WO2023245468A1 - 现浇楼板钢筋桁架底模一体式结构及生产工艺 - Google Patents

现浇楼板钢筋桁架底模一体式结构及生产工艺 Download PDF

Info

Publication number
WO2023245468A1
WO2023245468A1 PCT/CN2022/100299 CN2022100299W WO2023245468A1 WO 2023245468 A1 WO2023245468 A1 WO 2023245468A1 CN 2022100299 W CN2022100299 W CN 2022100299W WO 2023245468 A1 WO2023245468 A1 WO 2023245468A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
parts
steel bar
cast
concrete
Prior art date
Application number
PCT/CN2022/100299
Other languages
English (en)
French (fr)
Inventor
苏华阳
崔明浩
单润
崔荣平
冯军
董建全
苏同兴
Original Assignee
山东德利森绿能建材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东德利森绿能建材科技有限公司 filed Critical 山东德利森绿能建材科技有限公司
Publication of WO2023245468A1 publication Critical patent/WO2023245468A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/065Light-weight girders, e.g. with precast parts

Definitions

  • the invention belongs to the technical field of building floor slabs and relates to a cast-in-place floor slab steel bar truss bottom form integrated structure and a production process.
  • existing high-rise buildings generally use steel floor decking.
  • the structure is a combination of profiled steel plates with a certain rib height and concrete.
  • This kind of floor slab has some disadvantages during construction. For example: the indoor floor height of the building will be reduced, the lower surface of the floor slab is easy to be uneven, and the on-site steel bar binding process is cumbersome.
  • the spacing of steel bars and the thickness of the concrete protective layer are not easy to control, and the work intensity of workers on-site construction is high. It requires a lot of supporting equipment and the disassembly and assembly operations are complicated, so it is difficult to guarantee the construction period and quality of the entire building.
  • the present invention proposes a new type of cast-in-place floor slab steel bar truss bottom form integrated structure and production technology.
  • An integrated structure of cast-in-place floor slab steel bar truss bottom formwork including a base plate and a steel bar truss.
  • the thickness of the base plate is 15-20mm.
  • the steel bar truss is a steel cage structure welded by multiple steel bars.
  • the steel cage structure is composed of multiple rows of steel bars.
  • the cages are arranged in monomers. Stiffening steel bars are welded vertically between the cage monomers.
  • the steel cage monomers include upper upspin steel bars and lower downspin steel bars.
  • the upspin steel bars and downspin reinforcing bars are welded with Web steel bars, the lower part of the web steel bars extends to the inside of the bottom plate; the bottom plate is made of concrete mixed material.
  • the steel cage is placed on the upper part of the bottom plate so that the lower part of the web bar steel bars extends into the concrete and is vibrated, so that the lower part of the web bar steel bars Extends to the inside of the base plate.
  • the bottom plate is composed of any one of the following four components per cubic meter:
  • the additive is composed of the following parts by weight: 40-50 parts of calcium nitrite, 8-10 parts of sulfonic acid formaldehyde condensate, 20-25 parts of sodium lignosulfonate, and 15-20 parts of calcium formate.
  • the steps are: Place the formwork ⁇ Spray the release agent ⁇ Prepare and mix the concrete ⁇ Place and vibrate the steel truss ⁇ Spray the curing agent ⁇ Enter the bracket for curing.
  • the finished panels are demoulded and cut according to building construction specifications.
  • the release agent is composed of the following parts by weight: 5-7 parts of polyvinyl acetate polymer emulsion, 90-95 parts of emulsified paraffin, and 0.2-0.7 parts of dispersing wetting agent.
