WO2023243192A1 - 内燃機関制御装置及び内燃機関制御方法 - Google Patents

内燃機関制御装置及び内燃機関制御方法 Download PDF

Info

Publication number
WO2023243192A1
WO2023243192A1 PCT/JP2023/014127 JP2023014127W WO2023243192A1 WO 2023243192 A1 WO2023243192 A1 WO 2023243192A1 JP 2023014127 W JP2023014127 W JP 2023014127W WO 2023243192 A1 WO2023243192 A1 WO 2023243192A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
internal combustion
combustion engine
air
fuel mixture
Prior art date
Application number
PCT/JP2023/014127
Other languages
English (en)
French (fr)
Inventor
健太 光藤
直樹 米谷
英一郎 大畠
知幸 保坂
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023243192A1 publication Critical patent/WO2023243192A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks

Definitions

  • the present invention relates to an internal combustion engine control device and an internal combustion engine control method.
  • Patent Document 1 discloses an ignition device for an internal combustion engine and a control device for a vehicle that perform preliminary ignition in which a plurality of discharges are performed in a spark plug from an exhaust stroke to an intake stroke as ignition control for lean combustion.
  • the ignition device for an internal combustion engine disclosed in Patent Document 1 ends preliminary ignition before main ignition for combusting an air-fuel mixture and before outputting a fuel injection signal.
  • an object of the present invention is to provide an internal combustion engine control device and an internal combustion engine control method that can reduce misfires in lean burn by implementing preliminary ignition and suppress deterioration of an ignition system. shall be.
  • an internal combustion engine control device of the present invention controls an internal combustion engine that includes a combustion chamber and an ignition device that generates a spark to ignite the air-fuel mixture in the combustion chamber. do.
  • the internal combustion engine control device includes a control unit that controls an ignition device during an intake stroke of the combustion cycle of the internal combustion engine to perform preliminary ignition different from main ignition for igniting the air-fuel mixture.
  • the control unit determines the ignition period and frequency of the preliminary ignition signal to be output to the ignition device according to the flow state of the air-fuel mixture within the combustion chamber.
  • misfires in lean combustion can be reduced, and deterioration of the ignition device can be suppressed.
  • FIG. 1 is a diagram showing an example of the basic configuration of an internal combustion engine according to a first embodiment.
  • 1 is a functional block diagram illustrating a functional configuration of an internal combustion engine control device according to a first embodiment.
  • FIG. FIG. 3 is a diagram showing the flow velocity of the air-fuel mixture around the spark plug and the change over time in the preliminary ignition signal according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating a functional configuration of an internal combustion engine control device according to a second embodiment.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of an internal combustion engine control device according to a third embodiment.
  • FIG. 7 is a diagram showing the relationship between the flow rate of the air-fuel mixture and the intake valve lift according to the third embodiment.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of an internal combustion engine control device according to a fourth embodiment. It is a functional block diagram explaining the functional composition of an internal combustion engine control device concerning a 5th embodiment.
  • FIG. 1 is an overall configuration diagram showing an example of the basic configuration of an internal combustion engine according to a first embodiment of the present invention.
  • the internal combustion engine 1 shown in FIG. 1 may have a single cylinder or multiple cylinders, in this embodiment, the internal combustion engine 1 having four cylinders will be described as an example.
  • the internal combustion engine 1 includes a piston 101, a cylinder 102, and a cylinder head 103.
  • a crankshaft 105 is connected to the piston 101 via a connecting rod 104.
  • the cylinder head 103, the crown surface 101P of the piston 101, and the inner wall 102a of the cylinder 102 form a combustion chamber 106.
  • An ignition device 110 is arranged directly above the combustion chamber 106.
  • the ignition device 110 includes a spark plug 111 and an ignition coil 112.
  • the spark plug 111 has an electrode 113.
  • the electrode 113 generates a spark to ignite the air-fuel mixture M.
  • the combustion chamber 106 communicates with an intake port 121 and an exhaust port 122.
  • An intake valve 123 is provided in the combustion chamber 106 and the intake port 121.
  • the intake valve 123 opens and closes the intake port 121 side of the combustion chamber 106.
  • the exhaust port 122 is provided with an exhaust valve 124 .
  • the exhaust valve 124 opens and closes the exhaust port 122 side of the combustion chamber 106.
  • the intake valve 123 opens during the intake stroke, the air-fuel mixture M flows into the combustion chamber 106 from the intake port 121. Thereafter, the air-fuel mixture M is compressed by the piston 101. Then, when a main ignition signal is sent to the ignition coil 112 at an appropriate timing, the electrode 113 of the ignition plug 111 generates a spark.
  • preliminary ignition is performed to raise the temperature of the spark plug 111 to improve the combustibility of the air-fuel mixture M.
  • FIG. 2 is a functional block diagram illustrating the functional configuration of the internal combustion engine control device according to the first embodiment.
  • the internal combustion engine control device 201 (hereinafter referred to as "control device 201") shown in FIG. 2 is, for example, an engine control unit (ECU).
  • the control device 201 includes a flow velocity estimation section 202 and a preliminary ignition signal calculation section 203.
  • the flow velocity estimation section 202 and the preliminary ignition signal calculation section 203 correspond to the control section according to the present invention.
  • the flow velocity estimation unit 202 estimates the flow velocity of the air-fuel mixture M around the spark plug 111.
  • Various information necessary for estimating the flow speed of the air-fuel mixture M around the spark plug 111 is input to the flow speed estimating unit 202 .
  • Various information is detected or measured by the sensor group 204. Examples of the various information include intake air amount, crank angle, secondary voltage of ignition coil 112, valve profile, rotation speed of internal combustion engine 1, intake pressure, and cooling water temperature.
  • the intake air amount is the amount of air flowing into the combustion chamber 106.
  • the amount of intake air is measured by an air flow sensor provided at the intake port 121.
  • the crank angle is the rotation angle of the crankshaft 105.
  • the crank angle is detected by a crank angle sensor.
  • the crank angle sensor is provided on the radially outer side of a ring gear (not shown) attached to the crankshaft 105.
  • the secondary voltage of the ignition coil 112 is detected by a voltmeter provided in the electric circuit of the ignition device 110.
  • the valve profile is data indicating the lift amount of the intake valve 123 according to the crank angle.
  • the intake pressure is the pressure of the gas in the intake port 121.
  • the suction pressure is detected by a pressure sensor provided at the suction port 121.
  • the cooling water temperature is the temperature of the cooling water of the internal combustion engine 1. Cooling water temperature is measured by a water temperature sensor.
  • the water temperature sensor is provided in a water jacket (not shown) of the cylinder head 103.
  • the various information input to the flow velocity estimation unit 202 may be information regarding the combustion state in the previous combustion cycle and the flow state of the air-fuel mixture M around the spark plug 111 during the intake stroke. Further, the flow velocity estimating unit 202 may estimate the flow velocity of the air-fuel mixture M around the spark plug 111 based on a map created from numerical calculations and experimental results performed in advance. Further, the control device 201 may create a learning result or a map that associates the operating conditions with the estimated value of the flow velocity of the air-fuel mixture M from past operating data of the internal combustion engine 1.
  • the preliminary ignition signal calculation unit 203 calculates the preliminary ignition implementation period, the preliminary ignition start timing, and the preliminary ignition period (hereinafter referred to as “ Calculate the number of preliminary ignitions (hereinafter referred to as the ⁇ ignition frequency''), the electrical energy used for preliminary ignition, etc. For example, when the flow velocity of the air-fuel mixture M around the spark plug is high, the preliminary ignition signal calculation unit 203 shortens the period of preliminary ignition to reduce the electrical energy of preliminary ignition.
  • the preliminary ignition signal calculation unit 203 generates a preliminary ignition signal that repeats ON and OFF (see FIG. 3) according to the calculated preliminary ignition implementation period, start timing, ignition cycle, number of ignitions, electrical energy, etc. For example, in order to shorten the pre-ignition cycle, the pre-ignition signal cycle is shortened. In addition, when reducing the electrical energy used for preliminary ignition, the number of ON times of the preliminary ignition signal (the number of times of ignition) is reduced, or the frequency of the preliminary ignition signal is increased.
  • the preliminary ignition signal calculation unit 203 outputs the generated preliminary ignition signal to the ignition coil 112. As a result, a high voltage is applied to the electrode 113 of the spark plug 111, and a plurality of discharges (preliminary ignition) are performed according to the preliminary ignition signal.
  • Chemical species such as ozone generated by applying a high voltage to the electrode 113 can be diffused throughout the combustion chamber 106 by being carried by the flow of the air-fuel mixture M around the spark plug 111.
  • a preliminary ignition signal is generated with an ignition period and frequency (electrical energy to be used) in accordance with the timing at which chemical species such as ozone can be diffused well, and the flow rate of the air-fuel mixture M at that time. This makes it possible to reduce the number of preliminary ignitions and the electrical energy required for preliminary ignition.
  • FIG. 3 is a diagram showing the flow velocity of the air-fuel mixture M around the spark plug 111 and the change over time in the preliminary ignition signal.
  • the flow of the air-fuel mixture M around the spark plug 111 is not constant, but constantly fluctuates.
  • HEV Hybrid Electric Vehicle
  • the motoring speed at startup is faster than in vehicles equipped with only an internal combustion engine, so fluctuations in flow velocity during the intake process become noticeable.
  • the intake stroke 301 is composed of a high flow rate section 302 and a low flow rate section 303.
  • the high flow velocity section 302 may be defined, for example, as a section in which the flow velocity of the air-fuel mixture M around the spark plug 111 in the intake stroke 301 is equal to or higher than the average value 310.
  • the flow velocity of the air-fuel mixture M is relatively high. Therefore, in the high flow rate section 302, chemical species such as ozone generated by the pre-ignition discharge can be more effectively diffused into the combustion chamber 106.
  • the flow velocity of the air-fuel mixture M is relatively low. Therefore, in the low flow rate section 303, chemical species such as ozone are difficult to diffuse into the combustion chamber 106. As a result, the preliminary ignition in the low flow velocity section 303 does not improve the combustibility of the combustion chamber 106 as a whole, and its effect is limited.
  • the low flow rate section 303 is often in the latter half of the intake process 301, fuel may have reached the spark plug 111. If preliminary ignition is performed in this case, the thin air-fuel mixture around the spark plug 111 may be ignited and hydrocarbons may be generated. As a result, exhaust gas may deteriorate.
  • chemical species such as ozone generated by the preliminary ignition discharge performed in the high flow rate section 302 may return to the vicinity of the spark plug 111 again on the flow of the air-fuel mixture M. If electrical discharge occurs there, there is a concern that chemical species such as ozone will change to other chemical species, reducing the effectiveness of preliminary ignition.
  • the preliminary ignition signal 305 may be generated such that the number of ignitions and the total amount of electrical energy are less than the number of ignitions and the total amount of electric energy in the high flow rate section 302.
