WO2023244044A1 - 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도 - Google Patents

변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도 Download PDF

Info

Publication number
WO2023244044A1
WO2023244044A1 PCT/KR2023/008308 KR2023008308W WO2023244044A1 WO 2023244044 A1 WO2023244044 A1 WO 2023244044A1 KR 2023008308 W KR2023008308 W KR 2023008308W WO 2023244044 A1 WO2023244044 A1 WO 2023244044A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronavirus
protein
spike
antigen protein
amino acid
Prior art date
Application number
PCT/KR2023/008308
Other languages
English (en)
French (fr)
Inventor
오종원
서한영
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority claimed from KR1020230076843A external-priority patent/KR20230173042A/ko
Publication of WO2023244044A1 publication Critical patent/WO2023244044A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • SARS-CoV-2 SARS-CoV-2
  • COVID-19 It is the causative agent of respiratory disease.
  • SARS coronavirus 2 is a virus with a single-stranded, positive RNA gene with an outer membrane. This gene produces one long polyprotein encoded by ORF1a/b, 9 structural proteins, and 5 accessory proteins. One polyprotein is translated and then produces 16 non-structural proteins by viral and host prosease. The five accessory proteins have the function of suppressing the host's immune response or helping the virus replicate and assemble, and the four structural proteins that form the structure of the virus are the spike (S), envelope, and membrane. ) and capsid (nucleocapsid) proteins.
  • the spike protein is a glycoprotein composed of over 1,200 amino acids and is an important factor for the virus to enter host cells.
  • the S protein is composed of an S1 domain and an S2 domain, and cleavage into the S1 and S2 domains is carried out by the furin protease present in the Golgi, with the uncut full-length S and the truncated S1 S2 can be loaded onto the surface of virus particles in an unreleased state or can move to the cell membrane.
  • the S1 domain of the uncleaved S protein or the S1 domain that is still attached to the S2 after cleavage plays an essential role in allowing the SARS coronavirus to enter cells through the ACE2 receptor.
  • the S2 domain After binding to the receptor, the S2 domain can be cleaved near the S2' position (arginine residue 815) by host proteolytic enzymes such as TMPRSS2 or cathepsin within the cell membrane or endosome, and the fusion peptide exposed during this process undergoes membrane fusion. leads to .
  • host proteolytic enzymes such as TMPRSS2 or cathepsin within the cell membrane or endosome
  • a representative design of the spike protein antigen for the coronavirus vaccine currently used is to replace the 986th amino acid, lysine, and the 987th amino acid, valine, present in the S2 domain, with proline amino acids, respectively, so that the spike protein is in a prefusion conformation.
  • the furin cleavage site of the spike protein is maintained, so there is a possibility that the S1 subunit is separated from the S2 domain of the spike protein, and the free S1 domain can induce an inflammatory response, which may be a problem in terms of vaccine safety. You can.
  • the immunogenicity of the pre-fusion modified spike protein with an altered structure may be different from that of the wild-type spike protein. Therefore, designing a spike antigen that can maintain immunogenicity through minimal modification that maintains the receptor recognition function of the spike protein is a very important technical element in the development of a safe and improved vaccine.
  • the present inventors improved safety by modifying both protein cleavage sites in the spike protein to block cleavage by intracellular and membrane surface or extracellular proteolytic enzymes. and developed a coronavirus spike antigen protein that can produce high titers of binding and neutralizing antibodies.
  • One aspect is to provide a coronavirus spike antigen protein in which the host protease cleavage site of the coronavirus spike protein has been modified.
  • Another aspect is to provide a recombinant vector for expressing a coronavirus antigen protein containing a gene encoding the spike antigen protein of the coronavirus.
  • Another aspect is to provide a transformant transformed with the recombinant vector.
  • Another aspect is to provide a vaccine composition against a coronavirus comprising the spike antigen protein of the coronavirus or a gene encoding the same.
  • Another aspect is to provide a pharmaceutical composition for preventing or treating coronavirus infection containing the spike antigen protein of the coronavirus.
  • Another aspect is to provide a composition for diagnosing coronavirus infection containing the spike antigen protein of the coronavirus.
  • Another aspect is to provide a coronavirus infection diagnostic kit containing the composition.
  • Another aspect is to provide a method of introducing a coronavirus antigen gene, comprising: transforming a subject with a gene encoding the spike antigen protein of the coronavirus.
  • Another aspect is to provide a method for preventing or treating coronavirus infection, comprising administering the spike antigen protein of the coronavirus to an individual in need thereof.
  • Another aspect provides the use of the spike antigen protein of the coronavirus for the manufacture of a medicament for the prevention or treatment of coronavirus infection.
  • One aspect provides a coronavirus spike antigen protein in which the host protease cleavage site of the coronavirus spike protein has been modified.
  • coronavirus refers to a single-stranded positive RNA virus belonging to the Coronaviridae family and having a spherical outer membrane and measuring about 100 mm to 220 nm.
  • spike protein refers to a protruding structure arranged on the surface of a virus, with a length of 10 nm to 15 nm, and plays a role in infiltrating our body by binding to a protein receptor on the cell membrane.
  • host proteolytic enzyme refers to a proteolytic enzyme of a host infected with a coronavirus.
  • the cleavage site is any selected from the cleavage site of the purine protease in the S1 and S2 domain sequences of the spike protein of coronavirus and the cleavage site of the protease in the S2' sequence. There may be more than one.
  • furine proteolytic enzyme refers to an enzyme that hydrolyzes peptide bonds between amino acids constituting proteins.
  • the proteolytic enzyme acting on the cleavage site of the proteolytic enzyme in the S2' sequence may act without limitation as long as it is a host proteolytic enzyme.
  • the coronavirus is SARS-CoV (severe acute respiratory syndrome coronavirus), SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), and MERS coronavirus (MERS).
  • SARS-CoV severe acute respiratory syndrome coronavirus
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • MERS coronavirus MERS coronavirus
  • -CoV It may be one or more selected from the group consisting of Middle East respiratory syndrome coronavirus), human coronavirus (HCoV-229E: human coronavirus 229E), and variants thereof.
  • the coronavirus may be one or more selected from the group consisting of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and variants thereof.
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • SARS-CoV severe acute respiratory syndrome coronavirus
  • SARS severe acute respiratory syndrome coronavirus
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • coronavirus 2 severe acute respiratory syndrome coronavirus 2
  • coronavirus infection-19 which is a genetically transmitted zoonotic infection and is contagious between humans.
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • human coronavirus refers to a species of coronavirus that infects humans and bats, is an enveloped, positive single-stranded RNA virus, and is one of the viruses that cause the common cold.
  • variant means that the genome has been modified compared to the representative species of the virus, and the coronavirus variant is 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% similar to the coronavirus. %, 98% or 99% genomic or amino acid homology.
  • the variants of SARS coronavirus 2 may be variants of concern, specifically alpha, beta, gamma, delta, and omicron. ) It may be one or more selected from the group consisting of mutant strains and their sub-mutants.
  • the coronavirus is Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and the cleavage site of the purine protease is the 685th amino acid of the spike protein,
  • the cleavage site of the protease within the S2' sequence may be the 815th amino acid of the spike protein. Additionally, the amino acid position may be based on the Wuhan-Hu-1 representative sequence.
  • the 685th amino acid of the cleavage site of the purine protease is glycine, alanine, valine, leucine, isoleucine, threonine, Serine, Cysteine, Methionine, Aspartic acid, Asparagine, Glutamic acid, Glutamine, Lysine, Histidine, Phenylalanine ( It may be substituted with one or more amino acids selected from the group consisting of Phenylalanine, Tyrosine, Tryptophan, and Proline.
  • amino acid 685 of the cleavage site of the purine protease is substituted with one or more amino acids selected from the group consisting of Serine, Histidine, Proline, and Valine. You can.
  • the spike may be a modified spike protein antigen substituted with serine, which has a higher ACE2 receptor recognition ability than the wild type.
  • the cleavage site of the proteolytic enzyme in the S2' sequence is amino acid 815 of the spike protein, which includes Glycine, Alanine, Valine, Leucine, and Isoleucine. , Threonine, Serine, Cysteine, Methionine, Aspartic acid, Asparagine, Glutamic acid, Glutamine, Phenylalanine, Tyrosine It may be substituted with one or more amino acids selected from the group consisting of Tyrosine, Tryptophan, and Proline.
  • the cleavage site of the proteolytic enzyme in the S2' sequence is amino acid 815 of the spike protein selected from the group consisting of Valine, Methionine, Proline, and Alanine. It may be substituted with the above amino acid.
  • the spike antigen protein of the modified coronavirus may exhibit increased affinity for angiotensin-converting enzyme 2 (ACE2).
  • ACE2 angiotensin-converting enzyme 2
  • ACE2 angiotensin-converting enzyme 2
  • the modified coronavirus spike antigen protein can increase the receptor binding site in the spike trimer.
  • the modified coronavirus spike antigen protein is capable of forming a vaccine antigen structure.
  • the modified coronavirus spike antigen protein can produce spike-binding antibodies and neutralizing antibodies that can protect against coronavirus infection through the vaccine antigen structure, and induce T cell immune activity.
  • the spike antigen protein of the modified coronavirus may inhibit the production of a free S1 domain.
  • the free S1 domain may induce an inflammatory response by stimulating TLR4 (Toll-like receptor 4).
  • TLR4 Toll-like receptor 4
  • the spike antigen protein of the modified coronavirus may inhibit cell membrane fusion.
  • cell membrane fusion is a very important core function for a virus to invade a host cell through a lipid bilayer, and means that the membrane is combined in one state.
  • the spike antigen protein of the modified coronavirus may inhibit the entry of the virus into cells or the intracellular transfer of viral genes.
  • intracellular entry means that the virus enters the cell.
  • intracellular delivery refers to the process by which viral genes are delivered to the cytoplasm through the cell membrane or endosomal lipid bilayer through cell membrane fusion when a modified spike protein is present on the surface of a virus particle or natural or artificial membrane structure.
  • the 685th amino acid, which is the S1/S2 cleavage site, and the 815th amino acid residue, which is the S2' cleavage site, of the spike protein of SARS coronavirus 2 and its variants were replaced with serine and alanine, respectively, and the ability to induce cell membrane fusion was confirmed. It was confirmed that cell fusion was significantly inhibited and multinucleated giant cells were not generated (see Example 8).
  • Another aspect provides a recombinant vector for expressing a coronavirus antigen protein, including a gene encoding the spike antigen protein of the coronavirus.
  • coronavirus “spike antigen protein”, etc. may be within the above-mentioned range.
  • vector refers to any vehicle for cloning and/or transfer of a base into a host cell.
  • the vector may be a replication unit (replicon) that can bind other DNA fragments and result in replication of the combined fragment. Additionally, the vector may include viral and non-viral mediators for introducing bases into host cells in vitro, ex vivo, or in vivo.
  • replication unit refers to any genetic unit (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as a self-unit of DNA replication in vivo, that is, is capable of replicating under its own control. means.
  • the vector is not particularly limited as long as it can replicate within the host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors
  • pBR, pUC, and pBluescriptII series can be used as plasmid vectors.
  • pGEM-based pTZ-based, pCL-based, pET-based, etc.
  • pDZ pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, pSKH, pRS-413, pRS-414, pRS-415, pDSK519, pDSK, pDART vectors can be used, but are not limited to these. No.
  • the vector that can be used is not particularly limited, and known expression vectors can be used, and a polynucleotide encoding the target protein can be inserted into the chromosome through a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome may be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker may be additionally included to confirm whether the chromosome has been inserted.
  • a selection marker is used to select cells transformed with a vector, that is, to confirm the insertion of a target nucleic acid molecule, and to impart selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface proteins. Markers that do so may be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or show other expression traits, so transformed cells can be selected.
  • Another aspect provides a transformant transformed with the recombinant vector.
  • the “recombinant vector”, etc. may be within the range described above.
  • transformation refers to a change in the genetic properties of an organism by DNA given from outside, that is, when DNA, a type of nucleic acid extracted from a cell of a certain lineage of an organism, is given to a living cell of another lineage, the DNA changes to that cell. It refers to a phenomenon in which genetic traits change.
  • the transformation method includes any method of introducing a nucleic acid into a cell, and can be performed by selecting an appropriate standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, EAE-dextran method, cationic liposome method, and Examples include, but are not limited to, the lithium acetate-DMSO method.
  • transgenic plant or transgenic animal produced through transformation
  • the transformant is a genetic recombinant produced by causing modification or mutation of a specific gene using genetic recombination technology. may include.
  • the transformant can be appropriately selected and used by a person skilled in the art without limitation as long as it is a cell that can be used for transformation known in the art.
  • Another aspect provides a vaccine composition against a coronavirus comprising a spike antigen protein of the coronavirus or a gene encoding the same.
  • coronavirus spike antigen protein
  • Coding genes and the like may be within the scope described above.
  • the vaccine composition may increase the ability to produce neutralizing antibodies.
  • neutralizing antibody refers to an antibody that protects cells from infection by binding to pathogens or infectious particles and inhibiting the process of viruses penetrating into host cells through receptors.
  • the neutralizing antibody is part of the adaptive immune system's immune response to viruses, intracellular bacteria, and microbial toxins.
  • Neutralizing antibodies are produced in a specialized form on the surface structure of infectious particles and bind to them, preventing the infectious antigen from interacting with host cells. Achieve immunity by preventing In general, when a vaccine is administered, binding antibodies and neutralizing antibodies to general target antigens are generated in the body, and general binding antibodies have the function of recognizing infected cells and allowing immune cells to remove cells marked with antibodies.
  • neutralizing antibodies bind to specific toxin antigens to reduce pathogenicity or bind to virus particles to cause an antigen-specific immune response that blocks entry into cells.
  • the term “vaccine composition” refers to a biological agent containing an antigenic substance that provides immunity to a living body, and an immunogen that is injected or injected into a living organism to prevent infection.
  • the vaccine composition provides an individual with an enhanced systemic or local immune response triggered by a cellular immune response, such as a cytotoxic T lymphocyte (CTL) or a humoral immune response, such as an antibody, wherein the individual is exposed to coronavirus.
  • CTL cytotoxic T lymphocyte
  • a humoral immune response such as an antibody
  • the vaccine composition may additionally include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier means an amount sufficient to achieve prevention, alleviation, or therapeutic efficacy against diseases or pathological symptoms caused by viruses.
  • Pharmaceutically acceptable carriers that can be included in the vaccine composition are those commonly used in preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate. , microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. no.
  • the vaccine composition can be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, etc., and sterile injectable solutions according to conventional methods.
  • oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, etc., and sterile injectable solutions according to conventional methods.
  • it can be prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc. These solid preparations contain the lecithin-like emulsifier and at least one or more excipients, such as starch, calcium carbonate, and sucrose.