  • the release agent maintenance agent is composed of the following parts by weight: 5-8 parts by weight of hydroxyethyl cellulose and 90-95 parts by carboxymethyl cellulose; when the release agent is used, dissolve it with water, per 1000kg The amount of water corresponding to the release agent is 0.8-2.0kg.
  • Figure 1 is a schematic structural diagram of the present invention.
  • Figure 2 is a schematic diagram of the steel truss structure.
  • Figure 3 is a schematic diagram of the support steel structure.
  • Figure 4 is a schematic diagram of the floor deck structure.
  • the reference numbers are: 1 base plate, 2 steel truss, 3 stiffening steel bars, 4 upper spiral steel bars, 5 lower spiral steel bars, 6 web bar steel bars, 7 bearing transverse bars, and 8 bearing vertical bars.
  • this embodiment provides a new cast-in-place floor slab reinforced truss bottom form integrated structure.
  • Its structure consists of two parts: base plate 1 and steel truss 2. The two parts are combined into an integrated structure through the bonding force generated by the solidification of the concrete itself during production.
  • the thickness of the bottom plate 1 is 15-20 mm. According to actual construction needs, the thickness of the bottom plate 1 and the thickness of the steel bars can be adjusted adaptively.
  • the steel truss 2 is a steel cage structure welded by multiple steel bars. According to the actual height of the building, floor strength and other requirements, the specifications and thickness of the steel bars can be appropriately designed and adjusted. Multiple steel bars are combined according to rules to form a cage-like structure.
  • the steel truss 2 is composed of multiple groups of steel cage units arranged, and stiffening steel bars 3 are provided perpendicularly to each steel cage unit to increase the overall strength of the steel cage.
  • Each steel cage unit is provided with top-spin steel bars 4 at the upper part and down-spin steel bars 5 at the lower part.
  • Each top-spin steel bar 4 corresponds to two bottom-spin steel bars 5.
  • the top-spin steel bars 4 and the down-spin steel bars 5 are distributed in a triangle with each other.
  • a web steel bar 6 is provided between the top spiral steel bar 4 and the bottom spiral steel bar 5.
  • a web bar steel bar 6 is provided on both sides of each top spiral steel bar 4.
  • the two web bar steel bars 6 form a group, and the upper end is welded to the top spiral steel bar 4. On both sides, the lower ends are welded to two downwardly rotating steel bars 5 respectively, and continue to extend downward.
  • transverse support steel bars (support transverse bars 7) can be welded between every two downswivel steel bars 5, and support vertical bars 8 can be set between the upswivel steel bars 4 and the support transverse bars 7. .
  • the method of combining the steel truss 2 and the bottom plate 1 is to place the steel truss 2 above the bottom plate 1 when the concrete forming the bottom plate 1 has not solidified, and then vibrate the whole, so that the ends of the web steel bars 6 at the bottom of the steel truss 2 are embedded into the bottom plate 1
  • the steel truss 2 and the base plate 1 are combined with each other to form an integrated prefabricated structure, which can be directly used for on-site construction of multi-story floors.
  • the bottom plate 1 is made of C20 concrete with a strength of 20 MPa.
  • the ingredients per cubic meter are as follows: 191kg of water, 400kg of 325 cement, 545kg of medium-fine sand, 1265kg of gravel with a particle size of 3-5mm, and the additives are 2% of the cement dosage.
  • the additive is composed of the following parts by weight: 40 parts of calcium nitrite, 10 parts of lignosulfonic acid formaldehyde condensate, 20 parts of sodium lignosulfonate, and 20 parts of calcium formate.
  • the steps are: Place the formwork ⁇ Spray the release agent ⁇ Prepare and mix the concrete ⁇ Place and vibrate the steel truss ⁇ Spray the curing agent ⁇ Enter the bracket for curing.
