JP2004246282A - レンズ列スポットサイズ変換型光回路 - Google Patents

レンズ列スポットサイズ変換型光回路 Download PDF

Info

Publication number
JP2004246282A
JP2004246282A JP2003038569A JP2003038569A JP2004246282A JP 2004246282 A JP2004246282 A JP 2004246282A JP 2003038569 A JP2003038569 A JP 2003038569A JP 2003038569 A JP2003038569 A JP 2003038569A JP 2004246282 A JP2004246282 A JP 2004246282A
Authority
JP
Japan
Prior art keywords
optical
spot size
optical fiber
refractive index
size conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038569A
Other languages
English (en)
Other versions
JP4003658B2 (ja
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003038569A priority Critical patent/JP4003658B2/ja
Publication of JP2004246282A publication Critical patent/JP2004246282A/ja
Application granted granted Critical
Publication of JP4003658B2 publication Critical patent/JP4003658B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光ファイバと光導波路とが低損失で接続され、かつ小型化、低コスト化を実現できるレンズ列スポットサイズ変換型光回路を提供する。
【解決手段】光導波路5のコア層3の光軸と光ファイバ6のコア7の光軸とが一致するように光導波路5と光ファイバ6とが接続された光回路において、光導波路5の光ファイバ6との接続部側のコア層3の端面がクラッド層2uで覆われており、このコア層3の端面を覆う部分のクラッド層2u内のコア層3の光軸上及び光ファイバ6の接続部近傍のコア7内に、光導波路5から光ファイバ6に向かって屈折率を徐々に変化させた複数の略球状レンズ媒質5a,5b,9a,9bを形成する。これにより、異なるスポットサイズの光導波路5と光ファイバ6とを低損失で接続可能になる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路のコア層と光ファイバのコアとが光軸が一致するように接続された光回路に関するものである。
【0002】
【従来の技術】
AWG(Arrayed Waveguide Grating)フィルタ、スプリッタ、光スイッチなどの光回路を有するガラス導波路型光部品は、半導体プロセスを利用することにより量産し易いことから、既に多くのものが実用化されているが、更なる小型化、低コスト化のための研究開発が進められている。
【0003】
その例として、ガラス導波路型光部品の高比屈折率差(高Δ)化による小型化、低コスト化が検討されており、具体例として、比屈折率差Δが1.5%以上、2.5%程度の光部品が検討されている。
【0004】
ここで、比屈折率差Δは、コア層の最大屈折率をn 、クラッド層の屈折率をn としたとき、次の数1式で表される。
【0005】
【数1】Δ(%)={(n −n )/n }×100(%)
ところが、ガラス導波路からなる光回路本体は高Δ化されているのに対して、それに接続されている光ファイバは通常のシングルモード光ファイバであり、Δは0.3%から1%の範囲内の低Δのものが用いられる。そのため、光回路本体と光ファイバとの間にモードミスマッチングが生じるという問題がある。
【0006】
これを解決するために、従来は図5、図6に示すような2つの手段が用いられていた。
【0007】
図5、図6は従来のモード変換方式を説明するための説明図である。
【0008】
第1の手段は、図5に示すように、高屈折率のコア層53を低屈折率のクラッド層54で覆った光回路本体50に、光ファイバと接続する側(図では左側)にはヒータ52を配置し、その反対側(この場合右側)には内部に冷却水wを循環させる保持部材55を取り付け、モード変換部51を形成する方法である(例えば、特許文献1参照。)。
【0009】
