WO2023240900A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023240900A1
WO2023240900A1 PCT/CN2022/129345 CN2022129345W WO2023240900A1 WO 2023240900 A1 WO2023240900 A1 WO 2023240900A1 CN 2022129345 W CN2022129345 W CN 2022129345W WO 2023240900 A1 WO2023240900 A1 WO 2023240900A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerator
time
startup
target
Prior art date
Application number
PCT/CN2022/129345
Other languages
English (en)
French (fr)
Inventor
刘洋
吴干
付建欣
Original Assignee
海信冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210665961.9A external-priority patent/CN114963675A/zh
Priority claimed from CN202210666454.7A external-priority patent/CN114923310A/zh
Priority claimed from CN202210666468.9A external-priority patent/CN115031463A/zh
Application filed by 海信冰箱有限公司 filed Critical 海信冰箱有限公司
Publication of WO2023240900A1 publication Critical patent/WO2023240900A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular to a refrigerator.
  • the refrigerator is a common household appliance. Refrigerators can generally complete refrigeration through a compressor.
  • the ambient temperature around the refrigerator can be detected, and the ambient temperature around the refrigerator can be used to control the rotation speed of the compressor of the refrigerator.
  • the compressor speed of the refrigerator can be set to be high; when the ambient temperature is low, the compressor speed of the refrigerator can be set to be low.
  • a refrigerator which includes a box body, a main control board box, a temperature detection component, a refrigeration system and a controller.
  • the box is provided with compartments, and the box has a back panel.
  • the main control board box is arranged on the back panel of the box.
  • the temperature detection component is arranged on the main control board box, and the temperature detection component is used to detect the ambient temperature.
  • the refrigeration system is installed in the box, and includes a compressor, an evaporator, a capillary tube, a filter, and a condenser.
  • the controller is configured to: obtain the first environmental temperature detected by the temperature detection component; perform correction processing on the first environmental temperature to obtain a second environmental temperature; and determine the compression according to the second environmental temperature.
  • the target speed of the compressor is used to control the compressor to operate at the target speed.
  • Figure 1 is a structural diagram of a refrigerator according to some embodiments.
  • Figure 2 is a structural diagram of a refrigeration system according to some embodiments.
  • Figure 3 is a structural diagram of a box according to some embodiments.
  • Figure 4 is a structural diagram of a main control board box according to some embodiments.
  • Figure 5 is a flow chart of a refrigeration system control method according to some embodiments.
  • Figure 6 is a flow chart of another refrigeration system control method according to some embodiments.
  • Figure 7 is a flow chart of yet another refrigeration system control method according to some embodiments.
  • Figure 8 is a flow chart of yet another refrigeration system control method according to some embodiments.
  • Figure 9 is a flow chart of yet another refrigeration system control method according to some embodiments.
  • Figure 10 is a structural diagram of a compressor control device according to some embodiments.
  • Figure 11 is a block diagram of a controller according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • the refrigerator includes a box 101, and a compartment 102 may be provided in the box 101.
  • the refrigerator may also include: a refrigeration system 103 .
  • Figure 1 is only schematic and should not be understood as limiting the specific shape of the refrigerator and the compartments and refrigeration systems in the refrigerator. In practical applications, the compartment divisions of the refrigerator and the specific positions of the refrigeration system can be determined according to the use. Requirements setting.
  • the refrigeration system 103 may include a compressor 201 , an evaporator 202 , a capillary tube 203 , a filter 204 and a condenser 205 .
  • compressor 201 may include an inverter compressor.
  • the outlet of the compressor 201 is connected to the inlet of the condenser 205, and the outlet of the condenser 205 is connected to the inlet of the filter 204.
  • the capillary tube 203 is provided on the connecting pipe between the outlet of the filter 204 and the inlet of the evaporator 202.
  • the evaporator The outlet of 202 is connected with the inlet of compressor 201.
  • the filter 204 may be a dry filter 204, and a liquid reservoir is provided between the evaporator 202 and the compressor 201 for storing liquid refrigerant.
  • the compressor 201 converts the refrigerant into a high-temperature and high-pressure liquid refrigerant, which undergoes heat exchange through the condenser to become a normal-temperature and high-pressure liquid refrigerant.
  • the refrigerant filters out impurities in the filter 204 and passes through the capillary tube 203 During the process of reducing pressure and temperature, the liquid is converted into a low-temperature and low-pressure liquid, which undergoes heat exchange in the compartment of the refrigerator through the evaporator 202, and is converted into a low-pressure gaseous refrigerant, which repeatedly enters the compressor 201 for the next refrigeration cycle.
  • the compressor 201 can operate at a certain speed to convert the refrigerant into high-temperature and high-pressure liquid refrigerant.
  • the refrigeration efficiency of the refrigerator is optimized by controlling the operating speed of the compressor to ensure that the refrigeration effect of the refrigerator matches the actual environment, thereby saving energy and improving operating efficiency.
  • the speed of the compressor directly affects the energy consumption of the refrigerator. Therefore, in order to reduce the energy consumption of the refrigerator, it is necessary to accurately control the rotation speed of the refrigerator compressor.
  • the ambient temperature can be used to adjust the compressor in real time. Therefore, the accuracy of the ambient temperature plays an important role in the precise control of the compressor.
  • the ambient temperature of the refrigerator may change.
  • a more common way of detecting ambient temperature is to install ambient temperature sensors on the left and right hinge boxes on the top of the refrigerator. Due to the size limitation of the left and right hinge boxes, the placement of the ambient temperature sensor is affected. If it is placed in other parts of the refrigerator, the accuracy of using the ambient temperature to control the compressor speed of the refrigerator is not high, causing the compressor speed of the refrigerator to be chaotic and causing energy problems. waste. Therefore, how to accurately detect the ambient temperature is an urgent technical problem that needs to be solved.
  • the present disclosure provides a refrigerator and refrigeration system control method by obtaining the ambient temperature detected by the temperature detection component and utilizing the usage time and placement of the refrigerator.
  • Environmental information is used to correct the ambient temperature to obtain a more accurate second ambient temperature.
  • a more accurate target speed of the refrigerator compressor can be determined, and the target speed enables more accurate control of the refrigerator compressor. This enables the refrigerator's compressor control to be more closely integrated with usage time and placement environment information, achieving more precise compressor speed control for the refrigerator, thereby achieving energy saving and efficiency improvement.
  • a main control board box 401 is provided on the back panel 301 of the box 101.
  • a temperature detection component 402 is provided on the main control board box 401.
  • the temperature detection component 402 is used to detect the ambient temperature around the main control board box 401 .
  • temperature detection component 402 may include a temperature sensor.
  • the refrigerator also includes a controller. The refrigerator's controller can be configured to:
  • the first ambient temperature is corrected to obtain the second ambient temperature
  • the target speed of the compressor is determined to control the compressor to operate at the target speed.
  • the first ambient temperature may be the temperature data detected by the temperature detection component when the refrigerator starts operation. After being collected, the first ambient temperature can be stored in the controller of the refrigerator so as to be read from the controller.
  • the usage time can include: the current start-up time of the refrigerator and the length of the current time, or it can also refer to the actual operating time of the refrigerator after this start-up.
  • the first ambient temperature may be the ambient temperature obtained by real-time detection by the temperature detection component in the main control board box on the back panel of the refrigerator.
  • the temperature detection component can detect the temperature in the main control board box of the refrigerator through a certain detection frequency. Each time a first ambient temperature is detected, the technical solution of the present disclosure can be used to correct the first ambient temperature.
  • Obtaining the first ambient temperature detected by the temperature detection component of the refrigerator may include: in response to a compression control request of the refrigerator, reading the first ambient temperature collected by the temperature detection component of the refrigerator.
  • the first ambient temperature may be the temperature obtained by collecting the refrigerator in real time.
  • the compression control request can be automatically generated by the refrigerator after the user activates the energy-saving mode of the refrigerator.
  • the above technical solution controls the rotation speed of the refrigerator's compressor through two aspects: time and environment.
  • Information about the refrigerator's usage time and placement environment can be obtained through detection.
  • the method of obtaining the usage time and placement environment information of the refrigerator can also include: displaying the information collection interface of the refrigerator on the user terminal, and detecting the usage time and placement environment information of the refrigerator input by the user in the information collection interface to obtain the user-input information.
  • the refrigerator's usage time and storage environment information can be used to obtain the user-input information.
  • components in the main control board box 401 may generate heat during operation, thus causing the temperature detection component 402 to be affected by temperature changes in the main control board box.
  • the temperature changes of the components of the main control board box 401 may be affected by the operating time of the refrigerator. The longer the operating time of the refrigerator, the higher the temperature of the main control board box may be. Therefore, it is necessary to obtain the operating time of the refrigerator.
  • the temperature of the main control board box will also be affected by the environment. For example, in a relatively closed space, it may be affected by insufficient heat dissipation in a timely manner, and in a space close to a cold source, it may cause accelerated heat dissipation.
  • obtaining the first ambient temperature detected by the temperature detection component of the refrigerator may include: in response to a rotational speed control request initiated for the refrigerator, obtaining the first ambient temperature detected by the temperature detection component of the refrigerator.
  • the rotation speed control request can be generated through user triggering.
  • a user-triggered energy saving request can be detected, and in response to the energy saving request, a rotation speed control request for the compressor of the refrigerator is generated.
  • the speed control request can also be automatically generated through the speed control frequency. You can: obtain the preset speed control frequency, determine the update time of the refrigerator according to the preset speed control frequency, detect when the update time is reached, and generate the speed of the compressor of the refrigerator. Control request.
  • determining the target speed of the compressor according to the second ambient temperature may include querying a temperature-speed association list to determine the target speed corresponding to the second ambient temperature. Different rotational speeds and ambient temperatures can be pre-correlated. Any ambient temperature can be configured with a corresponding rotation speed.
  • the controller is also configured with a temperature correction database; the controller is configured to perform correction processing on the first ambient temperature according to the duration of use and placement environment, and obtain the second ambient temperature, including:
  • the time type may include at least one, for example, it may include: short time type, intermediate time type, long time type, long time exception type, etc.
  • the short time type can include less than six hours
  • the intermediate time type can include six to eight hours
  • the long time type can include more than eighteen hours
  • the long exception type can include more than eighteen hours.
  • at least one time type can be simply divided into: long time type and short time type.
  • the target time type can be a time type with a consistent usage duration in at least one time type.
  • the placement environment type may include at least one, for example, may include at least one of: a normal environment type, a crowded environment type, a back panel close to a heat source environment type, a back panel close to a cold source environment type, and other environments.
  • the target environment type may be a placement environment that matches the environment information in at least one placement environment.
  • the fact that the back panel is close to the cold source or the heat source may mean that the distance between the back panel and the heat source device is less than the distance threshold, and the distance between the back panel and the cold source device is less than the distance threshold.
  • the heat source device and the cold source device may be devices that dissipate heat or devices that absorb heat.
  • the controller is configured to query the temperature correction database for a target correction temperature that matches both the target time type and the target environment type, including:
  • the target time type determine the target environment correction data corresponding to the target time type from the environment correction data corresponding to at least one time type;
  • the target environment correction data query the target correction temperature that matches the target environment type.
  • the initial ambient temperature can be the ambient temperature detected by the temperature detection component when the refrigerator is first powered on. That is, the ambient temperature when the refrigerator is initially powered on.
  • the initial ambient temperature can be provided by the user through the terminal device.
  • the terminal device can include a mobile phone, a tablet computer, etc.
  • the temperature input page can be displayed on the terminal device and the ambient temperature input by the user in the temperature input page can be detected.
  • At least one temperature interval may include: less than ten degrees Celsius, ten to twenty degrees Celsius, twenty to thirty degrees Celsius, thirty to forty degrees Celsius, and greater than forty degrees Celsius.
  • Each temperature range can correspond to corresponding environmental correction data.
  • the temperature interval may correspond to a correction temperature in at least one environment type under the long-term type, and the temperature interval may correspond to at least one environment type in the short-term type. Correct temperature.
  • the data in the temperature correction database can be stored in the following list form.
  • the target temperature range corresponding to the initial ambient temperature is 20 to 30 degrees Celsius.
  • the data corresponding to this temperature range is the third to last row in Table 1, and the data in this row is the target environment correction data corresponding to the target time type.
  • the target correction temperature that matches both the target time type and the target environment type can be determined.
  • Environmental correction data can correspond to time types. Of course, in practical applications, different time types can correspond to the same or different environmental correction data.
  • the environmental correction data corresponding to any temperature interval in at least one time type can be obtained through data collection.
  • the real-time detected first temperature detected by a temperature sensor separated from the refrigerator body and the second temperature detected by the temperature sensor at the same time through the temperature detection component located in the main control board box can be recorded, and the first temperature and the second temperature can be calculated.
  • the difference between the two temperatures is calculated by averaging the difference and then calculating the variance or mean.
  • the initial ambient temperature can be obtained first, and the target temperature interval can be selected from at least one temperature interval.
  • the target temperature interval can be selected from at least one temperature interval.
  • the target environment correction data includes at least one correction temperature corresponding to each environment type
  • the controller is configured to query the target correction temperature matching the target environment type according to the target environment correction data, including:
  • the correction temperature corresponding to at least one environment type corresponding to the target environment correction data is queried as the target correction temperature.
  • At least one environment type can be individually set with a correction temperature.
  • a correction temperature when the target temperature range is between twenty and thirty degrees Celsius, and the time type is short-time type, it can be determined that the corrected temperature for the normal environment type corresponding to the target temperature range is zero degrees Celsius, and the corrected temperature for the crowded environment type One degree Celsius, the corresponding correction temperature is minus 1.5 degrees Celsius when the back panel is close to the heat source environment. When the back panel is close to the cold source environment, the corresponding correction temperature is 1.5 degrees Celsius.
  • the definition data for other ring types are the same.
  • the target environment correction data may include correction temperatures corresponding to at least one environment type, so that the environment types with the same target environment information can be queried based on the correction temperatures corresponding to at least one environment type corresponding to the target environment correction data. , to achieve fast and accurate acquisition of the target correction temperature.
  • controller is further configured to:
  • the controller is configured to return to determine the usage time of the refrigerator and the placement environment information of the refrigerator.
  • the operating time may be the time difference from the initial time when the compressor operates at the target speed to the current time.
  • the step of obtaining the first ambient temperature detected by the temperature detection component of the refrigerator may also be returned to execution.
  • cyclic control of the refrigerator can be achieved by detecting the time the compressor runs at the target speed. When the operation time reaches the time threshold, the process of determining the refrigerator usage time and refrigerator placement environment information can be returned to execution.
  • the controller after the controller is configured to obtain the first ambient temperature detected by the temperature detection component of the refrigerator, it is also configured to:
  • the target rotation speed may be the current rotation speed of the compressor after optimization based on the usage time and placement environment information of the refrigerator.
  • the first ambient temperature detected by the refrigerator is the initial ambient temperature of the refrigerator, and the corresponding initial rotation speed can be determined based on the first ambient temperature of the refrigerator.
  • the initial rotation speed corresponding to the first ambient temperature can be determined by querying the temperature rotation speed association list, so as to control the compressor to operate according to the initial rotation speed.
  • the refrigerator when the refrigerator is started, it can be started according to the initial rotation speed fed back during the first startup, and the compressor of the refrigerator can be controlled for the first startup by starting the first target rotation speed.
  • the controller is further configured to:
  • Any first ambient temperature can be configured with a corresponding rotation speed.
  • Second ambient temperature (°C) Speed(r/min) ⁇ 10 1000 10 ⁇ 15 1500 15 ⁇ 20 2000 20 ⁇ 25 2500 25 ⁇ 30 3000 30 ⁇ 35 3500 35 ⁇ 40 4000 >40 4500
  • Each ambient temperature range can correspond to a corresponding rotation speed.
  • the temperature range in which the first ambient temperature is located may be determined first, and then the corresponding initial rotation speed is determined based on the temperature range in which the first ambient temperature is located.
  • the temperature interval of the second ambient temperature can also be determined first, and then the corresponding target rotation speed is determined based on the temperature interval where the second ambient temperature is located.
  • controlling the compressor to operate at the target speed may include: controlling the speed of the compressor to switch from the initial speed to the target speed.
  • the initial rotation speed matching the first ambient temperature can be queried by querying the temperature rotation speed association list, thereby improving the acquisition efficiency of the initial rotation speed.
  • the controller is configured to determine the usage time of the refrigerator and the placement environment information of the refrigerator, for:
  • the environment information of the refrigerator is detected.
  • the duration detection algorithm and environment detection algorithm can be configured in the controller of the refrigerator to automatically detect the usage duration and environmental information of the refrigerator.
  • the usage time and environmental information of the refrigerator can also be obtained by the user through the application configured for the refrigerator on the terminal device.
  • detecting the usage duration of the refrigerator may include: determining the number of startups of the refrigerator and the duration of each startup, and determining the usage duration of the refrigerator based on the number of startups and the duration of each startup.
  • detecting the placement environment information of the refrigerator may include: determining the placement environment information of the refrigerator based on the ambient temperature when the refrigerator is first started and the ambient temperature of the refrigerator in normal operation.
  • the usage time of the refrigerator may include the usage time corresponding to different startup times of the refrigerator.
  • the placement environment information of the refrigerator may refer to the temperature data of the refrigerator in different placement environments or the temperature difference of the main control board box.
  • the refrigeration system control method can include the following steps:
  • Step S501 Obtain the first ambient temperature detected by the temperature detection component of the refrigerator.
  • Step S502 Determine the usage time of the refrigerator and the placement environment information of the refrigerator.
  • Step S503 Correct the first ambient temperature according to the usage time and placement environment information of the refrigerator to obtain the second ambient temperature.
  • Step S504 Determine the target speed of the compressor according to the second ambient temperature to control the compressor to operate at the target speed.
  • the controller of the refrigerator when it is necessary to detect the usage time of the refrigerator, can also be configured to:
  • the operating time type of the refrigerator is determined.
  • the embodiment of the present disclosure can determine the operating time type of the refrigerator based on the first state data.
  • the first ambient temperature of the refrigerator is adjusted according to the operating time type of the refrigerator, so that the obtained second ambient temperature is more consistent with the actual ambient temperature. Therefore, by using the target rotation speed determined by the second ambient temperature, the compressor of the refrigerator can be controlled more accurately and efficiently to achieve the purpose of energy saving and efficiency improvement.
  • the method of obtaining the target time type in step S502 may include the following steps:
  • Step S5021 Collect the first status data corresponding to the refrigerator at the target time.
  • the target time may include the acquisition time of the first ambient temperature.
  • the first ambient temperature is corrected in real time to obtain an accurate second ambient temperature.
  • the first status data and the second status data may be status data corresponding to two adjacent start-up and shutdown cycles.
  • the first status data may be status data collected during the startup and shutdown cycles corresponding to the target time.