  • the preliminary ignition signal 306 when outputting the preliminary ignition signal from the high flow rate section 302 to the low flow rate section 303, the preliminary ignition signal 306 reduces the number of ignitions according to the flow speed of the air-fuel mixture M, the elapsed crank angle, etc. may be generated.
  • the preliminary ignition signal 307 may be generated with the frequency and ignition period changed depending on the flow speed of the air-fuel mixture M.
  • preliminary ignition is performed preferentially in the high flow rate section 302
  • the number of ignitions and the electrical energy used can be reduced compared to the case where preliminary ignition is performed throughout the intake stroke 301.
  • wear of the electrode 113 in the spark plug 111 can be suppressed, and an increase in temperature of the ignition coil 112 can be suppressed.
  • deterioration of the ignition device 110 can be suppressed.
  • chemical species such as ozone are efficiently distributed within the combustion chamber 106, combustibility during main ignition can be improved.
  • FIG. 4 is a functional block diagram illustrating the functional configuration of the internal combustion engine control device according to the second embodiment.
  • the internal combustion engine control device 401 (hereinafter referred to as "control device 401") shown in FIG. 4 is, for example, an engine control unit (ECU).
  • the control device 401 includes a flow velocity estimation section 402 and a preliminary ignition signal calculation section 403.
  • the flow velocity estimation section 402 and the preliminary ignition signal calculation section 403 correspond to the control section according to the present invention.
  • the flow velocity estimation section 402 has a discharge path length calculation section 421 and a flow velocity calculation section 422.
  • the secondary voltage (secondary voltage history 404) of the ignition coil 112 in the preliminary ignition performed in the previous combustion cycle is input to the discharge path length calculation unit 421.
  • the control device 401 has a storage unit (not shown) that stores a history 404 of secondary voltage.
  • the discharge path length calculation unit 421 calculates the length of the discharge path formed in the electrode 113 of the spark plug 111 from the input secondary voltage history 404.
  • the discharge path length calculation unit 421 calculates the length of the discharge path using a formula that associates the value of the secondary voltage with the discharge path length.
  • the discharge path length calculation unit 421 outputs the calculated discharge path length estimated value to the flow velocity calculation unit 422.
  • the flow velocity calculation unit 422 calculates the flow velocity of the air-fuel mixture M around the spark plug 111 in the previous combustion cycle from the estimated discharge path length value.
  • the flow velocity calculation unit 422 calculates the flow velocity of the air-fuel mixture M using an equation that associates the length of the discharge path with the flow velocity of the air-fuel mixture M around the spark plug 111.
  • the flow velocity calculation unit 422 outputs the calculation result (flow velocity) to the preliminary ignition signal calculation unit 403.
  • the preliminary ignition signal calculation section 403 includes a flow velocity section determination section 431 and a preliminary ignition signal generation section 432.
  • the flow velocity section determination unit 431 divides the intake stroke 301 into a high flow velocity section 302 and a low flow velocity section 303 based on the flow velocity of the air-fuel mixture M around the spark plug 111.
  • the preliminary ignition signal calculation section 403 outputs the high flow rate section 302 and the low flow rate section 303 to the preliminary ignition signal generation section 432.
  • the preliminary ignition signal generation unit 432 calculates the preliminary ignition implementation period, start timing, ignition period, number of ignitions, electrical energy, etc. based on the high flow rate section 302 and the low flow rate section 303. At this time, the preliminary ignition signal generation unit 432 may calculate the ignition period, the number of ignitions, the electrical energy, etc., taking into consideration the flow velocity of the air-fuel mixture M around the ignition plug 111.
  • the preliminary ignition signal generation unit 432 generates a preliminary ignition signal according to the execution period, start timing, ignition cycle, number of ignitions, electrical energy, etc. of preliminary ignition. Then, the preliminary ignition signal generation section 432 outputs the generated preliminary ignition signal to the ignition coil 112. As a result, a high voltage is applied to the electrode 113 of the spark plug 111, and a plurality of discharges (preliminary ignition) are performed according to the preliminary ignition signal.
  • the flow velocity of the mixture M around the spark plug 111 in the previous combustion cycle is fed back, and the flow velocity of the mixture M around the spark plug 111 in the current combustion cycle is estimated. do.
  • the high flow rate section 302 is detected from the flow speed of the air-fuel mixture M, and a preliminary ignition signal for performing preliminary ignition in the high flow rate section 302, for example, is generated (see preliminary ignition signal 304 in FIG. 3).
  • the number of ignitions and the electrical energy used can be reduced compared to the case where preliminary ignition is performed throughout the entire intake stroke 301.
  • wear of the electrode 113 of the spark plug 111 can be suppressed, and the temperature of the ignition coil 112 can be suppressed from increasing.
  • deterioration of the ignition device 110 can be suppressed.
  • chemical species such as ozone are efficiently distributed within the combustion chamber 106, combustibility during main ignition can be improved.
  • FIG. 5 is a functional block diagram illustrating the functional configuration of an internal combustion engine control device according to a third embodiment.
  • FIG. 6 is a diagram showing the relationship between the flow rate of the air-fuel mixture and the intake valve lift according to the third embodiment.
  • the internal combustion engine control device 501 (hereinafter referred to as "control device 501") shown in FIG. 5 is, for example, an engine control unit (ECU).
  • the control device 501 includes a flow velocity estimation section 502 and a preliminary ignition signal calculation section 403.
  • the preliminary ignition signal calculation unit 403 is the same as in the second embodiment.
  • the flow rate estimation section 502 and the preliminary ignition signal calculation section 403 correspond to the control section according to the present invention.
  • a valve profile 504, a crank angle 505, a rotation speed 506, and an intake pressure 507 are input to the flow velocity estimating unit 502.
  • the internal combustion engine system according to the third embodiment includes a rotation speed measuring section (not shown) that measures the rotation speed 506 of the internal combustion engine 1 and a pressure sensor (not shown) that detects the intake pressure 507.
  • the internal combustion engine system also includes a valve timing control section 508 that updates the valve profile 504 and a crank angle sensor 509 that detects the crank angle 505.
  • the valve timing control unit 508 changes the opening/closing timing of the intake valve 123, as represented by, for example, a VTC (variable timing camshaft) mechanism.
  • the valve timing control unit 508 updates the valve profile 504 when changing the opening/closing timing of the intake valve 123.
  • the flow velocity estimation section 502 includes a valve lift calculation section 521 and a flow velocity calculation section 522.
  • a valve profile 504 and a crank angle 505 are input to the valve lift calculation unit 521 .
  • the valve lift calculation unit 521 calculates the valve lift amount of the intake valve 123 with respect to the crank angle 505 based on the valve profile 504 and the crank angle 505.
  • the valve lift calculation section 521 outputs the calculated valve lift amount to the flow velocity calculation section 522.
  • the flow rate calculation unit 522 calculates the flow rate of the air-fuel mixture M around the spark plug 111 from the valve lift amount, rotational speed 506, and intake pressure 507.
  • the flow velocity calculation unit 522 outputs the calculated flow velocity of the air-fuel mixture M to the preliminary ignition signal calculation unit 403.
  • the processing of the flow velocity section determination section 431 and the preliminary ignition signal generation section 432 of the preliminary ignition signal calculation section 403 is the same as in the second embodiment, and therefore the description thereof will be omitted.
  • preliminary ignition is performed preferentially in the high flow rate section 302.
  • the number of ignitions and the electrical energy used can be reduced compared to the case where preliminary ignition is performed throughout the entire intake stroke 301.
  • wear of the electrode 113 of the spark plug 111 can be suppressed, and the temperature of the ignition coil 112 can be suppressed from increasing.
  • deterioration of the ignition device 110 can be suppressed.
  • chemical species such as ozone are efficiently distributed within the combustion chamber 106, combustibility during main ignition can be improved.
  • the flow velocity section determination unit 431 determines the period from the crank angle at which the intake valve 123 begins to open to the crank angle at which the intake valve 123 opens fully to the end of the opening, as the high flow velocity section 302. good.
  • a crank angle calculation unit is provided that calculates the crank angle at which the intake valve 123 begins to open and the crank angle at which the intake valve 123 fully opens from the valve lift amount calculated by the valve lift calculation unit 521.
  • FIG. 7 is a functional block diagram illustrating the functional configuration of an internal combustion engine control device according to a fourth embodiment.
  • the internal combustion engine control device 601 (hereinafter referred to as "control device 601") shown in FIG. 7 is, for example, an engine control unit (ECU).
  • the control device 601 includes a flow velocity estimation section 602 and a preliminary ignition signal calculation section 403.
  • the preliminary ignition signal calculation unit 403 is the same as in the second embodiment.
  • the flow rate estimation section 602 and the preliminary ignition signal calculation section 403 correspond to the control section according to the present invention.
  • a flow velocity map 604 and operating conditions 605 of the internal combustion engine 1 are input to the flow velocity estimation unit 602.
  • the operating conditions 605 include, for example, the rotation speed of the internal combustion engine 1, intake pressure, throttle opening, cooling water temperature, intake air amount, fuel injection amount, crank angle, and the like.
  • the internal combustion engine system includes a map updating section 611 that updates the flow velocity map 604 according to the operation of the internal combustion engine 1, and an operating condition acquisition section 612 that obtains the operating conditions 605.
  • Examples of the operating condition acquisition unit 612 include a throttle opening sensor that detects the opening of the throttle, a fuel flow meter that measures the amount of fuel injection, and the like.
  • the flow velocity map 604 associates the preset operating conditions 605 with the flow velocity of the air-fuel mixture M around the spark plug 111.
  • the flow velocity map 604 uses a map obtained by, for example, a three-dimensional fluid simulation or the like to obtain changes over time in the flow velocity of the air-fuel mixture M around the spark plug 111 with respect to the operating conditions 605.
  • the flow velocity map 604 may be one that defines the high flow velocity section 302 for the operating conditions 605.
  • the flow velocity estimation section 602 includes a map holding section 621, a map selection section 622, and a flow velocity calculation section 623.
  • the map holding unit 621 holds (stores) the supplied plurality of flow velocity maps 604.
  • the map selection unit 622 selects a flow velocity map 604 according to the operating condition 605 at that time from among the plurality of flow velocity maps 604 held in the map holding unit 621.
  • the flow velocity calculation unit 623 determines the flow velocity of the air-fuel mixture M around the spark plug 111 from the flow velocity map 604 selected by the map selection unit 622.
  • the flow velocity calculation unit 623 outputs the determined flow velocity of the air-fuel mixture M around the spark plug 111 to the preliminary ignition signal calculation unit 403.
