WO2023238322A1 - 光素子、光集積素子および光素子の製造方法 - Google Patents
光素子、光集積素子および光素子の製造方法 Download PDFInfo
- Publication number
- WO2023238322A1 WO2023238322A1 PCT/JP2022/023280 JP2022023280W WO2023238322A1 WO 2023238322 A1 WO2023238322 A1 WO 2023238322A1 JP 2022023280 W JP2022023280 W JP 2022023280W WO 2023238322 A1 WO2023238322 A1 WO 2023238322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cladding
- waveguide
- waveguide core
- optical
- optical element
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 199
- 238000000034 method Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000011347 resin Substances 0.000 claims abstract description 107
- 229920005989 resin Polymers 0.000 claims abstract description 107
- 238000005253 cladding Methods 0.000 claims abstract description 95
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 21
- 238000000151 deposition Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000009826 distribution Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 15
- 230000001902 propagating effect Effects 0.000 description 14
- 238000004891 communication Methods 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
Definitions
- the present invention relates to an optical device for connecting optical devices, an optical integrated device, and a method for manufacturing the optical device.
- Optical communication devices require electrical elements such as drivers, switches, and electrical amplifier circuits, and optical elements such as semiconductor lasers, optical switches, and optical fibers.
- optical connection process of discretely connecting each optical element precise positioning between optical elements is important to realize a low-loss optical connection. Therefore, for example, even in commonly used optical connectors, high-precision components are used in which the optical axis misalignment between waveguide cores is 1 ⁇ m or less. As described above, in manufacturing optical communication devices, it is important to design and precision parts with strict tolerances in mind.
- SiPh Silicon Photonics
- SiPh is concerned with the positioning accuracy of optical mounting.
- SiPh is an optical device with a semiconductor material as its core, and it not only allows the production of ultra-small and highly economical optical circuits, but also enables high-density integration with electrical circuit elements.
- SiPh requires positioning accuracy and tighter tolerances during connection than devices with quartz cores, such as conventional PLCs (Planar lightwave circuits), which poses a problem in that the process load for optical connections increases. ing. This is because the smaller the optical mode field diameter (hereinafter referred to as "MFD”), the stricter the tolerance requirements during optical connection. This is because more accurate positioning technology is required.
- MFD optical mode field diameter
- SWW self-written waveguide
- This technology is an optical connection technology using a photocurable resin, and can connect waveguide cores to each other as described below.
- light used as signal light for optical communication (hereinafter referred to as "signal light") is emitted from at least one end face of the waveguide core.
- a photocurable resin is dropped into the gap between the waveguide cores.
- SWW cores (hereinafter referred to as "SWW cores") are formed sequentially from the end face of each waveguide core. Ru. As a result, a SWW core is formed on the end face of the waveguide core.
- the SWW core is formed according to the propagation path of the resin curing light, even if an optical axis misalignment occurs between the waveguide cores, an S-shaped SWW core is formed to compensate for the optical axis misalignment, resulting in a low A lossy optical connection can be realized.
- SWW cladding the SWW cladding resin onto the removed part (around the SWW core) and harden it appropriately to form the SWW cladding ( (hereinafter referred to as "SWW cladding"), and the connection by SWW is completed.
- wavelengths of the resin curing light used to form the SWW are in the wavelength range below visible light.
- the photocurable resin is cured from the part where the intensity of the resin curing light is high, when the intensity distribution of the resin curing light is close to a Gaussian distribution, the resin curing reaction proceeds quickly in the center of the distribution.
- the tip of the SWW has a lens shape. This lens-shaped tip of the SWW condenses the resin curing light emitted from the tip of the SWW, thereby curing the resin. Since the SWW is formed by repeating this phenomenon, the SWW is formed while keeping its core diameter approximately constant by the resin curing light having an intensity distribution close to a Gaussian function (Non-Patent Document 1).
- the polymerization rate will be approximately constant across the beam cross section.
- the tip of the SWW does not have a lens shape, but a tapered SWW is formed in which the core diameter of the SWW gradually increases in the propagation direction of the resin curing light. Therefore, in order to form a SWW with a constant core diameter, the intensity of the resin curing light needs to be lower than a predetermined threshold value that depends on the resin.
- SWW technology has an axis misalignment compensation effect and can realize low-loss connections, regardless of the gaps between cores and optical axis misalignment, which are factors that cause connection loss between cores. Therefore, optical connection technology using SWW can ease tolerance requirements in optical connections, and can realize simple optical integration and high-yield, low-loss packaging.
- the SWW is formed on the end face of the SiPh chip using resin curing light (visible light) using a known specific waveguide structure.
- the waveguide structure needs to be transparent to visible light in the wavelength band of the resin curing light and light in the long wave band of the communication wavelength band.
- materials such as SiN and SiON are transparent to light in the visible light to communication wavelength range, they are used in the waveguide structure for SWW.
- a conventional optical device 40 for forming a SWW includes a lower cladding 42 and a waveguide core 43 on an SOI (Silicon-on-insulator) substrate (not shown).
- a waveguide core 43 is covered with an upper cladding 44.
- the upper cladding 44 and the lower cladding 42 are made of silicon oxide, and the waveguide core 43 is made of SiN.
- the waveguide core 43 may be made of SiON.
- the width of the waveguide core 43 decreases toward the end of the optical element 40 (in the direction of the arrow x in FIG. 10A), and has the function of enlarging the MFD as a spot-size converter (SSC).
- SSC spot-size converter
- connection loss occurs when the signal light propagates through the boundary between the end face of the optical element 40 and the SWW. Details are explained below.
- FIGS. 11A and 11B show calculation results for the respective aspects of signal light and resin curing light in a conventional optical element.
- the x-coordinate indicates the direction of light propagation (arrow x direction in FIG. 10A), and the y-coordinate indicates a direction perpendicular to the light propagation direction (arrow y direction in FIG. 10A).
- the waveguide structure 431 used in the calculation is indicated by a thin solid line.
- the waveguide structure was made of tapered SiN, the width of one end (base end) was 800 nm, the width of the other end (tip) was 100 nm, and the length of the tapered structure was 350 ⁇ m.
- the parts other than the waveguide structure were made of silicon oxide.
- the structure used in the calculation has a waveguide with a constant width (width 800 nm) and a length of 10 ⁇ m at the base end of the tapered structure, and a waveguide with a constant width (width 100 nm) and a length of 20 ⁇ m at the tip.
- this constant width waveguide the signal light and the resin curing light propagate without changing the MFD.
- the wavelength of the signal light was 1550 nm, and the wavelength of the resin curing light was 532 nm.
- the MFD gradually expands and leaks out of the waveguide, as shown in FIG. 11A.
- the resin curing light is confined throughout the waveguide, as shown in FIG. 11B. This is because the resin curing light has a shorter wavelength than the signal light.
- the waveguide at the tip of the SSC with a tapered structure is made thinner for signal light (long wavelength light), and the signal light gradually seeps out from the waveguide to expand the MFD.
- the core size of the waveguide at the tapered tip is smaller than the core size that allows the signal light to exist as a propagation mode within the waveguide.
- resin curing light short wavelength light
- the resin curing light propagates within the waveguide without seeping out from the core in a waveguide having a size that functions as an SSC, as shown in FIG. 11B.
- the MFD of the signal light is expanded by the tapered structure and has an MFD larger than the width of the core of the waveguide.
- loss occurs in the signal light propagating within the optical element when it is connected to the SWW.
- connection loss of light transiting between optically different waveguides is determined by the difference in MFD of the propagation mode of each waveguide. Furthermore, although the MFD is slightly affected by the difference in refractive index between the core and cladding of the waveguide, it has a size comparable to that of the core of the waveguide through which propagation occurs.
- the MFD of the propagation mode of the signal light propagating through the SWW core 461 is approximately the same as the diameter of the SWW core 461.
- the MFD of the signal light at the end face of the optical element 40 is larger than that of the waveguide core 43. In this way, in the signal light, since the MFD in the SWW core 461 and the MFD in the waveguide core 43 are different, connection loss occurs between the respective waveguides.
- connection loss occurs due to the difference between visible light and signal light. do.
- connection loss occurs in optical communication devices in which SWWs are formed using conventional optical elements and optically connected.
- an optical device is an optical device that is connected to another optical device via a self-forming waveguide, and includes, in order, a substrate, a first cladding, A waveguide core having a refractive index higher than the refractive index of the first cladding and through which the signal light and the resin curing light propagate, and a second cladding having a refractive index lower than the refractive index of the waveguide core.
- the tip of the waveguide core on the side connected to the self-formed waveguide is arranged such that the mode field diameter of the signal light and the mode field diameter of the resin curing light are approximately the same at the end face of the second cladding.
