of all carrier frequency bands on the link. (Because the sampling points of cavity flatness are not continuous, if the index frequency point falls between the two sampling points Time, linear fitting is performed according to the actual situation).
  • the pre-equalization compensation factor is obtained by taking the logarithm of the maximum value of the pre-equalization coefficient.
  • the pre-equalization coefficient can be understood as a set of values that change with the sub-carrier bandwidth and the number of sub-carriers. For example, a dual-carrier 400M bandwidth can contain more than 6000 values, etc.
  • the pre-equalization compensation factor can be 0, Values such as 1, 2 and so on. The above is only an example, and no limitation is made here.
  • Step S306 pre-equalization compensation coefficient and factor data transmission and dynamic compensation
  • the expected equalization compensation coefficients and compensation factors of each sub-carrier are extracted, and they are sent to the baseband unit for frequency domain processing through the XC interface/CPRI/eCPRI interface.
  • the AAU switches the frequency point, it will do pre-equalization compensation to ensure the flatness of the signal in the entire bandwidth.
  • Step S308 the pre-adjusted signal flatness baseband side compensation takes effect
  • the baseband unit After the baseband unit receives the carrier expected equalization compensation coefficient and compensation factor, it performs frequency domain multiplication and K scaling to adjust the carrier flatness in the frequency domain according to the carrier expected equalization compensation coefficient and compensation factor in the effective subcarrier.
  • This solution is flat Degree equalization is separated from calibration compensation, no complicated equalization circuit is needed, easy to realize, and the complexity of the system is reduced.
  • the above-mentioned method for pre-equalization and compensation of ultra-wideband AAU link signal flatness can be applied to a device for pre-equalization and compensation of ultra-wideband AAU link signal flatness, which includes: baseband Unit, digital-to-analog converter, digital up-conversion, power amplifier, radio frequency local oscillator, digital down-conversion, wave control board (that is, the antenna board in Figure 4), transmission module, where the wave control board includes a power divider and a shaping For element and coupling element, the wave control board is connected with the digital down-conversion and power amplifier through the feedback link.
  • Step 1 Generate offline static compensation table for link radio frequency and antenna board
  • the flatness characteristics of the signal source + spectrum analyzer are actually scanned to form the full bandwidth scanning frequency point of the radio frequency link and its flatness
  • the mapping relationship table as the characteristic parameter of the radio frequency link, is written in the FLSAH on the whole machine where the radio frequency board is located in the form of text.
  • the characteristic parameters of the wave control link are generated as the characteristic parameters of the wave control link and written into the wave control board in the form of text. It is located in FLSAH on the whole machine.
  • Step 2 link unevenness pre-equalization compensation coefficient and factor calculation
  • the AAU machine After the AAU machine is powered on, it reads the RF link and wave control link characteristic parameter table files pre-stored in FLASH, and analyzes it. According to the frequency point and temperature information of the carrier on the link, it is indexed with 5G high
  • the frequency effective sub-carrier spacing 120K step size is linear interpolation method to obtain the effective sub-carrier number corresponding to the corresponding bandwidth (take a single carrier 400M bandwidth as an example, 400M bandwidth corresponds to 3168 effective sub-carriers) unevenness coefficient, using dB direct phase
  • the frequency domain unevenness equalization coefficients of the sub-carrier radio frequency link and the wave control link are combined in an additive manner, so that the unevenness values of all carrier frequency bands on the link can be obtained.
  • the pre-equalization compensation factor is obtained by taking the logarithm of the maximum value of the pre-equalization coefficient.
  • Step 3 Pre-equalization compensation coefficient and factor data transmission and dynamic compensation
  • the expected equalization compensation coefficients and compensation factors for each sub-carrier, (if it is a low carrier, extract the first 3168 effective sub-carrier pre-equalization compensation coefficients and factors; if it is high Carrier, extracted 3168 effective sub-carrier pre-equalization compensation coefficients and factors.) If it is a baseband service upshift scenario, it is transmitted to the frequency domain of the AAU baseband unit through the XC interface. If it is a non-baseband service upshift scenario, it is through the CPRI/eCPRI interface Transmit it to the frequency domain of the BBU baseband unit. When the AAU switches the cell frequency, it will do pre-equalization compensation to ensure the flatness of the signal in the entire bandwidth.
  • Step 4 The baseband side compensation of pre-adjusted signal flatness takes effect
  • the baseband unit After receiving the carrier expected equalization compensation coefficient and compensation factor, the baseband unit performs frequency domain multiplication and K value scaling in the effective sub-carrier to adjust the carrier flatness in the frequency domain according to the carrier expected equalization compensation coefficient and compensation factor.
