WO2023241151A1 - 基于wlcsp的微型热电堆红外传感器及制备方法 - Google Patents

基于wlcsp的微型热电堆红外传感器及制备方法 Download PDF

Info

Publication number
WO2023241151A1
WO2023241151A1 PCT/CN2023/082770 CN2023082770W WO2023241151A1 WO 2023241151 A1 WO2023241151 A1 WO 2023241151A1 CN 2023082770 W CN2023082770 W CN 2023082770W WO 2023241151 A1 WO2023241151 A1 WO 2023241151A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared sensor
semiconductor substrate
thermopile
cavity
thermopile infrared
Prior art date
Application number
PCT/CN2023/082770
Other languages
English (en)
French (fr)
Inventor
徐德辉
Original Assignee
上海烨映微电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海烨映微电子科技股份有限公司 filed Critical 上海烨映微电子科技股份有限公司
Publication of WO2023241151A1 publication Critical patent/WO2023241151A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/008MEMS characterised by an electronic circuit specially adapted for controlling or driving the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00317Packaging optical devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of semiconductors and relates to a micro thermopile infrared sensor based on WLCSP and a preparation method.
  • Micro-Electro-Mechanical-System refers to a micro system that can integrate mechanical components, drive components, optical systems, and electronic control systems into a whole. It uses microelectronics technology and micro-machining technology. , such as silicon body micromachining, silicon surface micromachining, wafer bonding and other combined manufacturing processes, to create a variety of sensors, actuators, actuators and microsystems with excellent performance, low price and miniaturization.
  • thermopile sensor is a temperature measurement element that is composed of multiple thermocouples connected in series. By superimposing the temperature difference electromotive force on each thermocouple, and based on the corresponding relationship between the temperature difference electromotive force and temperature, the temperature difference or temperature to be measured is obtained.
  • thermopile infrared sensor needs to be equipped with an infrared lens to receive the infrared light emitted by the object being measured and focus it on the surface of the internal infrared sensor chip.
  • the existing infrared sensor packaging is, on the one hand, through a metal tube cap or an optical machine.
  • thermopile infrared sensors because it is a separate optical device, makes the overall size of the infrared sensor larger; on the other hand, infrared sensor packaging mostly uses TO (Transistor Outline) packaging, LGA (Land Grid Array) packaging or SMD ( Surface Mounted Devices) packaging form, these require the wire bonding process to lead out the sensor signal, which will also cause the size of the packaged device to be much larger than the size of the infrared sensor chip. Therefore, it is difficult for existing thermopile infrared sensors to prepare miniature thermopile infrared sensors to be suitable for application environments with small space, making it impossible to use thermopile infrared sensors in fields with extremely strict sensor size requirements.
  • thermopile infrared sensor based on WLCSP and a preparation method.
  • the purpose of the present invention is to provide a WLCSP-based micro thermopile infrared sensor and a preparation method to solve the problem of difficulty in preparing a micro thermopile infrared sensor in the prior art.
  • the present invention provides a preparation method of a micro thermopile infrared sensor based on WLCSP, which includes the following steps:
  • first semiconductor substrate having opposite first and second sides;
  • the infrared sensor structure including a thermopile structure and a signal processing circuit connected to the thermopile structure;
  • a TSV conductive pillar penetrating the first semiconductor substrate is formed in the first semiconductor substrate, and the TSV is conductive
  • the pillar has an opposite first end and a second end, and the first end of the TSV conductive pillar is connected to the signal processing circuit, and the second end of the TSV conductive pillar is exposed on the first semiconductor substrate. second side;
  • thermopile Infrared sensor wafer preparation Make a release hole on the infrared sensor structure, and form a first cavity in the first semiconductor substrate below the thermopile structure through the release hole to suspend the thermopile structure to complete the thermopile Infrared sensor wafer preparation;
  • the second semiconductor substrate having opposite first and second sides;
  • a semiconductor infrared lens is formed on the first surface of the second semiconductor substrate, and a third lens is formed in the second semiconductor substrate from a second surface of the second semiconductor substrate.
  • the second cavity extending on one side completes the preparation of infrared lens wafer;
  • thermopile infrared sensor wafer and the infrared lens wafer Align and bond the thermopile infrared sensor wafer and the infrared lens wafer, and the first cavity and the second cavity are connected through the release hole to form a sealed cavity;
  • a process step of ball planting is also included on the second end of the TSV conductive pillar to form a solder ball connected to the second end of the TSV conductive pillar.
  • a step of dicing is further included to prepare an infrared lens chip, and the alignment of the infrared lens chip with the thermopile infrared sensor wafer is included. Steps of the quasi-bonding process.
  • the size of the formed micro thermopile infrared sensor is less than 4 ⁇ 4 mm 2 .
  • the sealed cavity formed includes an air cavity or a vacuum cavity.
  • the first semiconductor substrate includes a silicon substrate or a germanium substrate
  • the second semiconductor substrate includes a silicon substrate or a germanium substrate.
  • the invention also provides a micro thermopile infrared sensor based on WLCSP.
  • the micro thermopile infrared sensor includes:
  • a first semiconductor substrate the first semiconductor substrate has an opposite first surface and a second surface, and the first semiconductor substrate has a first surface from the first semiconductor substrate to the first surface. a first cavity extending from the second side of the semiconductor substrate;
  • the infrared sensor structure is located on the first surface of the first semiconductor substrate, the infrared sensor structure includes a suspended thermopile structure located on the first cavity and the thermopile structure Connected signal processing circuits;
  • the TSV conductive pillar penetrates the first semiconductor substrate, the TSV conductive pillar has an opposite first end and a second end, and the first end of the TSV conductive pillar is in contact with the signal processing circuit connected, the second end of the TSV conductive pillar is exposed on the second surface of the first semiconductor substrate;
  • a second semiconductor substrate having an opposite first surface and a second surface, and the second semiconductor substrate
  • a semiconductor infrared lens is provided on a first surface of the substrate, and a second cavity extending from the second surface of the second semiconductor substrate to the first surface of the second semiconductor substrate is provided in the second semiconductor substrate.
  • the second semiconductor substrate is aligned and bonded to the infrared sensor structure, and the first cavity and the second cavity are connected through a release hole located in the infrared sensor structure to form a sealed cavity. cavity.
  • the size of the micro thermopile infrared sensor is less than 4 ⁇ 4mm 2 .
  • solder ball located on the second end of the TSV conductive pillar is also included.
  • the first semiconductor substrate includes a silicon substrate or a germanium substrate
  • the second semiconductor substrate includes a silicon substrate or a germanium substrate.
  • the WLCSP-based micro thermopile infrared sensor and preparation method of the present invention can combine the semiconductor infrared lens and the thermopile infrared sensor by combining wafer level chip technology (WLCSP) and wafer level optical technology (WLO). Integration, and through vacuum bonding or airtight bonding, can improve the performance of the thermopile infrared sensor; at the same time, through the signal processing circuit, TSV conductive pillars and solder balls, the signal of the thermopile infrared sensor can be led out from the back.
  • WLCSP wafer level chip technology
  • WLO wafer level optical technology
  • the WLCSP-based micro thermopile infrared sensor and preparation method of the present invention can integrate an infrared lens on the chip to improve the convenience of use; can integrate a signal processing circuit on the chip to improve device integration; and at the same time, it can integrate both the infrared lens and the signal wiring.
  • the size of the thermopile infrared sensor is reduced. Through bare chip packaging technology, the size of the packaged micro thermopile infrared sensor is kept equal to the size of the thermopile infrared sensor chip, making the thermopile infrared sensor suitable for smart wear, etc. Applications that require very high sensor volume.
  • Figure 1 shows a schematic structural diagram of a WLCSP-based micro thermopile infrared sensor in an embodiment of the present invention.
  • thermopile infrared sensor chip 101 First semiconductor substrate 102 Insulating dielectric layer 103 Thermopile structure 104 passivation layer 105 release hole 106 First cavity 107 Signal processing circuit 108 TSV conductive pillar 109 solder ball 200 infrared lens chip 201 Second semiconductor substrate 202 Semiconductor infrared lens 203 Second cavity 300 bonding layers