  • the processing of the flow velocity section determination section 431 and the preliminary ignition signal generation section 432 of the preliminary ignition signal calculation section 403 is the same as in the second embodiment, and therefore the description thereof will be omitted.
  • preliminary ignition is performed preferentially in the high flow rate section 302.
  • the number of ignitions and the electrical energy used can be reduced compared to the case where preliminary ignition is performed throughout the entire intake stroke 301.
  • wear of the electrode 113 of the spark plug 111 can be suppressed, and the temperature of the ignition coil 112 can be suppressed from increasing.
  • deterioration of the ignition device 110 can be suppressed.
  • chemical species such as ozone are efficiently distributed within the combustion chamber 106, the combustibility of the air-fuel mixture M during main ignition can be improved.
  • FIG. 8 is a functional block diagram illustrating the functional configuration of the internal combustion engine control device according to the fifth embodiment.
  • the internal combustion engine system includes a plurality of internal combustion engines 1A, 1B, ... 1X.
  • the plurality of internal combustion engines 1A, 1B, ...1X each have spark plugs 111A, 111B, ...111X and ignition coils 112A, 112B, ...112X.
  • control device 701 The internal combustion engine control device 701 (hereinafter referred to as "control device 701") shown in FIG. 8 is, for example, an engine control unit (ECU).
  • the control device 701 includes a flow velocity estimation section 702 and a preliminary ignition signal calculation section 703.
  • the flow rate estimation section 702 and the preliminary ignition signal calculation section 703 correspond to the control section according to the present invention.
  • the flow velocity estimating unit 702 estimates the flow velocity of the air-fuel mixture M around each spark plug 111A, 111B,...111X.
  • Various information necessary for estimating the flow speed of the air-fuel mixture M around each spark plug 111A, 111B, . . . 111X is input to the flow speed estimation unit 702.
  • Various information is detected or measured by the sensor group 704.
  • Various information regarding each internal combustion engine 1A, 1B, ... 1X includes intake air amount, crank angle, secondary voltage of ignition coil 112A, 112B, ... 112X, valve profile, rotation speed of internal combustion engine 1, intake pressure, cooling. water temperature, etc.
  • the preliminary ignition signal calculation unit 703 determines the execution period, start timing, ignition cycle, number of ignitions, electrical energy, etc. of preliminary ignition based on the flow velocity of the mixture M around each spark plug 111A, 111B,...111X. Calculate each time. Then, the preliminary ignition signal calculation unit 703 generates a preliminary ignition signal for each ignition device according to the calculated preliminary ignition implementation period, start timing, ignition cycle, number of ignitions, electrical energy, and the like.
  • the preliminary ignition signal calculation unit 703 outputs the generated preliminary ignition signal to the ignition coils 112A, 112B,...112X. As a result, a high voltage is applied to each electrode of the spark plugs 111A, 111B, .
  • the pre-ignition signal calculation unit 703 determines the optimum pre-ignition implementation period, start timing, ignition cycle, number of ignitions, electric Determine energy etc. Then, the preliminary ignition signal calculation unit 703 generates a preliminary ignition signal for each internal combustion engine 1A, 1B, . . . 1X. This makes it possible to reduce the number of misfires and the generation of hydrocarbons for each internal combustion engine 1A, 1B, . . . 1X.
  • the number of times the preliminary ignition is ignited and the electrical energy used can be reduced for each internal combustion engine 1A, 1B, . . . 1X.
  • deterioration of the ignition devices of each internal combustion engine 1A, 1B, . . . 1X can be suppressed.
  • chemical species such as ozone are efficiently distributed within the combustion chambers of each internal combustion engine 1A, 1B...1X, the combustibility of the air-fuel mixture M during main ignition in each internal combustion engine 1A, 1B...1X is improved. Can be done.
  • the internal combustion engine control device 201 controls the ignition device 110 during the intake stroke of the combustion cycle of the internal combustion engine 1 to perform preliminary ignition different from the main ignition for igniting the air-fuel mixture M.
  • a flow velocity estimating section 202 and a preliminary ignition signal calculating section 203 (control section) are provided.
  • the preliminary ignition signal calculation unit 203 determines the ignition period and frequency of the preliminary ignition signal to be output to the ignition device 110 according to the flow state of the air-fuel mixture M in the combustion chamber 106. Thereby, pre-ignition can be performed at a timing when chemical species such as ozone can be diffused well, depending on the flow state of the air-fuel mixture M in the combustion chamber 106.
  • the number of preliminary ignitions and the electrical energy required therefor can be reduced. Therefore, it is possible to suppress the wear of the electrode 113 in the spark plug 111 and the rise in temperature of the ignition coil 112. As a result, deterioration of the ignition device 110 can be suppressed. Furthermore, since chemical species such as ozone are efficiently distributed within the combustion chamber 106, the combustibility of the air-fuel mixture M during main ignition can be improved.
  • the preliminary ignition signal calculation unit 403 (control unit) according to the second embodiment described above divides the intake stroke 301 into a high flow velocity section 302 where the flow velocity of the mixture M is equal to or higher than a predetermined value, and a high flow velocity section 302 where the flow velocity of the mixture M is a predetermined value or more. It is divided into low flow rate sections 303 where the flow rate is less than the value. Then, the preliminary ignition signal calculation unit 403 performs preliminary ignition preferentially in the high flow velocity section 302. Thereby, it is possible to easily determine when to preferentially perform preliminary ignition. By performing preliminary ignition, chemical species such as ozone can be diffused well.
  • the preliminary ignition signal calculation unit 403 (control unit) according to the second embodiment described above makes the number of preliminary ignitions performed in the high flow rate section 302 greater than the number of times the preliminary ignition is executed in the low flow rate section 303. . As a result, many discharges can be performed at a timing when chemical species such as ozone can be diffused well. As a result, a large amount of chemical species such as ozone can be generated at a timing when chemical species such as ozone can be diffused well.
  • the preliminary ignition signal calculation unit 403 uses the total amount of electrical energy used in the preliminary ignition carried out in the high flow rate section 302 in the preliminary ignition carried out in the low flow rate section 303. More than the total amount of electrical energy. This makes it possible to suppress the electrical energy used at times other than when chemical species such as ozone can be diffused well. As a result, electrical energy can be used efficiently when performing preliminary ignition.
  • the flow velocity estimation unit 402 (control unit) according to the second embodiment described above estimates the air-fuel mixture around the spark plug 111 in the combustion chamber 106 based on the value of the secondary voltage of the ignition coil 112 when the spark plug 111 is energized. Estimate the flow state of M. Thereby, there is no need to provide a detection section for detecting the flow state of the air-fuel mixture M in the combustion chamber 106. As a result, the flow velocity estimation section 402 (control section) can easily grasp the flow state of the air-fuel mixture M around the spark plug 111 in the combustion chamber 106 without changing the configuration of the internal combustion engine 1.
  • the flow velocity estimation unit 502 (control unit) according to the third embodiment described above estimates the flow state of the air-fuel mixture M in the combustion chamber 106 from the valve profile of the intake valve 123. Thereby, there is no need to provide a detection section for detecting the flow state of the air-fuel mixture M in the combustion chamber 106. As a result, the flow velocity estimation section 502 (control section) can easily grasp the flow state of the air-fuel mixture M around the spark plug 111 in the combustion chamber 106 without changing the configuration of the internal combustion engine 1.
  • the flow velocity estimating unit 502 determines the flow velocity of the air-fuel mixture M at a high temperature that is equal to or higher than a predetermined value during the period from the start of opening to the end of opening in the valve profile of the intake valve 123. It is set in the flow velocity section 302. Then, the preliminary ignition signal calculation unit 403 (control unit) performs preliminary ignition preferentially in the high flow rate section 302. Thereby, it is possible to easily determine when to preferentially perform preliminary ignition. By performing preliminary ignition, chemical species such as ozone can be diffused well.
  • the flow velocity estimating unit 502 (control unit) according to the fourth embodiment described above uses a flow velocity map 604 (map) that associates the operating conditions 605 of the internal combustion engine 1 with the flow state of the air-fuel mixture M in the combustion chamber 106. Then, the flow state of the air-fuel mixture M in the combustion chamber 106 corresponding to the current operating condition 605 is estimated. Thereby, there is no need to provide a detection section for detecting the flow state of the air-fuel mixture M in the combustion chamber 106. As a result, the flow velocity estimation section 502 (control section) can easily grasp the flow state of the air-fuel mixture M around the spark plug 111 in the combustion chamber 106 without changing the configuration of the internal combustion engine 1.
  • the preliminary ignition signal calculation unit 703 determines the ignition period and frequency of the preliminary ignition signal to be output to each ignition device, depending on the flow state of the air-fuel mixture M in each combustion chamber. This makes it possible to reduce the number of misfires and the generation of hydrocarbons for each internal combustion engine 1A, 1B, . . . 1X. Further, deterioration of the ignition devices of each internal combustion engine 1A, 1B, . . . 1X can be suppressed.
  • the flow rate estimation unit 202 and the preliminary ignition signal calculation unit 203 control the ignition device 110 during the intake stroke of the combustion cycle of the internal combustion engine 1 to A preliminary ignition different from the main ignition for igniting the M is performed.
  • the flow velocity estimation unit 202 estimates the flow state of the air-fuel mixture M in the combustion chamber 106.
  • the preliminary ignition signal calculation unit 203 determines the ignition period and frequency of the preliminary ignition signal to be output to the ignition device 110 according to the flow state. Thereby, pre-ignition can be performed at a timing when chemical species such as ozone can be diffused well, depending on the flow state of the air-fuel mixture M in the combustion chamber 106.
  • the number of preliminary ignitions and the electrical energy required therefor can be reduced. Therefore, it is possible to suppress the wear of the electrode 113 in the spark plug 111 and the rise in temperature of the ignition coil 112. As a result, deterioration of the ignition device 110 can be suppressed. Furthermore, since chemical species such as ozone are efficiently distributed within the combustion chamber 106, the combustibility of the air-fuel mixture M during main ignition can be improved.
  • preliminary ignition signal calculation section 204, 704... sensor group, 301... intake stroke, 302... high Flow velocity section, 303...Low flow velocity section, 304, 305, 306, 307...Preliminary ignition signal, 310...Average value, 404...Secondary voltage history, 421...Discharge path length calculation section, 422, 522, 623...Flow velocity calculation Section, 431...Flow velocity section judgment section, 432...Preliminary ignition signal generation section, 504...Valve profile, 505...Crank angle, 506...Rotational speed, 507...Intake pressure, 508...Valve timing control section, 509...Crank angle sensor, 521...Valve lift calculation section, 604...Flow velocity map, 605...Operating conditions, 611...Map updating section, 612...Operating condition acquisition section, 621...Map holding section, 622...Map selection section

