WO2023238569A1 - 電力調整装置 - Google Patents

電力調整装置 Download PDF

Info

Publication number
WO2023238569A1
WO2023238569A1 PCT/JP2023/017318 JP2023017318W WO2023238569A1 WO 2023238569 A1 WO2023238569 A1 WO 2023238569A1 JP 2023017318 W JP2023017318 W JP 2023017318W WO 2023238569 A1 WO2023238569 A1 WO 2023238569A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
demand
target
amount
load
Prior art date
Application number
PCT/JP2023/017318
Other languages
English (en)
French (fr)
Inventor
史弥 小松
ディフェイ 宮緒
和彦 竹野
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023238569A1 publication Critical patent/WO2023238569A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • One aspect of the present disclosure relates to a power adjustment device that adjusts the balance of power supply and demand.
  • demand forecast data of a load device and power generation output forecast data of a natural energy power generation device are calculated using weather forecast data, and the demand forecast data and power generation output forecast data are used to calculate power exceeding the maximum charging power of a storage battery. If it is predicted that the storage battery will be charged, the power generation output from the natural energy power generation device will be suppressed, and based on demand forecast data and power generation output data, it is predicted that the storage battery will be discharged in excess of the maximum discharge power of the storage battery.
  • An independent power supply system is disclosed that is characterized by suppressing the power consumption of the adjustment load when the adjustment load is used.
  • the storage battery that charges and discharges power and the adjustment load that adjusts power consumption are fixed, and it may not be possible to appropriately adjust the balance of power supply and demand. Therefore, a technology that can appropriately adjust the balance of power supply and demand is desired.
  • a power adjustment device is a power adjustment device that adjusts the power supply and demand balance in an electric power system that includes one or more power devices that are at least one of a storage battery and a load, and that adjusts the power supply and demand balance according to a predicted supply and demand balance.
  • a setting unit that sets at least one power device from the power devices as a target power device whose operation can be controlled based on the power equipment; and an adjustment unit that adjusts the supply and demand balance by controlling the operation of the target power device. and.
  • FIG. 1 is a diagram illustrating an example of a system configuration of a power system including a power adjustment device according to an embodiment.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of a power adjustment device according to an embodiment. It is a flowchart which shows an example of the processing which the power adjustment device concerning an embodiment performs. It is a flowchart which shows an example of the processing which the power adjustment device concerning an embodiment performs. It is a figure which shows the example of a table of electric power data. It is a figure which shows the example of a table of weather forecast data. It is a figure which shows the example of a table of time data. It is a figure which shows the example of a table of day of the week data.
  • FIG. 3 is a diagram showing each zone from which human flow data is acquired. It is a figure which shows the example of a table of the flow of people data in a factory area. It is a figure which shows the example of a table of the flow of people data in a low-rise building area. It is a figure which shows the example of a table of the flow of people data in a mixed building area. It is a figure which shows the example of a table of the flow of people data in a low-rise building dense area. It is a figure which shows the example of a table of the flow of people data in a high-rise building area.
  • FIG. 2 is a diagram showing an example of a neural network model used for predicting power demand. It is a figure which shows the example of a table of data of supplied power. It is an example of a table showing demand power, upper limit value, and lower limit value. It is a graph showing an abnormal value when excessive demand for electricity is predicted. It is a graph showing an abnormal value when an oversupply of electric power is predicted. It is a figure which shows the example of a table of data of an abnormal value. It is a figure which shows the other example of a table of data of an abnormal value. It is a figure which shows the example of a control determination flag.
  • the power adjustment device 1 adjusts the power supply and demand balance in the power system 6.
  • the power supply and demand balance is the relationship, balance, balance, or harmony between the power scheduled to be supplied to the power system 6 (supplied power) and the power expected to be demanded in the power system 6 (demand power).
  • the supplied power may be, for example, the power supplied from the power supply source 5.
  • the demanded power may be, for example, the power consumed by the load 4. Details of the power adjustment device 1 will be described later.
  • the storage battery 3 is a power device that charges and discharges power.
  • the storage battery 3 is electrically connected to the power supply source 5 and can be charged with power supplied from the power supply source 5. Further, the storage battery 3 is electrically connected to the load 4 and can discharge the electric power charged in itself and supply it to the load 4.
  • the load 4 is a power device that consumes power for its own operation.
  • the load 4 can be operated by the power supplied from the power supply source 5 and the power supplied from the storage battery 3.
  • the load 4 may be, for example, air conditioning equipment, lighting equipment, or OA equipment.
  • the power supply source 5 is a source of power supplied to the power system 6.
  • the power supplied from the power supply source 5 is consumed by the load 4, for example.
  • the storage battery 3 may be charged with the power supplied from the power supply source 5 .
  • the power supply source 5 may be, for example, a commercial power source.
  • the power system 6 may further include a rectifier (not shown) that converts the alternating current power from the power supply source 5 into direct current power and outputs the DC power.
  • the power system 6 may further include a smart meter.
  • a smart meter measures the power consumption in the power system 6 and sends the measured data to a remote device (for example, a server of the power supply company that manages the power supply source 5) using its own device's communication function. It is a power meter that can
  • the power adjustment device 1 predicts the power supply and demand balance in a future target period.
  • the power adjustment device 1 predicts the power supply and demand balance based on, for example, the difference between the demanded power and the supplied power. Details of the demand and supply balance prediction process will be described later.
  • the power adjustment device 1 When excessive demand for electricity is predicted, the power adjustment device 1 issues a control command to discharge the storage battery 3 set as the target power equipment and disables the load 4 set as the target power equipment during the period when the excessive demand is predicted. At least one of the control commands for activation is transmitted to the control device 2. On the other hand, when an oversupply of electric power is predicted, the power adjustment device 1 issues a control command to charge the storage battery 3 that has been set as the target power equipment during the period when the oversupply is predicted. At least one of the control commands for operating the load 4 is transmitted to the control device 2. The control device 2 controls the storage battery 3 and the load 4 based on the control command received from the power adjustment device 1 to adjust the supply and demand balance and avoid occurrence of an abnormality in the supply and demand balance.
  • FIG. 2 is a diagram illustrating an example of the functional configuration of the power adjustment device according to the embodiment.
  • the power adjustment device 1 includes a storage section 11, a prediction section 12, a setting section 13, and an adjustment section 14.
  • each functional block of the power adjustment device 1 is assumed to function within the power adjustment device 1, the present invention is not limited to this.
  • some of the functional blocks of the power adjustment device 1 are computer devices different from the power adjustment device 1, and are capable of transmitting and receiving information to and from the power adjustment device 1 as appropriate within the computer device connected to the power adjustment device 1 through a network. It is possible to function while doing so.
  • some functional blocks of the power adjustment device 1 may be omitted, multiple functional blocks may be integrated into one functional block, or one functional block may be decomposed into multiple functional blocks. good.
  • the storage unit 11 stores arbitrary information used in calculations etc. in the power adjustment device 1, results of calculations in the power adjustment device 1, etc.
  • the information stored by the storage unit 11 may be appropriately referenced by each functional element of the power adjustment device 1.
  • the setting unit 13 sets at least one power device from among the power devices included in the power system 6 as the target power device.
  • the setting unit 13 may set the target power equipment so that the abnormality in the supply and demand balance can be resolved.
  • the setting unit 13 determines that the adjusted power amount that can be adjusted by controlling the operation of the target power equipment is greater than or equal to the difference power amount that is the difference between the power that is scheduled to be supplied to the power system 6 and the power demand that is predicted to occur in the power system 6.
  • the target power equipment may be set so that:
  • the setting unit 13 may set the target power equipment so that the difference between the adjusted power amount and the difference power amount is minimized.
  • the setting unit 13 may set the target power equipment based on at least one of the amount of power discharged and charged in the storage battery 3 and the amount of power consumed in the load 4.
  • the setting unit 13 may set one or more storage batteries 3 and one or more loads 4 as target power devices.
  • the areas include an "industrial zone” where factories exist, a "low-rise building zone” where low-rise buildings exist, and a “mixed building zone” where factories, low-rise buildings, and high-rise buildings exist together.
  • the area is divided into a ⁇ low-rise building zone'' where low-rise buildings are concentrated, a ⁇ high-rise building zone'' where there are high-rise buildings, and a ⁇ other building zone'' where there are other buildings.
  • Each zone may be divided based on latitude and longitude.
  • FIG. 11 is a diagram showing an example of a table of people flow data in a factory area.
  • FIG. 12 is a diagram showing an example of a table of people flow data in a low-rise building area.
  • FIG. 13 is a diagram showing an example of a table of people flow data in a mixed building area.
  • FIG. 14 is a diagram showing an example of a table of people flow data in a low-rise building dense area.
  • FIG. 15 is a diagram showing an example of a table of people flow data in a high-rise building area.
  • FIG. 16 is a diagram showing an example of a table of people flow data in other built-up areas.
  • a date and time is associated with a population at that date and time. That is, in FIGS. 11 to 16, the population of each zone is shown in chronological order.
  • the prediction unit 12 predicts the power supply and demand balance in the future target period, and determines whether an abnormality in the supply and demand balance will occur (step S9).
  • the prediction unit 12 determines whether the predicted power demand O t in step S7 is larger than the upper limit ⁇ 1 (O t > ⁇ 1 ) or smaller than the lower limit ⁇ 2 (O t ⁇ ⁇ 2 ), it is determined that an abnormality in the supply and demand balance occurs.
  • the prediction unit 12 detects an abnormality in the supply and demand balance (power demand excessive amount) occurs. If the power demand Ot “20.32 million kW” is smaller than the lower limit value ⁇ 2 “ ⁇ R 1 ”, the prediction unit 12 detects an abnormality in the supply and demand balance (oversupply of electricity) during the target period starting from 0:00 on March 1, 2022. ) is determined to occur.
  • the abnormal value f(O t , R t ) is 0 when O t > ⁇ 1 (when the demand power O t is less than or equal to the upper limit ⁇ 1 ).
  • the prediction unit 12 functions as an abnormal value calculation unit that calculates abnormal values.
  • Equation (2) is an abnormal value, and indicates the degree of abnormality in the supply and demand balance (here, oversupply of electric power).
  • the abnormal value f(O t , R t ) when O t ⁇ 2 is the difference between the demanded power O t and the supplied power R t .
  • the value obtained by subtracting the demanded power O t from the supplied power R t is the abnormal value f(O t , R t ).
  • the abnormal value f(O t , R t ) is 0 when O t ⁇ 2 (when the demand power O t is greater than or equal to the lower limit ⁇ 2 ). be.
  • FIG. 21 is a graph showing abnormal values when an oversupply of electric power is predicted.
  • the demand power O t is shown by a solid line
  • the supplied power R t is shown by a broken line
  • the lower limit value ⁇ 2 is shown by a dashed-dotted line.
  • the abnormal value f (O t , R t ) during the period when the demand power O t is smaller than the lower limit value ⁇ 2 is the value obtained by subtracting the demand power O t from the supply power R t . be.
  • the abnormal value f(O t , R t ) is equal to the absolute value of the difference between the demanded power O t and the supplied power R t .
  • the period during which the demanded power O t is smaller than the lower limit value ⁇ 2 corresponds to the control period h.
  • FIG. 22 is a diagram showing an example of a table of abnormal value data.
  • the target period is set in units of 30 minutes.
  • a target period, a control period flag indicating whether the target period is a control period h, and an abnormal value f(O t , R t ) are associated with each other.
  • FIG. 23 is a diagram showing another example table of abnormal value data.
  • the target period and the abnormal value f(O t , R t ) are associated.
  • the power demand O t for the target period starting from 0:00 on May 1, 2022 is larger than the upper limit value ⁇ 1 , so the power supply R 1 is subtracted from the power demand (20.32 million kW).
  • the value is recorded as an abnormal value.
  • the power demand O n is smaller than the lower limit ⁇ 2 , so the value obtained by subtracting the power demand (20.32 million kW) from the power supply R n is recorded as an abnormal value. has been done.
  • the power demand O t is not larger than the upper limit value ⁇ 1
  • the power demand O t is not smaller than the lower limit value ⁇ 2 , so 0 is considered an abnormal value. recorded.
  • step S9 If it is predicted that an abnormality in the supply and demand balance will not occur in the target period (step S9: No), the setting unit 13 sets the control discrimination flag F in the target period to "0" (step S10).
  • the control determination flag F is a flag related to the operation control of the target power equipment by the adjustment unit 14.
  • the control determination flag F is stored in the storage unit 11 in association with, for example, a target period. During the target period when the control determination flag F is "0", the adjustment unit 14 does not control the operation of the target power equipment. Therefore, the setting unit 13 sets the control determination flag F to "0" for the target period in which it is predicted that no abnormality in the power supply and demand balance will occur.
  • FIG. 24 is a diagram showing an example of the control determination flag.
  • the target period is set in units of 30 minutes.
  • the control determination flag F for all target periods from 10:30 on March 1, 2022 to 13:30 on the same day is "0". Therefore, the adjustment unit 14 does not control the operation of the target power equipment during the period from 10:30 to 13:30 on the same day. Processing when the control determination flag F is other than "0" will be described later.