  • spatial relationship words such as “below”, “below”, “below”, “below”, “above”, “on”, etc. may be used herein to describe an element or element shown in the drawings.
  • a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • structures described as having a first feature "on" a second feature may include embodiments in which the first and second features are formed in direct contact, as well as may include additional features formed between the first and second features. Embodiments between second features such that the first and second features may not be in direct contact.
  • illustrations provided in this embodiment only illustrate the basic concept of the present invention in a schematic manner, so the illustrations only show the components related to the present invention and are not based on the number, shape and number of components during actual implementation. Dimension drawing, in actual implementation, the type, quantity and proportion of each component can be changed at will, and the component layout type may also be more complex.
  • This embodiment provides a method for preparing a micro thermopile infrared sensor based on WLCSP, which includes the following steps:
  • S1-1 Provide a first semiconductor substrate, the first semiconductor substrate having opposite first and second surfaces;
  • the infrared sensor structure includes Including a thermopile structure and a signal processing circuit connected to the thermopile structure;
  • TSV conductive pillar penetrating the first semiconductor substrate in the first semiconductor substrate.
  • the TSV conductive pillar has an opposite first end and a second end, and the TSV conductive pillar has The first end is connected to the signal processing circuit, and the second end of the TSV conductive pillar is exposed on the second surface of the first semiconductor substrate;
  • thermopile infrared sensor wafer Make a release hole on the infrared sensor structure, and form a first cavity in the first semiconductor substrate below the thermopile structure through the release hole to suspend the thermopile structure. , Complete the preparation of thermopile infrared sensor wafer;
  • S1-5 Provide a second semiconductor substrate, the second semiconductor substrate having an opposite first surface and a second surface;
  • S1-6 Form a semiconductor infrared lens on the first surface of the second semiconductor substrate, and form a second surface of the second semiconductor in the second semiconductor substrate from the second semiconductor substrate.
  • the second cavity extending from the first surface of the substrate completes the preparation of the infrared lens wafer;
  • thermopile infrared sensor wafer and the infrared lens wafer Align and bond the thermopile infrared sensor wafer and the infrared lens wafer, and the first cavity and the second cavity are connected through the release hole to form a sealed cavity.
  • S1-8 Carry out dicing to prepare a micro thermopile infrared sensor.
  • thermopile infrared lens and the thermopile infrared sensor can be integrated and bonded to form a sealed cavity, thereby improving the The performance of the thermopile infrared sensor; at the same time, the signal of the thermopile infrared sensor can be extracted from the back of the first semiconductor substrate through the signal processing circuit and the TSV conductive pillar; therefore, this embodiment can realize the on-chip integrated infrared lens, improving the convenience of use; On-chip integrated signal processing circuits can be realized to improve device integration; at the same time, the size of the thermopile infrared sensor is reduced from both the infrared lens and signal wiring.
  • the packaged micro thermopile infrared sensor can be The size is similar to that of the thermopile infrared sensor chip, making the thermopile infrared sensor suitable for applications such as smart wear that require high sensor volume.
  • thermopile infrared sensor in this embodiment will be further introduced below with reference to FIG. 1 .
  • step S1-1 is performed to provide a first semiconductor substrate 101, which has an opposite first surface and a second surface.
  • the first semiconductor substrate 101 may include a silicon substrate or a germanium substrate.
  • the first semiconductor substrate 101 uses a silicon substrate as an example, but the first semiconductor substrate The material of 101 is not limited to this.
  • step S1-2 is performed to fabricate an infrared sensor structure on the first surface of the first semiconductor substrate 101.
  • the infrared sensor structure includes a thermopile structure 103 and a signal processing module connected to the thermopile structure 103. Circuit 107.
  • CMOS-MEMS technology can be used to fabricate on the first semiconductor substrate 101 including thermopile patterns and The infrared sensor structure of the circuit pattern is read out to form the thermopile structure 103 and the signal processing circuit 107 connected to the thermopile structure 103 .
  • the preparation of the infrared sensor structure may include preparation of the insulating dielectric layer 102, the preparation of the thermoelectric material layer, the preparation of the passivation layer 104, the preparation of the contact hole, the preparation of the signal processing circuit 107, etc., regarding the infrared
  • the material, structure and preparation of the sensor structure are not excessively limited here.
  • step S1-3 is performed to form a TSV conductive pillar 108 penetrating the first semiconductor substrate 101 in the first semiconductor substrate 101.
  • the TSV conductive pillar 108 has an opposite first end and a second end. , and the first end of the TSV conductive pillar 108 is connected to the signal processing circuit 107 , and the second end of the TSV conductive pillar 108 is exposed on the second surface of the first semiconductor substrate 101 .
  • the signal output of the infrared sensor structure can be led from the first side, that is, the front side of the first semiconductor substrate 101 to the third side of the first semiconductor substrate 101.
  • the two sides are the back, which can avoid the subsequent use of metal bonding (wire bond) processes for circuit extraction. Therefore, in this embodiment, through the connection between the TSV conductive pillar 108 and the signal processing circuit 107, on-chip integrated signal processing can be achieved circuit, improve device integration, reduce device size, and due to the connection between the TSV conductive pillar 108 and the signal processing circuit 107, the connection between RDL and TSV can be realized, thereby shortening the signal transmission path and providing flexibility for electrical connection. It can reduce losses and improve signal processing performance.
  • the material, size and specific preparation process steps of the TSV conductive pillars 108 are not excessively limited here.
  • step S1-4 is performed to make a release hole 105 on the infrared sensor structure, and form a first cavity 106 in the first semiconductor substrate 101 under the thermopile structure through the release hole 105. , to suspend the thermopile structure 103 to complete the preparation of the thermopile infrared sensor wafer.
  • the release hole 105 that penetrates the infrared sensor structure and exposes the first semiconductor substrate 101 can be formed, so that the first semiconductor substrate 101 can be etched based on the release hole 105 .
  • Semiconductor substrate 101, the first cavity 106 is formed in the first semiconductor substrate 101, thereby suspending the thermopile structure.
  • the size of the release hole 105, the size of the first cavity 106 and the specific preparation process are not excessively limited here. At this point, the preparation of the thermopile infrared sensor wafer is completed.
  • thermopile infrared sensor wafer and the size of each thermopile infrared sensor chip on the wafer can be selected according to needs.
  • the finally prepared miniature thermopile infrared sensor can be used in smart wearables, such as TWS earphones, etc. Therefore, it is preferred that the size of the thermopile infrared sensor chip is less than 4 ⁇ 4mm 2 , such as 0.5 ⁇ 0.5mm. 2. 1 ⁇ 1mm 2 , 1.5 ⁇ 1.5mm 2 , 1.8 ⁇ 1.8mm 2 , 2 ⁇ 2mm 2 , 3 ⁇ 3mm 2 , 4 ⁇ 4mm 2 , etc., but the size of the micro thermopile infrared sensor chip is not limited to this. .
  • step S1-5 is performed to provide a second semiconductor substrate 201, which has an opposite first surface and a second surface.
  • the second semiconductor substrate 201 may include a silicon substrate or a germanium substrate.
  • the second semiconductor substrate 201 is the same silicon substrate as the first semiconductor substrate 101 .
  • the material is used as an example, but the material of the second semiconductor substrate 201 is not limited to this, and other materials can also be used.
  • step S1-6 is performed to form a semiconductor infrared lens 202 on the first surface of the second semiconductor substrate 201, and form an infrared lens 202 from the second semiconductor substrate 201 in the second semiconductor substrate 201.
  • the second cavity 203 extending toward the first surface of the second semiconductor substrate 201 completes the preparation of the infrared lens wafer.
  • the second surface from the second semiconductor substrate 201 may first be formed in the second semiconductor substrate 201 by methods such as oxidation, glue coating photolithography, silicon oxide etching, silicon etching, etc.
  • the second cavity 203 extends from the first surface of the semiconductor substrate 201 .
  • glue photolithography can be performed on the first surface of the second semiconductor substrate 201 to produce a spherical structure to form the semiconductor infrared lens 202 .