  • the method according to the foregoing embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the part that contributes to the technical solution of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, and optical disk), including a number of instructions.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc. executes the methods described in the various embodiments of the present disclosure.
  • a link pre-equalization compensation device is also provided, which is used to implement the above-mentioned embodiments, and the descriptions that have been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 6 is a structural block diagram of an exemplary link pre-equalization compensation device according to an embodiment of the present disclosure. As shown in Fig. 6, the device includes:
  • the parsing unit 602 is configured to analyze the pre-stored offline compensation table to obtain the first unevenness equalization coefficient of the radio frequency link of the multiple sub-carriers and the multiple said sub-carriers when the active antenna base station AAU is powered on.
  • a second unevenness equalization coefficient of the wave control link of the carrier wherein each sub-carrier of the plurality of sub-carriers corresponds to a first unevenness equalization coefficient and a second unevenness equalization coefficient;
  • the combining unit 604 is configured to combine the first unevenness equalization coefficients of the multiple sub-carriers and the second unevenness equalization coefficients of the multiple sub-carriers to obtain a combined carrier unevenness coefficient;
  • the processing unit 606 is configured to perform equalization compensation on the link according to the combined carrier unevenness coefficient, where the equalization compensation is used to improve the flatness of the signal in the entire link.
  • the active antenna base station AAU when the active antenna base station AAU is powered on, the first unevenness equalization coefficient of the radio frequency link of multiple sub-carriers and the first unevenness equalization coefficient of the multiple sub-carriers are obtained from the pre-stored offline compensation table.
  • the second unevenness equalization coefficient of the wave control link wherein each sub-carrier of the multiple sub-carriers corresponds to a first unevenness equalization coefficient and a second unevenness equalization coefficient;
  • the first unevenness equalization coefficient of the sub-carrier and the second unevenness equalization coefficients of the multiple sub-carriers are used to obtain the combined carrier unevenness coefficient;
  • the link is equalized and compensated according to the combined carrier unevenness coefficient , Wherein the equalization compensation is used to improve the flatness of the signal in the entire link.
  • the combining unit includes: a first combining module configured to combine the first unevenness equalization coefficient and the second unevenness equalization coefficient of any one of the sub-carriers to obtain any one of the sub-carriers.
  • the unevenness coefficient of the carrier is configured to combine the unevenness coefficients of a plurality of the sub-carriers to obtain a combined carrier unevenness coefficient.
  • the first merging module is further configured to use the frequency and/or temperature information of any one of the subcarriers in the link as an index, and to determine any link of the link through linear interpolation.
  • the unevenness coefficient of the effective sub-carrier corresponding to one of the sub-carriers; according to the unevenness coefficient of the effective sub-carrier, the first unevenness equalization coefficient and the second unevenness equalization coefficient of any one of the sub-carriers The unevenness coefficient in any one of the sub-carrier frequency bands is obtained by combining.
  • the processing unit includes: a first processing module configured to obtain a combined carrier pre-equalization compensation coefficient and a compensation factor according to the combined carrier unevenness coefficient; a second processing module configured to obtain a combined carrier pre-equalization compensation coefficient and a compensation factor according to the combined carrier unevenness coefficient; Co-carrier pre-equalization compensation coefficient and compensation factor perform pre-equalization compensation on the link.
  • the first processing module is further configured to perform normalization processing on the combined carrier unevenness coefficient to obtain the combined carrier pre-equalization compensation coefficient and compensation factor.
  • the second processing module is further configured to perform frequency domain processing in each sub-carrier of the link according to the combined carrier pre-equalization compensation coefficient and compensation factor, so as to perform frequency domain processing on the chain Road for equalization compensation.
  • FIG. 7 is another structural block diagram of an exemplary link pre-equalization compensation device according to an embodiment of the present disclosure.
  • the device further includes: an acquiring unit 608, configured to at least Obtain the first unevenness equalization coefficient of the radio frequency link of the multiple sub-carriers through one of the following: a signal source, a spectrum analyzer, and obtain the first non-flatness equalization coefficient of the multiple sub-carrier wave control links through at least one of the following Two unevenness equalization coefficients: a vector network analyzer, a scanning gantry probe; a generating unit 610, configured to generate the offline compensation according to the first unevenness equalization coefficient and the second unevenness equalization coefficient of the plurality of sub-carriers table.