- the second cladding is disposed at a position away from the end surface of the second cladding, and is located between the tip of the waveguide core on the side that connects to the self-forming waveguide and the end surface of the second cladding. cladding is arranged.
- the optical device is connected to another optical device via a self-formed waveguide, and a substrate, a first cladding, and a refractive index higher than the refractive index of the first cladding are formed.
- the method comprising: determining the respective structures of the core, the first cladding, and the second cladding, and determining the wavelengths of the signal light and the resin curing light; a step of calculating mode field diameters of each of the signal light and the resin curing light; and a step of calculating a position where the mode field diameters of the signal light and the resin curing light, which are emitted from the waveguide core, are comparable, and a step of depositing a material of the first cladding and a material of the waveguide core on the substrate in order; a step of depositing the structure and the second cladding on the substrate; and forming the second cladding so as to cover the waveguide core.
- an optical element that can reduce connection loss between signal light and a self-forming waveguide (SWW).
- SWW self-forming waveguide
- FIG. 1A is a top perspective schematic diagram showing the configuration of an optical element according to a first embodiment of the present invention.
- FIG. 1B is a schematic cross-sectional view taken along line IB-IB' showing the configuration of the optical device according to the first embodiment of the present invention.
- FIG. 1C is an IC-IC' cross-sectional schematic diagram showing the configuration of the optical device according to the first embodiment of the present invention.
- FIG. 2 is a top perspective schematic diagram showing an example of the configuration of the optical element according to the first embodiment of the present invention.
- FIG. 3A is a top perspective schematic diagram showing the configuration of the optical integrated device according to the first embodiment of the present invention.
- FIG. 3B is a schematic cross-sectional view taken along IIIB-IIIB' showing the configuration of the optical integrated device according to the first embodiment of the present invention.
- FIG. 4A is a schematic diagram of a waveguide structure for explaining the mode field diameter (MFD) of signal light and resin curing light propagating through the optical element according to the first embodiment of the present invention.
- FIG. 4B is a diagram for explaining the mode field diameter (MFD) of the signal light and resin curing light propagating through the optical element according to the first embodiment of the present invention.
- FIG. 4C is an enlarged view for explaining the mode field diameter (MFD) of the signal light and resin curing light propagating through the optical element according to the first embodiment of the present invention.
- FIG. MFD mode field diameter
- FIG. 5 is a flowchart for explaining the method for manufacturing an optical device according to the first embodiment of the present invention.
- FIG. 6A is a top perspective schematic diagram showing the configuration of an optical element according to a second embodiment of the present invention.
- FIG. 6B is a VIB-VIB' cross-sectional schematic diagram showing the configuration of an optical device according to the second embodiment of the present invention.
- FIG. 7A is a top perspective schematic diagram showing the configuration of an optical integrated device according to a second embodiment of the present invention.
- FIG. 7B is a VIIB-VIIB' cross-sectional schematic diagram showing the configuration of an optical integrated device according to the second embodiment of the present invention.
- FIG. 8 is a top perspective schematic diagram showing the configuration of an optical element and a self-forming waveguide according to a third embodiment of the present invention.
- FIG. 9 is a schematic top view showing the configuration of a mode filter in an optical element according to a third embodiment of the present invention.
- FIG. 10A is a top perspective schematic diagram showing the configuration of a conventional optical element.
- FIG. 10B is a schematic cross-sectional view taken along the line XB-XB' showing the configuration of a conventional optical device.
- FIG. 11A is a diagram for explaining the light intensity distribution of signal light in a conventional optical element.
- FIG. 11B is a diagram for explaining the light intensity distribution of resin curing light in a conventional optical element.
- FIG. 12 is a top perspective schematic diagram showing the configuration of a conventional optical element and a self-forming waveguide.
- the optical device includes, in order, a substrate 11, a first cladding 12, a waveguide core 13, and a second cladding 14, as shown in FIGS. 1A to 1C.
- the substrate 11 is a Si substrate.
- the first cladding 12 is silicon oxide (SiO 2 ).
- the waveguide core 13 is made of silicon nitride and is placed on the first cladding 12.
- the waveguide core 13 has a tapered shape that becomes thinner toward the tip 131 of the waveguide core 13 (the tip on the side where the self-formed waveguide is formed).
- the length of the waveguide core 13 is 350 ⁇ m, and the width varies from 800 nm to 100 nm.
- the waveguide core 13 may be made of SiON.
- the second cladding 14 is made of silicon oxide and is arranged to cover the waveguide core 13.
- the waveguide core 13 is not placed near the end surface 141 of the second cladding 14. That is, there is a gap (hereinafter referred to as "MFD control gap") 15 between the end surface of the tip 131 of the waveguide core 13 and the end surface 141 of the second cladding 14, and the second A cladding 14 is arranged.
- MFD control gap a gap
- the waveguide core 13 may have a waveguide 132 with a constant width at the tip 131.
- the waveguide core 13 may have a constant width shape on the side of the tip 131 of the waveguide core 13 from the dotted line 133 in the figure, and may have a tapered shape on the opposite side.
- the signal light and the resin curing light propagate without changing the MFD.
- the optical device 10 is connected to another optical device 10_2 via the SWW 16.
- the SWW 16 has a SWW cladding 162 around a SWW core 161.
- the other optical element 10_2 is a waveguide element, an optical fiber, or the like, and includes, for example, a substrate 11_2, a first cladding 12_2, a waveguide core 13_2, and a second cladding 14_2.
- the light propagating through the waveguide core 13 of the optical element 10 is optically coupled to the waveguide core 13_2 of another optical element 10_2 via the SWW core 161.
- FIG. 4A shows a schematic diagram of the waveguide structure used in the calculation.
- the calculation was performed using the finite difference time domain method (FDTD) method (product name: "ANSYS Lumerical FDTD”) for the two-dimensional waveguide structure.
- FDTD finite difference time domain method
- EME eigenmode expansion
- the fundamental mode of the propagating light was calculated assuming that the wavelength of the signal light was 1550 nm and the wavelength of the resin curing light was 532 nm.
- the MFD at each x-coordinate was calculated by performing Gaussian fitting on a function f(y) indicating the intensity distribution of light at each coordinate x in the propagation direction.
- y indicates a direction perpendicular to the propagation direction (x direction) (arrow y in the figure).
- FIGS. 4B and 4C show calculation results of MFD in the respective propagation directions of the signal light and the resin curing light.
- the MFD expands more rapidly than with the signal light. This is because, as described above, light with a shorter wavelength has a larger beam spread per unit propagation distance than light with a longer wavelength.
- the MFD control gap 15 in the optical element 10 is set to a length of x L to x' (here, 4 ⁇ m), the MFD of the signal light emitted from the optical element 10 can be made to be about the same size as the SWW. Therefore, connection loss of signal light is reduced.
- the MFD control gap 15 is set so that the beam diameters of the signal light and the resin curing light are approximately the same at the output end face 101 of the optical device 10. , connection loss of the signal light to the SWW due to the difference in wavelength between the signal light and the resin curing light can be reduced.
- the range in which the beam diameters are approximately the same includes that the beam diameters are the same, and also includes cases where there is a difference of about 1 to 2 ⁇ m, for example.
- the connection loss of the signal light between the optical element and the SWW may be within a range that does not interfere with the propagation of the signal light in optical communication or the like.
- calculation results for a two-dimensional waveguide structure are shown, but calculations can be similarly performed for a three-dimensional waveguide structure using the FDTD method (product name: "ANSYS Lumerical FDTD").
- FDTD method product name: "ANSYS Lumerical FDTD”
- the beam diameters of the propagating signal light and resin curing light are determined to be at a predetermined position. (corresponding to MFD control gap: 1 to 20 ⁇ m), consistent results are obtained.
- the MFD control gap 15 in the optical element is determined.
- the structures of the waveguide core 13 and the first and second claddings 12 and 14 are determined. Furthermore, the wavelengths of the signal light and resin curing light are determined (step S1).
- the MFD diameters of the signal light and resin curing light that propagate through the waveguide core 13 and exit are calculated (step S2).
- a position where the MFD diameters of the signal light and the resin curing light emitted from the waveguide core 13 are approximately the same is determined to be the position of the end face of the second cladding. That is, the MFD control gap 15 is determined (step S3).
- a material for the lower cladding (first cladding) 12 is deposited on the substrate.
- material for the waveguide core 13 is deposited on the lower cladding (first cladding) 12 (step S4).
- Si can be used as the material of the substrate
- SiO 2 can be used as the material of the lower cladding
- SiN x can be used as the material of the waveguide core 13.
- the SiN x is processed into the waveguide core 13 using photolithography (step S5).
- the mask pattern used for photolithography is created based on the shape of the waveguide core 13 and the MFD control gap 15 obtained by calculation.