  • the size and specific preparation process of the second cavity 203 are not excessively limited here. At this point, the preparation of the infrared lens wafer is completed.
  • the size of the infrared lens wafer and the size of each infrared lens chip on the wafer can be selected according to needs.
  • the finally prepared miniature thermopile infrared sensor can be used in smart wearables, such as TWS earphones. Therefore, it is preferred that the size of the infrared lens chip and the thermopile infrared sensor chip correspond to each other, and both are less than 4 ⁇ 4mm 2 , such as 0.5 ⁇ 0.5mm 2 , 1 ⁇ 1mm 2 , 1.5 ⁇ 1.5mm 2 , 1.8 ⁇ 1.8mm 2 , 2 ⁇ 2mm 2 , 3 ⁇ 3mm 2 , 4 ⁇ 4mm 2 , etc., but the infrared lens chip The size is not limited to this.
  • step S1-7 is performed to align and bond the thermopile infrared sensor wafer and the infrared lens wafer, and the first cavity 106 and the second cavity 203 pass through the release hole. 105 are connected to form a sealed cavity.
  • the bonding layer 300 can be formed on the second surface of the second semiconductor substrate 201, such as depositing a solder layer on the second surface of the second semiconductor substrate 201, and applying glue photolithography to the bonding layer 300.
  • the solder layer is patterned, or a screen printing method is used to form a patterned solder layer, so that the solder layer serves as a bonding layer between the thermopile infrared sensor wafer and the infrared lens wafer, that is,
  • the bonding layer 300 is used to achieve final alignment bonding, but is not limited to this.
  • the bonding layer 300 can also be formed on the infrared sensor structure, that is, located on the thermopile infrared sensor wafer. In order to perform the bonding process, the material, thickness, preparation process, etc. of the bonding layer 300 are not excessively limited here.
  • packaging bonding when performing the process step of alignment bonding, packaging bonding can be performed in a vacuum atmosphere to form a vacuum cavity, thereby further reducing thermal convection losses of the ultimately prepared micro thermopile infrared sensor and providing The performance of the thermopile infrared sensor is not limited to this.
  • the alignment bonding process it can also be performed in an air atmosphere to form an air cavity. The specific selection can be made according to needs and will not be discussed here. Overly restrictive.
  • step S1-8 is performed to perform scribing to prepare the micro thermopile infrared sensor.
  • a dicing machine can be used to scribe the bonded wafer to obtain the micro thermopile packaged in a bare chip.
  • the dicing process can be mechanical dicing or laser dicing, etc., which are not overly limited here.
  • a process step of ball planting on the second end of the TSV conductive pillar 108 may be included to form a ball with the TSV.
  • the second end of the conductive pillar 108 is connected to the solder ball 109.
  • the material, size and specific preparation of the solder ball 109 are not excessively limited here.
  • This embodiment provides another method for preparing a micro thermopile infrared sensor based on WLCSP.
  • the main difference from the first embodiment is that: during the preparation of the micro thermopile infrared sensor, the prepared infrared lens wafer is first scribed. wafer, then perform bonding process steps, and finally perform dicing of the bonded wafer to prepare the micro thermopile infrared sensor. Specifically, it includes the following steps:
  • S2-1 Provide a first semiconductor substrate, the first semiconductor substrate having an opposite first surface and a second surface;
  • the infrared sensor structure includes a thermopile structure and a signal processing circuit connected to the thermopile structure;
  • TSV conductive pillar penetrating the first semiconductor substrate in the first semiconductor substrate.
  • the TSV conductive pillar has an opposite first end and a second end, and the TSV conductive pillar has The first end is connected to the signal processing circuit, and the second end of the TSV conductive pillar is exposed on the second surface of the first semiconductor substrate;
  • thermopile infrared sensor wafer Make a release hole on the infrared sensor structure, and form a first cavity in the first semiconductor substrate under the thermopile structure through the release hole to suspend the thermopile structure. , Complete the preparation of thermopile infrared sensor wafer;
  • S2-5 Provide a second semiconductor substrate, the second semiconductor substrate having an opposite first surface and a second surface;
  • S2-6 Form a semiconductor infrared lens on the first surface of the second semiconductor substrate, and form a second surface of the second semiconductor in the second semiconductor substrate from the second semiconductor substrate.
  • the second cavity extending from the first surface of the substrate completes the preparation of the infrared lens wafer;
  • step S2-7 is performed in an airtight environment to form a sealed air cavity, but it is not limited to this. Vacuum sealing can also be used to form a sealed vacuum cavity, which is not overly limited here. .
  • the second end of the TSV conductive pillar is subjected to a ball planting process to form a solder ball connected to the second end of the TSV conductive pillar.
  • the material, size and specific preparation of the solder ball are not excessively limited here. .
  • this embodiment also provides a micro thermopile infrared sensor based on WLCSP.
  • the preparation of the micro thermopile infrared sensor can be referred to Embodiment 1 or Embodiment 2, but is not limited thereto.
  • the micro thermopile infrared sensor is prepared using the preparation method of Embodiment 1 or 2, so the material, preparation process, etc. of the micro thermopile infrared sensor will not be described in detail here.
  • the micro thermopile infrared sensor includes:
  • the first semiconductor substrate 101 has an opposite first surface and a second surface, and the first semiconductor substrate 101 has a surface from the first surface of the first semiconductor substrate. a first cavity 106 extending from the second surface of the first semiconductor substrate;
  • the infrared sensor structure is located on the first surface of the first semiconductor substrate 101, the infrared sensor structure includes a suspended thermopile structure 103 located on the first cavity 106 and the A signal processing circuit 107 connected to the thermopile structure 103;
  • the TSV conductive pillars 108 penetrate the first semiconductor substrate 101.
  • the TSV conductive pillars 108 have opposite first and second ends, and the first end of the TSV conductive pillars 108 is connected to the first end of the TSV conductive pillars 108.
  • the signal processing circuit 107 is connected, and the second end of the TSV conductive pillar 108 is exposed on the second surface of the first semiconductor substrate 101;
  • the second semiconductor substrate 201 has a first surface and a second surface opposite each other, and a semiconductor infrared lens 202 is provided on the first surface of the second semiconductor substrate 201.
  • the semiconductor substrate 201 has a second cavity 203 extending from the second surface of the second semiconductor substrate 201 to the first surface of the second semiconductor substrate 201;
  • the second semiconductor substrate 201 is aligned and bonded to the infrared sensor structure, and the first cavity 106 and the second cavity 203 are connected through the release hole 105 located in the infrared sensor structure. , forming a sealed cavity.
  • the size of the micro thermopile infrared sensor is less than 4 ⁇ 4mm 2 , such as 0.5 ⁇ 0.5mm 2 , 1 ⁇ 1mm 2 , 1.5 ⁇ 1.5mm 2 , 1.8 ⁇ 1.8mm 2 , 2 ⁇ 2mm 2 , 3 ⁇ 3mm 2 , 4 ⁇ 4mm 2 , etc., but are not limited to this.
  • the micro thermopile infrared sensor described in this embodiment can be applied to smart wearables, such as TWS earphones.
  • the micro thermopile infrared sensor may also include a solder ball 109 on the second end of the TSV conductive post 108 .
  • the first semiconductor substrate 101 may include a silicon substrate or a germanium substrate; the second semiconductor substrate 201 may include a silicon substrate or a germanium substrate. Regarding the first semiconductor substrate 101 and the The material of the second semiconductor substrate 201 is not excessively limited here.
  • the WLCSP-based micro thermopile infrared sensor and preparation method of the present invention by converting the wafer level
  • the combination of chip technology (WLCSP) and wafer-level optical technology (WLO) can integrate the semiconductor infrared lens and the thermopile infrared sensor, and improve the performance of the thermopile infrared sensor through vacuum bonding or air-tight bonding; at the same time, through
  • the signal processing circuit, TSV conductive pillars and solder balls can lead the signal of the thermopile infrared sensor from the back.
  • the WLCSP-based micro thermopile infrared sensor and preparation method of the present invention can integrate an infrared lens on the chip to improve the convenience of use; can integrate a signal processing circuit on the chip to improve device integration; and at the same time, it can integrate both the infrared lens and the signal wiring.
  • the size of the thermopile infrared sensor is reduced. Through bare chip packaging technology, the size of the packaged micro thermopile infrared sensor is kept equal to the size of the thermopile infrared sensor chip, making the thermopile infrared sensor suitable for smart wear, etc. Applications that require very high sensor volume.