  • the second status data may be status data collected in the previous startup cycle of the startup/stop cycle corresponding to the target time. If the refrigerator is on at the target time, obtain the status data when it is turned on. If the refrigerator is not on at the target time, obtain the status of the previous on/off cycle at the target time.
  • Step S5022 Determine the operating time type of the refrigerator according to the first status data.
  • the first state data may be data obtained by collecting various state parameters of the refrigerator.
  • the state parameters may include storage time, boot time or boot time, temperature inside the box when starting, evaporator temperature when starting, evaporator temperature when stopping, and main control At least one of the temperature of the board box when it is turned on and the temperature when it is stopped.
  • Each state parameter can be equipped with a corresponding sensor in the refrigerator to use the sensor to detect the parameter data of the state parameter and obtain the state data. Therefore, the status data includes data respectively corresponding to at least one status parameter.
  • the runtime type may include at least one, for example, a short time type, a mid-level time type, a long time type, a long time exception type, etc.
  • the target time type can be obtained by monitoring the first state data and the second state data.
  • the method of obtaining the target time type further includes:
  • Determining the operating time type of the refrigerator according to the first status data may include:
  • the primary time type is determined to be the target time type.
  • the refrigerator can be tested in the early stages of cooling to obtain accurate test results.
  • the first detection strategy may be to process the first state data collected when the refrigerator is turned on for the first time, detect whether the refrigerator is in the primary cooling state, and obtain the first detection result.
  • the second status data may be empty.
  • the first detection strategy when starting up for the first time, can be used to accurately detect the refrigerator, thereby improving the detection efficiency and accuracy of the refrigerator.
  • detecting whether the refrigerator is in the primary cooling state and obtaining the first detection result may include:
  • first temperature difference is less than the first temperature threshold and the first time difference is greater than the first time threshold, it is determined that the refrigerator is in the primary cooling state
  • Determining that the refrigerator is in the primary cooling state is the first detection result.
  • the number of starts you can calculate the difference between the temperature of the main control board box in the refrigerator and the temperature in the compartment to obtain the difference between the actual ambient temperature of the refrigerator and the temperature in the compartment of the refrigerator. If the temperature difference is small, This shows that the actual operation of the refrigerator is not high, and when the startup time is less than the first time threshold, it can be determined that the refrigerator is in the primary refrigeration state, and the primary refrigeration state can be accurately detected.
  • it can be directly determined that the refrigerator is in the primary cooling stage based on the startup time. For example, when the startup time is less than two hours, it can be directly determined that the refrigerator is in the primary refrigeration stage to improve the judgment efficiency of the primary refrigeration stage.
  • the first temperature difference may be, for example, five degrees Celsius.
  • the first time difference may include three hours.
  • first temperature difference is not less than the first temperature threshold and the first time difference is greater than the first time threshold, it is determined that the refrigerator is in the primary refrigeration state and has not entered the primary refrigeration stage, and temperature compensation may not be performed.
  • the first temperature difference between the first box temperature and the first main control temperature of the refrigerator in the first state data can be calculated to achieve accurate detection of the environment and box temperature of the refrigerator. , and when the startup time meets the first time threshold, it is determined that the refrigerator is in the primary refrigeration state, achieving accurate detection of the primary refrigeration state.
  • the method of obtaining the target time type further includes:
  • Determining the operating time type of the refrigerator according to the first status data may include:
  • the intermediate time type is determined to be the target time type.
  • the first status data is the status data collected at the second startup
  • the second status data is the status data collected at the first startup
  • the refrigerator can be tested at the intermediate production stage to obtain accurate test results.
  • the first status data may be the status data of the refrigerator collected during the first start-stop cycle.
  • the second status data may be status data collected during the second start-up and shutdown cycle.
  • the refrigerator may not be shut down and may be in the operating state of the second on-stop cycle. Therefore, the refrigerator may be in the on state during the second on-stop cycle and not be shut down. Therefore, the parameters related to shutdown Can be empty. For example, when the status data includes the temperature of the main control board box during shutdown, the temperature of the main control board box can be empty.
  • the number of starts When the number of starts is not one and not two, the number of starts can be greater than or equal to three. At this time, the smooth operating status of the refrigerator can be detected.
  • the second detection strategy when it is determined that the refrigerator is in the second startup period, can be used to detect whether the refrigerator is in the intermediate cooling state to obtain the second detection result.
  • the intermediate refrigeration state of the refrigerator can be accurately and effectively detected through the second detection strategy.
  • detecting whether the refrigerator is in the intermediate refrigeration state and obtaining the second detection result may include:
  • the intermediate refrigeration state is determined to be the second detection result.
  • the evaporator of the refrigerator can be used for refrigeration.
  • the inlet water temperature of the evaporator is generally 10 to 14 degrees Celsius
  • the outlet water temperature is generally 7 to 10 degrees Celsius.
  • the ambient temperature is generally around 35 degrees Celsius.
  • the temperature difference between the evaporator and the refrigerator is greater than twenty degrees Celsius.
  • the second temperature threshold may include twenty degrees Celsius. When the second temperature difference is greater than the second temperature threshold, it means that the temperature difference between the detected ambient temperature and the evaporator is large, and at this time the refrigerator is still in a refrigeration state with high pressure.
  • the temperature in the first box when the power is turned on for the first time is greater than the temperature in the second box when the power is turned on the second time, and it can be determined that the refrigerator Entering the intermediate refrigeration stage.
  • the refrigerator can be accurately inspected through the inspection of the intermediate refrigeration stage of the refrigerator.
  • the second time threshold may include, for example, one hour.
  • the second time difference is not satisfied and is less than the second time threshold, and the temperature in the first box is greater than the temperature in the second box, and the second temperature difference is greater than the second temperature threshold, it means that the intermediate refrigeration stage has not been entered, and it can be determined that the refrigerator is in Primary refrigeration stage.
  • conditional judgment can be made on the time interval between two power-on times based on the second time difference between the first power-on time and the second power-on time, the first main control temperature in the box during the first power-on time, the first power-on time and the second power-on time.
  • the second main control temperature in the box during the second start-up calculates the temperature difference in the box during the second start-up.
  • the main control board box temperature and the evaporator temperature are also used to detect the cooling condition of the refrigerator. Therefore, by judging the time interval conditions, detecting the difference between two starts, and detecting the cooling status of the refrigerator, it is possible to judge whether the impact is in the intermediate refrigeration state, obtain accurate judgment results, and improve the detection results and accuracy of the intermediate refrigeration state. Spend.
  • the method of obtaining the target time type further includes:
  • Determining the operating time type of the refrigerator according to the first status data may include:
  • the refrigerator If it is determined that the refrigerator meets the conditions for smooth operation, it is determined that the refrigerator enters the normal operating state, and the long-time operation type is determined as the target time type.
  • the long-term exception type is determined to be the target time type.
  • the existence principle of the long-term exception type includes: the refrigerator is in normal operation, but it is detected that the user performs abnormal usage behavior on the refrigerator.
  • Normal usage behavior may include placing room temperature objects in the refrigerator.
  • the number of starts can be the number of times the refrigerator is turned on and off from the time it is plugged in. Each time the refrigerator is turned on and off, a number of times is generated. The number of starts and stops can be obtained by accumulating them in sequence. Smooth operating conditions can refer to a relatively stable operating state of the refrigerator, which no longer requires a large startup rate to complete the refrigerator's cooling, fresh-keeping and other functions.
  • the number of times threshold can be set in advance.
  • the refrigerator in order to realize the start-up detection of the refrigerator, the refrigerator can be controlled to automatically complete N starts after being plugged in to realize the safety detection of the refrigerator. Therefore, it is necessary to set a threshold for the number of starts for the refrigerator.
  • the count threshold can be set to three.
  • the long-time operation type can refer to the refrigerator operating for a long time, which meets the normal operating status of the refrigerator.
  • the first state data and the third state data can be used to determine whether the refrigerator meets the smooth operation conditions.
  • the first state data and the third state data can be used to determine whether the refrigerator meets the smooth operation conditions.
  • determining whether the refrigerator meets smooth operation conditions based on the first state data and the third state data may include:
  • Both the temperature in the first box and the temperature in the third box may be the compartment temperature of the refrigerator.
  • the third temperature difference can be the temperature difference between the compartments during two start-up and shutdown cycles. If the absolute value of the third temperature difference is small, it means that the compartments of the refrigerator are already in a comparatively warm environment, and it can be initially determined that the refrigerator is in a relatively stable state. operating status. In addition, if the operating rate of the refrigerator satisfies the change strategy in which the difference between the two is less than the operating rate threshold, it can be determined that the refrigerator meets the conditions for smooth operation.
  • the change strategy may include: between the number of startups and the power-on rates corresponding to the first two adjacent startup times, the change amount of the power-on rates between two adjacent ones is less than the power-on rate threshold.
  • the first power-on rate corresponding to the number of starts, and the first two power-on rates adjacent to the number of starts are the second power-on rate and the third power-on rate respectively.
  • the number of starts of the second power-on rate is the number of starts before the number of starts of the first power-on rate.
  • the number of starts of the third power-on rate is the number of starts before the number of starts of the second power-on rate.
  • the change strategy may be that the absolute value of the difference between the first power-on rate and the second power-on rate is less than the power-on rate threshold, and the absolute value of the difference between the second power-on rate and the third power-on rate is less than the power-on rate threshold.
  • the number of times threshold can be set to three, so the number of starts can be greater than or equal to three.
  • Obtaining the startup rate of the refrigerator at each startup between the first startup and the number of startups of the refrigerator can refer to obtaining the startup rate each time starting from the initial startup. If the startup rate satisfies the change strategy of first increasing and then decreasing, it can be determined
  • the refrigerator meets the conditions for smooth operation.
  • the third temperature threshold can be, for example, three degrees Celsius, four degrees Celsius, etc., and can be set according to usage requirements.
  • first temperature threshold, the second temperature threshold and the third temperature threshold can be set according to actual usage requirements.
  • the examples of this disclosure are only illustrative and should not constitute a limitation on the technical solution of this disclosure.
  • the controller is also used to:
  • the refrigerator does not meet the conditions for smooth operation, it is determined that the refrigerator enters an abnormal operation state, and the long-term exception operation type is determined as the target time type.
  • Type is target time type.
  • the third temperature difference between the first temperature inside the box and the third temperature inside the box can be compared with the third temperature threshold, which can be used to accurately calculate the temperature difference inside the box when the computer is turned on twice. , if the temperature difference is less than the third temperature threshold, it means that the temperature fluctuation in the box after two starts is small. At the same time, if the change in the start-up rate during multiple starts satisfies the change strategy, it can be determined that the refrigerator is in a relatively stable state. The operating status can be used to detect the smooth operating conditions of the refrigerator and improve the efficiency and accuracy of the smooth detection of the refrigerator.
  • the first status data corresponding to the refrigerator at the target time may also include:
  • the current corresponding target time is determined, and the number of starts corresponding to the target time is obtained.
  • the type detection request can be triggered by the user or generated when the first temperature data is detected.
  • the target time and the number of starts corresponding to the target time can be obtained in response to the time type detection request for the refrigerator, thereby realizing real-time time type detection and improving the timeliness of time detection.
  • the method further includes:
  • test order corresponding to the N start-up tests start N test strategies in sequence, and obtain the status data of the refrigerator when starting the refrigerator under any test strategy;
  • N is a positive integer. N can include positive integers greater than or equal to three.
  • the test strategy may refer to the parameter data of each operating parameter obtained by setting the operating parameters such as the operating time of the refrigerator and the initial speed of the compressor. When the refrigerator is started, it can be started according to the parameter data of the operating parameters corresponding to the test strategy.
  • the startup strategy for each startup test can be determined, and N test strategies can be obtained.
  • N test strategies can be obtained.
  • the startup test of the refrigerator can be completed.
  • the startup test of the refrigerator can be completed.
  • N test strategies automatic testing of the refrigerator can be completed and the testing efficiency and accuracy of the refrigerator can be improved.
  • the refrigeration system control method can be applied to the controller of the refrigerator.
  • the difference from the embodiment shown in Figure 5 is that after obtaining the first ambient temperature detected by the temperature detection component of the refrigerator in step S501, the refrigeration system control method may also include the following steps:
  • Step S601 Detect the number of starts of the refrigerator corresponding to the target time.
  • Step S602 Collect the first status data corresponding to the refrigerator at the target time.
  • the first status data includes: the first main control temperature corresponding to the main control board box of the refrigerator, the first box temperature corresponding to the compartment, and the first power-on time.
  • the second status data includes: the second main control temperature corresponding to the main control board box of the refrigerator, the second box temperature corresponding to the compartment, the second start-up time, and the evaporator temperature corresponding to the evaporator when the refrigerator is started for the second time. at least one of.
  • the power-on rate of the refrigerator at each start between the first start of the refrigerator and the number of starts is also obtained.
  • Step S603 Determine whether the number of starts is one. If yes, execute step S604. If not, execute step S607.
  • Step S604 Calculate the first time difference between the target time and the startup time at the initial startup, and the first temperature difference between the first box temperature and the first main control temperature;
  • Step S605 Determine whether the first temperature difference is less than the first temperature threshold and the first time difference is greater than the first time threshold. If yes, step S606 is executed. If not, no temperature compensation is performed.
  • the refrigerator when the first temperature difference is not less than the first temperature threshold and the first time difference is greater than the first time threshold, it may be determined that the refrigerator is in a primary abnormal state.
  • Step S606 It is determined that the refrigerator is in the primary cooling state, and the primary time type is determined as the target time type.
  • Step S607 Determine whether the number of starts is two. If yes, execute step S608. If not, execute step S611.
  • Step S608 Obtain the second status data collected during the first startup, and calculate the second time difference between the first startup time and the second startup time and the second temperature difference corresponding to the second main control temperature and the evaporator temperature. ;
  • Step S609 Determine whether the second time difference is less than the second time threshold, the temperature in the first box is greater than the temperature in the second box, and the second temperature difference is greater than the second temperature threshold. If yes, execute step S610. If not, Then no temperature compensation is performed.
  • the refrigerator when it is determined that the second time difference is less than the second time threshold, and the temperature in the first box is greater than the temperature in the second box, and the second temperature difference is greater than the second temperature threshold, it can be determined that the refrigerator is in an intermediate abnormal state. .
  • Step S610 Determine the intermediate cooling state as the second detection result, and determine the intermediate time type as the target time type.
  • Step S611 Determine whether the number of starts is greater than or equal to the number threshold; if so, execute step S612; if not, execute step S601.
  • Step S612 Collect the third state data corresponding to the previous start of the number of starts, and calculate the third temperature difference between the first state data corresponding to the temperature in the first box and the third state data corresponding to the temperature in the third box.
  • the third status data includes: the third main control temperature corresponding to the main control board box of the refrigerator, the third box temperature corresponding to the compartment, the third startup time, and the evaporator corresponding to the evaporator when the refrigerator is started for the third number of times. temperature.
  • Step S613 Determine whether the absolute value of the third temperature difference is less than the third temperature threshold, and the startup rate corresponding to the first two startup times adjacent to the startup number satisfies the change strategy. If so, perform step S614, If not, execute step S615.
  • Step S614 It is determined that the refrigerator meets the conditions for smooth operation, then it is determined that the refrigerator enters the normal operating state, and the long-term operation type is determined as the target time type.
  • Step S615 If it is determined that the refrigerator does not meet the smooth operation conditions, it is determined that the refrigerator enters an abnormal operating state, and the long-term exception operation type is determined as the target time type.
  • the technical solution of the present disclosure can achieve accurate acquisition of the target time type through multiple detection and judgment, and improve the acquisition efficiency and accuracy of the target time type.
  • the controller of the refrigerator when it is necessary to obtain the environment type of the refrigerator, the controller of the refrigerator may also be configured to:
  • the environment in which the refrigerator is located is detected to obtain the target environment type of the refrigerator.
  • the first ambient temperature detected by the temperature detection component of the refrigerator can be obtained, and the first temperature data corresponding to the initial operating state of the main control board box and the second temperature data corresponding to the normal operating state can be collected.
  • the target environment type of the refrigerator can be obtained.
  • the target environment type can be used to record the actual operating environment of the refrigerator.
  • the environmental influence of the refrigerator's ambient temperature can be removed to obtain a more accurate second ambient temperature.
  • the target speed of the compressor can be set more accurately through the second ambient temperature, thereby improving the control efficiency and accuracy of the compressor, and further accurately obtaining the energy consumption of the refrigerator.
  • control method for obtaining the environment type of the refrigerator in step S502 may also include the following steps:
  • Step S5023 Collect the first temperature data corresponding to the initial operating state of the refrigerator and the second temperature data corresponding to the normal operating state.
  • Step S5024 Detect the environment in which the refrigerator is located based on the first temperature data and the second temperature data to obtain the target environment type of the refrigerator.
  • the initial operating state may include the operating state when the refrigerator is first started.
  • the refrigerator can be set to be turned on multiple times, and the corresponding temperature data can be recorded each time it is turned on. For example, it can be started four times. After the first startup, the startup time can be four hours. After that, the refrigerator can be automatically turned off, which is the first shutdown. After the first shutdown, it can be turned on for the second time. The second startup time can be three hours. After that, the refrigerator can be automatically turned off, that is, it is shut down for the second time. After the second shutdown, you can turn it on for the third time. After the third startup, you can control the refrigerator to stay on. By turning it on multiple times, the environmental information of the refrigerator can be detected and judged.
  • the normal operating state can mean that after being turned on several times, the refrigerator enters a normal and stable cooling state, meeting the conditions for smooth operation. For example, if the refrigerator is turned on three times and enters a stable state, the temperature data collected during the fourth startup can be used as the second temperature data. The temperature data collected when starting for the first time is used as the first temperature data.
  • collecting the first temperature data corresponding to the initial operating state of the refrigerator and the second temperature data corresponding to the normal operating state may include:
  • the first start-up of the refrigerator can refer to the start-up when the refrigerator is powered on for the first time.
  • the Nth start of the refrigerator may be the start of the refrigerator after performing multiple starts. N can include positive integers greater than or equal to four.
  • the refrigerator is in the initial operating state when it is started for the first time, and it is determined that the refrigerator is in the normal operating state when it is started for the Nth time.
  • the first start of the refrigerator and the Nth start of the refrigerator as the initial operating state and the normal operating state respectively, it is possible to Realize the acquisition of temperature data of the refrigerator in different states, use the temperature data in different states to make accurate environmental judgments on the refrigerator, and obtain accurate detection results.
  • collecting the first temperature data corresponding to the first startup of the refrigerator and the second temperature data corresponding to the Nth startup includes:
  • Second temperature data corresponding to the second startup temperature and the second shutdown temperature are determined.
  • the first startup temperature can be obtained through the temperature detection component in the main control board box of the refrigerator when the refrigerator is first started.
  • the second startup temperature can also be obtained through the temperature detection component in the main control board box of the refrigerator when the refrigerator is started for the Nth time.
  • the first shutdown temperature can be obtained through the temperature detection component in the main control board box of the refrigerator when it is first shut down after the refrigerator is started for the first time.