  • Liquid preparations for oral administration include suspensions, oral solutions, emulsions, and syrups.
  • simple diluents such as water and liquid paraffin
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives can be used. may be included.
  • Preparations for parenteral administration include sterilized aqueous solutions, non-aqueous preparations, suspensions, emulsions, and freeze-dried preparations.
  • Non-aqueous preparations and suspensions may include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate.
  • the administration form of the vaccine composition may be in the form of an enteric-coated unit, inoculation for intraperitoneal, intramuscular or subcutaneous administration, aerosol spray, or oral or intranasal use.
  • the vaccine composition can be administered in the usual manner via oral, rectal, topical, intravenous, intraperitoneal, intramuscular, intraarterial, transdermal, intranasal, inhalation, intraocular or intradermal routes.
  • the vaccine composition can be administered parenterally.
  • Parenteral administration refers to modes of administration including intravenous, intramuscular, intraperitoneal, intrasternal, transdermal and intraarterial injection and infusion.
  • parenteral administration of the vaccine it must be prepared in a unit dose formulation by mixing non-toxic to the recipient and compatible with other preparation components at a pharmaceutically acceptable concentration and dosage with desired purity.
  • the vaccine composition can be administered in a pharmaceutically effective amount to a subject in need.
  • the appropriate dosage of the vaccine composition will be determined in various ways by factors such as formulation method, administration method, subject's age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate, and reaction sensitivity. You can.
  • an mRNA expressing SARS coronavirus 2 delta mutant strain (B.1.617.2) wild spike and a modified spike antigen protein in which the S1/S2 cleavage site amino acids and S2′ cleavage site amino acid residues thereof are replaced with serine and alanine, respectively.
  • LNP lipid nanoparticles
  • the mRNA vaccine expresses a modified spike protein in which the S1/S2 cleavage site amino acids and S2' cleavage site amino acid residues of the spike protein of SARS coronavirus 2 variants (Omicron BA.1 and BA.5) are replaced with serine and alanine, respectively.
  • the reciprocal serum endpoint titer value which is the serum dilution factor showing the level of full-length spike-recognizing binding antibodies, reaches the level of 10 6 ⁇ 10 7 (conducted) see example 9).
  • a modified spike protein was produced in which the S1/S2 cleavage site amino acids and S2′ cleavage site amino acid residues of the spike protein of a SARS coronavirus 2 variant (Omicron sub-mutant strain XBB.1.5) were substituted with serine and methionine, respectively.
  • the immune response was so high that the reciprocal serum endpoint titer, which is the serum dilution factor showing the level of binding antibodies that recognize the full-length spike and receptor binding site (RBD), all reached a level of 10 7 or higher. It was confirmed that can be induced.
  • the reciprocal serum endpoint titer which is the serum dilution factor showing the level of binding antibodies that recognize the full-length spike and receptor binding site (RBD)
  • Another aspect provides a pharmaceutical composition for preventing or treating coronavirus infection, including the spike antigen protein of the coronavirus.
  • coronavirus spike antigen protein
  • coronavirus infection etc. may fall within the above-mentioned range.
  • prevention refers to all actions that inhibit coronavirus infection in an individual or delay the onset of coronavirus infection by administering the pharmaceutical composition.
  • treatment refers to any action that improves or beneficially changes the symptoms of an individual's coronavirus infection by administering the pharmaceutical composition.
  • administration means introducing a substance into a subject in an appropriate manner.
  • the pharmaceutical composition may contain the active ingredient alone, or may be provided as a pharmaceutical composition including one or more pharmaceutically acceptable carriers, excipients, or diluents.
  • composition exhibits non-toxic properties to cells or humans exposed to the composition.
  • the carrier may be, for example, a colloidal suspension, powder, saline solution, lipid, liposome, microsphere, or nano-spherical particle. They may form complexes or associate with delivery vehicles and may be used in the art as lipids, liposomes, microparticles, gold, nanoparticles, polymers, condensation agents, polysaccharides, polyamino acids, dendrimers, saponins, adsorption enhancers or fatty acids. It can be transported in vivo using known delivery systems.
  • the pharmaceutical composition When the pharmaceutical composition is formulated, it may be prepared using commonly used diluents or excipients such as lubricants, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, fillers, extenders, binders, wetting agents, disintegrants, and surfactants. You can. Preparations for parenteral administration may include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories. Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate.
  • lubricants such as lubricants, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, fillers, extenders, binders, wetting agents, disintegrants, and surfactants. You can. Preparations for parenteral administration
  • suppositories As a base for suppositories, witepsol, macrogol, Tween 61, cacao, laurin, glycerogeratin, etc. can be used, and when manufacturing in the form of eye drops, known diluents or excipients can be used. there is.
  • liposomes, lipid nanoparticles, microneedle or extracellular vesicles derived from animal/microorganism/plant cells can be used to maintain the safety of the mRNA and deliver it to the cytoplasm. ), etc. can be used as a carrier. Alternatively, it can be delivered by physical methods such as electroporation.
  • the pharmaceutical composition is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity of the patient's disease, the activity of the drug, and the drug's effect. It can be determined based on factors including sensitivity, time of administration, route of administration and excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the medical field.
  • the pharmaceutical composition may be administered once a day or may be administered several times. For example, it may be administered every other day, or it may be administered once a week. Specifically, the pharmaceutical composition may be administered at 0.001 to 1000 mg/kg/day, more specifically at 0.1 to 100 mg/kg/day. The administration may be administered once a day, or may be administered several times.
  • Another aspect provides a composition for diagnosing coronavirus infection comprising the spike antigen protein of the coronavirus.
  • coronavirus “spike antigen protein”, etc. may be within the above-mentioned range.
  • coronavirus infection refers to a severe respiratory syndrome caused by a coronavirus.
  • the coronavirus refers to SARS-CoV-1 (Severe Acute Respiratory Syndrome Coronavirus1), SARS-CoV-2 (SARS-CoV) -2: Severe Acute Respiratory Syndrome Coronavirus2), human coronavirus (HCoV-229E: human coronavirus 229E), and their variants.
  • the term "variant" refers to a modified genome compared to the representative species of the virus, and in one aspect, the coronavirus variant is 90%, 91%, 92%, 93%, 94%, 95% similar to the coronavirus. , may have 96%, 97%, 98% or 99% genomic or amino acid homology.
  • the variants of SARS coronavirus 2 may be variants of concern, specifically alpha, beta, gamma, delta, and omicron. ) It may be one or more selected from the group consisting of mutant strains.
  • diagnosis in a broad sense means judging the actual condition of a patient's disease in all aspects.
  • the contents of the judgment include the name of the disease, etiology, type, severity, detailed conditions of the disease, and the presence or absence of complications.
  • Another aspect provides a coronavirus infection diagnostic kit comprising the composition.
  • composition “composition”, “coronavirus infection”, “diagnosis”, etc. may be within the above-mentioned scope.
  • Another aspect provides a method of introducing a coronavirus antigen gene, including the step of transforming a subject with a gene encoding the spike antigen protein of the coronavirus.
  • coronavirus As used hereinavirus, “spike antigen protein”, “transformation”, etc. may be within the above-mentioned scope.
  • the introduction method may be applied by appropriately modifying a method known in the art by a person skilled in the art.
  • Another aspect provides a method for preventing or treating coronavirus infection, comprising administering the spike antigen protein of the coronavirus to an individual in need thereof.
  • coronavirus spike antigen protein
  • individuals individuals
  • the method may be administered in parallel with a known composition or other pharmaceutical composition that has the effect of preventing or treating coronavirus infection, may be administered simultaneously, separately, or sequentially, and may be administered single or multiple times. there is. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
  • Another aspect provides the use of the spike antigen protein of a coronavirus for the manufacture of a medicament for the prevention or treatment of coronavirus infection.
  • coronavirus infectious disease
  • prevention prevention
  • treatment treatment
  • spike antigen protein etc. may be within the above-mentioned range.
  • the spike antigen protein of the coronavirus suppresses the cell membrane fusion ability and improves safety by modifying both protein cleavage sites present in the spike protein of the coronavirus.
  • viral proliferation can be suppressed by inducing the production of a large amount of neutralizing antibodies and interfering with the entry of the coronavirus into cells, preventing coronavirus infection, alleviating and treating symptoms, and preventing infection. It can be used in a variety of related industries/markets, including diagnosis.
  • Figure 1a shows two SARS coronavirus 2 isolates, NCCP43326 and NCCP43331, distributed from the National Pathogen Resource Bank of the Korea Disease Control and Prevention Agency, subcultured twice in Vero E6 cell line, and 48 hours after infection, cell lysates were prepared and subjected to SDD-PAGE and immunoblotting.
  • This diagram shows the results of detecting the spike protein by immunoblotting (N is the capsid protein, a viral structural protein).
  • Figure 1b shows functional domains (NTD, N-terminal domain; RBD, receptor binding domain; S1/S2, S1-S2 furin cleavage site; S2′, S2 priming site; FP: fusion peptide; HR, heptad repeat; CH,
  • NTD N-terminal domain
  • RBD receptor binding domain
  • S2′ S2 priming site
  • FP fusion peptide
  • HR heptad repeat
  • CH This is a schematic diagram of the SARS coronavirus 2 spike protein labeled (central helix; CD: connector domain; TMD, transmembrane domain; CT, cytoplasmic tail).
  • the sequence listed above in the schematic diagram is the sequence confirmed by subculturing the SARS coronavirus 2 isolate NCCP43326 several times in Vero E6 and cloning the spike gene into plasmid DNA. It shows that there are mutations in which the 685th amino acid
  • Figure 1c is a diagram showing that the site S1/S2 recognized and cut by the furin protein cleavage enzyme and the site S2' recognized by the proteolytic enzyme during the priming process to expose the fusion peptide show amino acid sequence integrity in the spike proteins of several coronaviruses. am.
  • Figure 1d shows the results of confirming the sequence confirmed by cloning the spike gene into plasmid DNA after subculturing the SARS coronavirus 2 isolate NCCP43326 in Vero E6 several times in Figure 1b, which is the original amino acid sequence. It shows that sequences in which R685 is replaced with serine (R685S) or histidine (R685H) mainly exist.
  • Figure 2 shows the quantitative analysis of the gene copy number of the virus present in the medium over time after infecting the Vero E6 cell line with two SARS coronavirus 2 isolates, NCCP43326 and NCCP43331, distributed from the Korea Disease Control and Prevention Agency, at the same MOI (multiplicity of infection). This is a diagram showing one result (* is P ⁇ 0.05, ** is P ⁇ 0.01, ns is not statistically significant).
  • Figure 3a is a diagram showing the results of transfecting HEK293T cell lines with plasmid DNA encoding three different types of spike proteins, preparing cell lysates 48 hours later, and detecting spike proteins by SDD-PAGE and immunoblotting. .
  • Figure 3b is a diagram showing the results of analyzing the cleavage pattern of the spike protein in which arginic acid at the 685th amino acid (based on Wuhan-Hu-1 representative sequence) of the Omicron BA.1 mutant spike protein was substituted with the amino acid suggested.
  • arginic acid at the 685th amino acid based on Wuhan-Hu-1 representative sequence
  • the full-length S and the S2 domain that can be generated by cleaving from it were identified by immunoblotting using an antibody that recognizes the C terminus of the spike protein.
  • the detection results show that when R685, the original amino acid sequence, is replaced with not only serine (R685S) or histidine (R685H) but also 19 other amino acids, cleavage into the S1/S2 domain is blocked.
  • Figure 3c shows the transfection of plasmid DNA encoding three different types of spike proteins into the HEK293T cell line together with the retroviral vector packaging plasmid DNA, followed by preparing the pseudovirus secreted into the culture medium, followed by SDD-PAGE and immunoblotting. This diagram shows the results of protein detection.
  • Figure 3d shows the results of analyzing the cell entry efficiency of three different types of pseudoviruses equipped with different SARS coronavirus 2 spike proteins made using recombinant retroviral vectors (** indicates P ⁇ 0.01, * ** indicates P ⁇ 0.001; unpaired two-tailed Student t -test).
  • Figure 4a is a diagram showing the results of analyzing the degree to which a modified spike protein containing the suggested amino acid substitution reacts to a single antigen antibody targeting the receptor binding site by producing a pseudovirus.
  • Figure 4b is a diagram showing the neutralizing ability of a single neutralizing antibody expressed on a log 10 reduction scale when comparing the results from Figure 4a to the control non-specific antibody (** indicates P ⁇ 0.01).
  • Figure 5a shows the results of analyzing the entry efficiency of pseudoviruses carrying different SARS coronavirus 2 spike proteins (WT and R685S) into cell lines after gradually increasing expression of ACE2 protein, a receptor for SARS coronavirus 2, in HEK 293T. It is a degree that represents .
  • Figure 5b shows the cell entry efficiency of pseudoviruses carrying the modified SARS coronavirus 2 spike protein (containing the R685S substitution) of Figure 5a compared to the entry efficiency of pseudoviruses carrying the spike protein derived from the Wuhan-Hu-01 isolate. This figure shows the results (* indicates P ⁇ 0.05, *** indicates P ⁇ 0.001).
  • Figure 5c is a diagram showing the results of confirming the amount of ACE2 receptor protein expressed in the HEK293 cell line in Figure 5a by immunoblot.
  • Figure 6 shows the results of analyzing the cleavage pattern of the spike protein in which arginic acid at the 815th amino acid (based on Wuhan-Hu-1 representative sequence) of the BA.1 mutant spike protein was substituted with the amino acid suggested. Specifically, 48 hours after transfection of the vector expressing the corresponding spike protein into HEK293 cells, the full-length S and the S2 domain that can be produced by chopping it from it were identified by immunoblotting using an antibody that recognizes the C terminus of the spike protein.
  • Figure 7 is a diagram showing the results of analyzing the effect of amino acid substitutions introduced into each modified spike protein on cell entry by producing pseudoviruses carrying the described SARS coronavirus 2 spike proteins.
  • FIG. 8a shows the SARS coronavirus 2 Wuhan-Hu-01 spike or delta mutant (B.1.617.2) spike protein expression plasmid introduced by transfection into HEK293T cells expressing the ACE2 protein, a receptor for SARS coronavirus 2, and overexpressed.
  • This diagram shows the results of analyzing the cell membrane fusion ability of each spike protein.
  • FIG 8b is a schematic diagram of a cell fusion ability evaluation experiment using DSP (dual split protein), which can quantify the cell membrane fusion ability of the spike protein (CMV, cytomegalovirus promoter; nRLuc, N-terminal end of the split Renilla luciferase; GFP1 -7, N-terminal end of the split green fluorescence protein; GFP8-11, C-terminal end of the split green fluorescence protein; cRLuc, c-terminal end of the split Renilla luciferase).
  • CMV cytomegalovirus promoter
  • nRLuc N-terminal end of the split Renilla luciferase
  • GFP1 -7 N-terminal end of the split green fluorescence protein
  • GFP8-11 C-terminal end of the split green fluorescence protein
  • cRLuc c-terminal end of the split Renilla luciferase
  • Figures 8c and 8d are vaccine antigen candidates containing several mutations in the spike protein based on the Wuhan-Hu-01 and Omicron BA.5 (B.1.1.529.5) sequences, respectively, using cells expressing the spike protein.
  • This figure shows the results obtained by conducting the cell fusion ability evaluation experiment described in 8b (* is P ⁇ 0.01; ** is P ⁇ 0.05; **** is P ⁇ 0.0001; ns, not significant (unpaired two-tailed Student t -test)).
  • Figures 8e and 8f show plasmid DNA expressing the spike protein of candidate vaccine antigens containing several mutations indicated in the spike protein based on the Wuhan-Hu-01 and Omicron BA.5 (B.1.1.529.5) sequences, respectively.
  • This diagram shows the results of preparing a cell lysate 48 hours after transfection and detecting the spike protein by SDD-PAGE and immunoblotting.