  • an acquiring unit 608 configured to at least Obtain the first unevenness equalization coefficient of the radio frequency link of the multiple sub-carriers through one of the following: a signal source, a spectrum analyzer, and obtain the first non-flatness equalization coefficient of the multiple sub-carrier wave control links through at least
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the storage medium including a stored program, wherein the above-mentioned program executes any of the above-mentioned methods when the program is running.
  • the above-mentioned storage medium may be configured to store program code for executing the following steps:
  • S3 Perform equalization compensation on the link according to the combined carrier unevenness coefficient, where the equalization compensation is used to improve the flatness of the signal in the entire link.
  • the foregoing storage medium may include, but is not limited to: U disk, read-only memory (Read-Only Memory, ROM for short), Random Access Memory (RAM for short), mobile hard disk , Magnetic disks, or optical disks and other media that can store program codes.
  • An embodiment of the present disclosure also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • S3 Perform equalization compensation on the link according to the combined carrier unevenness coefficient, where the equalization compensation is used to improve the flatness of the signal in the entire link.
  • modules or steps of the present disclosure can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, can be different from
  • the steps shown or described are executed in order, or they are respectively fabricated into individual integrated circuit modules, or multiple modules or steps of them are fabricated into a single integrated circuit module for implementation. In this way, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种链路的均衡补偿方法及装置、存储介质、电子装置,其中,该方法包括:在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个分载波的波控链路的第二不平坦度均衡系数,其中,多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;合并多个分载波的第一不平坦度均衡系数和多个分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;根据合载波不平坦度系数对链路进行均衡补偿。

Description

链路预均衡补偿方法及装置、存储介质、电子装置 技术领域
本公开涉及无线通信领域,具体而言,涉及一种链路预均衡补偿方法及装置、存储介质、电子装置。
背景技术
随着5G网络技术的发展,通过采用高频段、更宽频谱和新空口技术,5G基站带宽需求大幅提升,预计将达到LTE的10倍以上。基站作为无线通信网络不可或缺的组成部分,它主要由集中单元(CU)、分布单元(DU)和有源天线处理单元(Active Antenna Unit,简称AAU)构成,与此同时,AAU自身的形态也在朝着多载波、超宽频方向发展,以满足客户对AAU提出更高的适应性要求,然而多载波超宽频化后的AAU,由于支持频段宽,频段上载波间频点间隔也随之越来越大,链路载波内及载波间平坦度问题就会越来越突出表现出来。
传统方案中,大多是在射频链路侧使用均衡电路静态补偿或者在中频链路使用高阶滤波电路来解决射频拉远单元(Radio Remote Unit,简称RRU)链路载波间平坦度,均衡电路对于递增或者递减线性不平坦有一定效果,但对于大带宽不规则的不平坦度补偿能力有限,补偿准确性也受限制,对于5G超宽频段场景不能完成解决链路不平坦问题的重任。
针对相关技术中,5G超宽频段场景存在链路不平坦等问题,尚未提出有效的技术方案。
发明内容
本公开实施例提供了一种链路预均衡补偿方法及装置、存储介质、电子装置,以至少解决相关技术中,5G超宽频段场景存在链路不平坦等问题。
根据本公开的一个实施例,提供了一种链路预均衡补偿方法,包括: 在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