- an upper cladding (second cladding) 14 is formed to cover the waveguide core 13 (step S6).
- SiO 2 is used as the material for the upper cladding (second cladding) 14.
- the end face 101 of the optical element 10 and the end face of another optical element (waveguide element) 10_2 are placed facing each other with a predetermined interval.
- a SWW material (photocurable resin) is filled (dropped) between the end surface 141 of the second cladding 14 of the optical element and the end surface of the other optical element (waveguide element) 10_2.
- the photocurable resin can be retained.
- the resin curing light is propagated to the waveguide core 13 and emitted from the tip 131 of the waveguide core 13, further propagated to the second cladding 14, and emitted from the end face 141 of the second cladding 14.
- the photocurable resin is irradiated with resin curing light.
- the area of the photocurable resin irradiated with the resin curing light is cured and becomes the SWW core 161.
- the SWW cladding 162 is formed around it.
- the optical device 10 according to this embodiment and another optical device (waveguide device) 10_2 are optically connected via the SWW 16, and the optical integrated device 1 is manufactured (FIGS. 3A and 3B).
- the SWW core 161 may be surrounded by air, for example, and does not need to be provided with a SWW cladding. In this case, it is not necessary to form the SWW cladding in the last step in the method for manufacturing the optical integrated device described above.
- the size of the SWW and the MFD of the signal light can be made comparable, so that the connection loss of the signal light between the waveguide of the optical device and the SWW can be reduced.
- the MFD of signal light propagating through an actual SWW is affected by the refractive index difference between the cladding and core of the SWW. Therefore, the refractive index of the SWW cladding is adjusted so that the MFD of the signal light and the propagation mode of the signal light in the SWW match, and the loss that occurs at the boundary between the SWW and the end face of the optical element (chip) is reduced. Good too.
- the core diameter of SWW slightly depends on the intensity of the resin curing light. Therefore, the loss of the signal light transiting from the optical element to the SWW can be reduced by changing the intensity of the resin curing light.
- the SWW can be formed only at a predetermined resin curing light intensity or higher.
- the intensity of the resin curing light is too high, bubbles will be generated due to the heat generated by the resin, which will adversely affect the formation of SWW. Therefore, it is necessary to form the SWW at an intensity lower than the intensity of the resin curing light, which adversely affects the formation of the SWW.
- the optimal value of the MFD control gap 15 can be determined in advance by numerical calculations or the like when designing the optical device. Based on the design value, it is preferable to create polishing marks together with dicing markers on the optical element using a waveguide pattern or the like in order to adjust the MFD control gap 15 of the manufactured optical element (chip). Thereby, the length of the MFD control gap 15 can be efficiently controlled by polishing the end face of the optical element while checking the polishing mark with an optical microscope or the like.
- the yield in the manufacturing process can be improved and waveguide loss can be reduced.
- the MFD expands when not only the resin curing light but also the signal light propagates through the MFD control gap. Therefore, even if the width of the tip of the waveguide of the optical element (width of SSC) is set wider than the width of the tip of the waveguide in a normal optical element, the MFD at the end face of the optical element can be made the same.
- the width of the waveguide can be set wide, so the yield in the manufacturing process can be improved, and optical loss due to sidewall roughness of the manufactured waveguide can be reduced.
- the length of the MFD control gap in the optical element is set to 4 ⁇ m, but the length of the MFD control gap depends on the shape of the waveguide core and the wavelengths of the signal light and resin curing light. Dependent. For example, when the wavelength of the signal light is 1550 nm and the wavelength of the resin curing light is 532 nm, the length of the tapered structure of the waveguide core is 200 to 500 ⁇ m, the width of the base end is 500 to 1000 nm, and the width of the tip is 50 to 200 nm. In the range, the length of the MFD control gap is 2 to 10 ⁇ m.
- the length of the tapered structure of the waveguide core is 350 ⁇ m or more
- the width of the base end is 500 to 1000 nm
- the width of the tip is 500 nm or less
- the thickness of the waveguide core is 2 ⁇ m or less
- the wavelength of the signal light is 1250 nm or more. ⁇ 1350 nm
- the wavelength of the resin curing light is in the range of 385 to 1550 nm
- the length of the MFD control gap is 1 to 150 ⁇ m.
- the end surfaces 121 and 141 of the first cladding 12 and the second cladding 14 are located inside the end surface 111 of the substrate 11 (waveguide 131 side of the core 13). That is, the end of the optical element 20 has a step, and the surface of the step is the surface of the substrate 11.
- this area 21 will be referred to as the "SWW area”.
- Other configurations are similar to those of the first embodiment.
- the SWW region 21 of the optical device 20 according to the present embodiment can be manufactured by protecting regions other than the SWW region 21 with a mask pattern created by, for example, a wafer process, and performing etching.
- This mask pattern is produced by a highly accurate (1 ⁇ m or less) positioning technique used in wafer processing.
- the MFD control gap 15 can be controlled with higher precision than the processing using dicing or markers in the first embodiment, and the MFD can be controlled with a higher yield.
- the end face 101 of the optical element 10 (the end face 121 of the first cladding 12 and the end face 141 of the second cladding 14),
- the gap between the optical element 10_2 and the end face of the other optical element 10_2 to be connected can be filled with the SWW material (resin).
- the step in the SWW region is located on the surface of the substrate, but it may be located inside the substrate or inside the first cladding.
- the optical device 30 has a mode filter 31 that functions for resin curing light on the base end side of the waveguide core 13 (on the opposite side from the tip 131).
- the mode filter 31 may be placed in the waveguide core 13.
- the optical element 30 is connected to another optical element (not shown) via the SWW 16.
- the mode filter 31 includes a width modulation structure of a Bragg grating on both sides of the waveguide core 13.
- the width of the waveguide is 800 nm
- the depth of the grating is 45 nm.
- the grating period is 320 nm
- the duty ratio ratio of the length of the convex portion to the period
- the formation conditions of the SWW may be adversely affected due to the influence of multimode in the resin curing light.
- the structure of the optical element 10 is a structure used for SiPh etc., and the waveguide core 13 is under single mode conditions for signal light. Therefore, the waveguide core 13 behaves as a multimode waveguide for resin curing light having a shorter wavelength than the signal light.
- the length of the MFD control gap in the case of only single mode is different from the length of the MFD control gap in the case of multimode. Therefore, even if the MFD control gap is formed based on the value designed for single mode, the SWW is formed by the multimode resin curing light, so the size of the SWW cannot be made to match the MFD of the signal light. , the connection loss of signal light cannot be reduced.
- the influence of multimode can be suppressed by using a mode filter.
- the high-order transverse mode of the resin curing light propagating through the waveguide core 13 is strongly scattered by the mode filter.
- the light intensity of the resin curing light at the output end face of the waveguide core 13 can be made into a Gaussian distribution or close to a Gaussian distribution (single mode).
- the mode filter in the optical device can provide a large loss to frequencies other than the lowest order transverse mode of the resin curing light propagating through the waveguide core 13. Therefore, even if the resin curing light becomes multimode due to manufacturing errors, only the lowest order transverse mode can be emitted from the tip 131 of the waveguide core 13 with a high yield. That is, it is possible to provide an optical element that emits resin curing light having a distribution in which the light intensity is high at the center of the core and decreases toward the sides of the core.
- the light intensity distribution of the resin curing light can be made into a Gaussian distribution or a Gaussian distribution, so SWW can be formed with high precision. It is possible to form a low-loss SWW core with a long shape and a constant core diameter. Therefore, the connection loss of signal light between the waveguide of the optical element and the SWW can be further reduced.
- the grating is formed on the side surface of the waveguide core as a mode filter, but it may be formed on the top surface of the waveguide core.
- a grating made of a material other than the material of the waveguide core 12 for example, a metal diffraction grating (grating) made of metal such as aluminum (Al) may be used.
- the concavities and convexities do not need to be arranged periodically, but may be configured such that the concavities and convexities are arranged randomly and the waveguide width is modulated randomly. Further, instead of the uneven shape, a wavy shape may be used.
- a bent waveguide may be used as the mode filter.
- the radiation loss of higher-order modes of propagating light is large, so multi-mode formation can be suppressed.
- a structure that suppresses multi-mode formation of the resin curing light propagating through the waveguide may be used.
- the optical device according to the embodiment of the present invention can be applied to a structure in which an optical waveguide made of a material transparent to resin curing light is formed on a substrate.
- an optical waveguide made of a material transparent to resin curing light is formed on a substrate.
- PLC planar lightwave circuit
- the present invention relates to an optical element for connecting optical elements, an optical integrated element, and a method for manufacturing the optical element, and can be applied to optical communication devices and optical communication network systems.
