WO2023246394A1 - 基板处理设备 - Google Patents

基板处理设备 Download PDF

Info

Publication number
WO2023246394A1
WO2023246394A1 PCT/CN2023/095239 CN2023095239W WO2023246394A1 WO 2023246394 A1 WO2023246394 A1 WO 2023246394A1 CN 2023095239 W CN2023095239 W CN 2023095239W WO 2023246394 A1 WO2023246394 A1 WO 2023246394A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
emitting device
megasonic wave
megasonic
wave emitting
Prior art date
Application number
PCT/CN2023/095239
Other languages
English (en)
French (fr)
Inventor
王晖
刘阳
何西登
胡海波
张晓燕
陈福平
Original Assignee
盛美半导体设备(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛美半导体设备(上海)股份有限公司 filed Critical 盛美半导体设备(上海)股份有限公司
Publication of WO2023246394A1 publication Critical patent/WO2023246394A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Definitions

  • the present invention relates to the field of semiconductor equipment, and in particular, to a substrate processing equipment.
  • SAPS Megasonic (spatial alternating phase displacement megasonic) technology uses high-frequency (0.8-1.0MHz) alternating current to excite the piezoelectric resonator crystal to generate megasonic waves, which generates a thin acoustic boundary layer near the surface of the substrate, forming pressure vibration and ultrasonic vibration in the solution. High frequency and high energy to effectively remove particles.
  • the core component of SAPS Megasonic technology is the megasonic transmitter, which includes piezoelectric sensors and acoustic resonators.
  • a chemical liquid is sprayed on the surface of the substrate.
  • the megasonic emitting device is located above the surface of the substrate and will descend and be immersed in the chemical liquid.
  • the piezoelectric sensor vibrates after being powered on, and the acoustic resonator will transfer high-frequency sound energy to the chemical liquid.
  • high-frequency acoustic energy causes cavitation oscillation to loosen impurity particles on the surface of the substrate, thereby removing contaminants on the surface of the substrate.
  • the megasonic wave emitting device forms a parallel capacitance with the chemical liquid 50' and the substrate 40'.
  • the Al 2 O 3 sapphire 302' in the megasonic wave emitting device is an insulator, and the piezoelectric sensor can be regarded as It is the upper electrode 301'.
  • the upper electrode 301' is connected to the radio frequency power supply 303'. There is a resistance between the upper electrode 301' and the radio frequency power supply 303'.
  • the chemical liquid 50' and the substrate 40' can be regarded as the lower electrode.
  • the megasonic transmitting device is powered off, the capacitor begins to discharge, the charge on the upper electrode 301' moves toward the resistor (not shown), and the charge on the lower electrode flows toward the substrate tray (not shown) holding the substrate 40' (out), but at this time the radio frequency power supply 303' has been disconnected, and the charge on the upper electrode 301' cannot be completely released, so it will accumulate on the upper electrode 301', resulting in the gradual accumulation of residual charge on the megasonic wave transmitting device.
  • the purpose of the present invention is to solve the problem in the prior art that the residual charge accumulated on the megasonic wave transmitting device causes damage to the surface of the substrate. Therefore, the present invention provides a substrate processing equipment that has the advantage of being able to eliminate the charges accumulated on the megasonic wave emitting device and avoid damage to the substrate surface due to the discharge of residual charges on the megasonic wave emitting device.
  • a substrate processing equipment including:
  • the substrate tray is installed in the process chamber, and the substrate tray is used to carry the substrate;
  • a megasonic wave transmitting device used to transmit megasonic wave energy to the chemical liquid between the megasonic wave transmitting device and the substrate;
  • Substrate tray used to carry substrates
  • a grounded conductive component the conductive component is configured such that when the megasonic wave emitting device is located above the substrate, the charge on the megasonic wave emitting device is conducted to the conductive component through the chemical liquid on the surface of the substrate and is conducted away.
  • a megasonic wave transmitting device and a substrate tray are arranged in the process chamber, and are used to transmit megasonic wave energy to the chemical liquid between the megasonic wave transmitting device and the substrate;
  • Another embodiment of the present invention provides a substrate processing equipment, including:
  • the first ion rod is arranged in the process chamber and is located between the substrate tray and the cleaning device.
  • the air outlet of the first ion rod faces upward, so that the megasonic wave emitting device passes through the third ion rod while moving between the substrate tray and the cleaning device.
  • the first ion rod blows the ion wind toward the megasonic wave emitting device above through the air outlet to neutralize the charge on the megasonic wave emitting device.
  • Substrate tray used to carry substrates
  • the second ion rod is arranged on the inner wall of the process chamber
  • the present invention can eliminate static charges on the megasonic wave transmitting device and prevent excessive residual charges from accumulating on the megasonic wave transmitting device. , to prevent these residual charges from discharging on the surface of the substrate, causing damage to the surface of the substrate.
  • Figure 2 is a schematic three-dimensional structural diagram of the cleaning device provided in Embodiment 1 of the present invention.
  • Figure 3 is a schematic three-dimensional structural diagram of the electrostatic diversion assembly in the cleaning device provided in Embodiment 1 of the present invention.
  • Figure 4 is a schematic three-dimensional structural diagram of the electrostatic diversion assembly in the cleaning device provided in Embodiment 1 of the present invention, in which the protective component is not shown;
  • Figure 5 is a schematic top structural view of the substrate processing equipment provided in Embodiment 2 of the present invention.
  • Figure 6 is a schematic three-dimensional structural diagram of the substrate processing equipment provided in Embodiment 2 of the present invention.
  • Figure 7 is a schematic three-dimensional structural diagram of the megasonic wave transmitting device, the first cantilever, the first housing, the second cantilever, the second housing and the screw rod provided in Embodiment 2 of the present invention;
  • Figure 8 is a schematic bottom structural diagram of the conductive member provided in Embodiment 2 of the present invention in contact with the first side wall of the megasonic wave transmitting device;
  • Figure 9 is a schematic three-dimensional structural diagram of the conductive member provided in Embodiment 2 of the present invention in contact with the first side wall of the megasonic wave transmitting device;
  • Figure 10 is a schematic three-dimensional structural diagram from another perspective of the conductive member provided in Embodiment 2 of the present invention being in contact with the first side wall of the megasonic wave transmitting device;
  • Figure 12 is a schematic structural diagram from below showing that the conductive member provided in Embodiment 2 of the present invention is not in contact with the first side wall of the megasonic wave transmitting device;
  • Figure 13 is a schematic three-dimensional structural diagram of the conductive member provided in Embodiment 2 of the present invention and not in contact with the first side wall of the megasonic wave transmitting device;
  • Figure 15 is a schematic three-dimensional structural diagram of the conductive member provided in Embodiment 2 of the present invention in contact with the second side wall of the megasonic wave transmitting device;
  • Figure 16 is a schematic structural diagram from below showing that the conductive member provided in Embodiment 2 of the present invention is not in contact with the second side wall of the megasonic wave transmitting device;
  • Figure 17 is a schematic three-dimensional structural diagram of the conductive member provided in Embodiment 2 of the present invention in contact with the arc-shaped side wall of the megasonic wave transmitting device;
  • Figure 18 is a schematic structural diagram from below showing that the conductive member provided in Embodiment 2 of the present invention is not in contact with the arc-shaped side wall of the megasonic wave transmitting device;