根据本公开的另一个实施例,还提供了一种链路预均衡补偿装置,包括:解析单元,设置为在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到各个分载波的射频链路的多个第一不平坦度均衡系数和所述各个分载波的波控链路的多个第二不平坦度均衡系数,其中,所述各个分载波的的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;合并单元,设置为合并所述多个第一不平坦度均衡系数和所述多个第二不平坦度均衡系数,得到合载波不平坦度系数;处理单元,设置为根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
根据本公开的另一个实施例,还提供了一种计算机可读的存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行以上任一项所述的链路预均衡补偿方法。
根据本公开的另一个实施例,还提供了一种电子装置,所述存储介质包括存储的程序,其中,所述程序运行时执行以上任一项所述的链路预均衡补偿方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种链路预均衡补偿方法的终端的硬件结构框图;
图2是根据本公开实施例一种示例性的链路预均衡补偿方法的流程图;
图3是根据本公开实施例一种示例性的超宽频AAU链路信号平坦度的预均衡补偿的方法的流程图;
图4是根据本公开实施例一种示例性的AAU链路信号平坦度的预均衡补偿装置的结构框图;
图5是根据本公开实施例一种示例性的预均衡补偿实施流程示意图;
图6是根据本公开实施例一种示例性的链路预均衡补偿装置的结构框图;
图7是根据本公开实施例一种示例性的链路预均衡补偿装置的另一结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在终端、计算机终端、基站或者类似的运算装置中执行。以运行在终端上为例,图1是本公开实施例的一种链路预均衡补偿方法的终端的硬件结构框图。如图1所示,终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,在一示例性实施例中,上述终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技 术人员可以理解,图1所示的结构仅为示意,其并不对上述终端的结构造成限定。例如,终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示等同功能或比图1所示功能更多的不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的链路预均衡补偿方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104还可以包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括终端10的通信供应商提供的无线网络。在一个实例中,传输设备106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述图1所示的终端的链路预均衡补偿方法,图2是根据本公开实施例一种示例性的链路预均衡补偿方法的流程图,如图2所示,该方法包括如下步骤:
步骤S202,在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;
步骤S204,合并多个所述分载波的第一不平坦度均衡系数和多个所 述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;
步骤S206,根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
通过本公开,在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。采用上述技术方案,解决了相关技术中,5G超宽频段场景存在链路不平坦等问题。通过上述技术方案,通过合载波不平坦度系数对链路进行均衡补偿,能够达到提高整个链路内的信号的平坦度的技术效果。
本公开实施例中,在上述步骤S202之前,所述方法还包括:至少通过以下之一获取所述多个分载波的射频链路的第一不平坦度均衡系数:信号源、频谱仪,以及至少通过以下之一获取多个所述分载波的波控链路的第二不平坦度均衡系数:矢量网络分析仪、扫描架探头;根据多个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数生成所述离线补偿。
在一示例性实施例中,对于上述步骤S204可以通过以下方式实现,所述合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数,包括:合并任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数,得到任一个所述分载波的不平坦度系数;合并多个所述分载波的不平坦度系数得到合载波不平坦度系数。
为了清楚的说明如何合并所述合并任一个所述分载波的第一不平坦 度均衡系数和第二不平坦度均衡系数,得到任一个所述分载波的不平坦度系数,可以包括:根据所述链路中任一个所述分载波的频点和/或温度信息为索引,以及通过线性插值确定所述链路的任一个所述分载波对应的有效子载波的不平坦度系数;根据所述有效子载波的不平坦度系数、任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数合并得到任一个所述分载波频段内的不平坦度系数。
对于上述步骤S206可以通过以下方式实现,根据所述合载波不平坦度系数对链路进行均衡补偿,包括:根据所述合载波不平坦度系数得到合载波预均衡补偿系数和补偿因子;根据所述合载波预均衡补偿系数和补偿因子对链路进行预均衡补偿。
在一示例性实施例中,所述根据所述合载波不平坦度系数得到合载波预均衡补偿系数和补偿因子,包括:对所述合载波不平坦度系数进行归一化处理,得到所述合载波预均衡补偿系数和补偿因子。
在一示例性实施例中,所述根据所述合载波预均衡补偿系数和补偿因子对链路进行均衡补偿,包括:根据所述合载波预均衡补偿系数和补偿因子在所述链路的所述各个分载波内进行频域处理,以对所述链路进行均衡补偿。
以下结合一示例对链路预均衡补偿过程进行解释说明,但不用于限定本公开实施例的技术方案,本公开示例的技术方案如下:
如图3所示,本公开提供了一种超宽频AAU链路信号平坦度的预均衡补偿的方法,该方法包括以下步骤:
步骤S302,链路射频(例如,下行链路射频)和波控链路离线静态补偿计算(例如,生成补偿表);