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

本発明は、希薄燃焼における失火を低減すると共に、点火装置の劣化を抑制することができる内燃機関制御装置及び内燃機関制御方法を提供する。内燃機関制御装置は、内燃機関の燃焼サイクルのうちの吸気行程において点火装置を制御して、混合気に着火するための主点火とは異なる予備点火を実施させる制御部を備える。制御部は、燃焼室内における混合気の流動様態に応じて、点火装置に出力する予備点火信号の点火周期及び周波数を決定する。

Description

内燃機関制御装置及び内燃機関制御方法
 本発明は、内燃機関制御装置及び内燃機関制御方法に関する。
 近年、自動車におけるガソリンエンジンは、燃費改善の要求が高まっている。これにより、内燃機関に対して超高EGRや超希薄燃焼の採用が検討されている。この場合に、混合気への着火性を確保する点火制御が必要となる。また、薄い混合気に対して安定して着火できるように、リーン耐性の向上が図る必要がある。その手段の一つとして、燃焼室に構成された点火プラグを事前に昇温する予備点火が有効である。予備点火は、燃料に着火しないタイミングで実施される。
 予備点火の技術は、例えば、特許文献1に記載されている。特許文献1には、希薄燃焼に対する点火制御として、排気行程から吸気工程にかけて点火プラグにおいて複数の放電を実施する予備点火を行う内燃機関用点火装置及び車両用制御装置が開示されている。特許文献1に開示された内燃機関用点火装置は、混合気を燃焼させる主点火の前かつ、燃料噴射信号を出力する前に予備点火を終了する。
国際公開第2019/087748号
 しかしながら、特許文献1に記載された車両用制御装置では、点火プラグの電極において多くの放電を行うため、電極の摩耗を促進して寿命低下を引き起こす。また、点火コイルに投入するエネルギーが増大するため、点火コイルが高温となり、点火装置の損傷や低寿命化を招く恐れがある。
 本発明は、上記の問題点に鑑み、予備点火の実施によって希薄燃焼における失火を低減すると共に、点火装置の劣化を抑制することができる内燃機関制御装置及び内燃機関制御方法を提供することを目的とする。
 上記課題を解決し、本目的を達成するため、本発明の内燃機関制御装置は、燃焼室と、燃焼室内の混合気に着火するための火花を発生させる点火装置と、を備える内燃機関を制御する。内燃機関制御装置は、内燃機関の燃焼サイクルのうちの吸気行程において点火装置を制御して、混合気に着火するための主点火とは異なる予備点火を実施させる制御部を備える。制御部は、燃焼室内における混合気の流動様態に応じて、点火装置に出力する予備点火信号の点火周期及び周波数を決定する。
 本発明によれば、希薄燃焼における失火を低減すると共に、点火装置の劣化を抑制することができる。
第1実施形態に係る内燃機関の基本構成例を示す図である。 第1実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。 第1実施形態に係る点火プラグ周辺の混合気の流速と予備点火信号の経時変化を示した図である。 第2実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。 第3実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。 第3実施形態に係る混合気の流動速度と吸気バルブリフトの関係を示す図である。 第4実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。 第5実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。
 以下、実施の形態例にかかる内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
<第1実施形態>
[内燃機関の構成]
 まず、第1実施形態に係る内燃機関の構成について説明する。
 図1は、本発明の第1実施形態に係る内燃機関の基本構成例を示す全体構成図である。
 図1に示す内燃機関1は、単気筒でも複数気筒を有するものでもよいが、本実施形態では、4気筒を有する内燃機関1を例示して説明する。
 図1に示すように、内燃機関1は、ピストン101と、シリンダ102と、シリンダヘッド103とを備えている。ピストン101には、コネクティングロッド104を介して、クランクシャフト105が接続されている。シリンダヘッド103と、ピストン101の冠面101Pと、シリンダ102の内壁102aは、燃焼室106を形成する。
 燃焼室106の直上には、点火装置110が配置されている。点火装置110は、点火プラグ111と、点火コイル112を有している。点火プラグ111は、電極113を有している。電極113は、混合気Mに着火するための火花を発生させる。
 燃焼室106は、吸気ポート121と排気ポート122に連通している。燃焼室106と吸気ポート121には、吸気バルブ123が設けられている。吸気バルブ123は、燃焼室106の吸気ポート121側を開閉する。排気ポート122には、排気バルブ124が設けられている。排気バルブ124は、燃焼室106の排気ポート122側を開閉する。
 吸気行程において吸気バルブ123が開くと、混合気Mは、吸気ポート121から燃焼室106に流れ込む。その後、混合気Mは、ピストン101により圧縮される。そして、適切なタイミングで点火コイル112に主点火信号が送られると、点火プラグ111の電極113が火花を発生させる。
 電極113により火花が発生すると、燃焼室106内の混合気Mに着火し、燃焼室106内の混合気Mが燃焼する。これにより、燃焼室106内の圧力が上昇し、ピストン101が押し下げられる。その結果、コネクティングロッド104が変位して、クランクシャフト105が回転する。
 近年、内燃機関の燃料燃焼時に発生する二酸化炭素の排出量低減のために、混合気Mにおける燃料量の割合を下げた状態で燃焼させる希薄燃焼が採用されている。希薄燃焼では、内燃機関1の冷機始動時や内燃機関1の温度が十分上昇していない場合に、混合気Mへの着火不良が生じて、燃焼途中で火炎が消失する失火が発生することがある。
 失火が発生すると、燃焼速度の低下により炭化水素が発生するため、炭化水素の排出量が増大してしまう。したがって、希薄燃焼を実施する場合は、内燃機関1の始動時や低温時に、燃焼に対する改善策が必要となる。そこで、本実施形態では、主点火を行う前に、点火プラグ111を昇温させる予備点火を実施して、混合気Mの燃焼性を向上させる。
[内燃機関制御装置の構成]
 次に、第1実施形態に係る内燃機関制御装置の構成について、図2を参照して説明する。
 図2は、第1実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。
 図2に示す内燃機関制御装置201(以下、「制御装置201」とする)は、例えば、エンジンコントロールユニット(ECU)である。制御装置201は、流速推定部202と、予備点火信号計算部203を有している。流速推定部202及び予備点火信号計算部203は、本発明に係る制御部に対応する。
 流速推定部202は、点火プラグ111周辺の混合気Mの流動速度を推定する。流速推定部202には、点火プラグ111周辺の混合気Mの流動速度を推定するために必要な諸情報が入力される。諸情報は、センサ群204によって検出或いは測定される。諸情報としては、吸入空気量、クランク角、点火コイル112の二次電圧、バルブプロファイル、内燃機関1の回転数、吸気圧、冷却水温度などがある。
 吸入空気量は、燃焼室106に流入する空気量である。吸入空気量は、吸気ポート121に設けられたエアフロセンサにより測定される。クランク角は、クランクシャフト105の回転角度である。クランク角は、クランク角センサにより検出される。クランク角センサは、クランクシャフト105に取り付けられたリングギア(不図示)の径方向外側に設けられている。
 点火コイル112の二次電圧は、点火装置110の電気回路に設けられた電圧計により検出される。バルブプロファイルは、クランク角に応じた吸気バルブ123のリフト量を示すデータである。吸気圧は、吸気ポート121中のガスの圧力である。吸入圧は、吸気ポート121に設けられた圧力センサにより検出される。冷却水温度は、内燃機関1の冷却水の温度である。冷却水温度は、水温センサにより測定される。水温センサは、シリンダヘッド103のウォータジャケット(図示せず)に設けられている。
 なお、流速推定部202に入力する諸情報としては、1つ前の燃焼サイクルにおける燃焼状態、吸気行程における点火プラグ111の周辺の混合気Mの流動状態に関する情報であってもよい。また、流速推定部202は、事前に行った数値計算や実験結果から作成したマップに基づいて、点火プラグ111周辺の混合気Mの流動速度を推定してもよい。また、制御装置201は、過去の内燃機関1の運転データから、運転条件と混合気Mの流動速度の推定値を関連付けた学習結果またはマップを作成してもよい。