  • the second shutdown temperature can be obtained through the temperature detection component in the main control board box of the refrigerator after the refrigerator is started for the Nth time and when it is shut down for the Nth time.
  • the first startup temperature and the second startup temperature may be collected and obtained at the moment the refrigerator is started, and the first shutdown temperature and the second shutdown temperature may be collected and obtained at the moment the refrigerator is shut down. It can mean that when it is detected that the refrigerator is powered on, the startup temperature collected by the temperature detection component can be obtained. When it is detected that the refrigerator is powered off, the shutdown temperature collected by the temperature detection component can be obtained.
  • An instant can refer to the time difference corresponding to the power-on time of the refrigerator and the collection time of the temperature detection component being infinitely close to zero.
  • the first startup temperature corresponding to the main control board box when the refrigerator is started up for the first time and the first shutdown temperature corresponding to the main control board box when the refrigerator is shut down for the first time can be collected.
  • the second start-up temperature and the second stop temperature of the main control board box when the refrigerator is turned on for the Nth time can be obtained to accurately collect the operating data of the refrigerator.
  • control method for obtaining the environment type of the refrigerator further includes:
  • the first starting temperature and the first stopping temperature in the first temperature data and the second starting temperature and the second stopping temperature in the second temperature data are determined.
  • the initial ambient temperature can be the temperature inside the refrigerator box, and the temperature of the compartments in the box can be detected and obtained by detecting the temperature sensor installed in the compartment in the box.
  • the first startup temperature may be the temperature collected by the temperature detection component in the main control board box when the refrigerator is first started.
  • the first shutdown temperature may be the temperature collected by the temperature detection component in the main control board box when the refrigerator is first shut down.
  • the second startup temperature The temperature may be the temperature collected by the temperature detection component in the main control board box when the refrigerator is turned on for the Nth time.
  • the second shutdown temperature may be the temperature collected by the temperature detection component in the main control board box when the refrigerator is stopped for the Nth time.
  • the next step of temperature difference judgment can be performed.
  • the collection time of the second shutdown temperature should lag behind the collection time of the first shutdown temperature.
  • the second shutdown temperature and the first shutdown temperature are compared with the initial ambient temperature respectively, that is, it is judged that after the refrigerator has been running for a period of time, it will Is there a significant drop in the ambient temperature of the back after several times?
  • the cold source can mean that the environment in which the refrigerator is located can absorb the heat emitted by the refrigerator, which in turn causes the detection of ambient temperature to be reduced by the cold source.
  • the first ambient temperature is positively corrected by the target environment type, and the obtained second ambient temperature is greater than the first ambient temperature.
  • the first ambient temperature in the cabinet when the refrigerator is first started can be obtained, the first shutdown temperature in the first temperature data and the second shutdown temperature in the second temperature data can be determined, by converting the first shutdown temperature Judging the size with the initial environmental data can compare the ambient temperature on the back of the refrigerator with the initial ambient temperature in the box when the refrigerator is powered on for the first time, and realize the environment detection of the initial power on.
  • the back ambient temperature when the refrigerator is shut down can be compared with the first ambient temperature in the box when the refrigerator is first powered on, and the temperature of the refrigerator running smoothly can be realized. detection. Through two comparisons, the target environment type on the back of the refrigerator can be accurately compared, and the normal operation of the refrigerator can be detected.
  • the controller is further configured to:
  • both the first temperature difference value and the second temperature difference value are less than the temperature threshold, it is determined that the environment at the back of the refrigerator is normal and is the target environment type.
  • the first temperature difference can refer to the amount of ambient temperature change in the main control board box when the refrigerator is started and stopped for the first time. It is mainly used to indicate whether the ambient temperature of the main control board box of the refrigerator is significantly warmed up when the refrigerator is started and stopped for the first time.
  • the second temperature difference may refer to the amount of ambient temperature change in the main control box when the refrigerator is started and stopped for the Nth time. It is mainly used to indicate whether the ambient temperature of the main control board box is significantly increased when the refrigerator is started and stopped for the Nth time.
  • both the first temperature difference value and the second temperature difference value are less than the temperature threshold, it means that the temperature change difference in the main control board box of the refrigerator is small during the initial operating state and switching to the normal operating state, and the operating environment of the refrigerator Compared with the temperature, the environment at the back of the refrigerator is normally the target environment type.
  • the first temperature difference in the initial operating state can be calculated based on the first startup temperature and the first shutdown temperature in the first temperature data.
  • the first temperature difference can represent the temperature inside and outside the box in the initial operating state.
  • the difference between the actual ambient temperatures determines whether there is a large temperature difference in the environment at the rear of the refrigerator.
  • the second temperature difference before and after shutdown in the normal operating state can be calculated based on the second startup temperature and the second shutdown temperature in the second temperature data.
  • the second temperature difference can represent the inside of the box and the back of the refrigerator in the initial operating state.
  • the temperature difference of the environment is used to determine whether there is a large temperature difference after the refrigerator operates normally.
  • the temperature difference of the back environment of the refrigerator in different states can be detected through the first temperature difference value and the second temperature difference value.
  • the temperature difference before and after the refrigerator is turned on and off is less than the temperature threshold, it can be determined that the temperature difference change is small during startup and shutdown of the refrigerator. Therefore, the normal environment at the back of the refrigerator can be determined as the target environment type, achieving accurate and efficient detection of the normal environment.
  • the controller before the controller is configured to calculate the first temperature difference corresponding to the initial operating state based on the first startup temperature and the first shutdown temperature in the first temperature data, it is also configured to:
  • the first shutdown temperature is greater than or equal to the initial ambient temperature
  • the second shutdown temperature is greater than or equal to the initial ambient temperature, indicating that there is an increase in ambient temperature during the two startups from startup to shutdown. At this time, the temperature difference can be calculated and judged. steps for a more accurate analysis of ambient temperature.
  • the first startup temperature and the second startup temperature do not meet the condition of being simultaneously smaller than the initial ambient temperature. , therefore, the first startup temperature and the second startup temperature are both lower than the initial ambient temperature, indicating that the ambient temperature detected when the refrigerator is powered on twice is lower than the initial ambient temperature detected in the refrigerator compartment in the normal environment. After the refrigerator The temperature at the back is lower than the temperature in the refrigerator compartment. At this time, you can confirm that the back of the refrigerator is close to the cold source.
  • the controller is further configured to:
  • the first temperature difference is greater than or equal to the temperature threshold, or the second temperature difference is greater than or equal to the temperature threshold, then collect the first operating rate corresponding to the refrigerator in the initial operating state and the second operating rate corresponding to the normal operating state. ;
  • the first operating rate and the second operating rate determine whether the operating rate reduction condition is met when the refrigerator switches from the initial operating state to the normal operating state
  • the startup rate can refer to the frequency of turning on the refrigerator. For example, when the operating rate is 60%, the compressor runs 60% of the time a day.
  • the start-up time can refer to the start-up time of the compressor.
  • the higher the power-on rate the higher the energy consumption of the refrigerator; the lower the power-on rate, the lower the energy consumption of the refrigerator.
  • the startup rate requires quick instructions in the initial operating state, so the refrigerator's startup rate can be 100%. Of course, in actual applications, the refrigerator's startup rate may not reach 100%. However, under normal circumstances, when the refrigerator is started for the first time, the refrigerator's startup rate The power-on rate is high, and when the refrigerator is in normal operation, the power-on rate is low.
  • the first temperature difference when the first temperature difference is greater than or equal to the temperature threshold or the second temperature difference is greater than or equal to the temperature threshold, it means that the refrigerator is not in a normal environmental state and is not close to a cold source. Therefore, a higher first temperature difference value or a higher second temperature difference value indicates that the temperature at the back of the refrigerator is higher and heat dissipation is difficult.
  • the first operating rate corresponding to the initial operating state and the second operating rate corresponding to the normal operating state of the refrigerator are collected, and the first operating rate and the second operating rate are used to determine the refrigerator. When switching from the initial operating state to the normal operating state, does it meet the conditions for the decrease in the operating rate?
  • the refrigerator enters the normal operating state with a low operating rate, low energy consumption, and a crowded back environment for the refrigerator.
  • the reason for the large temperature difference When the conditions for the decrease in the operating rate are not met, it means that the refrigerator still maintains a high operating rate and consumes high energy. In order to maintain the operation of the refrigerator, a large power consumption is required. Therefore, it can be confirmed that there is a heat source in the back environment as the operating status of the refrigerator. By detecting the power-on rate, the heat source or congestion of the refrigerator can be analyzed accordingly, and accurate environmental type detection results can be obtained.
  • the controller is configured to determine whether the power-on rate reduction condition is met when the refrigerator switches from the initial operating state to the normal operating state based on the first power-on rate and the second power-on rate, for:
  • the power-on rate threshold may refer to the maximum value of the power-on rate drop range. For example, when the power-on rate drop range is between 30% and 50%, the power-on rate threshold may be 50%. When the power-on rate ratio is less than or equal to 50%, it can be determined that the power-on rate reduction condition is met. When the power-on rate ratio is greater than 50%, it can be determined that the power-on rate reduction condition is not met.
  • Whether the power-on rate ratio reaches the power-on rate threshold may include whether the power-on rate is less than or equal to the power-on rate threshold. If so, it is determined that the power-on rate reduction condition is met; if not, it is determined that the power-on rate reduction condition is not met.
  • performing temperature correction processing on the first ambient temperature according to the target environment type to obtain the second ambient temperature includes:
  • the temperature correction database may include a corresponding relationship between the environment type and the correction temperature, and the target correction temperature consistent with the target environment type may be determined by querying the correction database.
  • Target correction temperatures can include zero, positive, and negative numbers.
  • the target correction temperature can be a negative number.
  • the target correction temperature can be a positive number when the ambient temperature of the refrigerator is, for example, a cold source.
  • the target correction temperature may be zero degrees Celsius.
  • the target correction temperature can be a negative number.
  • the absolute value of the target correction temperature in the congestion case is smaller than that in the heat source case.
  • the temperature correction database can be used to query the target correction temperature that matches both the target time type and the target environment type where the refrigerator is currently located, and obtain the target correction temperature that matches both the pre-target time type and the target environment type, thereby achieving Accurate acquisition of target correction temperature.
  • determining the target speed of the compressor according to the second ambient temperature includes:
  • the target speed of the compressor is determined to control the compressor to operate at the target speed.
  • the rotation speed of the compressor can be accurately obtained through the second ambient temperature, thereby improving the acquisition method and efficiency of the compressor rotation speed.
  • the association list may include a corresponding relationship between the ambient temperature and the compressor rotation speed. For example, it may include at least one temperature interval, and each temperature interval corresponds to a corresponding compressor rotation speed.
  • the temperature range in which the second ambient temperature is located can be queried to obtain the compressor speed corresponding to the temperature range as the target speed.
  • the target rotation speed corresponding to the ambient temperature can be quickly and accurately obtained by querying the association list, thereby improving the acquisition efficiency and accuracy of the target rotation speed.
  • FIG. 9 is a flow chart of the refrigeration system control method provided by the embodiment of the present disclosure
  • the environment type detection and judgment provided by the present disclosure is described in more detail.
  • the difference from the embodiment shown in FIG. 7 is that the first temperature data includes a first startup temperature and a first shutdown temperature, and the second temperature data includes a second startup temperature and a second shutdown temperature.
  • detecting the environment where the refrigerator is located based on the first temperature data and the second temperature data to obtain the target environment type of the refrigerator may also include:
  • Step S701 Obtain the initial ambient temperature corresponding to the compartment in the refrigerator box when the refrigerator is first started;
  • Step S702 Determine the first startup temperature and the first shutdown temperature in the first temperature data and the second startup temperature and the second shutdown temperature in the second temperature data.
  • Step S703 Determine whether the first shutdown temperature and the second shutdown temperature are both less than the initial ambient temperature. If yes, step 704 is executed. If not, step S705 is executed.
  • Step S704 Determine that there is a cold source in the environment at the back of the refrigerator as the target environment type.
  • Step S705 Calculate the first temperature difference corresponding to the initial operating state based on the first startup temperature and the first shutdown temperature in the first temperature data.
  • Step S706 Calculate the second temperature difference corresponding to the normal operating state based on the second startup temperature and the second shutdown temperature in the second temperature data.
  • Step S707 Determine whether the first temperature difference and the second temperature difference are both less than the temperature threshold. If yes, step S708 is executed. If not, step S709 is executed.
  • Step S708 Determine that the environment at the back of the refrigerator is normal and is the target environment type.
  • Step S709 Collect the first power-on rate corresponding to the refrigerator in the initial operating state and the second power-on rate corresponding to the normal operating state.
  • Step S710 Based on the first power-on rate and the second power-on rate, determine whether the power-on rate reduction condition is met when the refrigerator switches from the initial operating state to the normal operating state. If so, execute step S711; if not, execute step S712.
  • Step S711 Determine the crowded environment at the back of the refrigerator as the target environment type.
  • Step S712 Determine that there is a heat source in the environment at the back of the refrigerator as the target environment type.
  • the cold source environment detection of the refrigerator is realized by comparing the first shutdown temperature and the second shutdown temperature in the two states with the initial ambient temperature. Afterwards, when it is determined that the refrigerator is in a non-cold source environment, the temperature difference corresponding to the temperature collected by the sensor in the main control board box during startup and shutdown can be used to detect the normal operating environment. After that, in abnormal environments, the power-on rate is used to conduct a more detailed analysis and judgment of abnormal heat dissipation. When the heat source has a high impact and the crowding impact is low, different power-on rates will occur, and accurate judgment results can be obtained. Through the detection and judgment of multiple environments, the accuracy and efficiency of environmental detection on the back of the refrigerator can be improved.
  • FIG. 10 it is a structural diagram of an embodiment of a compressor control device provided by the present disclosure.
  • the compressor control device may be located in the controller of the refrigerator.
  • the compressor control device 800 also includes the following components:
  • Temperature detection component 801 used to obtain the first ambient temperature detected by the refrigerator through the temperature detection component.
  • Usage detection component 802 used to determine the usage time of the refrigerator and the environment information in which the refrigerator is placed.
  • Temperature correction component 803 used to perform temperature correction processing on the first ambient temperature according to the running time type, and used to perform temperature correction processing on the first ambient temperature according to the target environment type to obtain the second ambient temperature;
  • Speed control component 804 determines the target speed of the compressor according to the second ambient temperature to control the compressor to operate at the target speed.
  • usage detection component 802 may include:
  • the first data collection sub-component 8021 is used to collect the first status data corresponding to the refrigerator at the target time.
  • the first type determination subcomponent 8022 is used to determine the running time type of the refrigerator according to the first status data.
  • the usage detection component 802 may also include:
  • the second data collection subcomponent 8023 is used to collect the first temperature data corresponding to the initial operating state of the refrigerator and the second temperature data corresponding to the normal operating state.
  • the second type determination subcomponent 8024 is used to detect the environment in which the refrigerator is located based on the first temperature data and the second temperature data, and obtain the target environment type of the refrigerator.
  • the controller is configured with a temperature correction database, and the temperature correction component 803 may include:
  • the duration determination component is used to determine the target time type of the refrigerator based on the usage duration of the refrigerator.
  • the environment determination component is used to determine the target environment type of the refrigerator based on the refrigerator's placement environment information.
  • the temperature query component is used to query the target correction temperature in the temperature correction database that matches both the target time type and the target environment type.
  • the target calculation component is used to calculate the sum of the target correction temperature and the first ambient temperature to obtain the second ambient temperature.
  • the temperature query component includes:
  • the initial temperature element is used to obtain the initial ambient temperature detected by the temperature detection component when the refrigerator is first started.
  • a temperature selection component used to select a target temperature range from at least one temperature range based on the initial ambient temperature
  • the first correction element is used to determine the environmental correction data corresponding to the target temperature interval in at least one time type from the temperature correction database;
  • the second correction element is used to determine the target environment correction data corresponding to the target time type from the environment correction data corresponding to at least one time type according to the target time type;
  • the temperature determination component is used to correct the data according to the target environment and query the target correction temperature that matches the target environment type.
  • the target environment correction data includes correction temperatures respectively corresponding to at least one environment type, and the temperature determination element is used for:
  • the correction temperature corresponding to at least one environment type corresponding to the target environment correction data is queried as the target correction temperature.
  • the controller is further configured to:
  • Time detection component used to detect the operating time of the compressor at the target speed
  • the update startup component is configured to, if it is determined that the operating time reaches the time threshold, the controller is configured to return to determine the usage time of the refrigerator and the placement environment information of the refrigerator.
  • the refrigeration system control device may also include:
  • An initial rotation speed component used to determine the initial rotation speed corresponding to the first ambient temperature according to the first ambient temperature
  • the initial control component is used to control the compressor to operate at the initial speed.
  • the refrigeration system control device may also include:
  • the target query component is used to query the temperature and rotation speed association list to obtain the initial rotation speed that matches the first ambient temperature.
  • usage detection components may include:
  • the duration detection component is used to detect the usage duration of the refrigerator based on the duration detection algorithm
  • the environment detection component is used to detect the environment information of the refrigerator based on the environment detection algorithm.
  • the refrigeration system control device may also include:
  • the frequency detection component is used to detect the number of starts of the refrigerator corresponding to the target time.
  • Type-determining components also include:
  • the first detection component is used to detect whether the refrigerator is in the primary cooling state based on the first detection strategy and combined with the first state data and the second state data if it is determined that the number of starts is one, and obtain the first detection result;
  • the first determination component is used to determine the primary time type as the target time type if the first detection result is that the refrigerator is in the primary cooling state.
  • the refrigeration system control device may also include:
  • the first acquisition element is used to acquire the first main control temperature corresponding to the main control board box of the refrigerator and the first box temperature corresponding to the compartment in the first status data;
  • a first calculation element configured to calculate a first time difference between the target time and the startup time at initial startup
  • a second calculation element used to calculate the first temperature difference between the first box temperature and the first main control temperature
  • a first determination element configured to determine that the refrigerator is in the primary cooling state if the first temperature difference is less than the first temperature threshold and the first time difference is greater than the first time threshold;
  • the second determination element is used to determine that the refrigerator is in the primary cooling state as the first detection result.
  • the refrigeration system control device further includes:
  • the frequency detection component is used to detect the number of starts of the refrigerator corresponding to the target time.
  • Type-determining components also include:
  • the second detection component is used to collect the second state data collected at the first start if it is determined that the number of starts is two; based on the second detection strategy, combined with the first state data and the second state data, determine whether the refrigerator is in the intermediate level The refrigeration status is tested and the second test result is obtained;
  • the second determination component is used to determine the intermediate time type as the target time type if the second detection result is that the refrigerator is in an intermediate cooling state.
  • the second detection component may include:
  • the second acquisition element is used to acquire the first power-on time in the first status data and the first box temperature corresponding to the compartment;
  • the third acquisition element is used to acquire the second boot time, the second box temperature corresponding to the compartment, the evaporator temperature corresponding to the evaporator and the main control board box corresponding to the refrigerator when it is started for the second time in the second status data.