  • Step S9 If it is determined that an abnormality in the supply and demand balance occurs in the target period (Step S9: Yes), the prediction unit 12 calculates the control period h (Step S11).
  • the prediction unit 12 calculates the period from the occurrence of the abnormality in the supply and demand balance to the end thereof as a control period h. For example, in the example shown in FIG. 22, the prediction unit 12 calculates two hours from 11:00 on March 1, 2022 as the control period h.
  • the prediction unit 12 acquires the attributes of each storage battery 3, discharge output DCH i , charging input CH i , lower limit remaining amount Smin i , remaining amount SOC i, and controllable flag f1 i from the storage unit 11 (step S12 ⁇ S17).
  • the attribute of the storage battery 3 is information for identifying the storage battery 3, and may be the name or identification code of the storage battery 3.
  • the discharge output DCH i is the magnitude of the output power when the storage battery 3 is discharged, and indicates the amount that can be discharged to the facility as a discharge characteristic of the storage battery 3.
  • the charging input CH i is the magnitude of the input power when charging the storage battery 3, and indicates the amount that can be supplied to the storage battery 3 as a charging characteristic of the storage battery 3.
  • the lower limit remaining amount Smin i indicates the lower limit value of the remaining amount SOC i of the storage battery 3.
  • the storage battery 3 can be discharged until the remaining amount SOCi reaches the lower limit remaining amount Smin i .
  • the lower limit remaining amount Smin i may be static data that is manually set in advance.
  • the remaining amount SOC i is the remaining amount of the storage battery 3.
  • the controllable flag f1 i is a flag indicating whether or not the storage battery 3 is capable of controlling operation regarding electric power.
  • the controllable flag f1 i may be settable based on an instruction by the user of the power adjustment device 1, or may be set mechanically according to a predetermined rule.
  • the controllable flag f1 i may be mechanically set to "1".
  • the storage battery 3 whose controllable flag f1 i is "1" corresponds to a target power device whose operation is controlled during the control period h.
  • FIG. 25 is a diagram showing an example of a table of data regarding storage batteries.
  • the attributes of the storage battery 3 the discharge output DCH i , the charging input CH i , the lower limit remaining amount Smin i , the remaining amount SOC i , and the controllable flag f1 i are associated with each other.
  • data on the storage battery 3 is sorted in descending order of discharge output DCH i .
  • the data of the storage battery 3 may be sorted in descending order of charging input CH i .
  • step S18 the process proceeds to step S18 shown in FIG.
  • the prediction unit 12 determines whether the power demand Ot in the target period in which an abnormality in the supply and demand balance is predicted to occur is greater than the upper limit value ⁇ 1 (step S18).
  • FIG. 26 is a graph showing the relationship between power demand and power supply when excessive demand for power is predicted.
  • the demand power O t is shown by a solid line
  • the supplied power R t is shown by a broken line.
  • the circle surrounded by the dashed-dotted line in FIG. 26 in a period in which the demanded power O t greatly exceeds the supplied power R t , there is a risk that excessive demand for power will occur.
  • the adjustment unit 14 does not control the operation of the target power equipment during the period from 10:30 to 11:00 on the same day and from 1:00 p.m. on the same day and from 1:30 p.m. on the same day, but from 11:00 to 13:00 on the same day.
  • the target power equipment is controlled so that the power demand O t is reduced or the supplied power R t is increased.
  • the prediction unit 12 determines whether the total discharge amount Gd in the control period h in which an abnormality in the supply and demand balance is predicted is greater than or equal to the difference between the demand power amount hO t and the supply power amount hR t in the control period h. is determined (step S20).
  • Total amount of discharge Gd is the total amount of discharge in a predetermined period of time of the storage battery 3, which is the target power equipment.
  • “Demand power amount hO t ” is the power amount expected to be demanded by the power system 6 in a predetermined period.
  • Demand power amount hO t may be calculated based on the product of demand power O t and time, for example.
  • “Supplied power amount hR t ” is the amount of power scheduled to be supplied to the power system 6 in a predetermined period.
  • the supplied power amount hR t may be calculated, for example, based on the product of the supplied power R t and time.
  • the prediction unit 12 When calculating the total discharge amount Gd, the prediction unit 12 first calculates the discharge amount Batti of each storage battery 3 during the control period h.
  • the discharge amount Batti is calculated using the following equation (3).
  • the discharge amount Batt i of the storage battery 3 is calculated using the lower equation of equation (3). Note that regardless of the remaining amount SOC i of the storage battery 3, the discharge amount Batt i of the storage battery 3 whose controllable flag f1 i is set to "0" and whose operation cannot be controlled is 0.
  • the prediction unit 12 calculates the total discharge amount Gd by adding up the discharge amount Batt i of each storage battery 3.
  • the prediction unit 12 determines whether the calculated total discharge amount Gd is greater than or equal to the difference between the demanded power amount hO t and the supplied power amount hR t in the control period h (hereinafter referred to as the difference power amount D1) (Ste S20). In other words, it is determined whether the following formula (4) is satisfied.
  • the number of storage batteries 3 is n.
  • the setting unit 13 sets the controllable flag f1 so that the difference between the total discharge amount Gd and the differential power amount D1 is minimized. i may be set. In other words, the setting unit 13 may reset the controllable flag f1 i so as to satisfy Expression (5).
  • the setting unit 13 may reset (update) the controllable flag f1 i of the storage battery 3 that is not used for adjusting the supply and demand balance from "1" to "0". Setting the controllable flag f1i to "0" corresponds to canceling the setting as the target power device.
  • the setting unit 13 may set the controllable flag f1 i based on the discharge output DCHi of the storage battery 3. For example, the setting unit 13 may preferentially set the controllable flag f1 i of the storage battery 3 having a large discharge output DCH i to "1". That is, the setting unit 13 may be configured to preferentially discharge the storage battery 3 having a large discharge output DCH i .
  • the adjustment unit 14 controls the operation of the target power equipment (step S21).
  • the storage battery 3 whose controllable flag f1 i is "1" corresponds to the target power device.
  • the adjustment unit 14 transmits a control command A i to the control device 2 to discharge the storage battery 3 whose controllable flag f1 i is “1” during the control period h.
  • the amount of power discharged from each storage battery 3 according to the control command A i is as shown in equation (6) below.
  • the control device 2 By controlling the storage battery 3 by the control device 2 based on the control command A i , the supply and demand balance during the control period h is adjusted, and excessive demand for electric power is avoided.
  • the timing to control the storage battery 3 is determined based on the control determination flag F.
  • the control device 2 controls the storage battery 3 based on the control command A i during the target period when the control determination flag F is “1”. Thereby, the operation of the target power equipment can be controlled in accordance with the timing when excessive demand is predicted to occur.
  • the adjustment unit 14 functions as a plan command creation unit that creates a control plan for power equipment to avoid abnormalities in the supply and demand balance. This completes the processing of the power adjustment device 1.
  • step S18: No When it is determined that the power demand O t is not larger than the upper limit value ⁇ 1 (step S18: No), the setting unit 13 sets the control discrimination flag F in the target period to “2” (step S22).
  • step S9 it has been determined that an abnormality in the supply and demand balance occurs (corresponding to the case where the demand power O t in the target period is larger than the upper limit value ⁇ 1 or smaller than the lower limit value ⁇ 2 ). Therefore, if it is determined in step S18 that the power demand O t is not larger than the upper limit value ⁇ 1 (step S18: No), this means that the power demand O t in the target period is smaller than the lower limit value ⁇ 2 .
  • FIG. 30 is a diagram showing an example of a control determination flag.
  • the target period is set in units of 30 minutes.
  • the control discrimination flag F for the target period starting from 10:30 on March 1, 2022 and the target period starting from 13:00 on the same day is "0", and the target period from 11:00 on the same day to 13:00 on the same day
  • the control determination flag F is "2".
  • the adjustment unit 14 does not control the operation of the target power equipment during the period from 10:30 to 11:00 on the same day and from 1:00 p.m. on the same day and from 1:30 p.m. on the same day, but from 11:00 to 13:00 on the same day.
  • the target power equipment is controlled so that the demanded power O t increases or the supplied power R t decreases.
  • the charging amount Batt i of the storage battery 3 is calculated by the equation (7). Calculated using the formula below. Note that regardless of the remaining amount SOC i of the storage battery 3, the controllable flag f1 i is "0" and the charge amount Batt i of the storage battery 3 whose operation cannot be controlled is 0.
  • the prediction unit 12 calculates the total charge amount Gc by adding up the charge amount Batt i of each storage battery 3. The prediction unit 12 determines whether the calculated total charge amount Gc is greater than or equal to the difference between the supplied power amount hR t and the demanded power amount hO t in the control period h (hereinafter referred to as the difference power amount D2) (Ste S23). In other words, it is determined whether the following formula (8) is satisfied.
  • the setting unit 13 sets the controllable flag f1 so that the difference between the total charge amount Gc and the differential power amount D2 is minimized. i may be set. In other words, the setting unit 13 may reset the controllable flag f1 i so as to satisfy Expression (9).
  • the setting unit 13 may reset (update) the controllable flag f1 i of the storage battery 3 that is not used for adjusting the supply and demand balance from "1" to "0".
  • the setting unit 13 may set the controllable flag f1 i based on the charging input CH i of the storage battery 3.
  • the setting unit 13 may preferentially set the controllable flag f1 i of the storage battery 3 with a large charging input CH i to "1". That is, the setting unit 13 may be configured to preferentially charge the storage battery 3 with a large charging input CH i .
  • the adjustment unit 14 controls the operation of the target power equipment (step S21).
  • the storage battery 3 whose controllable flag f1 i is "1" corresponds to the target power device.
  • the adjustment unit 14 transmits a control command B i to the control device 2 to charge the storage battery 3 whose controllable flag f1i is “1” during the control period h.
  • the amount of power charged in each storage battery 3 by the control command B i is as shown in equation (10) below.
  • the control device 2 controls the storage battery 3 based on the control command B i during the target period when the control discrimination flag F is “2”. Thereby, the operation of the target power equipment can be controlled in accordance with the timing when oversupply is predicted to occur. This completes the processing of the power adjustment device 1.
  • the prediction unit 12 stores the attributes of each load 4, the output M i , the controllable flag f2 i , and the operation flag f3 i in the storage unit. 11 (steps S24 to S27).
  • the case where it is determined that the total discharge amount Gd is not equal to or greater than the differential power amount D1 is a case where the differential power amount D1 cannot be compensated for only by discharging the storage battery 3 and the abnormality in the supply and demand balance (excessive demand for power) cannot be resolved. , corresponds to the case where the following equation (11) is satisfied.
  • the attribute of the load 4 is information for identifying the load 4, and may be the name or identification code of the load 4.
  • the output M i is the power consumed when the load 4 is operating, and is the maximum amount of output that can be produced by controlling the operation of the load 4.
  • the load 4 with a larger output M i consumes a larger amount of power during operation.
  • the controllable flag f2i is a flag indicating whether or not the load 4 can be controlled in terms of power.
  • the controllable flag f2 i may be settable based on an instruction by the user of the power adjustment device 1, or may be set mechanically according to a predetermined rule.
  • the load 4 whose controllable flag f2i is "1" is a target power device whose operation is controlled during the control period h.
  • the operating flag f3 i is a flag indicating the operating state of the load 4, and may be a flag indicating whether the load 4 is powered on or off, for example.
  • the operation flag f3 i may be set based on the operation schedule of the control timing of the load 4.
  • the prediction unit 12 determines whether the abnormality in the supply and demand balance can be resolved by controlling the operation of the storage battery 3 and load 4 set as the target power equipment (step S28). Specifically, the prediction unit 12 determines whether or not the excessive demand for electricity can be resolved by discharging the storage battery 3 set as the target power equipment and putting the load 4 set as the target power equipment out of operation. Determine whether
  • the prediction unit 12 first calculates the amount of power demand that can be reduced in the control period h by controlling the operation of the load 4.
  • the amount of power demand that can be reduced corresponds to the amount of power demand that can be reduced by making the load 4 of the target power equipment out of operation, and is calculated by the following equation (12).
  • Equation (12) indicates the total amount of power demand that can be reduced in each load 4.
  • the number of loads 4 is L. Since the load 4 whose controllable flag f2 i is "0" cannot be controlled to be out of operation, the amount of power demand that can be reduced is zero. Further, since the load 4 whose operation flag f3 i is "0" is already inactive, the amount of power demand that can be reduced is 0 when the load 4 is controlled to be out of operation.
  • the setting unit 13 resets (updates) the controllable flag f2 i of the load 4 that is not used for adjusting the supply and demand balance from “1" to "0", and adjusts the supply and demand balance.
  • the controllable flag f2 i of the load 4 used for this may be reset (updated) from “0" to "1". Setting the controllable flag f2 i to "0" corresponds to canceling the setting as the target power equipment, and setting the controllable flag f2 i to "1" corresponds to setting it as the target power equipment. It corresponds to that.
  • the setting unit 13 may set the controllable flag f2 i based on the output M i of the load 4.
  • the setting unit 13 may preferentially set the controllable flag f2 i of the load 4 having a large output M i to "1". In other words, the setting unit 13 may set the load 4 having a large output M i to be put out of operation preferentially.