  • Figure 8g is a vaccine antigen candidate containing several mutations indicated in the spike protein based on the Omicron BA.5 (B.1.1.529.5) sequence. Evaluation of cell fusion ability described in Figure 8b using cells expressing the spike protein. This diagram shows the results of analyzing cells in which fusion occurred after performing the experiment using a fluorescence microscope (BF, bright field; DAPI, 4′,6-diamidino-2-phenylindole; GFP, green fluorescence protein, DAPI is an intracellular nuclear used for dyeing).
  • BF bright field
  • DAPI 4′,6-diamidino-2-phenylindole
  • GFP green fluorescence protein
  • FIG. 9a shows the spike SARS coronavirus 2 delta mutant strain (B.1.617.2) in which the R685S and R815A amino acid substitutions (hereinafter referred to as SA) were introduced to block cell membrane fusion due to spike protein cleavage and spike protein expression.
  • SA R685S and R815A amino acid substitutions
  • the mRNA encoding the protein (Delta_SA) was formulated in LNP and injected intramuscularly into mice (BALB/c) (twice on D0 and D21 at 3-week intervals) to confirm the immunogenicity of the mutant spike protein and the mRNA.
  • BALB/c mice
  • mRNA was synthesized using pseudouridine, and the 5' end has a cap structure.
  • Figure 9b shows that in the animal experiment described in Figure 9a, the mRNA-LNP vaccine encoding the delta mutant strain (B.1.617.2) spike protein was injected intramuscularly twice at 3-week intervals, and 2 weeks after the second vaccination (5 Parking)
  • This diagram shows the results of analyzing the level of neutralizing antibodies in the serum using pseudovirus (ND 50 , neutralizing dilution 50 value, which is the reciprocal of the serum dilution factor showing 50% neutralizing efficacy).
  • Figure 9c shows that the mRNA encoding the SARS coronavirus 2 Omicron BA.1 (B.1.1.529) mutant spike protein (BA.1_SA), which blocks spike protein cleavage and cell membrane fusion, was formulated into LNPs in mice (BALB/ c)
  • BA.1_SA SARS coronavirus 2 Omicron BA.1
  • BALB/ c mice
  • mRNA was synthesized using pseudouridine, and the 5' end has a cap structure.
  • Figure 9d shows that in the animal experiment described in Figure 9c, the mRNA-LNP vaccine encoding the Omicron BA.1 (B.1.1.529) mutant spike protein was injected intramuscularly twice at 2-week intervals and 2 weeks after the second vaccination.
  • This diagram shows the results of analysis of BA.1 spike protein binding antibody levels in serum using the enzyme-linked immunosorbent assay (ELISA) method at the end (week 4).
  • the right panel shows the cut-off value of the absorbance value determined based on the enzyme-linked immunosorbent test results for each diluted serum of eight experimental mice in the vaccinated group, and the left panel corresponds to the cut-off value.
  • Figure 9e shows mRNA encoding the SARS coronavirus 2 omicron mutant strain BA.5 (B.1.1.529.5) modified spike antigen protein (BA.5_SA), which blocks spike protein cleavage and cell membrane fusion, in LNPs after formulation in mice
  • BA.5_SA modified spike antigen protein
  • This is a schematic diagram of the experimental schedule and mRNA to evaluate immunogenicity by intramuscular injection into BALB/c (twice on D0 and D14 at two-week intervals).
  • mRNA was synthesized using unmodified UTP or pseudouridine triphosphate (yUTP), a modified nucleic acid, and the 5' end has a cap structure.
  • Figure 9f is a diagram showing the results of analysis of BA.5 spike protein binding antibody levels in serum using an enzyme-linked immunosorbent assay method 2 weeks after the second vaccination (week 4) of the vaccine described in Figure 9e. Specifically, from the left, the full-length spike protein binding antibody total IgG reversal value, the receptor binding site (RBD) binding antibody total IgG reversal value, and the receptor binding site binding antibody IgG1 and IgG2a reversal value are shown.
  • RBD receptor binding site binding antibody total IgG reversal value
  • IgG1 and IgG2a reversal value are shown.
  • Figure 9g is a diagram showing the results of analysis of neutralizing antibody titers in serum using pseudovirus and live virus (BA.5 omicron mutant strain) 2 weeks after the vaccination described in Figure 9e (4th week) (ND 50 ) : neutralizing dilution 50, PNA: pseudovirus neutralization assay, PRNT: plaque reduction neutralization test. ND: not detected, ns: not significant (unpaired two-tailed Student t -test), dotted line is limit of detection (LOD, limit) of detection).
  • Figure 9h shows antigen-specific T cell immunogenicity analyzed using ELISpot (enzyme-linked immunospot) assay using spleen cells isolated from the spleen 2 weeks (week 4) after vaccination with the vaccine booster described in Figure 9e.
  • ELISpot enzyme-linked immunospot
  • SFU spot forming unit
  • ns not significant (unpaired two-tailed Student t -test)).
  • FIG 10a shows that mRNA encoding the SARS coronavirus 2 Omicron BA.5 (B.1.1.529.5) mutant spike protein (BA.5_SA), which blocks spike protein cleavage and cell membrane fusion, was formulated in LNP, as shown in Figure 9e.
  • BA.5_SA SARS coronavirus 2 Omicron BA.5 (B.1.1.529.5) mutant spike protein (BA.5_SA), which blocks spike protein cleavage and cell membrane fusion
  • FIG 10b shows that in the animal experiment described in Figure 10a, the mRNA-LNP vaccine encoding the Omicron BA.5 (B.1.1.529.5) mutant spike protein was injected intramuscularly twice at two-week intervals, and 2 times after the second vaccination.
  • This diagram shows the results of analysis of BA.5 receptor binding site (RBD) binding antibody levels in serum after one week (week 4) using enzyme-linked immunosorbent assay (ND: not detected, ns: not significant ( unpaired two-tailed Student t -test), the dotted line indicates the limit of detection (LOD).
  • RBD BA.5 receptor binding site
  • FIG 10c shows that in the animal experiment described in Figure 10a, the mRNA-LNP vaccine encoding the Omicron BA.5 (B.1.1.529.5) mutant spike protein was injected intramuscularly twice at two-week intervals, and the second vaccination was administered on day 19.
  • This diagram shows the results of a protective effect evaluation experiment in which the Omicron BA.5 (B.1.1.529.5) mutant virus (1 ⁇ 10 5 PFU) was infected through the nasal cavity (ND: not detected). , the dotted line represents the limit of detection (LOD).
  • FIG 10d is a diagram showing the detection of viral capsid protein through immunohistochemistry (IHC) of the lungs of mice harvested on the second day of infection in the animal experiment described in Figure 10a, and hematoxylin and eosin (H&E) staining.
  • IHC immunohistochemistry
  • H&E hematoxylin and eosin
  • This diagram shows the results (viral capsid protein detected in the IHC experiment is indicated by an arrow, and traces of alveolar damage in the H&E staining experiment are indicated by a circle).
  • the right panel shows the results of homogenizing the lungs of mice harvested on the second day of infection and analyzing the inflammatory cytokine IL-6 induced by infection using an enzyme-linked immunosorbent assay (the dotted line is the detection limit). (LOD, stands for limit of detection).
  • FIG 11 shows that in the animal experiment described in Figure 9e, the mRNA-LNP vaccine encoding the Omicron BA.5 (B.1.1.529.5) mutant spike protein was injected intramuscularly twice at 2-week intervals and 2 weeks after the second vaccination.
  • This diagram shows the results of analyzing neutralizing antibody titers in serum at the end (4th week) using various omicron sub-mutant pseudoviruses (ND 50 : neutralizing dilution 50).
  • ND 50 neutralizing dilution 50
  • the right panel is a table showing the values of ND 50 (*** is P ⁇ 0.001; **** is P ⁇ 0.0001; ns is not significant (unpaired two-tailed Student t -test), and the dotted line is detection. stands for limit of detection (LOD).
  • Figure 12a shows mRNA encoding the SARS coronavirus 2 omicron sub-mutant XBB.1.5 modified spike antigen protein (XBB.1.5_SM), which blocks spike protein cleavage and cell membrane fusion by introducing R685S and R815M substitutions, after formulation into LNP.
  • XBB.1.5_SM modified spike antigen protein
  • Figure 12b is a diagram showing the results of analysis of XBB.1.5 spike protein binding antibody levels in serum using an enzyme-linked immunosorbent assay method 2 weeks after the second vaccination (week 4) of the vaccine described in Figure 12a. Specifically, from the left, the total IgG reversal value of full-length spike protein-binding antibodies and the total IgG reversal value of receptor binding site (RBD)-binding antibodies are shown.
  • RBD receptor binding site
  • Figure 12c is a diagram showing the results of analyzing the neutralizing antibody titer in serum for pseudovirus 2 weeks (week 4) after the vaccination described in Figure 12a (ND 50 : neutralizing dilution 50, PNA: pseudovirus neutralization assay. ND : not detected, dotted line indicates limit of detection (LOD).
  • NCCP43326 and NCCP43331 Two SARS coronavirus 2 isolates (NCCP43326 and NCCP43331) distributed from the National Pathogen Resource Bank of the Korea Disease Control and Prevention Agency were subinfected in the Vero E6 cell line, a savannah monkey kidney cell line, and the cleavage pattern of the spike protein was observed.
  • RNA extracted from the NCCP43326 virus that had undergone the above passages was analyzed using next-generation sequencing technology with the number of reads for each position (positional read depth) set to approximately 180. As a result, it was confirmed that various mutations exist in the spike coding sequence within the viral gene, and that more than 50% of them had an amino acid substitution with serine (Ser) or histidine (His) at amino acid position 685 ( Figure 1d).
  • virus growth kinetics were measured using NCCP43326 and NCCP43336 P2 virus stocks. analyzed.
  • SARS coronavirus 2 spike protein When the SARS coronavirus 2 spike protein is expressed together with the packaging protein of MLV (murine leukemia virus), a type of retrovirus, a retrovirus pseudovirus with the surface of the virus particle modified with the SARS coronavirus 2 spike protein is created.
  • MLV murine leukemia virus
  • Pseudovirus mimics SARS coronavirus 2 in terms of cell entry mechanism and antigenicity, so it is useful in studying the virus entry process by replacing highly pathogenic SARS coronavirus 2.
  • the cell entry efficiency was compared in the HEK293T/ACE2 cell line and the Vero E6 cell line expressing the SARS coronavirus 2 receptor.
  • Cell entry efficiency was analyzed by measuring the titer of nanoluciferase luminescent enzyme. This enzyme is expressed through mRNA produced by transcription after intracellular delivery of the luciferase gene packaged in the pseudovirus, so the virus entry ability can be compared by measuring the luciferase activity.
  • the pseudovirus loaded with the spike protein mutated at amino acid 685 showed about 15 times superior cell entry efficiency compared to the wild type (Figure 3d).
  • This improvement in entry efficiency indicates the possibility that structural changes induced by specific amino acid substitutions that prevent furin cleavage resulted in exposure of a greater number of receptor binding sites in the spike trimer.
  • these modified spike proteins show superior ability to bind to the receptor in both the HEK293T/ACE2 cell line and the Vero E6 cell line expressing the ACE2 receptor, compared to the wild-type spike protein.
  • a neutralizing antibody was used using a recombinant monoclonal antibody that specifically recognizes the pseudovirus and receptor binding site generated in the above example. The reactivity was compared.
  • Wuhan-Hu-01 derived wild type was used in the HEK 293T cell line that gradually expressed the ACE2 receptor protein.
  • the DNA plasmid encoding the ACE2 receptor protein was transfected into 0.1 ⁇ g, 1 ⁇ g, and 10 ⁇ g HEK 293T to gradually express increasing levels of ACE2 protein, and then transduced with pseudoviruses carrying wild type and R685S spike proteins.
  • Example 3 after confirming that cleavage at the S1/S2 site was inhibited through amino acid substitution of the Omicron BA.1 spike protein spike protein S1/S2 cleavage site, S2', which can be cleaved by proteolytic enzymes other than purine, The effect of substitution at the 815th amino acid (based on Wuhan-Hu-1 representative sequence) present at the cleavage site was analyzed. A total of 19 amino acids were substituted from the existing arginine to determine the amino acid group that affects spike protein cleavage.
  • a vector was created to express a modified spike in which the 815th arginine residue of the Omicron BA.1 spike protein (based on the Wuhan-Hu-1 representative sequence) was replaced with 19 different amino acids, and these modified spikes were purine-soluble in the HEK293T cell line.
  • the amino acid group that affects spike protein cleavage was determined.
  • the modified spike antigen was substituted with amino acids other than arginine, histidine, and lysine. It was confirmed that S2 domain production was suppressed in these fields ( Figure 6).
  • Example 4 the amino acid substitutions found at amino acid position 685 block cleavage during the spike protein production process, but the ability to attach to the ACE2 receptor is maintained, preventing the pseudovirus from entering the cell. It was confirmed that it could be induced.
  • the results shown in the above examples suggest that cleavage occurs at different positions of these non-cleaved spike proteins, resulting in cell fusion in the cell membrane or endosomal membrane, thereby releasing the pseudotype virus gene.
  • Example 6 showed that substitution of a specific amino acid at the S2' cleavage site affects spike protein cleavage.
  • these patients analyzed the effect on virus entry by replacing amino acid arginine at number 815, which is the target of the spike protein cleavage enzyme, which is additionally present in the SARS coronavirus 2 spike protein in addition to amino acid number 685, with alanine.
  • the cell membrane fusion ability of each spike protein was evaluated through a cell membrane fusion ability evaluation experiment using the DSP (dual split protein) assay described in Figure 8b.
  • DSP dual split protein
  • cell fusion was significantly inhibited and multinucleated giant cells were not generated in the case of the modified spike protein in which amino acid residues 685 and 815 were replaced with serine and alanine, respectively.
  • DSP cell membrane fusion ability evaluation experiment which can sensitively quantitatively evaluate the ability, even in the case of modified spike proteins (R685S and R815A) with a single amino acid substitution, cell fusion ability was lower than that of the wild type but higher than the negative control ( Figure 8c).
  • spike protein expression mRNA containing the vaccine antigen design sequence was synthesized, LNP was formulated, and the formulated vaccine was administered to experimental mice. Neutralizing antibody titer was analyzed by intramuscular injection.
  • a spike protein with the sequence of the SARS coronavirus 2 B.1.617.2 delta mutant strain a spike protein with the sequence of the B.1.1.529 Omicron BA.1 mutant strain, and B.1.1.
  • mRNA encoding the spike protein sequence that was double-mutated to the spike protein with the sequence of the 529.5 Omicron BA.5 mutant strain was generated through in vitro transcription (IVT). did.
  • pseudouridine triphosphate yUTP
  • yUTP a modified nucleic acid
  • mRNA-lipid nanoparticles are a lipid solution that combines ionizable lipid (ALC-0315) and distearoylphosphatidylcholine (DSPC) with cholesterol and polyethylene glycol conjugated lipid (ALC-0159). And the produced mRNA was formulated using a microfluidic tube.
  • the amount of the formulated delta mutant-based mRNA-lipid nanoparticle vaccine was quantified by absorbance measurement using ribogreen, and then intramuscularly injected into the hip muscle of mice (BALB/c, 5 per group) at a dose of 1 ⁇ g, 3 Weeks later, the same amount of vaccine was administered a second time ( Figure 9a).
  • the Omicron BA.1 mutant-based mRNA-lipid nanoparticle vaccine prepared in the same manner was also inoculated twice at 1 ⁇ g dose to mice (BALB/c, 8 animals per group) at 2-week intervals (Figure 9c).
  • Omicron BA.5 mutant-based mRNA-lipid nanoparticle vaccine was also administered twice at 2-week intervals to mice (BALB/c, 8 per group) at the same dose (Figure 9e).
  • an ELISpot assay using a 15-mer long peptide pool tiling the sequence of the BA.5 spike protein was performed to determine the level of IFN- secreted by activated T cells in the mRNA vaccination group prepared using yUTP and UTP compared to the negative control group. It was confirmed that the SFU (spot forming unit) value, which indicates the number of cells in which ⁇ is detected, was high at about 2000 (FIG. 9h).
  • the Omicron BA.5-based mRNA-LNP vaccine produced in the above example was administered to the hip muscles of experimental mice (BALB/c, 6 placebo group, 5 vaccinated group) for 2 weeks. Inoculation was administered twice at intervals. The production of RBD-binding antibodies of high titer ( ⁇ 10 6 end-point titer) was confirmed through ELISA analysis using serum isolated 2 weeks after booster vaccination (FIG. 10b). 19 days after booster vaccination, the Omicron BA.5 (B.1.1.529.5) mutant virus was infected through the nasal cavity (1 ⁇ 10 5 PFU) to evaluate the protective ability against challenge (Fig. 10a).
  • SM substitutions R685S and R815M substitutions
  • the corresponding double mutations were used as described in Example 9.
  • the mRNA expressing the modified spike protein into which the mutation was introduced was synthesized using unmodified UTP and formulated into LNP, and then the formulated vaccine was injected intramuscularly at a dose of 1 ⁇ g mRNA twice into experimental mice at 3-week intervals (FIG. 12a) .
  • the binding antibody and neutralizing antibody titers in the serum were analyzed using an enzyme-linked immunosorbent assay.
  • the XBB.1.5 modified spike protein (XBB.1.5_SM) with SM substitution was confirmed to produce a high level of antibodies, with the antibody titers binding to the full-length spike protein and the receptor binding site (RBD) exceeding 10 7 ( Figure 12b).
  • the ND 50 serum dilution factor showing 50% virus neutralizing efficacy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