 予備点火信号計算部203は、流速推定部202で推定した点火プラグ111周辺の混合気Mの流動速度に基づいて、予備点火の実施期間、予備点火の開始タイミング、予備点火の周期(以下、「点火周期」とする)、予備点火の回数(以下、「点火回数」とする)、予備点火に使用する電気エネルギーなどを計算する。予備点火信号計算部203は、例えば、点火プラグ周辺の混合気Mの流動速度が大きいとき、予備点火の周期を短くして、予備点火の電気エネルギーを小さくする。
 予備点火信号計算部203は、計算した予備点火の実施期間、開始タイミング、点火周期、点火回数、電気エネルギーなどに応じて、ONとOFFを繰り返す予備点火信号(図3参照)を生成する。例えば、予備点火の周期を短くする場合は、予備点火信号の周期を短くする。また、予備点火に使用する電気エネルギーを小さくする場合は、予備点火信号のONの回数(点火回数)を減らしたり、予備点火信号の周波数を高くしたりする。
 予備点火信号計算部203は、生成した予備点火信号を点火コイル112に出力する。
これにより、点火プラグ111の電極113に高電圧が印加され、予備点火信号に応じた複数の放電(予備点火)が実施される。
 点火プラグ111の電極113に高電圧を印加すると、混合気M中には、オゾンなどの化学種が発生する。ところで、オゾンは、燃焼の安定性に寄与する。したがって、電極113に高電圧を印加して発生させたオゾンが、燃焼室106内に略均等に分布すると、希薄燃焼における燃焼の安定性が改善する。その結果、燃焼時に発生する失火や失火に伴う炭化水素の発生を抑制することができる。
 電極113に高電圧を印加して発生させたオゾンなどの化学種は、点火プラグ111周辺の混合気Mの流動に乗せることにより、燃焼室106内全体に拡散させることができる。本実施形態では、オゾンなどの化学種が良好に拡散できるタイミングと、そのときの混合気Mの流動速度に応じた点火周期及び周波数(使用する電気エネルギー)の予備点火信号を生成する。これにより、予備点火の回数と、予備点火に必要な電気エネルギーの低減を図ることができる。
[予備点火信号]
 次に、混合気Mの流動状態に応じた予備点火信号について、図3を参照して説明する。
 図3は、点火プラグ111周辺の混合気Mの流動速度と予備点火信号の経時変化を示した図である。
 図3に示すように、吸気工程301において、点火プラグ111周辺の混合気Mの流れは一定ではなく、常に変動している。特にHEV(Hybrid Electric Vehicle)車では、内燃機関のみを搭載した車と比べて、始動時のモータリング速度が速いため、吸気工程における流速の変動が顕著となる。
 吸気行程301は、高流速区間302と、低流速区間303とで構成される。高流速区間302は、例えば、吸気行程301における点火プラグ111周辺の混合気Mの流動速度の平均値310以上の区間として定義してよい。
 高流速区間302は、相対的に混合気Mの流動速度が大きい。そのため、高流速区間302では、予備点火の放電により発生したオゾンなどの化学種を、より効果的に燃焼室106内に拡散させることができる。
 一方、低流速区間303は、相対的に混合気Mの流動速度が小さい。そのため、低流速区間303では、オゾンなどの化学種が燃焼室106内に拡散され難い。その結果、低流速区間303における予備点火は、燃焼室106全体としての燃焼性の改善には至らず、効果が限定的なものとなる。
 また,低流速区間303は、吸気工程301の後半であることが多いため、燃料が点火プラグ111に到達している場合がある。この場合に予備点火を行うと、点火プラグ111周辺の薄い混合気に着火して炭化水素が発生することがある。その結果、排気が悪化する恐れがある。
 さらに、低流速区間303では、高流速区間302において行った予備点火の放電により発生したオゾンなどの化学種が、混合気Mの流動に乗って点火プラグ111周辺に再び戻ることがある。そこに放電が生じると、オゾンなどの化学種が別の化学種に変化して、予備点火の効果が低下する懸念がある。
 したがって、高流速区間302において優先的に予備点火を実施するような予備点火信号304を生成することが望ましい。なお、低流速区間303では、点火回数及び電気エネルギーの総量が、高流速区間302での点火回数及び電気エネルギーの総量未満になるような予備点火信号305を生成してもよい。
 また、高流速区間302から低流速区間303に至るまで予備点火信号を出力する場合は、混合気Mの流動速度や経過するクランク角などに応じて点火回数を減らしていくような予備点火信号306を生成してもよい。
 ところで、予測した混合気Mの流動速度に応じて周波数(パルス幅)と点火周期を変更すると、放電路が伸長することによる再放電が起こらず、予備点火が安定する。そこで、混合気Mの流動速度に応じて、周波数と点火周期を変化させた予備点火信号307を生成してもよい。
 高流速区間302において優先的に予備点火を実施すると、吸気行程301全域で予備点火を実施する場合に比べて点火回数及び使用する電気エネルギーを減らすことができる。これにより、点火プラグ111における電極113の摩耗を抑制することができると共に、点火コイル112の高温化を抑制することができる。その結果、点火装置110の劣化を抑制することができる。また、オゾンなどの化学種が効率的に燃焼室106内に行きわたるため、主点火時の燃焼性を改善することができる。
<第2実施形態>
[内燃機関制御装置の構成]
 次に、第2実施形態に係る内燃機関制御装置の構成について、図4を参照して説明する。なお、第2実施形態に係る内燃機関は、第1実施形態に係る内燃機関1と同じである。
 図4は、第2実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。
 図4に示す内燃機関制御装置401(以下、「制御装置401」とする)は、例えば、エンジンコントロールユニット(ECU)である。制御装置401は、流速推定部402と、予備点火信号計算部403を有している。流速推定部402及び予備点火信号計算部403は、本発明に係る制御部に対応する。
 流速推定部402は、放電路長計算部421と、流速計算部422を有している。放電路長計算部421には、1つ前の燃焼サイクルで実施した予備点火における点火コイル112の2次電圧(2次電圧の履歴404)が入力される。制御装置401は、2次電圧の履歴404を記憶する記憶部(不図示)を有している。
 放電路長計算部421は、入力された2次電圧の履歴404から、点火プラグ111の電極113に形成された放電路の長さを計算する。放電路長計算部421は、2次電圧の値と放電路長さとを関連付けた式を用いて放電路の長さを計算する。放電路長計算部421は、計算結果である放電路長推定値を流速計算部422に出力する。
 流速計算部422は、放電路長推定値から、1つ前の燃焼サイクルにおける点火プラグ111周辺の混合気Mの流動速度を計算する。流速計算部422は、放電路の長さと点火プラグ111周辺の混合気Mの流動速度とを関連付けた式を用いて混合気Mの流動速度を計算する。流速計算部422は、計算結果(流動速度)を予備点火信号計算部403に出力する。
 予備点火信号計算部403は、流速区間判断部431と、予備点火信号生成部432を有する。流速区間判断部431は、点火プラグ111周辺の混合気Mの流動速度から、吸気行程301を高流速区間302及び低流速区間303に分ける。予備点火信号計算部403は、高流速区間302及び低流速区間303を、予備点火信号生成部432に出力する。
 予備点火信号生成部432は、高流速区間302及び低流速区間303に基づいて、予備点火の実施期間、開始タイミング、点火周期、点火回数、電気エネルギーなどを計算する。このとき、予備点火信号生成部432は、点火プラグ111周辺の混合気Mの流動速度を考慮して、点火周期、点火回数、電気エネルギーなどなどを計算してもよい。
 予備点火信号生成部432は、予備点火の実施期間、開始タイミング、点火周期、点火回数、電気エネルギーなどに応じて、予備点火信号を生成する。そして、予備点火信号生成部432は、生成した予備点火信号を点火コイル112に出力する。これにより、点火プラグ111の電極113に高電圧が印加され、予備点火信号に応じた複数の放電(予備点火)が実施される。
 このように、第2実施形態では、1つ前の燃焼サイクルにおける点火プラグ111周辺の混合気Mの流動速度をフィードバックし、今回の燃焼サイクルにおける点火プラグ111周辺の混合気Mの流動速度を推定する。さらに、混合気Mの流動速度から高流速区間302を検知し、例えば、高流速区間302に予備点火を実施するための予備点火信号を生成する(図3の予備点火信号304参照)。
 これにより、吸気行程301全域で予備点火を実施する場合よりも、点火回数及び使用する電気エネルギーを減らすことができる。そして、点火プラグ111における電極113の摩耗を抑制することができると共に、点火コイル112の高温化を抑制することができる。その結果、点火装置110の劣化を抑制することができる。また、オゾンなどの化学種が効率的に燃焼室106内に行きわたるため、主点火時の燃焼性を改善することができる。
<第3実施形態>
[内燃機関制御装置の構成]
 次に、第3実施形態に係る内燃機関制御装置の構成について、図5及び図6を参照して説明する。なお、第3実施形態に係る内燃機関は、第1実施形態に係る内燃機関1と同じである。