  • the setting unit 13 may set the controllable flag f2 i based on the operating state of the load 4 (operating flag f3 i ). For example, load 4 that is planned to be out of operation during the target period (load 4 whose operation flag f3 i is "0") is newly set as the target power equipment, and the load 4 is set to be out of operation during the target period. Even if the operation control is performed, it is not possible to reduce the power demand. Therefore, the setting unit 13 sets the load 4 that is planned to be in operation during the target period (the load 4 whose operation flag f3 i is "1") as the target power equipment (sets the controllable flag f2 i to "0" to "1").
  • the adjustment unit 14 controls the operation of the target power equipment (step S21).
  • the storage battery 3 whose controllable flag f1 i is “1” and the load 4 whose controllable flag f2 i is “1” correspond to the target power equipment.
  • the adjustment unit 14 sends a control command A i to discharge the storage battery 3 whose controllable flag f1 i is “1” in the control period h, and to discharge the load 4 whose controllable flag f2 i is “1” in the control period h.
  • a control command C i for activation is transmitted to the control device 2 .
  • the amount of power discharged from each storage battery 3 according to the control command A i is as shown in equation (6) above.
  • the amount of power demand reduced in each load 4 by the control command C i is as shown in the following equation (15).
  • the control device 2 By controlling the storage battery 3 and the load 4 by the control device 2 based on the control commands A i and C i , the supply and demand balance during the control period h is adjusted and excessive demand for electric power is avoided.
  • the timing to control the storage battery 3 and the load 4 is determined based on the control determination flag F.
  • the control device 2 controls the storage battery 3 based on the control commands A i and C i during the target period when the control discrimination flag F is “1”, for example. Thereby, the operation of the target power equipment can be controlled in accordance with the timing when excessive demand is predicted to occur. This completes the processing of the power adjustment device 1.
  • the supply-demand balance is adjusted by making the load 4 that is in operation out of operation, but the supply-demand balance may be adjusted by reducing the output of the load 4 that is in operation. That is, the operation control for the load 4 set as the target power device may be control to reduce the output.
  • step S28 the setting unit 13 resets the controllable flags f1 i and f2 i . do. Resetting the controllable flags f1 i and f2 i corresponds to resetting the target power equipment. That is, the setting unit 13 changes the storage battery 3 and load 4 that are set as the target power equipment by resetting the controllable flags f1 i and f2 i .
  • the setting unit 13 resets the controllable flags f1 i and f2 i so that, for example, formula (13) is satisfied.
  • the setting unit 13 may newly set the storage battery 3 and load 4, which have not been set as target power devices, as target power devices.
  • the setting unit 13 may set the controllable flag f1 i based on the discharge output DCH i of the storage battery 3. For example, the setting unit 13 may preferentially set the controllable flag f1 i of the storage battery 3 having a large discharge output DCH i to "1".
  • the setting unit 13 may set the controllable flag f2 i based on the output M i of the load 4. For example, the setting unit 13 may preferentially set the controllable flag f2 i of the load 4 having a large output M i to "1".
  • the setting unit 13 may reset the controllable flag f2 i based on the operating state of the load 4 (operating flag f3 i ).
  • the setting unit 13 sets, for example, a load 4 that is planned to be in operation during the target period (load 4 whose operation flag f3 i is "1") as the target power equipment (sets the controllable flag f2 i to "0"). ” to “1”).
  • the setting unit 13 may reset the controllable flags f1 i and f2 i based on instructions from the user of the power adjustment device 1.
  • the circle B in FIG. 4 corresponds to the circle B in FIG. 3, and when the setting unit 13 finishes resetting the controllable flags f1 i and f2 i (step S29), the process in step S17 shown in FIG. return.
  • the prediction unit 12 stores the attributes of each load 4, the output M i , the controllable flag f2 i , and the operation flag f3 i in the storage unit. 11 (steps S24 to S27).
  • the case where it is determined that the total amount of charge Gc is not equal to or greater than the differential power amount D2 is a case where the differential power amount D2 cannot be compensated for only by charging the storage battery 3 and the abnormality in the supply and demand balance (oversupply of power) cannot be resolved. , corresponds to the case where the following equation (16) is satisfied.
  • the prediction unit 12 determines whether the abnormality in the supply and demand balance can be resolved by controlling the operation of the storage battery 3 and load 4 set as the target power equipment (step S28). Specifically, the prediction unit 12 determines whether the oversupply of power can be resolved by operating the load 4 set as the target power equipment in addition to charging the storage battery 3 set as the target power equipment. judge.
  • the prediction unit 12 first calculates the amount of power demand that can be increased during the control period h by controlling the operation of the load 4.
  • the amount of power demand that can be increased corresponds to the amount of power demand that can be increased by operating the load 4 of the target power equipment, and is calculated by the following equation (17).
  • Equation (17) indicates the total amount of power demand that can be increased in each load 4.
  • the number of loads 4 is L. Since the operation of the load 4 whose controllable flag f2 i is "0" cannot be controlled, the amount of power demand that can be increased is zero. Further, since the load 4 whose operation flag f3 i is "1" is already in operation, the amount of power demand that can be increased is 0 when the load 4 is controlled to be operated.
  • the prediction unit 12 adds the total charge amount Gc (the left side of equation (16)) and the required power amount (formula (17)) that can be increased by controlling the operation of the load 4, and calculates the storage battery 3. and calculates the adjustable amount of power by controlling the operation of the load 4.
  • the adjusted power amount corresponds to the left side of equation (18) below.
  • the prediction unit 12 determines whether the calculated adjusted power amount is greater than or equal to the difference power amount D2 (whether or not it satisfies equation (18)), thereby determining whether the storage battery 3 and load 4 set as the target power equipment It is determined whether the abnormality in the supply and demand balance can be resolved by the operation control (step S28).
  • the setting unit 13 sets the controllable flags f1 i and f2 i so that the difference between the adjusted power amount and the differential power amount D2 is minimized. You may. In other words, the setting unit 13 may set the controllable flag f2 i so as to satisfy Expression (19).
  • the setting unit 13 resets (updates) the controllable flag f2 i of the load 4 that is not used for adjusting the supply and demand balance from “1" to "0", and adjusts the supply and demand balance.
  • the controllable flag f2 i of the load 4 used for this may be reset (updated) from "0" to "1".
  • the setting unit 13 may set the controllable flag f2 i based on the output M i of the load 4. For example, the setting unit 13 may preferentially set the controllable flag f2 i of the load 4 having a large output M i to "1". That is, the setting unit 13 may set the load 4 with the larger output M i to be operated with priority.
  • the setting unit 13 may set the controllable flag f2 i based on the operating state of the load 4 (operating flag f3 i ). For example, an operation in which load 4 that is planned to be in operation during the target period (load 4 whose operation flag f3 i is "1") is newly set as the target power equipment, and the load 4 is operated during the target period. Even if control is performed, it is not possible to increase the power demand. Therefore, the setting unit 13 sets the load 4 (load 4 whose operation flag f3 i is "0") that is planned to be in an inactive state during the target period as the target power equipment (sets the controllable flag f2 i to may be changed from “0" to "1").
  • the adjustment unit 14 controls the operation of the target power equipment (step S21).
  • the storage battery 3 whose controllable flag f1 i is "1" and the load 4 whose controllable flag f2 i is “1" correspond to the target power equipment.
  • the adjustment unit 14 issues a control command B i to charge the storage battery 3 whose controllable flag f1 i is "1" during the control period h, and to operate the load 4 whose controllable flag f2 i is "1" during the control period h.
  • a control command D i to be executed is transmitted to the control device 2.
  • the amount of power charged in each storage battery 3 by the control command B i is as shown in equation (10) above.
  • the amount of power demand that increases in each load 4 due to the control command D i is as shown in equation (20) below.
  • the control device 2 controls the storage battery 3 based on the control commands B i and D i during the target period when the control discrimination flag F is “2”, for example. Thereby, the operation of the target power equipment can be controlled in accordance with the timing when oversupply is predicted to occur. This completes the processing of the power adjustment device 1.
  • the supply and demand balance is adjusted by operating the load 4 that is not in operation, but the supply and demand balance may be adjusted by increasing the output of the load 4 that is in operation. That is, the operation control for the load 4 set as the target power device may be control to increase the output.
  • step S28 the setting unit 13 resets the controllable flags f1 i and f2 i . do. Resetting the controllable flags f1 i and f2 i corresponds to resetting the target power equipment. That is, the setting unit 13 changes the storage battery 3 and load 4 that are set as the target power equipment by resetting the controllable flags f1 i and f2 i .
  • the setting unit 13 resets the controllable flags f1 i and f2 i so that, for example, formula (18) is satisfied.
  • the setting unit 13 may newly set the storage battery 3 and load 4, which have not been set as target power devices, as target power devices.
  • the setting unit 13 may set the controllable flag f1 i based on the charging input CH i of the storage battery 3. For example, the setting unit 13 may preferentially set the controllable flag f1 i of the storage battery 3 with a large charging input CH i to "1".
  • the setting unit 13 may set the controllable flag f2 i based on the output M i of the load 4.
  • the setting unit 13 may preferentially set the controllable flag f2 i of the load 4 having a large output M i to "1".
  • the setting unit 13 may reset the controllable flags f1 i and f2 i based on instructions from the user of the power adjustment device 1.
  • the setting unit 13 may reset the controllable flag f2 i based on the operating state of the load 4 (operating flag f3 i ).
  • the setting unit 13 sets, for example, a load 4 that is planned to be in an inactive state during the target period (load 4 whose operation flag f3 i is "0") as the target power equipment (sets the controllable flag f2 i to "0" to "1").
  • the setting unit 13 finishes resetting the controllable flags f1 i and f2 i (step S29) the process returns to step S17 shown in FIG. 3.
  • FIG. 33 is a diagram showing an example of controllable flags for storage batteries and loads.
  • the adjustment unit 14 transmits the control command A i or the control command B i to the control device 2, the storage battery 3 whose controllable flag f1 i is “1” (set as the target power equipment) in the control period h
  • the operation is controlled.
  • the control period h the target period corresponding to the part surrounded by the solid line, 2 hours from 11:00 on March 1, 2022
  • the operation of at least storage batteries A and B surrounded by the solid line Control takes place.
  • the controllable flags f1 i , f2 i are “1” in the control period h (target power Operation control of the storage battery 3 (which is set as a device) and the load 4 is performed.
  • the control period h target period corresponding to the part surrounded by the broken line, 2 hours from 11:00 on March 1, 2022
  • the storage batteries A and B, the air conditioner A, the operation of lighting A and OA equipment A is controlled.
  • FIG. 34 is a diagram showing input to the power adjustment device and output from the power adjustment device.
  • power data E t weather forecast data, calendar information, people flow data P, controllable flags f1 i , f2 i and operation flag f3 i are input to the power adjustment device 1.
  • the power adjustment device 1 executes the processing described in FIGS. 3 and 4 based on the input various data, and sets (outputs) the control determination flag F and controllable flags f1 i and f2 i .
  • the operation of the power equipment is controlled based on the set control discrimination flag F and controllable flags f1 i and f2 i .
  • the setting unit 13 sets at least one power device from among the power devices as a target power device based on the predicted supply and demand balance, and the adjustment unit 14 controls the operation of the target power device. By doing this, the supply and demand balance will be adjusted. With this configuration, it is possible to set a target power device whose operation is to be controlled in order to adjust the supply and demand balance, based on the predicted power supply and demand balance. Therefore, the balance of power supply and demand can be adjusted appropriately.
  • the power adjustment device 1 predicts the power demand in a wide area and compares it with the planned power demand (planned power supply) expected on the supply side, and predicts the power demand and supply balance to become unstable (demand and supply). Identify periods during which imbalances are likely to occur.
  • the power adjustment device 1 calculates the difference between the demanded power and the supplied power during that period as an abnormal value.
  • the method of calculating this abnormal value is to set a threshold (upper limit) that detects when the demand power significantly exceeds the expected power demand (planned power supply) of the electric power company, and a threshold value that detects when there is a significant shortage.
  • a threshold value (lower limit value) is created, and exceeding the threshold value is considered an abnormal value.
  • the setting unit 13 may set the target power equipment so that the difference between the adjusted power amount and the differential power amount is minimized.
  • the setting unit 13 may determine whether or not to set the load 4 as the target power device based on the operating state of the load 4. With this configuration, it is possible to appropriately set the target power equipment in consideration of the operating state of the load 4.
  • the power system 6 may be configured to include only one of the storage battery 3 and the load 4.
  • the number of storage batteries 3 included in the power system 6 is not limited, and may be one.
  • the number of loads 4 included in the power system 6 is not limited, and may be one.
  • the setting unit configures the target power equipment based on at least one of the amount of power discharged and charged in the storage battery and the amount of power consumed in the load.
  • the power adjustment device according to any one of [1] to [4].
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the power adjustment device 1 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned prediction unit 12, setting unit 13, adjustment unit 14, etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the prediction unit 12, the setting unit 13, and the adjustment unit 14 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may be similarly realized.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • connection means any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電力の需給バランスを適切に調整することを課題とする。電力調整装置1は、蓄電池及び負荷の少なくとも一方である電力機器を一つ以上含む電力システムにおける電力の需給バランスを調整する電力調整装置1である。電力調整装置1は、予測された需給バランスに基づいて、電力機器の中から少なくとも一つの電力機器を、電力に関する動作制御が可能な対象電力機器として設定する設定部13と、対象電力機器の動作制御を行うことにより、需給バランスを調整する調整部14と、を備える。

