WO2023246383A1 - 成像设备及其成像方法、打印机 - Google Patents

成像设备及其成像方法、打印机 Download PDF

Info

Publication number
WO2023246383A1
WO2023246383A1 PCT/CN2023/094719 CN2023094719W WO2023246383A1 WO 2023246383 A1 WO2023246383 A1 WO 2023246383A1 CN 2023094719 W CN2023094719 W CN 2023094719W WO 2023246383 A1 WO2023246383 A1 WO 2023246383A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photosensitive drum
area
sub
areas
Prior art date
Application number
PCT/CN2023/094719
Other languages
English (en)
French (fr)
Inventor
卢增祥
Original Assignee
亿信科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿信科技发展有限公司 filed Critical 亿信科技发展有限公司
Priority to EP23826032.7A priority Critical patent/EP4361730A1/en
Publication of WO2023246383A1 publication Critical patent/WO2023246383A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • G03G15/0435Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure by introducing an optical element in the optical path, e.g. a filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04054Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by LED arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/326Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by application of light, e.g. using a LED array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00037Detecting, i.e. determining the occurrence of a predetermined state
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array

Definitions

  • the present application relates to the technical field of printers, for example, to an imaging device, an imaging method thereof, and a printer.
  • Printers have important applications in modern society.
  • the printing process of printers mainly includes four stages: power-on, exposure, development and printing.
  • Printers can be mainly divided into laser printers and LED printers.
  • LED printers have fast printing speed and good printing image effect. , long service life, high degree of freedom, energy saving and environmental protection and other advantages are becoming more and more widely used.
  • Figure 1 is a schematic structural diagram of an imaging device in a printer in the related art.
  • the imaging device includes a display chip 1' and a photosensitive drum 2'.
  • the imaging device also includes a lens array.
  • the display chip 1' contains one or more rows of LED pixels.
  • the LED pixels on the display chip 1' are directly imaged on the photosensitive drum 2' through the projection lens.
  • the resolution of the imaging depends on the size of the microlens. And related to the pixel spacing, resulting in limited resolution of imaging devices in related technologies and low light energy utilization.
  • the present application provides an imaging device, an imaging method thereof, and a printer, which can realize high-resolution printing by using a low-resolution pixel array, and can improve the utilization of the light-emitting area on the display chip in the imaging device.
  • an imaging device including:
  • each of the photosensitive drums is configured to be exposed through the photosensitive area of the photosensitive drum to form an electronic latent image in the photosensitive area of the photosensitive drum; where M is greater than or equal to 1, and each of the photosensitive drums
  • the light-receiving area includes a plurality of sub-light-receiving areas arranged along the axial direction of the photosensitive drum;
  • each of the display chips includes at least two light-emitting areas arranged along the first direction, the light-emitting areas correspond to the sub-light-receiving areas one-to-one, and each of the light-emitting areas is provided with a plurality of light-emitting areas. lighting unit;
  • At least one projection lens corresponding one-to-one to the at least one display chip, each projection lens configured to image the corresponding display chip;
  • At least one beam deflection system corresponding to the at least one display chip.
  • the beam deflection system is configured to deflect the image formed by each of the light-emitting areas in the display chip through the corresponding projection lens. to the corresponding sub-light-receiving area.
  • a printer which includes a toner cartridge and the above-mentioned imaging device.
  • an imaging method of an imaging device is provided, the imaging device It is the above-mentioned imaging device; the light-emitting units of all the display chips are arranged in a matrix; all the light-emitting areas are imaged in the sub-light-receiving area as a plurality of pixels arranged in a matrix along the row direction and the column direction, and the The angle between the row direction and the column direction and the axial direction of all the photosensitive drums is not 90 degrees;
  • the imaging method includes:
  • the photosensitive drum is rotated to move the preset latent image line, and when the preset latent image line moves to the next imaging pixel row, all the display chips are turned on.
  • Figure 1 is a schematic structural diagram of an imaging device in a printer in the related art
  • Figure 2 is a schematic structural diagram of an imaging device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • Figure 4 is a side view of Figure 3;
  • Figure 5 is a top view of Figure 3;
  • Figure 6 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a primary splitting mirror and a secondary splitting mirror provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a regional image splitting mirror provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a display chip area segmentation provided by an embodiment of the present application.
  • Figure 13 is a flow chart of an imaging method of an imaging device provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of the relationship between the photosensitive drum and imaging pixels during imaging by the imaging device provided by the embodiment of the present application;
  • Figure 15 is a schematic diagram of printing a test page provided by an embodiment of the present application.
  • FIG 2 is a schematic structural diagram of an imaging device provided by an embodiment of the present application.
  • the imaging device includes: M rotatable photosensitive drums 2.
  • the photosensitive drums 2 are configured to expose the photosensitive drums to the photosensitive drums through the light-receiving areas of the photosensitive drums 2.
  • the light-receiving area of 2 forms an electronic latent image; M is greater than or equal to 1; wherein, the light-receiving area of the photosensitive drum 2 includes a plurality of sub-light-receiving areas arranged along the axial direction of the photosensitive drum 2, and the plurality of sub-light-receiving areas are spliced into a light-receiving area; at least one display chip 1.
  • Each display chip includes at least two light-emitting areas arranged along the first direction.
  • the at least two light-emitting areas correspond to a plurality of sub-light-receiving areas corresponding to the M photosensitive drums, and each light-emitting area is provided with multiple sub-light-receiving areas.
  • a light-emitting unit at least one projection lens corresponding to at least one display chip 1, the projection lens is configured to image the display chip; at least one beam deflection system 3 corresponding to at least one display chip 1, the beam deflection system 3 is configured In order to deflect the image formed by the projection lens from the light-emitting area in the display chip 1 to the corresponding sub-light-receiving area.
  • the angle between the first direction and the axial direction of the photosensitive drum can be any value.
  • the imaging device may be used in a printer, and the display chip 1 includes multiple light-emitting units.
  • the printer workflow may include: after the printer is powered on and started, the photosensitive drum 2 is controlled to rotate according to the received printing task.
  • the charging roller above the photosensitive drum 2 charges the selenium material on the surface of the photosensitive drum 2. After the charging is completed, the entire surface of the photosensitive drum 2 is charged.
  • the display chip 1 lights up, and the emitted light irradiates the surface of the photosensitive drum 2. Since selenium is a semiconductor material, it becomes a conductor after being irradiated by light.
  • the charge of the pixel corresponding to the part illuminated by the light disappears, while the charge corresponding to the part not illuminated by the light still exists. This causes an electrostatic latent image with uneven charge to be formed on the entire surface of the photosensitive drum.
  • the photosensitive drum 2 continues to rotate and reaches the toner cartridge position, since the toner is a ferromagnetic material and has no charge, the surface of the photosensitive drum 2 is negatively charged, so the toner transported by the developing roller will be adsorbed to the charged surface of the photosensitive drum 2 position, the entire printed image will appear on the photosensitive drum 2. And the printing paper moves along the paper feeding direction, and the transfer roller under the photosensitive drum 2 is charged.
  • the photosensitive drum 2 rotates to the position of the erasing lamp, and the erasing lamp irradiates the photosensitive drum 2. After the irradiation is completed, all the charges on the surface of the photosensitive drum 2 are eliminated. After being cleaned by a cleaner, the entire printing process is completed.
  • the imaging device may include one photosensitive drum 2 that can print grayscale images, or it may include four photosensitive drums configured to absorb toner of different colors, thereby enabling color printing.
  • the exemplary display chip 1 includes three light-emitting areas: a first light-emitting area 11 , a second light-emitting area 12 , and a third light-emitting area 13 .
  • the corresponding photosensitive drum 2 includes a first sub-light-receiving area 21 , a third light-emitting area 21 , and a third light-emitting area 13 .
  • the second sub-light-receiving area 22 and the third sub-light-receiving area 23 there are three sub-light-receiving areas: the second sub-light-receiving area 22 and the third sub-light-receiving area 23; the one-to-one correspondence between at least two light-emitting areas and multiple sub-light-receiving areas corresponding to the M photosensitive drums means that the number of light-emitting areas on the display chip is, The total number of sub-light-receiving areas on the M photosensitive drums is the same, and one light-emitting area corresponds to one sub-light-receiving area.
  • the light-receiving area can be formed by splicing multiple sub-light-receiving areas.
  • the projection lens can image each light-emitting area in the display chip 1, and the projection lens projects and images the entire light-emitting area of the display chip.
  • each light-emitting area on the display chip 2 can be imaged onto the beam deflection system 3 after being imaged by the projection lens, and the images corresponding to different light-emitting areas are imaged to different positions of the beam deflection system 3, and then through After being deflected by the beam deflection system 3, the beams are respectively emitted to the corresponding sub-light-receiving areas; for example, the image corresponding to the first light-emitting area 11 in Figure 2 is deflected by the beam deflection system 2 to the first sub-light-receiving area 21, and the second light-emitting area The image corresponding to the area 12 is deflected to the second sub-light-receiving area 22 after passing through the beam deflection system 2, and the image corresponding to the third light-emitting area 13 is deflected to the third sub
  • all the light-emitting areas on the display chip 1 can be imaged to the light-receiving area of the photosensitive drum 2, and an electrostatic latent image line in the axial direction of the photosensitive drum is formed by splicing corresponding images of different light-emitting areas, so that High-resolution printing is achieved with a low-resolution pixel array, and the utilization of the light-emitting area on the display chip 1 is greatly improved.
  • the light-receiving area of the photosensitive drum means that the light in the light-receiving area can illuminate the surface of the photosensitive drum, and the corresponding position on the photosensitive drum can be rotated to the light-receiving area before light-receiving can be performed.
  • the light-receiving area can be limited by a fixed slit. As the drum rotates, the slit remains stationary.
  • the technical solution of this embodiment adopts an imaging device that, by setting up a beam deflection system, can image the images corresponding to all the light-emitting areas on the display chip onto the photosensitive drum, thereby achieving high-resolution images with a low-resolution pixel array.