  • the finished panels are demoulded and cut according to building construction specifications.
  • the above-mentioned release agent consists of the following parts by weight: 7 parts of polyvinyl acetate polymer emulsion, 90 parts of emulsified paraffin, and 0.2 parts of dispersing wetting agent.
  • the release agent curing agent consists of the following parts by weight: 8 parts of hydroxyethyl cellulose and 90 parts of carboxymethyl cellulose; when using the release agent, dissolve it with water, and the dosage of the release agent is 1.5 kg for every 1000 kg of water.
  • the spraying of the release agent and curing agent is carried out according to the traditional building wall panel construction method.
  • only the specific components of the release agent and the curing agent are changed, so that the release and later curing effects are better. , no changes have been made to the use of release agents and curing agents.
  • the base plate 1 is made of C40 concrete with a strength of 40 MPa.
  • the specific ingredients are as follows: 168kg of water, 430kg of 425 cement, 560kg of medium-fine sand, gravel with a particle size less than 5mm: 1250kg, and the additive amount is 0.9% of cement.
  • the steps are: Place the formwork ⁇ Spray the release agent ⁇ Prepare and mix the concrete ⁇ Place and vibrate the steel truss ⁇ Spray the curing agent ⁇ Enter the bracket for curing.
  • the finished panels are demoulded and cut according to building construction specifications.
  • the above-mentioned release agent consists of the following parts by weight: 6 parts of polyvinyl acetate polymer emulsion, 92 parts of emulsified paraffin, and 0.5 parts of dispersing wetting agent.
  • the release agent curing agent consists of the following parts by weight: 6.5 parts of hydroxyethyl cellulose and 93 parts of carboxymethyl cellulose; when using the release agent, dissolve it with water, and the dosage of the release agent is 1.7kg for every 1000kg of water.
  • Example 2 The non-disassembly bottom formwork steel truss floor decking prepared in Example 2 and Example 3 was tested accordingly.
  • the standards were GB 50204-2015, GB/T7019-2014, GB/T14402-2007/ISO 1716:2002, JGJ145-2013, JG/T368-2012, GB/T5464-2010/ISO 1182:2002, GB8624-2006.
  • the basis for judging whether it is qualified is Q/HJJC005-2020 "Reinforced Truss Floor Deck Slabs without Removing Bottom Forms".
  • the inspection items mainly include apparent density, water absorption, wet expansion rate, impermeability, frost resistance, soaking-drying performance, and non-flammability.
  • the sample size used for apparent density and water absorption is 80 ⁇ 80 ⁇ 20
  • the sample size used for wet expansion rate test is 260 ⁇ 260 ⁇ 20
  • the sample size used for water impermeability is 700 ⁇ 700 ⁇ 20
  • the sample size used for frost resistance test The sample size used is 250 ⁇ 250 ⁇ 20
  • the sample size used for soaking-drying performance is 250 ⁇ 250 ⁇ 20
  • the sample size used for non-flammability is 500 ⁇ 500 ⁇ 20 (all units are mm).
  • For testing of apparent density, water absorption, wet expansion, water impermeability, frost resistance, and non-combustibility take one piece of the bottom formwork-free steel truss floor deck obtained in Example 2 and Example 3, respectively, and test the soaking-drying performance. Take ten pieces each of the steel truss floor decking slabs obtained in Example 2 and Example 3 without dismantling the bottom formwork, and the test results are as follows.
  • Test items Resistance spot welding shear resistance, steel truss height 90mm, the diameter of the top-swivel steel bars in Examples 2 and 3 is 10mm, the diameter of the bottom-spin steel bars is 8mm, the diameter of the web bar steel bars is 5mm, the vertical bars of the supports and The diameter of the support transverse bars is 10mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