Description

電力調整装置
 本開示の一側面は、電力の需給バランスを調整する電力調整装置に関する。
 下記特許文献1では、気象予測データを用いて負荷装置の需要予測データ及び自然エネルギー発電装置の発電出力予測データを計算し、需要予測データ及び発電出力予測データにより、蓄電池の最大充電電力を超えて蓄電池に充電されることが予測される場合には自然エネルギー発電装置からの発電出力を抑制し、需要予測データ及び発電出力データにより、蓄電池の最大放電電力を超えて蓄電池から放電されることが予測される場合には調整用負荷の消費電力を抑制することを特徴とする独立型電力供給システムが開示されている。
特開2013-176234号公報
 上記独立型電力供給システムでは、電力を充放電する蓄電池及び消費電力の調整を行う調整用負荷が固定されており、電力の需給バランスを適切に調整することができない場合がある。そこで、電力の需給バランスを適切に調整することができる技術が望まれている。
 本開示の一側面に係る電力調整装置は、蓄電池及び負荷の少なくとも一方である電力機器を一つ以上含む電力システムにおける電力の需給バランスを調整する電力調整装置であって、予測された需給バランスに基づいて、電力機器の中から少なくとも一つの電力機器を、電力に関する動作制御が可能な対象電力機器として設定する設定部と、対象電力機器の動作制御を行うことにより、需給バランスを調整する調整部と、を備える。
 このような側面においては、予測された電力の需給バランスに基づいて、需給バランスの調整のために動作制御を行う対象電力機器を設定することが可能である。そのため、電力の需給バランスを適切に調整することができる。
 本開示の一側面によれば、電力の需給バランスを適切に調整することができる。
実施形態に係る電力調整装置を含む電力システムのシステム構成の一例を示す図である。 実施形態に係る電力調整装置の機能構成の一例を示す図である。 実施形態に係る電力調整装置が実行する処理の一例を示すフローチャートである。 実施形態に係る電力調整装置が実行する処理の一例を示すフローチャートである。 電力データのテーブル例を示す図である。 気象予報データのテーブル例を示す図である。 時刻データのテーブル例を示す図である。 曜日データのテーブル例を示す図である。 休日データのテーブル例を示す図である。 人流データが取得される各地帯を示す図である。 工場地帯における人流データのテーブル例を示す図である。 低層建物地帯における人流データのテーブル例を示す図である。 混在建物地帯における人流データのテーブル例を示す図である。 低層建物密集地帯における人流データのテーブル例を示す図である。 高層建物地帯における人流データのテーブル例を示す図である。 その他建物地帯における人流データのテーブル例を示す図である。 需要電力の予測に使用されるニューラルネットワークモデルの例を示す図である。 供給電力のデータのテーブル例を示す図である。 需要電力、上限値及び下限値を示すテーブル例である。 電力の需要過多が予測される場合の異常値を示すグラフである。 電力の供給過多が予測される場合の異常値を示すグラフである。 異常値のデータのテーブル例を示す図である。 異常値のデータの他のテーブル例を示す図である。 制御判別フラグの例を示す図である。 蓄電池に関するデータのテーブル例を示す図である。 電力の需要過多が予測される場合の需要電力と供給電力との関係を示すグラフである。 制御判別フラグの例を示す図である。 蓄電池の制御可能フラグの再設定の例を示す図である。 電力の供給過多が予測される場合の需要電力と供給電力との関係を示すグラフである。 制御判別フラグの例を示す図である。 負荷に関するデータのテーブル例を示す図である。 負荷の制御可能フラグの再設定の例を示す図である。 蓄電池及び負荷の制御可能フラグの例を示す図である。 電力調整装置への入力及び電力調整装置からの出力を示す図である。 実施形態に係る電力調整装置で用いられるコンピュータのハードウェア構成の一例を示す図である。
 以下、図面を参照しながら本開示での実施形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、以下の説明における本開示での実施形態は、本発明の具体例であり、特に本発明を限定する旨の記載がない限り、これらの実施形態に限定されないものとする。
 図1は、実施形態に係る電力調整装置を含む電力システムのシステム構成の一例を示す図である。図1に示す通り、電力システム6は、電力調整装置1、一つ以上の制御装置2、一つ以上の蓄電池3、一つ以上の負荷4及び一つ以上の電力供給源5を含んで構成されている。本実施形態では、複数の制御装置2、複数の蓄電池3、複数の負荷4及び複数の電力供給源5のそれぞれを総称して単に「制御装置2」、「蓄電池3」、「負荷4」及び「電力供給源5」と適宜記す。制御装置2、蓄電池3及び負荷4は、例えば需要家施設に設けられている。需要家施設は、家庭、オフィスビル、店舗又はその他の施設であってもよい。電力システム6は、電力機器を一つ以上含んでいる。電力機器とは、蓄電池3及び負荷4の少なくとも一方である。図1に示される例では、電力システム6は、一つ以上の電力機器を含んでいる。本実施形態では、複数の電力機器を総称して単に「電力機器」と適宜記す。
 電力調整装置1は、電力システム6における電力の需給バランスを調整する。電力の需給バランスとは、電力システム6へ供給予定の電力(供給電力)と、電力システム6での需要が予測される電力(需要電力)との関係、釣り合い、均衡又は調和である。供給電力は、例えば電力供給源5から供給される電力であってもよい。需要電力とは、例えば負荷4において消費される電力であってもよい。電力調整装置1の詳細については後述する。
 制御装置2は、電力調整装置1と通信可能に接続されており、電力調整装置1から受信した制御指令に基づいて電力機器の動作制御を行う。例えば、制御装置2は、電力調整装置1から受信した制御指令に基づいて、蓄電池3の充放電の制御及び負荷4の稼働状態の制御を行う。負荷4の稼働状態の制御には、負荷4を稼働させる制御及び不稼働にさせる制御だけでなく、負荷4の出力を変更させる制御が含まれる。
 蓄電池3は、電力の充電及び放電を行う電力機器である。蓄電池3は、電力供給源5と電気的に接続されており、電力供給源5から供給される電力を充電することができる。また、蓄電池3は、負荷4と電気的に接続されており、自己に充電されている電力を放電して負荷4に供給することができる。
 負荷4は、自己の動作のために電力を消費する電力機器である。負荷4は、電力供給源5から供給された電力、及び蓄電池3から供給された電力によって動作することができる。負荷4は、例えば、空調機器、照明機器又はOA機器であってもよい。
 電力供給源5は、電力システム6に供給される電力の発生源である。電力供給源5から供給された電力は、例えば、負荷4において消費される。電力供給源5から供給された電力は、蓄電池3に充電されてもよい。電力供給源5は、例えば商用電源であってもよい。電力供給源5が交流電流を発生させる商用電源である場合、電力システム6は電力供給源5からの交流電力を直流電力に変換して出力する整流器(不図示)を更に備えていてもよい。電力システム6は、スマートメータを更に備えていてもよい。スマートメータとは、電力システム6における消費電力を計測し、計測したデータを自装置の通信機能を利用して遠隔地の装置(例えば電力供給源5を管理する電力供給事業者のサーバ)に送信することができる電力量計である。
 電力調整装置1による電力の需給バランスの調整処理の概要について説明する。まず、電力調整装置1は、将来の対象期間における電力の需給バランスを予測する。電力調整装置1は、例えば需要電力と供給電力との差分に基づいて電力の需給バランスを予測する。需給バランスの予測処理の詳細については後述する。
 電力調整装置1は、電力の需給バランスに異常が発生すると予測される場合に、当該異常の発生が予測される期間において対象電力機器の電力に関する動作制御を行う。「対象電力機器」とは、電力に関する動作制御が可能な電力機器であり、需給バランスの調整に使用される。「電力機器の電力に関する動作制御」とは、電力の需給バランスの調整を行うための制御であり、例えば、電力機器が蓄電池3である場合には蓄電池3の放電又は充電に関する制御であり、電力機器が負荷4である場合には負荷4の稼働状態の制御である。電力調整装置1は、予測した需給バランスに基づいて、複数の電力機器の中から対象電力機器を設定する。例えば、電力調整装置1は、需給バランスの異常を解消し得るように複数の電力機器の中から対象電力機器を設定する。対象電力機器の設定処理の詳細については後述する。
 電力の需要過多が予測される場合、電力調整装置1は、需要過多が予測される期間において対象電力機器として設定された蓄電池3を放電させる制御指令及び対象電力機器として設定された負荷4を不稼働にさせる制御指令の少なくとも一方を制御装置2に送信する。これに対し、電力の供給過多が予測される場合、電力調整装置1は、供給過多が予測される期間において対象電力機器として設定された蓄電池3を充電させる制御指令及び対象電力機器として設定された負荷4を稼働させる制御指令の少なくとも一方を制御装置2に送信する。制御装置2は、電力調整装置1から受信した制御指令に基づいて蓄電池3及び負荷4を制御することにより、需給バランスを調整し、需給バランスの異常の発生を回避する。
 図2は、実施形態に係る電力調整装置の機能構成の一例を示す図である。図2に示す通り、電力調整装置1は、格納部11、予測部12、設定部13及び調整部14を含んで構成されている。
 電力調整装置1の各機能ブロックは、電力調整装置1内にて機能することを想定しているが、これに限るものではない。例えば、電力調整装置1の機能ブロックの一部は、電力調整装置1とは異なるコンピュータ装置であって、電力調整装置1とネットワーク接続されたコンピュータ装置内において、電力調整装置1と情報を適宜送受信しつつ機能してもよい。また、電力調整装置1の一部の機能ブロックは無くてもよいし、複数の機能ブロックを一つの機能ブロックに統合してもよいし、一つの機能ブロックを複数の機能ブロックに分解してもよい。
 以下、図2に示す電力調整装置1の各機能について説明する。
 格納部11は、電力調整装置1における算出等で利用される任意の情報及び電力調整装置1における算出の結果等を格納する。格納部11によって格納された情報は、電力調整装置1の各機能要素によって適宜参照されてもよい。
 予測部12は、電力システム6における電力の需給バランスを予測する。予測部12は、例えば需要電力及び供給電力に基づいて需給バランスを予測する。
 設定部13は、予測された需給バランスに基づいて、電力システム6が備える電力機器の中から少なくとも一つの電力機器を、対象電力機器として設定する。
 設定部13は、需給バランスの異常が発生すると予測される場合に、需給バランスの異常を解消し得るように対象電力機器の設定を行ってもよい。
 設定部13は、対象電力機器の動作制御により調整可能な調整電力量が、電力システム6へ供給予定の供給電力と電力システム6で生じると予測される需要電力との差である差分電力量以上となるように、対象電力機器の設定を行ってもよい。
 設定部13は、調整電力量と差分電力量との差が最小となるように対象電力機器の設定を行ってもよい。
 設定部13は、蓄電池3において放充電される電力量、及び負荷4において消費される電力量の少なくとも一方に基づいて、対象電力機器の設定を行ってもよい。
 設定部13は、一つ以上の蓄電池3及び一つ以上の負荷4を対象電力機器として設定してもよい。
 設定部13は、負荷4の稼働状態に基づいて当該負荷4を対象電力機器として設定するか否かを決定してもよい。
 設定部13は、電力調整装置1のユーザによる指示に基づいて対象電力機器の設定を行ってもよい。
 調整部14は、対象電力機器の動作制御を行うことにより、需給バランスを調整する。「対象電力機器の動作制御を行う」とは、制御装置2に制御指令を送信して制御装置2を介して間接的に対象電力機器の動作制御を行う場合だけでなく、制御装置2を介さずに直接的に対象電力機器の動作制御を行う場合も含む。
 電力調整装置1は、外部データベース20と通信可能に接続されており、外部データベース20から各種データを取得することができる。外部データベース20は、例えば電力供給事業者のデータベース又は気象予報を行う官庁若しくは企業のデータベース等であってもよい。
 続いて、図3及び図4を参照しながら、電力調整装置1が実行する処理の例を説明する。図3及び図4は、実施形態に係る電力調整装置が実行する処理の一例を示すフローチャートである。図4に示される処理は、図3の丸囲みAに続く処理である。
 まず、予測部12が需要電力の予測に用いる各種データを格納部11から取得する(ステップS1~S6)。具体的には、まず予測部12が電力データEを格納部11から取得する(ステップS1)。電力データEとは、過去に実際に使用された電力の計測値(電力実績値)である。電力データEは、例えばスマートメータによって計測され、外部データベース20(例えば電力供給事業者のデータベース)に格納されていてもよい。電力調整装置1は予め外部データベース20から電力データEを取得しておき、格納部11が取得された電力データEを格納していてもよい。図5は、電力データのテーブル例を示す図である。図5に示される電力データEのテーブル例では、日時と、電力実績値とが対応付いている。
 次に、予測部12が気象予報データを格納部11から取得する(ステップS2)。予測部12は、例えば過去の気象予報データと、電力の需給バランスの予測を行う将来の対象期間における気象予報データとを併せて取得する。過去の気象予報データは、過去の実際の気象データであってもよい。電力調整装置1は予め外部データベース20(例えば気象予報を行う官庁又は企業のデータベース)から気象予報データを取得しておき、格納部11が取得された気象予報データを格納していてもよい。図6は、気象予報データのテーブル例を示す図である。図6に示される気象予報データのテーブル例では、日時と、気温T1,tと、露点温度T2,tと、雲量T3,tとが対応付いている。雲量は、0から10までの11段階に分けられており、10に近づくほど雲量が多くなる。
 次に、予測部12が時刻データtを格納部11から取得する(ステップS3)。図7は、時刻データのテーブル例を示す図である。図7に示される時刻データtのテーブル例では、時刻データtは1ビットで表される値(この例では「0」又は「1」)で示されている。図7に示される時刻データtは、時(hоur)を示すデータであるが、時刻データtは分(minute)を示すデータを含んでいてもよい。
 次に、予測部12が曜日データwを格納部11から取得する(ステップS4)。図8は、曜日データのテーブル例を示す図である。図8に示される曜日データwのテーブル例では、曜日データwは1ビットで表される値(この例では「0」又は「1」)で示されている。
 次に、予測部12が休日データHを格納部11から取得する(ステップS5)。図9は、休日データのテーブル例を示す図である。図9に示される休日データHのテーブル例では、休日データHは1ビットで表される値(この例では「0」又は「1」)で示されている。以下、上述した時刻データt、曜日データw及び休日データHを併せて「カレンダー情報」という。
 次に、予測部12が人流データPを格納部11から取得する(ステップS6)。人流データPとは、時間の経過に伴う人口の推移を示すデータである。電力調整装置1は予め外部データベース20(例えば人流データPを保有する官庁又は企業のデータベース)から人流データPを取得しておき、格納部11が取得された人流データPを格納していてもよい。実施形態では、図10に示されるように、電力システム6によって電力を供給される地域が複数の地帯に分けられており、地帯ごとの人流データPが取得されている。図10に示される例では、地域が、工場が存在する「工業地帯」と、低層建物が存在する「低層建物地帯」と、工場並びに低層建物及び高層建物が混在して存在する「混在建物地帯」と、低層建物が密集して存在する「低層建物密集地帯」と、高層建物が存在する「高層建物地帯」と、他の建物が存在する「その他建物地帯」とに分けられている。各地帯は、緯度及び経度に基づいて分けられていてもよい。