일 양상은 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도에 관한 것이다. 일 양상에 따른 코로나바이러스의 스파이크 항원 단백질은 코로나바이러스의 스파이크 단백질에 존재하는 2개의 단백질 절단부위를 모두 변형시킴으로써, 세포막 융합능이 억제되고, 안전성이 향상됨을 확인하였다. 또한, 상기 항원 단백질을 이용한 백신을 접종한 경우, 다량의 중화항체의 생성을 유도하여 코로나바이러스의 세포진입을 방해함으로써 바이러스 증식을 억제할 수 있는 바, 코로나바이러스 감염 예방, 병증 완화 및 치료, 감염진단 등 다양한 관련 분야 산업/시장에서 활용될 수 있다.

Description

변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도
변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도에 관한 것이다.
2019년 12월 중국 우한성에서 처음 발견된 새로운 인간코로나바이러스는 2002년에 발견되었던 SARS-CoV와의 유사성을 보여, 2020년 2월 SARS-CoV-2 (사스코로나바이러스2)라 명명된 Coronavirus disease 19 (COVID-19) 호흡기 질환의 원인체이다.
사스코로나바이러스2는 외막을 가진 단일가닥, 양성 RNA 유전자를 지닌 바이러스로 이 유전자는 ORF1a/b가 코딩하는 하나의 긴 다단백질(long polyprotein)과 9개의 구조단백질 그리고 5개의 부속 단백질을 만들고 있다. 하나의 다단백질은 번역된 후 바이러스와 숙주의 프로제아제에 의해 16개의 비구조단백질을 생성한다. 5개의 부속 단백질들은 숙주의 면역반응을 억제하거나 바이러스의 복제, 조립을 돕는 기능이 있고, 바이러스의 구조를 형성하는 4개의 구조단백질은 스파이크(spike, S), 엔벨롭(envelope), 멤브레인(membrane) 및 캡시드(nucleocapsid) 단백질을 포함하고 있다.
스파이크 단백질은 1,200개가 넘는 아미노산으로 구성된 당단백질(glycoprotein)로 바이러스의 숙주세포 진입에 중요한 인자이다. S 단백질은 S1 도메인과 S2 도메인으로 구성되어 있고, S1과 S2 도메인으로의 절단은 골지(golgi)내에 존재하는 furin 단백질 분해효소에 의해 진행되며, 잘리지 않은 전장 길이의 S와 절단된 상태의 S1과 S2가 유리되지 않은 상태로 바이러스 입자 표면에 로딩되거나 세포막으로 이동할 수 있다. 절단되지 않은 S 단백질의 S1 도메인 혹은 절단 후 S2와 아직 붙어 있는 S1 도메인은 ACE2 수용체를 통해 사스코로나바이러스가 세포내로 진입하는데 필수적인 역할을 한다. 수용체에 결합후 S2 도메인은 세포막 혹은 엔도좀 내에서 TMPRSS2 혹은 cathepsin 과 같은 숙주 단백질 분해 효소에 의해 S2' 위치(815번째 아르기닌 잔기)부근에서 절단될 수 있으며, 이 과정 중에 노출되는 퓨전펩타이드가 막 융합을 유도하게 된다.
사스코로나바이러스2에 대항하기 위해 여러 종류의 백신이 개발되어 임상 시험 중에 있거나 긴급사용 승인이 나서 사용 중에 있다. 2023년 3월 기점으로는 스파이크 단백질을 암호화한 DNA 백신이 17개(9%), mRNA 백신이 43개(24%), 바이러스벡터 백신이 29개(16%)로 전체의 49%를 차지하고, 스파이크 유래 단백질 백신이 59개(2%)로 총 81%가 스파이크 단백질을 항원으로서 사용되고 있다.
현재 사용되는 코로나바이러스 백신용 스파이크 단백질 항원의 대표적인 설계로는 S2 도메인에 존재하는 986번째 아미노산인 라이신과 987번 아미노산인 발린을 각각 프롤린 아미노산으로 치환하여 스파이크 단백질을 전융합형(prefusion conformation) 상태로 유지하게 한 “2P 설계”가 있다. 2P 설계는 스파이크 단백질의 furin 절단부위가 유지되어 있어 스파이크 단백질의 S2 도메인으로부터 S1 서브유닛이 분리되어 나올 가능성이 있으며, 유리된 S1 도메인은 염증 반응을 유도할 수 있어 백신의 안전성 측면에서 문제가 될 수 있다. 또한, 구조가 변경된 전융합형 변형 스파이크 단백질의 면역원성은 야생형 스파이크 단백질과 차이가 있을 수 있다. 따라서 스파이크 단백질의 수용체 인식기능이 유지되는 최소한의 변형을 통해 면역원성이 유지될 수 있는 스파이크 항원을 설계하는 것은 안전하고 방어능이 향상된 백신 개발에 매우 중요한 기술적 요소이다.
이에, 본 발명자들은 상기와 같은 문제점들을 해결하기 위해, 스파이크 단백질에 존재하는 2개의 단백질 절단부위를 모두 변형시켜 세포내 및 막 표면 또는 세포외 단백질 분해효소들에 의해 절단되는 것을 차단하여 안전성을 향상시키고 높은 역가의 결합항체와 중화항체를 생성할 수 있는 코로나바이러스 스파이크 항원 단백질을 개발하였다.
일 양상은 코로나바이러스(coronavirus)의 스파이크 단백질(spike protein)의 숙주 단백질 분해효소 절단 부위가 변형된 코로나바이러스의 스파이크 항원 단백질을 제공하는 것이다.
다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 코딩하는 유전자를 포함하는 코로나바이러스의 항원 단백질 발현용 재조합 벡터를 제공하는 것이다.
또 다른 양상은 상기 재조합 벡터로 형질전환된, 형질전환체를 제공하는 것이다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질 또는 이를 코딩하는 유전자를 포함하는 코로나바이러스에 대한 백신 조성물을 제공하는 것이다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 포함하는 코로나바이러스 감염증에 대한 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 포함하는 코로나바이러스 감염증 진단용 조성물을 제공하는 것이다.
또 다른 양상은 상기 조성물을 포함하는 코로나바이러스 감염증 진단 키트를 제공하는 것이다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 코딩하는 유전자를 대상체에 형질전환시키는 단계;를 포함하는, 코로나바이러스의 항원 유전자 도입 방법을 제공하는 것이다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 이를 필요로 하는 개체에 투여하는 단계;를 포함하는 코로나바이러스 감염증의 예방 또는 치료 방법을 제공하는 것이다.
또 다른 양상은 코로나바이러스 감염증의 예방 또는 치료용 약제의 제조를 위한 코로나바이러스의 스파이크 항원 단백질의 용도를 제공하는 것이다.
일 양상은 코로나바이러스(coronavirus)의 스파이크 단백질(spike protein)의 숙주 단백질 분해효소 절단 부위가 변형된 코로나바이러스의 스파이크 항원 단백질을 제공한다.
상기 용어 "코로나바이러스(coronavirus)"는 코로나바이러스과(Coronaviridae)에 속하며 구형의 외막을 가지는 약 100 mm 내지 220 nm 크기의 단일 가닥 양성 RNA 바이러스이다.
상기 용어 "스파이크 단백질(spike protein)"은 바이러스의 표면에 배열돼 있는 돌기상 구조물로서, 길이는 10 nm 내지 15 nm로 세포막에 있는 단백질 수용체와 결합해 우리 몸에 침투하는 역할을 하고 있다.
상기 용어 "숙주 단백질 분해효소"란 코로나바이러스에 감염된 숙주의 단백질 분해효소를 의미한다.
일 실시예에 있어서, 상기 절단 부위는 코로나바이러스(coronavirus)의 스파이크 단백질(spike protein)의 S1과 S2 도메인 서열 내의 퓨린 단백질 분해효소의 절단 부위 및 S2' 서열 내의 단백질 분해효소의 절단 부위 중 선택된 어느 하나 이상일 수 있다.
상기 용어 "퓨린(furin) 단백질 분해효소"는 단백질을 이루고 있는 아미노산 간의 펩티드 결합을 가수분해하는 효소를 의미한다.
일 구체예에 있어서, 상기 S2' 서열 내의 단백질 분해효소의 절단 부위에 작용하는 단백질 분해효소는 숙주 단백질 분해효소라면 제한 없이 작용할 수 있다.
일 실시예에 있어서, 상기 코로나바이러스는 사스코로나바이러스(SARS-CoV: severe acute respiratory syndrome coronavirus), 사스코로나바이러스2(SARS-CoV-2: severe acute respiratory syndrome coronavirus 2), 메르스코로나바이러스(MERS-CoV: Middle East respiratory syndrome coronavirus), 인간코로나바이러스(HCoV-229E: human coronavirus 229E) 및 이들의 변이체(variant)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
일 구체예에서, 상기 코로나바이러스는 사스코로나바이러스2(SARS-CoV-2: severe acute respiratory syndrome coronavirus 2) 및 이들의 변이체(variant)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 용어 “사스코로나바이러스(SARS-CoV: severe acute respiratory syndrome coronavirus)”는 중증급성호흡기증후군(SARS)을 일으키는 바이러스주(strain)를 의미하고, 외피를 보유하는, 양성 단일가닥 RNA 바이러스로, 사람, 박쥐, 아시아 사향고양이 등의 허파 상피세포를 감염시킨다.
상기 용어 "사스코로나바이러스2(SARS-CoV-2: severe acute respiratory syndrome coronavirus 2)"는 제2형 중증급성호흡기증후군 코로나바이러스를 의미하고, 양성(positive sense) 단일 가닥 RNA(single-stranded RNA) 유전자를 지닌 인수공통 감염 및 인간간 전염성이 있는 코로나바이러스감염증-19의 원인 병원체이다.
상기 용어 "메르스코로나바이러스(MERS-CoV: Middle East respiratory syndrome coronavirus))"는 인간과 낙타를 감염시키는 인수공통 코로나바이러스의 종을 의미하고, SARS-CoV와 같이 중증 호흡기 질환을 유발하는 병원체이다.
상기 용어 "인간코로나바이러스(HCoV-229E)"는 인간과 박쥐를 감염시키는 코로나바이러스의 종을 의미하고, 외피를 보유하는 양성 단일 가닥 RNA 바이러스로, 일반적인 감기를 일으키는 바이러스 중 하나이다.
상기 용어 "변이체"는 바이러스의 대표종 대비 유전체가 변형된 것을 의미하며, 상기 코로나바이러스 변이체는 상기 코로나바이러스와 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%의 유전체 또는 아미노산 상동성을 갖는 것일 수 있다.
예를 들어, 상기 사스코로나바이러스2의 변이체는 우려변이주(variants of concern)일 수 있고, 구체적으로는 알파(alpha), 베타(beta), 감마(gamma), 델타(delta) 및 오미크론(omicron) 변이주 및 이들의 하위 변이주로 이루어진 군에서 선택되는 하나 이상일 수 있다.
일 실시예에 있어서, 상기 코로나바이러스는 사스코로나바이러스2(SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus2)이며, 상기 퓨린 단백질 분해효소의 절단 부위는 스파이크 단백질(Spike protein)의 685번째 아미노산이고, S2' 서열 내의 단백질 분해효소의 절단 부위는 스파이크 단백질의 815번째 아미노산일 수 있다. 또한, 상기 아미노산 위치는 Wuhan-Hu-1 대표서열 기준일 수 있다.
일 실시예에 있어서, 상기 퓨린 단백질 분해효소의 절단 부위의 685번째 아미노산은 글리신(Glycine), 알라닌(Alanine), 발린(Valine), 류신(Leucine), 아이소류신(Isoleucine), 트레오닌(Threonine), 세린(Serine), 시스테인(Cysteine), 메티오닌(Methionine), 아스파르트산(Aspartic acid), 아스파라긴(Asparagine), 글루탐산(Glutamic acid), 글루타민(Glutamine), 라이신(Lysine), 히스티딘(Histidine), 페닐알라닌(Phenylalanine), 타이로신(Tyrosine), 트립토판(Tryptophan) 및 프롤린(Proline)으로 이루어진 군에서 선택되는 하나 이상의 아미노산으로 치환된 것일 수 있다.
일 구체예에서, 상기 퓨린 단백질 분해효소의 절단 부위의 685번 아미노산은 세린(Serine), 히스티딘(Histidine), 프롤린(Proline) 및 발린(Valine)으로 이루어진 군에서 선택되는 하나 이상의 아미노산으로 치환된 것일 수 있다.
이 중 특히 변형된 스파이크임에도 불구하고 ACE2 수용체 인식능이 야생형 보다 높은 세린(Serine)으로 치환된 변형 스파이크 단백질 항원일 수 있다.
일 실시예에 있어서, 상기 S2' 서열 내의 단백질 분해효소의 절단 부위는 스파이크 단백질의 815번 아미노산은 글리신(Glycine), 알라닌(Alanine), 발린(Valine), 류신(Leucine), 아이소류신(Isoleucine), 트레오닌(Threonine), 세린(Serine), 시스테인(Cysteine), 메티오닌(Methionine), 아스파르트산(Aspartic acid), 아스파라긴(Asparagine), 글루탐산(Glutamic acid), 글루타민(Glutamine), 페닐알라닌(Phenylalanine), 타이로신(Tyrosine), 트립토판(Tryptophan) 및 프롤린(Proline)으로 이루어진 군에서 선택되는 하나 이상의 아미노산으로 치환된 것일 수 있다.
일 구체예에서, 상기 S2' 서열 내의 단백질 분해효소의 절단 부위는 스파이크 단백질의 815번 아미노산은 발린(Valine), 메티오닌(Methionine), 프롤린(Proline) 및 알라닌(Alanine)으로 이루어진 군에서 선택되는 하나 이상의 아미노산으로 치환된 것일 수 있다.
일 실시예에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 ACE2(angiotensin-converting enzyme 2)에 증가된 친화력을 나타내는 것일 수 있다.
상기 용어 "ACE2(angiotensin-converting enzyme 2)"는 805개의 아미노산을 암호화하는 금속 단백질 분해효소를 의미하며, 코로나바이러스의 세포 진입점 역할을 하는 수용체 역할을 한다.
일 실시예에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 스파이크 삼량체(trimer)에서 수용체 결합부위를 증가시킬 수 있다.
일 실시예에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 백신 항원 구조를 형성할 수 있다.
상기 변형된 코로나바이러스의 스파이크 항원 단백질은 백신 항원 구조를 통해 코로나바이러스의 감염을 방어할 수 있는 스파이크 결합항체와 중화항체를 생성하고, T세포 면역활성을 유도할 수 있다.
일 실시예에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 유리 S1 도메인의 생성을 억제시키는 것일 수 있다.
상기 유리 S1 도메인은 TLR4(Toll-like receptor 4)를 자극하여 염증 반응을 유도하는 것일 수 있다.
상기 용어 "TLR4(Toll-like receptor 4)"는 선천성면역반응 유도 수용체를 의미한다.
일 실시예에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 세포막 융합을 억제시키는 것일 수 있다.
상기 용어 "세포막 융합"은 바이러스가 지질 이중층(lipid bilayer)을 통해서 숙주 세포에 침입하는데 있어서 매우 중요한 핵심 작용으로, 막과 막이 한 가지 상태로 결합하는 것을 의미한다.
일 실시예에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 바이러스의 세포내 진입 또는 바이러스 유전자의 세포내 전달을 억제시키는 것일 수 있다.
상기 용어 "세포내 진입"은 바이러스가 세포 안으로 들어가는 것을 의미한다.
상기 용어 "세포내로 전달"은 바이러스입자 혹은 천연 및 인공 막구조 표면에 변형 스파이크 단백질이 존재할 때 세포막 융합을 통해 바이러스 유전자가 세포막 혹은 엔도솜 지질 이중막을 통과해 세포질로 전달되는 과정을 의미한다.
일 실시예에서는 사스코로나바이러스2 및 이의 변이체의 스파이크 단백질의 S1/S2 절단위치인 685번째 아미노산과 S2′절단위치인 815번째 아미노산 잔기들을 각각 세린과 알라닌으로 치환하여 세포막융합 유도능을 확인한 결과, 세포 융합이 현저히 억제되어 다핵거대세포가 생성되지 않는 것을 확인하였다(실시예 8 참조).
다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 코딩하는 유전자를 포함하는 코로나바이러스의 항원 단백질 발현용 재조합 벡터를 제공한다.
상기 "코로나바이러스", "스파이크 항원 단백질" 등은 전술한 범위 내일 수 있다.
상기 용어 "벡터(vector)"는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 의미한다. 상기 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. 또한, 상기 벡터는 시험관 내, 생체 외 또는 생체 내에서 숙주 세포로 염기를 도입하기 위한 바이러스 및 비 바이러스 매개물을 포함할 수 있다.
상기 용어 "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제 가능한, 임의의 유전적 단위 (예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 의미한다.
일 실시예에 있어서, 상기 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, pSKH, pRS-413, pRS-414, pRS-415, pDSK519, pDSK, pDART 벡터 등을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있고, 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 삽입시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질 전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질 전환된 세포를 선별할 수 있다.
또 다른 양상은 상기 재조합 벡터로 형질전환된 형질전환체를 제공한다.
상기 "재조합 벡터" 등은 전술한 범위 내일 수 있다.
상기 용어 "형질전환"은 외부로부터 주어진 DNA에 의하여 생물의 유전적인 성질이 변하는 것으로, 즉 생물의 어떤 계통의 세포에서 추출된 핵산의 일종인 DNA를 다른 계통의 살아있는 세포의 주었을 때 DNA가 그 세포에 들어가서 유전형질이 변화하는 현상을 의미한다.
상기 형질전환 하는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, EAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