  • Figure 20 is a schematic bottom view of the structure in which the conductive member provided in Embodiment 2 of the present invention is in contact with the first side wall, the second side wall and the arc-shaped side wall of the megasonic wave transmitting device;
  • Figure 21 is a schematic structural diagram from below showing that the conductive member provided in Embodiment 2 of the present invention is not in contact with the first side wall, the second side wall and the arc-shaped side wall of the megasonic wave transmitting device;
  • Figure 23 is a schematic three-dimensional structural diagram of the conductive nozzle provided in Embodiment 3 of the present invention installed on one side of the megasonic wave emitting device from another perspective;
  • Figure 29 is a schematic top structural view of the substrate processing equipment provided in Embodiment 4 of the present invention.
  • Figure 30 is a schematic three-dimensional structural diagram of the substrate processing equipment provided in Embodiment 4 of the present invention.
  • Figure 36 is a schematic structural diagram of the prior art in which the residual charge accumulated on the megasonic wave emitting device causes damage defects on the surface of the substrate.
  • the electrostatic flow guide assembly 200 can be brought into direct contact with the megasonic wave emitting device 30 , and the electrostatic flow guide assembly 200 accumulated on the megasonic wave emitting device 30 The charge is directed away from the electrostatic conduction assembly 200 .
  • the electrostatic diversion component 200 is fixed at the bottom of the cleaning tank 100 (ie, the bottom of the cleaning device 10 ), and the electrostatic diversion component 200 is grounded.
  • the electrostatic diversion assembly 200 is electrically connected to the megasonic wave emitting device 30 through the cleaning liquid in the cleaning tank 100 , so that the megasonic wave emitting device 30 accumulates The charges are conducted away through the cleaning liquid and the electrostatic diversion component 200 in sequence.
  • the electrostatic diversion assembly 200 includes a connecting terminal 210 and a wire 220.
  • the connecting terminal 210 and the wire 220 are electrically connected.
  • the connecting terminal 210 is fixed at the bottom of the cleaning tank 100, and the wire 220 is grounded.
  • the first end 2101 of the connecting terminal 210 penetrates the bottom of the cleaning tank 100 and is fixed on the bottom of the cleaning tank 100 in a threaded manner.
  • the first end 2101 of the connecting terminal 210 is in contact with the cleaning liquid.
  • the connecting terminal The second end 2102 of 210 is connected to the wire 220.
  • the threaded connection is an NPT (national pipe thread) threaded connection.
  • the connecting terminal 210 is conductive, and the wire 220 is fixed to the second end 2102 of the connecting terminal 210 through the fixing bolt 240 .
  • connection terminal 210 may also be non-conductive, and a cavity may be provided in the connection terminal 210 so that the wire 220 is electrically connected to the cleaning liquid through the cavity.
  • the protective piece 230 may partially cover the portion of the connection terminal 210 extending to the outside of the cleaning tank 100, including covering
  • the second end 2102 of the connection terminal 210 is mainly used to cover the exposed position of the connection terminal 210 of the conductor 220 to prevent the conductor 220 from being affected by external interference and causing poor contact.
  • the protective piece 230 can also completely cover the portion of the connection terminal 210 that extends to the outside of the cleaning tank 100 to prevent this portion of the connection terminal 210 from being corroded, leaking electricity, and the like.
  • the side wall of the protective member 230 is also provided with a wire hole 231, and the wire 220 fixed on the second end 2102 of the connection terminal 210 passes through the wire hole 231 and is then grounded.
  • the cleaning device 10 also includes an overflow tank 300, an inlet 120 and an outlet.
  • the overflow tank 300 surrounds the cleaning tank 100.
  • a partition wall 110 is provided between the overflow tank 300 and the cleaning tank 100. The process in the cleaning tank 100 The cleaning liquid flows through the partition wall 110 and then flows into the overflow tank 300 and is discharged from the outlet.
  • the outlet includes a first outlet 140 and a second outlet 310.
  • the inlet 120 and the first outlet 140 are both connected to the cleaning tank 100.
  • the inlet 120 is used to pass the cleaning liquid into the cleaning tank 100, and the first outlet 140 is used to discharge the cleaning tank 100.
  • the cleaning liquid in the overflow tank 300; the second outlet 310 is connected with the overflow tank 300, and the second outlet 310 is used to discharge the cleaning liquid in the overflow tank 300.
  • the inlet 120 and the first outlet 140 are opened at the bottom of the cleaning tank 100
  • the second outlet 310 is opened at the bottom of the overflow tank 300 .
  • the substrate processing equipment proposed by the present invention includes a process chamber 1000, a substrate tray 400, a cleaning device 10A and a megasonic wave emitting device 30A.
  • the cleaning device 10A may be an existing cleaning device, or the cleaning device 10 in Embodiment 1 may be used.
  • the substrate tray 400 , the cleaning device 10A and the megasonic wave emitting device 30A are arranged in the process chamber 1000 .
  • the substrate tray 400 is used to carry the substrate 500 .
  • the megasonic wave emitting device 30A is used to transmit megasonic energy to the chemical liquid between the megasonic wave emitting device 30A and the substrate 500 to process the substrate 500, and after the process is completed, it is moved to the cleaning device 10A for self-cleaning.
  • the method of cleaning the substrate includes the following steps:
  • the substrate tray 400 is rotated to ensure that the gap between the megasonic wave emitting device 30A and the upper surface of the substrate 500 is completely and continuously filled with the cleaning liquid, so that the megasonic energy is stably transmitted to the entire surface of the substrate 500 through the cleaning liquid.
  • the substrate processing equipment includes a first cantilever 360 and a second cantilever 370 connected to each other.
  • the first cantilever 360 is installed on the top of the megasonic wave emitting device 30A, and has a first housing 361 on the first cantilever 360 .
  • the driver 1002 in the substrate processing equipment drives the second cantilever 370 to rise or fall through the screw rod 1003, and drives the second cantilever 370 to rotate, so that the megasonic wave emitting device 30A moves above the substrate 500, or changes the megasonic wave emitting device 30A and the substrate. There is a gap between the upper surfaces of the second cantilever 370 and the second housing 371 on the second cantilever 370 .
  • the substrate processing equipment further includes a conductive component 600 , and a ground wire 630 is electrically connected to the conductive component 600 through a connector 640 .
  • the conductive member 600 is configured such that the lower surface 611 of the conductive member 600 contacts the chemical liquid on the upper surface of the substrate 500 before the lower surface 305 of the megasonic wave emitting device 30A.
  • the megasonic wave emitting device 30A is immersed in the chemical liquid film on the upper surface of the substrate 500 At this time, the charge on the megasonic wave emitting device 30A is conducted to the conductive member 600 through the chemical liquid and is conducted away.
  • the megasonic wave transmitting device 30A is turned on to transmit megasonic wave energy to the chemical liquid between the megasonic wave transmitting device 30A and the substrate 500, so that the megasonic wave energy is stably transmitted to the entire surface of the substrate 500 through the chemical liquid.
  • the conductive member 600 can still conduct electricity to eliminate static electricity generated during processing of the substrate 500 .
  • the central nozzle 362 is used to spray the chemical liquid on the upper surface of the substrate 500.
  • the central nozzle 362 is provided on the first cantilever 360 and is integrated with the megasonic wave emitting device 30A.
  • the chemical liquid is sprayed on the upper surface of the substrate 500.