 図11は、工場地帯における人流データのテーブル例を示す図である。図12は、低層建物地帯における人流データのテーブル例を示す図である。図13は、混在建物地帯における人流データのテーブル例を示す図である。図14は、低層建物密集地帯における人流データのテーブル例を示す図である。図15は、高層建物地帯における人流データのテーブル例を示す図である。図16は、その他建物地帯における人流データのテーブル例を示す図である。図11から図16に示される各テーブル例では、日時と、当該日時での人口とが対応付けられている。すなわち、図11から図16には、各地帯の人口が時系列ごとに示されている。
 次に、予測部12が、ステップS1からステップS6において取得した各種データに基づいて、将来の対象期間における需要電力Oを予測する(ステップS7)。予測部12は、需要電力Oの予測にニューラルネットワークを使用してもよい。例えば、予測部12は、図17に示されるような電力データ、気象予報データ、カレンダー情報及び人流データを入力すると需要電力Oを出力するニューラルネットワークモデルを使用して、需要電力Oを予測してもよい。図17に示される例では、30分単位で需要電力Oが予測されており、1時間後から30分間の需要電力Oは2032万kwと予測され、1時間30分後から30分間の需要電力Oは2000万kwと予測されている。需要電力Oの予測手法は限定されない。予測部12は、例えば状態遷移モデル等の他の予測モデルを用いて需要電力Oを予測してもよい。
 次に、予測部12が将来の対象期間における供給電力Rのデータを格納部11から取得する(ステップS8)。供給電力Rは、例えば電力供給事業者によって予め計画されており、外部に公開されている。電力調整装置1は予め外部データベース20(例えば電力供給事業者のデータベース)等から供給電力Rのデータを取得しておき、格納部11が取得された供給電力Rのデータを格納していてもよい。図18は、供給電力のデータのテーブル例を示す図である。図18に示される供給電力Rのデータのテーブル例では、対象期間と、計画されている供給電力Rとが対応付いている。図18に示される例では、2022年3月1日0時から30分間の供給電力Rが1295万kwと計画されており、同日0時30分から30分間の供給電力Rが1280万kwと計画されている。
 次に、予測部12が、将来の対象期間における電力の需給バランスを予測し、需給バランスの異常が発生するか否かを判定する(ステップS9)。実施形態では、予測部12は、ステップS7において予測した需要電力Oが上限値θより大きい場合(O>θである場合)又は下限値θより小さい場合(O<θである場合)に、需給バランスの異常が発生すると判定する。
 上限値θは、例えばステップS8において取得した供給電力Rに係数αを乗じた値である。係数αは、例えば1より大きい数である。需要電力Oが上限値θよりも大きい場合は、電力の需要過多が発生する場合に相当する。下限値θは、例えばステップS8において取得した供給電力Rに係数βを乗じた値である。係数βは、例えば1より小さい数である。需要電力Oが下限値θよりも小さい場合は、電力の供給過多が発生する場合に相当する。上限値θ及び下限値θの算出に使用される供給電力Rの値は、対象期間が属する日における供給電力Rの最大値であってもよい。例えば、対象期間が2022年3月1日0時からの30分間である場合、上限値θ及び下限値θの算出に使用される供給電力Rの値は、2022年3月1日における供給電力Rの最大値であってもよい。なお、上限値θ及び下限値θの算出に使用される供給電力Rの値は、対応する対象期間の供給電力Rの値であってもよい。
 図19は、需要電力、上限値及び下限値を示すテーブル例である。図19のテーブル例では、対象期間と、対象期間における需要電力Oと、上限値θと、下限値θとが対応付けられている。図19に示される例では、2022年3月1日0時から開始する対象期間での需要電力Oが2032万kwであり、上限値θがαRであり、下限値θがβRである。Rは、2022年3月1日における供給電力Rの最大値である。需要電力O「2032万kw」が上限値θ「αR」よりも大きい場合、予測部12は2022年3月1日0時から開始する対象期間にて需給バランスの異常(電力の需要過多)が発生すると判定する。需要電力Ot「2032万kw」が下限値θ「βR」よりも小さい場合、予測部12は2022年3月1日0時から開始する対象期間にて需給バランスの異常(電力の供給過多)が発生すると判定する。
 電力の需要過多が予測される場合、予測部12は、電力の需要過多(需要電力Oの上振れ)の程度を以下の式(1)に基づいて評価する。
 式(1)のf(O,R)は異常値であり、需給バランスの異常(ここでは、電力の需要過多)の程度を示している。式(1)の上段の式に示されるように、O>θである場合の異常値f(O,R)は、需要電力Oと供給電力Rとの差分である。需要過多の場合、需要電力Oから供給電力Rを減算した値が異常値f(O,R)である。需要電力Oが大きく、供給電力Rが小さいほど異常値f(O,R)が大きくなり、電力の需要過多の程度が大きくなる。式(1)の下段の式に示されるように、O>θでない場合(需要電力Oが上限値θ以下である場合)の異常値f(O,R)は0である。予測部12は、異常値を算出する異常値算出部として機能する。
 図20は、電力の需要過多が予測される場合の異常値を示すグラフである。図20では、需要電力Oが実線で示され、供給電力Rが破線で示され、上限値θが一点鎖線で示されている。図20に示されるように、需要電力Oが上限値θよりも大きい期間での異常値f(O,R)は、需要電力Oから供給電力Rを減算した値である。異常値f(O,R)は、需要電力Oと供給電力Rとの差分の絶対値に等しい。需要電力Oが上限値θよりも大きい期間は、対象電力機器の動作制御を行うことにより需給バランスが調整される。対象電力機器の動作制御を行うことにより需給バランスが調整される期間を「制御期間h」という。
 これに対して電力の供給過多が予測される場合、予測部12は、電力の供給過多(需要電力Oの下振れ)の程度を以下の式(2)に基づいて評価する。
 式(2)のf(O,R)は異常値であり、需給バランスの異常(ここでは、電力の供給過多)の程度を示している。式(2)の上段の式に示されるように、O<θである場合の異常値f(O,R)は、需要電力Oと供給電力Rとの差分である。供給過多の場合、供給電力Rから需要電力Oを減算した値が異常値f(O,R)である。供給電力Rが大きく、需要電力Oが小さいほど異常値f(O,R)が大きくなり、電力の供給過多の程度が大きくなる。式(2)の下段の式に示されるように、O<θでない場合(需要電力Oが下限値θ以上である場合)の異常値f(O,R)は0である。
 図21は、電力の供給過多が予測される場合の異常値を示すグラフである。図21では、需要電力Oが実線で示され、供給電力Rが破線で示され、下限値θが一点鎖線で示されている。式(2)に示されるように需要電力Oが下限値θよりも小さい期間での異常値f(O,R)は、供給電力Rから需要電力Oを減算した値である。異常値f(O,R)は、需要電力Oと供給電力Rとの差分の絶対値に等しい。需要電力Oが下限値θよりも小さい期間は制御期間hに相当する。
 図3に戻り、予測部12は、対象期間を所定の時間単位(例えば30分単位)でシフトさせてステップS9の処理を繰り返し実行することにより、将来の複数の対象期間における異常値f(O,R)を算出する。格納部11は、予測部12により算出された異常値f(O,R)を格納する。図22は、異常値のデータのテーブル例を示す図である。図22に示される例では、対象期間が30分単位で設定されている。図22に示されるテーブル例では、対象期間と、対象期間が制御期間hであるか否かを示す制御期間フラグと、異常値f(O,R)とが対応付けられている。異常値f(O,R)が0である対象期間では需給バランスを調整する必要がないため、制御期間フラグは、制御期間hでないことを示す(対象電力機器の動作制御が行われないことを示す)「0」に設定されている。これに対して、異常値f(O,R)が0でない対象期間では需給バランスを調整する必要があるため、制御期間フラグは、制御期間hであることを示す(対象電力機器の動作制御が行われることを示す)「1」に設定されている。図22に示される例では、2022年3月1日11時からの2時間が制御期間hである。
 図23は、異常値のデータの他のテーブル例を示す図である。図23で示される例では、対象期間と、異常値f(O,R)とが対応付けられている。図23で示される例では、2022年5月1日0時から開始する対象期間の需要電力Oが上限値θよりも大きいため、需要電力(2032万kw)から供給電力Rを減算した値が異常値として記録されている。2022年5月2日12時30分から開始する対象期間では需要電力Oが下限値θよりも小さいため、供給電力Rから需要電力(2032万kw)を減算した値が異常値として記録されている。2022年5月3日9時から開始する対象期間では需要電力Oが上限値θよりも大きくなく、かつ、需要電力Oが下限値θよりも小さくないため、異常値として0が記録されている。
 対象期間において需給バランスの異常が発生しないと予測された場合(ステップS9:No)、設定部13は、対象期間における制御判別フラグFを「0」に設定する(ステップS10)。制御判別フラグFとは、調整部14による対象電力機器の動作制御に関するフラグである。制御判別フラグFは、例えば対象期間と対応付けられて格納部11に格納されている。制御判別フラグFが「0」である対象期間では、調整部14は対象電力機器の動作制御を行わない。したがって、設定部13は、電力の需給バランスの異常が発生しないと予測される対象期間の制御判別フラグFを「0」に設定する。
 図24は、制御判別フラグの例を示す図である。図24に示される例では、対象期間が30分単位で設定されている。図24に示される例では、2022年3月1日10時30分から同日13時30分までの全ての対象期間の制御判別フラグFが「0」である。したがって、調整部14は、同日10時30分から同日13時30分までの期間において対象電力機器の動作制御を行わない。制御判別フラグFが「0」以外である場合の処理については後述する。
 対象期間において需給バランスの異常が発生すると判定した場合(ステップS9:Yes)、予測部12は制御期間hの算出を行う(ステップS11)。予測部12は、需給バランスの異常の発生から終了までの期間を制御期間hとして算出する。例えば、図22に示される例では、予測部12は、2022年3月1日11時からの2時間を制御期間hとして算出する。
 次に、予測部12は、各蓄電池3の属性、放電出力DCH、充電入力CH、下限残量Smin、残量SOC及び制御可能フラグf1を格納部11から取得する(ステップS12~S17)。蓄電池3の属性は、蓄電池3を識別するための情報であり、蓄電池3の名称又は識別符号であってもよい。放電出力DCHは、蓄電池3を放電させた際の出力電力の大きさであり、蓄電池3の放電特性として施設に放電可能な量を示す。充電入力CHとは、蓄電池3を充電させた際の入力電力の大きさであり、蓄電池3の充電特性として蓄電池3に供給可能な量を示す。下限残量Sminは、蓄電池3の残量SOCの下限値を示している。蓄電池3は、残量SOCiが下限残量Sminに達するまで放電することができる。下限残量Sminは、予め手動で設定された静的なデータであってもよい。残量SOCは、蓄電池3の残量である。制御可能フラグf1は、電力に関する動作制御が可能な蓄電池3であるか否かを示すフラグである。制御可能フラグf1は、電力調整装置1のユーザによる指示に基づいて設定可能であってもよいし、所定の規則に従って機械的に設定されてもよい。例えば、残量SOC>下限残量Sminである場合又は100%>残量SOCである場合に、制御可能フラグf1が機械的に「1」に設定されてもよい。制御可能フラグf1が「1」である蓄電池3は、制御期間hにおいて動作制御が行われる対象電力機器に相当する。
 実施形態では、蓄電池3の属性、放電出力DCH、充電入力CH、下限残量Smin、残量SOC及び制御可能フラグf1を含む蓄電池3に関するデータは、格納部11に格納されている。図25は、蓄電池に関するデータのテーブル例を示す図である。図25に示される蓄電池3に関するデータのテーブル例では、蓄電池3の属性と、放電出力DCHと、充電入力CHと、下限残量Sminと、残量SOCと、制御可能フラグf1とが対応付けられている。図25のテーブル例では、蓄電池3のデータは、放電出力DCHが大きい順にソートされている。蓄電池3のデータは、充電入力CHが大きい順にソートされていてもよい。
 図3に示されるステップS17の処理に続いて、図4に示されるステップS18の処理に進む。予測部12は、需給バランスの異常が発生すると予測される対象期間における需要電力Otが上限値θよりも大きいか否かを判定する(ステップS18)。
 需要電力Oが上限値θよりも大きい場合(ステップS18:Yes)、設定部13は対象期間における制御判別フラグFを「1」に設定する(ステップS19)。上述したとおり、需要電力Oが上限値θよりも大きい場合、対象期間において電力の需要過多が生じると予測される。図26は、電力の需要過多が予測される場合の需要電力と供給電力との関係を示すグラフである。図26では、需要電力Oが実線で示され、供給電力Rが破線で示されている。図26の一点鎖線の円で囲まれた部分のように、需要電力Oが供給電力Rを大きく上回る期間では電力の需要過多が生じるおそれがある。
 制御判別フラグFが「1」である対象期間では、調整部14は、需要電力Oが低減又は供給電力Rが増加するように対象電力機器の制御を行う。したがって、設定部13は、電力の需要過多が発生すると予測される対象期間の制御判別フラグFを「1」に設定する。図27は、制御判別フラグの例を示す図である。図27に示される例では、対象期間が30分単位で設定されている。この例では、2022年3月1日10時30分から開始する対象期間及び同日13時から開始する対象期間の制御判別フラグFが「0」であり、同日11時から同日13時までの対象期間の制御判別フラグFが「1」である。したがって、調整部14は、同日10時30分から同日11時までの期間及び同日13時から同日13時30分までの期間においては対象電力機器の動作制御を行わず、同日11時から13時までの期間においては需要電力Oが低減又は供給電力Rが増加するように対象電力機器の制御を行う。
 次に、予測部12は、需給バランスの異常が予測される制御期間hにおける放電量総和Gdが、制御期間hにおける需要電力量hOと供給電力量hRとの差分以上であるか否かを判定する(ステップS20)。「放電量総和Gd」とは、対象電力機器である蓄電池3の所定期間における放電量の総和である。「需要電力量hO」とは、所定期間において電力システム6での需要が予想される電力量である。需要電力量hOは、例えば需要電力Oと時間との積に基づいて算出されてもよい。「供給電力量hR」とは、所定期間において電力システム6へ供給予定の電力量である。供給電力量hRは、例えば供給電力Rと時間との積に基づいて算出されてもよい。
 放電量総和Gdの算出に際し、予測部12は、まず制御期間hにおける各蓄電池3の放電量Battを算出する。放電量Battは、以下の式(3)で算出される。
 蓄電池3の残量SOCが下限残量Sminよりも十分大きい場合(SOC>>Sminである場合)、蓄電池3の放電量Battは式(3)の上段の式で算出される。「残量SOCが下限残量Sminよりも十分大きい場合」とは、蓄電池3を制御期間hの間に放電させ続けても残量SOCが下限残量Sminに達しないほど残量SOCが大きい場合をいう。
 蓄電池3の残量SOCが下限残量Sminよりも十分大きくない場合(制御期間h中に残量SOCが下限残量Sminに達してしまう場合)の蓄電池3の放電量Battは、式(3)の下段の式で算出される。なお、蓄電池3の残量SOCによらず、制御可能フラグf1が「0」に設定され動作制御を行うことができない蓄電池3の放電量Battは0である。
 予測部12は、各蓄電池3の放電量Battを足し合わせることにより、放電量総和Gdを算出する。予測部12は、算出した放電量総和Gdが、制御期間hにおける需要電力量hOと供給電力量hRとの差分(以下、差分電力量D1という)以上であるか否かを判定する(ステップS20)。換言すると、以下の式(4)を満たすか否かを判定する。この例では、蓄電池3の数をn個とする。
 放電量総和Gdが差分電力量D1以上であると判定した場合(ステップS20:Yes)、設定部13は、放電量総和Gdと差分電力量D1との差が最小になるように制御可能フラグf1を設定してもよい。換言すると、設定部13は、式(5)を満たすように、制御可能フラグf1を再設定してもよい。