  • Printing greatly improves the utilization of the light-emitting area on the display chip and increases the width of the latent image on the photosensitive drum.
  • the imaging device may also include a correction mirror.
  • the correction mirror is disposed in the light-receiving area and can deflect the light emitted from the beam deflection system 3 so that it is substantially vertically incident on the photosensitive drum for imaging, thereby ensuring that the photosensitive drum is imaged. Size uniformity of imaging pixels on the drum.
  • the selected projection lens has a larger depth of field and the image size of the photoreceptor drum is basically the same when the display pixels at different locations do not require a correction mirror.
  • FIG. 3 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • FIG. 4 is a side view of FIG. 3.
  • the beam deflection system 3 includes M photosensitive drums.
  • a corresponding M beam deflection components 31, each beam deflection component 31 includes at least two reflectors, each reflector corresponds to a light-emitting area in the display chip 1; the rotation angle between the reflectors relative to the photosensitive drum is The first preset range, the inclination angle is the second preset range, and the reflector is used to deflect the image formed by the projection lens in the corresponding light-emitting area to the corresponding sub-light-receiving area.
  • the rotation angle of the reflector 312 relative to the photosensitive drum 2 may be zero. Therefore, the first pre- Let the range include 0.
  • the inclination angle is related to the angle Q between the vertical line between the optical axis of the projection lens and the plane where the slit of the photosensitive surface is located, and the inclination angle may be approximately equal to one-half of the included angle Q.
  • Q is usually set to 5 to 10 degrees. Therefore, the second preset range may be 2.5 to 5 degrees.
  • the rotation angle of the reflective mirror 311 relative to the photosensitive drum 2 is ⁇
  • the inclination angle of the reflective mirror 311 relative to the photosensitive drum is The value of ⁇ satisfies:
  • W is the width of the photosensitive area of the photosensitive drum
  • h is the distance between the center of the reflector 312 and the photosensitive drum
  • atan is the arc tangent function.
  • the inclination angle of the reflector 311 is ⁇ >Q/2.
  • the rotation angle and the inclination angle of the third reflector 313 may be - ⁇ and - ⁇ respectively.
  • the beam deflection system includes a beam deflection component; the number of the beam deflection components is the same as the number of photosensitive drums. When the number of photosensitive drums is 4 When , the number of beam deflection components is correspondingly 4.
  • Each beam deflecting component 31 includes at least two reflecting mirrors. In this embodiment, the beam deflecting component 31 includes a first reflecting mirror 311 , a second reflecting mirror 312 and a third reflecting mirror 313 as an example.
  • the display chip 1 includes three light-emitting areas, and the light-receiving area of the photosensitive drum 2 includes three sub-light-receiving areas.
  • the light from the first light-emitting area imaged by the projection lens emerges onto the first reflecting mirror 311, is deflected by the first reflecting mirror 311, and enters the first sub-light-receiving area of the photosensitive drum through the correction mirror 4; the second light-emitting area is projected
  • the light imaged by the lens emerges on the second reflector 312, is deflected by the second reflector 312, and enters the second sub-light-receiving area of the photosensitive drum through the correction mirror 4; the light imaged by the projection lens in the third light-emitting area emerges.
  • the first sub-light-receiving area, the second sub-light-receiving area and the third sub-light-receiving area are seamlessly spliced into the light-receiving area of the photosensitive drum, so that the light-emitting units in all the light-emitting areas on the display chip 1 can be imaged on the photosensitive drum, greatly improving the It improves the utilization efficiency of the light-emitting area on the display chip.
  • the value range of the rotation angle of each reflector relative to the photosensitive drum 2 is not necessarily the same, and the value range of the inclination angle is not necessarily the same. That is, the first value range corresponding to different reflectors may be different, and the second value range may also be different.
  • each reflector can deflect the corresponding light to the corresponding sub-light-receiving area.
  • the three reflecting mirrors have different rotation angles and inclinations relative to the correction mirror or the light-receiving area of the photosensitive drum.
  • the inclination angle of the reflecting mirror relative to the light-receiving area of the photosensitive drum is used to adjust the imaging beam in the rotation direction of the photosensitive drum 2
  • the position, the angle of rotation of the reflector relative to the light-receiving area of the photosensitive drum is used to adjust the position of the imaging beam in the axial direction of the photosensitive drum 2.
  • the second reflecting mirror 312 is only tilted relative to the photosensitive drum, so that one of the beams of light emitted by the projection located obliquely above the second reflecting mirror 312 is reflected on the correction mirror, and is deflected by the correction mirror 4 before being incident on the second light on the photosensitive drum 2 . sub-light-receiving area.
  • the first reflecting mirror 311 and the third reflecting mirror 313 not only have an inclination angle but also a rotation angle relative to the light receiving area of the photosensitive drum 2, and the inclination and rotation angle directions of the two mirrors are also different.
  • the outgoing light beams from the first light-emitting area and the third light-emitting area on the display chip after passing through the projection lens are incident on the first reflecting mirror 311 and the third reflecting mirror 313 respectively, and then are incident on the first sub-light-receiving area after passing through the correction mirror. and the third subphotoreceptor zone.
  • the rotation angle and inclination angle of the reflector relative to the light-receiving area of the photosensitive drum By adjusting the rotation angle and inclination angle of the reflector relative to the light-receiving area of the photosensitive drum, the emitted light from the three light-emitting areas can be incident on the correction mirror.
  • the width of each light-emitting area can be set to be the same, that is, each light-emitting area contains the same number of pixels in the first direction.
  • each The image formed by the light-emitting area on the photosensitive drum has the same width in the rotation direction of the photosensitive drum, and is spliced into an image that fills the light-receiving area in the axial direction of the photosensitive drum.
  • the function of the beam deflection system can be realized through a beam deflection component composed of a reflector.
  • the structure is simple, which is beneficial to reducing the cost of the imaging equipment and also reducing the size of the imaging system.
  • Figure 5 is a top view of Figure 3.
  • Figure 5 shows that the virtual images formed by the chip 1 through three mirrors are the first virtual image 111, the second virtual image 112 and the third virtual image 113 respectively.
  • the reflector is used to deflect the image formed by the projection lens in the corresponding light-emitting area to the corresponding sub-light-receiving area, and a part of the sub-light-receiving area adjacent to the corresponding sub-light-receiving area.
  • the size of the light-emitting area in the length direction (the length direction is perpendicular to the first direction) and/or the focal length of the projection lens can be configured so that the image formed by the light-emitting area through the projection lens is larger in length than the corresponding The length of the sub-receptor area. And by configuring the rotation angle and tilt angle of the reflector, the imaging beam is deflected by the reflector so that it not only covers the corresponding sub-light-receiving area, but also covers the area of the adjacent sub-light-receiving area (one sub-light-receiving area or two sub-light-receiving areas).
  • the overlapping portion can be understood as a splicing area, and the size of the splicing area can be controlled by adjusting the angle of the reflector.
  • the phenomenon of double line may occur during printing. You can print a test page to analyze which luminous area is used to print the splicing area better, and then determine the pixels that light up when the splicing area is exposed to light.
  • the result of printing the test page is that the imaging effect of the first light-emitting area in the splicing area is better than the imaging effect of the second light-emitting area in the splicing area, then the second light-emitting area can be used.
  • One light-emitting area images the splicing area, and during imaging, the pixels corresponding to the splicing area in the second light-emitting area are turned off.
  • the printing test page can print out the results when only the first luminous area is lit and the results when only the second luminous area is lit, and analyze the printing effect on the splicing area in the two printed test pages.
  • the printing effect can be, for example, Use the clarity of printed pixels to make judgments.
  • Figure 6 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • the imaging device includes at least two display chips 1 and at least two beam deflection systems; each beam deflection system is configured to convert a corresponding The image formed by the light-emitting area in the display chip is deflected by the projection lens to the corresponding preset area, and each preset area includes a plurality of adjacent sub-light-receiving areas.
  • each photosensitive drum can correspond to multiple display chips.
  • This embodiment can be applied to applications where the photosensitive drum has a larger imaging width relative to the display chip (for example, the photosensitive drum can be longer and the width of the imaging area of the display chip is smaller).
  • the photosensitive drum 2 is imaged by the light emitted by three display chips.
  • Each display chip corresponds to a preset area of the photosensitive drum's light receiving area. That is, the photosensitive drum's light receiving area is composed of three preset areas. Region splicing is formed.
  • each preset area contains multiple sub-light-receiving areas, that is, the light path diagram corresponding to each preset area is the same as the light path diagram shown in Figure 5.
  • Each display chip will not be described in detail here.
  • multiple display chips can be used to illuminate the photosensitive drum, thereby allowing the photosensitive drum to be arranged longer in the axial direction.
  • the area on the photosensitive drum that is sensitive to light at the same time can be further increased, and a complete electrostatic latent image can be generated faster, thereby further increasing the printing speed.
  • partial overlap between adjacent preset areas may be set.
  • the size of the display chip in the length direction (the length direction is perpendicular to the first direction) and/or the focal length of the projection lens can be configured so that the image formed by the display chip after passing through the projection lens is larger in length than the corresponding image.
  • the imaging beam not only covers the corresponding preset area after being deflected by the reflector, but also covers the area of the adjacent preset area (one preset area or two preset areas) , thus ensuring that all parts of the photoreceptor drum's light-receiving area can be covered by the imaging beam.
  • the overlapping portion can be understood as a splicing area, and the size of the splicing area can be controlled by adjusting the angle of the reflector. By setting up the splicing area, it can be ensured that the three imaging beams projected onto the photosensitive drum will not be misaligned or missing during splicing.
  • the phenomenon of double line may occur during printing. You can print a test page to analyze which luminous area is used to print the splicing area better, and then determine the pixels that light up when the splicing area is exposed to light.