- Optical element 10_2 Other optical element 11
- Substrate 12 First cladding 13
- Waveguide core 131 The tip of the waveguide core is 14
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本発明の光素子(10)は、他の光素子(10_2)と自己形成導波路(16)を介して接続する光素子(10)であって、順に、基板(11)と、第1のクラッド(12)と、第1のクラッド(12)の屈折率より高い屈折率を有し、信号光と樹脂硬化光とが伝搬する導波路コア(13)と、導波路コア(13)の屈折率より低い屈折率を有する第2のクラッド(14)とを備え、導波路コア(13)の自己形成導波路(16)と接続する側の先端(131)が、第2のクラッド(14)の端面(141)で信号光のモードフィールド径と樹脂硬化光のモードフィールド径とが同程度になるように、第2のクラッド(14)の端面(141)と離れた位置に配置され、導波路コア(13)の自己形成導波路(16)と接続する側の先端(131)と、第2のクラッド(14)の端面(141)との間に、第2のクラッド(14)が配置される。 これにより、本発明は、信号光の自己形成導波路との接続損失を低減できる光素子を提供できる。
Description
本発明は、光素子を接続するための光素子、光集積素子および光素子の製造方法に関する。
光通信ネットワークの進展に伴い光通信デバイスの高機能化、経済化が求められている。光通信デバイスとして、ドライバ、スイッチ、電気増幅回路などの電気素子や、半導体レーザ、光スイッチ、光ファイバなどの光素子が必要となる。
ここで、それぞれの光素子をディスクリートに接続する光接続工程において、低損失な光接続の実現には、光素子間の精密な位置決めが重要である。そのため、例えば汎用的に用いられている光コネクタなどにおいても、導波路コア間の光軸ずれを1μm以下とする高精度な部品が使用されている。このように、光通信デバイスを製造する上で、厳しい公差を考慮した設計・精密部品が重要となる。
とくに、SiPh(Silicon Photonics)は、光実装の位置決め精度を課題としている。SiPhは半導体材料をコアとした光デバイスであり、超小型かつ経済性の高い光回路を作製可能なだけでなく、電気回路素子との高密度集積も可能である。
しかしながら、SiPhにおいては、従来のPLC(Planar lightwave circuit)に代表される石英系コアのデバイス以上の接続時の位置決め精度や厳しい公差が要求され、光接続の工程負荷が増大することが問題となっている。これは、光のモードフィールド径(Mode field diameter、以下「MFD」という。)が小さいほど光接続時の公差要求が厳しくなるため、微小なMFDをもつ半導体系光回路デバイスであるSiPhの光接続には、より高精度な位置決め技術が必要とされるからである。
一方、MFDを拡大することで、位置決め精度を緩和できる。しかしながら、SiPhにおいては製造時の各層の膜厚が制約され、半導体導波路特有の高屈折率により導波路側壁粗さに起因した高い損失が生じるので、従来のPLCなどに代表される光素子と比較して、一般的な光ファイバと同等の低損失かつ高歩留まりのMFDを得ることは難しい。
そこで、従来の光ファイバの10μm程度のMFDより小さい4μm程度のMFDに光素子(チップ)と光ファイバのMFDを変換する方法が、低損失の光接続に用いられる。しかしながら、この方法を用いた場合、MFDが小さいのでサブミクロン程度の高い位置決め精度が必要とされるため、光接続時の位置決め精度や光部品に求められる公差が厳しくなる。
この接続に必要な位置決め精度を緩和できる技術として、自己形成導波路(Self-written waveguide、以下、「SWW」という。)が開示されている(非特許文献1)。
本技術は、光硬化性の樹脂を用いた光接続技術であり、以下のように、導波路コアと導波路コアとの間を接続することができる。ここで、少なくとも一方の導波路コア端面からは光通信の信号光として使われる光(以下、「信号光」という。)が出射される。
SWWの形成において、初めに、導波路コア間の間隙に光硬化性樹脂を滴下する。
次に、両方又はいずれか一方の導波路コアから光硬化性樹脂を硬化するための光である樹脂硬化光を照射する。このとき、光硬化性樹脂の特性である光の強度が高い箇所から順次硬化する性質のために、それぞれの導波路コア端面から順次SWWのコア(以下、「SWWコア」という。)が形成される。これにより、導波路コアの端面にSWWコアが形成される。
また、樹脂硬化光の伝搬経路に従ってSWWコアが形成されるので、導波路コア間に光軸ずれが生じても、光軸ずれを補償するようにS字曲げ形状のSWWコアが形成され、低損失な光接続が実現できる。
最後に、必要に応じて、光硬化性樹脂の未硬化部分を洗浄するなど除去した後に、除去後の部分(SWWコア周囲)にクラッド用の樹脂を滴下し適宜硬化させることでSWWのクラッド(以下、「SWWクラッド」という。)を形成して、SWWによる接続は完了する。
ここで、SWWの形成に用いられる樹脂硬化光の波長は、ほとんどが可視光以下の波長域にある。
SWWを一定のコア径で形成するためには、樹脂硬化光の光電場強度を所定の閾値より低くし、樹脂硬化光の光強度分布をガウシアン関数に近いものにする必要がある。
詳細には、光硬化性樹脂は樹脂硬化光の強度が高い部分から硬化するので、樹脂硬化光の強度分布がガウシアン分布に近い場合、その分布の中心部で樹脂硬化反応が速く進行する。その結果、SWWの先端はレンズ形状となる。このレンズ形状のSWW先端により、SWW先端から出射される樹脂硬化光は集光され、樹脂を硬化する。この現象の繰り返しでSWWは形成されるため、ガウシアン関数に近い強度分布の樹脂硬化光により、SWWはそのコア径を概ね一定に保ちながら形成される(非特許文献1)。
また、樹脂硬化光の強度を増加すると、樹脂の硬化速度(=モノマの重合速度)が一定の強度で飽和する。この飽和がすべてのビーム断面にわたって発生するとき、重合速度はビーム断面積にわたってほぼ一定となる。その結果、SWWの先端はレンズ形状にならず、樹脂硬化光の伝搬方向に対してSWWのコア径が徐々に増加するテーパ形状のSWWが形成される。したがって、一定のコア径のSWWを形成するためには、樹脂硬化光の強度は樹脂に依存する所定の閾値よりも低い必要がある。
SWW技術は、コア間の接続損失の要因であるコア間の間隙や光軸ずれにかかわらず、軸ずれ補償効果を有し、低損失な接続が実現できる。そこで、SWWによる光接続技術は、光接続における公差要求を緩和でき、簡易な光集積や高歩留まりかつ低損失な実装を実現できる。
SWWは、公知の特定の導波路構造を用いて、SiPhチップ端面に樹脂硬化光(可視光)により形成される。このとき、導波路構造は、樹脂硬化光の波長帯の可視光および通信波長帯の長波帯の光に対して透明である必要がある。ここで、SiNやSiONなどの材料が可視光から通信波長帯の光に対して透明なので、SWW用の導波路構造に用いられる。
従来のSWW形成のための光素子40は、図10A、Bに示すように、SOI(Silicon-on-insulator)基板(図示せず)の上に、順に、下部クラッド42、導波路コア43が形成され、導波路コア43が上部クラッド44に覆われている。ここで、上部クラッド44と下部クラッド42は酸化シリコンによって構成され、導波路コア43はSiNによって構成される。導波路コア43はSiONによって構成されてもよい。
導波路コア43は、光素子40の端部(図10A中、矢印x方向)へ向かうほど幅が減少し、SSC(Spot-size converter)としてMFDを拡大する機能を有する。これにより、光素子40の端面のMFDを、接続する他の光素子(図示せず)に合わせて拡大し、光素子40と他の光素子との間の光接続損失を低減できる。
各務学,「光配線を実現する自己形成光導波路技術」,光学, vol.37, no.2, (2008).