 例えば図28に示されるように、設定部13は、需給バランスの調整に使用しない蓄電池3の制御可能フラグf1を「1」から「0」へと再設定(更新)してもよい。制御可能フラグf1iを「0」に設定することは、対象電力機器としての設定を解除することに相当する。設定部13は、蓄電池3の放電出力DCHiに基づいて、制御可能フラグf1を設定してもよい。例えば、設定部13は、放電出力DCHの大きい蓄電池3の制御可能フラグf1を優先的に「1」に設定してもよい。すなわち、設定部13は、放電出力DCHの大きい蓄電池3を優先して放電させるように設定してもよい。
 次に、調整部14は、対象電力機器の動作制御を実施する(ステップS21)。この例では、制御可能フラグf1が「1」である蓄電池3が対象電力機器に相当する。調整部14は、制御期間hにおいて制御可能フラグf1が「1」である蓄電池3を放電させる制御指令Aを制御装置2に送信する。制御指令Aによって各蓄電池3から放電される電力量は、以下の式(6)のとおりである。
 制御指令Aに基づいて制御装置2が蓄電池3を制御することにより、制御期間hにおける需給バランスが調整され電力の需要過多が回避される。蓄電池3の制御を行うタイミングは、制御判別フラグFに基づいて判断される。例えば、制御装置2は、制御判別フラグFが「1」の対象期間に制御指令Aに基づいて蓄電池3を制御する。これにより、需要過多が生じると予測されるタイミングに合わせて対象電力機器の動作制御を行うことができる。調整部14は、需給バランスの異常を回避するための電力機器の制御計画を作成する計画指令作成部として機能する。以上で電力調整装置1の処理が終了する。
 需要電力Oが上限値θよりも大きくないと判定された場合(ステップS18:No)、設定部13は対象期間における制御判別フラグFを「2」に設定する(ステップS22)。既にステップS9において、需給バランスの異常が発生する(対象期間における需要電力Oが上限値θより大きい場合又は下限値θより小さい場合に相当する)と判定されている。したがって、ステップS18において需要電力Oが上限値θよりも大きくないと判定された場合(ステップS18:No)とは、対象期間における需要電力Oが下限値θよりも小さい場合である。需要電力Oが下限値θよりも小さい場合、対象期間において電力の供給過多が生じると予測される。図29は、電力の供給過多が予測される場合の需要電力と供給電力との関係を示すグラフである。図29では、需要電力Oが実線で示され、供給電力Rが破線で示されている。図29の一点鎖線の円で囲まれた部分のように、供給電力Rが需要電力Oを大きく上回る期間では電力の供給過多が生じるおそれがある。
 制御判別フラグFが「2」である対象期間では、調整部14は、需要電力Oが増加又は供給電力Rが低減するように対象電力機器の制御を行う。したがって、設定部13は、電力の供給過多が発生すると予測される対象期間の制御判別フラグFを「2」に設定する。図30は、制御判別フラグの例を示す図である。図30に示される例では、対象期間が30分単位で設定されている。この例では、2022年3月1日10時30分から開始する対象期間及び同日13時から開始する対象期間の制御判別フラグFが「0」であり、同日11時から同日13時までの対象期間の制御判別フラグFが「2」である。したがって、調整部14は、同日10時30分から同日11時までの期間及び同日13時から同日13時30分までの期間においては対象電力機器の動作制御を行わず、同日11時から13時までの期間においては需要電力Oが増加又は供給電力Rが低減するように対象電力機器の制御を行う。
 次に、予測部12は、制御期間hにおける充電量総和Gcが、供給電力量hRと需要電力量hOとの差分以上であるか否かを判定する(ステップS23)。「充電量総和Gc」とは、対象電力機器である蓄電池3の所定期間における充電量の総和である。
 充電量総和Gcの算出に際し、予測部12は、まず制御期間hにおける各蓄電池3の充電量Battを算出する。充電量Battは、以下の式(7)で算出される。
 蓄電池3の残量SOCが100%よりも十分小さい場合(SOC<<100である場合)、蓄電池3の充電量Battは式(7)の上段の式で算出される。「残量SOCが100%よりも十分小さい場合」とは、蓄電池3を制御期間hの間に充電させ続けても残量SOCが100%に達しないほど残量SOCが小さい場合をいう。
 蓄電池3の残量SOCが100%よりも十分小さくない場合(制御期間h中に残量SOCが100%に達してしまう場合)の蓄電池3の充電量Battは、式(7)の下段の式で算出される。なお、蓄電池3の残量SOCによらず、制御可能フラグf1が「0」であり動作制御を行うことができない蓄電池3の充電量Battは0である。
 予測部12は、各蓄電池3の充電量Battを足し合わせることにより、充電量総和Gcを算出する。予測部12は、算出した充電量総和Gcが、制御期間hにおける供給電力量hRと需要電力量hOとの差分(以下、差分電力量D2という)以上であるか否かを判定する(ステップS23)。換言すると、以下の式(8)を満たすか否かを判定する。
 充電量総和Gcが差分電力量D2以上であると判定した場合(ステップS23:Yes)、設定部13は、充電量総和Gcと差分電力量D2との差が最小になるように制御可能フラグf1を設定してもよい。換言すると、設定部13は、式(9)を満たすように、制御可能フラグf1を再設定してもよい。
 例えば図28に示されるように、設定部13は、需給バランスの調整に使用しない蓄電池3の制御可能フラグf1を「1」から「0」へと再設定(更新)してもよい。設定部13は、蓄電池3の充電入力CHに基づいて、制御可能フラグf1を設定してもよい。例えば、設定部13は、充電入力CHの大きい蓄電池3の制御可能フラグf1を優先的に「1」に設定してもよい。すなわち、設定部13は、充電入力CHの大きい蓄電池3を優先して充電させるように設定してもよい。
 次に、調整部14は、対象電力機器の動作制御を実施する(ステップS21)。この例では、制御可能フラグf1が「1」である蓄電池3が対象電力機器に相当する。調整部14は、制御期間hにおいて制御可能フラグf1iが「1」である蓄電池3を充電させる制御指令Bを制御装置2に送信する。制御指令Bによって各蓄電池3に充電される電力量は、以下の式(10)のとおりである。
 制御指令Bに基づいて制御装置2が蓄電池3を制御することにより、制御期間hにおける需給バランスが調整され電力の供給過多が回避される。制御装置2は、例えば制御判別フラグFが「2」の対象期間に制御指令Bに基づいて蓄電池3を制御する。これにより、供給過多が生じると予測されるタイミングに合わせて対象電力機器の動作制御を行うことができる。以上で電力調整装置1の処理が終了する。
 放電量総和Gdが差分電力量D1以上でないと判定した場合(ステップS20:No)、予測部12は、各負荷4の属性、出力M、制御可能フラグf2及び稼働フラグf3を格納部11から取得する(ステップS24~S27)。放電量総和Gdが差分電力量D1以上でないと判定した場合とは、蓄電池3の放電だけでは差分電力量D1を補うことができず需給バランスの異常(電力の需要過多)を解消できない場合であり、以下の式(11)を満たした場合に相当する。
 負荷4の属性は、負荷4を識別するための情報であり、負荷4の名称又は識別符号であってもよい。出力Mは、負荷4の稼働時に消費される電力であり、負荷4の動作制御を行うことにより捻出できる出力の最大量である。出力Mが大きい負荷4ほど、稼働時に消費される電力量が大きい。制御可能フラグf2は、電力に関する動作制御が可能な負荷4であるか否かを示すフラグである。制御可能フラグf2は、電力調整装置1のユーザによる指示に基づいて設定可能であってもよいし、所定の規則に従って機械的に設定されてもよい。制御可能フラグf2が「1」である負荷4は、制御期間hにおいて動作制御が行われる対象電力機器である。稼働フラグf3は、負荷4の稼働状態を示すフラグであり、例えば負荷4の電源のオン及びオフを示すフラグであってもよい。稼働フラグf3は、負荷4の制御タイミングの運用予定に基づいて設定されてもよい。
 実施形態では、負荷4の属性、出力M、制御可能フラグf2及び稼働フラグf3を含む負荷4に関するデータは、格納部11に格納されている。図31は、負荷に関するデータのテーブル例を示す図である。図31に示される負荷4に関するデータのテーブル例では、負荷4の属性と、出力Mと、制御可能フラグf2と、稼働フラグf3とが対応付けられている。図31のテーブル例では、負荷4のデータは、出力Mが大きい順にソートされている。
 次に、予測部12は、対象電力機器として設定された蓄電池3及び負荷4の動作制御により需給バランスの異常が解消できるか否かを判定する(ステップS28)。具体的には、予測部12は、対象電力機器として設定された蓄電池3の放電に加えて対象電力機器として設定された負荷4を不稼働にすることにより、電力の需要過多が解消できるか否かを判定する。
 判定に際し、予測部12は、まず負荷4の動作制御を行うことにより制御期間hにおいて低減することができる需要電力量を算出する。低減することができる需要電力量とは、対象電力機器の負荷4を不稼働とすることにより低減することができる需要電力量に相当し、以下の式(12)によって算出される。式(12)は、各負荷4において低減することができる需要電力量の総和を示している。この例では、負荷4の数をL個とする。制御可能フラグf2が「0」である負荷4は不稼働にする動作制御を行えないため、低減することができる需要電力量は0である。また、稼働フラグf3が「0」である負荷4は既に不稼働であるため、不稼働とする制御を行った場合に低減することができる需要電力量は0である。
 予測部12は、放電量総和Gd(式(11)の左辺)と、負荷4の動作制御を行うことにより低減することができる需要電力量(式(12))とを加算して、蓄電池3及び負荷4の動作制御を行うことにより調整可能な調整電力量を算出する。調整電力量は、以下の式(13)の左辺に相当する。予測部12は、算出した調整電力量が差分電力量D1以上であるか否か(式(13)を満たすか否か)を判定することによって、対象電力機器として設定された蓄電池3及び負荷4の動作制御により需給バランスの異常が解消できるか否かを判定する(ステップS28)。
 需給バランスの異常が解消できると判定した場合(ステップS28:Yes)、設定部13は、調整電力量と差分電力量D1との差が最小になるように制御可能フラグf1,f2を設定してもよい。換言すると、設定部13は、式(14)を満たすように、制御可能フラグf2を再設定してもよい。
 例えば図32に示されるように、設定部13は、需給バランスの調整に使用しない負荷4の制御可能フラグf2を「1」から「0」へと再設定(更新)し、需給バランスの調整に使用する負荷4の制御可能フラグf2を「0」から「1」へと再設定(更新)してもよい。制御可能フラグf2を「0」に設定することは、対象電力機器としての設定を解除することに相当し、制御可能フラグf2を「1」に設定することは、対象電力機器として設定することに相当する。設定部13は、負荷4の出力Mに基づいて、制御可能フラグf2を設定してもよい。例えば、設定部13は、出力Mの大きい負荷4の制御可能フラグf2を優先的に「1」に設定してもよい。すなわち、設定部13は、出力Mの大きい負荷4を優先して不稼働にさせるように設定してもよい。
 また、設定部13は、負荷4の稼働状態(稼働フラグf3)に基づいて制御可能フラグf2を設定してもよい。例えば対象期間に不稼働状態であることが計画されている負荷4(稼働フラグf3が「0」である負荷4)を対象電力機器として新たに設定し、対象期間において当該負荷4を不稼働にする動作制御を行っても需要電力の低減を図ることができない。そのため、設定部13は、対象期間に稼働状態であることが計画されている負荷4(稼働フラグf3が「1」である負荷4)を対象電力機器として設定(制御可能フラグf2を「0」から「1」に変更)してもよい。
 次に、調整部14は、対象電力機器の動作制御を実施する(ステップS21)。この例では、制御可能フラグf1が「1」である蓄電池3と、制御可能フラグf2が「1」である負荷4とが、対象電力機器に相当する。調整部14は、制御期間hにおいて制御可能フラグf1が「1」である蓄電池3を放電させる制御指令Aと、制御期間hにおいて制御可能フラグf2が「1」である負荷4を不稼働にさせる制御指令Cとを制御装置2に送信する。制御指令Aによって各蓄電池3から放電される電力量は、上述した式(6)のとおりである。制御指令Cによって各負荷4で低減される需要電力量は、以下の式(15)のとおりである。
 制御指令A,Cに基づいて制御装置2が蓄電池3及び負荷4を制御することにより、制御期間hにおける需給バランスが調整され電力の需要過多が回避される。蓄電池3及び負荷4の制御を行うタイミングは、制御判別フラグFに基づいて判断される。制御装置2は、例えば制御判別フラグFが「1」の対象期間に制御指令A,Cに基づいて蓄電池3を制御する。これにより、需要過多が生じると予測されるタイミングに合わせて対象電力機器の動作制御を行うことができる。以上で電力調整装置1の処理が終了する。なお、この例では稼働している負荷4を不稼働にすることにより需給バランスが調整されているが、稼働している負荷4の出力を低減させることにより需給バランスが調整されてもよい。すなわち、対象電力機器として設定された負荷4に対する動作制御は、出力を低減させる制御であってもよい。
 対象電力機器として設定された蓄電池3及び負荷4の動作制御により需給バランスの異常が解消できないと判定した場合(ステップS28:No)、設定部13は、制御可能フラグf1,f2を再設定する。制御可能フラグf1,f2を再設定することは、対象電力機器を再設定することに相当する。すなわち、設定部13は、制御可能フラグf1,f2を再設定することにより、対象電力機器として設定されている蓄電池3及び負荷4を変更する。
 設定部13は、例えば式(13)を満たすように制御可能フラグf1,f2を再設定する。設定部13は、対象電力機器として設定されていない蓄電池3及び負荷4を対象電力機器として新たに設定してもよい。設定部13は、蓄電池3の放電出力DCHに基づいて、制御可能フラグf1を設定してもよい。例えば、設定部13は、放電出力DCHの大きい蓄電池3の制御可能フラグf1を優先的に「1」に設定してもよい。設定部13は、負荷4の出力Mに基づいて、制御可能フラグf2を設定してもよい。例えば、設定部13は、出力Mの大きい負荷4の制御可能フラグf2を優先的に「1」に設定してもよい。
 また、設定部13は、負荷4の稼働状態(稼働フラグf3)に基づいて制御可能フラグf2を再設定してもよい。設定部13は、例えば対象期間に稼働状態であることが計画されている負荷4(稼働フラグf3が「1」である負荷4)を対象電力機器として設定(制御可能フラグf2を「0」から「1」に変更)してもよい。設定部13は、電力調整装置1のユーザによる指示に基づいて制御可能フラグf1,f2を再設定してもよい。
 図4の丸囲みBは図3の丸囲みBに相当しており、設定部13による制御可能フラグf1,f2の再設定(ステップS29)が終了すると図3に示すステップS17の処理に戻る。
 充電量総和Gcが差分電力量D2以上でないと判定した場合(ステップS23:No)、予測部12は、各負荷4の属性、出力M、制御可能フラグf2及び稼働フラグf3を格納部11から取得する(ステップS24~S27)。充電量総和Gcが差分電力量D2以上でないと判定した場合とは、蓄電池3の充電だけでは差分電力量D2を補うことができず需給バランスの異常(電力の供給過多)を解消できない場合であり、以下の式(16)を満たした場合に相当する。
 次に、予測部12は、対象電力機器として設定された蓄電池3及び負荷4の動作制御により需給バランスの異常が解消できるか否かを判定する(ステップS28)。具体的には、予測部12は、対象電力機器として設定された蓄電池3の充電に加えて対象電力機器として設定された負荷4を稼働させることにより、電力の供給過多が解消できるか否かを判定する。
 判定に際し、予測部12は、まず負荷4の動作制御を行うことにより制御期間hにおいて増加させることができる需要電力量を算出する。増加させることができる需要電力量とは、対象電力機器の負荷4を稼働させることにより増加させることができる需要電力量に相当し、以下の式(17)によって算出される。式(17)は、各負荷4において増加させることができる需要電力量の総和を示している。この例では、負荷4の数をL個とする。制御可能フラグf2が「0」である負荷4は稼働させる動作制御を行えないため、増加させることができる需要電力量は0である。また、稼働フラグf3が「1」である負荷4は既に稼働しているため、稼働させる制御を行った場合に増加させることができる需要電力量は0である。