一种现浇楼板钢筋桁架底模一体式结构及生产工艺,钢筋桁架(2)为多根钢筋焊接成的钢筋笼结构,底板(1)为混凝土混合材料,混凝土未凝固时,钢筋笼置于底板(1)上部使得腹杆钢筋(6)下部伸入混凝土中并振实,使得腹杆钢筋(6)下部延伸至底板(1)内部,该结构减少了工人现场作业的强度,优化现场的施工环境,绿色环保,使得整个施工工期和施工质量可控;有效减少现场的支护设备或做到免支护,减少生产金属以及支护设备过程中的碳排放,减少树木进行木方制作和木制品的使用量,节省森林资源,符合当下碳中和理念。

Description

现浇楼板钢筋桁架底模一体式结构及生产工艺 技术领域
本发明属于建筑楼板技术领域,涉及一种现浇楼板钢筋桁架底模一体式结构及生产工艺。
背景技术
目前现有的高层建筑一般采用钢楼承板,其结构是采用带有一定肋高的压型钢板与混凝土进行组合,这种楼板在施工时存在一些弊端。比如:建筑物室内的楼高净高会减小,楼板下表面容易不平整,而且现场钢筋绑扎工序繁琐,钢筋的间距以及混凝土保护层的厚度不容易控制,工人现场施工的工作强度大,现场所需要的支护设备较多,拆装操作复杂,因此整个建筑物的施工工期和施工质量都难以保证。随着建筑行业楼板钢结构的发展以及对层高等方面的要求,对现浇楼板钢筋桁架结构要求也越来越高。钢筋桁架与底板(模板)之间的结合强度、结合方式目前还不够完善,成为建筑行业亟待解决的问题。
发明内容
本发明针对传统钢楼承板在设计施工中存在的问题提出一种新型的现浇楼板钢筋桁架底模一体式结构及生产工艺。
为了达到上述目的,本发明是采用下述的技术方案实现的:
一种现浇楼板钢筋桁架底模一体式结构,包括底板和钢筋桁架,所述底板厚度为15-20mm,所述钢筋桁架为多根钢筋焊接成的钢筋笼结构,钢筋笼结构由多排钢筋笼单体排布而成,钢筋笼单体之间垂直焊接有加劲钢筋,钢筋笼单体包括上部的上旋钢筋、下部的下旋钢筋,所述上旋钢筋与下旋钢筋之间焊接有腹杆钢筋,所述腹杆钢筋下部延伸至底板内部;底板为混凝土混合材料,混凝土未凝固时,钢筋笼置于底板上部使得腹杆钢筋下部伸入混凝土中并振实,使得腹杆钢筋下部延伸至底板内部。
作为优选,所述底板按照每立方米记,由如下四种成分中的任意一种构成:
(1)C20混凝土,强度20兆帕。
水188-191kg,325水泥400-405kg,中细砂540-545kg,粒径3-5mm石子:1260-1265kg,添加剂≤水泥用量2%。
(2)C30混凝土,强度30兆帕。
水173-176kg,325水泥458-463kg,中细砂510-515kg,粒径3-5mm石子:1248-1255kg,添加剂≤水泥用量2%。
(3)C40混凝土,强度40兆帕。
水163-168kg,425水泥430-433kg,中细砂550-560kg,粒径小于5mm石子:1240-1250kg,添加剂≤水泥用量2%。
(4)C50混凝土,强度50兆帕。
水190-195kg,525水泥485-490kg,中细砂560-565kg,粒径小于5mm石子:1195-1205kg,添加剂≤水泥用量2%。
作为优选,所述添加剂由如下重量份数物质构成:亚硝酸钙40-50份,素磺酸甲醛缩合物8-10份,木质素磺酸钠20-25份,甲酸钙15-20份。
现浇楼板钢筋桁架底模一体式生产工艺,步骤为,
(1)钢筋桁架制作:按照现场施工要求和图纸,将预先设计好的钢筋桁架中的各根钢筋焊接固定,制得钢筋桁架。这部分操作是在工厂内利用自动化生产线完成的,是将上层和下层钢筋以及中间的腹杆钢筋采用点焊的方式进行焊接,并在钢筋桁架底部预留与底板结合的下旋钢筋。
(2)制板工艺
步骤为:模板放置→喷脱模剂→混凝土配制混好下料→钢筋桁架放置并振实→喷涂养护剂→进入托架养护。
具体来讲模板上喷涂脱模剂后,按照底板中各物料的比例要求将各组分混合,然后放入模板内,使得底板最终的厚度达到15-20mm,趁底板的混凝土未凝固时,将预制钢筋桁架放置并振实,此时钢筋桁架下端的钢筋进入混凝土中,并被振实,等混凝土凝固后,底板与钢筋桁架则成为一体式结构。待混凝土凝固后,喷涂养护剂进入托架进行养护。
(3)成品板脱模切割
养护完成后得到的成品板脱模并按照建筑施工规格进行切割。