しかしながら、従来の光素子40を用いてSWWを形成すると、光素子40の端面とSWWとの境界を信号光が伝搬する際に接続損失が生じるという問題があった。詳細を以下に説明する。
図11A、Bに、従来の光素子における信号光と樹脂硬化光それぞれの態様の計算結果を示す。x座標は光の伝搬方向(図10A中、矢印x方向)、y座標は光の伝搬方向に対して垂直方向を示す(図10A中、矢印y方向)。ここで、図11A、B中、計算に用いた導波路構造431を細実線で示す。
計算は、2次元導波路構造についてFDTD法(製品名:「ANSYS Lumerical FDTD」)により行った。
また、導波路構造はテーパ形状のSiNで構成され、一方の端部(基端)の幅が800nmで他方の端部(先端)の幅が100nm、テーパ構造の長さは350μmとした。導波路構造以外の部分は、酸化シリコンで構成されるものとした。
また、計算に用いた構造では、テーパ構造の基端に一定幅(幅800nm)で長さ10μmの導波路を有し、先端に一定幅(幅100nm)で長さ20μmの導波路を有する。この一定幅の導波路では、信号光および樹脂硬化光はMFDを変化させずに伝搬する。
また、光源を導波路構造の中心軸上で、導波路構造の基端から導波路内に1μmの位置(図11Aの座標でx=1μm、y=0μmの位置)に配置して、光源からの出射光が導波路断面に対する基底の伝搬モードで伝搬するとして計算した。
また、信号光の波長を1550nm、樹脂硬化光の波長を532nmとした。
信号光では、図11Aに示すように、導波路を伝搬するにともないMFDが徐々に拡大して、導波路から漏れ出す。
一方、樹脂硬化光は、図11Bに示すように、導波路全域で閉じ込められている。これは、信号光よりも樹脂硬化光の波長が短いためである。
従来の光素子では、信号光(長波長の光)に対して、テーパ構造を有するSSCにおいて先端の導波路を細くして、導波路から徐々に信号光を染み出させMFDを拡大させる。このとき、テーパ先端の導波路のコアのサイズは、信号光が導波路内の伝搬モードとして存在できるコアサイズよりも小さい。
一方、樹脂硬化光(短波長の光)は、より小さいコアでもコア内に伝搬モードとして閉じ込められる。その結果、樹脂硬化光は、図11Bに示すように、SSCとして機能するサイズの導波路においてコアから染み出すことなく導波路内を伝搬する。
このように、樹脂硬化光が光素子の導波路を伝搬するとき、樹脂硬化光の強度が高い部分から硬化してSWWが形成されるので、図12に示すように、光素子40の端面にテーパ構造で細くなった導波路コア43の幅と同程度の幅を有するSWWコア461が形成される。また、引き続き、SWWコア461の周辺にSWWクラッド462が形成される。
一方で、信号光は、図11Aに示すように、テーパ構造によってMFDが拡大され、導波路のコアの幅よりも大きいMFDを有する。その結果、光素子内を伝搬する信号光において、SWWに接続する際に損失が発生する。
通常、SiPh等のシングルモード導波路の場合、光学的に異なる導波路間を遷移する光の接続損失は、それぞれの導波路の伝搬モードのMFDの差によって決まる。また、MFDは、導波路のコアとクラッドとの屈折率差に若干影響を受けるが、伝搬する導波路のコアと同程度の大きさである。
SWW46において、図12に示すように、SWWコア461を伝搬する信号光の伝搬モードのMFDは、SWWコア461の直径と同程度である。一方、光素子40の端面の信号光のMFDは、導波路コア43よりも大きい。このように、信号光において、SWWコア461でのMFDと導波路コア43でのMFDとが異なるため、それぞれの導波路間での接続損失が発生する。
以上のように、従来の光素子端面に向かって導波路が細くなるSSCを有する光素子に対して、SWWを可視光により形成すると、可視光と信号光との差異に起因する接続損失が発生する。これにより、従来の光素子を用いてSWWを形成し光接続した光通信デバイスにおいては、接続損失が発生するという問題があった。
上述したような課題を解決するために、本発明に係る光素子は、他の光素子と自己形成導波路を介して接続する光素子であって、順に、基板と、第1のクラッドと、前記第1のクラッドの屈折率より高い屈折率を有し、信号光と樹脂硬化光とが伝搬する導波路コアと、前記導波路コアの屈折率より低い屈折率を有する第2のクラッドとを備え、前記導波路コアの前記自己形成導波路と接続する側の先端が、前記第2のクラッドの端面で前記信号光のモードフィールド径と樹脂硬化光のモードフィールド径とが同程度になるように、前記第2のクラッドの端面と離れた位置に配置され、前記導波路コアの前記自己形成導波路と接続する側の先端と、前記第2のクラッドの端面との間に、前記第2のクラッドが配置されることを特徴とする。
また、本発明に係る光素子の製造方法は、他の光素子と自己形成導波路を介して接続し、基板と、第1のクラッドと、前記第1のクラッドの屈折率より高い屈折率を有し、信号光と樹脂硬化光とが伝搬する導波路コアと、前記導波路コアの屈折率より低い屈折率を有する第2のクラッドとを備える光素子の製造方法であって、前記導波路コアと前記第1のクラッドと前記第2のクラッドそれぞれの構造を決定し、前記信号光と前記樹脂硬化光の波長を決定する工程と、前記構造において、前記導波路コアを伝搬し出射する前記信号光と前記樹脂硬化光それぞれのモードフィールド径を計算する工程と、前記導波路コアから出射する、前記信号光と前記樹脂硬化光それぞれのモードフィールド径が同程度である位置を、前記第2のクラッドの端面の位置に決定する工程と、前記基板の上に、順に、前記第1のクラッドの材料と、前記導波路コアの材料を堆積する工程と、前記構造と、前記第2のクラッドの端面の位置とに基づき、前記導波路コアの材料を前記導波路コアに加工する工程と、前記導波路コアを覆うように、前記第2のクラッドを形成する工程とを備える。
本発明によれば、信号光の自己形成導波路(SWW)との接続損失を低減できる光素子を提供できる。
<第1の実施の形態>
本発明の第1の実施の形態に係る光素子について、図1~図5Bを参照して説明する。
本発明の第1の実施の形態に係る光素子について、図1~図5Bを参照して説明する。
<光素子の構成>
本実施の形態に係る光素子は、図1A~Cに示すように、順に、基板11と、第1のクラッド12と、導波路コア13と、第2のクラッド14とを備える。
本実施の形態に係る光素子は、図1A~Cに示すように、順に、基板11と、第1のクラッド12と、導波路コア13と、第2のクラッド14とを備える。
基板11は、Si基板である。
第1のクラッド12は、酸化シリコン(SiO2)である。
導波路コア13は、窒化シリコンであり、第1のクラッド12上に配置される。導波路コア13は、導波路コア13の先端(自己形成導波路が形成される側の先端)131に向けて細くなるテーパ形状を有する。ここで、例えば、導波路コア13の長さは350μmであり、幅は800nmから100nmまで変化する。また、導波路コア13は、SiONによって構成されてもよい。
第2のクラッド14は、酸化シリコンであり、導波路コア13を覆うように配置される。
導波路コア13は、第2のクラッド14の端面141の近傍に配置されない。すなわち、導波路コア13の先端131の端面と、第2のクラッド14の端面141との間に間隙(以下、「MFD制御用間隙」という。)15を有し、その間隔には第2のクラッド14が配置される。
本実施の形態では、導波路コア13がテーパ形状を有する例を示したが、これに限らない。導波路コア13が、先端131に一定幅の導波路132を有してもよい。例えば、導波路コア13は、図2に示すように、図中点線133より導波路コア13の先端131側において一定幅の形状であり、反対側においてテーパ形状でもよい。ここで、導波路コア13の一定幅の導波路132では、信号光および樹脂硬化光はMFDを変化させずに伝搬する。
<光集積素子の構成>
本実施の形態に係る光集積素子1では、図3A、Bに示すように、光素子10が、SWW16を介して、他の光素子10_2と接続する。
本実施の形態に係る光集積素子1では、図3A、Bに示すように、光素子10が、SWW16を介して、他の光素子10_2と接続する。
SWW16は、SWWコア161の周囲にSWWクラッド162を有する。
他の光素子10_2は、導波路素子や光ファイバ等であり、例えば、基板11_2と、第1のクラッド12_2と、導波路コア13_2と、第2のクラッド14_2とを備える。
光素子10の導波路コア13を伝搬する光は、SWWコア161を介して、他の光素子10_2の導波路コア13_2と光学的に結合する。
次に、本実施の形態に係る光素子におけるMFD制御用間隙15について、計算結果を基に、図4A~Cを参照して説明する。
図4Aに、計算に用いた導波路構造の模式図を示す。
導波路(図中、斜線部)はSiNで構成され、基端側の一定幅(幅800nm)の導波路(x=0~xT1)と、テーパ形状の導波路(x=xT1~xT2)と、先端側の一定幅(幅100nm)の導波路(x=xT2~xL)とから構成される。テーパ形状の導波路では、基端(x=xT1)の幅を800nm、先端(x=xT2)の幅を100nm、長さ(x=xT1~xT2)を350μmとした。ここで、基端側の一定幅の導波路の長さ(x=0~xT1)を10μm、先端側の一定幅の導波路の長さ(x=xT2~xL)を20μmとした。このように、導波路全体の長さ(x=0~xL)は380μmである。
導波路の先端から外部の領域(x=xL~x1)を含めて、導波路構造以外の部分は、酸化シリコンで構成される。
また、光源を導波路構造の中心軸C上で、基端から内側に1μmの位置(xR=1μm)に配置して、光源からの出射光が導波路断面に対する基底の伝搬モードで伝搬するとして計算した。