Abstract

本发明提供一种基于WLCSP的微型热电堆红外传感器及制备方法,通过将晶圆级芯片技术和晶圆级光学技术结合,可将半导体红外透镜和热电堆红外传感器集成,并通过真空键合或者气密键合,可提高热电堆红外传感器的性能;同时通过信号处理电路、TSV导电柱及焊球,可将热电堆红外传感器的信号从背部引出。本发明可实现片上集成红外透镜,提高使用便捷性;可实现片上集成信号处理电路,提高器件集成度;且同时从红外镜头和信号走线两个方面减小了热电堆红外传感器的体积,通过裸芯片封装技术,使得封装后的微型热电堆红外传感器的尺寸和热电堆红外传感器芯片的尺寸保持相当,使得热电堆红外传感器能适合智能穿戴等对传感器体积要求很高的应用场合。

Description

基于WLCSP的微型热电堆红外传感器及制备方法 技术领域
本发明属于半导体领域,涉及一种基于WLCSP的微型热电堆红外传感器及制备方法。
背景技术
微机电系统(Micro-Electro-Mechanical-System,MEMS)技术是指一种可将机械构件、驱动部件、光学系统、电控系统集成为一个整体的微型系统,它采用微电子技术和微加工技术,如硅体微加工、硅表面微加工、晶片键合等相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。
热电堆传感器是一种温度测量元件,由多个热电偶串接构成,通过叠加各个热电偶上的温差电动势,并根据温差电动势与温度的对应关系,得到待测温度差或者待测温度。
热电堆红外传感器使用过程中都需要搭配红外透镜来接受被测物体发出的红外光线,并聚焦到内部的红外传感器芯片表面,但现有的红外传感器封装,一方面是通过金属管帽或者光机结构实现和红外透镜的集成,由于为分离光学器件,这使得红外传感器的整体尺寸较大;另一方面,红外传感器封装多采用TO(Transistor Outline)封装、LGA(Land Grid Array)封装或者SMD(Surface Mounted Devices)封装形式,这些都需要通过金属打线(wire bond)工艺将传感器的信号引出,这同样也会导致封装后的器件尺寸比红外传感器芯片的尺寸要增加很多。从而,现有的热电堆红外传感器难以制备微型热电堆红外传感器,以适用于空间较小的应用环境,使得对传感器尺寸要求极为苛刻的领域无法使用热电堆红外传感器。
因此,提供一种基于WLCSP的微型热电堆红外传感器及制备方法,实属必要。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于WLCSP的微型热电堆红外传感器及制备方法,用于解决现有技术中难以制备微型热电堆红外传感器的问题。
为实现上述目的及其他相关目的,本发明提供一种基于WLCSP的微型热电堆红外传感器的制备方法,包括以下步骤:
提供第一半导体衬底,所述第一半导体衬底具有相对的第一面及第二面;
于所述第一半导体衬底的第一面上制作红外传感器结构,所述红外传感器结构包括热电堆结构及与所述热电堆结构相连接的信号处理电路;
于所述第一半导体衬底中形成贯穿所述第一半导体衬底的TSV导电柱,所述TSV导电 柱具有相对的第一端及第二端,且所述TSV导电柱的第一端与所述信号处理电路相连接,所述TSV导电柱的第二端显露于所述第一半导体衬底的第二面;
于所述红外传感器结构上制作释放孔,并通过所述释放孔于所述热电堆结构下方的所述第一半导体衬底中形成第一空腔,以悬浮所述热电堆结构,完成热电堆红外传感器晶圆制备;
提供第二半导体衬底,所述第二半导体衬底具有相对的第一面及第二面;
于所述第二半导体衬底的第一面上形成半导体红外透镜,及于所述第二半导体衬底中形成自所述第二半导体衬底的第二面向所述第二半导体衬底的第一面延伸的第二空腔,完成红外透镜晶圆制备;
将所述热电堆红外传感器晶圆与所述红外透镜晶圆对准键合,且所述第一空腔及所述第二空腔通过所述释放孔相连通,形成密封空腔;
进行划片,制备微型热电堆红外传感器。
可选地,在所述键合工艺步骤完成后,还包括在所述TSV导电柱的第二端进行植球的工艺步骤,以形成与所述TSV导电柱的第二端相连接的焊球。
可选地,在完成所述红外透镜晶圆的制备后,还包括进行划片的步骤,以制备红外透镜芯片,以及将所述红外透镜芯片与所述热电堆红外传感器晶圆进行所述对准键合工艺的步骤。
可选地,形成的所述微型热电堆红外传感器的尺寸小于4×4mm2
可选地,形成的所述密封空腔包括空气空腔或真空空腔。
可选地,所述第一半导体衬底包括硅衬底或锗衬底;所述第二半导体衬底包括硅衬底或锗衬底。
本发明还提供一种基于WLCSP的微型热电堆红外传感器,所述微型热电堆红外传感器包括:
第一半导体衬底,所述第一半导体衬底具有相对的第一面及第二面,且所述第一半导体衬底中具有自所述第一半导体衬底的第一面向所述第一半导体衬底的第二面延伸的第一空腔;
红外传感器结构,所述红外传感器结构位于所述第一半导体衬底的第一面上,所述红外传感器结构包括位于所述第一空腔上的悬浮的热电堆结构及与所述热电堆结构相连接的信号处理电路;
TSV导电柱,所述TSV导电柱贯穿所述第一半导体衬底,所述TSV导电柱具有相对的第一端及第二端,且所述TSV导电柱的第一端与所述信号处理电路相连接,所述TSV导电柱的第二端显露于所述第一半导体衬底的第二面;
第二半导体衬底,所述第二半导体衬底具有相对的第一面及第二面,且所述第二半导体 衬底的第一面上具有半导体红外透镜,所述第二半导体衬底中具有自所述第二半导体衬底的第二面向所述第二半导体衬底的第一面延伸的第二空腔;
所述第二半导体衬底对准键合于所述红外传感器结构上,且所述第一空腔及所述第二空腔通过位于所述红外传感器结构中的释放孔相连通,形成密封空腔。
可选地,所述微型热电堆红外传感器的尺寸小于4×4mm2
可选地,还包括位于所述TSV导电柱的第二端上的焊球。
可选地,所述第一半导体衬底包括硅衬底或锗衬底;所述第二半导体衬底包括硅衬底或锗衬底。
如上所述,本发明的基于WLCSP的微型热电堆红外传感器及制备方法,通过将晶圆级芯片技术(WLCSP)和晶圆级光学技术(WLO)结合,可将半导体红外透镜和热电堆红外传感器集成,并通过真空键合或者气密键合,可提高热电堆红外传感器的性能;同时通过信号处理电路、TSV导电柱及焊球,可将热电堆红外传感器的信号从背部引出。
本发明的基于WLCSP的微型热电堆红外传感器及制备方法,可实现片上集成红外透镜,提高使用便捷性;可实现片上集成信号处理电路,提高器件集成度;且同时从红外镜头和信号走线两个方面减小了热电堆红外传感器的体积,通过裸芯片封装技术,使得封装后的微型热电堆红外传感器的尺寸和热电堆红外传感器芯片的尺寸保持相当,使得热电堆红外传感器能适合智能穿戴等对传感器体积要求很高的应用场合。