  • An independently provided nozzle may be used to spray the chemical liquid onto the upper surface of the substrate 500 .
  • the lower surface 305 of the megasonic wave transmitting device 30A is kept parallel to the upper surface of the substrate 500 on the substrate tray 400; or, the lower surface 305 of the megasonic wave transmitting device 30A is first moved Tilt relative to the upper surface of the substrate 500 so that the charge on the megasonic wave emitting device 30A is conducted away through the chemical liquid and the conductive member 600, then keep the lower surface 305 of the megasonic wave emitting device 30A parallel to the upper surface of the substrate 500, and then open it.
  • the megasonic wave emitting device 30A is used to process the substrate 500 .
  • the shape of the megasonic wave transmitting device 30A may be a polygon, an ellipse, a semicircle, a quarter circle, a circle, etc.
  • the shape of the conductive member 600 changes accordingly according to the shape of the megasonic wave emitting device 30A.
  • the shape of the megasonic wave emitting device 30A is triangular or triangular-like pie-shaped (ie, triangular-like pie shape).
  • the conductive member 600 is located at at least one of the first side wall 301 , the second side wall 302 and the third side wall 303 of the megasonic wave emitting device 30A, and the lower surface 611 of the conductive member 600 exceeds the megasonic wave emitting device 30A.
  • the lower surface 305 is located at least one of the first side wall 301 , the second side wall 302 and the third side wall 303 of the megasonic wave emitting device 30A, and the lower surface 611 of the conductive member 600 exceeds the megasonic wave emitting device 30A.
  • the conductive member 600 is located at the first side wall 301 of the megasonic wave transmitting device 30A.
  • the conductive member 600 is, for example, a conductive rod or a conductive block, including a conductive part 610 and a fixed part 620.
  • the conductive part 610 passes through
  • the fixing part 620 is fixed to the first cantilever 360, the conductive part 610 is in contact with the first side wall 301 of the megasonic wave transmitting device 30A, and the lower surface 611 of the conductive part 610 exceeds the lower surface 305 of the megasonic wave transmitting device 30A.
  • the lower surface 611 of the conductive member 600 first contacts the chemical liquid on the upper surface of the substrate 500, when the megasonic wave emitting device 30A is immersed in the chemical liquid film on the upper surface of the substrate 500, the electrons will be preferentially transmitted to the path with low resistance.
  • the charges on the acoustic wave emitting device 30A will be conducted through the chemical liquid to the grounded conductive member 600 and then conducted away from the side to prevent the charges from being transferred to the substrate 500 .
  • the conductive portion 610 of the conductive member 600 and the first side wall 301 of the megasonic wave transmitting device 30A may not be in contact, that is, the conductive portion 610 of the conductive member 600 and the first side wall of the megasonic wave transmitting device 30A There is a gap between 301, and the conductive member 600 itself can be grounded to derive charges. Similarly, according to the fact that electrons will preferentially conduct to paths with low resistance, the charges on the megasonic wave emitting device 30A will be conducted to the grounded conductive member 600 through the chemical liquid and conducted away from the side to avoid the charges on the substrate 500 .
  • the fixing part 620 can be fixed on the side wall of the first cantilever 360 through screws.
  • the conductive portion 610 of the conductive member 600 can also be relative to the first side of the megasonic wave transmitting device 30A.
  • the wall 301 is inclined so that the conductive part 610 contacts the chemical liquid before the megasonic wave emitting device 30A.
  • the conductive member 600 may also be disposed on the second side wall 302 of the megasonic wave transmitting device 30A, and the conductive portion 610 of the conductive member 600 is in contact with the second side wall 302 of the megasonic wave transmitting device 30A.
  • the conductive portion 610 of the conductive member 600 and the second side wall 302 of the megasonic wave emitting device 30A may not be in contact.
  • the first side wall 301 and the second side wall 302 of the megasonic wave emitting device 30A may be provided with conductive members 600 so that the conductive members 600 contact the chemical liquid before the megasonic wave emitting device 30A.
  • the conductive member 600 can also be disposed on the third side wall 303 of the megasonic wave transmitting device 30A.
  • the shape of the conductive member 600 is changed accordingly according to the shape of the third side wall 303.
  • the conductive portion 610 and the fixed portion 620 of the conductive member 600 are electrically
  • the ground wire 630 is electrically connected to the conductive member 600 through the connector 640 on the fixing part 620 .
  • the fixing part 620 is fixed to the first cantilever 360, and the conductive part 610 of the conductive member 600 is in contact with the third side wall 303 of the megasonic wave emitting device 30A (see Figure 17) or not in contact (see Figures 18 and 19).
  • first side wall 301 , the second side wall 302 and the third side wall 303 of the megasonic wave transmitting device 30A can each be provided with a conductive member 600 , and the conductive portion 610 of the conductive member 600 is in contact with the first side of the megasonic wave transmitting device 30A.
  • the wall 301, the second side wall 302 and the third side wall 303 are in contact (see Figure 20) or not in contact (see Figure 21), so that the conductive member 600 contacts the chemical liquid before the megasonic wave emitting device 30A.
  • the conductive nozzle 700 is disposed on one side of the megasonic wave emitting device 30A.
  • the conductive nozzle 700 has a liquid inlet 710 and a plurality of liquid outlets 720 .
  • the liquid inlet 710 is provided at the top of the conductive nozzle 700 , and the plurality of liquid outlets 720 are evenly distributed at the bottom of the conductive nozzle 700 .
  • the conductive nozzle 700 is in contact with the first side wall 301 of the megasonic wave emitting device 30A.
  • the conductive nozzle 700 and the first side wall 301 of the megasonic wave emitting device 30A may also be arranged at intervals, that is, not in contact with each other.
  • the lower surface 701 of the conductive nozzle 700 is higher than the lower surface 305 of the megasonic wave emitting device 30A. In other embodiments, the lower surface 701 of the conductive nozzle 700 can also be lower than or flush with the lower surface 305 of the megasonic wave emitting device 30A, which is specifically designed according to actual requirements.
  • Embodiment 4 proposes another implementation of eliminating static electricity on the megasonic wave emitting device 30A.
  • the first ion rod 800 is used to neutralize the charge on the megasonic wave emitting device 30A.
  • Embodiment 5 proposes another implementation of eliminating static electricity on the megasonic wave emitting device 30A.
  • the second ion rod 900 is used to neutralize the charge on the megasonic wave emitting device 30A.
  • the second ion rod 900 is often used to neutralize the residual charge on the surface of the substrate 500. Its working principle is to ionize the air and water vapor in the atmosphere to form positive and negative charges by pressurizing the silicon needle inside the ion rod. N2 is used to blow these positive and negative charges out from the air outlet 910 to neutralize the residual charges on the surface of the substrate 500 .
  • the second ion rod 900 is disposed on the inner wall of the process chamber 1000, and a window 1001 for the entry and exit of the substrate 500 is provided on the inner wall (refer to the window 1001 shown in Figure 30 of Embodiment 4).
  • the diion rod 900 is located above the window 1001.
  • the substrate processing equipment also includes a first cantilever 360 and a second cantilever 370.
  • the first cantilever 360 is installed on the top of the megasonic wave transmitting device 30A.
  • the second cantilever 370 is provided with a driving device 372.
  • the driving device 372 By driving the first cantilever 360 to rotate in conjunction with the megasonic wave emitting device 30A, the megasonic wave emitting device 30A rotates within the area covered by the ion wind of the second ion rod 900 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