상기 용어 "형질전환체"는 형질전환으로 인해 생성된 형질전환 식물 또는 형질전환 동물을 의미하며, 상기 형질전환체는 유전자 재조합 기술을 이용하여 특정 유전자의 변형 또는 변이가 유발되어 생성된 유전자 재조합체를 포함할 수 있다.
일 실시예에 있어서, 상기 형질전환체는 당업계에 공지된 형질전환에 이용될 수 있는 세포이면 제한없이 당업자에 의해 적절하게 선택되어 사용될 수 있다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질 또는 이를 코딩하는 유전자를 포함하는 코로나바이러스에 대한 백신 조성물을 제공한다.
상기 "코로나바이러스", "스파이크 항원 단백질". "코딩하는 유전자" 등은 전술한 범위 내일 수 있다.
일 실시예에 있어서, 상기 백신 조성물은 중화항체 생성능을 증가시키는 것일 수 있다.
상기 용어 "중화항체(neutralizing antibody)"는 병원체나 감염성 입자에 결합하여 바이러스가 수용체를 통해 숙주세포내로 침투하는 과정을 억제해 감염으로부터 세포를 방어하는 항체를 의미한다. 상기 중화항체는 바이러스, 세포 내 박테리아 및 미생물 독소에 대한 후천 면역계의 면역 반응의 일부이고, 중화항체는 감염성 입자의 표면 구조에 특화된 형태로 생성되어 결합하여 감염성 항원이 숙주 세포와 상호 작용을 하는 것을 방지하여 면역을 달성한다. 일반적으로 백신을 투여하게 되면 체내에 일반 표적 항원에 대한 결합항체와 중화항체가 생기며, 일반 결합항체는 감염세포를 인식하여 면역세포가 항체로 표식된 세포를 제거하는 기능이 있다. 또한 보체(complement)와 같이 작용하여 감염세포을 분해시키거나 및 바이러스 입자에 손상을 주는 기능이 있다. 반면 중화항체는 특정 독소 항원에 결합하여 병원성을 낮추거나 바이러스 입자에 결합하여 세포내 진입을 차단하는 항원 특이적 면역반응을 일으킨다.
상기 용어 "백신 조성물"은 생체에 면역을 주는 항원성 물질을 함유한 생물학적인 제제로서, 감염증의 예방을 위하여 생물체에 주입 또는 주사하여 생체에 면역이 생기게 하는 면역원을 의미한다. 상기 백신 조성물은 개체에게 세포성 면역 반응, 예를 들어 CTL (cytotoxic T lymphocyte) 또는 체액성 면역 반응, 예를 들어 항체에 의해 유발되는 향상된 전신적 또는 국소적 면역 반응을 제공하며, 상기 개체는 코로나바이러스를 보유할 수 있는 인간을 포함한 쥐, 생쥐, 가축 등의 모든 생물을 의미한다. 구체적인 예로, 인간을 포함한 포유동물일 수 있다.
일 실시예에 있어서, 상기 백신 조성물은 약제학적으로 허용되는 담체를 추가적으로 포함할 수 있다. 상기 용어 "약제학적 유효량"은 바이러스에 의해 유발되는 질병 또는 병리학적 증상에 대한 예방, 경감 또는 치료적 효능을 달성하는 데 충분한 양을 의미한다. 상기 백신 조성물에 포함될 수 있는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 제한되는 것은 아니다.
또한, 상기 백신 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 제제화할 경우에는 보통 사용되는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제할 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 레시틴 유사 유화제에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 슈크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제할 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용할 수 있다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등을 사용할 수 있으며, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비 경구투여를 위한 제제에는 멸균된 수용액, 비수용성제, 현탁제, 유제, 동결건조제제가 포함된다. 비수용성제제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.
상기 백신 조성물의 투여 형태는 장용피 사용 단위체의 형태, 복강내, 근육내 또는 피하 투여용 접종, 에어로졸 분무, 경구 또는 비강내 용도일 수 있다. 상기 백신 조성물은 경구, 직장, 국소, 정맥내, 복강내, 근육내, 동맥내, 경피, 비측내, 흡입, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다.
상기 백신 조성물은 비경구 투여될 수 있다. 비경구 투여는 정맥내, 근육내, 복강내, 흉골내, 경피 및 동맥내 주사 및 주입을 포함하는 투여방식을 의미한다. 백신의 비경구 투여는 바람직한 순도하에 약제학적으로 허용가능한 농도와 투여량에서 수용체에게 비독성이고 다른 제제 성분과 화합할 수 있는 것을 혼합하여 단위 투여량의 제형으로 조제하여야 한다.
또한, 상기 백신 조성물은 이를 필요로 하는 대상에게 약제학적 유효량으로 투여될 수 있다. 상기 백신 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 대상(subject)의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 결정될 수 있다.
일 실시예에서는 사스코로나바이러스2 델타변이주(B.1.617.2) 야생 스파이크 및 이의 S1/S2 절단위치아미노산과 S2′절단위치 아미노산 잔기들을 각각 세린과 알라닌으로 치환한 변형 스파이크 항원 단백질을 발현하는 mRNA를 리피드나노입자(LNP, lipid nanoparticle)로 제형화하여 마우스에서 면역원성을 확인한 결과, 50%의 바이러스 중화 효능을 보여주는 혈청 희석 배수인 ND50 값이 1,000 이상으로 높게 나타남을 확인하였다(실시예 9 참조).
또한, 사스코로나바이러스2의 변이체(오미크론 BA.1와 BA.5)의 스파이크 단백질의 S1/S2 절단위치 아미노산과 S2′절단위치 아미노산 잔기들을 각각 세린과 알라닌으로 치환시킨 변형 스파이크 단백질을 발현하는 mRNA 백신의 면역원성을 확인한 결과, 전장 스파이크 인식 결합항체 수치를 보여주는 혈청 희석 배수인 reciprocal serum endpoint titer 값이 106~107에 수준에 달할 정도로 높은 면역반응을 유도할 수 있음을 확인하였다(실시예 9 참조).
다른 실시예에서는 상기한 사스코로나바이러스2 오미크론 BA.5 변형 스파이크 항원을 발현하는 mRNA 백신을 마우스에 접종한 후 바이러스 감염에 대한 방어 효능을 평가한 결과, 백신접종군 실험쥐(BALB/c)의 폐에서는 바이러스의 감염이 나타나지 않음을 확인하였다(실시예 10 참조).
또 다른 실시예에서는 사스코로나바이러스2의 변이체(오미크론 하위 변위주 XBB.1.5)의 스파이크 단백질의 S1/S2 절단위치 아미노산과 S2′절단위치 아미노산 잔기들을 각각 세린과 메티오닌으로 치환시킨 변형 스파이크 단백질을 발현하는 mRNA 백신의 면역원성을 확인한 결과, 전장 스파이크 및 수용체결합부위(RBD)를 인식하는 결합항체 수치를 보여주는 혈청 희석 배수인 reciprocal serum endpoint titer 값이, 모두 107 이상 수준에 달할 정도로 높은 면역반응을 유도할 수 있음을 확인하였다. 또한 XBB.1.5 스파이크 단백질을 바이러스 입자 표면에 발현시킨 슈도바이러스를 사용하여 중화항체가 분석한 결과, 50%의 바이러스 중화 효능을 보여주는 혈청 희석 배수인 ND50 값이 10,000 이상으로 높게 나타남을 확인하였다(실시예 12 참조).
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 포함하는 코로나바이러스 감염증에 대한 예방 또는 치료용 약학적 조성물을 제공한다.
상기 "코로나바이러스", "스파이크 항원 단백질", "코로나바이러스 감염증" 등은 전술한 범위 내일 수 있다.
상기 용어 "예방"은 상기 약학적 조성물의 투여에 의해 개체의 코로나바이러스의 감염을 억제시키거나 코로나바이러스 감염증의 발병을 지연시키는 모든 행위를 의미한다.
상기 용어 "치료"는 상기 약학적 조성물의 투여에 의해 개체의 코로나바이러스 감염증에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
용어 "투여"는 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미한다.
또한, 상기 약학적 조성물은 유효성분을 단독으로 포함하거나, 하나 이상의 약학적으로 허용 가능한 담체, 부형제 또는 희석제를 포함하여 약학적 조성물로 제공될 수 있다.
상기 용어 "약학적으로 허용 가능한"은 상기 조성물에 노출되는 세포나 인간에게 독성이 없는 특성을 나타내는 것을 의미한다.
구체적으로, 상기 담체는 예를 들어, 콜로이드 현탁액, 분말, 식염수, 지질, 리포좀, 미소구체(microspheres) 또는 나노 구형입자일 수 있다. 이들은 운반 수단과 복합체를 형성하거나 관련될 수 있고, 지질, 리포좀, 미세입자, 금, 나노입자, 폴리머, 축합 반응제, 다당류, 폴리아미노산, 덴드리머, 사포닌, 흡착 증진 물질 또는 지방산과 같은 당업계에 공지된 운반 시스템을 사용하여 생체 내 운반될 수 있다.
상기 약학적 조성물이 제제화될 경우에는 통상적으로 사용하는 윤활제, 감미제, 향미제, 유화제, 현탁제, 보존제, 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜(propyleneglycol), 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(Tween) 61, 카카오지, 라우린지, 글리세로 제라틴 등이 사용될 수 있고, 점안제 형태로 제조 시 공지의 희석제 또는 부형제 등이 사용될 수 있다.
항원의 발현을 위해 mRNA 를 사용할 경우 mRNA의 안전성을 유지시키며 세포질로 전달할 수 있는 리포좀(liposome), 리피드나노입자, 마이크로니들(microneedle) 혹은 동물/미생물/식물세포에서 유래한 세포외소낭(extracellular vesicle)등이 전달체로 사용될 수 있다. 혹은 전기천공(electroporation)과 같은 물리적 방법으로도 전달할 수 있다.
상기 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 용어, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
일 양상에 있어서, 상기 약학적 조성물의 투여는 하루에 한 번 투여되는 것일 수도 있고, 수 회 나누어 투여되는 것일 수도 있다. 예를 들어, 격일로 투여되는 것일 수도 있으며, 일주일에 하루 투여되는 것일 수도 있다. 구체적으로, 상기 약학적 조성물은 0.001 내지 1000 mg/kg/day로, 보다 구체적으로 0.1 내지 100 ㎎/kg/day로 투여될 수 있다. 상기 투여는 하루에 한 번 투여되는 것일 수도 있고, 수 회 나누어 투여되는 것일 수도 있다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 포함하는 코로나바이러스 감염증 진단용 조성물을 제공한다.
상기 "코로나바이러스", "스파이크 항원 단백질" 등은 전술한 범위 내일 수 있다.
상기 용어 "코로나바이러스 감염증"은 코로나바이러스가 일으키는 중증 호흡기 증후군으로, 일 양상에 있어서 코로나바이러스는 사스코로나바이러스1(SARS-CoV-1: Severe Acute Respiratory Syndrome Coronavirus1), 사스코로나바이러스2(SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus2), 인간코로나바이러스(HCoV-229E: human coronavirus 229E) 및 이들의 변이체(variant)일 수 있다.
상기 용어 "변이체"는 바이러스의 대표종 대비 유전체가 변형된 것을 의미하며, 일 양상에 있어서, 상기 코로나바이러스 변이체는 상기 코로나바이러스와 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%의 유전체 또는 아미노산 상동성을 갖는 것일 수 있다.
예를 들어, 상기 사스코로나바이러스2의 변이체는 우려변이주(variants of concern)일 수 있고, 구체적으로는 알파(alpha), 베타(beta), 감마(gamma), 델타(delta) 및 오미크론(omicron) 변이주로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 용어 "진단"은 넓은 의미로는 환자의 병의 실태를 모든 면에 걸쳐서 판단하는 것을 의미한다. 판단의 내용은 병명, 병인, 병형, 경중, 병상의 상세한 양태 및 합병증의 유무 등이다.
또 다른 양상은 상기 조성물을 포함하는 코로나바이러스 감염증 진단 키트를 제공한다.
상기 "조성물", "코로나바이러스 감염증", "진단" 등은 전술한 범위 내일 수 있다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 코딩하는 유전자를 대상체에 형질전환시키는 단계;를 포함하는 코로나바이러스의 항원 유전자 도입 방법을 제공한다.
상기 "코로나바이러스", "스파이크 항원 단백질", "형질전환" 등은 전술한 범위 내일 수 있다.
일 실시예에 있어서, 상기 도입 방법은 당업계에 공지된 방법을 당업자에 의해 적절하게 변형되어 적용될 수 있다.
또 다른 양상은 상기 코로나바이러스의 스파이크 항원 단백질을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 코로나바이러스 감염증의 예방 또는 치료 방법을 제공한다.
상기 "코로나바이러스", "스파이크 항원 단백질", "개체", "투여", "코로나바이러스 감염증", "예방", "치료" 등은 전술한 범위 내일 수 있다.
상기 방법은 코로나바이러스 감염증의 예방 또는 치료 효과를 가지는 공지의 조성물 또는 다른 약학적 조성물과 병행하여 투여하는 것일 수 있고, 동시에, 별도로, 또는 순차적으로 투여하는 것일 수 있으며, 단일 또는 다중 투여하는 것일 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
또 다른 양상은 코로나바이러스 감염증의 예방 또는 치료용 약제의 제조를 위한 코로나바이러스의 스파이크 항원 단백질의 용도를 제공한다.
상기 "코로나바이러스", "감염증", "예방", "치료", "스파이크 항원 단백질" 등은 전술한 범위 내일 수 있다.
일 양상에 따른 코로나바이러스의 스파이크 항원 단백질은 코로나바이러스의 스파이크 단백질에 존재하는 2개의 단백질 절단부위를 모두 변형시킴으로써, 세포막 융합능이 억제되고, 안전성이 향상됨을 확인하였다. 또한, 상기 항원 단백질을 이용한 백신을 접종한 경우, 다량의 중화항체의 생성을 유도하여 코로나바이러스의 세포진입을 방해함으로써 바이러스 증식을 억제할 수 있는 바, 코로나바이러스 감염 예방, 병증 완화 및 치료, 감염진단 등 다양한 관련 분야 산업/시장에서 활용될 수 있다.
도 1a는 질병관리청 국가병원체자원은행에서 분양 받은 2종의 사스코로나바이러스2 분리주 NCCP43326, NCCP43331을 Vero E6 세포주에서 2번 계대배양 후 감염세포로부터 48시간 뒤에 세포 용해물을 준비해 SDD-PAGE 후 면역블롯팅(immunoblotting)으로 스파이크 단백질을 검출한 결과를 나타내는 도이다(N은 바이러스 구조단백질인 캡시드 단백질).
도 1b는 기능적 도메인을(NTD, N-terminal domain; RBD, receptor binding domain; S1/S2, S1-S2 furin cleavage site; S2′, S2 priming site; FP: fusion peptide; HR, heptad repeat; CH, central helix; CD: connector domain; TMD, transmembrane domain; CT, cytoplasmic tail) 표시한 사스코로나바이러스2 스파이크 단백질의 모식도이다. 구체적으로, 모식도 위 나열된 서열은 사스코로나바이러스2 분리주 NCCP43326를 Vero E6에서 수차례 계대 배양 후 스파이크 유전자를 플라스미드 DNA로 클로닝하여 확인하였던 서열이다. 퓨린 단백질 분해효소의 절단 위치인 685번째 아미노산이 원래 서열인 아르기닌에서 세린 혹은 히스티딘으로 치환된 돌연변이들이 존재함을 보여주고 있다.
도 1c는 furin 단백질 절단효소가 인식하여 절단하는 부위 S1/S2와 퓨전 펩타이드 노출을 위해 프라이밍 과정에서 단백질 분해효소가 인식하는 부위 S2′이 여러 코로나바이러스의 스파이크 단백질에서 아미노산 서열 보전성을 보여줌을 나타내는 도이다.
도 1d는 상기 도 1b에서 사스코로나바이러스2 분리주 NCCP43326를 Vero E6에서 수차례 계대 배양 후 스파이크 유전자를 플라스미드 DNA로 클로닝하여 확인하였던 서열을 RNA 서열분석을 통하여 확인한 결과를 나타내는 도로서, 원래 아미노산 서열인 R685가 세린(R685S) 또는 히스티딘(R685H)으로 치환된 서열이 주로 존재함을 나타내고 있다.
도 2는 질병관리청에서 분양 받은 2개의 사스코로나바이러스2 분리 주 NCCP43326 및 NCCP43331를 동일한 MOI(multiplicity of infection)로 Vero E6세포주에 감염 시킨 후, 배지내 존재하는 바이러스의 유전자 카피수를 시간별로 정량 분석한 결과를 나타내는 도이다(*는 P <0.05, **는 P <0.01, ns는 통계적 유의성 없음).
도 3a는 HEK293T 세포주에 세 가지 다른 종류의 스파이크 단백질을 암호화한 플라스미드 DNA를 각기 트렌스펙션한 후 48시간 뒤에 세포 용해물을 준비해 SDD-PAGE 후 면역블롯팅으로 스파이크 단백질을 검출한 결과를 나타내는 도이다.
도 3b는 오미크론 BA.1 변이주 스파이크 단백질의 685번째 아미노산(Wuhan-Hu-1 대표서열 기준) 아르기닌산이 제시한 아미노산으로 치환된 스파이크 단백질의 절단 양상을 분석한 결과를 나타내는 도이다. 구체적으로, HEK293T세포에 해당 스파이크 단백질을 발현하는 벡터를 트렌스펙션 후 48시간 뒤에 스파이크 단백질의 C 말단을 인식하는 항체를 사용하여 면역블롯팅으로 전장 S와 이로부터 절단되어 생성될 수 있는 S2 도메인을 검출한 결과로, 원래 아미노산 서열인 R685가 세린(R685S) 또는 히스티딘(R685H)뿐 아니라 다른 19종의 아미노산으로 치환할 경우 S1/S2 도메인으로 절단되는 것이 차단되는 결과를 나타내는 도이다.
도 3c는 HEK293T 세포주에 세 가지 다른 종류의 스파이크 단백질을 암호화한 플라스미드 DNA를 레트로바이러스벡터 포장 플라스미드 DNA와 함께 트렌스펙션 후 배양액으로 분비된 슈도바이러스를 준비해 SDD-PAGE 후 면역블롯팅으로 탑재되어 있는 스파이크 단백질을 검출한 결과를 나타내는 도이다.
도 3d는 재조합 레트로바이러스벡터를 사용하여 만든 세 가지 다른 종류의 각기 다른 사스코로나바이러스2 스파이크 단백질을 탑재한 슈도바이러스들의 세포진입 효율을 분석한 결과는 나타내는 도이다(**는 P <0.01, ***는 P <0.001; unpaired two-tailed Student t-test).