  • a third calculation element used to calculate the second time difference between the first power-on time and the second power-on time
  • the fourth calculation element is used to calculate the second temperature difference corresponding to the second main control temperature and the evaporator temperature
  • the third determination element is used to determine that the intermediate refrigeration state is if the second time difference is less than the second time threshold, and the temperature in the first box is greater than the temperature in the second box, and the second temperature difference is greater than the second temperature threshold. Second test result.
  • the refrigeration system control device further includes:
  • the frequency detection component is used to detect the number of starts of the refrigerator corresponding to the target time.
  • Type-determining components can include:
  • the first judgment component is used to judge whether the number of starts is greater than or equal to the number threshold
  • the first processing component is used to collect the third state data corresponding to the previous start of the number of starts; if the number of starts is greater than or equal to the number threshold, determine whether the refrigerator meets the smooth operation conditions based on the first state data and the third state data;
  • the second processing component is used to determine that the refrigerator enters the normal operating state if it is determined that the refrigerator meets the smooth operating conditions, and determines the long-term operation type as the target time type.
  • the first processing component may include:
  • the third acquisition element is used to acquire the temperature in the first box of the first state data intermediate chamber and the third box temperature in the third state data intermediate chamber, and to acquire the temperature of the refrigerator every time it is started between the first start and the number of starts. boot rate;
  • the fifth calculation element is used to calculate the third temperature difference between the temperature in the first box and the temperature in the third box;
  • the fourth determination element is used to determine that the refrigerator satisfies the change strategy if the absolute value of the third temperature difference is less than the third temperature threshold, and the startup rate corresponding to the first two startup times adjacent to the startup number satisfies the change strategy. Operating conditions.
  • the first processing component may also include:
  • the fifth determination element is used to determine that the absolute value of the third temperature difference is greater than or equal to the third temperature threshold, and/or the startup rate corresponding to the first two startup times adjacent to the startup number does not satisfy the change. strategy, it is determined that the refrigerator does not meet the conditions for smooth operation;
  • the sixth determination element is used to determine that the refrigerator enters an abnormal operation state if it is determined that the refrigerator does not meet the smooth operation conditions, and determines the long-term exception operation type as the target time type.
  • the type determination component may also include:
  • the request response component is used to respond to the time type detection request for the refrigerator, determine the current corresponding target time, and obtain the number of starts corresponding to the target time.
  • the type determination component may also include:
  • the power-on detection component is used to detect the time type detection strategy for starting the refrigerator when the refrigerator is powered on; the time type detection strategy includes N startup tests with the number threshold as the number of tests;
  • the strategy determination component is used to determine the startup strategy for each startup test and obtain N test strategies;
  • the test start component is used to start N test strategies in sequence according to the test sequence corresponding to the N start tests, and obtain the status data of the refrigerator when starting the refrigerator under any test strategy;
  • the status acquisition component is used to obtain status data corresponding to N startup tests.
  • the second data collection subcomponent 8023 may include:
  • the state determination component is used to determine that the refrigerator is in the initial operating state when it is started for the first time, and to determine that the refrigerator is in the normal operating state when it is started for the Nth time;
  • a data acquisition component is used to collect the first temperature data corresponding to the first start of the refrigerator and the second temperature data corresponding to the Nth start.
  • data collection components may include:
  • the first collection element is used to collect the first startup temperature corresponding to the main control board box of the refrigerator when the refrigerator is first started, and to collect the first shutdown temperature corresponding to the main control board box of the refrigerator when the refrigerator is stopped for the first time.
  • the seventh determination element is used to determine the first temperature data corresponding to the first startup temperature and the first shutdown temperature
  • the second collection component is used to collect the second starting temperature corresponding to the main control board box of the refrigerator when the refrigerator is started for the Nth time, and to collect the second starting temperature corresponding to the main control board box of the refrigerator when the refrigerator is stopped corresponding to the Nth start. Second shutdown temperature;
  • the eighth determination element is used to determine the second temperature data corresponding to the second startup temperature and the second shutdown temperature.
  • the first temperature data includes a first startup temperature and a first shutdown temperature
  • the second temperature data includes: a second startup temperature and a second shutdown temperature
  • the type detection component may include:
  • the initial acquisition component is used to obtain the initial ambient temperature corresponding to the compartment in the refrigerator box when the refrigerator is first turned on;
  • a second determination component for determining a first shutdown temperature in the first temperature data and a second shutdown temperature in the second temperature data
  • the second judgment component is used to judge that if the first shutdown temperature and the second shutdown temperature are both lower than the initial ambient temperature, then determine that there is a cold source in the environment at the back of the refrigerator and that it is the target environment type.
  • the device may further include:
  • the first calculation component is used to calculate the first temperature difference corresponding to the initial operating state based on the first startup temperature and the first shutdown temperature in the first temperature data;
  • the second calculation component is used to calculate the second temperature difference corresponding to the normal operating state based on the second startup temperature and the second shutdown temperature in the second temperature data;
  • the first judgment component is used to judge that if the first temperature difference and the second temperature difference are both less than the temperature threshold, then determine that the environment at the back of the refrigerator is normal and is the target environment type.
  • the refrigeration system control device may also include:
  • the second judgment component is used to judge whether the first temperature difference and the second temperature difference are both less than the temperature threshold if the first shutdown temperature is greater than or equal to the initial ambient temperature or the second shutdown temperature is greater than or equal to the initial ambient temperature. Judgment steps.
  • the refrigeration system control device may also include:
  • the third judgment component is used to judge that if the first temperature difference is greater than or equal to the temperature threshold, or the second temperature difference is greater than or equal to the temperature threshold, then collect the first starting rate corresponding to the refrigerator in the initial operating state and the normal operating rate.
  • the fourth judgment component is used to determine whether the startup rate reduction condition is met when the refrigerator switches from the initial operating state to the normal operating state based on the first operating rate and the second operating rate;
  • the first determining component is used to determine if the environment at the back of the refrigerator is crowded as the target environment type
  • the second determination component is used to determine if there is a heat source in the environment at the back of the refrigerator as the target environment type.
  • the fourth judgment component includes:
  • the proportion calculation component is used to calculate the ratio of the second power-on rate and the first power-on rate, and obtain the power-on rate proportion corresponding to the normal operating state and the initial operating state;
  • the third judgment component is used to determine whether the power-on rate ratio reaches the power-on rate threshold
  • the third determination component is used to determine if the refrigerator meets the starting rate reduction condition when switching from the initial operating state to the normal operating state;
  • the fourth determination component is used to determine if the refrigerator does not meet the starting rate reduction condition when switching from the initial operating state to the normal operating state.