計算は、2次元導波路構造について有限差分時間領域法(FDTD:Finite Difference Time Domain Method)法(製品名:「ANSYS Lumerical FDTD」)により行った。計算には、FDTD法以外に、固有モード展開(EME:Eigenmode Exansion)法を用いてもよい。
伝搬する光(信号光と樹脂硬化光)の基底モードについて、信号光の波長を1550nm、樹脂硬化光の波長を532nmとして計算した。
信号光と樹脂硬化光それぞれについて、伝搬方向における各座標xでの光の強度分布を示す関数f(y)に対してガウシアンフィッティングを行うことにより、各x座標におけるMFDを計算した。ここで、yは、伝搬方向(x方向)に垂直方向を示す(図中、矢印y)。
図4B、Cに、信号光と樹脂硬化光それぞれの伝搬方向でのMFDの計算結果を示す。図4Aに、導波路の基端から外部の領域(x=0~x1=0μm~400μm)において、位置(座標)xでの信号光と樹脂硬化光それぞれのビーム径を示す。また、図4Bに、x=350μm~400μmの領域での拡大図を示す。
図4A、Bに示すように、信号光は、導波路のSSCを伝搬するにしたがい、そのMFDが拡大して、導波路の先端(x=380μm)から出射される。出射された信号光はクラッド(酸化シリコン)を伝搬するにしたがいそのMFDが拡大する。
一方、樹脂硬化光はSSC内を伝搬するにしたがい、そのMFDは徐々に減少して、導波路の先端(x=380μm)から出射される。出射された樹脂硬化光はクラッド(酸化シリコン)を伝搬するにしたがいそのMFDが拡大する。
ここで、樹脂硬化光では、MFDが信号光よりも急激に拡大する。これは、上述の通り、波長が短い光の方が、波長が長い光より伝搬する際の単位伝搬距離あたりのビームの拡がりが大きいためである。
その結果、図4A、Bに示すように、伝搬する信号光と樹脂硬化光それぞれのビーム径が、所定の位置(座標x’、ここではx’=384μm)で一致する。
そこで、所定の位置(座標x’)を光素子の出射端面として、この端面からSWWを形成すれば、出射端面における樹脂硬化光のMFDとほぼ同等のSWWのサイズと、信号光のMFDがほぼ一致する。
すなわち、光素子10におけるMFD制御用間隙15をxL~x’の長さ(ここでは、4μm)に設定することにより、光素子10から出射する信号光のMFDがSWWのサイズと同程度となるので、信号光の接続損失が低減される。
このように、本実施の形態に係る光素子10では、光素子10の出射端面101において信号光と樹脂硬化光それぞれのビーム径が同程度になるようにMFD制御用間隙15を設定することにより、信号光と樹脂硬化光の波長の差異に起因する信号光のSWWに対する接続損失を低減できる。
ここで、ビーム径が同程度である範囲は、ビーム径が同じであることを含み、例えば、1~2μm程度の差がある場合も含む。光素子とSWWと間での信号光の接続損失が光通信等における信号光の伝搬に支障が生じない程度の範囲であればよい。
本実施の形態では、2次元導波路構造における計算結果を示したが、3次元導波路構造においても、FDTD法(製品名:「ANSYS Lumerical FDTD」)により、同様に計算できる。導波路コア構造(2μm以下の厚さ)と、信号光の波長と、樹脂硬化光の波長とを変化させて計算した結果、伝搬する信号光と樹脂硬化光それぞれのビーム径が、所定の位置(MFD制御用間隙:1~20μmに相当)で一致する結果が得られる。
<光素子の製造方法>
本実施の形態に係る光素子の製造方法を、図5を参照して説明する。
本実施の形態に係る光素子の製造方法を、図5を参照して説明する。
まず、光素子におけるMFD制御用間隙15を決定する。
初めに、導波路コア13と第1および第2のクラッド12、14の構造を決定する。また、信号光と樹脂硬化光の波長を決定する(ステップS1)。
次に、決定された構造において、導波路コア13を伝搬し出射する信号光と樹脂硬化光それぞれのMFD径を計算する(ステップS2)。
次に、導波路コア13から出射する、信号光と樹脂硬化光それぞれのMFD径が同程度である位置を、前記第2のクラッドの端面の位置に決定する。すなわち、MFD制御用間隙15を決定する(ステップS3)。
次に、上記計算結果に基づき、光素子を製造する。
まず、基板の上に下部クラッド(第1のクラッド)12の材料を堆積する。引き続き、下部クラッド(第1のクラッド)12の上に、導波路コア13の材料を堆積する(ステップS4)。ここで、基板の材料としてはSi、下部クラッドの材料としてはSiO2、導波路コア13の材料としてはSiNxなどを用いることができる。
次に、フォトリソグラフィを用いて、SiNxを導波路コア13に加工する(ステップS5)。フォトリソグラフィに用いるマスクパタンは、計算により得られた導波路コア13の形状とMFD制御用間隙15を基に作製される。
最後に、導波路コア13を覆うように、上部クラッド(第2のクラッド)14を形成する(ステップS6)。上部クラッド(第2のクラッド)14の材料に、例えばSiO2を用いる。
<光集積素子の製造方法>
本実施の形態に係る光素子10と、他の光素子(導波路素子)10_2とがSWW16を介して接続される光集積素子1の製造方法の一例を、以下に説明する。
本実施の形態に係る光素子10と、他の光素子(導波路素子)10_2とがSWW16を介して接続される光集積素子1の製造方法の一例を、以下に説明する。
初めに、光素子10の端面101と他の光素子(導波路素子)10_2の端面を対向させて、所定の間隔をもって配置する。
次に、SWW材料(光硬化性樹脂)を、光素子の第2のクラッド14の端面141と他の光素子(導波路素子)10_2の端面との間に充填(滴下)する。ここで、粘性が高い光硬化性樹脂を用いることにより、光硬化性樹脂を保持できる。
次に、樹脂硬化光を、導波路コア13に伝搬させ導波路コア13の先端131から出射させ、さらに第2のクラッド14に伝搬させ第2のクラッド14の端面141から出射させる。
引き続き、樹脂硬化光を光硬化性樹脂に照射する。その結果、光硬化性樹脂において樹脂硬化光が照射した領域が硬化して、SWWコア161になる。
最後に、未硬化の光硬化性樹脂を除去した後に、その周囲にSWWクラッド162を形成する。
その結果、本実施の形態に係る光素子10と他の光素子(導波路素子)10_2とが、SWW16を介して光接続して、光集積素子1が製造される(図3A、B)。
本実施の形態に係る光集積素子では、SWW16においてコア161の屈折率がクラッド162の屈折率より高ければ導波路として機能する。そこで、SWWコア161の周囲は、例えば空気でもよく、SWWクラッドを備えなくてもよい。この場合、上述の光集積素子の製造方法における最後の工程で、SWWクラッドを形成しなくてもよい。
<効果>
本実施の形態に係る光素子によれば、SWWのサイズと信号光のMFDとを同程度にできるので、光素子の導波路とSWWとの間での信号光の接続損失を低減できる。
本実施の形態に係る光素子によれば、SWWのサイズと信号光のMFDとを同程度にできるので、光素子の導波路とSWWとの間での信号光の接続損失を低減できる。
実際のSWWを伝搬する信号光のMFDは、SWWのクラッドとコアの屈折率差によって影響を受ける。そこで、信号光のMFDとSWW内の信号光の伝搬モードが一致するようにSWWのクラッドの屈折率を調整し、SWWと光素子(チップ)の端面との境界で発生する損失を低減してもよい。
また、SWWのコア径は、樹脂硬化光の強度に若干依存する。そこで、樹脂硬化光の強度の変化により光素子からSWWへと遷移する信号光の損失を低減できる。
ここで、所定の樹脂硬化光の強度以上でのみ、SWWを形成できる。一方、樹脂硬化光の強度が高すぎると、樹脂の発熱により気泡が生じるのでSWWの形成に悪影響が生じる。そこで、SWWの形成に悪影響が生じる樹脂硬化光の強度より低い強度でSWWを形成する必要がある。
また、本実施の形態では、MFD制御用間隙15の長さを制御する必要がある。最適なMFD制御用間隙15の値は、光素子の設計時に数値計算などにより事前に決定できる。その設計値を基に、作製した光素子(チップ)のMFD制御用間隙15の調整のために、光素子にダイシングマーカとともに研磨用のマークを導波路パタンなどにより作製するとよい。これにより、光学顕微鏡などで研磨用マークを確認しながら光素子の端面を研磨して、MFD制御用間隙15の長さを効率よく制御できる。
また、本実施の形態に係る光素子によれば、製造工程における歩留まりの向上でき、導波路損失を低減できる。
詳細には、従来の光素子では、MFDを拡大するために先端の幅を細くする必要がある。しかしながら、導波路の幅が細くなると、製造プロセスにおける導波路幅の制御が困難になるとともに、導波路の側壁粗さによる光損失が増加する。
一方、本実施の形態に係る光素子では、樹脂硬化光のみならず信号光もMFD制御用間隙を伝搬するときにMFDが拡大する。したがって、光素子の導波路の先端の幅(SSCの幅)を、通常の光素子における導波路の先端の幅より広く設定しても、光素子の端面におけるMFDを同等にできる。
このように、本実施の形態に係る光素子によれば、導波路の幅を広く設定できるので、製造工程における歩留まりを向上でき、製造される導波路の側壁粗さによる光損失を低減できる。
本実施の形態では、光素子におけるMFD制御用間隙の長さを4μmに設定する例を示したが、MFD制御用間隙の長さは導波路コアの形状、信号光および樹脂硬化光の波長に依存する。例えば、信号光の波長が1550nm、樹脂硬化光の波長が532nmのときに、導波路コアのテーパ構造の長さが200~500μm、基端の幅が500~1000nm、先端の幅が50~200nmの範囲において、MFD制御用間隙の長さは2~10μmである。また、導波路コアのテーパ構造の長さが350μm以上、基端の幅が500~1000nm、先端の幅が500nm以下、導波路コアの厚さが2μm以下のときに、信号光の波長が1250~1350nm、樹脂硬化光の波長が385~1550nmの範囲において、MFD制御用間隙の長さは1~150μmである。