도 4a는 제시한 아미노산 치환을 함유한 변형 스파이크 단백질이 수용체 결합 부위 표적 단일항원 항체에 반응하는 정도를 슈도바이러스를 제작하여 분석한 결과를 나타내는 도이다.
도 4b는 상기 도 4a에서 나온 결과를 대조군 비특이적 항체에 비교하였을 때 단일 중화항체가 보여주는 중화능을 log10 감소 스케일로 표기한 결과를 나타내는 도이다(**는 P <0.01).
도 5a는 사스코로나바이러스2의 수용체인 ACE2 단백질을 HEK 293T에 점차 증가하게 발현시킨 후 각기 다른 사스코로나바이러스2 스파이크 단백질(WT 및 R685S)을 탑재한 슈도바이러스의 세포주로의 진입 효율을 분석한 결과를 나타내는 도이다.
도 5b는 상기 도 5a의 변형 사스코로나바이러스2 스파이크 단백질(R685S 치환을 함유)을 탑재한 슈도바이러스들의 세포진입 효율을 Wuhan-Hu-01 분리주 유래 스파이크 단백질을 가진 슈도바이러스의 진입효율에 대비하여 나타난 결과를 나타내는 도이다(*는 P <0.05, ***는 P <0.001).
도 5c는 상기 도 5a에서 HEK293 세포주에 발현시킨 ACE2 수용체 단백질량을 면역블랏으로 확인한 결과를 나타내는 도이다.
도 6은 BA.1 변이주 스파이크 단백질의 815번째 아미노산(Wuhan-Hu-1 대표서열 기준) 아르기닌산이 제시한 아미노산으로 치환된 스파이크 단백질의 절단 양상을 분석한 결과이다. 구체적으로, HEK293세포에 해당 스파이크 단백질을 발현하는 벡터를 트렌스펙션 후 48시간 뒤에 스파이크 단백질의 C 말단을 인식하는 항체를 사용하여 면역블롯팅으로 전장 S와 이로부터 절단되어 생성될 수 있는 S2 도메인을 검출한 결과로, 원래 아미노산 서열인 R815가 히스티딘(R815H) 또는 라이신(R815K)으로 치환된 경우를 제외하고, 다른 17종의 아미노산으로 치환될 경우 S2 도메인 형성이 차단되는 결과를 나타내는 도이다.
도 7은 기술한 사스코로나바이러스2 스파이크 단백질을 각각 탑재한 슈도바이러스를 제작하여, 각 변형 스파이크 단백질에 도입한 아미노산 치환이 세포진입에 미치는 영향을 분석한 결과를 나타내는 도이다.
도 8a는 사스코로나바이러스2의 수용체인 ACE2 단백질을 발현하는 HEK293T 세포에 사스코로나바이러스2 Wuhan-Hu-01 스파이크 또는 델타변이주(B.1.617.2) 스파이크 단백질 발현 플라스미드를 트렌스펙션으로 도입하여 과발현 시킨 후, 각 스파이크 단백질의 세포막 융합능을 분석한 결과를 나타내는 도이다.
도 8b는 스파이크 단백질의 세포막 융합능을 정량화할 수 있는 DSP(dual split protein)을 사용한 세포융합능 평가 실험에 대한 모식도이다 (CMV, cytomegalovirus promoter; nRLuc, N-terminal end of the split Renilla luciferase; GFP1-7, N-terminal end of the split greenfluorescence protein; GFP8-11, C-terminal end of the split green fluorescence protein; cRLuc, c-terminal end of the split Renilla luciferase).
도 8c 및 도 8d는 각각 Wuhan-Hu-01 및 오미크론 BA.5 (B.1.1.529.5) 서열 기반의 스파이크 단백질에 여러 변이가 포함된 백신 항원 후보군 스파이크 단백질을 발현시킨 세포를 사용하여 상기 도 8b에서 기술한 세포융합능 평가 실험을 진행하여 얻어진 결과를 나타내는 도이다(*는 P <0.01; **는 P <0.05; ****는 P <0.0001; ns, not significant (unpaired two-tailed Student t-test)).
도 8e 및 도 8f는 Wuhan-Hu-01 및 오미크론 BA.5 (B.1.1.529.5) 서열 기반의 스파이크 단백질에 표시한 여러 변이가 포함된 백신 항원 후보군 스파이크 단백질을 발현하는 프라스미드 DNA를 각기 트렌스펙션한 후 48시간 뒤에 세포 용해물을 준비해 SDD-PAGE 후 면역블롯팅으로 스파이크 단백질을 검출한 결과를 나타내는 도이다.
도 8g는 오미크론 BA.5 (B.1.1.529.5) 서열 기반의 스파이크 단백질에 표시한 여러 변이가 포함된 백신 항원 후보군 스파이크 단백질을 발현시킨 세포를 사용하여 상기 도 8b에서 기술한 세포융합능 평가 실험을 수행한 후 융합이 일어난 세포를 형광현미경으로 분석한 결과를 나타내는 도이다(BF, bright field; DAPI, 4′,6-diamidino-2-phenylindole; GFP, green fluorescence protein, DAPI는 세포내 핵을 염색하기 위해 사용).
도 9a는 R685S 및 R815A 아미노산 치환(이후 SA로 이 두개 아미노산 치환을 표시)을 도입해 스파이크 단백질 절단과 스파이크 단백질 발현으로 인한 세포막 융합을 차단시킨 사스코로나바이러스2 델타변이주(B.1.617.2) 스파이크 단백질(Delta_SA)을 암호화하고 있는 mRNA를 LNP에 제형하여 쥐(BALB/c)에 근육 주사하여(3주 간격으로 D0와 D21에 2회) 변이 스파이크 단백질의 면역원성을 확인하는 실험 스케줄과 mRNA의 모식도이다(5'UTR, 3'-untranslated region; 3'UTR, 3'-untranslated region; pA, poly(A) tail). mRNA는 슈도유리딘(pseudouridine)를 사용하여 합성하였으며 5' 말단은 cap 구조를 지니고 있다.
도 9b는 상기 도 9a에서 기술한 동물 실험에서 델타변이주(B.1.617.2) 스파이크 단백질을 암호화한 mRNA-LNP 백신을 3주 간격으로 2회 근육주사하고, 2차 접종 후 2주 뒤(5주차) 혈청내 중화항체 수치를 슈도바이러스를 사용해 분석한 결과를 나타내는 도이다(ND50, neutralizing dilution 50값으로 50%의 중화 효능을 보여주는 혈청 희석배수의 역수).
도 9c는 스파이크 단백질 절단과 세포막 융합을 차단시킨 사스코로나바이러스2 오미크론 BA.1 (B.1.1.529) 변이주 스파이크 단백질(BA.1_SA)을 암호화하고 있는 mRNA를 LNP에 제형하여 쥐(BALB/c)에 근육 주사하여(2주 간격으로 D0와 D14에 2회) 변이 스파이크 단백질의 면역원성을 확인하는 실험 스케줄과 mRNA의 모식도이다. mRNA는 슈도유리딘(pseudouridine)를 사용하여 합성하였으며 5' 말단은 cap 구조를 지니고 있다.
도 9d는 상기 도 9c에서 기술한 동물 실험에서 오미크론 BA.1 (B.1.1.529) 변이주 스파이크 단백질을 암호화한 mRNA-LNP 백신을 2주 간격으로 2회 근육주사하고 2차 접종 후 2주 뒤(4주차) 혈청내 BA.1 스파이크 단백질 결합항체 수치를 효소결합면역흡착검사(ELISA, enzyme-linked immunosorbent assay)법으로 분석한 결과를 나타내는 도이다. 구체적으로, 우측 패널은 백신 접종군 8마리의 실험쥐의 각 희석혈청에 대한 효소결합면역흡착검사 결과를 토대로 흡광도 수치의 cut-off 값을 결정한 도이고, 좌측 패널은 상기 cut-off 값에 부합하는 혈청내 결합항체 역가치(end-point titer)가 나타난 도이다.
도 9e는 스파이크 단백질 절단과 세포막 융합을 차단시킨 사스코로나바이러스2 오미크론 변이주 BA.5 (B.1.1.529.5) 변형 스파이크 항원 단백질(BA.5_SA)을 암호화하고 있는 mRNA를 LNP에 제형후 쥐(BALB/c)에 근육 주사하여(2주 간격으로 D0와 D14에 2회) 면역원성을 평가하는 실험 스케줄과 mRNA의 모식도이다. mRNA는 비변형 UTP 혹은 변형핵산인 슈도유리딘 삼인산 뉴트레오타이드(yUTP, pseudouridine triphosphate)를 사용하여 합성하였으며 5' 말단은 cap 구조를 지니고 있다.
도 9f는 상기 도 9e에서 기술한 백신 2차 접종 후 2주 뒤(4주차) 혈청내 BA.5 스파이크 단백질 결합항체 수치를 효소결합면역흡착검사 방법으로 분석한 결과를 나타내는 도이다. 구체적으로, 좌측부터 차례대로 전장 스파이크 단백질 결합항체 총 IgG 역가치, 수용체결합부위(RBD) 결합항체 총 IgG 역가치, 수용체결합부위 결합항체 IgG1 및 IgG2a 역가치를 나타낸다.
도 9g는 상기 도 9e에서 기술한 백신 접종 후 2주 뒤(4주차) 혈청내 중화항체 역가를 슈도바이러스와 생바이러스(BA.5 오미크론 변이주)를 사용해 분석한 결과를 나타내는 도이다(ND50: neutralizing dilution 50, PNA: pseudovirus neutralization assay, PRNT: plaque reduction neutralization test. ND: not detected (미검출), ns: not significant (unpaired two-tailed Student t-test), 점선은 검출한계(LOD, limit of detection)를 나타냄).
도 9h는 상기 도 9e에서 기술한 백신 부스터 접종 후 2주 뒤(4주차) 비장에서 분리한 비장 세포(splenocyte)를 이용하여 항원 특이적 T세포 면역원성을 ELISpot (enzyme-linked immunospot) 에세이로 분석한 결과를 나타내는 도이다(SFU: spot forming unit, ns: not significant (unpaired two-tailed Student t-test)).
도 10a는 스파이크 단백질 절단과 세포막 융합을 차단시킨 사스코로나바이러스2 오미크론 BA.5 (B.1.1.529.5) 변이주 스파이크 단백질(BA.5_SA)을 암호화하고 있는 mRNA를 LNP에 제형하여 상기 도 9e에 따라 실험쥐((BALB/c))에 근육 주사한 후 백신의 바이러스 감염방어능을 확인하는 실험 스케줄의 모식도이다.
도 10b는 상기 도 10a에서 기술한 동물 실험에서 오미크론 BA.5 (B.1.1.529.5) 변이주 스파이크 단백질을 암호화한 mRNA-LNP 백신을 2주 간격으로 2회 근육주사하고, 2차 접종 후 2주 뒤(4주차) 혈청내 BA.5 수용체결합부위(RBD) 결합항체 수치를 효소결합면역흡착검사 방법으로 분석한 결과를 나타내는 도이다(ND: not detected (미검출), ns: not significant (unpaired two-tailed Student t-test), 점선은 검출한계(LOD, limit of detection)를 나타냄).
도 10c는 상기 도 10a에서 기술한 동물 실험에서 오미크론 BA.5 (B.1.1.529.5) 변이주 스파이크 단백질을 암호화한 mRNA-LNP 백신을 2주 간격으로 2회 근육주사하고, 2차 접종 19일 후(D33) 오미크론 BA.5 (B.1.1.529.5) 변이주 바이러스(1 × 105 PFU)를 비강을 통해 감염시킨 보호능 평가 실험의 결과를 나타내는 도이다(ND: not detected (미검출), 점선은 검출한계(LOD, limit of detection)를 나타냄).
도 10d는 상기 도 10a에서 기술한 동물 실험에서 감염 2일차에 수확한 실험쥐의 폐를 조직면역학적분석(immunohistochemistry, IHC)을 통해 바이러스 캡시드 단백질을 검출한 도면과 hematoxylin and eosin (H&E) 염색한 결과를 나타내는 도이다(IHC 실험에서 검출된 바이러스 캡시드 단백질은 화살표로 표시, H&E 염색 실험에서 폐포손상흔적은 동그라미로 표시). 구체적으로, 우측 패널은 감염 2일차에 수확한 실험쥐의 폐를 균질화하여 감염에 의해 유발된 염증성 사이토카인 IL-6을 효소결합면역흡착검사를 사용해 분석한 결과를 나타내는 도이다(점선은 검출한계(LOD, limit of detection)를 나타냄).
도 11은 상기 도 9e에서 기술한 동물 실험에서 오미크론 BA.5 (B.1.1.529.5) 변이주 스파이크 단백질을 암호화한 mRNA-LNP 백신을 2주 간격으로 2회 근육주사하고 2차 접종 후 2주 뒤(4주차) 혈청내 중화항체 역가를 다양한 오미크론 하위 변이주 슈도바이러스를 사용해 분석한 결과를 나타내는 도이다(ND50: neutralizing dilution 50). 구체적으로, 우측 패널은 ND50의 수치를 나타내는 표이다(***는 P <0.001; ****는 P <0.0001; ns는 not significant (unpaired two-tailed Student t-test), 점선은 검출한계(LOD, limit of detection)를 나타냄). 이때, yUTP와 UTP를 사용해 제조한 mRNA 백신 각각에 대한 마우스 개체별 데이터 포인트는 각기 다른 색들로 구분해 표시하였다(GMT: geometric mean titer, Ratio: yUTP와 UTP를 사용해 제조한 mRNA 백신 접종으로 생성된 중화항체에 대한 제시한 변이주들에 대한 상대적 중화능을 BA.5 변이주에 대한 중화능을 기준으로 비교 분석한 값).
도 12a는 R685S와 R815M 치환을 도입하여 스파이크 단백질 절단과 세포막 융합을 차단시킨 사스코로나바이러스2 오미크론 하위 변이주 XBB.1.5 변형 스파이크 항원 단백질(XBB.1.5_SM)을 암호화하고 있는 mRNA를 LNP에 제형후 쥐(BALB/c)에 근육 주사하여(3주 간격으로 D0와 D21에 2회) 면역원성을 평가하는 실험 스케줄과 mRNA의 모식도이다. mRNA는 비변형 UTP를 사용하여 합성하였으며 5' 말단은 cap 구조를 지니고 있다.
도 12b는 상기 도 12a에서 기술한 백신 2차 접종 후 2주 뒤(4주차) 혈청내 XBB.1.5 스파이크 단백질 결합항체 수치를 효소결합면역흡착검사 방법으로 분석한 결과를 나타내는 도이다. 구체적으로, 좌측부터 차례대로 전장 스파이크 단백질 결합항체 총 IgG 역가치, 수용체결합부위(RBD) 결합항체 총 IgG 역가치를 나타낸다.
도 12c는 상기 도 12a에서 기술한 백신 접종 후 2주 뒤(4주차) 혈청내 중화항체 역가를 슈도바이러스를 분석한 결과를 나타내는 도이다(ND50: neutralizing dilution 50, PNA: pseudovirus neutralization assay. ND: not detected (미검출), 점선은 검출한계(LOD, limit of detection)를 나타냄).
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예
실시예
1. 사스코로나바이러스2 Vero E6 세포주 적응형 변이 검출
질병관리청 국가병원체자원은행에서 분양 받은 2개의 사스코로나바이러스2 분리주(NCCP43326 및 NCCP43331)를 사바나원숭이 신장 유례 세포주인 Vero E6 세포주에서 계대 감염하며 스파이크 단백질의 절단양상을 관찰하였다.
Vero E6 세포(1 × 105 cells/6-well-plate well)에 사스코로나바이러스2를 감염 다중도(MOI) 0.01로 감염시킨 후 3일 후 바이러스를 채취하여 새로운 Vero E6세포(1 × 105 cells/6-well-plate well)에 다중도 0.01로 감염시키는 방식으로 반복 계대 감염실험을 진행하였다. 2번의 계대 후(이하 P2로 명명) 감염된 세포를 용해하여 세포용해액을 SDD-PAGE후 사스코로나바이러스2 스파이크 단백질의 C 말단(C-terminus)를 표적하는 항체를 사용한 면역블롯팅(immunoblotting)으로 스파이크 단백질을 검출한 결과, NCCP43326 바이러스로 감염된 세포 용해액에서만 스파이크 단백질 절단양상이 다르게 나옴을 볼 수 있었다(도 1a).
또한, NCCP43326 바이러스를 Vero E6 세포주에서 2번 계대하는 과정 중 배양액에서 얻은 사스코로나바이러스2로부터 바이러스 RNA를 분리한 후 스파이크 단백질 암호화 부위만을 역전사 반응으로 cDNA를 제조하고, 이를 중합 효소 연쇄 반응을 통하여 증폭 후 플라스미드 DNA에 클로닝 하여 11개의 독립적 클론에 대한 유전자 서열을 분석하였다. 그 결과, 퓨린 단백질 분해효소가 인식해 절단할 수 있는 부위에서 R685H 혹은 R685S 아미노산 치환을 유도하는 2개의 대표적인 돌연변이를 찾아내었다(도 1b). 이들 11개 각 클론에서 685번과 815번 아미노산 주변에서 이들을 포함해 2개 이상의 이중변이를 가진 스파이크 단백질 코딩 유전자는 발견할 수 없었다. 즉 이들 변이가 개별적으로 바이러스 유전자에 도입된 변이주가 생성됨을 확인하였다(도 1c).
또한, 상기한 계대를 거친 NCCP43326번 바이러스로부터 추출한 RNA를 차세대 서열분석 기법으로 각 포지션별 리드수(positional read depth)를 약 180개로 설정하여 분석하였다. 그 결과, 바이러스 유전자 내 스파이크 코딩 서열에서 돌연변이가 다양하게 존재함을 확인하고, 이들 중 50% 이상이 685번 아미노산 위치에 세린(Ser) 혹은 히스티딘(His)으로 아미노산이 치환되어 있음을 확인하였다(도 1d).
2. 스파이크 단백질내 퓨린(furin) 효소 절단부위 변이 기능 확인
상기 실시예에서 발견한 퓨린(furin) 단백질 절단효소의 절단부위에서 발견되는 변이가 바이러스의 특성에 영향을 주었는지를 확인하기 위해, NCCP43326와 NCCP43336 P2 바이러스 스탁을 사용해 바이러스 증식속도를(growth kinetics)를 분석하였다.
Vero E6 세포(1 × 105 cells/6-well-plate well)에 감염 다중도 0.01로 각 바이러스를 감염시킨 후 감염 24시간, 48시간 및 72시간 후 배양액 내 바이러스 RNA 유전자 카피 수를 qRT-PCR로 정량 분석하였다. 그 결과, 절단되지 않는 스파이크 단백질을 주종으로 만들어 내는 NCCP43326 분리주가 절단되는 스파이크 단백질을 발현하는 NCCP43331에 비해, 감염 후 24시간 또는 48시간 뒤에 더 많은 양의 바이러스를 만들어 분비하고 있음을 확인하였다(도 2).
3. 사스코로나바이러스2 스파이크 단백질 685번 아미노산 변이 기능 평가
사스코로나바이러스2 스파이크 단백질의 685번 아미노산이 아르기닌에서 히스티딘이나 세린으로 변이되었을 때 나오는 당단백질의 기능 변화를 분석하기 위하여 이종 바이러스인 사스코로나바이러스2의 스파이크 단백질이 표면에 로딩되어 있는 슈도바이러스(pseudotyped virus)를 제작하여 숙주세포 진입에 미치는 영향을 평가하였다.
사스코로나바이러스2 스파이크 단백질을 레트로바이러스의 한 종류인 MLV (murine leukemia virus)의 포장(packaging) 단백질과 함께 발현시키면 사스코로나바이러스2 스파이크 단백질로 바이러스 입자 표면이 수식된 레트로바이러스 슈도바이러스가 만들어지게 된다. 슈도바이러스는 세포진입기작과 항원성에 있어 사스코로나바이러스2를 모방하기에, 병원성이 높은 사스코로나바이러스2를 대체하여 바이러스 진입과정을 연구 시 유용하게 사용된다.