附图说明
图1显示为本发明实施例中基于WLCSP的微型热电堆红外传感器的结构示意图。
元件标号说明
100                    热电堆红外传感器芯片
101                    第一半导体衬底
102                    绝缘介电层
103                    热电堆结构
104                    钝化层
105                    释放孔
106                    第一空腔
107                    信号处理电路
108                 TSV导电柱
109                    焊球
200                    红外透镜芯片
201                    第二半导体衬底
202                    半导体红外透镜
203                    第二空腔
300                    键合层
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,其组件布局型态也可能更为复杂。
实施例一
本实施例提供一种基于WLCSP的微型热电堆红外传感器的制备方法,包括以下步骤:
S1-1:提供第一半导体衬底,所述第一半导体衬底具有相对的第一面及第二面;
S1-2:于所述第一半导体衬底的第一面上制作红外传感器结构,所述红外传感器结构包 括热电堆结构及与所述热电堆结构相连接的信号处理电路;
S1-3:于所述第一半导体衬底中形成贯穿所述第一半导体衬底的TSV导电柱,所述TSV导电柱具有相对的第一端及第二端,且所述TSV导电柱的第一端与所述信号处理电路相连接,所述TSV导电柱的第二端显露于所述第一半导体衬底的第二面;
S1-4:于所述红外传感器结构上制作释放孔,并通过所述释放孔于所述热电堆结构下方的所述第一半导体衬底中形成第一空腔,以悬浮所述热电堆结构,完成热电堆红外传感器晶圆制备;
S1-5:提供第二半导体衬底,所述第二半导体衬底具有相对的第一面及第二面;
S1-6:于所述第二半导体衬底的第一面上形成半导体红外透镜,及于所述第二半导体衬底中形成自所述第二半导体衬底的第二面向所述第二半导体衬底的第一面延伸的第二空腔,完成红外透镜晶圆制备;
S1-7:将所述热电堆红外传感器晶圆与所述红外透镜晶圆对准键合,且所述第一空腔及所述第二空腔通过所述释放孔相连通,形成密封空腔;
S1-8:进行划片,制备微型热电堆红外传感器。
本实施例中,通过将晶圆级芯片技术(WLCSP)和晶圆级光学技术(WLO)结合,可将半导体红外透镜和热电堆红外传感器集成,并通过键合形成密封空腔,从而可提高热电堆红外传感器的性能;同时通过信号处理电路及TSV导电柱可将热电堆红外传感器的信号从第一半导体衬底背部引出;因此,本实施例可实现片上集成红外透镜,提高使用便捷性;可实现片上集成信号处理电路,提高器件集成度;且同时从红外镜头和信号走线两个方面减小了热电堆红外传感器的体积,通过裸芯片封装技术,使得封装后的微型热电堆红外传感器的尺寸和热电堆红外传感器芯片的尺寸保持相当,使得热电堆红外传感器能适合智能穿戴等对传感器体积要求很高的应用场合。
以下结合附图1对本实施例中有关所述微型热电堆红外传感器的制备进行进一步的介绍。
首先,执行步骤S1-1,提供第一半导体衬底101,所述第一半导体衬底101具有相对的第一面及第二面。
具体的,所述第一半导体衬底101可包括硅衬底或锗衬底等,本实施例中,所述第一半导体衬底101采用硅衬底作为示例,但所述第一半导体衬底101的材质并非局限于此。
接着,执行步骤S1-2,于所述第一半导体衬底101的第一面上制作红外传感器结构,所述红外传感器结构包括热电堆结构103及与所述热电堆结构103相连接的信号处理电路107。
具体的,可采用CMOS-MEMS技术在所述第一半导体衬底101上制作包含热电堆图形和 读出电路图形的所述红外传感器结构,以形成所述热电堆结构103及与所述热电堆结构103相连接的所述信号处理电路107。其中,所述红外传感器结构的制备可包括如绝缘介电层102的制备、热电材料层的制备、钝化层104的制备、接触孔的制备以及信号处理电路107的制备等,关于所述红外传感器结构的材质、结构及制备此处不作过分限制。
接着,执行步骤S1-3,于所述第一半导体衬底101中形成贯穿所述第一半导体衬底101的TSV导电柱108,所述TSV导电柱108具有相对的第一端及第二端,且所述TSV导电柱108的第一端与所述信号处理电路107相连接,所述TSV导电柱108的第二端显露于所述第一半导体衬底101的第二面。
具体的,通过所述TSV导电柱108的制备,可将所述红外传感器结构的信号输出从所述第一半导体衬底101的第一面即正面引到所述第一半导体衬底101的第二面即背面,从而可避免后续采用如金属打线(wire bond)工艺进行电路引出,因此本实施例通过所述TSV导电柱108与所述信号处理电路107的连接,可实现片上集成信号处理电路,提高器件集成度,缩小器件尺寸,且由于所述TSV导电柱108与所述信号处理电路107的连接,可实现RDL与TSV的连接,从而可缩短信号传输路径,为电性连接提供灵活性,且可降低损耗,提高信号处理性能。关于所述TSV导电柱108的材质、尺寸及具体制备工艺步骤等此处不作过分限制。
接着,执行步骤S1-4,于所述红外传感器结构上制作释放孔105,并通过所述释放孔105于所述热电堆结构下方的所述第一半导体衬底101中形成第一空腔106,以悬浮所述热电堆结构103,完成热电堆红外传感器晶圆制备。
具体的,通过图形化所述红外传感器结构,可形成贯穿所述红外传感器结构且显露所述第一半导体衬底101的所述释放孔105,以基于所述释放孔105刻蚀所述第一半导体衬底101,在所述第一半导体衬底101中形成所述第一空腔106,从而悬浮所述热电堆结构。其中,关于所述释放孔105的尺寸、所述第一空腔106的尺寸以及具体制备工艺此处不作过分限制,至此完成所述热电堆红外传感器晶圆的制备。
关于所述热电堆红外传感器晶圆的尺寸及晶圆上的各热电堆红外传感器芯片的尺寸可根据需要进行选择。本实施例中,最终制备的所述微型热电堆红外传感器可应用于智能穿戴中,如TWS耳机等,因此优选所述热电堆红外传感器芯片的尺寸为小于4×4mm2,如0.5×0.5mm2、1×1mm2、1.5×1.5mm2、1.8×1.8mm2、2×2mm2、3×3mm2、4×4mm2等,但所述微型热电堆红外传感器芯片的尺寸并非局限于此。