  • a photosensitive drum is taken as an example for description. In some other embodiments, there may also be four photosensitive drums, as shown in Figure 7.
  • Figure 7 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • the imaging device includes a display chip. 1 and four photosensitive drums 2.
  • Each photosensitive drum 2 is configured to absorb toner of different colors.
  • the four photosensitive drums can respectively be a photosensitive drum that absorbs black toner, a photosensitive drum that absorbs red toner, and a photosensitive drum that absorbs blue carbon.
  • the photosensitive drum that absorbs yellow toner and the photosensitive drum that absorbs yellow toner is taken as an example for description.
  • Figure 7 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • the imaging device includes a display chip. 1 and four photosensitive drums 2.
  • Each photosensitive drum 2 is configured to absorb toner of different colors.
  • the four photosensitive drums
  • the black photosensitive drum can print the black part
  • the red photosensitive drum can print the red part
  • the blue photosensitive drum can print the blue part
  • the yellow photosensitive drum can print the yellow part.
  • the four photosensitive drums are used to print different colors respectively, and after superposition, they form the required Various colorful patterns.
  • each photosensitive drum 2 corresponds to a beam deflecting component
  • the sub-light-receiving area on each photosensitive drum corresponds to a light-emitting area on the display chip 1. Different sub-light-receiving areas correspond to different light-emitting areas. .
  • each beam deflection component includes three reflectors, and the display chip contains a total of 12 light-emitting areas.
  • the light-emitting area corresponds to the 12 sub-light-receiving areas one by one.
  • the splicing areas described in the corresponding embodiment of FIG. 4 are also applicable to this embodiment.
  • the beam deflection component may not be provided.
  • the four areas of the display chip can be directly projected to the light-receiving area through the projection lens.
  • the positions of the light-receiving area windows of the four photosensitive drums are different, so that The four beams should be pointed toward the axis of the photosensitive drum as much as possible.
  • FIG. 8 is a schematic structural diagram of another imaging device provided by an embodiment of the present application.
  • the imaging device in this embodiment includes four photosensitive drums, which is the same as the structure shown in FIG. 6 .
  • this embodiment includes two display chips 1 and two beam deflection systems corresponding to the display chips 1.
  • Each beam deflection system includes four beam deflection components.
  • the image formed on each photosensitive drum 2 comes from two display chips, and the splicing area described in the corresponding embodiment of FIG. 5 can also be applied to this embodiment.
  • each display chip corresponds to a projection lens.
  • the beam deflection component may not be provided.
  • the four areas of the display chip can be directly projected to the light-receiving area through the projection lens.
  • the positions of the light-receiving area windows of the four photosensitive drums are different, so that the four The light beam should be pointed toward the axis of the photosensitive drum as much as possible.
  • FIG. 9 is a schematic structural diagram of yet another imaging device provided by an embodiment of the present application.
  • the imaging device includes a display chip 1 and four photosensitive drums 2.
  • Each photosensitive drum 2 is configured to absorb different colors. toner; the first to fourth photosensitive drums are arranged once along the second direction x1, and along the second direction x1, the projections of the four photosensitive drums 2 coincide with each other, and the axial direction of each photosensitive drum is aligned with the second
  • the direction x1 is vertical;
  • the display chip 1 includes 4*N light-emitting areas, N is an even number greater than 2;
  • the beam deflection system 3 includes:
  • the main splitting mirror 321, along the second direction x1, the projection of the main splitting mirror 321 does not overlap with the projection of the photosensitive drum; along the third direction, the projection of the main splitting mirror is located between the second photosensitive drum and the third photosensitive drum. between the drums; the third direction is perpendicular to both the axial direction and the second direction of the photosensitive drum; the main splitting mirror 321 is configured to emit part of the emitted light from each light-emitting area in the display chip 1 to the second direction x1, and the other part to the second direction x1.
  • the fourth direction x2 is emitted, and the fourth direction x2 is opposite to the second direction x1;
  • the first auxiliary splitting mirror 322, along the third direction, the projection of the second auxiliary splitting mirror 322 is located between the third photosensitive drum and the fourth photosensitive drum.
  • the first auxiliary splitting mirror 322 is used to separate the main splitting mirror. Part of the light emitted by the mirror 321 along the second direction x1 is emitted in the fifth direction y1, and the remaining part is emitted in the sixth direction y2, where the fifth direction y1 is opposite to the sixth direction y2, and both the sixth direction and the fifth direction are
  • the axis of the photosensitive drum is parallel;
  • the second auxiliary splitting mirror 323, along the third direction, the projection of the second auxiliary splitting mirror 323 is located between the first photosensitive drum and the second photosensitive drum.
  • the second auxiliary splitting mirror 323 is used to split the main splitting mirror. Part of the light emitted by the mirror 321 along the fourth direction x2 is emitted in the fifth direction y1, and the remaining part is emitted in the sixth direction y2;
  • At least two area splitting mirrors 324 are disposed on each exit light path of the auxiliary splitting mirror. Each area splitting mirror 324 is used to reflect the light corresponding to a light-emitting area on the display chip along the fourth direction x2. One light-emitting area The corresponding light is reflected along the second direction x1; different area splitting mirrors 324 correspond to different light-emitting areas of the display chip;
  • a reflecting mirror is disposed on each output light path corresponding to the area splitting mirror 324, and the reflecting mirror is used to reflect the received light to the sub-light-receiving area of the corresponding photosensitive drum.
  • This embodiment provides another solution for using a display chip to achieve color printing.
  • the left direction on the x-axis is defined as the fourth direction x2
  • the right direction is the second direction x1
  • the upward direction on the y-axis is the fifth direction.
  • y1 downward is the sixth direction y2
  • the z-axis direction is the third direction.
  • the number of light-emitting areas on the display chip 1 is related to the number of sub-light-receiving areas on the photosensitive drum. For example, each photosensitive drum is divided into N sub-light-receiving areas, then the display chip 1 needs to be divided into 4*N light-emitting areas.
  • the light emitted by the display chip 1 is imaged by the projection lens and then emitted to the main splitting mirror 321 .
  • the light emitted from all the light-emitting areas can emit to the main splitting mirror 321 .
  • the main splitting mirror 321 splits a part of the emitted light from each light-emitting area in the second direction x1 and the other part in the fourth direction x2.
  • the light emitted from the main splitting mirror 321 to the second direction x1 includes the light emitted from all the light-emitting areas.
  • it may be the light emitted by part of the light-emitting units to the second direction x1.
  • the light emitted from the light-emitting unit is emitted in the direction x1, and the rest of the light emitted by the light-emitting unit is emitted in the fourth direction x2; it is also possible that part of the light emitted by the light-emitting unit is emitted in the second direction x1, and the remaining part is emitted in the fourth direction x2.
  • the light emitted from the main splitting mirror 321 along the second direction x1 is incident on the first auxiliary splitting mirror 322.
  • the structure of the first auxiliary splitting mirror 322 is the same as that of the main splitting mirror.
  • the first auxiliary splitting mirror 322 will Part of the incident light is split in the fifth direction y1, and the other part is split in the sixth direction y2.
  • the light emitted from the main splitting mirror 321 along the fourth direction x2 is incident on the second auxiliary splitting mirror 323.
  • the structure of the second auxiliary splitting mirror 323 is the same as that of the main splitting mirror.
  • the second auxiliary splitting mirror 323 will Part of the incident light is split in the fifth direction y1, and the other part is split in the sixth direction y2.
  • the number of area splitting mirrors can be determined according to the number of required divided sub-light-receiving areas.
  • each output light path of the secondary splitting mirror includes two area splitting mirrors as an example.
  • the light-emitting areas in the display chip 1 are arranged along the third direction, that is, the first direction and the third direction in this embodiment. effect.
  • the images of different luminous areas are still arranged in the third direction after being split by the main splitting mirror, and are still arranged in the third direction after being split again by the secondary splitting mirror.
  • images corresponding to all the light-emitting areas of the display chip are arranged along the third direction.
  • An imaging lens can be disposed between each regional splitting mirror 324 and the corresponding auxiliary splitting mirror, and the imaging lens is used for imaging.
  • each area splitting mirror emits the images corresponding to the two luminous areas in the second direction x1 and the fourth direction x2, respectively.
  • the reflector is used to reflect the emerging light of the regional splitting mirror to the corresponding The sub-light-receiving area of the photosensitive drum.
  • the coordinates of each area splitting mirror in the third direction may be the same or different.
  • the coordinates of the area splitting mirror 324 corresponding to the sub-light-receiving area I1 and the sub-light-receiving area I2 are different in the third direction.
  • the coordinates of the area splitting mirrors corresponding to the light-receiving area I1 and the sub-light-receiving area I3 in the third direction may be the same.
  • each photosensitive drum contains four sub-light-receiving areas, and the display chip is equipped with a total of 4*4 and a total of 16 After being deflected by the beam deflection system, the light corresponding to each light-emitting area can be deflected to the corresponding sub-light-receiving area.
  • one display chip and a beam deflection system can be used to emit images corresponding to all light-emitting areas on the display chip to corresponding sub-light-receiving areas respectively. That is, one display chip can be used to achieve color printing, and the display The utilization efficiency of the light-emitting area on the chip is also high.
  • FIG. 10 is a schematic structural diagram of a main splitting mirror and an auxiliary splitting mirror provided by an embodiment of the present application.
  • the splitting mirror shown in FIG. 10 can be a main splitting mirror or a auxiliary splitting mirror. , that is, the structure of the primary splitting mirror and the secondary splitting mirror can be the same.
  • the splitting mirror has a three-dimensional structure, with a continuous reflector on one side and a cut-strip reflector on the other.
  • the splitting mirror can be composed of two reflectors, and half of each reflector is cut into strips, and the cut striped area can be inserted vertically. That is to say, the two reflectors are perpendicular to each other.
  • FIG 11 is a schematic structural diagram of a regional image-splitting mirror provided by an embodiment of the present application.
  • the regional image-splitting mirror can be a regional image-splitting mirror.
  • the regional image-splitting mirror is two continuous mirrors, so as to Light corresponding to different light-emitting areas is reflected along the second direction x1 and the fourth direction x2 respectively.
  • FIG. 12 is a schematic structural diagram of area division of a display chip provided by an embodiment of the present application.