作为优选,所述脱模剂由如下重量份数物质组成:聚醋酸乙烯高分子乳液5-7份,乳化石蜡90-95份,分散润湿剂0.2-0.7份。
作为优选,所述脱模剂养护剂由如下重量份数物质组成:羟乙基纤维素5-8份,羧甲基纤维素90-95份;脱模剂使用时,兑水溶解,每1000kg水对应脱模剂用量0.8-2.0kg。
与现有技术相比,本发明的优点和积极效果在于:
1.将大部分现场施工时工作强度高的工序改为工厂自动化生产线能够完成的结构和工艺,减少了工人现场作业的强度,优化现场的施工环境,绿色环保,使得整个施工工期和施工质量可控。
2.有效减少现场的支护设备或做到免支护,减少生产金属以及支护设备过程中的碳排放,减少树木进行木方制作和木制品的使用量,节省森林资源,符合当下碳中和理念。
附图说明
图1为本发明结构示意图。
图2为钢筋桁架结构示意图。
图3为支座钢筋结构示意图。
图4为楼承板结构示意图。
各附图标记为:1底板,2钢筋桁架,3加劲钢筋,4上旋钢筋,5下旋钢筋,6腹杆钢筋,7支座横筋,8支座竖筋。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合具体实施例对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开说明书的具体实施例的限制。
实施例1
如图1-4所示,本实施例提供新型的现浇楼板钢筋桁架底模一体式结构。其结构包括底板1和钢筋桁架2两部分,两部分在生产时通过混凝土自身凝固所产生的结合力,使得两部分结合成为一体式结构。本实施例中底板1厚度为15-20mm,根据实际施工需要,底板1的厚度,钢筋的粗细都可以进行适应性调整。钢筋桁架2为多根钢筋焊接成的钢筋笼结构,根据实际楼房的高度,楼板强度等要求,钢筋的规格和粗细都可以进行适当的设计和调整,多根钢筋按规律组合成笼状结构,不同钢筋接触的地方采用点焊的方式进行固定。钢筋桁架2由多组钢筋笼单体排布而成,垂直于各钢筋笼单体设置有加劲钢筋3,增加钢筋笼的整体强度。每个钢筋笼单体在上部设置上旋钢筋4,下部设置下旋钢筋5,且每根上旋钢筋4对应两根下旋钢筋5,上旋钢筋4和下旋钢筋5相互呈三角形分布。上旋钢筋4与下旋钢筋5之间设置腹杆钢筋6,每根上旋钢筋4两侧各设置一根腹杆钢筋6,两根腹杆钢筋6为一组,上端焊接在上旋钢筋4两侧,下端分别焊接在两根下旋钢筋5上,并且继续向下延伸。为了增加钢筋桁架2强度,可以在每两根下旋钢筋5之间焊接横向的支座钢筋(支座横筋7),并在上旋钢筋4与支座横筋7之间设置支座竖筋8。钢筋桁架2通过工厂自动化流水线预制 完成后,与底板1结合成为一体式的结构。钢筋桁架2与底板1结合的方式为,待构成底板1的混凝土未凝固时,将钢筋桁架2放置于底板1上方,然后整体震动,使得钢筋桁架2底部的腹杆钢筋6末端嵌入至底板1内部的细石混凝土内,待底板1的混凝土凝固后,钢筋桁架2与底板1便相互结合在一起成为一体式的预制结构,便可直接应用于多层楼板的现场施工。
实施例2
本实施例提供现浇楼板钢筋桁架底模一体式生产工艺。本实施例中,底板1采用C20混凝土,强度20兆帕。每立方米成分如下:水191kg,325水泥400kg,中细砂545kg,粒径3-5mm石子:1265kg,添加剂为水泥用量的2%。添加剂由如下重量份数物质构成:亚硝酸钙40份,素磺酸甲醛缩合物10份,木质素磺酸钠20份,甲酸钙20份。
现浇楼板钢筋桁架底模一体式生产工艺,具体步骤为,
(1)钢筋桁架2制作:按照现场施工要求和图纸,将预先设计好的钢筋桁架2中的各根钢筋焊接固定,制得钢筋桁架。这部分操作是在工厂内利用自动化生产线完成的,是将上层和下层钢筋以及中间的腹杆钢筋6采用点焊的方式进行焊接,并在钢筋桁架2底部预留与底板结合的下旋钢筋5。
(2)制板工艺
步骤为:模板放置→喷脱模剂→混凝土配制混好下料→钢筋桁架放置并振实→喷涂养护剂→进入托架养护。
具体来讲模板上喷涂脱模剂后,按照底板1中各物料的比例要求将各组分混合,然后放入模板内,使得底板1最终的厚度达到15-20mm,趁底板1的混凝土未凝固时,将预制钢筋桁架2放置并振实,此时钢筋桁架2下端的钢筋进入混凝土中,并被振实,等混凝土凝固后,底板1与钢筋桁架2则成为一体式结构。待混凝土凝固后,喷涂养护剂进入托架进行养护。
(3)成品板脱模切割