 図5は、第3実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。図6は、第3実施形態に係る混合気の流動速度と吸気バルブリフトの関係を示す図である。
 図5に示す内燃機関制御装置501(以下、「制御装置501」とする)は、例えば、エンジンコントロールユニット(ECU)である。制御装置501は、流速推定部502と、予備点火信号計算部403を有している。予備点火信号計算部403は、第2実施形態と同じである。流速推定部502及び予備点火信号計算部403は、本発明に係る制御部に対応する。
 流速推定部502には、バルブプロファイル504、クランク角505、回転数506、及び吸気圧507が入力される。第3実施形態に係る内燃機関システムは、内燃機関1の回転数506を計測する回転数計測部(不図示)と、吸気圧507を検出する圧力センサ(不図示)を備える。
 また、第3実施形態に係る内燃機関システムは、バルブプロファイル504を更新するバルブタイミング制御部508と、クランク角505を検出するクランク角センサ509を備える。バルブタイミング制御部508は、例えば、VTC(variable timing camshaft)機構に代表されるように、吸気バルブ123の開閉タイミングを変更するものである。バルブタイミング制御部508は、吸気バルブ123の開閉タイミングの変更時に、バルブプロファイル504を更新する。
 流速推定部502は、バルブリフト計算部521と、流速計算部522を有する。バルブリフト計算部521には、バルブプロファイル504とクランク角505が入力される。バルブリフト計算部521は、バルブプロファイル504とクランク角505に基づいて、クランク角505に対する吸気バルブ123のバルブリフト量を算出する。バルブリフト計算部521は、算出したバルブリフト量を流速計算部522に出力する。
 流速計算部522は、バルブリフト量と回転数506と吸気圧507から、点火プラグ111周辺の混合気Mの流動速度を計算する。流速計算部522は、計算した混合気Mの流動速度を予備点火信号計算部403に出力する。予備点火信号計算部403の流速区間判断部431及び予備点火信号生成部432の処理は、第2実施形態と同じであるため、説明を省略する。
 第3実施形態においても、高流速区間302において優先的に予備点火を実施する。これにより、吸気行程301全域で予備点火を実施する場合に比べて点火回数及び使用する電気エネルギーを減らすことができる。そして、点火プラグ111における電極113の摩耗を抑制することができると共に、点火コイル112の高温化を抑制することができる。その結果、点火装置110の劣化を抑制することができる。また、オゾンなどの化学種が効率的に燃焼室106内に行きわたるため、主点火時の燃焼性を改善することができる。
 図6に示す吸気バルブ123の開弁開始時刻では、吸気圧507と燃焼室106内の圧力との差が大きいため、燃焼室106内に多くの混合気Mが流入、あるいはシリンダヘッド103側に混合気Mが逆流する。この時、点火プラグ111周辺を含む燃焼室106内の混合気Mの流動は強くなる。したがって、点火プラグ111周辺の混合気Mの流動速度は大きくなる。
 一方、吸気バルブ123の開弁終了時刻では、燃焼室106内の圧力と吸気圧が近い値になるため、燃焼室106内へのガスの流入が緩やかになる。これにより、点火プラグ111周辺を含む燃焼室106内の混合気Mの流動は弱くなる。したがって、点火プラグ111周辺の混合気Mの流動速度は小さくなる。
 そこで、流速区間判断部431が、吸気バルブ123が開き始める開弁開始のクランク角から吸気バルブ123が全開となる開弁終了のクランク角までの期間を、高流速区間302と定めるようにしてもよい。この場合は、バルブリフト計算部521が算出したバルブリフト量から、吸気バルブ123が開き始めるクランク角と、吸気バルブ123が全開となるクランク角を算出するクランク角計算部を設ける。これにより、流速区間判断部431は、高流速区間302を容易に決定することができる。
<第4実施形態>
[内燃機関制御装置の構成]
 次に、第4実施形態に係る内燃機関制御装置の構成について、図7を参照して説明する。なお、第4実施形態に係る内燃機関は、第1実施形態に係る内燃機関1と同じである。
 図7は、第4実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。
 図7に示す内燃機関制御装置601(以下、「制御装置601」とする)は、例えば、エンジンコントロールユニット(ECU)である。制御装置601は、流速推定部602と、予備点火信号計算部403を有している。予備点火信号計算部403は、第2実施形態と同じである。流速推定部602及び予備点火信号計算部403は、本発明に係る制御部に対応する。
 流速推定部602には、流速マップ604、及び内燃機関1の運転条件605が入力される。運転条件605には、例えば、内燃機関1の回転数、吸気圧、スロットルの開度、冷却水温度、吸入空気量、燃料噴射量、クランク角などがある。
 第4実施形態に係る内燃機関システムは、内燃機関1の運転に従って流速マップ604を更新するマップ更新部611と、運転条件605を取得する運転条件取得部612を備える。運転条件取得部612としては、例えば、スロットルの開度を検出するスロットル開度センサ、燃料噴射量を計測する燃料流量計などがある。
 流速マップ604は、予め設定された運転条件605と点火プラグ111周辺の混合気Mの流動速度を関連付けている。流速マップ604は、例えば、3次元流体シミュレーションなどにより、運転条件605に対する点火プラグ111周辺の混合気Mの流動速度の経時変化を取得したものを用いる。また、流速マップ604は、運転条件605に対する高流速区間302を規定したものを用いてもよい。
 流速推定部602は、マップ保持部621と、マップ選定部622と、流速計算部623を有する。マップ保持部621は、供給された複数の流速マップ604を保持する(記憶する)。マップ選定部622は、マップ保持部621に保持された複数の流速マップ604の中から、そのときの運転条件605に応じた流速マップ604を選定する。
 流速計算部623は、マップ選定部622により選定された流速マップ604から、点火プラグ111周辺の混合気Mの流動速度を決定する。流速計算部623は、決定した点火プラグ111周辺の混合気Mの流動速度を予備点火信号計算部403に出力する。予備点火信号計算部403の流速区間判断部431及び予備点火信号生成部432の処理は、第2実施形態と同じであるため、説明を省略する。
 第4実施形態においても、高流速区間302において優先的に予備点火を実施する。これにより、吸気行程301全域で予備点火を実施する場合に比べて点火回数及び使用する電気エネルギーを減らすことができる。そして、点火プラグ111における電極113の摩耗を抑制することができると共に、点火コイル112の高温化を抑制することができる。その結果、点火装置110の劣化を抑制することができる。また、オゾンなどの化学種が効率的に燃焼室106内に行きわたるため、主点火時の混合気Mの燃焼性を改善することができる。
<第5実施形態>
[内燃機関制御装置の構成]
 次に、第5実施形態に係る内燃機関制御装置の構成について、図8を参照して説明する。なお、第5実施形態に係る複数の内燃機関は、第1実施形態に係る内燃機関1と同じである。
 図8は、第5実施形態に係る内燃機関制御装置の機能構成を説明する機能ブロック図である。
 図8に示すように、第5実施形態に係る内燃機関システムは、複数の内燃機関1A,1B,…1Xを備えている。複数の内燃機関1A,1B,…1Xは、点火プラグ111A,111B,…111Xと、点火コイル112A,112B,…112Xをそれぞれ有している。
 図8に示す内燃機関制御装置701(以下、「制御装置701」とする)は、例えば、エンジンコントロールユニット(ECU)である。制御装置701は、流速推定部702と、予備点火信号計算部703を有している。流速推定部702及び予備点火信号計算部703は、本発明に係る制御部に対応する。
 流速推定部702は、各点火プラグ111A,111B,…111X周辺の混合気Mの流動速度を推定する。流速推定部702には、各点火プラグ111A,111B,…111X周辺の混合気Mの流動速度を推定するために必要な諸情報が入力される。諸情報は、センサ群704によって検出或いは測定される。諸情報としては、各内燃機関1A,1B,…1Xに関する、吸入空気量、クランク角、点火コイル112A,112B,…112Xの二次電圧、バルブプロファイル、内燃機関1の回転数、吸気圧、冷却水温度などがある。
 予備点火信号計算部703は、各点火プラグ111A,111B,…111X周辺の混合気Mの流動速度に基づいて、予備点火の実施期間、開始タイミング、点火周期、点火回数、電気エネルギーなどを点火装置ごとに計算する。そして、予備点火信号計算部703は、計算した予備点火の実施期間、開始タイミング、点火周期、点火回数、電気エネルギーなどに応じて、点火装置ごとに予備点火信号を生成する。
 予備点火信号計算部703は、生成した予備点火信号を点火コイル112A,112B,…112Xに出力する。これにより、点火プラグ111A,111B,…111Xのそれぞれの電極に高電圧が印加され、予備点火信号に応じた複数の放電(予備点火)が実施される。