 予測部12は、充電量総和Gc(式(16)の左辺)と、負荷4の動作制御を行うことにより増加させることができる需要電力量(式(17))とを加算して、蓄電池3及び負荷4の動作制御を行うことにより調整可能な調整電力量を算出する。調整電力量は、以下の式(18)の左辺に相当する。予測部12は、算出した調整電力量が差分電力量D2以上であるか否か(式(18)を満たすか否か)を判定することによって、対象電力機器として設定された蓄電池3及び負荷4の動作制御により需給バランスの異常が解消できるか否かを判定する(ステップS28)。
 需給バランスの異常が解消できると判定した場合(ステップS28:Yes)、設定部13は、調整電力量と差分電力量D2との差が最小になるように制御可能フラグf1,f2を設定してもよい。換言すると、設定部13は、式(19)を満たすように、制御可能フラグf2を設定してもよい。
 例えば図32に示されるように、設定部13は、需給バランスの調整に使用しない負荷4の制御可能フラグf2を「1」から「0」へと再設定(更新)し、需給バランスの調整に使用する負荷4の制御可能フラグf2を「0」から「1」へと再設定(更新)してもよい。設定部13は、負荷4の出力Mに基づいて、制御可能フラグf2を設定してもよい。例えば、設定部13は、出力Mの大きい負荷4の制御可能フラグf2を優先的に「1」に設定してもよい。すなわち、設定部13は、出力Mの大きい負荷4を優先して稼働させるように設定してもよい。
 また、設定部13は、負荷4の稼働状態(稼働フラグf3)に基づいて制御可能フラグf2を設定してもよい。例えば対象期間に稼働状態であることが計画されている負荷4(稼働フラグf3が「1」である負荷4)を対象電力機器として新たに設定し、対象期間において当該負荷4を稼働させる動作制御を行っても需要電力の増加を図ることができない。したがって、設定部13は、対象期間に不稼働状態であることが計画されている負荷4(稼働フラグf3が「0」である負荷4)を対象電力機器として設定(制御可能フラグf2を「0」から「1」に変更)してもよい。
 次に、調整部14は、対象電力機器の動作制御を実施する(ステップS21)。この例では、制御可能フラグf1が「1」である蓄電池3と、制御可能フラグf2が「1」である負荷4とが、対象電力機器に該当する。調整部14は、制御期間hにおいて制御可能フラグf1が「1」である蓄電池3を充電させる制御指令Bと、制御期間hにおいて制御可能フラグf2が「1」である負荷4を稼働させる制御指令Dとを制御装置2に送信する。制御指令Bによって各蓄電池3に充電される電力量は、上述した式(10)のとおりである。制御指令Dによって各負荷4で増加する需要電力量は、以下の式(20)のとおりである。
 制御指令B,Dに基づいて制御装置2が蓄電池3及び負荷4を制御することにより、制御期間hにおける需給バランスが調整され電力の供給過多が回避される。制御装置2は、例えば制御判別フラグFが「2」の対象期間に制御指令B,Dに基づいて蓄電池3を制御する。これにより、供給過多が生じると予測されるタイミングに合わせて対象電力機器の動作制御を行うことができる。以上で電力調整装置1の処理が終了する。なお、この例では不稼働の負荷4を稼働させることにより需給バランスが調整されているが、稼働している負荷4の出力を増加させることにより需給バランスが調整されてもよい。すなわち、対象電力機器として設定された負荷4に対する動作制御は、出力を増加させる制御であってもよい。
 対象電力機器として設定された蓄電池3及び負荷4の動作制御により需給バランスの異常が解消できないと判定した場合(ステップS28:No)、設定部13は、制御可能フラグf1,f2を再設定する。制御可能フラグf1,f2を再設定することは、対象電力機器を再設定することに相当する。すなわち、設定部13は、制御可能フラグf1,f2を再設定することにより、対象電力機器として設定されている蓄電池3及び負荷4を変更する。
 設定部13は、例えば式(18)を満たすように制御可能フラグf1,f2を再設定する。設定部13は、対象電力機器として設定されていない蓄電池3及び負荷4を対象電力機器として新たに設定してもよい。設定部13は、蓄電池3の充電入力CHに基づいて、制御可能フラグf1を設定してもよい。例えば、設定部13は、充電入力CHの大きい蓄電池3の制御可能フラグf1を優先的に「1」に設定してもよい。設定部13は、負荷4の出力Mに基づいて、制御可能フラグf2を設定してもよい。例えば、設定部13は、出力Mの大きい負荷4の制御可能フラグf2を優先的に「1」に設定してもよい。設定部13は、電力調整装置1のユーザによる指示に基づいて制御可能フラグf1,f2を再設定してもよい。
 また、設定部13は、負荷4の稼働状態(稼働フラグf3)に基づいて制御可能フラグf2を再設定してもよい。設定部13は、例えば対象期間に不稼働状態であることが計画されている負荷4(稼働フラグf3が「0」である負荷4)を対象電力機器として設定(制御可能フラグf2を「0」から「1」に変更)してもよい。設定部13による制御可能フラグf1,f2の再設定(ステップS29)が終了すると図3に示すステップS17の処理に戻る。
 図33は、蓄電池及び負荷の制御可能フラグの例を示す図である。調整部14によって制御指令A又は制御指令Bが制御装置2に送信された場合、制御期間hにおいて制御可能フラグf1が「1」である(対象電力機器として設定されている)蓄電池3の動作制御が行われる。図33に示される例では、制御期間h(実線で囲まれた部分に対応する対象期間2022年3月1日11時からの2時間)において、実線で囲まれた少なくとも蓄電池A,Bの動作制御が行われる。
 調整部14によって制御指令Ai,又は制御指令B,Dが制御装置2に送信された場合、制御期間hにおいて制御可能フラグf1,f2が「1」である(対象電力機器として設定されている)蓄電池3及び負荷4の動作制御が行われる。図33に示される例では、制御期間h(破線で囲まれた部分に対応する対象期間2022年3月1日11時からの2時間)において、破線で囲まれた少なくとも蓄電池A,B、空調A、照明A及びOA機器Aの動作制御が行われる。
 図34は、電力調整装置への入力及び電力調整装置からの出力を示す図である。図34に示されるように、電力データE、気象予報データ、カレンダー情報、人流データP、制御可能フラグf1,f2及び稼働フラグf3が電力調整装置1に入力される。電力調整装置1は、入力された各種データに基づいて、図3,4で説明した処理を実行し、制御判別フラグF及び制御可能フラグf1,f2の設定(出力)を行う。設定された制御判別フラグF及び制御可能フラグf1,f2に基づいて、電力機器の動作制御が行われる。
 続いて、実施形態に係る電力調整装置1の作用効果について説明する。
 電力調整装置1によれば、設定部13が、予測された需給バランスに基づいて電力機器の中から少なくとも一つの電力機器を対象電力機器として設定し、調整部14が、対象電力機器の動作制御を行うことにより、需給バランスを調整する。この構成により、予測された電力の需給バランスに基づいて、需給バランスの調整のために動作制御を行う対象電力機器を設定することが可能である。そのため、電力の需給バランスを適切に調整することができる。
 電力調整装置1の作用効果について、技術背景と共により具体的に説明する。電力を安定供給するためには、需要電力量と供給電力量とが常に同時刻において釣り合う必要がある。近年では激甚化する気象変動による過度な需要電力の発生(需要過多)、及び再生可能エネルギーの過剰発電(供給過多)に応じた電力の需給バランスの不安定が危惧されている。そのような状況下において、電力を消費する需要家の電力消費量を調整するバーチャルパワープラント及びデマンドレスポンスといった仕組みの導入が進められている。この枠組みの中で需要家は、電力消費量を増加させる指令又は電力消費量を削減させる指令を受け、精度良く指令に応答することが求められる。需要家がこのような指令を受けた場合に制御を実施する対象としては、設備の停電等に際してバックアップ用に配備された蓄電池、又は設備で大規模に消費されている空調システム若しくは照明システム等の負荷が挙げられる。
 上述したような電力の供給側から通知される要請に適切に応答するためには、その段階で動作制御可能な電力機器に対して制御を行い、適切な電力量を捻出する必要がある。しかし、電力機器の制御指令が事前に通知されない場合は要請に応じられず、結果として需給バランスが不安定化する場合があった。
 電力調整装置1は、広域な需要電力の予測を実施し、供給側で見込んでいる予定の需要電力(計画している供給電力)と比較しながら、電力の需給バランスが不安定化する(需給バランスの異常が発生する)可能性のある期間を特定する。電力調整装置1は、その期間の需要電力と供給電力との差を異常値として算出する。この異常値の算出方法として、電力会社の想定する需要電力(計画している供給電力)に対して需要電力が大幅に超過する場合を検出する閾値(上限値)、大幅に不足する場合を検出する閾値(下限値)を作成し、閾値を超えることで異常値とみなす。この異常値の発生に対して、事前に各電力機器に制御指令を送ることで、その制御の総量として、その期間に発生し得た異常値を打ち消すことが可能である。電力調整装置1は、電力を供給する事業者といった外部から突発的に制御指令を受けた場合においても、電力の需要側が制御量を調整すること、及び電力の需給バランスの不安定化を未然に防ぐことができ、電力の需要家側で独自に実施可能な電力制御システムを提供することができる。よって、電力調整装置1は、電力の需給バランスの不安定化に対して事前に電力機器に対して制御指令を提供することによって、電力の需給バランスの不安定化を防止することができる。
 また、電力調整装置1によれば、設定部13が、需給バランスの異常が発生すると予測される場合に、需給バランスの異常を解消し得るように対象電力機器の設定を行ってもよい。この構成により、対象電力機器の動作制御によって需給バランスの異常を解消することができる。
 また、電力調整装置1によれば、設定部13が、対象電力機器の動作制御により調整可能な調整電力量が、電力システム6へ供給予定の供給電力量と電力システム6で生じると予測される需要電力量との差である差分電力量以上となるように、対象電力機器の設定を行ってもよい。この構成により、対象電力機器の動作制御によって需給バランスの異常を確実に解消することができる。
 また、電力調整装置1によれば、設定部13が、調整電力量と差分電力量との差が最小となるように対象電力機器の設定を行ってもよい。この構成により、需給バランスの調整のために不必要な電力機器の動作制御を行わずに済むため、効率的に需給バランスの調整を行うことができる。例えば、電力の需要過多を解消するために蓄電池3を放電させる際、不必要な蓄電池3まで放電させてしまうことを回避することができる。
 また、電力調整装置1によれば、設定部13が、蓄電池3において放充電される電力量、及び負荷4において消費される電力量の少なくとも一方に基づいて、対象電力機器の設定を行ってもよい。この構成により、対象電力機器の設定をより適切に行うことができる。例えば、放充電される電力量が大きい蓄電池3、及び消費される電力量の大きい(出力の大きい)負荷4を優先的に対象電力機器として設定することで、動作制御を行う対象電力機器の台数を少なくすることができる。
 また、電力調整装置1によれば、電力システム6が、一つ以上の蓄電池3と一つ以上の負荷4とを含んでおり、設定部13が、一つ以上の蓄電池3及び一つ以上の負荷4を対象電力機器として設定してもよい。この構成により、電力システム6が蓄電池3及び負荷4のいずれか一方のみを含んでいる場合と比べて、対象電力機器として設定可能な電力機器の選択肢が拡大し、需給バランスの調整をより適切に行うことができる。
 また、電力調整装置1によれば、設定部13が、負荷4の稼働状態に基づいて当該負荷4を対象電力機器として設定するか否かを決定してもよい。この構成により、負荷4の稼働状態を考慮して適切に対象電力機器の設定を行うことができる。
 また、電力調整装置1によれば、設定部13が、当該電力調整装置1のユーザによる指示に基づいて対象電力機器の設定を行ってもよい。この構成により、例えば所定の基準に基づいて機械的に対象電力機器を設定することだけでなく、電力調整装置1のユーザの指示に基づいてより柔軟に対象電力機器の設定を行うことができる。
 例えば、電力システム6は、蓄電池3又は負荷4の一方のみを含んで構成されていてもよい。電力システム6に含まれる蓄電池3の数は限定されず、一つであってもよい。電力システム6に含まれる負荷4の数は限定されず、一つであってもよい。
 電力調整装置1の設定部13は、例えば他の装置において予測された電力の需給バランスに基づいて対象電力機器を設定してもよい。この場合、電力調整装置1は、予測部12を備えていなくてもよい。すなわち、電力調整装置1は電力の需給バランスの予測を行わなくてもよい。
 本開示の電力調整装置1は、以下の構成を有する。
[1]
 蓄電池及び負荷の少なくとも一方である電力機器を一つ以上含む電力システムにおける電力の需給バランスを調整する電力調整装置であって、
 予測された前記需給バランスに基づいて、前記電力機器の中から少なくとも一つの前記電力機器を、電力に関する動作制御が可能な対象電力機器として設定する設定部と、
 前記対象電力機器の動作制御を行うことにより、前記需給バランスを調整する調整部と、を備える、電力調整装置。
[2]
 前記設定部は、前記需給バランスの異常が発生すると予測される場合に、前記需給バランスの異常を解消し得るように前記対象電力機器の設定を行う、
[1]に記載の電力調整装置。
[3]
 前記設定部は、前記対象電力機器の動作制御により調整可能な調整電力量が、前記電力システムへ供給予定の電力量と前記電力システムでの需要が予測される電力量との差である差分電力量以上となるように、前記対象電力機器の設定を行う、
[1]又は[2]に記載の電力調整装置。
[4]
 前記設定部は、前記調整電力量と前記差分電力量との差が最小となるように前記対象電力機器の設定を行う、
[3]に記載の電力調整装置。
[5]
 前記設定部は、前記蓄電池において放充電される電力量、及び前記負荷において消費される電力量の少なくとも一方に基づいて、前記対象電力機器の設定を行う、
[1]から[4]のいずれか一項に記載の電力調整装置。
[6]
 前記電力システムは、一つ以上の蓄電池と一つ以上の負荷とを含み、
 前記設定部は、一つ以上の蓄電池及び一つ以上の負荷を前記対象電力機器として設定する、
[1]から[5]のいずれか一項に記載の電力調整装置。
[7]
 前記設定部は、負荷の稼働状態に基づいて当該負荷を前記対象電力機器として設定するか否かを決定する、
[1]から[6]のいずれか一項に記載の電力調整装置。
[8]
 前記設定部は、当該電力調整装置のユーザによる指示に基づいて前記対象電力機器の設定を行う、
[1]から[7]のいずれか一項に記載の電力調整装置。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における電力調整装置1などは、本開示の電力調整方法の処理を行うコンピュータとして機能してもよい。図35は、本開示の一実施の形態に係る電力調整装置1のハードウェア構成の一例を示す図である。上述の電力調整装置1は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。電力調整装置1のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 電力調整装置1における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の予測部12、設定部13及び調整部14などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、予測部12、設定部13及び調整部14は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の予測部12、設定部13及び調整部14などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、電力調整装置1は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 1…電力調整装置、3…蓄電池、4…負荷、5…電力供給源、6…電力システム、11…格納部、12…予測部、13…設定部、14…調整部、20…外部データベース、1001…プロセッサ、1002…メモリ、1003…ストレージ、1004…通信装置、1005…入力装置、1006…出力装置、1007…バス。