먼저 685번 아미노산이 변이된 스파이크 단백질을 가진 슈도바이러스를 생성하기 전 각 변이에 의한 스파이크 단백질 절단양상 변화 여부를 분석하였다. HEK293T 세포주에 이들 스파이크 단백질을 발현하는 플라스미드 DNA를 형질주입한 후 사스코로나바이러스2 스파이크 단백질의 C 말단(C-terminus)을 특이적으로 인식하는 항체를 사용한 면역블롯팅 분석으로 스파이크 단백질을 검출한 결과, 685번 아미노산이 세린(Ser, R685S) 또는 히스티딘(His, R685H)로 치환된 스파이크 단백질들에서 S1과 S2로의 절단이 차단되는 것을 확인하였다(도 3a).
또한 오미크론 BA.1 스파이크 단백질 685번째(Wuhan-Hu-1 대표서열 기준) 아르기닌 잔기를 19종의 다른 아미노산으로 치환한 변형 스파이크를 발현하는 벡터를 제작하여 HEK293T세포주에서 이들 변형 스파이크가 퓨린을 포함한 단백질 분해효소에 의해 절단되는 양상을 분석하였다. 사스코로나바이러스2 스파이크 단백질의 C 말단(C-terminus)을 특이적으로 인식하는 항체를 사용한 면역블롯팅 분석으로 스파이크 단백질을 검출한 결과, 아르기닌을 제외한 다른 아미노산으로 치환시킨 변형 스파이크 항원들에서는 S2 도메인 생성이 억제되는 것을 확인할 수 있었다(도 3b).
이후, 상기 방법으로 슈도바이러스를 생성하여 슈도바이러스에도 포장용 세포(packaging cell) 내부에서 보이는 양상의 스파이크 단백질이 로딩이 되어 있는지를 확인하고자, 슈도바이러스를 용해 후 면역블롯팅 방법으로 스파이크 단백질을 검출하였다. 그 결과, 슈도바이러스 입자에도 포장용 세포에서 보이는 양상과 같은 형태의 절단되어 있지 않은 스파이크 단백질이 탑재되어 있음을 확인하였다(도 3c).
그 후, 생성된 슈도바이러스를 이용하여 사스코로나바이러스2의 수용체를 발현하고 있는 HEK293T/ACE2 세포주와 Vero E6 세포주에서의 세포진입효율을 비교하였다. 세포진입효율은 나노루시퍼라제 발광 효소의 역가를 측정해 분석하였다. 이 효소는 슈도바이러스에 포장되어 있는 발광효소(luciferase) 유전자가 세포내 전달 후 전사로 생성되는 mRNA을 통해 발현됨으로, 발광효소 활성을 측정해 바이러스 진입능을 비교할 수 있다. 분석 결과, 야생형과 비교하여 685번 아미노산이 변이된 스파이크 단백질이 탑재된 슈도바이러스가 약 15배 우월한 세포진입 효율을 보임을 확인하였다(도 3d). 이러한 진입효율 향상은 이들 furin 절단을 방지하는 특정 아미노산 치환으로 유발된 구조 변화가 스파이크 삼량체에서 더 많은 수의 수용체결합부위를 노출하는 결과를 나았을 가능성을 말해주고 있다. 또한, 이들 변형 스파이크 단백질이 ACE2 수용체를 발현하고 있는 HEK293T/ACE2 세포주 및 Vero E6 세포주 모두에서 수용체와 결합하는 능력이 야생형 스파이크 단백질에 비해 우월함을 보여주고 있다.
4. 퓨린 효소 절단차단 변이에 따른 수용체결합부위 추가 노출 가능성 평가
685번 아미노산의 변이에 따른 단백질의 구조변화에 의해 수용체결합부위가 추가적으로 노출되는지 확인하기 위해 상기 실시예에서 생성하였던 슈도바이러스와 수용체결합부위를 특이적으로 인식하는 재조합 단클론 항체를 이용하여 중화항체에 대한 반응성을 비교하였다.
그 결과, 야생형과 비교하여 단백질 절단이 차단된 스파이크 단백질이 탑재된 슈도바이러스가 이 중화 항체에 더 민감하게 반응하여 바이러스의 진입이 억제되는 것을 확인할 수 있었다(도 4a 및 도 4b). 야생형 스파이크를 탑재하고 있는 슈도타입 바이러스의 HEK293T/ACE2 세포주로의 진입을 1log10 억제할 수 있는 양의 RBD 인식 항체를(2.5 μg/ml 최종농도) 사용시, 야생형 스파이크 단백질 대비 변형 스파이크의 ACE2를 통한 세포내 진입이 약 1log10배 더 억제될 정도로 항체 인식 부위가 노출된 구조를 잘 형성할 수 있음을 확인하였다(도 4b).
5. 퓨린 효소 절단차단 변이에 따른 수용체결합능 변화 평가
685번째 아르기닌 아미노산의 변이에 따른 단백질의 구조변화에 의해 추가적으로 노출되는 수용체결합부위가 세포진입시 끼치는 영향을 평가하기 위하여, ACE2 수용체 단백질을 점차 증가하게 발현시킨 HEK 293T 세포주에 Wuhan-Hu-01 유래 야생형 스파이크와 여기에 R685S 치환을 도입시킨 변형 스파이크 단백질을 각각 탑재한 두 종류의 슈도바이러스를 사용해 이들 스파이크 단백질을 통한 바이러스의 세포내 진입효율을 비교하였다. ACE2 수용체 단백질을 암호화하고 있는 DNA 플라스미드를 0.1 μg, 1 μg 및 10 μg HEK 293T에 트렌스펙션하여 점차 증간된 수준의 ACE2 단백질을 발현시킨 후, 야생형과 R685S 스파이크 단백질을 탑재한 슈도바이러스를 트렌스덕션시켜 세포진입효율을 평가하였다. 그 결과, 가장 낮은 수준의 수용체 단백질이 발현되고 있을 때, R685S 치환을 지닌 스파이크를 탑재하고 있는 슈도바이러스가 야생형 스파이크 탑재 슈도바이러스에 비해 약 200배 정도 향상된 세포진입효율을 보여줌을 확인하였다. 반면, 수용체 단백질을 가장 많이 발현한 조건에서는 약 10배 정도로 그 차이가 줄어드는 것을 확인하였다(도 5a 및 도 5b). HEK 293T 세포주에 ACE2 수용체 단백질 발현 벡터양을 증가시킴에 따라 발현양도 증가되는 것을 면역블랏팅 분석으로 확인하였다(도 5c).
6. 스파이크 단백질 절단을 억제하는 815번 아미노산 서열 분석
상기 실시예 3에서 오미크론 BA.1 스파이크 단백질 스파이크 단백질 S1/S2 절단위치의 아미노산 치환을 통해 S1/S2 부위에서 절단이 억제됨을 확인한 이후, 퓨린외에 다른 단백질 분해 효소에 의해 절단될 수 있는 S2' 절단부위에 존재하는 815번째 아미노산(Wuhan-Hu-1 대표서열 기준) 치환 효과를 분석하였다. 기존 아르기닌으로부터 총19개의 아미노산으로 각각 치환하여 스파이크 단백질 절단에 영향을 주는 아미노산군을 결정하였다.
구체적으로 오미크론 BA.1 스파이크 단백질 815번째(Wuhan-Hu-1 대표서열 기준) 아르기닌 잔기를 19종의 다른 아미노산으로 치환한 변형 스파이크를 발현하는 벡터를 제작하여 HEK293T세포주에서 이들 변형 스파이크들이 퓨린을 포함한 세포내 단백질 분해효소에 의해 절단되는 양상을 분석하여 스파이크 단백질 절단에 영향을 주는 아미노산군을 결정하였다. 사스코로나바이러스2 스파이크 단백질의 C 말단(C-terminus)을 특이적으로 인식하는 항체를 사용한 면역블롯팅 분석으로 스파이크 단백질을 검출한 결과, 아르기닌, 히스티딘, 라이신을 제외한 다른 아미노산으로 치환된 변형 스파이크 항원들에서는 S2 도메인 생성이 억제되는 것을 확인할 수 있었다(도 6).
7. 스파이크 단백질 815번 아미노산의 단백질 절단서열 비표적화에 따른 스파이크 단백질 기능 변화 분석
상기 실시예 4,5에서 보여준 것 같이 685번 아미노산 위치에서 발견된 상기한 아미노산 치환들은 스파이크 단백질 생성과정 중 절단을 차단하나, ACE2 수용체에 부착하는 능력이 유지되고 있어 슈도바이러스의 세포내로의 진입을 유도할 수 있음을 확인하였다. 상기 실시예에서 보여준 결과들은 이들 비절단 스파이크 단백질의 다른 위치에서 절단이 일어나 세포막 또는 엔도좀 막에서 세포융합이 일어나 슈도타입바이러스 유전자를 방출할 수 있음을 시사하고 있다. 나아가 실시예 6에서는 S2' 절단 부위에 특정 아미노산으로의 치환이 스파이크 단백질 절단에 영향을 미치는 것을 보여주었다. 이에, 본 발병자들은 사스코로나바이러스2 스파이크 단백질에 685번 아미노산 외에 추가적으로 존재하는 스파이크 단백질 절단효소의 표적인 815번 아미노산 아르기닌을 알라닌으로 치환하여 바이러스 진입에 미치는 영향을 분석하였다.
상기한 스파이크 단백질 815번째 아미노산에 존재하는 S2′절단위치에 있는 R815 잔기를 알라닌으로 치환한 R815A 변형 스파이크의 경우 바이러스 진입능이 완전히 손상되어 있음을 확인하였다. 상기 실시예에서 685번 아미노산에 변이를 주었을 땐 진입이 향상되었던 슈도바이러스의 세포내 진입 역시 815번 아미노산에 R815A 변이를 도입할 경우 차단되는 것을 확인하였다(도 7).
8. 변형 스파이크 단백질의 세포막 융합능 비교 평가
S1/S2 절단위치인 685번 아미노산과 S2′절단위치인 815번 아미노산 잔기들을 각각 세린과 알라닌으로 치환한 백신 항원 후보 스파이크 단백질의 세포막융합 유도능을 확인하였다. 야생형(WT) 스파이크 단백질(Wuhan-Hu-1 주와 델타 변이주 스파이크 단백질)은 수용체인 ACE2 단백질과 같이 발현되었을 때, 두 단백질이 결합한 후 세포막 융합을 유도시켜 합포체를 생성시켰다(도 8a). 반면, S1/S2 절단위치인 R685 아미노산을 세린으로 치환할 경우 세포막융합능을 확연하게 상실하여 다핵거대세포가 생성되지 않는 것을 확인하였다(도 8a). 또한, R815A 치환은 퓨전 펩타이드 노출을 원천 차단시켜 세포막 융합을 전혀 일으키지 못하게 하는 것을 볼 수 있었다. 이들 아미노산 치환을 델타(B.1.617.2) 변이주 스파이크 단백질에 도입시에도 동일하게 세포 융합이 억제되는 것을 확인하였다(도 8a, 아래 판넬).
나아가, 도 8b에 기술된 DSP (dual split protein) 에세이를 이용한 세포막융합능 평가 실험을 통해 각 스파이크 단백질의 세포막융합능을 평가하였다. 도 8a에서 나타난 현미경을 통한 시각적인 평가에선 685번과 815번 각 아미노산 잔기들이 각각 세린 및 알라닌으로 치환된 변형 스파이크 단백질의 경우 세포 융합이 현저히 억제되어 다핵거대세포가 생성되지 않았던 것에 달리, 세포 융합능을 민감하게 정량 평가할 수 있는 DSP 세포막융합능 평가 실험에서는 단일 아미노산 치환을 지닌 변형 스파이크 단백질(R685S와 R815A) 경우에도 야생형 보다는 낮지만 음성대조군보다는 높은 세포융합능을 보였다(도 8c). 그러나 685번과 815번째 두 아미노산을 각각 세린 및 알라닌으로 모두 치환시켜 S1/S2 위치에서의 절단을 억제시킨 변형 스파이크 단백질(SA)는 세포막융합능을 상실함을 확인할 수 있었다. 유사하게 현재 현재 사용 중인 mRNA 백신이 발현하는 986번 및 987번 위치에 프롤린이 도입된 스파이크 단백질 항원(2P)역시 변형 스파이크 단백질을 전융합형 구조로 유지시켜 세포융합을 유도하지 않음을 확인할 수 있었다(도 8c).
이런 변형 단백질들에 대한 세포융합능은 오미크론 BA.5 변이주 서열 기반의 스파이크 단백질을 이용한 동일 실험에서도 같은 양상으로 관찰되었다(도 8d).
상기 세포융합능 비교 실험에서 사용한 Wuhan-Hu-1 및 오미크론 BA.5 유래 야생형(WT) 스파이크 단백질과 상기한 단일 혹은 2개의 아미노산 치환을 지닌 변형스파이크 등의 절단 양상을 분석하였다. 이들 스파이크 항원 단백질을 발현하는 플라스미드 DNA를 HEK293T 세포주에 형질주입한 후 48시간 뒤 세포 용해물을 면역블롯팅 방법으로 분석한 결과, SA 치환 도입은 S1/S2 부위에서의 절단을 억제함을 확인하였다(도 8e). 반면 전융합형 스파이크를 발현하는 2P 치환을 지닌 스파이크 항원은 다량의 S2 도메인을 생성하는 것을 볼 수 있었다(도 8e). 오미크론 BA.5 변이주 스파이크를 사용한 실험에서도 유사한 결과를 확인하였다(도 8f 및 도 8g). 스파이크 단백질 절단으로 생성되는 S1 도메인의 세포외로의 방출은 TLR4(Toll-like receptor 4)로 불리는 선천성면역반응 유도 수용체를 자극하여 염증 반응을 촉발할 가능성이 있다. "2P 설계"와 달리 "SA" 치환을 지닌 스파이크 절단이 억제된 변형 스파이크 단백질은 S1과 S2 도메인을 생성하지 않아 안전한 백신의 항원으로 사용될 수 있음을 확인하였다.
9. 스파이크 절단이 억제된 변형 스파이크 항원의 면역원성 평가
상기 685번과 815번 두 아미노산에 모두 변이를 준 이중 변이 스파이크 단백질의 면역원성을 확인하기 위하여, 백신 항원 설계 서열을 포함하는 스파이크 단백질 발현 mRNA를 합성하고 LNP 제형한 후 제형화된 백신을 실험쥐에 근육주사하여 중화항체 역가를 분석하였다.
mRNA-지질나노입자 백신을 만들기 위하여, 사스코로나바이러스2 B.1.617.2 델타 변이주의 서열을 가진 스파이크 단백질과 B.1.1.529 오미크론 BA.1 변이주의 서열을 가진 스파이크 단백질과 B.1.1.529.5 오미크론 BA.5 변이주의 서열을 가진 스파이크 단백질에 이중 변이를 준 스파이크 단백질 서열을 암호화하고 있는 mRNA(도 9a, 도 9c 및 도 9e)를 시험관내 전사(in vitro transcription, IVT)를 통해 생성하였다. 시험관내 전사 시 변형 핵산인 슈도유리딘 삼인산 뉴크레오타이드(pseudouridine triphosphate, yUTP)을 넣어주어 외부 mRNA 주입시 세포에서 유도될 수 있는 선천성 면역반응을 회피하였다. B.1.1.529.5 오미크론 BA.5 변이주의 서열을 가진 mRNA의 경우 yUTP와 비변형 핵산인 유리딘 삼인산 뉴트레오타이드(UTP)를 사용해 mRNA 각각 합성해 면역원성을 비교하였다. 사용한 mRNA 시험관내 전사 시 TriLink 사의 CleanCap® Reagent AG [(3′OMe) m7(3′OMeG)(5′)ppp(5′)(2′OMeA)pG]을 같이 넣어주어 5′말단에 캡핑이 이루어져 단백질 발현이 향상되도록 하였다.
mRNA-지질나노입자는 이온화지질(ionizable lipid, ALC-0315)과 디스테아로일포스파티딜콜린(distearoylphosphatidylcholine, DSPC)에 콜레스테롤과 폴리에틸렌글리콜이 달린 지질(polyethylene glycol conjugated lipid, ALC-0159)을 조합한 지질 용액과 생성된 mRNA를 미세유체관을 이용하여 제형화하였다.
제형화한 델타 변이주 기반 mRNA-지질나노입자 백신을 리보그린을 이용한 흡광도 측정법으로 제형된 mRNA양을 정량한 후 1 μg 용량으로 쥐(BALB/c, 군당 5두) 엉덩이근육에 근육주사하였고, 3주 후 동일 양의 백신을 두번째로 접종하였다(도 9a). 동일한 방식으로 제조한 오미크론 BA.1 변이주 기반 mRNA-지질나노입자 백신 역시 1 μg 용량으로 쥐(BALB/c, 군당 8두) 2주 간격으로 2회 접종하였다(도 9c). 오미크론 BA.5 변이주 기반 mRNA-지질나노입자 백신 역시 동일한 용량으로 쥐(BALB/c, 군당 8두)에 2주 간격으로 2회 접종하였다(도 9e).
접종한 mRNA 백신이 발현한 특정 이중 변이가 도입되어 절단이 억제된 스파이크 단백질의 면역원성을 확인하기 위해 두번째 백신 접종 후 2주 후 혈청을 분리하였다. 효소결합면역흡착검사(ELISA, enzyme-linked immunosorbent assay)를 이용한 결합항체 역가분석법을 통해 BA.1 변이주 기반 mRNA-지질나노입자 백신의 높은 스파이크 단백질 결합항체 생성능을 확인하였다(도 9d). 나아가 BA.5 변이주 기반 mRNA 백신 2종류 모두(yUTP 및 UTP를 사용해 제조한 mRNA) 유사한 수준의 높은 결합항체 역가치를 보여주는 것을 확인하였다(도 9f). yUTP로 제조한 mRNA 백신을 접종한 군에서 분리한 혈청내에 Th1 및 Th2 활성화로 유도되는 수용체결합부위(RBD) 결합항체 IgG2a와 IgG1가 균형 있게 검출됨을 확인하였다(도 9f 우측 패널). 또한 슈도바이러스와 생바이러스를 이용한 중화항체 역가분석법으로 분석 시 모든 백신접종 군에서 음성대조군 대비 ND50(50%의 바이러스 중화 효능을 보여주는 혈청 희석 배수) 값이 1,000 이상으로 높게 나타남을 확인하였다(도 9b 및 9g). 마지막으로 BA.5 스파이크 단백질의 서열을 타일링한 15-mer 길이의 펩타이드 풀을 이용한 ELISpot 에세이를 진행하여 yUTP 및 UTP를 사용해 제조한 mRNA 백신접종 군에서 음성대조군 대비 활성화된 T 세포가 분비하는 IFN-γ가 검출되는 세포수를 나타내는 SFU(spot forming unit) 값이 약 2000 수준으로 높게 나타남을 확인하였다(도 9h).
10. 스파이크 절단이 억제된 이중 변이를 포함한 스파이크 항원 단백질의 바이러스 감염 방어 효능 평가
상기 실시예에서 제작한 오미크론 BA.5 기반 mRNA-LNP 백신의 바이러스 감염에 대한 방어 효능을 평가하기 위하여 실험쥐 (BALB/c, 위약군 6마리, 백신접종군 5마리)의 엉덩이근육에 2주 간격으로 2회 접종하였다. 높은 역가(~106 end-point titer)의 RBD 결합항체가 생성됨을 부스터 접종 후 2주 후 분리한 혈청을 사용한 ELISA 분석을 통해 확인하였다(도 10b). 부스터 백신 접종 후 19일 후 오미크론 BA.5 (B.1.1.529.5) 변이주 바이러스를 비강을 통해 감염(1 × 105 PFU) 시켜 공격접종에 대한 방어능을 평가하였다(도 10a).
또한, 공격접종 2일 후 위약군에서는 바이러스 RNA와 감염성 있는 바이러스가 폐조직에서 검출된 반면, 백신접종군에서는 검출한계 미만 수준으로 바이러스 감염이 억제되는 것을 확인하였다(도 10c). 나아가 공격접종 2일차에 조직면역학적분석(IHC)을 통해 바이러스 캡시드 단백질(N)도 백신접군에서는 검출되지 않음을 확인하였다(도 10d, 상단 판넬). H&E 염색 실험 결과는 백신 접종군 폐 조직에서 병변이 현저하게 감소됨을 보여주고 있으며(도 10d, 하단 판넬), 염증 사이토카인인 IL6의 농도도 감소됨을 확인하였다(도 10d, 우측 바 그래프).
11. 이중 변이를 포함한 BA.5 변이주 스파이크 백신의 변이주에 대한 교차 면역반응 평가
상기 실시예 9의 백신 접종군에서 분리한 혈청과 제시한 변이주 스파이크 단백질을 탑재한 슈도바이러스들을 사용하여 BA.5 스파이크 항체의 다른 변이주에 대한 중화능을 비교한 결과, 테스트한 BQ.1, BA.2.75.2, XBB.1 변이주에 대해서는 BA.5 대비 중화능이 약화되는 것을 볼 수 있으나, 가장 BA.5 스파이크 항체에 대해 회피력이 높은 XBB.1에 대해서도 ND50값이 521로 나타나 방어력이 백신 접종 후 상당기간 유지될 수 있을 가능성을 확인하였다(도 11). 여려 변이주에 대한 교차 중화능은 yUTP와 UTP로 제조한 mRNA 백신간에 큰 차이를 보이지 않는 것도 확인하였다(도 11 표 하단에 표시된 각 변이주에서의 상대적 중화능 ratio 값 비교).
12. 이중 변이를 포함한 XBB.1.5 변이주 변형 스파이크의 면역원성 평가
상기 실시예 9, 10 및 11에서 도입한 이중 변이와 상이한 R685S와 R815M 치환(이하 SM 치환)을 도입하여 변형시킨 스파이크 단백질의 면역원성을 분석하기 위하여, 실시예 9에 기술한 방법과 같이 해당 이중 변이가 도입된 변형 스파이크 단백질 발현 mRNA를 비변형 UTP를 사용하여 합성하고 LNP로 제형화 한 후 제형화된 백신을 1 ㎍ mRNA 용량으로 실험쥐에 3주 간격으로 2회 근육 주사하였다(도 12a).
다음 2차 백신 접종 2주뒤 혈청내 결합항체와 중화항체 역가를 효소결합면역흡착검사법으로 분석하였다. SM 치환을 지닌 XBB.1.5 변형 스파이크 단백질(XBB.1.5_SM)은 전장 스파이크 단백질과 수용체결합부위(RBD)에 결합하는 항체가가 모두 107을 넘을 정도로 높은 수준의 항체를 생성하는 확인하였다(도 12b). 또한, 슈도바이러스를 이용한 중화항체 역가분석법으로 분석 시 백신접종 군에서 음성대조군 대비 ND50(50%의 바이러스 중화 효능을 보여주는 혈청 희석 배수) 값이 10,000 이상으로 높게 나타남을 확인하였다(도 12c).