  • the refrigeration system control device may also include:
  • the speed control component is used to determine the target speed of the compressor according to the second ambient temperature to control the compressor to operate at the target speed.
  • FIG 11 is a structural diagram of a controller provided by an embodiment of the present disclosure. As shown in Figure 11, the controller of this embodiment may include: a processor 901 and a memory 902;
  • Memory 902 used to store computer execution instructions
  • the processor 901 is configured to execute computer execution instructions stored in the memory to implement various steps executed by the first server in the above embodiment.
  • the memory 902 can be independent or integrated with the processor 901.
  • the server also includes a bus 903 for connecting the memory 902 and the processor 901 .
  • Embodiments of the present disclosure also provide a computer storage medium.
  • Computer execution instructions are stored in the computer storage medium.
  • the processor executes the computer execution instructions, the refrigeration system control method as described above is implemented.
  • An embodiment of the present disclosure also provides a computer program product, which includes a computer program. When the computer program is executed by a processor, the above refrigeration system control method is implemented. An embodiment of the present disclosure also provides a computer program product, which includes a computer program. When the computer program is executed by a processor, the refrigeration system control method as described above is implemented.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated into another unit.
  • a system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to implement the solution of this embodiment.
  • each functional module in various embodiments of the present invention can be integrated into a processing unit, or each module can exist physically alone, or two or more modules can be integrated into one unit.
  • the units formed by the above modules can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above integrated modules implemented in the form of software function modules can be stored in a computer-readable storage medium.
  • the above-mentioned software function module is stored in a storage medium and includes a number of instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute some steps of the methods of various embodiments of the present application.
  • processor can be a central processing unit (Central Processing Unit, referred to as CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, referred to as DSP), application specific integrated circuit (Application Specific Integrated Circuit, (referred to as ASIC), etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the present disclosure can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed random access memory (Random Access Memory, RAM), or may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory, and may also be a USB flash drive, mobile hard disk, or Read memory, magnetic disk or optical disk, etc.
  • RAM Random Access Memory
  • NVM non-volatile memory
  • the memory may include high-speed random access memory (Random Access Memory, RAM), or may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory, and may also be a USB flash drive, mobile hard disk, or Read memory, magnetic disk or optical disk, etc.
  • RAM random access memory
  • NVM non-Volatile Memory
  • the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the bus in the drawings of this application is not limited to only one bus or one type of bus.
  • the above storage medium can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random-Access Memory, SRAM), electrically erasable programmable read-only memory (Electrically Erasable Programmable read only memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read-Only Memory, EPROM), programmable read-only memory (Programmable Read-Only Memory, PROM), read-only memory (Read -Only Memory, ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM Electrically erasable programmable read-only memory
  • EPROM erasable programmable Read-Only Memory
  • PROM Programmable Read-Only Memory
  • Read -Only Memory ROM
  • magnetic memory flash memory
  • magnetic disk or optical disk magnetic disk.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • a storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium can be located in Application Specific Integrated Circuits (ASICs for short).
  • ASICs Application Specific Integrated Circuits
  • the processor and the storage medium may also exist as discrete components in an electronic device or a host control device.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above-mentioned method embodiments are executed; and the aforementioned storage media include: ROM, RAM, magnetic disks, optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冰箱,包括箱体(101)、主控板盒(401)、温度检测组件(402)、制冷系统(103)和控制器。箱体(101)内设有间室(102),箱体(101)具有后背板(301)。主控板盒(401)设置于箱体(101)的后背板(301)上。温度检测组件(402)设置于主控板盒(401)上,温度检测组件(402)用于检测环境温度。制冷系统(103)设置于箱体(101)内,制冷系统(103)包括压缩机(201)、蒸发器(202)、毛细管(203)、过滤器(204)、冷凝器(205)。控制器被配置为:获取温度检测组件(402)检测的第一环境温度;对第一环境温度进行修正处理,获得第二环境温度;根据第二环境温度,确定压缩机(201)的目标转速,以控制压缩机(201)在目标转速运转。

Description

冰箱
本申请要求于2022年6月14日提交的、申请号为202210666468.9的中国专利申请的优先权,于2022年6月14日提交的、申请号为202210666454.7的中国专利申请的优先权,于2022年6月14日提交的、申请号为202210665961.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器技术领域,尤其涉及一种冰箱。
背景技术
冰箱是一种常见的家用电器。冰箱一般可以通过压缩机完成制冷。为了提高冰箱的制冷效率,提高冰箱的节能效果,可以检测冰箱周围的环境温度,利用冰箱周围的环境温度对冰箱的压缩机的转速进行控制。环境温度较高时,可以设置冰箱的压缩机转速较高,环境温度较低时,可以设置冰箱的压缩机转速较低。
发明内容
提供一种冰箱,所述冰箱包括箱体、主控板盒、温度检测组件、制冷系统和控制器。所述箱体内设有间室,所述箱体具有后背板。所述主控板盒设置于所述箱体的后背板上。所述温度检测组件设置于所述主控板盒上,所述温度检测组件用于检测环境温度。所述制冷系统设置于所述箱体内,所述制冷系统包括压缩机、蒸发器、毛细管、过滤器、冷凝器。所述控制器被配置为:获取所述温度检测组件检测的第一环境温度;对所述第一环境温度进行修正处理,获得第二环境温度;根据所述第二环境温度,确定所述压缩机的目标转速,以控制所述压缩机在所述目标转速运转。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的冰箱的结构图;
图2为根据一些实施例的制冷系统的结构图;
图3为根据一些实施例的箱体的结构图;
图4为根据一些实施例的主控板盒的结构图;
图5为根据一些实施例的一种制冷系统控制方法的流程图;
图6为根据一些实施例的另一种制冷系统控制方法的流程图;
图7为根据一些实施例的再一种制冷系统控制方法的流程图;
图8为根据一些实施例的又一种制冷系统控制方法的流程图;
图9为根据一些实施例的又一种制冷系统控制方法的流程图;
图10为根据一些实施例的压缩机控制装置的结构图;
图11为根据一些实施例的控制器的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific  example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
如图1所示,冰箱包括箱体101,箱体101内可以设置有间室102。冰箱还可以包括:制冷系统103。当然,图1仅仅是示意性的,并不应理解为对冰箱及冰箱内的间室、制冷系统的具体形态限定,在实际应用中,冰箱的间室划分、制冷系统的具体位置可以根据使用需求设置。
如图2所示,制冷系统103可以包括压缩机201、蒸发器202、毛细管203、过滤器204以及冷凝器205。例如,压缩机201可以包括变频压缩机。压缩机201的出口与冷凝器205的入口连接,冷凝器205的出口与过滤器204的入口连接,毛细管203设于过滤器204的出口与蒸发器202的入口之间的连接管道上,蒸发器202的出口与压缩机201的入口连接。过滤器204可以为干燥过滤器204,在蒸发器202与压缩机201之间还设置了储液器,用于存储液态的制冷剂。在制冷系统中,压缩机201将制冷剂转化为高温高压的液态制冷剂,经过冷凝器进行热交换变为常温高压的液态制冷剂,制冷剂在过滤器204中滤除杂质,经由毛细管203进行降压降温的过程,转换为低温低压的液体,并经过蒸发器202在冰箱的间室进行热交换,转换为低压气态的制冷剂,并重复进入压缩机201中进行下一次制冷循环。
在冰箱工作时,压缩机201可以以一定的速度运转以将制冷剂转换为高温高压的液态制冷剂。在冰箱制冷系统的制冷循环过程中通过控制压缩机的运转速度来对冰箱的制冷效率进行优化,以确保冰箱的制冷效果与实际的环境相匹配,实现冰箱节能,提高运行效率。
压缩机转速的高低直接影响到冰箱的耗能。因此,为了降低冰箱的耗能,需要对冰箱的压缩机的转速进行精准控制。为了实现对压缩机进行准确的转速控制,可以利用环境温度对压缩机进行实时调节,因此环境温度的准确性对压缩机的精确控制起到重要影响。
随着冰箱的使用,冰箱的环境温度可能会发生变化。目前,较为常见的环境温度检测方式是,将环境温度传感器设置于冰箱顶部的左右铰链盒上。由于左右铰链盒的大小限制,使得环境温度传感器的放置受影响,若放置于冰箱其他部位,利用环境温度对冰箱的压缩机转速控制准确度又不高,导致冰箱的压缩机转速混乱,造成能源浪费。因此,如何对环境温度进行准确检测,是目前亟待解决的技术问题。为了解决将温度传感器放置于其他位置导致的环境温度检测不准确的问题,本公开提供了一种冰箱及制冷系统控制方法,通过获取温度检测组件检测的环境温度,并利用冰箱的使用时长和放置环境信息,对环境温度进行修正处理,获得更准确的第二环境温度。通过第二环境温度的获取,可以确定冰箱的压缩机的更精准的目标转速,目标转速实现对冰箱的压缩机的更准确控制。使得冰箱的压缩机控制与使用时长和放置环境信息进行更紧密的结合,达到对冰箱进行更精准的压缩机的转速控制,达到节能以及效率提升的目的。
如图3、图4所示,本公开实施例中,箱体101的后背板301上设置有主控板盒401。如图4所示,主控板盒401上设置有温度检测组件402。温度检测组件402用于检测主控板盒401周围的环境温度。例如,温度检测组件402可以包括温度传感器。冰箱还包括控制器,冰箱的控制器可以被配置为:
获取冰箱的温度检测组件检测的第一环境温度;
确定冰箱的使用时长以及冰箱的放置环境信息;
根据使用时长和放置环境信息,对第一环境温度进行修正处理,获得第二环境温度;
根据第二环境温度,确定压缩机的目标转速,以控制压缩机在目标转速运转。
第一环境温度可以为冰箱在此次运转启动时温度检测组件检测的温度数据。第一环境温度采集之后可以存储于冰箱的控制器中,以从控制器中读取获得。
使用时长可以包括:冰箱当次的启动时间和当前时间的时间长度,也可以指冰箱此次启动之后的实际运行时间。
第一环境温度可以为冰箱的后背板上的主控板盒中的温度检测组件实时检测获得的环境温度。温度检测组件可以通过一定的检测频率,对冰箱的主控板盒内的温度进行检测。每检测一个第一环境温度,可以采用本公开的技术方案对第一环境温度进行修正。
获取冰箱通过温度检测组件检测的第一环境温度可以包括:响应于冰箱的压缩控制请求,读取冰箱的温度检测组件采集的第一环境温度。第一环境温度可以为对冰箱实时采集获得的温度。压缩控制请求可以为用户启动冰箱的节能模式之后,由冰箱自动生成的。
上述技术方案通过时间和环境两个方面控制冰箱的压缩机的转速,冰箱的使用时长和放置环境信息可以通过检测获得。当然,获取冰箱的使用时长和放置环境信息的方法还可以包括:在用户终端显示冰箱的信息采集界面,检测用户在信息采集界面中输入的冰箱的使用时长和放置环境信息,以获得用户输入的冰箱的使用时长和放置环境信息。
在实际应用中,主控板盒401中的元件在运行时可能会产生热量,因此会造成温度检测组件402受到主控板盒的温度变化的影响。在实际应用中,主控板盒401的元件的温度变化可以受到冰箱运行时长的影响,冰箱运行时长越长,主控板盒的温度可能越高,因此需要获得冰箱的使用时长。此外,冰箱放置于不同环境时,主控板盒的温度也会受到环境的影响。例如,在较为密闭的空间中可能会因散热不够及时产生影响,在靠近冷源的空间中会导致散热加速。因此,为了对环境温度进行准确检测,可以利用使用时长和放置环境信息,对第一环境温度进行修正处理,获得第二环境温度。例如,获取冰箱的温度检测组件检测的第一环境温度,可以包括:响应于针对冰箱发起的转速控制请求,获取冰箱的温度检测组件采集的第一环境温度。转速控制请求可以通过用户触发生成,例如,可以检测用户触发的节能请求,响应于该节能请求,生成针对冰箱的压缩机的转速控制请求。转速控制请求还可以通过转速控制频率自动生成,可以:获取预设的转速控制频率,按照预设的转速控制频率,确定冰箱的更新时间,检测达到更新时间时,生成针对冰箱的压缩机的 转速控制请求。
例如,根据第二环境温度,确定压缩机的目标转速可以包括:查询温度转速关联列表,以确定第二环境温度对应的目标转速。不同转速与环境温度可以预先关联。任一个环境温度可以配置有对应的转速。在一些实施例中,控制器还被配置有温度修正数据库;控制器被配置为,在执行根据使用时长和放置环境,对第一环境温度进行修正处理,获得第二环境温度,包括:
根据冰箱的使用时长,确定冰箱的目标时间类型;
根据冰箱的放置环境信息,确定冰箱的目标环境类型;
查询温度修正数据库中与目标时间类型和目标环境类型均匹配的目标修正温度;
计算目标修正温度和第一环境温度之和,获得第二环境温度。
时间类型可以包括至少一个,例如可以包括:短时类型、中级时间类型、长时类型以及长时例外类型等。短时类型可以包括小于六小时,中级时间类型可以包括六至八小时,长时类型可以包括:大于十八小时,长时例外类型可以包括大于十八小时。或者至少一个时间类型还可以简单划分为:长时类型和短时类型。目标时间类型可以为至少一个时间类型中使用时长相一致的时间类型。
放置环境类型可以包括至少一个,例如可以包括:正常环境类型、拥挤环境类型、后背板靠近热源环境类型、后背板靠近冷源环境类型等环境中的至少一个。目标环境类型可以为至少一个放置环境中与环境信息相匹配的放置环境。后背板靠近冷源或热源可以指后背板与热源装置的距离小于距离阈值,后背板与冷源装置的距离小于距离阈值。热源装置和冷源装置可以为散发热量的装置或者吸收热量的装置。
在一些实施例中,控制器被配置为,执行查询温度修正数据库中与目标时间类型和目标环境类型均匹配的目标修正温度,包括:
获取冰箱初次启动时,温度检测组件检测的初始环境温度;
根据初始环境温度,从至少一个温度区间中选择目标温度区间;
从温度修正数据库中确定目标温度区间在至少一个时间类型分别对应的环境修正数据;
根据目标时间类型,从至少一个时间类型分别对应的环境修正数据中确定目标时间类型相对应的目标环境修正数据;
根据目标环境修正数据,查询与目标环境类型相匹配的目标修正温度。
初始环境温度可以为冰箱初次上电的瞬间,温度检测组件检测到的环境温度。也即冰箱初始上电时的环境温度。当然,在实际应用中,初始环境温度可以由用户通过终端设备提供,例如终端设备可以包括手机、平板电脑等。终端设备中可以显示温度输入页面,并检测用户在温度输入页面中输入的环境温度。
在实际应用中,初始环境温度对数据的修正也会产生影响,不同的初始环境温度可能会产生不同的修正温度。为了便于理解,如表1所示,至少一个温度区间可以包括:小于十摄氏度,十至二十摄氏度,二十至三十摄氏度、三十至四十摄氏度以及大于四十摄氏度。每个温度区间可以对应有相应的环境修正数据。在至少一个时间类型包括长时类型和短时类型时,温度区间可以在长时类型下的至少一个环境类型分别对应有修正温度,温度区间可以在短时类型下的至少一个环境类型分别对应有修正温度。以至少一个环境类型包括:正常环境类型、拥挤环境类型、后背板靠近热源环境类型、后背板靠近冷源环境类型时,温度修正数据库中的数据可以以下列列表形式存储。
表1 温度修正数据表