<第2の実施の形態>
本発明の第2の実施の形態に係る光素子について、図6A~図7Bを参照して説明する。
本発明の第2の実施の形態に係る光素子について、図6A~図7Bを参照して説明する。
<光素子の構成>
本実施の形態に係る光素子20では、図6A、Bに示すように、第1のクラッド12と第2のクラッド14との端面121、141が、基板11の端面111よりも内側(導波路コア13の先端131側)に位置する。すなわち、光素子20の端部は段を有し、段の表面が基板11の表面である。以下、この領域21を、「SWW領域」という。その他の構成は、第1の実施の形態と同様である。
本実施の形態に係る光素子20では、図6A、Bに示すように、第1のクラッド12と第2のクラッド14との端面121、141が、基板11の端面111よりも内側(導波路コア13の先端131側)に位置する。すなわち、光素子20の端部は段を有し、段の表面が基板11の表面である。以下、この領域21を、「SWW領域」という。その他の構成は、第1の実施の形態と同様である。
<光集積素子の構成>
本実施の形態に係る光集積素子2では、図7A、Bに示すように、光素子20と他の光素子10_2とが、SWW16を介して接続される。このように、第1のクラッド12の端面121と、第2のクラッド14の端面141と、基板11の上面と、前記他の光素子10_2の端面とに囲まれる領域、すなわちSWW領域21に、SWW16が形成される。
本実施の形態に係る光集積素子2では、図7A、Bに示すように、光素子20と他の光素子10_2とが、SWW16を介して接続される。このように、第1のクラッド12の端面121と、第2のクラッド14の端面141と、基板11の上面と、前記他の光素子10_2の端面とに囲まれる領域、すなわちSWW領域21に、SWW16が形成される。
本実施の形態に係る光素子20のSWW領域21は、例えばウェハプロセスにより作製したマスクパタンによって、SWW領域21以外の領域を保護し、エッチングを施すことにより作製できる。このマスクパタンは、ウェハプロセスに用いられるような高精度(1μm以下)な位置決め技術によって作製される。
したがって、第1の実施の形態におけるダイシングやマーカによる加工よりも、高精度にMFD制御用間隙15を制御でき、より高歩留まりでMFDを制御できる。
また、本実施の形態に係る光素子20のSWW領域21における基板11の表面上で、光素子10の端面101(第1のクラッド12の端面121と第2のクラッド14の端面141)と、接続する他の光素子10_2の端面との間の空隙に、SWW材料(樹脂)を充填できる。
これにより、SWW領域を有さない構造と比較して、SWW16の形成時にSWW材料(樹脂)を光素子20の端面と他の光素子10_2の端面との間の空隙に、容易に充填して保持できる。
本実施の形態では、SWW領域における段の位置を基板の表面とする例を示したが、基板内部に位置してもよく、第1のクラッド内部に位置してもよい。
<第3の実施の形態>
本発明の第3の実施の形態に係る光素子について、図8、9を参照して説明する。
本発明の第3の実施の形態に係る光素子について、図8、9を参照して説明する。
<光素子の構成>
本実施の形態に係る光素子30は、図8に示すように、樹脂硬化光に対して機能するモードフィルタ31を、導波路コア13の基端側(先端131の反対側)に有する。ここで、モードフィルタ31は、導波路コア13に配置されればよい。
本実施の形態に係る光素子30は、図8に示すように、樹脂硬化光に対して機能するモードフィルタ31を、導波路コア13の基端側(先端131の反対側)に有する。ここで、モードフィルタ31は、導波路コア13に配置されればよい。
また、本実施の形態に係る光集積素子3では、光素子30が、SWW16を介して、他の光素子(図示せず)と接続する。
モードフィルタ31は、例えば、図9に示すように、ブラッググレーティングの幅変調構造を導波路コア13の両方の側面に備える。グレーティングの構成は、例えば、導波路の幅は800nmであり、グレーティングの深さは45nmである。グレーティング周期が320nm、デューティ比(周期に対する凸部の長さの比率)が0.5である。
<効果>
第1の実施の形態に係る光素子10では、SWWを形成する際、樹脂硬化光におけるマルチモード化の影響により、SWWの形成条件に悪影響を及ぼすことがある。
第1の実施の形態に係る光素子10では、SWWを形成する際、樹脂硬化光におけるマルチモード化の影響により、SWWの形成条件に悪影響を及ぼすことがある。
光素子10の構造は、SiPhなどに用いられる構造であり、導波路コア13は信号光に対してシングルモード条件である。そのため、信号光より波長の短い樹脂硬化光に対して導波路コア13はマルチモード導波路として振る舞う。
マルチモード導波路の場合、光素子(チップ)の端部から複数の横モードの光が出射される。この場合、シングルモードの樹脂硬化光のみが伝搬する場合と比べて、異なるモードの樹脂硬化光が伝搬する。
その結果、シングルモードのみの場合のMFD制御用間隙の長さと、マルチモードの場合のMFD制御用間隙の長さは異なる。したがって、シングルモードで設計した値に基づいてMFD制御用間隙を形成しても、マルチモードの樹脂硬化光によりSWWが形成されるので、SWWのサイズを信号光のMFDに一致させることができず、信号光の接続損失を低減できない。
また、製造誤差によって生じる導波路側壁の粗さや屈折率分布の違いなどの摂動により、マルチモード導波路における横モードの発生具合などには変化が発生する。したがって、マルチモード導波路においてMFD制御用間隙を高歩留まりで制御することは困難である。
さらに、SWWを形成する上では、単峰のガウシアン分布の強度分布を有する樹脂硬化光の方が、一定のコア径で成長する長尺(mm程度)のSWWを形成できる。そこで、長尺のSWWを形成するためには、樹脂硬化光のマルチモード化を抑制する必要がある。
一方、本実施の形態に係る光素子では、モードフィルタを用いることで、マルチモード化の影響を抑制できる。
本実施の形態に係る光素子では、導波路コア13を伝搬する樹脂硬化光の高次の横モードは、モードフィルタにより強い散乱を受ける。これにより、導波路コア13の出射端面における樹脂硬化光の光強度をガウシアン分布またはガウシアン分布に近いものにすること(シングルモード化)ができる。
本実施の形態に係る光素子におけるモードフィルタは、導波路コア13を伝搬する樹脂硬化光の最低次の横モード以外に対して、大きな損失を与えることができる。したがって、製造誤差により樹脂硬化光がマルチモード化しても、高歩留まりで最低次の横モードのみを導波路コア13の先端131から出射できる。すなわち、光強度がコア中心で高く、コアの側面に向かうに従い減少する分布を有する樹脂硬化光を出射させる光素子を提供できる。
本実施の形態に係る光素子によれば、第1の実施の形態の効果に加えて、樹脂硬化光の光強度分布をガウシアン分布またはガウシアン分布に近いものにできるので、高精度でSWWを形成でき、長尺かつ一定コア直径の形状で低損失のSWWコアを形成することができる。したがって、光素子の導波路とSWWとの間での信号光の接続損失を、さらに低減できる。
本実施の形態では、モードフィルタとして、グレーティングが導波路コアの側面に形成される例を示したが、導波路コアの上面に形成されてもよい。
また、導波路コア12の材料以外の材料のグレーティング、例えばアルミニウム(Al)等の金属からなる金属回折格子(グレーティング)を用いてもよい。
また、グレーティングにおいて、凹凸は周期的に配置されなくてもよく、凹凸がランダムに配置され、導波路幅がランダムに変調される構成でもよい。また、凹凸形状でなく、波形の形状でもよい。
また、モードフィルタとして、曲げ導波路を用いてもよい。曲げ導波路では伝搬する光の高次モードの放射損失が大きいので、マルチモード化を抑制できる。その他、導波路を伝搬する樹脂硬化光のマルチモード化を抑制する構造を用いてもよい。
本発明の実施の形態に係る光素子は、樹脂硬化光に対して透明な材料で構成される光導波路が基板上に形成された構造に適用できる。例えば、平面光波回路(PLC: planar lightwave circuit)に対して適用できる。
本発明の実施の形態では、光素子の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。光素子の機能を発揮し効果を奏するものであればよい。
本発明は、光素子を接続するための光素子、光集積素子および光素子の製造方法に関するものであり、光通信デバイス、光通信ネットワークシステムに適用することができる。
10 光素子
10_2 他の光素子
11 基板
12 第1のクラッド
13 導波路コア
131 導波路コアの先端が、
14 第2のクラッド
141 第2のクラッドの端面
16 自己形成導波路
10_2 他の光素子
11 基板
12 第1のクラッド
13 導波路コア
131 導波路コアの先端が、
14 第2のクラッド
141 第2のクラッドの端面
16 自己形成導波路
Claims (6)
- 他の光素子と自己形成導波路を介して接続する光素子であって、
順に、
基板と、
第1のクラッドと、
前記第1のクラッドの屈折率より高い屈折率を有し、信号光と樹脂硬化光とが伝搬する導波路コアと、
前記導波路コアの屈折率より低い屈折率を有する第2のクラッドと
を備え、
前記導波路コアの前記自己形成導波路と接続する側の先端が、前記第2のクラッドの端面で前記信号光のモードフィールド径と樹脂硬化光のモードフィールド径とが同程度になるように、前記第2のクラッドの端面と離れた位置に配置され、