Claims (18)

  1. 코로나바이러스(coronavirus)의 스파이크 단백질(spike protein)의 숙주 단백질 분해효소 절단 부위가 변형된, 코로나바이러스의 스파이크 항원 단백질.
  2. 청구항 1에 있어서, 상기 절단 부위는 코로나바이러스(coronavirus)의 스파이크 단백질(spike protein)의 S1과 S2 도메인 서열 내의 퓨린 단백질 분해효소의 절단 부위 및 S2' 서열 내의 단백질 분해효소의 절단 부위 중 선택된 어느 하나 이상인, 단백질.
  3. 청구항 1에 있어서, 상기 코로나바이러스는 사스코로나바이러스(SARS-CoV: Severe Acute Respiratory Syndrome Coronavirus1), 사스코로나바이러스2(SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus2), 메르스코로나바이러스(MERS-CoV: Middle East respiratory syndrome coronavirus), 인간코로나바이러스(HCoV-229E: human coronavirus 229E) 및 이들의 변이체(variant)로 이루어진 군에서 선택되는 하나 이상인, 단백질.
  4. 청구항 2에 있어서, 상기 코로나바이러스는 사스코로나바이러스2(SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus2)이며,
    상기 퓨린 단백질 분해효소의 절단 부위는 스파이크 단백질(spike protein)의 685번째 아미노산이고, S2' 서열 내의 단백질 분해효소의 절단 부위는 스파이크 단백질의 815번째 아미노산인, 단백질.
  5. 청구항 4에 있어서, 상기 퓨린 단백질 분해효소의 절단 부위의 685번 아미노산은 글리신(Glycine), 알라닌(Alanine), 발린(Valine), 류신(Leucine), 아이소류신(Isoleucine), 트레오닌(Threonine), 세린(Serine), 시스테인(Cysteine), 메티오닌(Methionine), 아스파르트산(Aspartic acid), 아스파라긴(Asparagine), 글루탐산(Glutamic acid), 글루타민(Glutamine), 라이신(Lysine), 히스티딘(Histidine), 페닐알라닌(Phenylalanine), 타이로신(Tyrosine), 트립토판(Tryptophan) 및 프롤린(Proline)으로 이루어진 군에서 선택되는 하나 이상의 아미노산으로 치환된 것인, 단백질.
  6. 청구항 4에 있어서, 상기 S2' 서열 내의 단백질 분해효소의 절단 부위는 스파이크 단백질의 815번 아미노산은 글리신(Glycine), 알라닌(Alanine), 발린(Valine), 류신(Leucine), 아이소류신(Isoleucine), 트레오닌(Threonine), 세린(Serine), 시스테인(Cysteine), 메티오닌(Methionine), 아스파르트산(Aspartic acid), 아스파라긴(Asparagine), 글루탐산(Glutamic acid), 글루타민(Glutamine), 페닐알라닌(Phenylalanine), 타이로신(Tyrosine), 트립토판(Tryptophan) 및 프롤린(Proline)으로 이루어진 군에서 선택되는 하나 이상의 아미노산으로 치환된 것인, 단백질.
  7. 청구항 1에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 유리 S1 도메인의 생성을 억제시키는 것인, 단백질.
  8. 청구항 1에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 세포막 융합을 억제시키는 것인, 단백질.
  9. 청구항 1에 있어서, 상기 변형된 코로나바이러스의 스파이크 항원 단백질은 바이러스의 세포내 진입 또는 바이러스 유전자의 세포내 전달을 억제시키는 것인, 단백질.
  10. 청구항 1 내지 9항 중 어느 한 항의 코로나바이러스의 스파이크 항원 단백질을 코딩하는 유전자를 포함하는, 코로나바이러스의 항원 단백질 발현용 재조합 벡터.
  11. 청구항 10의 재조합 벡터로 형질전환된, 형질전환체.
  12. 청구항 1 내지 9항 중 어느 한 항의 코로나바이러스의 스파이크 항원 단백질 또는 이를 코딩하는 유전자를 포함하는, 코로나바이러스에 대한 백신 조성물.
  13. 청구항 12에 있어서, 상기 백신 조성물은 중화항체 생성능을 증가시키는 것인, 백신 조성물.
  14. 청구항 1 내지 9항 중 어느 한 항의 코로나바이러스의 스파이크 항원 단백질을 포함하는, 코로나바이러스 감염증에 대한 예방 또는 치료용 약학적 조성물.
  15. 청구항 1 내지 9항 중 어느 한 항의 코로나바이러스의 스파이크 항원 단백질을 포함하는, 코로나바이러스 감염증 진단용 조성물.
  16. 청구항 15의 조성물을 포함하는, 코로나바이러스 감염증 진단 키트.
  17. 청구항 1 내지 9항 중 어느 한 항의 코로나바이러스의 스파이크 항원 단백질을 코딩하는 유전자를 대상체에 형질전환시키는 단계;를 포함하는, 코로나바이러스의 항원 유전자 도입 방법.
  18. 청구항 1 내지 9항 중 어느 한 항의 코로나바이러스의 스파이크 항원 단백질을 이를 필요로 하는 개체에 투여하는 단계;를 포함하는 코로나바이러스 감염증의 예방 또는 치료 방법.
PCT/KR2023/008308 2022-06-16 2023-06-15 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도 WO2023244044A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220073355 2022-06-16
KR10-2022-0073355 2022-06-16
KR1020230076843A KR20230173042A (ko) 2022-06-16 2023-06-15 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도
KR10-2023-0076843 2023-06-15

Publications (1)

Publication Number Publication Date
WO2023244044A1 true WO2023244044A1 (ko) 2023-12-21

Family

ID=89191659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008308 WO2023244044A1 (ko) 2022-06-16 2023-06-15 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2023244044A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021160850A1 (en) * 2020-02-13 2021-08-19 Institut Pasteur Measles-vectored covid-19 immunogenic compositions and vaccines
WO2021168318A1 (en) * 2020-02-21 2021-08-26 International Aids Vaccine Initiative Inc. Vaccine compositions for preventing coronavirus disease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021160850A1 (en) * 2020-02-13 2021-08-19 Institut Pasteur Measles-vectored covid-19 immunogenic compositions and vaccines
WO2021168318A1 (en) * 2020-02-21 2021-08-26 International Aids Vaccine Initiative Inc. Vaccine compositions for preventing coronavirus disease

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DU SHOUWEN, XU WANG, WANG YUHANG, LI LETIAN, HAO PENGFEI, TIAN MINGYAO, WANG MAOPENG, LI TIYUAN, WU SHIPIN, LIU QUAN, BAI JIEYING,: "The "LLQY" Motif on SARS-CoV-2 Spike Protein Affects S Incorporation into Virus Particles", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 96, no. 6, 23 March 2022 (2022-03-23), US , XP093119043, ISSN: 0022-538X, DOI: 10.1128/jvi.01897-21 *
PIERROS VASILEIOS, KONTOPODIS EVANGELOS, STRAVOPODIS DIMITRIOS J., TSANGARIS GEORGE TH.: "Unique peptide signatures of SARS-CοV-2 virus against human proteome reveal variants’ immune escape and infectiveness", HELIYON, ELSEVIER LTD, GB, vol. 8, no. 4, 1 April 2022 (2022-04-01), GB , pages e09222, XP093119046, ISSN: 2405-8440, DOI: 10.1016/j.heliyon.2022.e09222 *
YU SHI, ZHENG XU, ZHOU BINGJIE, LI JUAN, CHEN MENGDAN, DENG RONG, WONG GARY, LAVILLETTE DIMITRI, MENG GUANGXUN: "SARS-CoV-2 spike engagement of ACE2 primes S2′ site cleavage and fusion initiation", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 119, no. 1, 5 January 2022 (2022-01-05), XP093119044, ISSN: 0027-8424, DOI: 10.1073/pnas.2111199119 *

Similar Documents

Publication Publication Date Title
BE1023087B1 (fr) Antigenes du cytomegalovirus et leurs utilisations
FI110438B (fi) Menetelmä mutanttiherpesviruksen valmistamiseksi
WO2021221486A1 (en) Vaccine composition for preventing or treating infection of sars-cov-2
WO2022203358A1 (ko) 약독화된 레오바이러스 기반의 백신 조성물 및 이의 용도
CA2639074C (en) Marked bovine viral diarrhea virus vaccines
KR20160022919A (ko) 수포성 구내염 바이러스의 변형된 기질 단백질
WO2022045827A1 (ko) 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신
US20070003577A1 (en) Purified trimeric S protein as vaccine against severe acute respiratory syndrome virus infections
WO2023244044A1 (ko) 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도
JP2023523423A (ja) SARS-CoV-2に対するワクチン及びその調製物
WO2023048532A1 (ko) 레오바이러스 기반 신규한 백신플랫폼 및 이의 용도
WO2023080363A1 (ko) 2-플라스미드 시스템으로 제조된 가짜 포미 바이러스 및 이의 용도
Wachsman et al. Regulation of expression of herpes simplex virus (HSV) glycoprotein D in vaccinia recombinants affects their ability to protect from cutaneous HSV-2 disease
KR20240049802A (ko) 결핵 백신
US20230144060A1 (en) MERS-CoV VACCINE
WO2021215857A1 (ko) 삼량체를 형성하는 코로나-19 바이러스 (covid-19, coronavirus disease 2019)의 재조합 스파이크 단백질 및 식물에서의 상기 재조합 스파이크 단백질의 대량 생산 방법과 이를 기반으로하는 백신조성물 제조 방법
WO2022163902A1 (ko) 인체 감염 사스코로나 바이러스 예방 및 감염 증상 완화용 백신 조성물
KR20230173042A (ko) 변형된 코로나바이러스 스파이크 항원 단백질 및 이의 용도
US20080069830A1 (en) Dna Sequences, Peptides, Antibodies and Vaccines for Prevention and Treatment of Sars
WO2014046410A1 (ko) 노다바이러스의 바이러스 유사입자의 생산방법, 이를 발현하는 효모 세포주 및 이를 포함하는 백신 조성물
WO2022169339A1 (ko) 신규 핵산 분자
WO2012015270A2 (ko) 돼지생식기호흡기증후군 바이러스 감수성 세포주
WO2022015124A1 (ko) 중증급성호흡기증후군 코로나바이러스 2 감염 예방용 백신 조성물
WO2023121264A1 (ko) 변이 sars-cov-2 백신 조성물 및 이의 용도
WO2022065889A1 (ko) 재조합 단백질을 포함하는 사스-코로나바이러스-2 감염증 예방 또는 치료용 백신 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824257

Country of ref document: EP

Kind code of ref document: A1