 各内燃機関1A,1B,…1Xの燃焼室における混合器Mの流動様態は、バルブタイミングや吸気圧のブレ、点火プラグ111A,111B,…111Xの向きなどに影響される。その結果、各内燃機関1A,1B,…1Xの燃焼室における混合器Mの流動様態は、それぞれ異なる。
 そこで、予備点火信号計算部703は、各内燃機関1A、1B…1Xの燃焼室における混合器Mの流動様態に応じて、最適な予備点火の実施期間、開始タイミング、点火周期、点火回数、電気エネルギーなどを決定する。そして、予備点火信号計算部703は、内燃機関1A、1B…1Xごとに予備点火信号を生成する。これにより、各内燃機関1A、1B…1Xごとに失火回数、炭化水素の発生を低減することができる。
 また、各内燃機関1A、1B…1Xごとに予備点火の点火回数及び使用する電気エネルギー減らすことができる。そして、点火プラグ111A,111B,…111Xのそれぞれの電極の摩耗を抑制することができると共に、点火コイル112A,112B,…112Xの高温化を抑制することができる。その結果、各内燃機関1A,1B,…1Xの点火装置の劣化を抑制することができる。また、オゾンなどの化学種が効率的に各内燃機関1A、1B…1Xの燃焼室内に行きわたるため、各内燃機関1A、1B…1Xにおける主点火時の混合気Mの燃焼性を改善することができる。
<まとめ>
 上述した第1実施形態に係る内燃機関制御装置201は、内燃機関1の燃焼サイクルのうちの吸気行程において点火装置110を制御して、混合気Mに着火するための主点火とは異なる予備点火を実施させる流速推定部202及び予備点火信号計算部203(制御部)を備える。予備点火信号計算部203は、燃焼室106内における混合気Mの流動様態に応じて、点火装置110に出力する予備点火信号の点火周期及び周波数を決定する。
 これにより、燃焼室106内における混合気Mの流動様態に応じて、オゾンなどの化学種が良好に拡散できるタイミングで予備点火を実施させることができる。そして、予備点火の回数と、それに必要な電気エネルギーの低減を図ることができる。したがって、点火プラグ111における電極113の摩耗を抑制したり、点火コイル112の高温化を抑制したりすることができる。その結果、点火装置110の劣化を抑制することができる。また、オゾンなどの化学種が効率的に燃焼室106内に行きわたるため、主点火時の混合気Mの燃焼性を改善することができる。
 上述した第2実施形態に係る予備点火信号計算部403(制御部)は、吸気行程301を、混合気Mの流動速度が所定値以上である高流速区間302と、混合気の流動速度が所定値未満である低流速区間303に分ける。そして、予備点火信号計算部403は、高流速区間302において優先的に予備点火を実施させる。
 これにより、予備点火を優先的に実施させる時期を容易に決定することができる。そして、予備点火を実施することで、オゾンなどの化学種が良好に拡散させることができる。
 上述した第2実施形態に係る予備点火信号計算部403(制御部)は、高流速区間302に実施する予備点火の点火回数を、低流速区間303に実施する予備点火の点火回数よりも多くする。
 これにより、オゾンなどの化学種が良好に拡散できるタイミングで、多くの放電を実施させることができる。その結果、オゾンなどの化学種が良好に拡散できるタイミングで、オゾンなどの化学種を多く発生させることができる。
 上述した第2実施形態に係る予備点火信号計算部403(制御部)は、高流速区間302に実施する予備点火で使用する電気エネルギーの総量を、低流速区間303に実施する予備点火で使用する電気エネルギーの総量よりも多くする。
 これにより、オゾンなどの化学種が良好に拡散できるタイミング以外で使用する電気エネルギーを抑制することができる。その結果、予備点火を実施する際に電気エネルギーを効率よく使用することができる。
 上述した第2実施形態に係る流速推定部402(制御部)は、点火プラグ111に通電時の点火コイル112の2次電圧の値に基づいて、燃焼室106内における点火プラグ111周辺の混合気Mの流動様態を推定する。
 これにより、燃焼室106内に混合気Mの流動様態を検出する検出部を設ける必要が無い。その結果、内燃機関1の構成を変更しなくても、流速推定部402(制御部)が、燃焼室106内における点火プラグ111周辺の混合気Mの流動様態を容易に把握することができる。
 上述した第3実施形態に係る流速推定部502(制御部)は、吸気バルブ123のバルブプロファイルから、燃焼室106内おける混合気Mの流動様態を推定する。
 これにより、燃焼室106内に混合気Mの流動様態を検出する検出部を設ける必要が無い。その結果、内燃機関1の構成を変更しなくても、流速推定部502(制御部)が、燃焼室106内における点火プラグ111周辺の混合気Mの流動様態を容易に把握することができる。
 上述した第3実施形態に係る流速推定部502(制御部)は、吸気バルブ123のバルブプロファイルにおける開弁開始から開弁終了までの間を、混合気Mの流動速度が所定値以上である高流速区間302に設定する。そして、予備点火信号計算部403(制御部)は、高流速区間302において優先的に予備点火を実施させる。
 これにより、予備点火を優先的に実施させる時期を容易に決定することができる。そして、予備点火を実施することで、オゾンなどの化学種が良好に拡散させることができる。
 上述した第4実施形態に係る流速推定部502(制御部)は、内燃機関1の運転条件605と燃焼室106内の混合気Mの流動様態とを対応付けた流速マップ604(マップ)を用いて、現在の運転条件605に対応する燃焼室106内の混合気Mの流動様態を推定する。
 これにより、燃焼室106内に混合気Mの流動様態を検出する検出部を設ける必要が無い。その結果、内燃機関1の構成を変更しなくても、流速推定部502(制御部)が、燃焼室106内における点火プラグ111周辺の混合気Mの流動様態を容易に把握することができる。
 上述した第5実施形態に係る内燃機関は、複数設けられている。そして、予備点火信号計算部703(制御部)は、各燃焼室内の混合気Mの流動様態に応じて、各点火装置に出力する予備点火信号の点火周期及び周波数を決定する。
 これにより、各内燃機関1A、1B…1Xごとに失火回数、炭化水素の発生を低減することができる。また、各内燃機関1A,1B,…1Xの点火装置の劣化を抑制することができる。さらに、オゾンなどの化学種が効率的に各内燃機関1A、1B…1Xの燃焼室内に行きわたるため、各内燃機関1A、1B…1Xにおける主点火時の混合気Mの燃焼性を改善することができる。
 本実施形態に係る内燃機関制御方法は、流速推定部202及び予備点火信号計算部203(制御部)が、内燃機関1の燃焼サイクルのうちの吸気行程において点火装置110を制御して、混合気Mに着火するための主点火とは異なる予備点火を実施させる。予備点火を実施する場合は、流速推定部202が、燃焼室106内における混合気Mの流動様態を推定する。そして、予備点火信号計算部203が、流動様態に応じて、点火装置110に出力する予備点火信号の点火周期及び周波数を決定する。
 これにより、燃焼室106内における混合気Mの流動様態に応じて、オゾンなどの化学種が良好に拡散できるタイミングで予備点火を実施させることができる。そして、予備点火の回数と、それに必要な電気エネルギーの低減を図ることができる。したがって、点火プラグ111における電極113の摩耗を抑制したり、点火コイル112の高温化を抑制したりすることができる。その結果、点火装置110の劣化を抑制することができる。また、オゾンなどの化学種が効率的に燃焼室106内に行きわたるため、主点火時の混合気Mの燃焼性を改善することができる。
 本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1,1A,1B,1X…内燃機関、 101…ピストン、 102…シリンダ、 103…シリンダヘッド、 104…コネクティングロッド、 105…クランクシャフト、 106…燃焼室、 110…点火装置、 111,111A,111B,111X…点火プラグ、 112,112A,112B,112X…点火コイル、 113…電極、 121…吸気ポート、 122…排気ポート、 123…吸気バルブ、 124…排気バルブ、 201,401,501,601,701…制御装置(内燃機関制御装置)、 202,402,502,602,702…流速推定部、 203,403,703…予備点火信号計算部、 204,704…センサ群、 301…吸気行程、 302…高流速区間、 303…低流速区間、 304,305,306,307…予備点火信号、 310…平均値、 404…2次電圧の履歴、 421…放電路長計算部、 422,522,623…流速計算部、 431…流速区間判断部、 432…予備点火信号生成部、 504…バルブプロファイル、 505…クランク角、 506…回転数、 507…吸気圧、 508…バルブタイミング制御部、 509…クランク角センサ、 521…バルブリフト計算部、 604…流速マップ、 605…運転条件、 611…マップ更新部、 612…運転条件取得部、 621…マップ保持部、 622…マップ選定部