接着,执行步骤S1-5,提供第二半导体衬底201,所述第二半导体衬底201具有相对的第一面及第二面。
具体的,所述第二半导体衬底201可包括硅衬底或锗衬底等,本实施例中,所述第二半导体衬底201采用与所述第一半导体衬底101相同的硅衬底材质以作为示例,但所述第二半导体衬底201的材质并非局限于此,也可采用其他材质。
接着,执行步骤S1-6,于所述第二半导体衬底201的第一面上形成半导体红外透镜202,及于所述第二半导体衬底201中形成自所述第二半导体衬底201的第二面向所述第二半导体衬底201的第一面延伸的第二空腔203,完成红外透镜晶圆制备。
具体的,可先通过如氧化、涂胶光刻、氧化硅腐蚀、硅腐蚀等方法在所述第二半导体衬底201中形成自所述第二半导体衬底201的第二面向所述第二半导体衬底201的第一面延伸的所述第二空腔203。接着,可于所述第二半导体衬底201的第一面进行涂胶光刻,制作球形结构,以形成所述半导体红外透镜202。其中,关于所述第二空腔203的尺寸以及具体制备工艺此处不作过分限制,至此完成所述红外透镜晶圆的制备。
关于所述红外透镜晶圆的尺寸及晶圆上的各红外透镜芯片的尺寸可根据需要进行选择。本实施例中,最终制备的所述微型热电堆红外传感器可应用于智能穿戴中,如TWS耳机,因此优选所述红外透镜芯片与所述热电堆红外传感器芯片的尺寸对应,均为小于4×4mm2,如0.5×0.5mm2、1×1mm2、1.5×1.5mm2、1.8×1.8mm2、2×2mm2、3×3mm2、4×4mm2等,但所述红外透镜芯片的尺寸并非局限于此。
接着,执行步骤S1-7,将所述热电堆红外传感器晶圆与所述红外透镜晶圆对准键合,且所述第一空腔106及所述第二空腔203通过所述释放孔105相连通,形成密封空腔。
具体的,可在所述第二半导体衬底201的第二面形成键合层300,如在所述第二半导体衬底201的第二面沉积一层焊料层,并通过涂胶光刻对焊料层进行图形化处理,或采用丝网印刷的方法,形成图形化的焊料层,以通过所述焊料层作为所述热电堆红外传感器晶圆与所述红外透镜晶圆的键合层,即所述键合层300,以实现最终的对准键合,但并非局限于此,如所述键合层300也可形成于所述红外传感器结构上,即位于所述热电堆红外传感器晶圆上,以进行键合工艺,关于所述键合层300的材质、厚度、制备工艺等此处不作过分限制。
其中,在进行对准键合的工艺步骤时,可在真空氛围下进行封装键合,以形成真空空腔,从而可进一步的减少最终制备的所述微型热电堆红外传感器的热对流损耗,提供热电堆红外传感器的性能,但并非局限于此,在进行所述对准键合的工艺步骤时,也可在空气氛围下进行,以形成空气空腔,具体可根据需要进行选择,此处不作过分限制。
接着,执行步骤S1-8,进行划片,制备所述微型热电堆红外传感器。
具体的,可采用划片机对键合后的晶圆进行划片,以得到裸芯片封装的所述微型热电堆 红外传感器,其中,划片工艺可采用如机械划片或激光划片等,此处不作过分限制。
进一步的,在所述键合工艺步骤完成后以及在进行所述划片工艺步骤前,还可包括在所述TSV导电柱108的第二端进行植球的工艺步骤,以形成与所述TSV导电柱108的第二端相连接的焊球109,关于所述焊球109的材质、尺寸及具体制备此处不作过分限制。
实施例二
本实施例提供另一种基于WLCSP的微型热电堆红外传感器的制备方法,与实施例一的不同之处主要在于:所述微型热电堆红外传感器在制备中先对制备的红外透镜晶圆进行划片,而后再进行键合的工艺步骤,最后再进行键合晶圆的划片,以制备所述微型热电堆红外传感器。具体包括以下步骤:
S2-1:提供第一半导体衬底,所述第一半导体衬底具有相对的第一面及第二面;
S2-2:于所述第一半导体衬底的第一面上制作红外传感器结构,所述红外传感器结构包括热电堆结构及与所述热电堆结构相连接的信号处理电路;
S2-3:于所述第一半导体衬底中形成贯穿所述第一半导体衬底的TSV导电柱,所述TSV导电柱具有相对的第一端及第二端,且所述TSV导电柱的第一端与所述信号处理电路相连接,所述TSV导电柱的第二端显露于所述第一半导体衬底的第二面;
S2-4:于所述红外传感器结构上制作释放孔,并通过所述释放孔于所述热电堆结构下方的所述第一半导体衬底中形成第一空腔,以悬浮所述热电堆结构,完成热电堆红外传感器晶圆制备;
S2-5:提供第二半导体衬底,所述第二半导体衬底具有相对的第一面及第二面;
S2-6:于所述第二半导体衬底的第一面上形成半导体红外透镜,及于所述第二半导体衬底中形成自所述第二半导体衬底的第二面向所述第二半导体衬底的第一面延伸的第二空腔,完成红外透镜晶圆制备;
S2-7:对所述红外透镜晶圆进行划片,以制备红外透镜芯片;
S2-8:将所述红外透镜芯片与所述热电堆红外传感器晶圆进行对准键合,且所述第一空腔及所述第二空腔通过所述释放孔相连通,形成密封空腔;
S2-9:进行划片,制备所述微型热电堆红外传感器。
其中,关于步骤S2-1~步骤S2-6以及划片的工艺步骤均可参阅实施例一,此处不作赘述。本实施例中,在进行步骤S2-7时,在气密环境下进行,从而形成密封空气空腔,但并非局限于此,也可采用真空密封以形成密封真空空腔,此处不作过分限制。
进一步的,在所述键合工艺步骤完成后以及在进行所述划片工艺步骤前,还可包括在所 述TSV导电柱的第二端进行植球的工艺步骤,以形成与所述TSV导电柱的第二端相连接的焊球,关于所述焊球的材质、尺寸及具体制备此处不作过分限制。
如图1,本实施例还提供一种基于WLCSP的微型热电堆红外传感器,其中,所述微型热电堆红外传感器的制备可参阅实施例一或实施例二,但并非局限于此,本实施例中,所述微型热电堆红外传感器采用实施例一或实施例二的制备方法制备,因此有关所述微型热电堆红外传感器材质、制备工艺等此处不作赘述。
具体的,所述微型热电堆红外传感器包括:
第一半导体衬底101,所述第一半导体衬底101具有相对的第一面及第二面,且所述第一半导体衬底101中具有自所述第一半导体衬底的第一面向所述第一半导体衬底的第二面延伸的第一空腔106;
红外传感器结构,所述红外传感器结构位于所述第一半导体衬底101的第一面上,所述红外传感器结构包括位于所述第一空腔106上的悬浮的热电堆结构103及与所述热电堆结构103相连接的信号处理电路107;
TSV导电柱108,所述TSV导电柱108贯穿所述第一半导体衬底101,所述TSV导电柱108具有相对的第一端及第二端,且所述TSV导电柱108的第一端与所述信号处理电路107相连接,所述TSV导电柱108的第二端显露于所述第一半导体衬底101的第二面;