  • the display chip includes two sub-display areas divided by a center line, each of which is the first sub-display area. 101 and the second sub-display area 102, each sub-display area includes a plurality of light-emitting areas; in the first photosensitive drum and the second photosensitive drum, there are two light-emitting areas corresponding to the sub-light-receiving areas that are symmetrical about the center lines of the two.
  • the sixteen light-emitting areas are respectively the first to sixteenth light-emitting areas, and the first to sixteenth light-emitting areas are arranged in sequence along the first direction;
  • first The light-emitting areas to the eighth light-emitting area are located in the first sub-display area 101, and the ninth to sixteenth light-emitting areas are located in the second sub-display area 102;
  • the sub-light-receiving areas of the four photosensitive drums are: the first photosensitive drum Along the sixth direction y2, there are sub-light-receiving area I6, sub-light-receiving area I5, sub-light-receiving area I7 and sub-light-receiving area I8; on the upper side of the second photosensitive drum, along the sixth direction y2, there are sub-light-receiving area K6, sub-light-receiving area K5, Sub-light-receiving area K7 and sub-light-recei
  • the sub-light-receiving area I2 and the sub-light-receiving area K2 are symmetrical about the center line between the third photosensitive drum and the fourth photosensitive drum. When corresponding to the light-emitting area on the display chip, a gap can be set between the two corresponding light-emitting areas.
  • the light-emitting area as shown in Figure 11, the sub-light-receiving area I2 corresponds to the first light-emitting area, and the sub-light-receiving area K2 corresponds to the second light-emitting area. separated by a second luminous area.
  • the sub-light-receiving area described in this embodiment corresponds to the light-emitting area, which means that the light-emitting area is deflected by the beam deflection system and then enters the sub-light-receiving area.
  • the sub-light-receiving area I2 is adjacent to the sub-light-receiving area I1.
  • the sub-light-receiving area I2 can be set to correspond to the sub-light-receiving area I1.
  • the light-emitting areas of are located in different sub-display areas.
  • the sub-light-receiving area I2 corresponds to the first light-emitting area, which is located in the first sub-display area 101; the sub-light-receiving area I1 corresponds to the eleventh light-emitting area.
  • the eleventh luminous area is located in the second sub-display area.
  • the light-emitting area corresponding to the reflected light beam of the adjacent area splitting mirror on the same exit light path of the secondary image splitting mirror will be separated by a luminous area, and the area splitting mirror corresponds to
  • the light-emitting areas corresponding to adjacent reflected beams will also be separated by some light-emitting areas to ensure that the light emitted by each light-emitting area does not affect each other, and to ensure that basically all the light incident on the regional splitting mirror is used for imaging.
  • this can be achieved by adjusting the coordinates of each area splitting mirror in the third direction.
  • other rule correspondences may also be adopted between the sub-light-receiving areas and the light-emitting areas.
  • the image formed by the above-mentioned imaging device on the photosensitive drum may have multiple pixels. In this case, appropriate pixels can be selected for correction according to the printed test page.
  • the above-mentioned embodiment can use one display chip to realize imaging of the four photosensitive drums of the printer and realize color printing.
  • the display chip is a MicroLED chip.
  • MicroLED chips can include MicroLED and ultra-high-speed refresh CMOS driver chips. This chip has the characteristics of small pixel size, high brightness, fast response refresh speed, and multiple gray levels. It can make the printer high-speed, environmentally friendly, small in size, bright in color, and affordable. Low cost, high stability, reliability and long life.
  • An embodiment of the present application also provides a printer.
  • the printer includes the imaging device provided by any embodiment of the present application. Since the printer includes the imaging device provided by any embodiment of the present application, it also has the same beneficial effects, which will not be described again here.
  • the latent image pixel size of the photosensitive drum needs to be less than 21 microns.
  • a projection lens with a focal length f 10 mm is selected.
  • the imaging distance is 40 mm
  • the reflector is placed 20 mm to 30 mm away from the correction mirror.
  • the imaging magnification is about 4 times, and the size of the light-emitting unit on the display chip needs to be 21/4 to 5 microns.
  • this embodiment also provides an imaging method for the imaging device, as shown in Figure 13.
  • Figure 13 A flow chart of an imaging method of an imaging device provided by an embodiment of the present application; in the imaging device, multiple light-emitting units on the display chip are arranged in a matrix; the light-emitting area is imaged along the rows and columns in the sub-light-receiving area. For multiple pixels distributed in a matrix, the angle between the row direction and the column direction and the axial direction of the photosensitive drum is not 90 degrees.
  • Imaging methods include:
  • Step S301 rotate the preset latent image line of the photosensitive drum to a position corresponding to the imaging pixel row in the light-receiving area; wherein the preset latent image line is parallel to the axial direction of the photosensitive drum, and the imaging pixel row is parallel to the axial direction of the photosensitive drum,
  • the imaging pixel row includes a plurality of imaging pixels, and the imaging pixel is a pixel point or a superposition of at least two pixel points around it.
  • Figure 14 is a schematic diagram of the relationship between the photosensitive drum and the imaging pixels during imaging of the imaging device provided by the embodiment of the present application.
  • the size of the light-emitting unit in the display chip of this embodiment is small, but the pixel spacing is large, for example The size of the unit is 5 microns, and the spacing between the light-emitting units is 25 microns.
  • This type of display chip has a high yield during production.
  • the relationship between the display chip and the photosensitive drum can be set so that the light-emitting units on the display chip form a plurality of pixel points 601 on the light-receiving area of the photosensitive drum as shown in FIG. 13 .
  • the angle between the row-column direction and the axial direction of the photosensitive drum is not 90 degrees.
  • the row direction of the pixels is not parallel to the axial direction of the photosensitive drum.
  • the column direction is also not parallel to the axial direction of the photosensitive drum.
  • the rectangular frame in Figure 13 can be understood as a sub-light-receiving area, and the center line in the middle of the rectangular frame is the central axis of the sub-light-receiving area.
  • the preset latent image line 602 is a line to be imaged on the photosensitive drum.
  • step S302 is executed to turn on the display chip to use imaging pixels to sense light in a part of the preset latent image line; that is, the first position.
  • the corresponding pixel points partially expose the preset latent image line 601.
  • step S303 is performed to rotate the photosensitive drum to move the preset latent image line, and when the preset latent image line moves to the next imaging pixel row, the display chip is turned on.
  • the predetermined latent image line 602 After the predetermined latent image line 602 completely passes through the sub-light-receiving area, all parts of the predetermined latent image line 602 are exposed, thereby forming a complete electrostatic latent image corresponding to the predetermined latent image line 602 .
  • the row and column direction of the pixel dots 601 is not parallel to the axis of the photosensitive drum, when the preset latent image line moves, the preset latent image line may be facing a row of pixel dots 601.
  • the row of pixel dots can be understood as
  • the pixels on the imaging pixel line of this row are used to expose the preset latent image line; however, there may be no pixels facing the preset latent image line.
  • the brightness superposition of the surrounding pixels 601 can be used.
  • Virtual pixels are formed so that the virtual pixels are connected to an imaging pixel line, and the virtual pixels are used to expose the preset latent image line.
  • the preset latent image line is not One exposure instead of multiple exposures.
  • the imaging points on the preset latent image line are very dense, which greatly improves the imaging resolution on the preset latent image line. That is to say, this embodiment can use Display chips with large pixel intervals achieve high-resolution latent image imaging capabilities with small pixel intervals.
  • the pixels in the sub-light-receiving area along the axis of the photosensitive drum can be understood as splicing and fusion pixels, and the splicing and fusion pixels can be used to expose the splicing area in Figure 5 or Figure 6.
  • the imaging method also includes: simultaneously imaging multiple preset latent image lines located in the sub-light-receiving area.
  • the sub-light-receiving area includes multiple rows (photosensitive drum axis direction) of pixels.
  • Each row of pixels can expose the photosensitive drum, so multiple preset latent images can be set at the same time.
  • the photosensitive drum is extremely fast. Fast, thus greatly increasing printing speed.
  • the imaging method further includes: using the imaging device to print a test page, the test page including a plurality of preset scanning test points;
  • Scan points are determined based on missing lines and repeated lines.
  • a row of pixels on the preset latent image line is not photosensitive at the same time.
  • the preset latent image line will be completely imaged after it completely passes through the sub-light-receiving area.
  • the photosensitive drum rotates.
  • the imaging area where the preset latent image row is located may restart and the pixel arrangement direction is inconsistent. Therefore, this embodiment can be corrected. You can print a test page, scan and analyze the duplicate lines and missing lines, and then select the corresponding scanning point, that is, select the light-emitting unit that lights up, to ensure that duplicate lines and missed lines will not occur, and determine the position of the scanning point in the paper feeding direction.
  • Dislocation distance Determining the scanning point based on missing rows and repeated rows includes: if there is an opposite pixel point at the scanning test point, then using the pixel point as the scanning point; if there is no opposite pixel point at the scanning test point, then Grayscale transformation is performed on pixel points adjacent to the scanning test point, so that the highest brightness point after superposition is located at the scanning test point.
  • Figure 15 is a schematic diagram of a printing test page provided by an embodiment of the present application.
  • the printing test page includes a preset scanning test point P. If the scanning test point P is printed, The printed results are printing points A, B, C, D, etc. There is a deviation between the two. You can use the pixel points around the scanning test point to transform according to the distance grayscale, so that the highest brightness point after superposition is located in the scan. Test point P to perform a difference on the print file to achieve accurate printing.
  • the display control algorithm can calculate the lighting of the display chip based on the relative positional relationship between pixels, relative brightness, and the axial rotation speed of the photosensitive drum. timing to achieve the correct latent image on the drum.
  • the imaging device used in the embodiments of the present application can image the images corresponding to all the light-emitting areas on the display chip onto the photosensitive drum by setting up a beam deflection system, so that high-resolution images can be achieved with a low-resolution pixel array. Printing, and greatly improve the utilization of the light-emitting area on the display chip, increasing the width of the latent image on the photosensitive drum.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