数据链路(如可以为下行数据链路)载波间的平坦度的差异主要是由于射频链路和波控链路在较宽的频谱范围内的射频器件特性带来的,因此通过预先使用矢量网络分析仪、扫描架探头(喇叭天线)采集波控链路器 件的平坦度特性参数(作用同第二不平坦度均衡系数),使用信号源、频谱仪采集射频链路平坦度特性参数(作用同第一不平坦度均衡系数),预先生成射频和波控链路离线补偿表,待AAU上建立小区之后,通过读取预先生成的离线补偿表,依据各个载波的实际的功率大小,以及运用平坦度补偿算法,可获取各个有效子载波的补偿系数。
在一示例性实施例中,波控链路平坦度特性参数的采集,可针对这段链路上主要器件,如赋形芯片,功分器进行采集。
离线补偿表,可采用普通文本文件,或者其他形式的存储格式存储于AAU非掉电丢失的存储器中。在一示例性实施例中,可采用普通文本方式存于AAU整机的Flash中。
特性参数采样步进,可根据实际器件的特性进行灵活选择。采样点之间频点区可以采用拟合算法进行拟合,以保证在全带宽中均有采样数据,在一示例性实施例中,频点特性拟合可采用线性拟合算法。
步骤S304,链路(例如,下行链路)不平坦度预均衡补偿系数及因子计算;
AAU整机在上电后,通过读取预存在FLASH中的射频链路和波控链路特性参数表文件,并进行解析,根据链路上分载波的频点和温度信息为索引,以有效子载波间隔步进大小按线性插值方法得到相应带宽射频和波控链路对应的有效子载波数的不平坦度均衡系数,采用dB直接相加的方式合并分载波射频链路和波控链路的频域不平坦度均衡系数,由此可以获得该链路上所有载波频段的不平坦度值,(由于腔体平坦度的采样点非连续,如果索引频点,落在两个采样点之间,则根据实际情况进行线性拟合)。
对于每个天线,根据获取的分载波不平坦度系数计算最后要补偿的合载波不平坦度系数,然后转线性值,取倒数,求预均衡系数的功率平均值,并做归一化得到预均衡补偿系数,为防止频域饱和,根据预均衡系数的最大值取对数得到预均衡补偿因子。其中,预均衡系数可以理解为一组值,该组值随着分载波带宽和分载波数量的变化而变化,如双载波400M带宽 可以包含6000多个值等,预均衡补偿因子可以为0、1、2等数值。以上仅为一种示例,在此不作任何限定。
步骤S306,预均衡补偿系数及因子数据传送和动态补偿;
根据计算获知的通道合载波预均衡补偿系数和因子,提取出各个分载波预期均衡补偿系数和补偿因子,通过XC接口/CPRI/eCPRI接口将其送至基带单元频域处理。每次AAU切换频点时均会做预均衡补偿,从而保证在整个带宽内信号的平坦度。
步骤S308,预调整信号平坦度基带侧补偿生效;
基带单元收到载波预期均衡补偿系数和补偿因子后,在频域按照载波预期均衡补偿系数和补偿因子在有效子载波内作频域相乘、K值缩放对载波平坦度进行调整,该方案平坦度均衡与校准补偿分离,无须复杂的均衡电路,容易实现,降低了系统的复杂度。
通过本实施例,取得了AAU链路预均衡精细化补偿进步,达到了改善链路信号的平坦度效果,节省了射频均衡器件,提高了系统的射频性能以及AAU的空口能力等。
需要说明的是,如图4所示,上述超宽频AAU链路信号平坦度的预均衡补偿的方法可应用于超宽频AAU链路信号平坦度的预均衡补偿的装置中,该装置包括:基带单元、数模转换器、数字上变频、功率放大器、射频本振、数字下变频,波控板(即图4中的天线板)、传输模块,其中,波控板包括功分器、赋形阵子和耦合阵子,波控板通过反馈链路与数字下变频和功率放大器连接。
以下结合另一示例对链路预均衡补偿过程进行解释说明,但不用于限定本公开实施例的技术方案,本公开示例的技术方案如下:
步骤1,链路射频和天线板离线静态补偿表生成;
对超宽频AAU射频链路在其所支持的全频段内,以20M步进,用信 号源+频谱仪对其平坦度特性进行实际扫描,形成射频链路全带宽扫描频点和其平坦度的映射关系表,作为射频链路的特性参数,以文本的形式写入射频板所在整机上FLSAH中。
如图4所示,AAU波控链路上不具备反馈通道,此段链路在较宽频谱范围内的射频器件特性也会带来载波间的平坦度差异,因此预先使用矢量网络分析仪+扫描架探头(喇叭天线)采集器件的平坦度特性参数,采集方法如图5所示,生成波控链路的特性参数,作为波控链路的特性参数,以文本的形式写入波控板所在整机上FLSAH中。
步骤2,链路不平坦度预均衡补偿系数及因子计算;
AAU整机在上电后,通过读取预存在FLASH中的射频链路和波控链路特性参数表文件,并进行解析,根据链路上载波的频点和温度信息为索引,以5G高频有效子载波间隔120K步进大小按线性插值方法得到相应带宽对应的有效子载波数(以单载波400M带宽为例,400M带宽对应3168个有效子载波)的不平坦度系数,采用dB直接相加的方式合并分载波射频链路和波控链路的频域不平坦度均衡系数,以此可以获得该链路上所有载波频段的不平坦度值。
对于每个天线,根据获取的分载波不平坦度系数计算最后要补偿的合载波不平坦度系数,然后转线性值,取倒数,求预均衡系数的功率平均值,并做归一化得到预均衡补偿系数,为防止频域饱和,根据预均衡系数的最大值取对数得到预均衡补偿因子。
步骤3,预均衡补偿系数及因子数据传送和动态补偿;
根据计算获知的通道合载波预均衡补偿系数和因子,提取出各个分载波预期均衡补偿系数和补偿因子,(如果是低载波,提取前3168个有效子载波预均衡补偿系数和因子;如果是高载波,提取后3168个有效子载波预均衡补偿系数和因子。)如果是基带业务上移场景通过XC接口将其传送至AAU基带单元的频域,如果是非基带业务上移场景通过CPRI/eCPRI接口将其传送至BBU基带单元频域。当AAU切换小区频点时均会做预均 衡补偿,从而保证在整个带宽内信号的平坦度。
步骤4,预调整信号平坦度基带侧补偿生效;
基带单元收到载波预期均衡补偿系数和补偿因子后,在频域按照载波预期均衡补偿系数和补偿因子在有效子载波内作频域相乘、K值缩放对载波平坦度进行调整。
综上,通过上述方案进行平坦度均衡与校准补偿分离,无须复杂的均衡电路,容易实现,降低了系统的复杂度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本公开的技术方案做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种链路预均衡补偿装置,该装置用于实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本公开实施例一种示例性的链路预均衡补偿装置的结构框图,如图6所示,该装置包括:
解析单元602,设置为在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;
合并单元604,设置为合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;
处理单元606,设置为根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