一种基板处理设备,包括工艺腔室(1000)、基板托盘(400)、兆声波发射装置(30)和清洗装置(10),基板托盘(400)设置于工艺腔室(1000)内,基板托盘(400)用于承载基板(500);兆声波发射装置(30)用于对兆声波发射装置(30)和基板(500)之间的化学液传递兆声波能量;清洗装置(10)用于清洗兆声波发射装置(30),清洗装置(10)包括静电导流组件(200),静电导流组件(200)设置于清洗装置(10),静电导流组件(200)用于与兆声波发射装置(30)电性连接,以将兆声波发射装置(30)上的电荷导走,避免基板(500)表面因兆声波发射装置(30)上积累的电荷放电而产生损伤缺陷。

Description

基板处理设备 技术领域
本发明涉及半导体设备领域,尤其涉及一种基板处理设备。
背景技术
SAPS Megasonic(空间交变相位移兆声波)技术采用高频(0.8~1.0MHz)交流电激励压电谐振器晶体产生兆声波,使基板表面附近产生薄的声学边界层,在溶液中形成压力振动以及超高频的高能量,从而有效的进行颗粒的去除。
SAPS Megasonic技术的核心组件是兆声波发射装置,兆声波发射装置包括压电式传感器和声学共振器。在基板清洗工艺中,向基板表面喷洒化学液,兆声波发射装置位于基板表面的上方,会下降并浸入化学液内,压电式传感器通电后振动,声学共振器会将高频声能量传递到化学液中,由高频声能引起气穴振荡使得基板表面上的杂质颗粒等松动,以此去除基板表面上的污染物。此时,如图35所示,兆声波发射装置与化学液50’、基板40’形成平行电容,其中兆声波发射装置中的Al2O3蓝宝石302’是绝缘体,压电式传感器可看作是上电极301’,上电极301’与射频电源303’连接,上电极301’和射频电源303’之间存在电阻,化学液50’和基板40’可看作是下电极。基板清洗工艺结束后,兆声波发射装置断电,电容开始放电,上电极301’的电荷向电阻(图未示出)移动,下电极的电荷流向夹持基板40’的基板托盘(图未示出),但此时射频电源303’已断开,上电极301’的电荷无法完全放走,于是就会积累在上电极301’,导致兆声波发射装置上逐渐积累残余电荷。
当兆声波发射装置上的残余电荷累积到一定量时,这些残余电荷会在基板40’表面发生放电现象(如图36所示),导致基板40’表面产生损伤缺陷。
发明内容
本发明的目的在于解决现有技术中兆声波发射装置上积累的残余电荷对基板表面造成损伤的问题。因此,本发明提供一种基板处理设备,具有能将兆声波发射装置上积累的电荷消除,避免基板表面因兆声波发射装置上残余电荷放电而产生损伤的优点。
为解决上述问题,本发明的实施方式提供了一种基板处理设备,包括:
工艺腔室;
基板托盘,设置于工艺腔室内,基板托盘用于承载基板;
兆声波发射装置,用于对兆声波发射装置和基板之间的化学液传递兆声波能量;
清洗装置,用于清洗兆声波发射装置,清洗装置包括静电导流组件,静电导流组件设置于清洗装置,静电导流组件用于与兆声波发射装置电性连接,以将兆声波发射装置上的电荷导走。
本发明的另一种实施方式提供了一种基板处理设备,包括:
工艺腔室;
基板托盘,用于承载基板;
兆声波发射装置,与基板托盘设置于工艺腔室内,用于对兆声波发射装置和基板之间的化学液传递兆声波能量;
接地的导电件,导电件被配置为兆声波发射装置位于基板的上方时,兆声波发射装置上的电荷通过基板上表面的化学液传导至导电件导走。
本发明的另一种实施方式提供了一种基板处理设备,包括:
工艺腔室;
基板托盘,用于承载基板;
兆声波发射装置,与基板托盘设置于工艺腔室内,用于对兆声波发射装置和基板之间的化学液传递兆声波能量;
接地的导电喷嘴,导电喷嘴被配置为兆声波发射装置在基板的上方下降时,导电喷嘴先向基板的上表面喷洒化学液,当兆声波发射装置浸入基板上表面的化学液液膜时,兆声波发射装置上的电荷通过化学液传导至导电喷嘴导走。
本发明的另一种实施方式提供了一种基板处理设备,包括:
工艺腔室;
基板托盘,用于承载基板;
兆声波发射装置,与基板托盘设置于工艺腔室内,用于对兆声波发射装置和基板之间的化学液传递兆声波能量;
清洗装置,用于清洗兆声波发射装置;
第一离子棒,设置于工艺腔室内,并位于基板托盘和清洗装置之间,第一离子棒的出风口朝上,使得兆声波发射装置在基板托盘和清洗装置之间移动的过程中经过第一离子棒时,第一离子棒通过出风口将离子风吹向上方的兆声波发射装置,以中和兆声波发射装置上的电荷。
本发明的另一种实施方式提供了一种基板处理设备,包括:
工艺腔室;
基板托盘,用于承载基板;
兆声波发射装置,与基板托盘设置于工艺腔室内,用于对兆声波发射装置和基板之间的化学液传递兆声波能量;
第二离子棒,设置于工艺腔室的内侧壁;
驱动装置,用于驱动兆声波发射装置旋转,使得兆声波发射装置在第二离子棒的离子风可覆盖区域内旋转。
如上,本发明的基板处理设备具有以下优点:
本发明通过设置静电消除组件,例如静电导流组件、导电件、离子棒,能够将兆声波发射装置上的静电荷消除,防止兆声波发射装置上积累过多的残余电荷,进而在基板处理时,避免这些残余电荷在基板表面发生放电现象,而导致对基板表面造成损伤。
本发明其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本发明说明书中的记载变的显而易见。
附图说明
图1为本发明实施例1中提供的清洗装置和兆声波发射装置的立体结构示意图;
图2为本发明实施例1中提供的清洗装置的立体结构示意图;
图3为本发明实施例1中提供的清洗装置中静电导流组件的立体结构示意图;
图4为本发明实施例1中提供的清洗装置中静电导流组件的立体结构示意图,其中,未示出防护件;
图5为本发明实施例2中提供的基板处理设备的俯视结构示意图;
图6为本发明实施例2中提供的基板处理设备的立体结构示意图;
图7为本发明实施例2中提供的兆声波发射装置、第一悬臂、第一壳体、第二悬臂、第二壳体和丝杆的立体结构示意图;
图8为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁接触的仰视结构示意图;
图9为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁接触的立体结构示意图;
图10为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁接触的另一视角立体结构示意图;
图11为本发明实施例2中提供的具有导电件的兆声波发射装置在基板上方工作时的结构示意图;
图12为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁不接触的仰视结构示意图;
图13为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁不接触的立体结构示意图;
图14为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁不接触的另一视角立体结构示意图;
图15为本发明实施例2中提供的导电件与兆声波发射装置的第二侧壁接触的立体结构示意图;
图16为本发明实施例2中提供的导电件与兆声波发射装置的第二侧壁不接触的仰视结构示意图;
图17为本发明实施例2中提供的导电件与兆声波发射装置的弧形侧壁接触的立体结构示意图;
图18为本发明实施例2中提供的导电件与兆声波发射装置的弧形侧壁不接触的仰视结构示意图;
图19为本发明实施例2中提供的导电件与兆声波发射装置的弧形侧壁不接触的立体结构示意图;
图20为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁、第二侧壁和弧形侧壁接触的仰视结构示意图;
图21为本发明实施例2中提供的导电件与兆声波发射装置的第一侧壁、第二侧壁和弧形侧壁不接触的仰视结构示意图;
图22为本发明实施例3中提供的导电喷嘴设置于兆声波发射装置的一侧的立体结构示意图;
图23为本发明实施例3中提供的导电喷嘴设置于兆声波发射装置的一侧的另一视角立体结构示意图;
图24为本发明实施例3中提供的导电喷嘴设置于兆声波发射装置的一侧的仰视结构示意图;
图25为本发明实施例3中提供的导电喷嘴的立体结构示意图;
图26为本发明实施例3中提供的导电喷嘴的另一视角立体结构示意图;
图27和图28为本发明实施例3中提供的具有导电喷嘴的兆声波发射装置在基板上方工作时的立体结构示意图;
图29为本发明实施例4中提供的基板处理设备的俯视结构示意图;
图30为本发明实施例4中提供的基板处理设备的立体结构示意图;
图31和图32为本发明实施例5中提供的基板处理设备的立体结构示意图;
图33和图34为本发明实施例5中提供的设置有驱动装置的第二悬臂、第一悬臂、兆声波发射装置和丝杆的立体结构示意图;
图35为现有技术中兆声波发射装置与化学液、基板形成平行电容的结构示意图;以及
图36为现有技术中兆声波发射装置上积累的残余电荷导致基板表面产生损伤缺陷的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
实施例1:
兆声波发射装置(如图1中的兆声波发射装置30)可以应用在基板清洗工艺中,也可以应用在基板预湿润工艺中等,在此不做限制。
以基板清洗工艺为例,本领域技术人员可以理解的是,在基板清洗工艺中,工艺腔室内的基板托盘(参考图5中的基板托盘400)承载一基板并带动基板(参考图5中的基板500)旋转,基板托盘的边缘设置有若干边缘夹,若干边缘夹将基板夹持住。兆声波发射装置移动到基板表面上方的位置,至少一个喷嘴向基板的表面喷洒化学液,兆声波发射装 置会下降并浸入化学液内,通过控制兆声波发射装置的上下移动来改变兆声发射界面与基板表面之间液膜的距离,以使基板上每一个点在一个周期内受到的兆声积分能量保持一致,从而使基板上的每个点能量均一。公告号为CN101879511B的中国发明专利中详细描述了利用兆声波发射装置清洗基板的方法,作为参考纳入本实施例。
在基板清洗工艺中,虽然兆声波发射装置与化学液直接接触,但是基板托盘上夹持基板边缘的边缘夹一般是不导电的绝缘材料,因此就使得兆声波发射装置上积累的电荷通过化学液并不能有效地传导消除。未消除的残余电荷累积到一定量时在基板表面发生放电现象,对基板表面造成损伤。
因此,本发明提出一种基板处理设备的清洗装置,在基板清洗工艺结束后,清洗兆声波发射装置的同时消除兆声波发射装置上的残余电荷。
参见图1,基板清洗工艺结束后,兆声波发射装置30会回到初始位置处的用于清洗该兆声波发射装置30的清洗装置10中进行自清洁,此时兆声波发射装置30停止发射射频能量,不会产生额外的表面电荷。
本发明提供的清洗装置10,能够将兆声波发射装置30上积累的残余电荷导走以消除兆声波发射装置30上积累的电荷。
参见图2,清洗装置10包括清洗槽100和静电导流组件200,清洗槽100用于盛放清洗液,以清洗兆声波发射装置30。静电导流组件200设置于清洗装置10的清洗槽100,静电导流组件200用于与兆声波发射装置30电性连接,以将兆声波发射装置30上积累的电荷导走。
本实施方式中,选择使用0.1兆欧的混有CO2的纯水作为清洗液。清洗槽100的材质采用有机材料,例如PTFE(Poly Tetra Fluoro Ethylene,聚四氟乙烯)或PFA(Poly Fluoro Alkoxy,四氟乙烯一全氟烷氧基乙烯基醚共聚物)材料,可认为是不导电的。本发明在清洗装置10的清洗槽100上设置用于与兆声波发射装置30电性连接的静电导流组件200, 使得兆声波发射装置30上的电荷能通过静电导流组件200导走,从而,在基板清洗工艺中,能够避免基板表面因兆声波发射装置30上积累的残余电荷而产生损伤缺陷。
在其它可替代的实施方式中,通过在清洗装置10的清洗槽100上设置静电导流组件200,可以使静电导流组件200与兆声波发射装置30直接接触,兆声波发射装置30上积累的电荷直接从静电导流组件200导走。
结合图1至图2,静电导流组件200固设于清洗槽100的槽底(即清洗装置10的底部),并且静电导流组件200接地。
当兆声波发射装置30在清洗装置10的清洗槽100中清洗时,静电导流组件200通过清洗槽100中的清洗液与兆声波发射装置30电性连接,以使兆声波发射装置30上积累的电荷依次通过清洗液和静电导流组件200导走。
静电导流组件200包括连接端子210和导线220,连接端子210和导线220电性连接,连接端子210固设于清洗槽100的槽底,导线220接地。
进一步地,连接端子210的第一端2101贯穿清洗槽100的槽底,并且以螺纹连接的方式固设于清洗槽100的槽底,连接端子210的第一端2101与清洗液接触,连接端子210的第二端2102与导线220连接。具体地,螺纹连接为NPT(national pipe thread美国国标管螺纹)螺纹连接。
本实施方式中,连接端子210是导电的,导线220通过固定螺栓240固定在连接端子210的第二端2102。
连接端子210也可以是不导电的,可在连接端子210内设置空腔,使得导线220通过该空腔与清洗液电性连接。
结合图3和图4,静电导流组件200还包括防护件230,防护件230包覆连接端子210的第二端2102,连接端子210的第二端2102延伸至清洗槽100的外部,相应地,防护件230也位于清洗槽100的外部,防护件230的侧壁通过若干顶丝250固定于连接端子210的外周。防护件230可以部分包覆连接端子210延伸至清洗槽100外部的部分,包括包覆 连接端子210的第二端2102,主要是为了包覆连接端子210露出导线220的位置处,防止导线220受外界干扰造成接触不良。防护件230也可以完全包覆连接端子210延伸至清洗槽100外部的部分,以防止连接端子210的该部分受腐蚀、漏电等。
防护件230的侧壁还设置有通线孔231,固定在连接端子210的第二端2102的导线220穿过通线孔231后接地。
参见图2,清洗装置10还包括溢流槽300、入口120和出口,溢流槽300包围清洗槽100,溢流槽300与清洗槽100之间设置有隔墙110,清洗槽100中的过多清洗液流过隔墙110后流入溢流槽300内,并从出口排出。
出口包括第一出口140和第二出口310,入口120和第一出口140均与清洗槽100连通,入口120用于使清洗液通入清洗槽100中,第一出口140用于排出清洗槽100中的清洗液;第二出口310与溢流槽300连通,第二出口310用于排出溢流槽300中的清洗液。
进一步地,入口120和第一出口140开设于清洗槽100的槽底,第二出口310开设于溢流槽300的槽底。
实施例2:
参见图5和图6,本发明提出的基板处理设备,包括工艺腔室1000、基板托盘400、清洗装置10A和兆声波发射装置30A。清洗装置10A可以是现有的清洗装置,也可以采用实施例1中的清洗装置10。
基板托盘400、清洗装置10A及兆声波发射装置30A设置于工艺腔室1000内,基板托盘400用于承载基板500。兆声波发射装置30A用于对兆声波发射装置30A和基板500之间的化学液传递兆声波能量以对基板500进行处理,并在工艺结束后移动至清洗装置10A中进行自清洁。
以基板清洗工艺为例,清洗基板的方法包括以下步骤:
利用基板托盘400夹持基板500;
向基板500的上表面喷洒化学液;
使兆声波发射装置30A移动到基板500的上方,并使兆声波发射装置30A下降,在兆声波发射装置30A和基板500的上表面之间形成间隙;
使基板托盘400旋转,以保证兆声波发射装置30A和基板500的上表面之间的间隙完全地且持续地被清洗液填满,使得兆声波能量通过清洗液稳定地传递到整个基板500表面。
公开号为CN109890520A的中国发明专利中详细描述了清洗基板的方法,作为参考纳入本实施例。
结合图6和图7,基板处理设备包括相互连接的第一悬臂360和第二悬臂370,第一悬臂360安装于兆声波发射装置30A的顶部,第一悬臂360上具有第一壳体361。基板处理设备中的驱动器1002通过丝杆1003驱动第二悬臂370上升或下降,以及驱动第二悬臂370转动,使得兆声波发射装置30A移动到基板500的上方,或者改变兆声波发射装置30A和基板500的上表面之间的间隙,第二悬臂370上具有第二壳体371。
结合图8至图11,基板处理设备还包括导电件600,接地导线630通过接头640与导电件600电性连接。
导电件600被配置为导电件600的下表面611先于兆声波发射装置30A的下表面305接触到基板500上表面的化学液,当兆声波发射装置30A浸入基板500上表面的化学液液膜时,兆声波发射装置30A上的电荷通过化学液传导至导电件600导走。然后,开启兆声波发射装置30A,以对兆声波发射装置30A和基板500之间的化学液传递兆声波能量,使得兆声波能量通过化学液稳定地传递到整个基板500表面。开启兆声波发射装置30A后,导电件600仍然可以导电,以消除处理基板500过程中产生的静电。本实施例中,采用中心喷嘴362向基板500的上表面喷洒化学液,中心喷嘴362设置于第一悬臂360,是与兆声波发射装置30A集成在一起的,在其它可替代实施方式中,也可以采用独立设置的喷嘴向基板500的上表面喷洒化学液。
另外,兆声波发射装置30A下降的过程中,使兆声波发射装置30A的下表面305与基板托盘400上的基板500上表面保持平行;或者,先使兆声波发射装置30A的下表面305 相对于基板500的上表面倾斜,使得兆声波发射装置30A上的电荷通过化学液和导电件600导走后,再使兆声波发射装置30A的下表面305与基板500上表面保持平行,然后打开兆声波发射装置30A以对基板500进行处理。
兆声波发射装置30A的形状可以是多边形、椭圆形、半圆形、四分之一圆形或圆形等。导电件600的形状根据兆声波发射装置30A的形状不同而作相应改变。
优选地,兆声波发射装置30A的形状呈三角形或者类似三角形的馅饼形状(即类似三角形的pie形)。导电件600位于兆声波发射装置30A的第一侧壁301、第二侧壁302和第三侧壁303中的至少其中之一的位置处,导电件600的下表面611超过兆声波发射装置30A的下表面305。