Figure PCTCN2022129345-appb-000001
Figure PCTCN2022129345-appb-000002
需要说明的是,表1所示的放置环境类型和放置时间类型的分类仅仅是示意性的,并不应构成对本公开技术方案的过多限定,任何通过使用时长分类和使用放置环境分类的技术方案均落入本公开的保护范围。
例如,在初始环境温度为二十五摄氏度时,可以确定该初始环境温度对应的目标温度区间为二十至三十摄氏度。该温度区间对应的数据为表1中的倒数第三行,该行数据即为目标时间类型相对应的目标环境修正数据。通过查询目标环境修正数据,可以确定与目标时间类型和目标环境类型均匹配的目标修正温度。环境修正数据可以与时间类型对应。当然,在实际应用中不同时间类型可以对应相同或不同的环境修正数据。
在一些实施例中,任一个温度区间在至少一个时间类型分别对应的环境修正数据,可以通过数据采集获得。例如可以记录利用脱离冰箱本体的温度传感器检测获得的实时检测的第一温度和与该温度传感器在同一时刻通过位于主控板盒内的温度检测组件检测的第二温度,计算第一温度和第二温度的差值,并通过对差值进行均值进行计算然后进行方差或者均值计算获得。
在一些实施例中,在获取目标修正温度时,可以首先获取初始环境温度,从至少一个温度区间中选择目标温度区间,通过目标温度区间的获取,可以实现对冰箱的初始运行所对应的温度区间的准确获取。通过目标温度区间的获取,可以按照目标温度区间下的时间和环境对冰箱的修正温度进行更准确的查询,获得更准确的目标修正数据。
在一些实施例中,目标环境修正数据包括至少一个环境类型分别对应的修正温度,控制器被配置为,执行根据目标环境修正数据,查询与目标环境类型相匹配的目标修正温度,包括:
根据目标环境修正数据对应的至少一个环境类型分别对应的修正温度,查询与目标环境类型相同的环境类型对应的修正温度为目标修正温度。
至少一个环境类型可以分别设置有修正温度。以表1为例,在目标温度区间为二十至三十摄氏度时,时间类型为短时类型,可以确定该目标温度区间对应的正常环境类型的修正温度为零摄氏度、拥挤环境类型的修正温度一摄氏度、后背板靠近热源环境类型对应的修正温度为负一点五摄氏度、后背板靠近冷源环境类型时,其对应的修正温度为一点五摄氏度。其他环类型的定义数据相同。
在一些实施例中,目标环境修正数据可以包括至少一个环境类型分别对应的修正温度,以根据目标环境修正数据对应的至少一个环境类型分别对应的修正温度,对目标环境信息相同的环境类型进行查询,实现目标修正温度的快速而准确的获取。
在另一些实施例中,控制器还被配置为:
检测压缩机在目标转速运转的运转时间;
若确定运转时间达到时间阈值,则控制器被配置为返回执行确定冰箱的使用时长以及冰箱的放置环境信息。
运转时间可以为压缩机在按照目标转速运转的初始时间至当前时间的时间差。
在一些实施例中,确定运转时间达到时间阈值时,也可以返回执行获取冰箱的温度检测组件检测的第一环境温度的步骤。
在一些实施例中,可以通过检测压缩机在目标转速运转的时间,在运转时间达到时间阈值时,可以返回执行确定冰箱使用时长和冰箱放置环境信息的流程,实现对冰箱的循环控制。
在一些实施例中,控制器被配置为获取冰箱的温度检测组件检测的第一环境温度之 后,还被配置为:
根据第一环境温度,确定与第一环境温度相对应的初始转速;
控制压缩机按照初始转速运转。
目标转速可以为压缩机当前通过冰箱的使用时长和放置环境信息优化之后的转速。当然,若冰箱在初次启动时,冰箱检测的第一环境温度即为冰箱的初始环境温度,可以通过冰箱的第一环境温度确定对应的初始转速。通常,可以通过查询温度转速关联列表,确定第一环境温度对应的初始转速,以控制压缩机按照初始转速运转。
在一些实施例中,在冰箱启动时,可以按照首次启动时反馈的初始转速启动,通过首次目标转速的启动可以对冰箱的压缩机进行首次启动控制。
在一些实施例中,控制器还被配置为:
查询温度转速关联列表,获得与第一环境温度相匹配的初始转速。
不同转速与环境温度可以预先关联。任一个第一环境温度可以配置有对应的转速。
第一环境修正之后,不同温度区间与对应转速的关联关系参考表2。
表2 不同温度区间与对应转速的关联列表
第二环境温度(℃) 转速(r/min)
<10 1000
10~15 1500
15~20 2000
20~25 2500
25~30 3000
30~35 3500
35~40 4000
>40 4500
需要说明的是,表2所示的第二环境温度的区间划分和温度区间与转速的对应关系仅仅是示意性的,并不应构成对本公开技术方案的过多限定,任何通过使用温度区间和转速相关联以建立查询机制的技术方案均落入本公开的保护范围。
每个环境温度区间可以对应有相应的转速。可以先确定第一环境温度所在的温度区间,再通过第一环境温度所在的温度区间确定相应的初始转速。同样地,确定第二环境温度对应的目标转速时,也可以先确定第二环境温度的温度区间,在通过第二环境温度所在的温度区间确定对应的目标转速。
例如,控制压缩机在目标转速运转可以包括:控制压缩机的转速从初始转速切换到目标转速。
在一些实施例中,可以通过查询温度转速关联列表,实现对第一环境温度相匹配的初始转速的查询,提高初始转速的获取效率。
在一些实施例中,控制器被配置为确定冰箱的使用时长以及冰箱的放置环境信息,用于:
基于时长检测算法,检测冰箱的使用时长;
基于环境检测算法,检测冰箱的放置环境信息。
时长检测算法和环境检测算法可以配置于冰箱的控制器中,用于对冰箱的使用时长和环境信息的自动检测。当然冰箱的使用时长和环境信息还可以由用户通过终端设备上为冰箱配置的应用程序输入获得。基于时长检测算法,检测冰箱的使用时长可以包括:确定冰箱的启动次数,和每次启动的时长,根据启动次数和每次启动的时长,确定冰箱的使用时长。
基于环境检测算法,检测冰箱的放置环境信息,可以包括:基于对冰箱在初次启动时的环境温度和冰箱在正常运行状态下的环境温度,确定冰箱的放置环境信息。冰箱的使用时长可以包括冰箱在不同启动次数分别对应的使用时长。冰箱的放置环境信息可以指冰箱在不同放置环境下的温度数据或者主控板盒的温差。
综上,如图5所示,制冷系统控制方法可以包括以下几个步骤:
步骤S501:获取冰箱的温度检测组件检测的第一环境温度。
步骤S502:确定冰箱的使用时长以及冰箱的放置环境信息。
步骤S503:根据冰箱的使用时长和放置环境信息,对第一环境温度进行修正处理,获得第二环境温度。
步骤S504:根据第二环境温度,确定压缩机的目标转速,以控制压缩机在目标转速运转。
在一些实施例中,当需要检测冰箱的使用时长时,冰箱的控制器还可以被配置为:
采集冰箱在目标时间对应的第一状态数据;
根据第一状态数据,确定冰箱的运行时间类型。
本公开实施例通过采集冰箱在目标时间对应的第一状态数据,可以根据第一状态数据,确定冰箱的运行时间类型。以通过冰箱的运行时间类型对冰箱的第一环境温度进行温度调,使得获得的第二环境温度与实际的环境温度的一致性更高。因此,利用第二环境温度确定的目标转速,可以对冰箱的压缩机实现更准确更高效的控制,达到节能以及效率提升的目的。
如图6所示,在步骤S502中获取目标时间类型的方法可以包括以下几个步骤:
步骤S5021:采集冰箱在目标时间对应的第一状态数据。
目标时间可以包括第一环境温度的采集时间。通过为第一环境温度的采集时间进行运行时间类型的检测和判断,实时地对第一环境温度进行修正,获得准确的第二环境温度。第一状态数据和第二状态数据可以为相邻两次开停机周期对应的状态数据。
第一状态数据可以为目标时间对应的开停机周期采集的状态数据。第二状态数据可以为目标时间对应的开停机周期的前一次开机周期采集的状态数据。若在目标时间冰箱处于开机状态,则获取此次开机时的状态数据。若在目标时间冰箱未处于开机状态,则获取目标时间下的前一个开停机周期的状态。
步骤S5022:根据第一状态数据,确定冰箱的运行时间类型。
第一状态数据可以是对冰箱的各个状态参数采集获得的数据,状态参数可以包括放置时间、开机时长或者开机时间、开机时箱内温度、开机时蒸发器温度、停机时蒸发器温度、主控板盒在开机时的温度和停机时的温度中的至少一个。各个状态参数可以在冰箱中设置对应的传感器以利用传感器检测状态参数的参数数据,获得状态数据。因此,状态数据包括至少一个状态参数分别对应的数据。运行时间类型可以包括至少一个,例如可以包括:短时类型、中级时间类型、长时类型以及长时例外类型等。目标时间类型可以通过第一状态数据和第二状态数据监测获得。
在一些实施例中,获取目标时间类型的方法还包括:
检测冰箱在目标时间对应的启动次数。
根据第一状态数据,确定冰箱的运行时间类型,可以包括:
若确定启动次数为一,则基于第一检测策略,结合第一状态数据,对冰箱是否处于初级制冷状态进行检测,获得第一检测结果;
若第一检测结果为冰箱处于初级制冷状态,则确定初级时间类型为目标时间类型。
在启动次数为一时,可以对冰箱进行制冷初期阶段进行检测,以获得准确的检测结果。
第一检测策略可以是针对第一次开机采集的第一状态数据进行的处理,对冰箱是否处于初级制冷状态进行检测,获得第一检测结果。在启动次数为一时,第二状态数据可以为空。
本公开实施例中,在第一次启动时,可以利用第一检测策略对冰箱进行准确检测,提高冰箱的检测效率和准确度。
在一些实施例中,基于第一检测策略,结合第一状态数据,对冰箱是否处于初级制冷状态进行检测,获得第一检测结果,可以包括:
获取第一状态数据中冰箱的主控板盒对应的第一主控温度、及间室对应的第一箱内温度;
计算目标时间和初次启动时的启动时间之间的第一时间差值;
计算第一箱内温度和第一主控温度之间的第一温度差值;
若第一温度差值小于第一温度阈值,且第一时间差值大于第一时间阈值,则确定冰箱处于初级制冷状态;
确定冰箱处于初级制冷状态为第一检测结果。
在启动次数为一时,可以对冰箱内的主控板盒温度和间室内的温度进行差值计算,以获得冰箱的实际环境温度和冰箱间室内的温度的差值计算,若温度差较小,说明冰箱的运转实际不高,且在启动时间小于第一时间阈值时,可以确定冰箱处于初级制冷状态,实现对初级制冷状态的准确检测。当然,在一些实施例中,可以直接通过开机时间判断冰箱处于初级制冷阶段。例如,在开机时间小于两小时时,可以直接确定冰箱处于初级制冷阶段,以提高初级制冷阶段的判断效率。第一温度差值例如可以为五摄氏度。第一时间差值可以包括三小时。
若不满足第一温度差值小于第一温度阈值,且第一时间差值大于第一时间阈值,则确定冰箱处于初级制冷状态,则可以确定未进入初级制冷阶段,可以不进行温度补偿。
本公开实施例中,可以对冰箱在第一状态数据中的第一箱内温度和第一主控温度之间的第一温度差值进行计算,实现对冰箱的环境和箱内温度的准确检测,并在开机时间满足第一时间阈值时,确定冰箱处于初级制冷状态,实现对初级制冷状态的准确检测。
在一些实施例中,获取目标时间类型的方法还包括:
检测冰箱在目标时间对应的启动次数。
根据第一状态数据,确定冰箱的运行时间类型,可以包括:
若确定启动次数为二,则获取第一次启动时采集的第二状态数据;
基于第二检测策略,结合第一状态数据和第二状态数据,对冰箱是否处于中级制冷状态进行检测,获得第二检测结果;
若第二检测结果为冰箱处于中级制冷状态,则确定中级时间类型为目标时间类型。
在启动次数为二时,第一状态数据为该第二次启动采集的状态数据,第二状态数据为第一次启动时采集的状态数据。
在启动次数为二时,可以对冰箱进行制中级期阶段进行检测,以获得准确的检测结果。在启动次数为二时,第一状态数据可以为第一次开停机周期时采集的冰箱的状态数据。第二状态数据可以为第二次开停机周期采集的状态数据。当然,第二状态数据采集时,冰箱可能并未停机,处于第二次开停机周期的运转状态,因此,第二次开停机周期可以处于开机状态,并未停机,因此,与停机相关的参数可以为空。例如,在状态数据包括停机时的主控板盒温度时,该主控板盒的温度可以为空。
在启动次数不为一且不为二时,启动次数可以大于或等于三,此时可以对冰箱进行平稳运行状态进行检测。
本公开实施例中,在确定处于第二次启动期间时,可以利用第二检测策略对冰箱是否处于中级制冷状态进行检测,以获得第二检测结果。通过第二检测策略可以对冰箱的中级制冷状态进行准确而有效的检测。
在一些实施例中,基于第二检测策略,结合第一状态数据和第二状态数据,对冰箱是否处于中级制冷状态进行检测,获得第二检测结果,可以包括:
获取第一状态数据中的第一开机时间、及间室对应的第一箱内温度;
获取第二状态数据中第二开机时间、间室对应的第二箱内温度、以及冰箱在第二次启动时蒸发器对应的蒸发器温度和主控板盒对应的第二主控温度;
计算第一开机时间和第二开机时间的第二时间差值;
计算第二主控温度和蒸发器温度对应的第二温度差值;
若第二时间差值小于第二时间阈值,第一箱内温度大于第二箱内温度且第二温度差值大于第二温度阈值,则确定中级制冷状态为第二检测结果。
冰箱的蒸发器可以用于制冷,冰箱进入制冷状态下,蒸发器的进水温度一般为十至十四摄氏度,出水温度一般为七至十摄氏度。而环境温度一般是三十五摄氏度左右。当蒸发器正常工作时,蒸发器和冰箱之间的温差大于二十摄氏度。第二温度阈值可以包括二十摄氏 度。在第二温度差值大于第二温度阈值时,说明检测的环境温度与蒸发器的温差较大,此时冰箱还是处于压力较大的制冷状态。在第一开机时间与第二开机时间的第二时间差值小于第二时间阈值时,第一次开机时的第一箱内温度大于第二次开机时的第二箱内温度,可以确定冰箱进入中级制冷阶段。通过冰箱的中级制冷阶段的检测可以对冰箱进行准确的检测。第二时间阈值例如可以包括一小时。
若不满足第二时间差值小于第二时间阈值,且第一箱内温度大于第二箱内温度且第二温度差值大于第二温度阈值,则说明未进入中级制冷阶段,可以确定冰箱处于初级制冷阶段。
本公开实施例中,可以通过第一次开机时间与第二次开机时间的第二时间差值对两次开机时间间隔进行条件判断、第一次开机时箱内的第一主控温度、第二次开机时箱内的第二主控温度对两次开机时箱内的温度差异进行计算,同时还利用主控板盒温度和蒸发器的温度对冰箱的制冷情况进行检测。从而,通过时间间隔条件的判断、两次开机差异的检测、以及冰箱制冷情况的检测,可以对影响是否处于中级制冷状态进行判断,获得准确的判断结果,提高对中级制冷状态的检测结果和准确度。
在另一些实施例中,获取目标时间类型的方法还包括:
检测冰箱在目标时间对应的启动次数。
根据第一状态数据,确定冰箱的运行时间类型,可以包括:
判断启动次数是否大于或等于次数阈值;
若是,则采集启动次数的前一次启动对应的第三状态数据;
根据第一状态数据和第三状态数据,判断冰箱是否满足平稳运行条件;
若确定冰箱满足平稳运行条件,则确定冰箱进入正常运行状态,并确定长时运行类型为目标时间类型。
在又一些实施例中,若确定冰箱不满平稳运行条件,则确定冰箱进入非正常运行状态,确定长时例外类型为目标时间类型。
长时例外类型的存在原理包括:冰箱处于正常运行状态,但是监测到用户对冰箱执行了非正常的使用行为。正常的使用行为可以包括,将室温的物体放置于冰箱内。
启动次数可以为从插电开始冰箱的开停机次数,冰箱每执行一次开机一次关机即产生一次开停机次数,依次累加可以获得启动次数。平稳运行条件可以指冰箱进行较为平稳的运行状态,不再需要较大的开机率即可以完成冰箱的制冷、保鲜等功能。
次数阈值可以预先设置获得,一般而言,为了实现对冰箱的使用启动检测,可以控制冰箱在插电之后,自动完成N次启动,以实现对冰箱的安全性检测。因此,需要为冰箱设置启动次数的阈值。例如,次数阈值可以设置为三。
长时运行类型可以指冰箱的运行时长较长,已满足冰箱的正常运行状态。
本公开实施例中,可以在判断启动次数是否大于或等于次数阈值的情况下,利用第一状态数据和第三状态数据对冰箱是否满足平稳运行条件进行判断,通过确定冰箱是否满足平稳运行条件,对冰箱处于长时运行类型为目标时间类型进行准确判断,提高判断效率和准确性。
在一些实施例中,根据第一状态数据和第三状态数据,判断冰箱是否满足平稳运行条件,可以包括:
获取第一状态数据中间室的第一箱内温度和第三状态数据中间室的第三箱内温度,并获取冰箱的初次启动至启动次数之间每次启动时冰箱的开机率;
计算第一箱内温度和第三箱内温度的第三温度差值;
若第三温度差值的绝对值小于第三温度阈值,且启动次数与启动次数相邻的前两次启动次数分别对应的开机率满足变化策略,则确定冰箱满足平稳运行条件。
第一箱内温度和第三箱内温度均可以是冰箱的间室温度。第三温度差值可为间室在两次开停机周期的温度差,若第三温度差值的绝对值较小,说明冰箱的间室已经处于比较温度的环境,可以初步确定冰箱处于较为平稳的运行状态。在此之外,若冰箱的开机率满足两两之间差异小于开机率阈值的变化策略,则可以确定冰箱满足平稳运行条件。
变化策略可以包括:启动次数与启动次数相邻的前两次启动次数分别对应的开机率之间,两两相邻的开机率的变化量均小于开机率阈值。
启动次数对应的第一开机率,启动次数相邻的前两次开机率分别为第二开机率和第三开机率。第二开机率的启动次数为第一开机率的启动次数的前一个启动次数。第三开机率的启动次数为第二开机率的启动次数的前一个启动次数。变化策略可以是第一开机率和第二开机率的差值的绝对值小于开机率阈值,且第二开机率和第三开机率的差值的绝对值小于开机率阈值。
次数阈值可以设置为三,因此,启动次数可以大于等于三。获取冰箱的初次启动至启动次数之间每次启动时冰箱的开机率可以指,从初次启动开始,依次获取每次的开机率,若开机率满足先增大后减小的变化策略,可以确定冰箱满足平稳运行条件。第三温度阈值例如可以为三摄氏度、四摄氏度等,可以根据使用需求设置。
需要说明的是,第一温度阈值、第二温度阈值和第三温度阈值可以根据实际的使用需求设置,本公开举例仅仅是示意性的,并不应构成对本公开技术方案的限制。
在一些实施例中,控制器还用于:
若确定第三温度差值的绝对值大于或等于第三温度阈值,和/或启动次数与启动次数相邻的前两次启动次数分别对应的开机率不满足变化策略,则确定冰箱不满足平稳运行条件;
若确定冰箱不满足平稳运行条件,则确定冰箱进入异常运行状态,并确定长时例外运行类型为目标时间类型。
若不满足第三温度差值小于第三温度阈值且初次启动至启动次数之间每次启动时的开机率的变化量满足变化策略,则确定冰箱满足未平稳运行条件,可以确定长时例外运行类型为目标时间类型。通过确定长时例外类型可以对冰箱进行更详细的监控提高冰箱的监控效率。
本公开实施例中,可以通过第一箱内温度和第三箱内温度的第三温度差值与第三温度阈值进行比较,可以用于对两次开机时箱体内的温度差值进行准确计算,若温度差值小于第三温度阈值,则说明两次开机的箱内温度波动较小,同时,若多次启动时的开机率的变化量满足变化量策略,则可以确定冰箱处于较为平稳的运行状态,实现对冰箱的平稳运行条件的检测,提高冰箱的平稳检测效率和准确度。
在一些实施例中,采集冰箱在目标时间对应的第一状态数据之前,还可以包括:
响应于针对冰箱的时间类型检测请求,确定当前所对应的目标时间,并获取目标时间对应的启动次数。
类型检测请求可以通过用户触发,也可以在检测到第一温度数据时生成。
本公开实施例中,可以响应于针对冰箱的时间类型检测请求,对目标时间和目标时间对应的启动次数进行获取,实现实时性的时间类型检测,提高时间检测的时效性。
在一些实施例中,该方法还包括:
确定每次启动测试的启动策略,获得N个测试策略;
按照N次启动测试分别对应的测试顺序,依次启动N个测试策略,并获取任一个测试策略下启动冰箱时采集冰箱的状态数据;
获得N次启动测试分别对应的状态数据。
N为正整数。N可以包括大于等于三的正整数。测试策略可以指对冰箱的运行时间、压缩机的初始转速等运行参数进行设置获得的各个运行参数的参数数据,在冰箱启动时,可以按照测试策略对应的运行参数的参数数据启动。
本公开实施例中,可以确定每次启动测试的启动策略,获得N个测试策略,通过按照N次测试策略分别对应的测试顺序,依次启动N个测试策略,完成对冰箱的启动测试,期间可以获取任一个测试策略下启动冰箱时采集的冰箱的状态数据,获得N次启动分别对应的状态数据。通过N个测试策略的设置,可以完成冰箱的自动测试,提高冰箱的测试效率和准确性。
为了对本公开的技术方案详细说明,清晰描述时间类型的获取方式,如图8所示,为 本公开实施例提供的制冷系统控制方法的流程图,该制冷系统控制方法可以应用于冰箱的控制器中,与图5所示的实施例的不同之处在于,在步骤S501中获取冰箱通过温度检测组件检测的第一环境温度之后,制冷系统控制方法还可以包括以下几个步骤:
步骤S601:检测冰箱在目标时间对应的启动次数。
步骤S602:采集冰箱在目标时间对应的第一状态数据。
第一状态数据包括:冰箱的主控板盒对应的第一主控温度,间室对应的第一箱内温度、第一开机时间。
第二状态数据包括:冰箱的主控板盒对应的第二主控温度、间室对应的第二箱内温度、第二开机时间、冰箱在第二次启动时蒸发器对应的蒸发器温度中的至少一个。
还获取冰箱的初次启动至启动次数之间每次启动时冰箱的开机率。
步骤S603:判断启动次数是否为一,若是,则执行步骤S604,若否,则执行步骤S607。
步骤S604:计算目标时间和初次启动时的启动时间之间的第一时间差值,以及第一箱内温度和第一主控温度之间的第一温度差值;
步骤S605:判断是否满足第一温度差值小于第一温度阈值,且第一时间差值大于第一时间阈值,若是,则执行步骤S606,若否,则不进行温度补偿。
例如,在不满足第一温度差值小于第一温度阈值,且第一时间差值大于第一时间阈值时,可以确定冰箱处于初级异常状态。
步骤S606:确定冰箱处于初级制冷状态,则确定初级时间类型为目标时间类型。
步骤S607:判断启动次数是否为二,若是,则执行步骤S608,若否,则执行步骤S611。
步骤S608:获取第一次启动时采集的第二状态数据,并计算第一开机时间和第二开机时间的第二时间差值以及第二主控温度和蒸发器温度对应的第二温度差值;
步骤S609:判断是否满足第二时间差值小于第二时间阈值,第一箱内温度大于第二箱内温度且第二温度差值大于第二温度阈值,若是,则执行步骤S610,若否,则不进行温度补偿。
例如,在判断不满足第二时间差值小于第二时间阈值,且,第一箱内温度大于第二箱内温度且第二温度差值大于第二温度阈值时,可以确定冰箱处于中级异常状态。
步骤S610:确定中级制冷状态为第二检测结果,且确定中级时间类型为目标时间类型。
步骤S611:判断启动次数是否大于或等于次数阈值;若是,则执行步骤S612,若否,则执行步骤S601。
步骤S612:采集启动次数的前一次启动对应的第三状态数据,并计算第一状态数据对应第一箱内温度和第三状态数据对应第三箱内温度的第三温度差值。
第三状态数据包括:冰箱的主控板盒对应的第三主控温度、间室对应的第三箱内温度、第三开机时间、冰箱在第三启动次数次启动时蒸发器对应的蒸发器温度。
步骤S613:判断是否满足第三温度差值的绝对值小于第三温度阈值,且启动次数与启动次数相邻的前两次启动次数分别对应的开机率满足变化策略,若是,则执行步骤S614,若否,则执行步骤S615。
步骤S614:确定冰箱满足平稳运行条件,则确定冰箱进入正常运行状态,并确定长时运行类型为目标时间类型。
步骤S615:确定冰箱不满足平稳运行条件,则确定冰箱进入非正常运行状态,并确定长时例外运行类型为目标时间类型。
本公开的技术方案,通过多重检测和判断可以实现对目标时间类型的准确获取,提高目标时间类型的获取效率和准确性。
在一些实施例中,当需要获取冰箱的环境类型时,在一些实施例中,当需要获取冰箱的环境类型时,冰箱的控制器还可以被配置为:
采集冰箱在初始运行状态对应的第一温度数据和在正常运行状态对应的第二温度数据;
根据第一温度数据和第二温度数据,对冰箱所处的环境进行检测,获得冰箱的目标环境类型。