第二半导体衬底201,所述第二半导体衬底201具有相对的第一面及第二面,且所述第二半导体衬底201的第一面上具有半导体红外透镜202,所述第二半导体衬底201中具有自所述第二半导体衬底201的第二面向所述第二半导体衬底201的第一面延伸的第二空腔203;
所述第二半导体衬底201对准键合于所述红外传感器结构上,且所述第一空腔106及所述第二空腔203通过位于所述红外传感器结构中的释放孔105相连通,形成密封空腔。
作为示例,所述微型热电堆红外传感器的尺寸小于4×4mm2,如0.5×0.5mm2、1×1mm2、1.5×1.5mm2、1.8×1.8mm2、2×2mm2、3×3mm2、4×4mm2等,但并非局限于此,本实施例中所述微型热电堆红外传感器可应用于智能穿戴,如TWS耳机等。
作为示例,所述微型热电堆红外传感器还可包括位于所述TSV导电柱108的第二端上的焊球109。
作为示例,所述第一半导体衬底101可包括硅衬底或锗衬底;所述第二半导体衬底201可包括硅衬底或锗衬底,关于所述第一半导体衬底101及所述第二半导体衬底201的材质此处不作过分限制。
综上所述,本发明的基于WLCSP的微型热电堆红外传感器及制备方法,通过将晶圆级 芯片技术(WLCSP)和晶圆级光学技术(WLO)结合,可将半导体红外透镜和热电堆红外传感器集成,并通过真空键合或者气密键合,可提高热电堆红外传感器的性能;同时通过信号处理电路、TSV导电柱及焊球,可将热电堆红外传感器的信号从背部引出。
本发明的基于WLCSP的微型热电堆红外传感器及制备方法,可实现片上集成红外透镜,提高使用便捷性;可实现片上集成信号处理电路,提高器件集成度;且同时从红外镜头和信号走线两个方面减小了热电堆红外传感器的体积,通过裸芯片封装技术,使得封装后的微型热电堆红外传感器的尺寸和热电堆红外传感器芯片的尺寸保持相当,使得热电堆红外传感器能适合智能穿戴等对传感器体积要求很高的应用场合。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种基于WLCSP的微型热电堆红外传感器的制备方法,其特征在于,包括以下步骤:
    提供第一半导体衬底,所述第一半导体衬底具有相对的第一面及第二面;
    于所述第一半导体衬底的第一面上制作红外传感器结构,所述红外传感器结构包括热电堆结构及与所述热电堆结构相连接的信号处理电路;
    于所述第一半导体衬底中形成贯穿所述第一半导体衬底的TSV导电柱,所述TSV导电柱具有相对的第一端及第二端,且所述TSV导电柱的第一端与所述信号处理电路相连接,所述TSV导电柱的第二端显露于所述第一半导体衬底的第二面;
    于所述红外传感器结构上制作释放孔,并通过所述释放孔于所述热电堆结构下方的所述第一半导体衬底中形成第一空腔,以悬浮所述热电堆结构,完成热电堆红外传感器晶圆制备;
    提供第二半导体衬底,所述第二半导体衬底具有相对的第一面及第二面;
    于所述第二半导体衬底的第一面上形成半导体红外透镜,及于所述第二半导体衬底中形成自所述第二半导体衬底的第二面向所述第二半导体衬底的第一面延伸的第二空腔,完成红外透镜晶圆制备;
    将所述热电堆红外传感器晶圆与所述红外透镜晶圆对准键合,且所述第一空腔及所述第二空腔通过所述释放孔相连通,形成密封空腔;
    进行划片,制备微型热电堆红外传感器。
  2. 根据权利要求1所述的基于WLCSP的微型热电堆红外传感器的制备方法,其特征在于:在所述键合工艺步骤完成后,还包括在所述TSV导电柱的第二端进行植球的工艺步骤,以形成与所述TSV导电柱的第二端相连接的焊球。
  3. 根据权利要求1所述的基于WLCSP的微型热电堆红外传感器的制备方法,其特征在于:在完成所述红外透镜晶圆的制备后,还包括进行划片的步骤,以制备红外透镜芯片,以及将所述红外透镜芯片与所述热电堆红外传感器晶圆进行所述对准键合工艺的步骤。
  4. 根据权利要求1所述的基于WLCSP的微型热电堆红外传感器的制备方法,其特征在于:形成的所述微型热电堆红外传感器的尺寸小于4×4mm2
  5. 根据权利要求1所述的基于WLCSP的微型热电堆红外传感器的制备方法,其特征在于:形成的所述密封空腔包括空气空腔或真空空腔。
  6. 根据权利要求1所述的基于WLCSP的微型热电堆红外传感器的制备方法,其特征在于:所述第一半导体衬底包括硅衬底或锗衬底;所述第二半导体衬底包括硅衬底或锗衬底。
  7. 一种基于WLCSP的微型热电堆红外传感器,其特征在于,所述微型热电堆红外传感器包括:
    第一半导体衬底,所述第一半导体衬底具有相对的第一面及第二面,且所述第一半导体衬底中具有自所述第一半导体衬底的第一面向所述第一半导体衬底的第二面延伸的第一空腔;
    红外传感器结构,所述红外传感器结构位于所述第一半导体衬底的第一面上,所述红外传感器结构包括位于所述第一空腔上的悬浮的热电堆结构及与所述热电堆结构相连接的信号处理电路;
    TSV导电柱,所述TSV导电柱贯穿所述第一半导体衬底,所述TSV导电柱具有相对的第一端及第二端,且所述TSV导电柱的第一端与所述信号处理电路相连接,所述TSV导电柱的第二端显露于所述第一半导体衬底的第二面;
    第二半导体衬底,所述第二半导体衬底具有相对的第一面及第二面,且所述第二半导体衬底的第一面上具有半导体红外透镜,所述第二半导体衬底中具有自所述第二半导体衬底的第二面向所述第二半导体衬底的第一面延伸的第二空腔;
    所述第二半导体衬底对准键合于所述红外传感器结构上,且所述第一空腔及所述第二空腔通过位于所述红外传感器结构中的释放孔相连通,形成密封空腔。
  8. 根据权利要求7所述的基于WLCSP的微型热电堆红外传感器,其特征在于:所述微型热电堆红外传感器的尺寸小于4×4mm2
  9. 根据权利要求7所述的基于WLCSP的微型热电堆红外传感器,其特征在于:还包括位于所述TSV导电柱的第二端上的焊球。
  10. 根据权利要求7所述的基于WLCSP的微型热电堆红外传感器,其特征在于:所述第一半导体衬底包括硅衬底或锗衬底;所述第二半导体衬底包括硅衬底或锗衬底。
PCT/CN2023/082770 2022-06-17 2023-03-21 基于wlcsp的微型热电堆红外传感器及制备方法 WO2023241151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210691253.2 2022-06-17
CN202210691253.2A CN115101654A (zh) 2022-06-17 2022-06-17 基于wlcsp的微型热电堆红外传感器及制备方法