参见图8至图10,导电件600位于兆声波发射装置30A的第一侧壁301的位置处,导电件600例如是导电棒或导电块,包括导电部610和固定部620,导电部610通过固定部620固定于第一悬臂360,导电部610与兆声波发射装置30A的第一侧壁301接触,导电部610的下表面611超过兆声波发射装置30A的下表面305。由于导电件600的下表面611先接触到基板500上表面的化学液,因此等到兆声波发射装置30A浸入基板500上表面的化学液液膜时,根据电子会优先往电阻小的路径传导,兆声波发射装置30A上的电荷会通过化学液传导至接地的导电件600而从侧边导走,避免电荷到基板500上。
参见图12至图14,导电件600的导电部610与兆声波发射装置30A的第一侧壁301也可以不接触,即导电件600的导电部610与兆声波发射装置30A的第一侧壁301之间具有间隙,导电件600本身可接地导出电荷。同样,根据电子会优先往电阻小的路径传导,兆声波发射装置30A上的电荷会通过化学液传导至接地的导电件600而从侧边导走,避免电荷到基板500上。本实施方式中,固定部620可以通过螺钉固定在第一悬臂360的侧壁。
在其他实施方式中,不论导电件600的导电部610与兆声波发射装置30A的第一侧壁301是否接触,导电件600的导电部610也都可以相对于兆声波发射装置30A的第一侧壁301倾斜,使得导电部610比兆声波发射装置30A先接触到化学液即可。
同理,参见图15,导电件600也可设置于兆声波发射装置30A的第二侧壁302,导电件600的导电部610与兆声波发射装置30A的第二侧壁302接触。参见图16,导电件600的导电部610与兆声波发射装置30A的第二侧壁302也可以不接触。在其它实施方式中,兆声波发射装置30A的第一侧壁301和第二侧壁302均可设置导电件600,使得导电件600比兆声波发射装置30A先接触到化学液即可。
导电件600还可设置于兆声波发射装置30A的第三侧壁303,导电件600的形状根据第三侧壁303的形状而作相应改变,导电件600的导电部610与固定部620电性连接,接地导线630通过固定部620上的接头640电性连接于导电件600。固定部620与第一悬臂360固定,导电件600的导电部610与兆声波发射装置30A的第三侧壁303接触(参见图17)或不接触(参见图18、图19)。
再者,兆声波发射装置30A的第一侧壁301、第二侧壁302和第三侧壁303均可设置导电件600,导电件600的导电部610与兆声波发射装置30A的第一侧壁301、第二侧壁302和第三侧壁303接触(参见图20)或不接触(参见图21),使得导电件600比兆声波发射装置30A先接触到化学液即可。
本实施方式中,导电件600的材料可以采用ESD PTFE、ESD PEEK、ESD PCTFE、ESD ETFE或ESD PFA等抗静电的导电材料。
上述导电件600的导电部610的下表面611也可以与兆声波发射装置30A的下表面305齐平,导电件600的下表面611同时与兆声波发射装置30A的下表面305接触到基板500上表面的化学液,使得兆声波发射装置30A上的电荷通过化学液传导至导电件600导走。
实施例3:
本实施例提出的基板处理设备,参考实施例2的图5和图6,包括工艺腔室1000、基板托盘400、清洗装置10A和兆声波发射装置30A。清洗装置10A可以是现有的清洗装置,也可以采用实施例1中的清洗装置10。
基板托盘400、清洗装置10A及兆声波发射装置30A设置于工艺腔室1000内,基板托盘400用于承载基板500。兆声波发射装置30A用于对兆声波发射装置30A和基板500之间的化学液传递兆声波能量以对基板500进行处理,并在工艺结束后移动至清洗装置10A中进行自清洁。
参见图22至图24,导电喷嘴700设置于兆声波发射装置30A的一侧。参见图25和图26,导电喷嘴700具有进液口710和多个出液口720,进液口710设置于导电喷嘴700的顶部,多个出液口720均匀分布在导电喷嘴700的底部。
参见图27和图28,导电喷嘴700被配置为兆声波发射装置30A在基板500的上方下降时,导电喷嘴700通过多个出液口720先向基板500的上表面喷洒化学液,当兆声波发射装置30A浸入基板500上表面的化学液液膜时,兆声波发射装置30A上的电荷通过化学液传导至导电喷嘴700导走,从而消除兆声波发射装置30A上的静电,其中,接地导线730通过接头740与导电喷嘴700电性连接。
结合图24和图28,导电喷嘴700与兆声波发射装置30A的第一侧壁301接触。在其它实施方式中,导电喷嘴700与兆声波发射装置30A的第一侧壁301也可间隔设置,即设置为不接触的。
导电喷嘴700的下表面701高于兆声波发射装置30A的下表面305。在其它实施方式中,导电喷嘴700的下表面701也可以低于或齐平于兆声波发射装置30A的下表面305,具体根据实际需求设计。
另外,导电喷嘴700喷洒化学液的同时,设置在第一悬臂360末端的中心喷嘴362也可以向基板500的上表面喷洒化学液,通过控制基板托盘400的旋转速度,保证兆声波发射装置30A和基板500上表面之间的间隙完全地且持续地被化学液填满,使得兆声波能量通过化学液稳定地传递到整个基板500表面。在其它实施方式中,也可以仅采用导电喷嘴700向基板500的上表面喷洒化学液。
本实施方式中,导电喷嘴700的材料采用ESD PTFE、ESD PEEK、ESD PCTFE、ESD ETFE或ESD PFA等抗静电的导电材料。
实施例4:
实施例4提出另一种消除兆声波发射装置30A上静电的实施方式。采用第一离子棒800中和兆声波发射装置30A上的电荷。
参见图29和图30,本实施例提供的基板处理设备包括工艺腔室1000、基板托盘400、清洗装置10A和兆声波发射装置30A,基板托盘400、清洗装置10A及兆声波发射装置30A均设置于工艺腔室1000内,基板托盘400用于承载基板500,清洗装置10A用于清洗兆声波发射装置30A。清洗装置10A可以是现有的清洗装置,也可以采用实施例1中的清洗装置10。
基板处理设备还包括第一离子棒800和第二离子棒900,第一离子棒800设置于工艺腔室1000内,并位于基板托盘400和清洗装置10A之间,第一离子棒800的出风口810朝上,兆声波发射装置30A从基板托盘400往清洗装置10A移动的过程中,或者从清洗装置10A往基板托盘400移动的过程中,兆声波发射装置30A的底部朝下经过第一离子棒800,第一离子棒800通过出风口810将离子风吹向上方的兆声波发射装置30A,以此中和兆声波发射装置30A上的电荷,防止这些电荷被带到基板500表面产生放电现象。另外,当兆声波发射装置30A停置在第一离子棒800的离子风可覆盖区域内的任意位置时,第一离子棒800可将离子风吹至兆声波发射装置30A,中和兆声波发射装置30A上的电荷,同样达到去除静电的目的。
第二离子棒900也设置于工艺腔室1000内,第二离子棒900位于窗口1001的上方,基板500通过窗口放入工艺腔室1000或从工艺腔室1000取出,基板500放置在基板托盘400时位于第二离子棒900的离子风可覆盖区域内,第二离子棒900从出风口910将离子风吹至基板500,中和基板500表面的残留电荷。
实施例5:
实施例5提出另一种消除兆声波发射装置30A上静电的实施方式。采用第二离子棒900中和兆声波发射装置30A上的电荷。
参见图31和图32,本实施例提供的基板处理设备包括第二离子棒900、兆声波发射装置30A。
现有技术中,第二离子棒900常用于中和基板500表面的残留电荷,其工作原理是通过对离子棒内部的硅针加压,将大气中的空气和水汽电离形成正负电荷,再利用N2将这些正负电荷从出风口910吹出以中和基板500表面的残留电荷。
本实施例中,第二离子棒900设置于工艺腔室1000的内侧壁,该内侧壁上开设有用于基板500进出的窗口1001(参考实施例4的图30中所示的窗口1001),第二离子棒900位于窗口1001的上方。
参见图33和图34,基板处理设备还包括第一悬臂360和第二悬臂370,第一悬臂360安装于兆声波发射装置30A的顶部,第二悬臂370上设置有驱动装置372,驱动装置372通过驱动第一悬臂360联动兆声波发射装置30A旋转,使得兆声波发射装置30A在第二离子棒900的离子风可覆盖区域内旋转。
基板处理设备中的驱动器1002通过丝杆1003驱动第二悬臂370上升或下降,以及驱动第二悬臂370转动。当兆声波发射装置30A工艺结束后,在驱动器1002的驱动下,第二悬臂370联动第一悬臂360将兆声波发射装置30A升起并移动到第二离子棒900的离子风可覆盖区域(如图32中兆声波发射装置30A所在的位置),再通过第二悬臂370上的驱动装置372转动兆声波发射装置30A,可使兆声波发射装置30A旋转任意角度,使第二离子棒900的离子风通过出风口910均匀吹到兆声波发射装置30A的所有部位,达到去除静电目的。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行 等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种基板处理设备,其特征在于,包括:
    工艺腔室;
    基板托盘,设置于所述工艺腔室内,所述基板托盘用于承载基板;