养护完成后得到的成品板脱模并按照建筑施工规格进行切割。
上述脱模剂由如下重量份数物质组成:聚醋酸乙烯高分子乳液7份,乳化石蜡90份,分散润湿剂0.2份。
脱模剂养护剂由如下重量份数物质组成:羟乙基纤维素8份,羧甲基纤维素90份;脱模剂使用时,兑水溶解,每1000kg水对应脱模剂用量1.5kg。
脱模剂和养护剂的喷涂按照传统的建筑墙板施工方式进行,本实施例和下述实施例 只对脱模剂和养护剂的具体成分进行了改变,使得脱模和后期养护效果更好,对于脱模剂和养护剂的使用方式未作出改变。
实施例3
本实施例提供现浇楼板钢筋桁架底模一体式生产工艺。本实施例中,底板1采用C40混凝土,强度40兆帕。具体成分如下:水168kg,425水泥430kg,中细砂560kg,粒径小于5mm石子:1250kg,添加剂为水泥用量0.9%。
现浇楼板钢筋桁架底模一体式生产工艺,具体步骤为,
(1)钢筋桁架制作:按照现场施工要求和图纸,将预先设计好的钢筋桁架2中的各根钢筋焊接固定,制得钢筋桁架。这部分操作是在工厂内利用自动化生产线完成的,是将上层和下层钢筋以及中间的腹杆钢筋6采用点焊的方式进行焊接,并在钢筋桁架2底部预留与底板结合的下旋钢筋5。
(2)制板工艺
步骤为:模板放置→喷脱模剂→混凝土配制混好下料→钢筋桁架放置并振实→喷涂养护剂→进入托架养护。
具体来讲模板上喷涂脱模剂后,按照底板1中各物料的比例要求将各组分混合,然后放入模板内,使得底板1最终的厚度达到15-20mm,趁底板的混凝土未凝固时,将预制钢筋桁架2放置并振实,此时钢筋桁架2下端的钢筋进入混凝土中,并被振实,等混凝土凝固后,底板1与钢筋桁架2则成为一体式结构。待混凝土凝固后,喷涂养护剂进入托架进行养护。
(3)成品板脱模切割
养护完成后得到的成品板脱模并按照建筑施工规格进行切割。
上述脱模剂由如下重量份数物质组成:聚醋酸乙烯高分子乳液6份,乳化石蜡92份,分散润湿剂0.5份。
脱模剂养护剂由如下重量份数物质组成:羟乙基纤维素6.5份,羧甲基纤维素93份;脱模剂使用时,兑水溶解,每1000kg水对应脱模剂用量1.7kg。
对实施例2和实施例3中制备得到的免拆底模钢筋桁架楼承板进行相关检测,依据标准为GB 50204-2015、GB/T7019-2014、GB/T14402-2007/ISO 1716:2002、JGJ145-2013、JG/T368-2012、GB/T5464-2010/ISO 1182:2002、GB8624-2006。是否合格的判断依据为Q/HJJC005-2020《免拆除底模钢筋桁架楼承板》。
1.免拆底模(底板)检测。
检验项目主要包括表观密度、吸水率、湿涨率、不透水性、抗冻性、浸泡-干燥性能、不燃性。
其中,表观密度和吸水率采用的样品尺寸为80×80×20,湿涨率检测样品尺寸为260×260×20,不透水性采用的样品尺寸为700×700×20,抗冻性实验采用的样品尺寸为250×250×20,浸泡-干燥性能采用的样品尺寸为250×250×20,不燃性采用的样品尺寸为500×500×20(单位均为mm)。表观密度、吸水率、湿涨率、不透水性、抗冻性、不燃性检测分别取实施例2和实施例3得到的免拆底模钢筋桁架楼承板各一块,浸泡-干燥性能检测别取实施例2和实施例3得到的免拆底模钢筋桁架楼承板各十块,检测结果如下。
表1免拆底模物理性能检测结果
Figure PCTCN2022100299-appb-000001
2.钢筋桁架检测
检测项目:电阻点焊抗剪性,钢筋桁架高度90mm,实施例2和实施例3中的上旋钢筋直径为10mm,下旋钢筋直径为8mm,腹杆钢筋直径为5mm,支座竖筋和支座横筋的直径均为 10mm。
通过检测,实施例2和实施例3中的各焊点均远高于抗剪承载力标准要求,且各焊点检测的高于抗剪承载力超出标准要求30%后,各焊点均未开焊。
3.免拆底模钢筋桁架楼承板检测
对免拆底模钢筋桁架楼承板进行单节点连接抗拉承载力以及外观质量、尺寸偏差检测,结果如表2所示。
表2免拆底模钢筋桁架楼承板检测
Figure PCTCN2022100299-appb-000002
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (6)