前記導波路コアの前記自己形成導波路と接続する側の先端と、前記第2のクラッドの端面との間に、前記第2のクラッドが配置される
ことを特徴とする光素子。 - 前記第1のクラッドの端面と、前記第2のクラッドの端面とが、前記基板の端面より前記導波路コアの先端側に位置し、
前記第1のクラッドの端面と、前記第2のクラッドの端面と、前記基板の上面と、前記他の光素子の端面とに囲まれる領域に、前記自己形成導波路が形成される
ことを特徴とする請求項1に記載の光素子。 - 前記導波路コアが、モードフィルタを備える
ことを特徴とする請求項1に記載の光素子。 - 前記導波路コアが、モードフィールド変換部を備える
ことを特徴とする請求項1に記載の光素子。 - 請求項1に記載の光素子と、
前記自己形成導波路を介して接続される前記他の光素子と
を備える光集積素子。 - 他の光素子と自己形成導波路を介して接続し、基板と、第1のクラッドと、前記第1のクラッドの屈折率より高い屈折率を有し、信号光と樹脂硬化光とが伝搬する導波路コアと、前記導波路コアの屈折率より低い屈折率を有する第2のクラッドとを備える光素子の製造方法であって、
前記導波路コアと前記第1のクラッドと前記第2のクラッドそれぞれの構造を決定し、前記信号光と前記樹脂硬化光の波長を決定する工程と、
前記構造において、前記導波路コアを伝搬し出射する前記信号光と前記樹脂硬化光それぞれのモードフィールド径を計算する工程と、
前記導波路コアから出射する、前記信号光と前記樹脂硬化光それぞれのモードフィールド径が同程度である位置を、前記第2のクラッドの端面の位置に決定する工程と、
前記基板の上に、順に、前記第1のクラッドの材料と、前記導波路コアの材料を堆積する工程と、
前記構造と、前記第2のクラッドの端面の位置とに基づき、前記導波路コアの材料を前記導波路コアに加工する工程と、
前記導波路コアを覆うように、前記第2のクラッドを形成する工程と
を備える光素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023280 WO2023238322A1 (ja) | 2022-06-09 | 2022-06-09 | 光素子、光集積素子および光素子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023280 WO2023238322A1 (ja) | 2022-06-09 | 2022-06-09 | 光素子、光集積素子および光素子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238322A1 true WO2023238322A1 (ja) | 2023-12-14 |
Family
ID=89117758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023280 WO2023238322A1 (ja) | 2022-06-09 | 2022-06-09 | 光素子、光集積素子および光素子の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023238322A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007322628A (ja) * | 2006-05-31 | 2007-12-13 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバの接続方法 |
JP2009031559A (ja) * | 2007-07-27 | 2009-02-12 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバの接続方法 |
US20180024295A1 (en) * | 2016-07-25 | 2018-01-25 | Com&Sens | Optical Coupling of Embedded Optical Fibers |
JP2018185491A (ja) * | 2017-04-27 | 2018-11-22 | 株式会社豊田中央研究所 | 光回路およびその製造方法 |
WO2020105412A1 (ja) * | 2018-11-19 | 2020-05-28 | 日本電信電話株式会社 | 光接続構造およびその製造方法 |
WO2021161371A1 (ja) * | 2020-02-10 | 2021-08-19 | 日本電信電話株式会社 | 光接続素子、光素子、及び光素子の製造方法 |
-
2022
- 2022-06-09 WO PCT/JP2022/023280 patent/WO2023238322A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007322628A (ja) * | 2006-05-31 | 2007-12-13 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバの接続方法 |
JP2009031559A (ja) * | 2007-07-27 | 2009-02-12 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバの接続方法 |
US20180024295A1 (en) * | 2016-07-25 | 2018-01-25 | Com&Sens | Optical Coupling of Embedded Optical Fibers |
JP2018185491A (ja) * | 2017-04-27 | 2018-11-22 | 株式会社豊田中央研究所 | 光回路およびその製造方法 |
WO2020105412A1 (ja) * | 2018-11-19 | 2020-05-28 | 日本電信電話株式会社 | 光接続構造およびその製造方法 |
WO2021161371A1 (ja) * | 2020-02-10 | 2021-08-19 | 日本電信電話株式会社 | 光接続素子、光素子、及び光素子の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3581224B2 (ja) | 平面型光学導波路素子 | |
US10082625B2 (en) | Optical component with angled-facet waveguide | |
JP5588794B2 (ja) | グレーティング構造を有する基板型光導波路素子、波長分散補償素子および基板型光導波路素子の製造方法 | |
US9297956B2 (en) | Optical device, optical transmitter, optical receiver, optical transceiver, and method of manufacturing optical device | |
US9874700B2 (en) | Grating coupler and optical waveguide device | |
US20180138659A1 (en) | Optical waveguide, and optical component and variable wavelength laser which use the same | |
US9897761B2 (en) | Optical fiber mounted photonic integrated circuit device for single mode optical fibers | |
CN114910998A (zh) | 具有多层级式的层的混合边缘耦合器 | |
JP4377195B2 (ja) | 光モジュールの製造方法 | |
JP2018189875A (ja) | 光接続構造およびその形成方法 | |
WO2023238322A1 (ja) | 光素子、光集積素子および光素子の製造方法 | |
US6445837B1 (en) | Hybrid opto-electronic circuits and method of making | |
CN116953846A (zh) | 具有多厚度波导芯的波导和边缘耦合器 | |
JP2017191253A (ja) | 光集積回路及びその製造方法 | |
JP2011242650A (ja) | 光導波路素子の製造方法 | |
KR20220011709A (ko) | 모드 확장 웨이브가이드 및 광섬유를 직접 결합하기 위해 이를 포함하는 스폿 크기 변환기 | |
US20050063660A1 (en) | Optical element and method of fabrication thereof | |
JP2016161915A (ja) | 光導波路素子および光学デバイス | |
JP2011242651A (ja) | 光導波路素子 | |
WO2023095278A1 (ja) | 光素子、光集積素子および光素子の製造方法 | |
WO2022102053A1 (ja) | 光接続構造、光モジュールおよび光接続構造の製造方法 | |
JP2017009686A (ja) | 光結合器および光結合器の製造方法 | |
JP6927094B2 (ja) | 光導波路接続構造 | |
JP2024098873A (ja) | 光デバイス、光送信装置及び光受信装置 | |
JP2004246282A (ja) | レンズ列スポットサイズ変換型光回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22945824 Country of ref document: EP Kind code of ref document: A1 |