通过本公开,在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。采用上述技术方案,解决了相关技术中,5G超宽频段场景存在链路不平坦等问题。通过上述技术方案,通过合载波不平坦度系数对链路进行均衡补偿,能够达到提高整个链路内的信号的平坦度的技术效果。
本公开实施例中,所述合并单元,包括:第一合并模块,设置为合并任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数,得到任一个所述分载波的不平坦度系数;第二合并模块,设置为合并多个所述分载波的不平坦度系数得到合载波不平坦度系数。
本公开实施例中,所述第一合并模块,还设置为根据所述链路中任一个所述分载波的频点和/或温度信息为索引,以及通过线性插值确定所述链路的任一个所述分载波对应的有效子载波的不平坦度系数;根据所述有效子载波的不平坦度系数、任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数合并得到任一个所述分载波频段内的不平坦度系数。
本公开实施例中,所述处理单元,包括:第一处理模块,设置为根据所述合载波不平坦度系数得到合载波预均衡补偿系数和补偿因子;第二处理模块,设置为根据所述合载波预均衡补偿系数和补偿因子对链路进行预 均衡补偿。
本公开实施例中,所述第一处理模块,还设置为对所述合载波不平坦度系数进行归一化处理,得到所述合载波预均衡补偿系数和补偿因子。
本公开实施例中,所述第二处理模块,还设置为根据所述合载波预均衡补偿系数和补偿因子在所述链路的所述各个分载波内进行频域处理,以对所述链路进行均衡补偿。
本公开实施例中,图7是根据本公开实施例一种示例性的链路预均衡补偿装置的另一结构框图,如图7所示,所述装置还包括:获取单元608,设置为至少通过以下之一获取所述多个分载波的射频链路的第一不平坦度均衡系数:信号源、频谱仪,以及至少通过以下之一获取多个所述分载波的波控链路的第二不平坦度均衡系数:矢量网络分析仪、扫描架探头;生成单元610,设置为根据多个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数生成所述离线补偿表。
本公开的实施例还提供了一种计算机可读的存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
在一示例性实施例中,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;
S2,合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;
S3,根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
在一示例性实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在一示例性实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;
S2,合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;
S3,根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
在一示例性实施例中,本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一示例性实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中 由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的示例性实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种链路的均衡补偿方法,包括:
    在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;
    合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;
    根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
  2. 根据权利要求1所述的方法,其中,所述合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数,包括:
    合并任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数,得到任一个所述分载波的不平坦度系数;
    合并多个所述分载波的不平坦度系数得到合载波不平坦度系数。
  3. 根据权利要求2所述的方法,其中,所述合并任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数,得到任一个所述分载波的不平坦度系数,包括:
    根据所述链路中任一个所述分载波的频点和/或温度信息为索引,以及通过线性插值确定所述链路的任一个所述分载波对应的有效子载波的不平坦度系数;
    根据所述有效子载波的不平坦度系数、任一个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数合并得到任一个所述分载波频段内的不平坦度系数。
  4. 根据权利要求1或2所述的方法,其中,根据所述合载波不平 坦度系数对链路进行均衡补偿,包括:
    根据所述合载波不平坦度系数得到合载波预均衡补偿系数和补偿因子;
    根据所述合载波预均衡补偿系数和补偿因子对链路进行预均衡补偿。
  5. 根据权利要求4所述的方法,其中,所述根据所述合载波不平坦度系数得到合载波预均衡补偿系数和补偿因子,包括:
    对所述合载波不平坦度系数进行归一化处理,得到所述合载波预均衡补偿系数和补偿因子。
  6. 根据权利要求4所述的方法,其中,所述根据所述合载波预均衡补偿系数和补偿因子对链路进行均衡补偿,包括:
    根据所述合载波预均衡补偿系数和补偿因子在所述链路的多个所述分载波内进行频域处理,以对所述链路进行均衡补偿。
  7. 根据权利要求1所述的方法,其中,在所述从预先存储的离线补偿表解析得到多个分载波的射频链路的第一不平坦度均衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数之前,所述方法还包括:
    至少通过以下之一获取所述多个分载波的射频链路的第一不平坦度均衡系数:信号源、频谱仪,以及至少通过以下之一获取多个所述分载波的波控链路的第二不平坦度均衡系数:矢量网络分析仪、扫描架探头;
    根据多个所述分载波的第一不平坦度均衡系数和第二不平坦度均衡系数生成所述离线补偿表。
  8. 一种链路预均衡补偿装置,包括:
    解析单元,设置为在有源天线基站AAU上电的情况下,从预先存储的离线补偿表中解析得到多个分载波的射频链路的第一不平坦度均 衡系数和多个所述分载波的波控链路的第二不平坦度均衡系数,其中,所述多个分载波的每一个分载波都对应一个第一不平坦度均衡系数和一个第二不平坦度均衡系数;
    合并单元,设置为合并多个所述分载波的第一不平坦度均衡系数和多个所述分载波的第二不平坦度均衡系数,得到合载波不平坦度系数;
    处理单元,设置为根据所述合载波不平坦度系数对链路进行均衡补偿,其中,所述均衡补偿用于提高整个所述链路内的信号的平坦度。
  9. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至7任一项中所述的方法。
  10. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至7任一项中所述的方法。
PCT/CN2020/130428 2019-11-22 2020-11-20 链路预均衡补偿方法及装置、存储介质、电子装置 WO2021098825A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022520297A JP7394217B2 (ja) 2019-11-22 2020-11-20 リンク予等化補償方法及び装置、記憶媒体、電子装置
US17/637,892 US11777768B2 (en) 2019-11-22 2020-11-20 Pre-equalization compensation method and device for link, storage medium and electronic device
EP20889025.1A EP4064631A4 (en) 2019-11-22 2020-11-20 LINK PRE-EQUALIZATION COMPENSATION METHOD, DEVICE, STORAGE MEDIUM, AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911158565.1 2019-11-22
CN201911158565.1A CN112838994B (zh) 2019-11-22 2019-11-22 链路预均衡补偿方法及装置、存储介质、电子装置

Publications (1)

Publication Number Publication Date
WO2021098825A1 true WO2021098825A1 (zh) 2021-05-27

Family

ID=75921777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130428 WO2021098825A1 (zh) 2019-11-22 2020-11-20 链路预均衡补偿方法及装置、存储介质、电子装置

Country Status (5)

Country Link
US (1) US11777768B2 (zh)
EP (1) EP4064631A4 (zh)
JP (1) JP7394217B2 (zh)
CN (1) CN112838994B (zh)
WO (1) WO2021098825A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277331B (zh) * 2022-06-17 2023-09-12 哲库科技(北京)有限公司 信号补偿方法及装置、调制解调器、通信设备、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352511A (zh) * 2000-11-14 2002-06-05 华为技术有限公司 一种基于宽带多载波基站的增益均衡方法和装置
CN1529521A (zh) * 2003-09-28 2004-09-15 中兴通讯股份有限公司 多载波自动增益校准装置和方法
JP2016134840A (ja) * 2015-01-21 2016-07-25 日本電信電話株式会社 空間多重光伝送システム及び空間多重光伝送方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286855B2 (en) 1995-02-22 2007-10-23 The Board Of Trustees Of The Leland Stanford Jr. University Method and apparatus for adaptive transmission beam forming in a wireless communication system
US6507606B2 (en) 2000-03-29 2003-01-14 Symmetrican, Inc. Asymmetric digital subscriber line methods suitable for long subscriber loops
US20020027958A1 (en) 2000-06-22 2002-03-07 Kolanek James C. Feedback channel signal recovery
US7155171B2 (en) * 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
KR20090029351A (ko) * 2007-09-18 2009-03-23 삼성전자주식회사 이동통신 단말기의 비선형성을 보상하기 위한 장치 및 방법
JP2010029050A (ja) 2008-07-24 2010-02-04 Toshiba Corp 電池システム
US8095076B2 (en) 2009-02-05 2012-01-10 Qualcomm Incorporated Methods and systems for low-complexity channel estimator in OFDM / OFDMA systems
US8416697B2 (en) * 2010-02-05 2013-04-09 Comcast Cable Communications, Llc Identification of a fault
CN105099970B (zh) * 2014-04-24 2018-08-14 富士通株式会社 自适应均衡器、自适应均衡方法以及接收机
CN105322979B (zh) * 2014-06-11 2018-07-20 北京信威通信技术股份有限公司 一种补偿宽带信号通过射频链路引起的频域不平的方法