 

Claims (8)

  1.  蓄電池及び負荷の少なくとも一方である電力機器を一つ以上含む電力システムにおける電力の需給バランスを調整する電力調整装置であって、
     予測された前記需給バランスに基づいて、前記電力機器の中から少なくとも一つの前記電力機器を、電力に関する動作制御が可能な対象電力機器として設定する設定部と、
     前記対象電力機器の動作制御を行うことにより、前記需給バランスを調整する調整部と、を備える、電力調整装置。
  2.  前記設定部は、前記需給バランスの異常が発生すると予測される場合に、前記需給バランスの異常を解消し得るように前記対象電力機器の設定を行う、
    請求項1に記載の電力調整装置。
  3.  前記設定部は、前記対象電力機器の動作制御により調整可能な調整電力量が、前記電力システムへ供給予定の電力量と前記電力システムでの需要が予測される電力量との差である差分電力量以上となるように、前記対象電力機器の設定を行う、
    請求項1又は2に記載の電力調整装置。
  4.  前記設定部は、前記調整電力量と前記差分電力量との差が最小となるように前記対象電力機器の設定を行う、
    請求項3に記載の電力調整装置。
  5.  前記設定部は、蓄電池において放充電される電力量、及び負荷において消費される電力量の少なくとも一方に基づいて、前記対象電力機器の設定を行う、
    請求項1に記載の電力調整装置。
  6.  前記電力システムは、一つ以上の蓄電池と一つ以上の負荷とを含み、
     前記設定部は、一つ以上の蓄電池及び一つ以上の負荷を前記対象電力機器として設定する、
    請求項1に記載の電力調整装置。
  7.  前記設定部は、負荷の稼働状態に基づいて当該負荷を前記対象電力機器として設定するか否かを決定する、
    請求項1に記載の電力調整装置。
  8.  前記設定部は、当該電力調整装置のユーザによる指示に基づいて前記対象電力機器の設定を行う、
    請求項1に記載の電力調整装置。

     
PCT/JP2023/017318 2022-06-06 2023-05-08 電力調整装置 WO2023238569A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091521 2022-06-06
JP2022091521 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238569A1 true WO2023238569A1 (ja) 2023-12-14

Family

ID=89118109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017318 WO2023238569A1 (ja) 2022-06-06 2023-05-08 電力調整装置

Country Status (1)

Country Link
WO (1) WO2023238569A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135040A (ja) * 2015-01-21 2016-07-25 三菱電機株式会社 電力需給調整要請量決定装置及びその方法
JP2018207745A (ja) * 2017-06-09 2018-12-27 三菱電機ビルテクノサービス株式会社 需要家電力管理システム及びアグリゲータシステム
JP2020054040A (ja) * 2018-09-25 2020-04-02 Kddi株式会社 各蓄電池の充放電電力量を制御するアグリゲータ装置、プログラム及び需給調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135040A (ja) * 2015-01-21 2016-07-25 三菱電機株式会社 電力需給調整要請量決定装置及びその方法
JP2018207745A (ja) * 2017-06-09 2018-12-27 三菱電機ビルテクノサービス株式会社 需要家電力管理システム及びアグリゲータシステム
JP2020054040A (ja) * 2018-09-25 2020-04-02 Kddi株式会社 各蓄電池の充放電電力量を制御するアグリゲータ装置、プログラム及び需給調整方法

Similar Documents

Publication Publication Date Title
US20150338869A1 (en) Demand response control method and demand response control device
US20140316599A1 (en) Consumer energy management system and consumer energy management method
WO2015122196A1 (ja) 在宅状況判定装置、配送システム、在宅状況判定方法、在宅状況判定プログラム、および配送端末
WO2016076008A1 (ja) 電力需給制御装置、電力需給制御方法、及び、プログラム
US9651975B2 (en) System, method and apparatus for power demand adjustment based on consumer annoyance
JP5656921B2 (ja) 電力融通装置、電力融通システム、電力融通方法及びプログラム
US20240213780A1 (en) Storage battery control device
WO2013145525A1 (ja) エネルギー管理装置、エネルギー管理システム、プログラムを記憶する記憶媒体
WO2016084313A1 (ja) 電力需要調整システム、需要調整装置、グループ生成装置及びグループ生成方法
JP2020191766A (ja) 電力マネジメントシステム
WO2023238569A1 (ja) 電力調整装置
JP2019004564A (ja) 制御装置
JP2020202631A (ja) 蓄電池制御装置
JP2020078113A (ja) 制御装置
JP2019193402A (ja) 制御装置および制御方法
JP2023028343A (ja) 配送先決定装置
EP2985858B1 (en) Broad area management system, broad area management apparatus, building management apparatus, and broad area management method
JP2020202637A (ja) 制御装置
JP6836949B2 (ja) サーバ装置
JP2014023243A (ja) 電力管理システム、電力管理方法、統合管理装置、設備コントローラ及びプログラム
US10852705B1 (en) Distributed electrical power management system
JP2020198755A (ja) 直流電源システム
WO2023067944A1 (ja) 電力制御システム
JP7449778B2 (ja) 需要予測装置
WO2023195250A1 (ja) 電力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819555

Country of ref document: EP

Kind code of ref document: A1