  1. 一种现浇楼板钢筋桁架底模一体式结构,包括底板和钢筋桁架,其特征在于,所述底板厚度为15-20mm,所述钢筋桁架为多根钢筋焊接成的钢筋笼结构,钢筋笼结构由多排钢筋笼单体排布而成,钢筋笼单体之间垂直焊接有加劲钢筋,钢筋笼单体包括上部的上旋钢筋、下部的下旋钢筋,所述上旋钢筋与下旋钢筋之间焊接有腹杆钢筋,所述腹杆钢筋下部延伸至底板内部;底板为混凝土混合材料,混凝土未凝固时,钢筋笼置于底板上部使得腹杆钢筋下部伸入混凝土中并振实,使得腹杆钢筋下部延伸至底板内部。
  2. 根据权利要求1所述现浇楼板钢筋桁架底模一体式结构,其特征在于,所述底板按照每立方米记,由如下成分构成:
    水188-191kg,325水泥400-405kg,中细砂540-545kg,粒径3-5mm石子:1260-1265kg,添加剂≤水泥用量2%;或
    水173-176kg,325水泥458-463kg,中细砂510-515kg,粒径3-5mm石子:1248-1255kg,添加剂≤水泥用量2%;或
    水163-168kg,425水泥430-433kg,中细砂550-560kg,粒径小于5mm石子:1240-1250kg,添加剂≤水泥用量2%;或
    水190-195kg,525水泥485-490kg,中细砂560-565kg,粒径小于5mm石子:1195-1205kg,添加剂≤水泥用量2%。
  3. 根据权利要求2所述现浇楼板钢筋桁架底模一体式结构,其特征在于,所述添加剂由如下重量份数物质构成:亚硝酸钙40-50份,素磺酸甲醛缩合物8-10份,木质素磺酸钠20-25份,甲酸钙15-20份。
  4. 现浇楼板钢筋桁架底模一体式生产工艺,其特征在于,模板上喷涂脱模剂后,按照权利要求2所述比例混合各组分并放入模板内,厚度达到15-20mm后将预制钢筋桁架放置并振实,然后喷涂养护剂进行养护,养护完成后得到的成品板脱模并按照建筑施工规格进行切割。
  5. 根据权利要求4所述现浇楼板钢筋桁架底模一体式生产工艺,其特征在于,所述脱模剂由如下重量份数物质组成:聚醋酸乙烯高分子乳液5-7份,乳化石蜡90-95份,分散润湿剂0.2-0.7份。
  6. 根据权利要求4所述现浇楼板钢筋桁架底模一体式生产工艺,其特征在于,所述脱模剂养护剂由如下重量份数物质组成:羟乙基纤维素5-8份,羧甲基纤维素90-95份;脱模剂使用时,兑水溶解,每1000kg水对应脱模剂用量0.8-2.0kg。
PCT/CN2022/100299 2022-06-21 2022-06-22 现浇楼板钢筋桁架底模一体式结构及生产工艺 WO2023245468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210702214.8 2022-06-21
CN202210702214 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023245468A1 true WO2023245468A1 (zh) 2023-12-28