US9813969B2 (en) * 2015-11-03 2017-11-07 Telefonaktiebolaget Lm Ericsson (Publ) In-flight cellular communications system coverage of mobile communications equipment located in aircraft
FR3047568B1 (fr) 2016-02-05 2018-02-16 Thales Methode de calibrage d'un recepteur de radio-navigation par satellites
CN107276701B (zh) * 2016-04-06 2020-11-03 中兴通讯股份有限公司 一种分载波功率检测的方法、装置及射频拉远单元
CN107666453B (zh) * 2016-07-28 2021-05-18 上海诺基亚贝尔股份有限公司 发射器和相应的方法
KR20230101933A (ko) 2017-07-01 2023-07-06 인텔 코포레이션 차량 무선 통신을 위한 방법 및 디바이스
US10873493B2 (en) * 2018-05-15 2020-12-22 Cable Television Laboratories, Inc. Carrier-phase recovery system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352511A (zh) * 2000-11-14 2002-06-05 华为技术有限公司 一种基于宽带多载波基站的增益均衡方法和装置
CN1529521A (zh) * 2003-09-28 2004-09-15 中兴通讯股份有限公司 多载波自动增益校准装置和方法
JP2016134840A (ja) * 2015-01-21 2016-07-25 日本電信電話株式会社 空間多重光伝送システム及び空間多重光伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064631A4 *

Also Published As

Publication number Publication date
US20220286328A1 (en) 2022-09-08
JP2022551077A (ja) 2022-12-07
EP4064631A4 (en) 2023-11-22
CN112838994A (zh) 2021-05-25
JP7394217B2 (ja) 2023-12-07
EP4064631A1 (en) 2022-09-28
CN112838994B (zh) 2024-03-19
US11777768B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US10135599B2 (en) Frequency domain compression for fronthaul interface
US9888416B2 (en) Multi-channel predistortion method and apparatus
CN111901263B (zh) 无线信号补偿方法、数值确定方法及装置、设备、介质
US20140269987A1 (en) Combined multi-stage crest factor reduction and interpolation of a signal
EP3582462B1 (en) Data compression method and device
US20140355554A1 (en) Processing Information Blocks for Wireless Transmission
WO2021092816A1 (zh) 互调干扰信号的重构方法和装置
JP5678161B2 (ja) 高速フーリエ変換のためのタスク・リストを備えた再使用エンジンおよびそれを用いる方法
CN110611628B (zh) 信号处理方法、网络设备及计算机可读存储介质
US10181867B2 (en) Crest factor reduction in a radio transmitter
WO2020239043A1 (zh) 信号处理方法、装置和存储介质
WO2021098825A1 (zh) 链路预均衡补偿方法及装置、存储介质、电子装置
US20170288927A1 (en) Signal processing circuits
US11502708B2 (en) Digital pre-distorter training
CN114726492B (zh) 解调参考信号的峰均比修正方法、终端及存储介质
CN109842579B (zh) 用于在通信系统中进行信号处理的方法和设备
CN108667758B (zh) 一种削峰方法及装置
US20240137258A1 (en) Method and device(s) for supporting machine learning based crest factor reduction and digital predistortion
WO2024082884A1 (zh) 宽带信号的补偿方法、装置、设备及存储介质
US20240022273A1 (en) Enhanced polyphase digital pre-distortion structure with low complexity in radio transmitter
US20230291630A1 (en) Low peak-to-average power ratio waveform generation
US20240022271A1 (en) Adaptive digital pre-distortion
Waheed et al. Analysis of EVM and ACPR on 5G NR Waveform in the Presence of RF Impairments
WO2016155244A1 (en) Signal processing method and wireless signal transceiving device
US20240121145A1 (en) Reconfigurable crest factor reduction in a distributed communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020889025

Country of ref document: EP

Effective date: 20220622