一种成像设备及其成像方法、打印机。成像设备包括:M个可旋转的感光鼓(2),每个感光鼓(2)配置为通过感光鼓(2)的受光区曝光以在感光鼓(2)的受光区形成电子潜像,M大于等于1;感光鼓(2)的受光区包括沿感光鼓(2)的轴向排列的多个子受光区;至少一个显示芯片(1),每个显示芯片(1)包括沿第一方向排列的至少两个发光区域,发光区域与子受光区一一对应;与至少一个显示芯片(1)一一对应的至少一个投影镜头,每个投影镜头配置为对对应的显示芯片(1)成像;与至少一个显示芯片(1)一一对应的至少一个光束偏折系统(3),光束偏折系统(3)配置为将显示芯片(1)中每个发光区域经对应的投影镜头成的像偏折至对应的子受光区。

Description

成像设备及其成像方法、打印机
本公开要求在2022年06月24日提交中国专利局、申请号为202210729934.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及打印机技术领域,例如涉及一种成像设备及其成像方法、打印机。
背景技术
打印机在现代社会有着重要的应用,打印机的打印流程主要包括上电、曝光、显影和打印四个阶段;打印机主要可分为激光打印机和LED打印机,LED打印机因其打印速度快、打印图像效果好、使用寿命长、自由度高、节能环保等优点应用越来越广泛。
然而,如图1所示,图1为相关技术中的打印机中成像设备的结构示意图,成像设备包括显示芯片1’和感光鼓2’。当然,成像设备还包括透镜阵列,显示芯片1’上包含一行或者多行LED像素,显示芯片1’上的LED像素通过投影镜头直接在感光鼓2’上成像,成像的分辨率与微透镜尺寸以及像素间隔相关,从而导致相关技术中的成像设备分辨率受限,光能利用率也不高。
发明内容
本申请提供了一种成像设备及其成像方法、打印机,利用低分辨率像素阵列可以实现高分辨率的打印,并能够提高成像设备中显示芯片上发光区域的利用率。
根据本申请的一方面,提供了一种成像设备,包括:
M个可旋转的感光鼓,每个所述感光鼓配置为通过该感光鼓的受光区曝光以在该感光鼓的受光区形成电子潜像;其中,M大于等于1,每个所述感光鼓的受光区包括沿该感光鼓的轴向排列的多个子受光区;
至少一个显示芯片,每个所述显示芯片包括沿第一方向排列的至少两个发光区域,所述发光区域与所述子受光区一一对应,且每个所述发光区域中均设置有多个发光单元;
与所述至少一个显示芯片一一对应的至少一个投影镜头,每个所述投影镜头配置为对对应的所述显示芯片成像;
与所述至少一个显示芯片一一对应的至少一个光束偏折系统,所述光束偏折系统配置为将所述显示芯片中每个所述发光区域经对应的所述投影镜头成的像偏折至对应的所述子受光区。
根据本申请的另一方面,提供了一种打印机,所述打印机包括粉盒,以及上述的成像设备。
根据本申请的另一方面,提供了一种成像设备的成像方法,所述成像设备 为上述的成像设备;所有所述显示芯片的发光单元呈矩阵排布;所有所述发光区域在所述子受光区成像为沿行方向和列方向呈矩阵排布的多个像素点,所述行方向及所述列方向与所有所述感光鼓的轴向的夹角均不为90度;
所述成像方法包括:
将所有所述感光鼓的预设潜像线旋转至所有所述受光区中对应一个成像像素行的位置;其中,所述预设潜像线与所述感光鼓的轴向平行,该成像像素行与所述感光鼓的轴向平行,每个所述成像像素行包括多个成像像素,所述成像像素为所述像素点或所述像素点周围至少两个像素点的叠加;
开启所有所述显示芯片以利用该成像像素行使所述预设潜像线的部分区域感光;
旋转所述感光鼓以使所述预设潜像线移动,并在所述预设潜像线移动至下一成像像素行时,开启所有所述显示芯片。
附图说明
图1为相关技术中的打印机中成像设备的结构示意图;
图2为本申请实施例提供的一种成像设备的结构示意图;
图3为本申请实施例提供的又一种成像设备的结构示意图;
图4为图3的侧视图;
图5为图3的俯视图;
图6为本申请实施例提供的又一种成像设备的结构示意图;
图7为本申请实施例提供的又一种成像设备的结构示意图;
图8为本申请实施例提供的又一种成像设备的结构示意图;
图9为本申请实施例提供的又一种成像设备的结构示意图;
图10为本申请实施例提供的一种主分像镜和副分像镜的结构示意图;
图11为本申请实施例提供的一种区域分像镜的结构示意图;
图12为本申请实施例提供的一种显示芯片区域分割的结构示意图;
图13为本申请实施例提供的一种成像设备的成像方法的流程图;
图14为本申请实施例提供的成像设备成像时感光鼓与成像像素关系的示意图;
图15为本申请实施例提供的一种打印测试页的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的 本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不限于列出的那些步骤或单元,而是可包括没有列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图2为本申请实施例提供的一种成像设备的结构示意图,参考图2,成像设备包括:M个可旋转的感光鼓2,感光鼓2配置为通过感光鼓2的受光区曝光以感光鼓2的受光区形成电子潜像;M大于等于1;其中,感光鼓2的感光区包括沿感光鼓2的轴向排列的多个子受光区,多个子受光区拼接为受光区;至少一个显示芯片1,每个显示芯片包括沿第一方向排列的至少两个发光区域,所述至少两个发光区域与M个感光鼓对应的多个子受光区一一对应,且每个发光区域均设置有多个发光单元;与至少一个显示芯片1一一对应的至少一个投影镜头,投影镜头配置为对显示芯片成像;与至少一个显示芯片1对应的至少一个光束偏折系统3,光束偏折系统3配置为将显示芯片1中发光区域经投影镜头成的像偏折至对应的子受光区。
需要说明的是,本实施例中,第一方向,和感光鼓的轴向之间的夹角可以为任意值。
可选地,成像设备可以应用于打印机中,显示芯片1上包括多个发光单元。打印机工作流程可以包括:打印机上电启动后,根据接收到的打印任务控制感光鼓2旋转。感光鼓2上方的充电辊对感光鼓2表面的硒材料进行上电,上电完毕后,整个感光鼓2表面带上电荷。当感光鼓2上响应位置旋转到受光区后,显示芯片1点亮,发射的光线照射到感光鼓2表面,由于硒为半导体材料,被光线照射后变为导体。光线照射部分对应的像素点所带电荷消失,而未被光线照射的部分对应的电荷依旧存在。这样就使得整个感光鼓表面形成电荷不均匀的静电潜像。当感光鼓2继续旋转到达粉盒位置时,由于墨粉为铁磁性材料,不带电荷,感光鼓2表面带负电荷,所以经由显影辊运送的墨粉会吸附到感光鼓2表面带电荷的位置,整个打印图像就会在感光鼓2上显现出来。并且打印纸沿着走纸方向运动,感光鼓2下方的转印辊带有电荷,当纸张运动到两者之间时,在转印辊的作用下,感光鼓2表面的墨粉会吸附到纸张上面。纸张运动到定影器时,定影器对墨粉加热,墨粉融化后固定在纸张表面,形成真正的打印图像。最后,感光鼓2旋转到消电灯位置,消电灯对感光鼓2进行照射,照射完毕后感光鼓2表面的电荷全部消除,再经过清洁器清洁后,完成整个打印流程。
本实施例中,成像设备可以是包括1个感光鼓2,可以打印灰度图像,也可以是包括4个感光鼓,4个感光鼓上配置为吸附不同颜色的碳粉,从而可以进行 彩色打印。如图2所示,示例性地显示芯片1包括第一发光区域11、第二发光区域12和第三发光区域13三个发光区域,相应的感光鼓2上包括第一子受光区21、第二子受光区22和第三子受光区23三个子受光区;至少两个发光区域与M个感光鼓对应的多个子受光区一一对应的含义为,显示芯片上的发光区域的个数,与M个感光鼓上子受光区的总数相同,一个发光区域对应一个子受光区。在同一个感光鼓2上,受光区可以由多个子受光区拼接形成。投影镜头可以对显示芯片1中各个发光区域进行成像,并且投影镜头是将显示芯片的全部发光区域投影成像。本实施例中,显示芯片2上每个发光区域经投影镜头成像后均能够成像到光束偏折系统3上,且不同发光区域对应的像分别成像到光束偏折系统3的不同位置,随后经过光束偏折系统3的偏折后分别出射至对应的子受光区;例如图2中第一发光区域11对应的像经过光束偏折系统2后偏折至第一子受光区21,第二发光区域12对应的像经过光束偏折系统2后偏折至第二子受光区22,第三发光区域13对应的像经过光束偏折系统2后偏折至第三子受光区23。可以看出,本实施例中显示芯片1上所有发光区域均能够成像到感光鼓2的受光区,感光鼓轴向上的一条静电潜像线是由不同发光区域的对应的像拼接形成,从而以低分辨率的像素阵列实现高分辨率的打印,并且极大地提高显示芯片1上发光区域的利用率。需要说明的是,感光鼓的受光区表示的是在受光区光线能够照射到感光鼓表面,感光鼓上相应的位置旋转到受光区时才能够进行感光,受光区可以通过固定的狭缝限定,当感光鼓旋转时,狭缝固定不动。
本实施例的技术方案,采用的成像设备,通过设置光束偏折系统,可以将显示芯片上所有发光区域对应的像均成像到感光鼓上,从而以低分辨率的像素阵列实现高分辨率的打印,极大地提高显示芯片上发光区域的利用率,增大在感光鼓上的潜像宽度。
另外,需要说明的是,成像设备还可包括校正镜,校正镜设置在受光区位置,可以将光束偏折系统3出射的光偏折,使其基本垂直入射到感光鼓上成像,从而保证感光鼓上成像像素的大小均匀性。当然,在选用的投影镜头景深较大,不同位置显示像素在感光鼓成像大小基本一致时,也可不用校正镜。
可选地,图3为本申请实施例提供的又一种成像设备的结构示意图,图4为图3的侧视图,参考图3和图4,光束偏折系统3包括与M个感光鼓一一对应的M个光束偏折组件31,每个光束偏折组件31包括至少两个反射镜,每个反射镜对应显示芯片1中的一个发光区域;反射镜相对于感光鼓之间的转角为第一预设范围,倾角为第二预设范围,反射镜用于将对应发光区域经投影镜头成的像偏折至对应的子受光区。
在一实施例中,反射镜312相对于感光鼓2的转角可以为0。因此,第一预 设范围可以包括0。
在一实施例中,所述倾角与投影镜头的光轴和感光面的狭缝所在面的垂线夹角Q相关,所述倾角可以约等于夹角Q的二分之一。为尽量缩小系统体积,Q通常设置为5至10度。因此,第二预设范围可以为2.5至5度。
在一实施例中,反射镜311相对与感光鼓2的转角为θ,反射镜311相对于感光鼓的倾角为θ的取值满足:
其中,W为感光鼓感光区域宽度,h为反射镜312中心距离感光鼓的距离,atan为反正切函数。举例而言,当打印A4纸时,感光鼓感光区域宽度W=210mm,h=100mm时,θ=27.7度。
在一实施例中,反射镜311的倾角的大小Φ>Q/2。
在一实施例中,第三反射镜313的转角与倾角可以分别为-θ与-Φ。