Publications (1)

Publication Number Publication Date
WO2023241151A1 true WO2023241151A1 (zh) 2023-12-21

Family

ID=83290772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082770 WO2023241151A1 (zh) 2022-06-17 2023-03-21 基于wlcsp的微型热电堆红外传感器及制备方法

Country Status (2)

Country Link
CN (1) CN115101654A (zh)
WO (1) WO2023241151A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808633B2 (en) * 2021-08-16 2023-11-07 Oriental System Technology Inc. Infrared thermopile sensor
CN115101654A (zh) * 2022-06-17 2022-09-23 上海烨映微电子科技股份有限公司 基于wlcsp的微型热电堆红外传感器及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171174A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Works Ltd 熱型赤外線検出装置およびその製造方法
JP2007227676A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 赤外線デバイス集積装置
CN104157719A (zh) * 2014-07-08 2014-11-19 浙江大立科技股份有限公司 晶圆级封装红外探测器及其制备方法
CN105190892A (zh) * 2013-05-08 2015-12-23 ams有限公司 针对红外辐射的集成成像装置及制造方法
CN113363331A (zh) * 2020-02-20 2021-09-07 杭州福照光电有限公司 一种双透镜红外传感器
CN115101654A (zh) * 2022-06-17 2022-09-23 上海烨映微电子科技股份有限公司 基于wlcsp的微型热电堆红外传感器及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171174A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Works Ltd 熱型赤外線検出装置およびその製造方法
JP2007227676A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 赤外線デバイス集積装置
CN105190892A (zh) * 2013-05-08 2015-12-23 ams有限公司 针对红外辐射的集成成像装置及制造方法
CN104157719A (zh) * 2014-07-08 2014-11-19 浙江大立科技股份有限公司 晶圆级封装红外探测器及其制备方法
CN113363331A (zh) * 2020-02-20 2021-09-07 杭州福照光电有限公司 一种双透镜红外传感器
CN115101654A (zh) * 2022-06-17 2022-09-23 上海烨映微电子科技股份有限公司 基于wlcsp的微型热电堆红外传感器及制备方法

Also Published As

Publication number Publication date
CN115101654A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023241151A1 (zh) 基于wlcsp的微型热电堆红外传感器及制备方法
TW560018B (en) A wafer level packaged structure and method for manufacturing the same
JP5026038B2 (ja) 電子部品装置
US7723144B2 (en) Method and system for flip chip packaging of micro-mirror devices
US6448109B1 (en) Wafer level method of capping multiple MEMS elements
TWI409885B (zh) 具微機電元件之封裝結構及其製法
TWI417973B (zh) 具微機電元件之封裝結構之製法
US9371982B2 (en) Glass based multichip package
JP2008132587A (ja) ウェハレベル真空パッケージデバイスの製造方法
US9625487B2 (en) Capacitive acceleration sensor with a bending elastic beam and preparation method thereof
CN101233073A (zh) 微机电系统封装和互连
US20110018113A1 (en) Method for packaging micromachined devices
TWI458058B (zh) 晶片封裝體及其形成方法
US9073750B2 (en) Manufacturing method of micro-electro-mechanical system device and micro-electro-mechanical system device made thereby
CN103454052A (zh) Mems器件及晶圆级密封性的测量方法
JP2011009744A (ja) ハイブリッド密封インターフェース・チップ
TW201815661A (zh) 微機電裝置及製造方法
TWI677058B (zh) 晶片封裝體與製造方法
US10723615B2 (en) Sensor assembly and arrangement and method for manufacturing a sensor assembly
WO2023241150A1 (zh) 基于son的热电红外传感器及制备方法
Kröhnert et al. Versatile hermetically sealed sensor platform for high frequency applications
CN103508412A (zh) 压力传感器芯片的封装方法及压力传感器
CN219223988U (zh) 一种mems压力传感器
CN113443602B (zh) 微机电系统芯片晶圆级封装结构及其制造工艺
Qian et al. System Packaging and Assembly in IoT Nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822723

Country of ref document: EP

Kind code of ref document: A1