Claims (10)

  1.  燃焼室と、前記燃焼室内の混合気に着火するための火花を発生させる点火装置と、を備える内燃機関を制御する内燃機関制御装置であって、
     前記内燃機関の燃焼サイクルのうちの吸気行程において前記点火装置を制御して、前記混合気に着火するための主点火とは異なる予備点火を実施させる制御部を備え、
     前記制御部は、前記燃焼室内における混合気の流動様態に応じて、前記点火装置に出力する予備点火信号の点火周期及び周波数を決定する
     内燃機関制御装置。
  2.  前記制御部は、前記吸気行程を、前記混合気の流動速度が所定値以上である高流速区間と、前記混合気の流動速度が所定値未満である低流速区間に分けて、前記高流速区間において優先的に前記予備点火を実施させる
     請求項1に記載の内燃機関制御装置。
  3.  前記制御部は、前記高流速区間に実施する前記予備点火の点火回数を、前記低流速区間に実施する前記予備点火の点火回数よりも多くする
     請求項2に記載の内燃機関制御装置。
  4.  前記制御部は、前記高流速区間に実施する前記予備点火で使用する電気エネルギーの総量を、前記低流速区間に実施する前記予備点火で使用する電気エネルギーの総量よりも多くする
     請求項2に記載の内燃機関制御装置。
  5.  前記点火装置は、前記燃焼室内に配置される点火プラグと、前記点火プラグに接続された点火コイルと、を有し、
     前記制御部は、前記点火プラグに通電時の前記点火コイルの2次電圧の値に基づいて、
    前記燃焼室内における前記点火プラグ周辺の前記混合気の流動様態を推定する
     請求項1に記載の内燃機関制御装置。
  6.  前記内燃機関は、前記燃焼室に吸入される空気が通る吸入ポートと、前記吸入ポートに設けられた吸気バルブと、を有し、
     前記制御部は、前記吸気バルブのバルブプロファイルから、前記燃焼室内おける前記混合気の流動様態を推定する
     請求項1に記載の内燃機関制御装置。
  7.  前記制御部は、前記吸気バルブのバルブプロファイルにおける開弁開始から開弁終了までの間を、前記混合気の流動速度が所定値以上である高流速区間に設定し、当該高流速区間において優先的に前記予備点火を実施させる
     請求項6に記載の内燃機関制御装置。
  8.  前記制御部は、前記内燃機関の運転条件と前記燃焼室内の前記混合気の流動様態とを対応付けたマップを用いて、現在の運転条件に対応する前記燃焼室内の前記混合気の流動様態を推定する
     請求項1に記載の内燃機関制御装置。
  9.  前記内燃機関は、複数設けられており、
     前記制御部は、各燃焼室内の混合気の流動様態に応じて、各点火装置に出力する予備点火信号の点火周期及び周波数を決定する
     請求項1に記載の内燃機関制御装置。
  10.  燃焼室と、前記燃焼室内の混合気に着火するための火花を発生させる点火装置と、を備える内燃機関を制御する内燃機関制御方法であって、
     制御部は、前記内燃機関の燃焼サイクルのうちの吸気行程において前記点火装置を制御して、前記混合気に着火するための主点火とは異なる予備点火を実施させ、
     前記予備点火を実施する場合に、前記燃焼室内における混合気の流動様態を推定し、推定した流動様態に応じて、前記点火装置に出力する予備点火信号の点火周期及び周波数を決定する
     内燃機関制御方法。
PCT/JP2023/014127 2022-06-16 2023-04-05 内燃機関制御装置及び内燃機関制御方法 WO2023243192A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022097237A JP2023183629A (ja) 2022-06-16 2022-06-16 内燃機関制御装置及び内燃機関制御方法
JP2022-097237 2022-06-16

Publications (1)

Publication Number Publication Date
WO2023243192A1 true WO2023243192A1 (ja) 2023-12-21

Family

ID=89192734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014127 WO2023243192A1 (ja) 2022-06-16 2023-04-05 内燃機関制御装置及び内燃機関制御方法

Country Status (2)

Country Link
JP (1) JP2023183629A (ja)
WO (1) WO2023243192A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250099A (ja) * 2005-03-14 2006-09-21 Hitachi Ltd 火花点火エンジン、当該エンジンに使用する制御装置、及び当該エンジンに使用する点火コイル
JP2010037947A (ja) * 2008-07-31 2010-02-18 Nissan Motor Co Ltd 内燃機関
WO2014147795A1 (ja) * 2013-03-21 2014-09-25 トヨタ自動車株式会社 内燃機関の制御装置
JP2015175283A (ja) * 2014-03-14 2015-10-05 トヨタ自動車株式会社 内燃機関の制御装置
JP2015200257A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 内燃機関の制御装置
JP2018021518A (ja) * 2016-08-04 2018-02-08 株式会社デンソー 内燃機関の点火装置
JP2018173022A (ja) * 2017-03-31 2018-11-08 株式会社Soken 内燃機関用の点火装置
WO2019087748A1 (ja) * 2017-10-31 2019-05-09 日立オートモティブシステムズ株式会社 内燃機関用点火装置および車両用制御装置
JP2019194463A (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2019194459A (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2021017835A (ja) * 2019-07-19 2021-02-15 マツダ株式会社 点火プラグの摩耗量推定装置および異常判定装置
WO2021106520A1 (ja) * 2019-11-27 2021-06-03 日立Astemo株式会社 内燃機関用制御装置
JP2021092158A (ja) * 2019-12-06 2021-06-17 株式会社デンソー 内燃機関用の点火装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250099A (ja) * 2005-03-14 2006-09-21 Hitachi Ltd 火花点火エンジン、当該エンジンに使用する制御装置、及び当該エンジンに使用する点火コイル
JP2010037947A (ja) * 2008-07-31 2010-02-18 Nissan Motor Co Ltd 内燃機関
WO2014147795A1 (ja) * 2013-03-21 2014-09-25 トヨタ自動車株式会社 内燃機関の制御装置
JP2015175283A (ja) * 2014-03-14 2015-10-05 トヨタ自動車株式会社 内燃機関の制御装置
JP2015200257A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 内燃機関の制御装置
JP2018021518A (ja) * 2016-08-04 2018-02-08 株式会社デンソー 内燃機関の点火装置
JP2018173022A (ja) * 2017-03-31 2018-11-08 株式会社Soken 内燃機関用の点火装置
WO2019087748A1 (ja) * 2017-10-31 2019-05-09 日立オートモティブシステムズ株式会社 内燃機関用点火装置および車両用制御装置
JP2019194463A (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2019194459A (ja) * 2018-05-02 2019-11-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2021017835A (ja) * 2019-07-19 2021-02-15 マツダ株式会社 点火プラグの摩耗量推定装置および異常判定装置
WO2021106520A1 (ja) * 2019-11-27 2021-06-03 日立Astemo株式会社 内燃機関用制御装置
JP2021092158A (ja) * 2019-12-06 2021-06-17 株式会社デンソー 内燃機関用の点火装置

Also Published As

Publication number Publication date
JP2023183629A (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
CN107917032B (zh) 火花塞状态监测
US20080162017A1 (en) Engine control, fuel property detection and determination apparatus, and method for the same
JP4938404B2 (ja) エンジン制御装置
JP6753327B2 (ja) 点火制御システム
JP6081248B2 (ja) 内燃機関の点火制御装置
JP7382019B2 (ja) 点火プラグの摩耗量推定装置および異常判定装置
US20030034008A1 (en) Ignition timing control device for internal combustion engine
US9890722B2 (en) Fuel injection control method for internal combustion engine
WO2023243192A1 (ja) 内燃機関制御装置及び内燃機関制御方法
JP6375764B2 (ja) 点火制御装置
US10519879B2 (en) Determining in-cylinder pressure by analyzing current of a spark plug
JP4036165B2 (ja) 自着火エンジン
JPH1150941A (ja) 内燃機関の点火プラグ診断装置
JP2012219757A (ja) 内燃機関の制御装置
Czekala et al. Matching ignition system multi-spark calibration to the burn-rate of an engine to extend ignitability limits
US11512662B2 (en) Internal-combustion-engine controller
JP4884516B2 (ja) 内燃機関の点火制御装置
JP7344463B2 (ja) 点火プラグの摩耗量推定装置および異常判定装置
JP7247364B2 (ja) 内燃機関用制御装置
JP2000345949A (ja) 内燃機関の点火制御装置
JP7080292B2 (ja) 内燃機関の制御装置
JP7056477B2 (ja) 点火プラグの異常判定装置
CN115163377B (zh) 一种车辆的发动机的点火能量的控制方法及控制系统
JP7056476B2 (ja) 点火プラグの異常判定装置
JP4029492B2 (ja) 内燃機関の始動時燃料供給制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823496

Country of ref document: EP

Kind code of ref document: A1