    兆声波发射装置,用于对所述兆声波发射装置和所述基板之间的化学液传递兆声波能量;
    清洗装置,用于清洗所述兆声波发射装置,所述清洗装置包括静电导流组件,所述静电导流组件设置于所述清洗装置,所述静电导流组件用于与所述兆声波发射装置电性连接,以将所述兆声波发射装置上的电荷导走。
  2. 如权利要求1所述的基板处理设备,其特征在于,所述静电导流组件固设于所述清洗装置的底部,并且所述静电导流组件接地;
    当所述兆声波发射装置在所述清洗装置中清洗时,所述静电导流组件通过所述清洗装置中的清洗液与所述兆声波发射装置电性连接,以使所述兆声波发射装置上的电荷依次通过所述清洗装置中的清洗液和所述静电导流组件导走。
  3. 如权利要求2所述的基板处理设备,其特征在于,所述静电导流组件包括连接端子和导线,所述连接端子和所述导线电性连接,所述连接端子固设于所述清洗装置的底部,所述导线接地。
  4. 如权利要求3所述的基板处理设备,其特征在于,所述连接端子的第一端贯穿所述清洗装置的底部并与清洗液电性连接,所述连接端子的第二端与所述导线连接。
  5. 如权利要求3所述的基板处理设备,其特征在于,所述连接端子贯穿所述清洗装置的底部,所述连接端子内设置空腔,所述导线穿过所述空腔与清洗液电性连接。
  6. 如权利要求4所述的基板处理设备,其特征在于,所述静电导流组件还包括防护件,所述防护件包覆所述连接端子的第二端,所述防护件设置有通线孔,所述导线穿过所述通线孔后接地。
  7. 如权利要求1所述的基板处理设备,其特征在于,还包括:
    接地的导电件,所述导电件被配置为所述兆声波发射装置位于基板的上方时,所述兆声波发射装置上的电荷通过基板上表面的化学液传导至所述导电件导走。
  8. 如权利要求7所述的基板处理设备,其特征在于,所述兆声波发射装置在基板的上方下降时,所述导电件的下表面先于或同时与所述兆声波发射装置的下表面接触到基板上表面的化学液,使得所述兆声波发射装置上的电荷通过化学液传导至所述导电件导走。
  9. 如权利要求8所述的基板处理设备,其特征在于,所述基板处理设备还包括第一悬臂,所述第一悬臂安装于所述兆声波发射装置的顶部;
    所述导电件包括相连的导电部和固定部,所述导电部通过所述固定部固定于所述第一悬臂,所述导电部与所述兆声波发射装置的至少一个侧壁接触或间隔设置,所述导电部的下表面超过所述兆声波发射装置的下表面。
  10. 如权利要求9所述的基板处理设备,其特征在于,所述兆声波发射装置的形状呈三角形或馅饼形,所述兆声波发射装置具有第一侧壁、第二侧壁和第三侧壁,所述导电部与所述兆声波发射装置的所述第一侧壁、所述第二侧壁和所述第三侧壁中的至少其中之一接触或间隔设置。
  11. 如权利要求7~10任一项所述的基板处理设备,其特征在于,所述导电件的材料采用ESD PTFE、ESD PEEK、ESD PCTFE、ESD ETFE或ESD PFA材料。
  12. 如权利要求1所述的基板处理设备,其特征在于,还包括:
    接地的导电喷嘴,所述导电喷嘴被配置为所述兆声波发射装置在基板的上方下降时,所述导电喷嘴先向基板的上表面喷洒化学液,当所述兆声波发射装置浸入基板上表面的化学液液膜时,所述兆声波发射装置上的电荷通过化学液传导至所述导电喷嘴导走。
  13. 如权利要求12所述的基板处理设备,其特征在于,所述导电喷嘴设置于所述兆声波发射装置的一侧。
  14. 如权利要求12或13所述的基板处理设备,其特征在于,所述导电喷嘴具有进液口和多个出液口,所述进液口设置于所述导电喷嘴的顶部,所述多个出液口均匀分布在所述导电喷嘴的底部。
  15. 如权利要求12或13所述的基板处理设备,其特征在于,所述导电喷嘴的材料采用ESD PTFE、ESD PEEK、ESD PCTFE、ESD ETFE或ESD PFA材料。
  16. 如权利要求1所述的基板处理设备,其特征在于,还包括:
    第一离子棒,设置于所述工艺腔室内,并位于所述基板托盘和所述清洗装置之间,所述第一离子棒的出风口朝上,使得所述兆声波发射装置在所述基板托盘和所述清洗装置之间移动的过程中经过所述第一离子棒时,所述第一离子棒通过所述出风口将离子风吹向上方的所述兆声波发射装置,以中和所述兆声波发射装置上的电荷。
  17. 如权利要求1或16所述的基板处理设备,其特征在于,还包括:
    第二离子棒,设置于所述工艺腔室的内侧壁;
    驱动装置,用于驱动所述兆声波发射装置旋转,使得所述兆声波发射装置在所述第二离子棒的离子风可覆盖区域内旋转。
  18. 如权利要求17所述的基板处理设备,其特征在于,还包括:
    第一悬臂和第二悬臂,所述第一悬臂安装于所述兆声波发射装置的顶部,所述第二悬臂上设置有所述驱动装置,所述驱动装置通过驱动所述第一悬臂联动所述兆声波发射装置旋转,使得所述兆声波发射装置在所述第二离子棒的离子风可覆盖区域内旋转。
  19. 一种基板处理设备,其特征在于,包括:
    工艺腔室;
    基板托盘,用于承载基板;
    兆声波发射装置,与所述基板托盘设置于所述工艺腔室内,用于对所述兆声波发射装置和所述基板之间的化学液传递兆声波能量;
    接地的导电件,所述导电件被配置为所述兆声波发射装置位于基板的上方时,所述兆声波发射装置上的电荷通过基板上表面的化学液传导至所述导电件导走。
  20. 如权利要求19所述的基板处理设备,其特征在于,所述兆声波发射装置在基板的上方下降时,所述导电件的下表面先于或同时与所述兆声波发射装置的下表面接触到基板上表面的化学液,使得所述兆声波发射装置上的电荷通过化学液传导至所述导电件导走。
  21. 如权利要求20所述的基板处理设备,其特征在于,所述基板处理设备还包括第一悬臂,所述第一悬臂安装于所述兆声波发射装置的顶部;
    所述导电件包括相连的导电部和固定部,所述导电部通过所述固定部固定于所述第一悬臂,所述导电部与所述兆声波发射装置的至少一个侧壁接触或间隔设置,所述导电部的下表面超过所述兆声波发射装置的下表面。
  22. 如权利要求21所述的基板处理设备,其特征在于,所述兆声波发射装置的形状呈三角形或馅饼形,所述兆声波发射装置具有第一侧壁、第二侧壁和第三侧壁,所述导电部与所述兆声波发射装置的所述第一侧壁、所述第二侧壁和所述第三侧壁中的至少其中之一接触或间隔设置。
  23. 一种基板处理设备,其特征在于,包括:
    工艺腔室;
    基板托盘,用于承载基板;
    兆声波发射装置,与所述基板托盘设置于所述工艺腔室内,用于对所述兆声波发射装置和所述基板之间的化学液传递兆声波能量;
    接地的导电喷嘴,所述导电喷嘴被配置为所述兆声波发射装置在基板的上方下降时,所述导电喷嘴先向基板的上表面喷洒化学液,当所述兆声波发射装置浸入基板上表面的化学液液膜时,所述兆声波发射装置上的电荷通过化学液传导至所述导电喷嘴导走。
  24. 如权利要求23所述的基板处理设备,其特征在于,所述导电喷嘴设置于所述兆声波发射装置的一侧。
  25. 如权利要求23或24所述的基板处理设备,其特征在于,所述导电喷嘴具有进液口和多个出液口,所述进液口设置于所述导电喷嘴的顶部,所述多个出液口均匀分布在所述导电喷嘴的底部。
  26. 一种基板处理设备,其特征在于,包括:
    工艺腔室;
    基板托盘,用于承载基板;
    兆声波发射装置,与所述基板托盘设置于所述工艺腔室内,用于对所述兆声波发射装置和所述基板之间的化学液传递兆声波能量;
    清洗装置,用于清洗所述兆声波发射装置;
    第一离子棒,设置于所述工艺腔室内,并位于所述基板托盘和所述清洗装置之间,所述第一离子棒的出风口朝上,使得所述兆声波发射装置在所述基板托盘和所述清洗装置之间移动的过程中经过所述第一离子棒时,所述第一离子棒通过所述出风口将离子风吹向上方的所述兆声波发射装置,以中和所述兆声波发射装置上的电荷。
  27. 一种基板处理设备,其特征在于,包括:
    工艺腔室;
    基板托盘,用于承载基板;
    兆声波发射装置,与所述基板托盘设置于所述工艺腔室内,用于对所述兆声波发射装置和所述基板之间的化学液传递兆声波能量;
    第二离子棒,设置于所述工艺腔室的内侧壁;
    驱动装置,用于驱动所述兆声波发射装置旋转,使得所述兆声波发射装置在所述第二离子棒的离子风可覆盖区域内旋转。
  28. 如权利要求27所述的基板处理设备,其特征在于,还包括:
    第一悬臂和第二悬臂,所述第一悬臂安装于所述兆声波发射装置的顶部,所述第二悬臂上设置有所述驱动装置,所述驱动装置通过驱动所述第一悬臂联动所述兆声波发射装置旋转,使得所述兆声波发射装置在所述第二离子棒的离子风可覆盖区域内旋转。
PCT/CN2023/095239 2022-06-23 2023-05-19 基板处理设备 WO2023246394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210724206.3 2022-06-23
CN202210724206.3A CN117299666A (zh) 2022-06-23 2022-06-23 基板处理设备