本实施例以一个显示芯片1和一个感光鼓2为例,此时光束偏折系统包括一个光束偏折组件;光束偏折组件的数量与感光鼓的数量相同,当感光鼓的数量为4个时,光束偏折组件的数量也相应为4个。每个光束偏折组件31包括至少两个反射镜,本实施例以光束偏折组件31包括第一反射镜311、第二反射镜312和第三反射镜313为例进行说明。并且以显示芯片1上包含3个发光区域,感光鼓2的受光区包含3个子受光区为例。第一发光区域经投影镜头成像后的光线出射到第一反射镜311上,经第一反射镜311偏折后经校正镜4入射到感光鼓的第一子受光区;第二发光区域经投影镜头成像后的光线出射到第二反射镜312上,经第二反射镜312偏折后经校正镜4入射到感光鼓的第二子受光区;第三发光区域经投影镜头成像后的光线出射到第三反射镜313上,经第三反射镜313偏折后经校正镜4入射到感光鼓的第三子受光区。第一子受光区、第二子受光区和第三子受光区无缝拼接为感光鼓的受光区,从而使得显示芯片1上所有发光区域的发光单元均能够在感光鼓上成像,极大地提高了显示芯片上发光区域的利用效率。每个反射镜相对于感光鼓2的转角的取值范围不一定相同,倾角的取值范围也不一定相同,也即不同反射镜对应的第一取值范围可能不同,第二取值范围也可能不同,只要能够使得各个反射镜将对应的光线偏折至对应的子受光区即可。在本实施例中,三个反射镜相对于校正镜或者感光鼓的受光区有不同的转角和倾角,反射镜相对于感光鼓的受光区的倾角用于调整成像光束在感光鼓2旋转方向上的位置,反射镜相对于感光鼓受光区的转角用于调整成像光束在感光鼓2轴向上的位置。例如第二反射镜312相对于感光鼓仅发生倾斜,使位于其斜上方的投影出射的其中一束光反射到校正镜上,并经校正镜4偏折后入射到感光鼓2上的第二子受光区。第一反射镜311和第三反射镜313相对于感光鼓2的受光区不仅有倾角,还有转角,且二者的倾斜和转角方向也 不同,显示芯片上第一发光区域和第三发光区域经投影镜头后的出射光束分别入射到第一反射镜311和第三反射镜313上,随后经校正镜后分别入射到第一子受光区和第三子受光区。通过调整反射镜相对于感光鼓受光区的转角和倾角,可以使得三个发光区域的出射光均能入射到校正镜上。在显示芯片上,沿第一方向,每个发光区域的宽度可以设置为相同,也即在第一方向上每个发光区域包含相同数量的像素,经过反射镜反射并经校正镜校正后,各个发光区域在感光鼓上成的像在感光鼓旋转方向上的宽度相同,在感光鼓轴向上拼接成一个充满受光区的像。
本实施例中,通过由反射镜组成的光束偏折组件即可实现光束偏折系统的功能,结构简单,有利于降低成像设备的成本,同时也能减小成像系统的尺寸。
可选地,图5为图3的俯视图,图5中显示芯片1经三个反射镜成的虚像分别为第一虚像111、第二虚像112和第三虚像113,参考图5,在本实施例中,反射镜用于将对应发光区域经投影镜头成的像偏折至对应的子受光区,以及与对应子受光区相邻的子受光区的一部分区域。
在一实施例中,可以通过配置发光区域在长度方向(长度方向与第一方向垂直)的大小的和/或投影镜头的焦距,使得发光区域经投影镜头后成的像在长度上大于对应的子受光区的长度。并且通过配置反射镜的转角及倾角,使得成像光束经反射镜偏折后不仅覆盖对应的子受光区,还覆盖与其相邻的子受光区(一个子受光区或两个子受光区)的面积,从而能够保证感光鼓受光区所有部分均能够被成像光束覆盖,重合的部分例如可以理解为拼接区,通过调整反射镜的转角,可以控制拼接区的大小。通过设置拼接区,可以保证投影到感光鼓上的三个成像光束在拼接时不会出现错位和缺失。
当在感光鼓上设置拼接区时,由于拼接区能够接收到不同发光区域的成像光束,在打印时可能会出现重行现象。可以通过打印测试页,分析利用哪个发光区域打印拼接区时效果更好,进而可以确定对拼接区感光时所点亮的像素。例如第一子受光区和第二子受光区形成的拼接区,打印测试页的结果为第一发光区域在拼接区的成像效果优于第二发光区域在拼接区的成像效果,则可以利用第一发光区域对拼接区进行成像,在成像时关闭第二发光区域中对应拼接区的像素。打印测试页例如可以分别打印出仅点亮第一发光区域时的结果和仅点亮第二发光区域时的结果,分析两张打印出的测试页中对拼接区的打印效果,打印效果例如可以利用打印出的像素的清晰度等进行判断。
图6为本申请实施例提供的又一种成像设备的结构示意图,参考图6,成像设备包括至少两个显示芯片1和至少两个光束偏折系统;每个光束偏折系统配置为将对应的显示芯片中发光区域经投影镜头成的像偏折至对应的预设区域,每个预设区域包括相邻的多个子受光区。
在本实施例中,每个感光鼓可以对应多个显示芯片,本实施例可以应用于感光鼓相对于显示芯片成像宽度较大(例如可以是感光鼓较长,显示芯片成像区域宽度较小)的情况。如图6所示,示例性地感光鼓2通过三个显示芯片所发出的光成像,每个显示芯片对应感光鼓受光区的一个预设区域,也即感光鼓的受光区由三个预设区域拼接形成。需要说明的是,在每个预设区域中,包含多个子受光区,也即每个预设区域对应的光路图与图5中所示的光路图相同,在此不再赘述每个显示芯片与感光鼓上对应的预设区域之间的光路。本实施例可以利用多个显示芯片照射感光鼓,进而可以使得感光鼓可以在轴向上设置的更长。可以进一步增加感光鼓上同时感光的区域,生成完整静电潜像的速度更快,从而可以进一步提高打印速度。
可选地,在图6所示的成像设备中,可以设置相邻预设区域之间部分重叠。
在一实施例中,可以通过配置显示芯片在长度方向(长度方向与第一方向垂直)的大小的和/或投影镜头的焦距,使得显示芯片经投影镜头后成的像在长度上大于对应的预设区域的长度。并且通过配置反射镜的转角及倾角,使得成像光束经反射镜偏折后不仅覆盖对应的预设区域,还覆盖与其相邻的预设区域(一个预设区域或两个预设区域)的面积,从而能够保证感光鼓受光区所有部分均能够被成像光束覆盖,重合的部分例如可以理解为拼接区,通过调整反射镜的转角,可以控制拼接区的大小。通过设置拼接区,可以保证投影到感光鼓上的三个成像光束在拼接时不会出现错位和缺失。
当在感光鼓上设置拼接区时,由于拼接区能够接收到不同发光区域的成像光束,在打印时可能会出现重行现象。可以通过打印测试页,分析利用哪个发光区域打印拼接区时效果更好,进而可以确定对拼接区感光时所点亮的像素。
在上述实施例中,均是以一个感光鼓为例进行说明。在其它一些实施方式中,也可以是四个感光鼓,如图7所示,图7为本申请实施例提供的又一种成像设备的结构示意图,在本实施例中成像设备包括一个显示芯片1和四个感光鼓2,每个感光鼓2上配置为吸附不同颜色的碳粉,四个感光鼓分别可以是吸附黑色碳粉的感光鼓、吸附红色碳粉的感光鼓、吸附蓝色碳粉的感光鼓和吸附黄色碳粉的感光鼓。黑色感光鼓可以打印黑色部分,红色感光鼓可以打印红色部分,蓝色感光鼓可以打印蓝色部分,黄色感光鼓可以打印黄色部分,利用四个感光鼓分别打印不同颜色,叠加后形成所需要的各种彩色图案。在本实施例中,每个感光鼓2均对应一个光束偏折组件,且每个感光鼓上的子受光区均对应显示芯片1上的一个发光区域,不同子受光区所对应的发光区域不同。例如每个感光鼓上设置三个子受光区,则四个感光鼓共存在12个子受光区,每个光束偏折组件均包括三个反射镜,且显示芯片上共包含12个发光区域,12个发光区域与12个子受光区一一对应,通过控制显示芯片1上对应点亮的发光区域,从而 控制打印彩色图像。另外,图4对应的实施例所描述的拼接区等也适用于本实施例。当然,在其它一些实施方式中,也可以不设置光束偏折组件,例如设置显示芯片的四个区域可以直接经投影镜头投影成像到受光区,四个感光鼓的受光区窗口位置不同,可以使四个光束尽量指向感光鼓轴向。
图8为本申请实施例提供的又一种成像设备的结构示意图,如图8所示,本实施例中成像设备包括四个感光鼓,这与图6中所示的结构相同。与图7中所示结构不同的是,本实施例包含两个显示芯片1和两个与显示芯片1一一对应的光束偏折系统,每个光束偏折系统均包含四个光束偏折组件。每个感光鼓2上所成的像均来自两个显示芯片,图5对应的实施例中所述的拼接区也可以应用于本实施例中。当然,需要说明的是,每个显示芯片对应一个投影镜头。在其它一些实施方式中,也可以不设置光束偏折组件,例如设置显示芯片的四个区域可以直接经投影镜头投影成像到受光区,四个感光鼓的受光区窗口位置不同,可以使四个光束尽量指向感光鼓轴向。
可选地,图9为本申请实施例提供的又一种成像设备的结构示意图,参考图9,成像设备包括一个显示芯片1和四个感光鼓2,每个感光鼓2配置为吸附不同颜色的碳粉;第一个感光鼓至第四个感光鼓沿第二方向x1一次排列,且沿第二方向x1,四个感光鼓2的投影重合,每个感光鼓的轴向均与第二方向x1垂直;显示芯片1包括4*N个发光区域,N为大于2的偶数;光束偏折系统3包括:
主分像镜321,沿第二方向x1,主分像镜321的投影与感光鼓的投影不交叠;沿第三方向,主分像镜的投影位于第二个感光鼓与第三个感光鼓之间;第三方向与感光鼓的轴向及第二方向均垂直;主分像镜321配置为将显示芯片1中每个发光区域的出射光一部分向第二方向x1出射,另一部分向第四方向x2出射,第四方向x2与第二方向x1相反;
第一副分像镜322,沿第三方向,第二副分像镜322的投影位于第三个感光鼓与第四个感光鼓之间,第一副分像镜322用于将主分像镜321沿第二方向x1的出射光部分向第五方向y1出射,其余部分向第六方向y2出射,其中,第五方向y1与第六方向y2相反,且第六方向与第五方向均与感光鼓的轴向平行;
第二副分像镜323,沿第三方向,第二副分像镜323的投影位于第一个感光鼓与第二个感光鼓之间,第二副分像镜323用于将主分像镜321沿第四方向x2的出射光部分向第五方向y1出射,其余部分向第六方向y2出射;
副分像镜的每个出射光路上配置有至少两个区域分像镜324,每个区域分像镜324用于将显示芯片上一个发光区域对应的光沿第四方向x2反射,一个发光区域对应的光沿第二方向x1反射;不同区域分像镜324对应显示芯片不同的发光区域;
区域分像镜324对应的每个出射光路上均配置有反射镜,反射镜用于将接收到的光反射至对应感光鼓的子受光区。
本实施例提供了另一种利用一个显示芯片实现彩色打印的方案,为便于理解,定义x轴上向左为第四方向x2,向右为第二方向x1,y轴上向上为第五方向y1,向下为第六方向y2,z轴方向为第三方向。显示芯片1上发光区域的个数与感光鼓上子受光区的个数相关,例如每个感光鼓上划分为N个子受光区,则显示芯片1上需要划分出4*N个发光区域。
显示芯片1发出的光经投影镜头成像后出射到主分像镜321上,此时,所有发光区域的出射光均能够出射到主分像镜321。主分像镜321将每个发光区域的出射光一部分向第二方向x1分像,另一部分向第四方向x2分像。换句话说,此时,由主分像镜321向第二方向x1的出射光中包含了所有发光区域的出射光,对于每个发光区域来说,可能是部分发光单元发出的光向第二方向x1出射,其余部分发光单元发出的光向第四方向x2出射;也可能使发光单元出射的光一部分向第二方向x1出射,其余部分向第四方向x2出射。主分像镜321沿第二方向x1出射的光入射到第一副分像镜322上,第一副分像镜322的结构与主分像镜的结构相同,第一副分像镜322将入射光一部分向第五方向y1分像,另一部分向第六方向y2分像。主分像镜321沿第四方向x2出射的光入射到第二副分像镜323上,第二副分像镜323的结构与主分像镜的结构相同,第二副分像镜323将入射光一部分向第五方向y1分像,另一部分向第六方向y2分像。区域分像镜的个数可以根据所需要的划分的子受光区的个数确定。