Family

ID=89378775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100299 WO2023245468A1 (zh) 2022-06-21 2022-06-22 现浇楼板钢筋桁架底模一体式结构及生产工艺

Country Status (1)

Country Link
WO (1) WO2023245468A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344327A (ja) * 1992-12-25 1994-12-20 Takenaka Komuten Co Ltd 断熱材打込みハーフpc版とその製造方法
JPH08333835A (ja) * 1995-06-09 1996-12-17 Sekisui Plastics Co Ltd 異径鋼材をトラス筋に持つコンクリートスラブ用基板
CN2698878Y (zh) * 2004-04-16 2005-05-11 浙江杭萧钢构股份有限公司 桁架式叠合板
KR20090040040A (ko) * 2007-10-19 2009-04-23 (주)지아이에프 트러스 하프 프리캐스트 프리스트레스트 콘크리트 패널의제작 방식
CN105220805A (zh) * 2015-10-14 2016-01-06 山东隆和节能科技股份有限公司 钢筋桁架及预埋钢筋桁架的叠合板底板
CN213115148U (zh) * 2020-07-13 2021-05-04 杭州中联筑境建筑设计有限公司 一种轻质叠合板
CN113605588A (zh) * 2021-09-02 2021-11-05 浙江汉德邦建材有限公司 一种免拆底模的钢筋桁架楼承板及制作方法
CN114059699A (zh) * 2020-08-08 2022-02-18 浙江模卡新材料股份有限公司 集成桁架钢筋及预应力钢丝网的预制混凝土底板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344327A (ja) * 1992-12-25 1994-12-20 Takenaka Komuten Co Ltd 断熱材打込みハーフpc版とその製造方法
JPH08333835A (ja) * 1995-06-09 1996-12-17 Sekisui Plastics Co Ltd 異径鋼材をトラス筋に持つコンクリートスラブ用基板
CN2698878Y (zh) * 2004-04-16 2005-05-11 浙江杭萧钢构股份有限公司 桁架式叠合板
KR20090040040A (ko) * 2007-10-19 2009-04-23 (주)지아이에프 트러스 하프 프리캐스트 프리스트레스트 콘크리트 패널의제작 방식
CN105220805A (zh) * 2015-10-14 2016-01-06 山东隆和节能科技股份有限公司 钢筋桁架及预埋钢筋桁架的叠合板底板
CN213115148U (zh) * 2020-07-13 2021-05-04 杭州中联筑境建筑设计有限公司 一种轻质叠合板
CN114059699A (zh) * 2020-08-08 2022-02-18 浙江模卡新材料股份有限公司 集成桁架钢筋及预应力钢丝网的预制混凝土底板
CN113605588A (zh) * 2021-09-02 2021-11-05 浙江汉德邦建材有限公司 一种免拆底模的钢筋桁架楼承板及制作方法

Similar Documents

Publication Publication Date Title
CN101319525B (zh) 钢筋砼外浇内置保温隔热墙体结构节能体系及其施工方法
CN107327137A (zh) 一种stp保温一体化免拆模板及其施工工艺
CN101967851A (zh) 一种板混结构装配式住宅及其建造方法
CN102155070B (zh) 一种轻质保温防火复合板及其生产方法
CN106522440A (zh) 基于聚苯颗粒纤维混凝土夹芯保温的叠合楼板及施工方法
CN110590301B (zh) 一种自保温节能墙板用泡沫混凝土组合物、自保温节能墙板用泡沫混凝土及自保温节能墙板
CN104947846B (zh) 一种装配整体式框架填充轻质内墙板及其制备方法
CN108894432A (zh) 一种超高性能钢纤维混凝土管约束再生块体混凝土柱
CN107313531A (zh) 一种装配整体式剪力墙连接节点及其体系及其施工工艺
CN104831862A (zh) 纤维增强混凝土复合保温永久性模板
CN204781524U (zh) 一种硫氧镁钢筋桁架板
CN110295706A (zh) 一种装配式轻质复合保温外墙板及其制作工艺
WO2023245468A1 (zh) 现浇楼板钢筋桁架底模一体式结构及生产工艺
CN103286854B (zh) 一种蒸压加气混凝土超宽悬挑板的制造及搭接施工方法
CN115288348B (zh) 一种钢筋桁架底模及其制备方法
CN207194226U (zh) 一种装配整体式剪力墙连接节点
CN102322022B (zh) 一种斜拉桥装饰罩混凝土施工方法
CN108824810A (zh) 一种钢骨架复合建筑物顶板的铺设施工工艺
CN207377115U (zh) 一种stp保温一体化免拆模板
CN108018986A (zh) 一种结构与节能一体化半装配式预制外墙板及其施工方法
CN114274306A (zh) 一种预制钢结构外墙挂板生产工艺
CN109667380B (zh) 一种用于建筑填充墙的预制泡沫混凝土复合墙板
CN208562169U (zh) 一种混凝土挂板
CN208262279U (zh) 一种钢丝网焊接装置
CN206829428U (zh) 一种轻钢轻质混凝土免拆模墙体结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947247

Country of ref document: EP

Kind code of ref document: A1