本公开实施例中,可以获取冰箱通过温度检测组件检测的第一环境温度,采集主控板盒在初始运行状态对应的第一温度数据和在正常运行状态对应的第二温度数据。通过第一温度数据和第二温度数据,对冰箱所处的环境进行检测,可以获得冰箱的目标环境类型。目标环境类型可以用于记录冰箱的实际运行环境。通过目标环境类型的检测可以使得冰箱的环境温度受环境影响进行去除,获得更准确的第二环境温度。通过第二环境温度可以对压缩机的目标转速进行更准确的设置,提高对压缩机的控制效率和准确性,进一步对冰箱的耗能进行准确获得。
如图7所示,在步骤S502中获取冰箱的环境类型的控制方法还可以包括以下几个步骤:
步骤S5023:采集冰箱在初始运行状态对应的第一温度数据和在正常运行状态对应的第二温度数据。
步骤S5024:根据第一温度数据和第二温度数据,对冰箱所处的环境进行检测,获得冰箱的目标环境类型。
初始运行状态可以包括冰箱初次启动时的运行状态。为了对冰箱进行准确而有效的启动控制,可以将冰箱的设置为多次开机,每次开机均可以记录相应的温度数据。例如可以启动四次,第一次开机之后,开机时间可以为四个小时,之后,可以自动关闭冰箱,也即第一次停机。第一次停机之后,可以第二次开机,第二次开机时间可以为三个小时,之后,可以自动关闭冰箱,也即第二次停机。第二次停机之后,可以第三次开机,第三次开机之后,可以控制冰箱一直处于开机状态。通过多次开机,可以对冰箱的环境信息进行检测判断。
正常运行状态可以指多次开机之后,冰箱进入正常且平稳的制冷状态,满足平稳运行条件。例如,假设开机三次,冰箱进入平稳状态,可以在将第四次启动时采集的温度数据作为第二温度数据。将第一次启动时采集的温度数据作为第一温度数据。
在一些实施例中,采集冰箱在初始运行状态对应的第一温度数据和在正常运行状态对应的第二温度数据,可以包括:
确定冰箱初次启动时处于初始运行状态,并确定冰箱第N次启动时处于正常运行状态;
采集冰箱在初次启动时对应的第一温度数据和在第N次启动时对应的第二运行温度数据。
冰箱初次启动可以指冰箱初次上电时启动。冰箱第N次启动可以是冰箱在执行多次启动之后的启动。N可以包括大于等于四的正整数。在冰箱启动N次时,该次启动之后并不进行关机,而是进入正常的运转状态,正常制冷,冰箱进入正常运行状态。
本公开实施例中,确定冰箱初次启动时为初始运行状态,并确定冰箱第N次启动时处于正常运行状态,通过将冰箱初次启动和第N次启动分别作为初始运行状态和正常运行状态,可以实现对冰箱的不同状态下的温度数据的获取,利用不同状态下的温度数据对冰箱进行准确的环境判断,获得准确的检测效果。
在一些实施例中,采集冰箱在初次启动时对应的第一温度数据和在第N次启动时对应的第二温度数据,包括:
采集冰箱在初次启动时,冰箱的主控板盒对应的第一开机温度,并采集冰箱在初次启动对应的停机时,冰箱的主控板盒对应的第一停机温度;
确定第一开机温度和第一停机温度对应的第一温度数据;
采集冰箱在第N次启动时,冰箱的主控板盒对应的第二开机温度,并采集冰箱在第N次启动对应的停机时,冰箱的主控板盒对应的第二停机温度;
确定第二开机温度和第二停机温度对应的第二温度数据。
第一开机温度可以在冰箱初次启动时通过冰箱的主控板盒中的温度检测组件采集获得。第二开机温度也可以在冰箱第N次启动时通过冰箱的主控板盒中的温度检测组件采集获得。
第一停机温度可以在冰箱初次启动之后,初次停机时,通过冰箱的主控板盒中的温度检测组件采集获得。第二停机温度可以在冰箱第N次启动之后,第N次停机时,通过冰箱 的主控板盒中的温度检测组件采集获得。
第一开机温度、第二开机温度可以是在冰箱启动的瞬间采集获得,第一停机温度、第二停机温度可以是在冰箱停机的瞬间采集获得的。可以指,检测到冰箱上电时,可以获得温度检测组件采集的开机温度。检测到冰箱断电时,可以获得温度检测组件采集的停机温度。瞬间可以指冰箱的上电时间和温度检测组件的采集时间对应的时间差无限接近于零。
本公开实施例中,可以采集冰箱在初次开机时主控板盒对应的第一开机温度以及冰箱在初次停机时主控板盒对应的第一停机温度。通过采集冰箱在第N次开机时主控板盒的第二开机温度和第二停机温度的检测。可以获得在冰箱的不同阶段下,主控板盒的温度数据,实现对冰箱的运行数据的准确采集。
在另一些实施例中,获取冰箱的环境类型的控制方法还包括:
获取冰箱初次启动时冰箱的箱体内的间室对应的初始环境温度;
确定第一温度数据中的第一开机温度、第一停机温度和第二温度数据中的第二开机温度、第二停机温度。
判断第一停机温度和第二停机温度是否均小于初始环境温度,若是则执行步骤S704。
确定冰箱背部环境存在冷源为目标环境类型。
初始环境温度可以为冰箱箱体内的温度,箱体内的间室的温度可以通过设置于箱体内的间室的温度传感器检测获得。
第一开机温度可以为冰箱初次启动时主控板盒中的温度检测组件采集的温度,第一停机温度可以为冰箱初次停机时主控板盒中的温度检测组件采集的温度,第二开机温度可以为冰箱第N次开机时主控板盒中的温度检测组件采集的温度,第二停机温度可以为冰箱第N此停机时主控板盒中的温度检测组件采集的温度。
在第一停机温度和第二停机温度不满足均小于初始环境温度的条件时,可以进行下一步温差判断。
第二停机温度的采集时间要落后于第一停机温度的采集时间,将第二停机温度和第一停机温度分别与初始环境温度进行比较,也即判断冰箱运行一段时间之后,其在不同的启动次数之后背部环境温度是否存在较多的下降。
冰箱背部存在冷源时,冰箱的主控板盒实际所处的环境温度要低于冰箱的箱体内的间室的初始环境温度,则冰箱后背部存在冷源。冷源可以指冰箱的所处的环境可以吸收冰箱散发的热量,进而导致出现环境温度的检测收到冷源的影响降低。此时,通过目标环境类型对第一环境温度进行正向修正,获得的第二环境温度大于第一环境温度。
本公开实施例中,可以获取冰箱初次启动时箱体内的第一环境温度,可以确定第一温度数据中的第一停机温度和第二温度数据中的第二停机温度,通过将第一停机温度与初始环境数据进行大小判断,可以实现将冰箱停机背部环境温度和初次上电时箱体内的初始环境温度的比较,实现对初次上电的环境检测。并同时,将第二停机温度与初始环境数据进行大小判断,可以实现在冰箱停机时的背部环境温度和初次上电时箱体内的第一环境温度的比较,可以实现对平稳运行的冰箱的温度的检测。通过两次比较,可以实现对冰箱背部的目标环境类型进行准确比较,实现对冰箱的正常运行情况的检测。
在一些实施例中,控制器还被配置为:
根据第一温度数据中的第一开机温度和第一停机温度,计算初始运行状态对应的第一温度差值;
根据第二温度数据中的第二开机温度和第二停机温度,计算正常运行状态对应的第二温度差值;
若判断第一温度差值和第二温度差值均小于温度阈值,则确定冰箱背部环境正常为目标环境类型。
第一温度差值,可以指冰箱第一次开停机时主控板盒内的环境温度变化量,主要用于表示第一次开停机时冰箱的主控板盒的环境温度是否存在明显升温。第二温度差值可以指冰箱第N次开停机时主控本内的环境温度变化量,主要用于表示第N次开停机时主控板盒的环境温度是否明显升温。若第一温度差值和第二温度差值均小于温度阈值,则说明冰箱 在初始运行状态和切换至正常运行状态期间,主控板盒内的温度变化差异较小,冰箱所处的运行环境较为温度,因此,冰箱的背部环境正常为目标环境类型。
本公开实施例中,可以根据第一温度数据中的第一开机温度和第一停机温度,计算初始运行状态下的第一温度差值,第一温度差值可以表示初始运行状态下箱体内和实际的环境温度之间的差值,判断冰箱后部环境是否存在较大的温差。之后还可以根据第二温度数据中的第二开机温度和第二停机温度,计算正常运行状态下停机前后的第二温度差值,第二温度差值可以表示初始运行状态下箱体内和冰箱背部环境的温差,以判断冰箱在正常运行之后是否存在较大的温差。通过第一温度差值和第二温度差值可以对冰箱在不同状态下的背部环境的温差检测,可以在开关机前后的温差均小于温度阈值时,确定冰箱启动和停机期间温差变化较小,因此,可以确定冰箱背部环境正常为目标环境类型,实现对正常环境的准确而高效的检测。
在另一些实施例中,控制器被配置为执行根据第一温度数据中的第一开机温度和第一停机温度,计算初始运行状态对应的第一温度差值之前,还用于:
判断第一停机温度是否大于或等于初始环境温度或者第二停机温度是否大于或等于初始环境温度,若是,则执行第一温度差值和第二温度差值是否均小于温度阈值的判断步骤。
第一停机温度大于或等于初始环境温度,第二停机温度大于或等于初始环境温度,说明两次开机,开机至停机的运行期间存在环境温度升高的现象,此时可以执行温差计算并判断的步骤,以对环境温度进行更准确分析。
本公开实施例中,在第一停机温度大于或等于初始环境温度,或者第二停机温度大于或等于初始环境温度时,说明第一开机温度和第二开机温度不满足同时小于初始环境温度的条件,因此,第一开机温度和第二开机温度均低于初始环境温度,说明冰箱两次开机时检测到的环境温度均要低于冰箱间室在正常环境中检测到的初始环境温度,冰箱后背部的温度低于冰箱间室的温度,此时可以确认冰箱的后背部靠近冷源。
在一些实施例中,控制器还被配置为:
若判断第一温度差值大于或等于温度阈值,或者,第二温度差值大于或等于温度阈值,则采集冰箱在初始运行状态对应的第一开机率以及在正常运行状态对应的第二开机率;
根据第一开机率和第二开机率,判断冰箱从初始运行状态切换至正常运行状态时是否满足开机率降幅条件;
若是,则确定冰箱背部环境拥挤为目标环境类型;
若否,则确定冰箱背部环境存在热源为目标环境类型。
开机率可以指冰箱的开机频率。例如,开机率为百分之六十时,一天百分之六十的时间内压缩机运转。开机时间可以指压缩机的开机时间。开机率越高,冰箱的耗能越高,开机率越低,冰箱的耗能越低。开机率在初始运行状态下,需要快速指令,因此冰箱的开机率可以是百分之百,当然在实际应用中,冰箱的开机率并不一定能够达到百分之百,但是正常情况下,冰箱初次启动时,冰箱的开机率较高,冰箱在正常运行状态时,开机率的开机率较低。
本公开实施例中,可以在第一温度差值大于或等于温度阈值或者第二温度差值大于或等于温度阈值时,说明冰箱未处于正常的环境状态,也并未靠近冷源。因此,而第一温度差值或者第二温度差值较高说明冰箱后背部温度较高,出现散热困难。为了对冰箱的散热困难原因进行准确获取,使用采集冰箱在初始运行状态对应的第一开机率和在正常运行状态对应的第二开机率,从而利用第一开机率和第二开机率的判断冰箱在从初始运行状态切换到正常运行状态时,是否满足开机率降幅条件,在满足开机率降幅条件,说明冰箱进入正常的运行状态且开机率较低,能耗较低,背部环境拥挤为冰箱的温差较大的原因。而在不满足开机率降幅条件时,说明冰箱还维持在较高的开机率,耗能较高,为了维持冰箱运转需要较大功耗,因此,可以确认背部环境存在热源为冰箱的运行状态。通过开机率的检测,可以实现对冰箱的热源或拥挤进行相应的分析,获得准确的环境类型检测结果。
在一些实施例中,控制器被配置为执行根据第一开机率和第二开机率,判断冰箱从初 始运行状态切换至正常运行状态时是否满足开机率降幅条件,用于:
计算第二开机率和第一开机率的比值,获得正常运行状态与初始运行状态对应的开机率占比;
判断开机率占比是否达到开机率阈值;
若是,则确定冰箱从初始运行状态切换至正常运行状态时满足开机率降幅条件;
若否,则确定冰箱从初始运行状态切换至正常运行状态时不满足开机率降幅条件。
开机率阈值可以指开机率降幅区间的最大值,例如,开机率降幅区间在百分之三十至百分之五十时,开机率阈值可以为百分之五十。当开机率占比小于或等于百分之五十时,可以确定满足开机率降幅条件,当开机率占比大于百分之五十时,可以确定不满足开机率降幅条件。
开机率占比是否达到开机率阈值,可以包括开机率是否小于或等于开机率阈值,如果是,则确定满足开机率降幅条件,如果否则确定不满足开机率降幅条件。
在另一些实施例中,根据目标环境类型对第一环境温度进行温度修正处理,获得第二环境温度,包括:
查询温度修正数据库中与目标环境类型相匹配的目标修正温度;
计算目标修正温度和第一环境温度的和,获得第二环境温度。
温度修正数据库可以包括环境类型和修正温度的对应关系,可以通过查询修正数据库确定与目标环境类型相一致的目标修正温度。目标修正温度可以包括零、正数和负数。当冰箱环境例如热源时,目标修正温度可以为负数。当冰箱环境温度例如问冷源时目标修正温度可以为正数。当冰箱环境温度例如为正常时,目标修正温度可以为零摄氏度。当冰箱环境温度为拥挤时,目标修正温度可以为负数。此外,拥挤情况下的目标修正温度的绝对值小于热源情况下的目标修正温度的绝对值。
本公开实施例中,通过温度修正数据库可以对冰箱当前所处的目标时间类型和目标环境类型均匹配的目标修正温度进行查询,获得预目标时间类型和目标环境类型均匹配的目标修正温度,实现目标修正温度的准确获取。
在一些实施例中,根据第二环境温度,确定压缩机的目标转速,包括:
查询环境温度和压缩机转速对应的关联列表,获得与第二环境温度相匹配的目标转速。
根据第二环境温度,确定压缩机的目标转速,以控制压缩机在目标转速运转。通过第二环境温度可以对压缩机的转速进行准确获取,提高压缩机转速的获取方式和效率。
关联列表中可以包括环境温度和压缩机转速的对应关系,例如,可以包括至少一个温度区间,每个温度区间对应相应的压缩机转速。可以查询第二环境温度所在的温度区间,以获得温度区间对应的压缩机转速为目标转速。
本公开实施例中,可以通过查询关联列表的方式,快速而准确地获得环境温度对应的目标转速,提高目标转速的获取效率和准确度。
为了便于理解,如图9所示,为本公开实施例提供的制冷系统控制方法的流程图,对本公开提供的环境类型检测判断进行更详细的说明。与图7所示的实施例的不同之处在于,第一温度数据包括第一开机温度和第一停机温度,第二温度数据包括第二开机温度和第二停机温度。在步骤S5023中根据第一温度数据和第二温度数据,对冰箱所处的环境进行检测,获得冰箱的目标环境类型,还可以包括:
步骤S701:获取冰箱初次启动时冰箱的箱体内的间室对应的初始环境温度;
步骤S702:确定第一温度数据中的第一开机温度、第一停机温度和第二温度数据中的第二开机温度、第二停机温度。
步骤S703:判断第一停机温度和第二停机温度是否均小于初始环境温度,若是则执行步骤704,若否,则执行步骤S705。
步骤S704:确定冰箱背部环境存在冷源为目标环境类型。
步骤S705:根据第一温度数据中的第一开机温度和第一停机温度,计算初始运行状态对应的第一温度差值。
步骤S706:根据第二温度数据中的第二开机温度和第二停机温度,计算正常运行状态对应的第二温度差值。
步骤S707:判断第一温度差值和第二温度差值是否均小于温度阈值,若是,则执行步骤S708,若否,则执行步骤S709。
步骤S708:确定冰箱背部环境正常为目标环境类型。
步骤S709:采集冰箱在初始运行状态对应的第一开机率以及在正常运行状态对应的第二开机率。
步骤S710:根据第一开机率和第二开机率,判断冰箱从初始运行状态切换至正常运行状态时是否满足开机率降幅条件,若是,则执行步骤S711,若否则执行步骤S712。
步骤S711:确定冰箱背部环境拥挤为目标环境类型。
步骤S712:确定冰箱背部环境存在热源为目标环境类型。
本公开实施例中,通过对两种状态下的第一停机温度和第二停机温度与初始环境温度进行比较,实现对冰箱的冷源环境检测。之后,在判断冰箱处于非冷源环境时,可以利用开停机时主控板盒内的传感器采集的温度所对应的温差进行正常运行环境的检测。之后,在非正常环境下,利用开机率对散热异常的情况进行更细致的分析判断,在热源影响较高而拥挤影响较低,导致不同的开机率现象,获得准确的判断结果。通过多重环境的检测和判断,可以提高冰箱背部的环境检测准确性和效率。
如图10所示,为本公开提供的一种压缩机控制装置的一个实施例的结构图,该压缩机控制装置可以位于冰箱的控制器。压缩机控制装置800还包括以下几个部件:
温度检测部件801:用于获取冰箱通过温度检测部件检测的第一环境温度。
使用检测部件802:用于确定冰箱的使用时长以及冰箱的放置环境信息。
温度修正部件803:用于根据运行时间类型对第一环境温度进行温度修正处理,并且用于根据目标环境类型对第一环境温度进行温度修正处理,获得第二环境温度;
转速控制部件804:根据第二环境温度,确定压缩机的目标转速,以控制压缩机在目标转速运转。
在一些实施例中,使用检测部件802可以包括:
第一数据采集子部件8021:用于采集冰箱在目标时间对应的第一状态数据。
第一类型确定子部件8022:用于根据第一状态数据,确定冰箱的运行时间类型。
在另一些实施例中,使用检测部件802还可以包括:
第二数据采集子部件8023:用于采集冰箱在初始运行状态对应的第一温度数据和在正常运行状态对应的第二温度数据。
第二类型确定子部件8024:用于根据第一温度数据和第二温度数据,对冰箱所处的环境进行检测,获得冰箱的目标环境类型。
在一些实施例中,控制器被配置有温度修正数据库,温度修正部件803可以包括:
时长确定组件,用于根据冰箱的使用时长,确定冰箱的目标时间类型。
环境确定组件,用于根据冰箱的放置环境信息,确定冰箱的目标环境类型。
温度查询组件,用于查询温度修正数据库中与目标时间类型和目标环境类型均匹配的目标修正温度。
目标计算组件,用于计算目标修正温度和第一环境温度的和,获得第二环境温度。
在一些实施例中,温度查询组件,包括:
初始温度元件,用于获取冰箱初次启动时,温度检测部件检测的初始环境温度。
温度选择元件,用于根据初始环境温度,从至少一个温度区间中选择目标温度区间;
第一修正元件,用于从温度修正数据库中确定目标温度区间在至少一个时间类型分别对应的环境修正数据;
第二修正元件,用于根据目标时间类型,从至少一个时间类型分别对应的环境修正数据中确定目标时间类型相对应的目标环境修正数据;
温度确定元件,用于根据目标环境修正数据,查询与目标环境类型相匹配的目标修正温度。
在一些实施例中,目标环境修正数据包括至少一个环境类型分别对应的修正温度,温度确定元件用于:
根据目标环境修正数据对应的至少一个环境类型分别对应的修正温度,查询与目标环境类型相同的环境类型对应的修正温度为目标修正温度。
在一些实施例中,控制器还被配置为:
时间检测部件,用于检测压缩机在目标转速运转的运转时间;
更新启动部件,用于若确定运转时间达到时间阈值,则控制器被配置为返回执行确定冰箱的使用时长以及冰箱的放置环境信息。
在一些实施例中,制冷系统控制装置还可以包括:
初始转速部件,用于根据第一环境温度,确定与第一环境温度相对应的初始转速;
初始控制部件,用于控制压缩机按照初始转速运转。
在另一些实施例中,制冷系统控制装置还可以包括:
目标查询部件,用于查询温度转速关联列表,获得与第一环境温度相匹配的初始转速。
在一些实施例中,使用检测部件可以包括:
时长检测组件,用于基于时长检测算法,检测冰箱的使用时长;
环境检测组件,用于基于环境检测算法,检测冰箱的放置环境信息。
在一些实施例中,制冷系统控制装置还可以包括:
次数检测部件,用于检测冰箱在目标时间对应的启动次数。
类型确定部件,还包括:
第一检测组件,用于若确定启动次数为一,则基于第一检测策略,结合第一状态数据和第二状态数据,对冰箱是否处于初级制冷状态进行检测,获得第一检测结果;
第一确定组件,用于若第一检测结果为冰箱处于初级制冷状态,则确定初级时间类型为目标时间类型。
在一些实施例中,制冷系统控制装置还可以包括:
第一获取元件,用于获取第一状态数据中冰箱的主控板盒对应的第一主控温度、及间室对应的第一箱内温度;
第一计算元件,用于计算目标时间和初次启动时的启动时间之间的第一时间差值;
第二计算元件,用于计算第一箱内温度和第一主控温度之间的第一温度差值;
第一确定元件,用于若第一温度差值小于第一温度阈值,且第一时间差值大于第一时间阈值,则确定冰箱处于初级制冷状态;
第二确定元件,用于确定冰箱处于初级制冷状态为第一检测结果。
在另一些实施例中,制冷系统控制装置还包括:
次数检测部件,用于检测冰箱在目标时间对应的启动次数。
类型确定部件,还包括:
第二检测组件,用于若确定启动次数为二,则采集第一次启动时采集的第二状态数据;基于第二检测策略,结合第一状态数据和第二状态数据,对冰箱是否处于中级制冷状态进行检测,获得第二检测结果;
第二确定组件,用于若第二检测结果为冰箱处于中级制冷状态,则确定中级时间类型为目标时间类型。
在一些实施例中,第二检测组件可以包括:
第二获取元件,用于获取第一状态数据中的第一开机时间、及间室对应的第一箱内温度;
第三获取元件,用于获取第二状态数据中第二开机时间、间室对应的第二箱内温度、以及冰箱在第二次启动时蒸发器对应的蒸发器温度和主控板盒对应的第二主控温度;
第三计算元件,用于计算第一开机时间和第二开机时间的第二时间差值;
第四计算元件,用于计算第二主控温度和蒸发器温度对应的第二温度差值;
第三确定元件,用于若第二时间差值小于第二时间阈值,且,第一箱内温度大于第二箱内温度且第二温度差值大于第二温度阈值,则确定中级制冷状态为第二检测结果。
在另一些实施例中,制冷系统控制装置还包括:
次数检测部件,用于检测冰箱在目标时间对应的启动次数。
类型确定部件可以包括:
第一判断组件,用于判断启动次数是否大于或等于次数阈值;
第一处理组件,用于采集启动次数的前一次启动对应的第三状态数据;若启动次数大于或等于次数阈值,则根据第一状态数据和第三状态数据,判断冰箱是否满足平稳运行条件;
第二处理组件,用于若确定冰箱满足平稳运行条件,则确定冰箱进入正常运行状态,并确定长时运行类型为目标时间类型。
在一些实施例中,第一处理组件可以包括:
第三获取元件,用于获取第一状态数据中间室的第一箱内温度和第三状态数据中间室的第三箱内温度,并获取冰箱的初次启动至启动次数之间每次启动时冰箱的开机率;
第五计算元件,用于计算第一箱内温度和第三箱内温度的第三温度差值;
第四确定元件,用于若第三温度差值的绝对值小于第三温度阈值,且启动次数与启动次数相邻的前两次启动次数分别对应的开机率满足变化策略,则确定冰箱满足平稳运行条件。
在一些实施例中,第一处理组件还可以包括:
第五确定元件,用于若确定第三温度差值的绝对值大于或等于第三温度阈值,和/或,启动次数与启动次数相邻的前两次启动次数分别对应的开机率不满足变化策略,则确定冰箱不满足平稳运行条件;
第六确定元件,用于若确定冰箱不满足平稳运行条件,则确定冰箱进入异常运行状态,并确定长时例外运行类型为目标时间类型。
在一些实施例中,类型确定部件还可以包括:
请求响应部件,用于响应于针对冰箱的时间类型检测请求,确定当前所对应的目标时间,并获取目标时间对应的启动次数。
在另一些实施例中,类型确定部件还可以包括:
上电检测部件,用于检测冰箱上电时,启动冰箱的时间类型检测策略;时间类型检测策略包括以次数阈值作为测试次数的N次启动测试;
策略确定部件,用于确定每次启动测试的启动策略,获得N个测试策略;
测试启动部件,用于按照N次启动测试分别对应的测试顺序,依次启动N个测试策略,并获取任一个测试策略下启动冰箱时采集冰箱的状态数据;
状态获得部件,用于获得N次启动测试分别对应的状态数据。
在一些实施例中,第二数据采集子部件8023可以包括:
状态确定组件,用于确定冰箱初次启动时处于初始运行状态,并确定冰箱第N次启动时处于正常运行状态;
数据采集组件,用于采集冰箱在初次启动时对应的第一温度数据和在第N次启动时对应的第二温度数据。
在一些实施例中,数据采集组件,可以包括:
第一采集元件,用于采集冰箱在初次启动时,冰箱的主控板盒对应的第一开机温度,并采集冰箱在初次启动对应的停机时,冰箱的主控板盒对应的第一停机温度;
第七确定元件,用于确定第一开机温度和第一停机温度对应的第一温度数据;
第二采集元件,用于采集冰箱在第N次启动时,冰箱的主控板盒对应的第二开机温度,并采集冰箱在第N次启动对应的停机时,冰箱的主控板盒对应的第二停机温度;