区域分像镜的个数可以根据所需要的划分的子受光区的个数确定。本实施例以副分像镜的每条出射光路上包含两个区域分像镜为例,显示芯片1中发光区域沿第三方向排列,也即本实施例中第一方向和第三方向等效。不同发光区域的像经过主分像镜分像后仍然沿第三方向排列,经过副分像镜再一次分像后仍然沿第三方向排列,换句话说,在副分像镜的每条出射光路上,沿第三方向排列有显示芯片所有发光区域对应的像。每个区域分像镜324与对应的副分像镜之间均可设置成像透镜,成像透镜用于成像。通过设置成像透镜的位置、焦距以及区域分像镜在第三方向上的位置,使得每个区域分像镜将其中两个发光区域对应的像分别向第二方向x1和第四方向x2出射,换句话说,经过区域分像镜分像后,区域分像镜的每条出射光路中仅存在一个发光区域所对应的光,最后再利用反射镜将区域分像镜的出射光反射至对应的感光鼓的子受光区。需要说明的是,每个区域分像镜在第三方向上的坐标可以相同,也可以不同,例如子受光区I1与子受光区I2对应的区域分像镜324在第三方向上的坐标不同,子受光区I1与子受光区I3对应的区域分像镜在第三方向上的坐标可以相同。如图中所示,每个感光鼓上包含四个子受光区,则显示芯片上共设置有4*4共16 个发光区域,经过光束偏折系统的偏折后,可以将各个发光区域对应的光偏折至对应的子受光区。
在本实施例中,利用一个显示芯片和光束偏折系统即可将显示芯片上所有发光区域对应的像分别出射至相应的子受光区,也即利用一个显示芯片即可实现彩色打印,且显示芯片上发光区域的利用效率也较高。
可选地,图10为本申请实施例提供的一种主分像镜和副分像镜的结构示意图,图10中所示的分像镜可以是主分像镜也可以是副分像镜,也即主分像镜和副分像镜结构可相同。如图10所示,分像镜为立体结构,一侧为连续反射镜,一侧为被切割分条的反射镜。分像镜可以由两个反射镜组成,且每个反射镜的一半区域均进行切割分条,将切割好的分条区域垂直插入即可。也即两个反射镜相互垂直,在放置时,分像镜两个被切割分条的区域作为入射面,用于接收外部的入射光,此时入射到分像镜上的光束会被分为两束方向相反的光束。如图11所示,图11为本申请实施例提供的一种区域分像镜的结构示意图,该分像镜可以是区域分像镜,区域分像镜为两个连续的反射镜,从而将对应不同发光区域的光分别沿第二方向x1和第四方向x2反射。
可选地,图12为本申请实施例提供的一种显示芯片区域分割的结构示意图,结合图9和图12,显示芯片包括由中心线分割的两个子显示区,分别为第一子显示区101和第二子显示区102,每个子显示区均包括多个发光区域;在第一个感光鼓和第二个感光鼓中,关于两者中心线对称的子受光区对应的两个发光区域之间间隔一个发光区域;在第三个感光鼓和第四个感光鼓中,关于两者中心线对称的子受光区对应的两个发光区域之间间隔一个发光区域;在同一感光鼓对应的多个子受光区中,相邻两个子受光区对应的两个发光区域位于不同的子显示区。
以显示芯片包括十六个发光区域为例,十六个发光区域分别为第一发光区域至第十六发光区域,且第一发光区域至第十六发光区域沿第一方向依次排列;第一发光区域至第八发光区域位于第一子显示区101,第九发光区域至第十六发光区域位于第二子显示区102;四个感光鼓中的子受光区分别为:第一个感光鼓上沿第六方向y2依次为子受光区I6,子受光区I5,子受光区I7和子受光区I8;第二个感光鼓上沿第六方向y2依次为子受光区K6,子受光区K5,子受光区K7和子受光区K8;第三个感光鼓上沿第六方向y2依次为子受光区K2,子受光区K1,子受光区K3和子受光区K4;第四个感光鼓上沿第六方向y2依次为子受光区I2,子受光区I1,子受光区I3和子受光区I4。子受光区I2和子受光区K2关于第三个感光鼓与第四个感光鼓之间的中心线对称,则在对应显示芯片上的发光区域时,可以设置对应的两个发光区域之间间隔一个发光区域,如图11所示,子受光区I2对应第一发光区域,子受光区K2对应第二发光区域,两者之间间 隔一个第二发光区域。本实施例所述的子受光区与发光区域对应,表示为该发光区域经光束偏折系统偏折后入射到该子受光区。另外,以第四个感光鼓上的子受光区为例,子受光区I2与子受光区I1相邻,在对应显示芯片上的发光区域时,可以设置子受光区I2与子受光区I1对应的发光区域位于不同的子显示区,如图12所示,子受光区I2对应第一发光区域,第一发光区域位于第一子显示区101;子受光区I1对应第十一发光区域,第十一发光区域位于第二子显示区。通过本实施例中子受光区与发光区域的对应规则,可以使得副分像镜同一出射光路上相邻区域分像镜的反射光束对应的发光区域中会间隔一个发光区域,区域分像镜对应相邻的反射光束对应的发光区域也会间隔一些发光区域,保证各个发光区域发出的光相互不影响,且能够保证入射到区域分像镜上的光基本全部用于成像。
在上述实施例中,可以通过调整各个区域分像镜在第三方向的坐标实现。当然,在其它一些实施方式中,子受光区和发光区域之间也可以采用其它规则对应。
可选地,对于需要打印的测试点,上述的成像设备在感光鼓上所成的像可能会有多个像素点,此时可根据打印测试页挑选出合适的像素进行校正。
另外,上述实施例可利用一个显示芯片实现打印机四个感光鼓成像,实现彩色打印。当然,也可以根据打印机需要减少反射镜,即可实现单一感光鼓的灰度打印,也即是说,可以只留下一个感光鼓和对应光路上需要的反射镜、副分像镜以及主分像镜,将其它副分像镜、区域分像镜以及反射镜去除。
可选地,显示芯片为MicroLED芯片。MicroLED芯片可包括MicroLED与超高速刷新的CMOS驱动芯片,该芯片具有像素尺寸小,亮度高,响应刷新速度快,灰阶多等特点,可以使得打印机具有高速、环保、体积小、色彩鲜艳、价格低、稳定性可靠性高以及寿命长等优点。
本申请实施例还提供了一种打印机,打印机包括本申请任意实施例提供的成像设备,因其包括本申请任意实施例提供的成像设备,因而也具有相同的有益效果,在此不再赘述。
以120PPI打印机为例,此时需要感光鼓的潜像像素尺寸小于21微米,选用焦距f=10毫米的投影镜头,成像距离为40毫米时,反射镜放置在距离校正镜20毫米至30毫米之间,成像放大倍数约为4倍,此时需要显示芯片上发光单元的尺寸大小为21/4~5微米。
然而,小尺寸像素较大显示阵列的显示芯片在制作时难度较大,容易出现坏点,基于此,本实施例还提供了一种成像设备的成像方法,如图13所示,图13为本申请实施例提供的一种成像设备的成像方法的流程图;在成像设备中,显示芯片上的多个发光单元呈矩阵排布;发光区域在子受光区成像为沿行列方 向呈矩阵分布的多个像素点,行方向与列方向与感光鼓的轴向的夹角均不为90度。
成像方法包括:
步骤S301,将感光鼓的预设潜像线旋转至受光区中对应成像像素行的位置;其中,预设潜像线与感光鼓的轴向平行,成像像素行与感光鼓的轴向平行,成像像素行包括多个成像像素,成像像素为像素点或其周围至少两个像素点的叠加。
图14为本申请实施例提供的成像设备成像时感光鼓与成像像素关系的示意图,如图14所示,本实施例的显示芯片中发光单元的尺寸较小,但像素间隔较大,例如发光单元的尺寸为5微米,发光单元之间的间隔为25微米,此种显示芯片在制作时具有很高的良率。本实施例可以通过设置显示芯片与感光鼓之间的关系,使得显示芯片上的发光单元在感光鼓受光区上成的多个像素点601为图13中排列所示。多个像素点601虽然也呈行列方向的矩阵排布,但行列方向与感光鼓的轴向的夹角均不为90度,像素点的行方向不与感光鼓的轴向平行,像素点的列方向也不与感光鼓的轴向平行。图13中的矩形框可以理解为一个子受光区,矩形框中间的中心线为子受光区的中轴线。预设潜像线602为感光鼓上待成像的一行线,预设潜像线602未旋转至子受光区时,无法被像素点601曝光,当预设潜像线旋转至子受光区时,例如在感光鼓旋转方向上,预设潜像线601处于子受光区第一位置时,执行步骤S302,开启显示芯片以利用成像像素行使预设潜像线的部分区域感光;也即第一位置对应的像素点对预设潜像线601进行部分曝光。
随后执行步骤S303,旋转感光鼓以使预设潜像线移动,并在预设潜像线移动至下一成像像素行时,开启显示芯片。
在一实施例中,当预设潜像线602完全通过子受光区后,预设潜像线602上的所有部分均被曝光,从而形成预设潜像线602对应的完整静电潜像。由于像素点601的行列方向与感光鼓的轴向均不平行,在预设潜像线移动时,预设潜像线可能正对着一行像素点601,此时该行像素点即可理解为成像像素线,利用该行成像像素线上的像素点对预设潜像线进行曝光;但是预设潜像线上也可能正对的没有像素点,此时可以利用周围像素点601的亮度叠加形成虚拟像素点,使得虚拟像素点连城一条成像像素线,利用虚拟像素点对预设潜像线进行曝光。
通过上述分析可知,虽然显示芯片上发光区域的间隔较大,但由于像素点的行列方向与感光鼓的轴向夹角均不为90度,并且预设潜像线在经过子受光区时不是一次曝光,而是多次曝光,在感光鼓的轴向上,预设潜像线上的成像点十分密集,极大地提高了预设潜像线上成像的分辨率。也即本实施例可以利用 大像素间隔的显示芯片实现小像素间隔的高分辨率潜像成像能力。
如图14所示,沿感光鼓的轴向在子受光区的像素点可以理解为拼接融合像素点,拼接融合像素点可以用于对图5或者图6中的拼接区进行曝光。
可选地,成像方法还包括:同时对位于子受光区的多条预设潜像线成像。
在一实施例中,如图14所示,子受光区中包含多行(感光鼓轴向)像素点,每行像素点均可以对感光鼓进行曝光,因此可以同时设置多条预设潜像线,当不同的预设潜像线在成像时位于感光鼓上不同位置,也即打印机感光鼓可以多行同时感光,多点同时感光,相对于普通激光打印机的点扫描来说,感光速度极快,因此可以极大地提高打印速度。
可选地,成像方法还包括:利用成像设备打印测试页,测试页上包括多个预设的扫描测试点;
根据扫描测试点与打印测试页上实际打印出的打印点,分析测试页上的重行和漏行;
根据漏行和重行确定扫描点。
在上述的成像方法中,预设潜像线上的一行像素不是同时感光,预设潜像线完全通过子受光区后才会完整成像,在成像过程中,由于拼接区拼接,感光鼓在转到不同位置时,该预设潜像行所在的成像区域会出现重启以及像素排列方向不一致等情况,因此,本实施例可以进行校正。可以通过打印测试页,扫描分析出重行和漏行,从而选取对应的扫描点,也即选取点亮的发光单元,保证不会出现重行和漏行,并确定该扫描点在走纸方向上的错位距离。根据漏行和重行确定扫描点包括:若所述扫描测试点存在正对的像素点,则以所述像素点作为所述扫描点;若所述扫描测试点不存在正对的像素点,则以与所述扫描测试点相邻的像素点进行灰度变换,以使叠加后的亮度最高点位于所述扫描测试点。
图15为本申请实施例提供的一种打印测试页的示意图,如图15所示,在本实施例中,打印测试页上包括预设的扫描测试点P,若打印该扫描测试点P时打印出的结果为A,B,C,D等打印点,两者之间存在偏差,可以利用扫描测试点周围像素点根据距离灰度进行变换,使其叠加后的亮度最高点位置位于该扫描测试点P,从而对打印文件进行差值实现精确打印。
从上述分析可知,感光鼓潜像像素与显示芯片上像素不是一对一的关系,会存在一对多的关系,即使显示芯片上存在坏点,也不会影响潜像成像质量。
当显示系统固定,显示像素之间的位置关系及相对亮度就确定,显示控制算法根据各像素之间的相对位置关系、相对亮度及感光鼓轴向的转动速度等,可以计算出显示芯片点亮的时序,从而实现感光鼓上正确的潜像。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果。
本申请的实施例中采用的成像设备,通过设置光束偏折系统,可以将显示芯片上所有发光区域对应的像均成像到感光鼓上,从而可以以低分辨率的像素阵列实现高分辨率的打印,并极大地提高显示芯片上发光区域的利用率,增大在感光鼓上的潜像宽度。