Publications (1)

Publication Number Publication Date
WO2023246394A1 true WO2023246394A1 (zh) 2023-12-28

Family

ID=89260964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095239 WO2023246394A1 (zh) 2022-06-23 2023-05-19 基板处理设备

Country Status (3)

Country Link
CN (1) CN117299666A (zh)
TW (1) TW202400319A (zh)
WO (1) WO2023246394A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050082000A1 (en) * 2003-08-25 2005-04-21 Tokyo Electron Limited Method for cleaning elements in vacuum chamber and apparatus for processing substrates
WO2008085258A1 (en) * 2006-12-19 2008-07-17 Lam Research Corporation Megasonic precision cleaning of semiconductor process equipment components and parts
CN103489814A (zh) * 2013-09-24 2014-01-01 深圳市凯尔迪光电科技有限公司 全自动兆声波半导体晶圆清洗设备
CN105983552A (zh) * 2015-02-15 2016-10-05 盛美半导体设备(上海)有限公司 一种防掉落的半导体清洗装置
CN109890520A (zh) * 2016-10-25 2019-06-14 盛美半导体设备(上海)有限公司 清洗半导体硅片的装置和方法
JP2019145734A (ja) * 2018-02-23 2019-08-29 株式会社荏原製作所 基板洗浄装置および基板洗浄方法
CN110838457A (zh) * 2018-08-15 2020-02-25 台湾积体电路制造股份有限公司 晶圆清洁设备与晶圆清洁方法
CN112207085A (zh) * 2020-09-23 2021-01-12 复汉海志(江苏)科技有限公司 一种芯片晶圆生产用清洗装置
CN114345826A (zh) * 2021-12-28 2022-04-15 北京东方金荣超声电器有限公司 用于晶圆清洗的兆声发射装置及声波清洗系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050082000A1 (en) * 2003-08-25 2005-04-21 Tokyo Electron Limited Method for cleaning elements in vacuum chamber and apparatus for processing substrates
WO2008085258A1 (en) * 2006-12-19 2008-07-17 Lam Research Corporation Megasonic precision cleaning of semiconductor process equipment components and parts
CN103489814A (zh) * 2013-09-24 2014-01-01 深圳市凯尔迪光电科技有限公司 全自动兆声波半导体晶圆清洗设备
CN105983552A (zh) * 2015-02-15 2016-10-05 盛美半导体设备(上海)有限公司 一种防掉落的半导体清洗装置
CN109890520A (zh) * 2016-10-25 2019-06-14 盛美半导体设备(上海)有限公司 清洗半导体硅片的装置和方法
JP2019145734A (ja) * 2018-02-23 2019-08-29 株式会社荏原製作所 基板洗浄装置および基板洗浄方法
CN110838457A (zh) * 2018-08-15 2020-02-25 台湾积体电路制造股份有限公司 晶圆清洁设备与晶圆清洁方法
CN112207085A (zh) * 2020-09-23 2021-01-12 复汉海志(江苏)科技有限公司 一种芯片晶圆生产用清洗装置
CN114345826A (zh) * 2021-12-28 2022-04-15 北京东方金荣超声电器有限公司 用于晶圆清洗的兆声发射装置及声波清洗系统

Also Published As

Publication number Publication date
CN117299666A (zh) 2023-12-29
TW202400319A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
US11958090B2 (en) Apparatus and method for wafer cleaning
US11676827B2 (en) Substrate cleaning apparatus, substrate cleaning method, substrate processing apparatus, and substrate drying apparatus
US7836901B2 (en) Method and apparatus for wafer cleaning
US20140290703A1 (en) Substrate processing apparatus and substrate processing method
US9027577B2 (en) Nozzle and a substrate processing apparatus including the same
US20200168478A1 (en) Chemical liquid supply apparatus and semiconductor processing apparatus having the same
CN101145505A (zh) 基板处理装置和基板处理方法
JP2011066202A (ja) プラズマ処理装置
JP2016058670A (ja) プラズマ処理装置
EP3499556A1 (en) Semiconductor manufacturing apparatus
US20140254325A1 (en) Composite transducer apparatus and system for processing a substrate and method of constructing the same
WO2023246394A1 (zh) 基板处理设备
JP3208008B2 (ja) 処理装置
CN112736019B (zh) 一种用于提升单晶圆背面清洁度的装置
US20040187891A1 (en) Wet cleaning cavitation system and method to remove particulate wafer contamination
JP2003188138A (ja) 液処理方法及び液処理装置
JP6940281B2 (ja) 基板処理装置および基板処理方法
KR20140076525A (ko) 초음파 세정 방법 및 그 장치
JP2007035855A (ja) プラズマ処理装置及びそのクリーニング方法
CN115780358B (zh) 一种半导体材料制备用清洗装置
KR101966814B1 (ko) 처리액 공급 유닛 및 기판 처리 장치
KR100780366B1 (ko) 반도체 제조 장치
KR102139603B1 (ko) 기판 처리 장치
KR100766460B1 (ko) 웨이퍼 클리닝장치
US11302540B2 (en) Substrate support device and substrate cleaning device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826043

Country of ref document: EP

Kind code of ref document: A1