第八确定元件,用于确定第二开机温度和第二停机温度对应的第二温度数据。
在一些实施例中,第一温度数据包括第一开机温度和第一停机温度,第二温度数据包括:第二开机温度和第二停机温度;类型检测部件可以包括:
初始获取组件,用于获取冰箱初次开机时冰箱箱体内的间室对应的初始环境温度;
第二确定组件,用于确定第一温度数据中的第一停机温度和第二温度数据中的第二停 机温度;
第二判断组件,用于判断若第一停机温度和第二停机温度均小于初始环境温度,则确定冰箱背部环境存在冷源为目标环境类型。
在一些实施例中,装置还可以包括:
第一计算部件,用于根据第一温度数据中的第一开机温度和第一停机温度,计算初始运行状态对应的第一温度差值;
第二计算部件,用于根据第二温度数据中的第二开机温度和第二停机温度,计算正常运行状态对应的第二温度差值;
第一判断部件,用于判断若第一温度差值和第二温度差值均小于温度阈值,则确定冰箱背部环境正常为目标环境类型。
在一些实施例中,制冷系统控制装置还可以包括:
第二判断部件,用于判断若第一停机温度大于或等于初始环境温度或者第二停机温度大于或等于初始环境温度,则执行第一温度差值和第二温度差值是否均小于温度阈值的判断步骤。
在一些实施例中,制冷系统控制装置还可以包括:
第三判断部件,用于判断若第一温度差值大于或等于温度阈值,或者,第二温度差值大于或等于温度阈值,则采集冰箱在初始运行状态对应的第一开机率以及在正常运行状态对应的第二开机率;
第四判断部件,用于根据第一开机率和第二开机率,判断冰箱从初始运行状态切换至正常运行状态时是否满足开机率降幅条件;
第一确定部件,用于若是,则确定冰箱背部环境拥挤为目标环境类型;
第二确定部件,用于若否,则确定冰箱背部环境存在热源为目标环境类型。
在一些实施例中,第四判断部件,包括:
占比计算组件,用于计算第二开机率和第一开机率的比值,获得正常运行状态与初始运行状态对应的开机率占比;
第三判断组件,用于判断开机率占比是否达到开机率阈值;
第三确定组件,用于若是,则确定冰箱从初始运行状态切换至正常运行状态时满足开机率降幅条件;
第四确定组件,用于若否,则确定冰箱从初始运行状态切换至正常运行状态时不满足开机率降幅条件。
在一些实施例中,制冷系统控制装置还可以包括:
转速控制部件,用于根据第二环境温度,确定压缩机的目标转速,以控制压缩机在目标转速运转。
图11为本公开实施例提供的控制器结构图。如图11所示,本实施例的控制器可以包括:处理器901以及存储器902;
存储器902,用于存储计算机执行指令;
处理器901,用于执行存储器存储的计算机执行指令,以实现上述实施例中第一服务器所执行的各个步骤。存储器902既可以是独立的,也可以跟处理器901集成在一起。
当存储器902独立设置时,该服务器还包括总线903,用于连接存储器902和处理器901。
本公开实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机执行指令,当处理器执行计算机执行指令时,实现如上所述的制冷系统控制方法。
本公开实施例还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时,实现如上的制冷系统控制方法。本公开实施例还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时,实现如上所述的制冷系统控制方法。
在本发明所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可 以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,简称CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速随机存取存储器(Random Access Memory,RAM),也可能还包括非易失性存储(Non-Volatile Memory,NVM),例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,简称ISA)总线、外部设备互连(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM),可编程只读存储器(Programmable Read-Only Memory,PROM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的技术人员将会理解,本公开的公开范围不限于上述具体实施例,并且可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权力要求的限制。

Claims (24)

  1. 一种冰箱,包括:
    箱体,所述箱体内设有间室,所述箱体具有后背板;
    主控板盒,设置于所述箱体的后背板上;
    温度检测组件,设置于所述主控板盒上,所述温度检测组件被配置为检测环境温度;
    制冷系统,所述制冷系统设置于所述箱体内,所述制冷系统包括压缩机、蒸发器、毛细管、过滤器、冷凝器;和
    控制器,被配置为:
    获取所述温度检测组件检测的第一环境温度;
    对所述第一环境温度进行修正处理,获得第二环境温度;
    根据所述第二环境温度,确定所述压缩机的目标转速,以控制所述压缩机在所述目标转速运转。
  2. 根据权利要求1所述的冰箱,其中,所述控制器还被配置为:
    采集所述冰箱在目标时间对应的第一状态数据;
    根据所述第一状态数据,确定所述冰箱的运行时间类型;
    根据所述运行时间类型,对所述第一环境温度进行温度修正处理,获得所述第二环境温度。
  3. 根据权利要求2所述的冰箱,其中,所述第一状态数据包括所述冰箱的放置时间、开机时长或者开机时间、开机时箱内温度、开机时蒸发器温度、停机时蒸发器温度、主控板盒在开机时的温度和停机时的温度中的至少一个。
  4. 根据权利要求2所述的冰箱,其中,所述控制器还被配置为:
    检测所述冰箱在所述目标时间对应的启动次数;
    所述控制器被配置为执行所述根据所述第一状态数据,确定所述冰箱的运行时间类型,包括:
    若确定所述启动次数为一,
    获取所述第一状态数据中所述冰箱的主控板盒对应的第一主控温度、及所述间室对应的第一箱内温度;
    计算所述目标时间和所述初次启动时的启动时间之间的第一时间差值;
    计算所述第一箱内温度和所述第一主控温度之间的第一温度差值;
    若所述第一温度差值小于所述第一温度阈值,且所述第一时间差值大于第一时间阈值,则确定所述冰箱处于初级制冷状态。
  5. 根据权利要求2所述的冰箱,其中,所述控制器还被配置为:
    检测所述冰箱在所述目标时间对应的启动次数;
    所述控制器被配置为执行所述根据所述第一状态数据,确定所述冰箱的运行时间类型,包括:
    若确定所述启动次数为二,则获取第一次启动时采集的第二状态数据;
    获取所述第一状态数据中的第一开机时间、及所述间室对应的第一箱内温度;
    获取所述第二状态数据中第二开机时间、所述间室对应的第二箱内温度、以及所述冰箱在第二次启动时所述蒸发器对应的蒸发器温度和所述主控板盒对应的第二主控温度;
    计算所述第一开机时间和所述第二开机时间的第二时间差值;
    计算所述第二主控温度和所述蒸发器温度对应的第二温度差值;
    若所述第二时间差值小于第二时间阈值,且,所述第一箱内温度大于所述第二箱内温度且所述第二温度差值大于第二温度阈值,则确定所述冰箱处于中级制冷状态。
  6. 根据权利要求2所述的冰箱,其中,所述控制器还被配置为:
    检测所述冰箱在所述目标时间对应的启动次数;
    所述控制器被配置为执行所述根据所述第一状态数据,确定所述冰箱的运行时间类型,包括:
    判断所述启动次数是否大于或等于次数阈值;
    若所述启动次数大于或等于所述次数阈值,则采集所述启动次数的前一次启动对应的 第三状态数据;
    获取所述第一状态数据中所述间室的第一箱内温度和所述第三状态数据中所述间室的第三箱内温度,并获取所述冰箱的初次启动至所述启动次数之间每次启动时所述冰箱的开机率;
    计算所述第一箱内温度和所述第三箱内温度的第三温度差值;
    若所述第三温度差值的绝对值小于第三温度阈值,且所述启动次数与所述启动次数相邻的前两次启动次数分别对应的开机率满足变化策略,则确定所述冰箱满足平稳运行条件,并确定所述目标时间大于十八小时。
  7. 根据权利要求6所述的冰箱,其中,所述第三状态数据包括冰箱的主控板盒对应的第三主控温度、间室对应的第三箱内温度、第三开机时间、冰箱在第三启动次数次启动时蒸发器对应的蒸发器温度。
  8. 根据权利要求6所述的冰箱,其中,所述变化策略包括:
    所述冰箱的启动次数与启动次数相邻的前两次启动次数分别对应的开机率之间,两两相邻的开机率的变化量均小于开机率阈值。
  9. 根据权利要求2所述的冰箱,其中,所述控制器还被配置为:
    检测所述冰箱上电时,启动所述冰箱的时间类型检测策略;所述时间类型检测策略包括以次数阈值作为测试次数的N次启动测试;N为正整数;
    确定每次启动测试的启动策略,获得N个测试策略;
    按照N次启动测试分别对应的测试顺序,依次启动N个测试策略,并获取任一个测试策略下启动冰箱时采集所述冰箱的状态数据;
    获得所述N次启动测试分别对应的状态数据。
  10. 根据权利要求1所述的冰箱,其中,
    所述控制器还被配置为:
    确定所述冰箱的使用时长以及所述冰箱的放置环境信息;
    根据所述使用时长和所述放置环境信息,对所述第一环境温度进行修正处理,获得第二环境温度。
  11. 根据权利要求10所述的冰箱,其中,所述控制器被配置有温度修正数据库;
    所述控制器被配置为,在执行所述根据所述使用时长和所述放置位置,对所述第一环境温度进行修正处理,获得第二环境温度,包括:
    根据所述冰箱的使用时长,确定所述冰箱的目标时间类型;
    根据所述冰箱的放置环境信息,确定所述冰箱的目标环境类型;
    查询所述温度修正数据库中与所述目标时间类型和所述目标环境类型均匹配的目标修正温度;
    计算所述目标修正温度和所述第一环境温度的和,获得所述第二环境温度。
  12. 根据权利要求11所述的冰箱,其中,所述控制器被配置为,执行所述查询所述温度修正数据库中与所述目标时间类型和所述目标环境类型均匹配的目标修正温度,包括:
    获取所述冰箱初次启动时,所述温度检测组件检测的初始环境温度;
    根据所述初始环境温度,从至少一个温度区间中选择目标温度区间;
    从所述温度修正数据库中确定所述目标温度区间在至少一个时间类型分别对应的环境修正数据;
    根据所述目标时间类型,从至少一个所述时间类型分别对应的环境修正数据中确定所述目标时间类型相对应的目标环境修正数据;
    根据所述目标环境修正数据,查询与所述目标环境类型相匹配的目标修正温度。
  13. 根据权利要求12所述的冰箱,其中,所述环境修正数据包括至少一个环境类型分别对应的修正温度,所述控制器被配置为,执行所述根据所述环境修正数据,查询与所述目标环境类型相匹配的目标修正温度,包括:
    根据所述目标环境修正数据对应的至少一个环境类型分别对应的修正温度,查询与所 述目标环境类型相同的环境类型对应的修正温度为所述目标修正温度。
  14. 根据权利要求10所述的冰箱,其中,所述控制器还被配置为:
    检测所述压缩机在所述目标转速运转的运转时间;
    若确定所述运转时间达到时间阈值,则返回执行所述确定所述冰箱的使用时长以及所述冰箱的放置环境信息。
  15. 根据权利要求10所述的冰箱,其中,所述控制器被配置为获取所述冰箱的所述温度检测组件检测的第一环境温度之后,还被配置为:
    根据所述第一环境温度,确定与所述第一环境温度相对应的初始转速;
    控制所述压缩机按照所述初始转速运转;
    查询温度转速关联列表,获得与所述第一环境温度相匹配的所述初始转速。
  16. 根据权利要求10所述的冰箱,其中,所述控制器还被配置为:
    基于时长检测算法,确定所述冰箱的使用时长;
    基于环境检测算法,确定所述冰箱的放置环境信息。
  17. 根据权利要求1所述的冰箱,其中,
    所述控制器还被配置为:
    采集所述冰箱在初次启动时对应的第一温度数据和在所述冰箱第N次启动时对应的第二温度数据;
    根据所述第一温度数据和所述第二温度数据,对所述冰箱所处的环境进行检测,获得所述冰箱的目标环境类型;
    根据所述目标环境类型对所述第一环境温度进行温度修正处理,获得第二环境温度。
  18. 根据权利要求17所述的冰箱,其中,所述控制器被配置为执行所述采集所述冰箱在所述初次启动时对应的第一温度数据和在所述第N次启动时对应的第二温度数据,包括:
    采集所述冰箱在所述初次启动时,所述冰箱的主控板盒对应的第一开机温度,并采集所述冰箱在所述初次启动对应的停机时,所述冰箱的主控板盒对应的第一停机温度;
    确定所述第一开机温度和所述第一停机温度对应的所述第一温度数据;
    采集所述冰箱在所述第N次启动时,所述冰箱的主控板盒对应的第二开机温度,并采集所述冰箱在所述第N次启动对应的停机时,所述冰箱的主控板盒对应的第二停机温度;
    确定所述第二开机温度和所述第二停机温度对应的所述第二温度数据。
  19. 根据权利要求17所述的冰箱,其中,所述第一温度数据包括第一开机温度和第一停机温度,所述第二温度数据包括第二开机温度和第二停机温度;所述控制器被配置为执行所述根据所述第一温度数据和所述第二温度数据,对所述冰箱所处的环境进行检测,获得所述冰箱的目标环境类型,包括:
    获取所述冰箱初次开机时所述冰箱箱体内的间室对应的初始环境温度;
    确定所述第一温度数据中的第一停机温度和所述第二温度数据中的第二停机温度;
    若判断所述第一停机温度和所述第二停机温度均小于所述初始环境温度,则确定所述目标环境类型为所述冰箱背部环境存在冷源。
  20. 根据权利要求19所述的冰箱,其中,所述控制器还被配置为:
    根据所述第一温度数据中的所述第一开机温度和所述第一停机温度,计算所述冰箱在初次启动时对应的第一温度差值;
    根据所述第二温度数据中的所述第二开机温度和所述第二停机温度,计算所述冰箱第N次启动时对应的第二温度差值;
    若所述第一温度差值和所述第二温度差值均小于温度阈值,则确定所述目标环境类型为所述冰箱背部环境正常。
  21. 根据权利要求20所述的冰箱,其中,所述控制器被配置为执行所述根据所述第一温度数据中的所述第一开机温度和所述第一停机温度,计算所述冰箱在初次启动时对应的第一温度差值之前,包括:
    若所述第一停机温度大于或等于所述初始环境温度或者所述第二停机温度大于或等 于所述初始环境温度,则执行所述第一温度差值和所述第二温度差值是否均小于温度阈值的判断步骤。
  22. 根据权利要求20所述的冰箱,其中,所述控制器还被配置为:
    若所述第一温度差值大于或等于所述温度阈值,或者,所述第二温度差值大于或等于所述温度阈值,则采集所述冰箱在所述冰箱在初次启动时对应的第一开机率以及在所述冰箱第N次启动时对应的第二开机率;
    根据所述第一开机率和所述第二开机率,判断所述冰箱从所述冰箱在初次启动时切换至所述冰箱第N次启动时是否满足开机率降幅条件;
    若是,则确定所述目标环境类型为所述冰箱背部环境拥挤;
    若否,则确定所述目标环境类型为所述冰箱背部环境存在热源。
  23. 根据权利要求22所述的冰箱,其中,所述控制器被配置为执行所述根据所述第一开机率和所述第二开机率,判断所述冰箱从所述冰箱在初次启动时切换至所述冰箱第N次启动时是否满足开机率降幅条件,包括:
    计算所述第二开机率和所述第一开机率的比值,获得所述冰箱第N次启动时与所述冰箱在初次启动时对应的开机率占比;
    判断所述开机率占比是否达到开机率阈值;
    若是,则确定所述冰箱从所述冰箱在初次启动时切换至所述冰箱第N次启动时满足开机率降幅条件;
    若否,则确定所述冰箱从所述冰箱在初次启动时切换至所述冰箱第N次启动时不满足开机率降幅条件。
  24. 根据权利要求17所述的冰箱,其中,所述控制器被配置为执行所述根据所述目标环境类型对所述第一环境温度进行温度修正处理,获得第二环境温度,包括:
    查询温度修正数据库中与所述目标环境类型相匹配的目标修正温度;
    计算所述目标修正温度和所述第一环境温度的和,获得所述第二环境温度。
PCT/CN2022/129345 2022-06-14 2022-11-02 冰箱 WO2023240900A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210665961.9A CN114963675A (zh) 2022-06-14 2022-06-14 冰箱及制冷系统控制方法
CN202210666454.7 2022-06-14
CN202210666454.7A CN114923310A (zh) 2022-06-14 2022-06-14 冰箱及制冷系统控制方法、装置
CN202210666468.9 2022-06-14
CN202210666468.9A CN115031463A (zh) 2022-06-14 2022-06-14 冰箱及制冷系统控制方法
CN202210665961.9 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023240900A1 true WO2023240900A1 (zh) 2023-12-21

Family

ID=89193039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129345 WO2023240900A1 (zh) 2022-06-14 2022-11-02 冰箱

Country Status (1)

Country Link
WO (1) WO2023240900A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019619A (zh) * 2014-06-16 2014-09-03 合肥晶弘电器有限公司 一种冰箱用温度传感器识别环境温度的方法及冰箱
CN108826822A (zh) * 2018-06-15 2018-11-16 合肥美的电冰箱有限公司 冰箱的控制方法和冰箱
CN109237751A (zh) * 2018-07-25 2019-01-18 广东芬尼能源技术有限公司 快速达到机组目标能力的方法、装置、设备及介质
CN111895719A (zh) * 2020-07-22 2020-11-06 河南新飞制冷器具有限公司 风冷冰箱的温度修正控制方法
CN113108545A (zh) * 2021-04-19 2021-07-13 长虹美菱股份有限公司 一种冰箱用计算环境温度的方法
CN113915827A (zh) * 2021-04-13 2022-01-11 海信(山东)冰箱有限公司 一种冰箱和变频压缩机的转速控制方法
CN114034155A (zh) * 2021-11-10 2022-02-11 四川奥库科技有限公司 一种环温推算和压缩机转速控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019619A (zh) * 2014-06-16 2014-09-03 合肥晶弘电器有限公司 一种冰箱用温度传感器识别环境温度的方法及冰箱
CN108826822A (zh) * 2018-06-15 2018-11-16 合肥美的电冰箱有限公司 冰箱的控制方法和冰箱
CN109237751A (zh) * 2018-07-25 2019-01-18 广东芬尼能源技术有限公司 快速达到机组目标能力的方法、装置、设备及介质
CN111895719A (zh) * 2020-07-22 2020-11-06 河南新飞制冷器具有限公司 风冷冰箱的温度修正控制方法
CN113915827A (zh) * 2021-04-13 2022-01-11 海信(山东)冰箱有限公司 一种冰箱和变频压缩机的转速控制方法
CN113108545A (zh) * 2021-04-19 2021-07-13 长虹美菱股份有限公司 一种冰箱用计算环境温度的方法
CN114034155A (zh) * 2021-11-10 2022-02-11 四川奥库科技有限公司 一种环温推算和压缩机转速控制方法

Similar Documents

Publication Publication Date Title
CN108731224B (zh) 定频空调系统的控制方法、装置、设备及定频空调系统
CN108317667B (zh) 一种空调内机结冰检测方法及装置
CN113432254B (zh) 空调器堵塞识别方法、装置、空调器及可读存储介质
WO2023066315A1 (zh) 空调器及空调器的控制方法
WO2022012568A1 (zh) 压缩机的控制方法、控制装置和换热系统
CN113739341A (zh) 空调器舒适性控制方法、装置、空调器及可读存储介质
CN106225171B (zh) 一种空调停机时的风机控制方法及空调
CN110542234B (zh) 空调器及其运行控制方法、装置和计算机可读存储介质
WO2023240900A1 (zh) 冰箱
CN110454944A (zh) 空调器的控制方法、装置及空调器
CN115031463A (zh) 冰箱及制冷系统控制方法
CN114963675A (zh) 冰箱及制冷系统控制方法
US10746427B2 (en) Air conditioner blowing temperature estimation apparatus and computer-readable recording medium
CN112050417A (zh) 空调器的蓄热控制方法
CN110857808B (zh) 空调冷媒泄漏检测方法和空调
CN110857812B (zh) 空调和空调冷媒泄漏检测方法
US20180335237A1 (en) Anti-slugging control method and control apparatus for air-conditioning system, and air-conditioning system
CN112050414A (zh) 空调器的蓄热控制方法
CN103712308A (zh) 一种空调器容量调节控制方法及系统
CN115077062B (zh) 多联空调缺氟提示控制方法、装置和空调器
CN112050401B (zh) 空调器的蓄热控制方法
CN113339937B (zh) 空调器的除霜控制方法、装置、空调器和存储介质
CN112050411B (zh) 空调器的蓄热控制方法
CN112050408B (zh) 空调器的蓄热控制方法
CN116839181A (zh) 空调器控制方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946568

Country of ref document: EP

Kind code of ref document: A1