Claims (14)

  1. 一种成像设备,包括:
    M个可旋转的感光鼓,每个所述感光鼓配置为通过该感光鼓的受光区被曝光以在该感光鼓的受光区形成电子潜像;其中,M大于等于1,每个所述感光鼓的受光区包括沿该感光鼓的轴向排列的多个子受光区;
    至少一个显示芯片,每个所述显示芯片包括沿第一方向排列的至少两个发光区域,所述发光区域与所述子受光区一一对应,且每个所述发光区域中均设置有多个发光单元;
    与所述至少一个显示芯片一一对应的至少一个投影镜头,每个所述投影镜头配置为对对应的所述显示芯片成像;
    与所述至少一个显示芯片一一对应的至少一个光束偏折系统,所述光束偏折系统配置为将所述显示芯片中每个所述发光区域经对应的所述投影镜头成的像偏折至对应的所述子受光区。
  2. 根据权利要求1所述的成像设备,其中,
    所述光束偏折系统包括与M个所述感光鼓一一对应的M个光束偏折组件;每个所述光束偏折组件包括至少两个反射镜,每个所述反射镜对应一个所述发光区域;
    所述反射镜被配置为将对应的所述发光区域经对应的所述投影镜头成的像偏折至对应的所述子受光区。
  3. 根据权利要求2所述的成像设备,其中,所述反射镜被配置为将对应的所述发光区域经对应的所述投影镜头成的像偏折至对应的所述子受光区,以及与对应的所述子受光区相邻的另一个所述子受光区的一部分区域。
  4. 根据权利要求2所述的成像设备,其中,所述成像设备包括至少两个所述显示芯片和至少两个所述光束偏折系统;
    每个所述光束偏折系统配置为将对应的所述显示芯片中发光区域经对应的所述投影镜头成的像偏折至对应的预设区域,所述预设区域包括相邻的多个子受光区。
  5. 根据权利要求4所述的成像设备,其中,相邻的所述预设区域之间部分重叠。
  6. 根据权利要求2或4所述的成像设备,其中,所述成像设备包括一个所述感光鼓;
    或者,所述成像设备包括四个所述感光鼓,每个所述感光鼓配置为吸附不同颜色的碳粉。
  7. 根据权利要求1所述的成像设备,其中,所述成像设备包括一个所述显示芯片和四个所述感光鼓,每个所述感光鼓配置为吸附不同颜色的碳粉;第一个感光鼓至第四个感光鼓沿第二方向依次排列,且沿第二方向,所述四个感光鼓 的投影重合,每个所述感光鼓的轴向均与第二方向垂直;
    所述显示芯片包括4*N个所述发光区域;N为大于2的偶数;
    所述光束偏折系统包括:
    主分像镜,沿第二方向,所述主分像镜的投影与所述感光鼓的投影不交叠;沿第三方向,所述主分像镜的投影位于第二个感光鼓与第三个感光鼓之间;所述第三方向与所述感光鼓的轴向及所述第二方向均垂直;所述主分像镜配置为将所述显示芯片每个所述发光区域的出射光的一部分向第二方向出射,其余部分向第四方向出射,所述第四方向与所述第二方向相反;
    第一副分像镜,沿所述第三方向,所述第一副分像镜的投影位于第三个感光鼓与第四个感光鼓之间,所述第一副分像镜被配置为将所述主分像镜沿所述第二方向的出射光部分向第五方向出射,其余部分向第六方向出射,其中,所述第六方向与所述第五方向相反,且所述第六方向与所述第五方向均与所述感光鼓的轴向平行;
    第二副分像镜,沿所述第三方向,所述第二副分像镜的投影位于第一个感光鼓与第二个感光鼓之间,所述第二副分像镜被配置为将所述主分像镜沿所述第四方向的出射光部分向所述第五方向出射,其余部分向所述第六方向出射;
    所述副分像镜的每个出射光光路上配置有至少两个区域分像镜;每个所述区域分像镜被配置为将所述显示芯片上一个所述发光区域对应的光部分沿所述第四方向反射,其余部分沿第二方向反射;不同所述区域分像镜对应所述显示芯片的不同所述发光区域;
    所述区域分像镜对应的每个出射光路上均配置有所述反射镜,每个所述反射镜被配置为将接收到的光反射至对应的所述子受光区。
  8. 根据权利要求7所述的成像设备,其中,所述显示芯片包括由中心线分割的两个子显示区,每个所述子显示区均包括多个所述发光区域;
    在所述第一个感光鼓和第二个感光鼓中,关于所述第一个感光鼓和第二个感光鼓之间的中心线对称的所述子受光区对应的两个所述发光区域之间间隔一个所述发光区域;
    在所述第三个感光鼓和第四个感光鼓中,关于所述第三个感光鼓和所述第四个感光鼓之间的中心线对称的所述子受光区对应的两个所述发光区域之间间隔一个所述发光区域;
    在同一所述感光鼓对应的多个所述子受光区中,相邻的两个所述子受光区对应的两个所述发光区域位于不同的所述子显示区。
  9. 根据权利要求1所述的成像设备,其中,所述显示芯片为MicroLED芯片。
  10. 一种打印机,所述打印机包括粉盒,以及如权利要求1-9任一项所述的成像设备。
  11. 一种成像设备的成像方法,其中,所述成像设备为如权利要求1-9任一项所述的成像设备;所有所述显示芯片的发光单元呈矩阵排布;所有所述发光区域在所述子受光区成像为沿行方向和列方向呈矩阵排布的多个像素点,所述行方向及所述列方向与所有所述感光鼓的轴向的夹角均不为90度;
    所述成像方法包括:
    将所有所述感光鼓的预设潜像线旋转至所有所述受光区中对应一个成像像素行的位置;其中,所述预设潜像线与所述感光鼓的轴向平行,该成像像素行与所述感光鼓的轴向平行,每个所述成像像素行包括多个成像像素,所述成像像素为所述像素点或所述像素点周围至少两个像素点的叠加;
    开启所有所述显示芯片以利用该成像像素行使所述预设潜像线的部分区域感光;
    旋转所述感光鼓以使所述预设潜像线移动,并在所述预设潜像线移动至下一成像像素行时,开启所有所述显示芯片。
  12. 根据权利要求11所述的成像方法,其中,所述成像方法还包括:
    同时对位于所述子受光区的多条预设潜像线成像。
  13. 根据权利要求11所述的成像方法,其中,所述成像方法还包括:
    利用所述成像设备打印测试页,所述测试页上包括多个预设的扫描测试点;
    根据所述扫描测试点和所述打印测试页上实际打印出的打印点,分析所述测试页上的漏行和重行;
    根据所述漏行和重行确定扫描点。
  14. 根据权利要求13所述的成像方法,其中,所述根据所述漏行和重行确定所述扫描点包括:
    基于所述扫描测试点存在正对的像素点的判断结果,以所述像素点作为所述扫描点;
    基于所述扫描测试点不存在正对的像素点的判断结果,以与所述扫描测试点相邻的像素点进行灰度变换,以使叠加后的亮度最高点位于所述扫描测试点。
PCT/CN2023/094719 2022-06-24 2023-05-17 成像设备及其成像方法、打印机 WO2023246383A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23826032.7A EP4361730A1 (en) 2022-06-24 2023-05-17 Imaging device and imaging method thereof, and printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210729934.3 2022-06-24
CN202210729934.3A CN114942575A (zh) 2022-06-24 2022-06-24 成像设备及其成像方法、打印机

Publications (1)

Publication Number Publication Date
WO2023246383A1 true WO2023246383A1 (zh) 2023-12-28

Family

ID=82911335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094719 WO2023246383A1 (zh) 2022-06-24 2023-05-17 成像设备及其成像方法、打印机

Country Status (3)

Country Link
EP (1) EP4361730A1 (zh)
CN (1) CN114942575A (zh)
WO (1) WO2023246383A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942575A (zh) * 2022-06-24 2022-08-26 亿信科技发展有限公司 成像设备及其成像方法、打印机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042554A (ja) * 1999-07-28 2001-02-16 Canon Inc 画像形成装置
CN1484112A (zh) * 2002-09-19 2004-03-24 ��ʿͨ��ʽ���� 图像形成装置
CN1495561A (zh) * 2002-09-16 2004-05-12 三星电子株式会社 激光扫描单元及采用其的电子照相成像装置
US20040183890A1 (en) * 2003-03-18 2004-09-23 Junshin Sakamoto Color image forming appartus
JP2007296765A (ja) * 2006-05-01 2007-11-15 Fuji Xerox Co Ltd 画像形成装置、および画像形成装置の制御方法
JP2008175859A (ja) * 2007-01-16 2008-07-31 Fuji Xerox Co Ltd 画像形成装置及び露光方法
CN114942575A (zh) * 2022-06-24 2022-08-26 亿信科技发展有限公司 成像设备及其成像方法、打印机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042554A (ja) * 1999-07-28 2001-02-16 Canon Inc 画像形成装置
CN1495561A (zh) * 2002-09-16 2004-05-12 三星电子株式会社 激光扫描单元及采用其的电子照相成像装置
CN1484112A (zh) * 2002-09-19 2004-03-24 ��ʿͨ��ʽ���� 图像形成装置
US20040183890A1 (en) * 2003-03-18 2004-09-23 Junshin Sakamoto Color image forming appartus
JP2007296765A (ja) * 2006-05-01 2007-11-15 Fuji Xerox Co Ltd 画像形成装置、および画像形成装置の制御方法
JP2008175859A (ja) * 2007-01-16 2008-07-31 Fuji Xerox Co Ltd 画像形成装置及び露光方法
CN114942575A (zh) * 2022-06-24 2022-08-26 亿信科技发展有限公司 成像设备及其成像方法、打印机

Also Published As

Publication number Publication date
EP4361730A1 (en) 2024-05-01
CN114942575A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
US7438443B2 (en) Lighting device, image-reading device, color-document reading apparatus, image-forming apparatus, projection apparatus
JPH11320968A (ja) 光像形成方法及びその装置、画像形成装置並びにリソグラフィ用露光装置
WO2023246383A1 (zh) 成像设备及其成像方法、打印机
EP0802459B1 (en) Color image forming apparatus
CN1975592A (zh) 图像形成装置
JP3832087B2 (ja) 光ビーム走査光学装置
EP0658857B1 (en) An image forming apparatus
US20050162499A1 (en) Image forming device
US20080158329A1 (en) Light scanning unit and image forming apparatus having the same
JPH08252944A (ja) ラスタ走査光学システムおよび受光体上の走査線位置調節方法
JP2003341131A (ja) 画像形成装置
JP2002098922A (ja) 光走査装置
US7292258B2 (en) Multibeam scanning optical apparatus and multibeam image forming apparatus
RU2793143C2 (ru) Модуль светового сканирования и устройство формирования электронного изображения
JP2003205642A (ja) マルチビーム記録ヘッド及びそのマルチビーム記録ヘッドを具備する画像形成装置
JP2012194333A (ja) 光走査装置及び画像形成装置
US20220244529A1 (en) Optical scanning device, image forming apparatus including optical scanning device, and optical scanning method
JP2834220B2 (ja) 可変倍率記録光プリンタ
JP2001310500A (ja) 光書き込みユニットおよび画像形成装置
JP2008012806A (ja) 画像形成装置及び画像形成方法
JP2008170518A (ja) レーザ走査光学装置
JP2005212223A (ja) 画像形成装置
JP2012018337A (ja) 光走査装置及び画像形成装置
CN117031896A (zh) 一种基于分束镜阵列的激光成像单元
JPH10104896A (ja) 画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023826032

Country of ref document: EP

Effective date: 20240123