具体的には、光回路本体50の端面側をヒータ52で長時間にわたり高温(1300℃)に加熱することにより、光回路本体50のコア層53内の屈折率制御用ドーパント(GeO )を、コア層53を覆っているクラッド層54側に拡散させ、モード変換部51を形成する。
【0010】
第2の方法は、図6に示すように、高Δのシングルモード光ファイバ56−1(56−2)の一端を高Δの光回路本体60に接続し、その光ファイバ56−1(56−2)の他端に低Δのシングルモード光ファイバ57−1(57−2)をTEC(Thermal Expand Core)技術を用いて加熱・融着接続し、そのTEC接続部58でモード変換を実現する方法である(例えば、特許文献2参照。)。
【0011】
【特許文献1】
特開平6−43330号公報
【特許文献2】
特開平5−257032号公報
【0012】
【発明が解決しようとする課題】
しかしながら、従来のモード変換方式には以下に示すような課題が存在している。
【0013】
図5に示したヒータ52により加熱してモード変換部51を形成する方式は、光回路のサイズが非常に大きくなり、低コスト化が難しいという問題がある。さらに、ヒータ52ではコア層53の微細加工が困難であるため、光回路の損失が大きくなり、実用的でない。
【0014】
また、図6に示したTEC接続部58でモード変換を実現する方式は、低損失で実現できるというメリットがあるが、高Δの光ファイバ56−1(56−2)を別途作製しなければならないために、コスト高になる。さらに、実装コストが高くなり、低コスト化が難しい。さらにそれぞれの光ファイバ長を少なくとも数十cmは長くして接続しなければならないため、小型化にも制約を受ける。
【0015】
そこで、本発明の目的は、上述した従来技術の課題を解決し、光ファイバと光導波路とが低損失で接続され、かつ小型化、低コスト化を実現できるレンズ列スポットサイズ変換型光回路を提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、光導波路のコア層の光軸と光ファイバのコアの光軸とが一致するように光導波路と光ファイバとが接続された光回路において、光導波路の光ファイバとの接続部側のコア層の端面がクラッド層で覆われており、このコア層の端面を覆う部分のクラッド層内のコア層の光軸上に、光導波路から光ファイバに向かって屈折率を徐々に変化させた複数の略球状レンズ媒質を有するスポットサイズ変換部が形成されていると共に、光ファイバの接続部近傍のコア内に、光ファイバから光導波路に向かって屈折率を徐々に変化させた複数の略球状レンズ媒質を有する他のスポットサイズ変換部が形成されているものである。
【0017】
請求項2の発明は、請求項1に記載の構成に加え、光導波路のコア層とクラッド層との比屈折率差は2.0%から4.0%の範囲内にあり、かつ光ファイバのコアとクラッドとの比屈折率差は0.3%から1.5%の範囲内にあると共に、光導波路内に形成されたスポットサイズ変換部は光ファイバと接続される端面方向に向かって略球状のレンズ媒質の屈折率が徐々に低くなり、かつ光ファイバ内に形成された他のスポットサイズ変換部は光導波路と接続される端面方向に向かって略球状のレンズ媒質の屈折率が徐々に高くなることが好ましい。
【0018】
請求項3の発明は、請求項1又は2に記載の構成に加え、光導波路内に形成されたスポットサイズ変換部は、光ファイバと接続される端面方向に向かって略球状のレンズ媒質を複数個、所望間隔、所望径、所望屈折率を持つように形成してなることが好ましい。
【0019】
請求項4の発明は、請求項1から3のいずれかに記載の構成に加え、光導波路と光ファイバとの接続部を少なくとも1つ以上有すると共に、各接続部近傍にスポットサイズ変換部がそれぞれ形成されていることが好ましい。
【0020】
請求項5の発明は、請求項1から4のいずれかに記載の構成に加え、光導波路のコア層と光ファイバのコアとの接続面は、光軸の垂線に対して斜めに加工されていることが好ましい。
【0021】
請求項6の発明は、請求項1から5のいずれかに記載の構成に加え、レンズ媒質は、パルス幅が30fsから200fsの範囲内でありかつパルス繰り返し周波数が1kHzから250kHzの範囲内である超短パルスレーザービームのビームスポットサイズ及び照射エネルギーを変えて集光、照射されることによって形成されたものであることが好ましい。
【0022】
上記請求項1の構成によれば、複数のレンズ媒質により光導波路から光ファイバに向かって徐々にスポットサイズが変化するので、Δhが2%以上4%程度以下の超高Δの光導波路と、Δlが0.3%から1.5%の範囲内の光ファイバとをモードフィールド整合をとって接続することが可能になる。
【0023】
上記請求項2の構成によれば、従来の低Δ(Δ:約0.75%)の光導波路に比して1/20から1/40に超小型化した超高Δの光導波路が実現可能になる。
【0024】
上記請求項3の構成によれば、スポットサイズ変換部が急激にスポットサイズを変換していないので、屈折率及びコアの断面積も急激に変化せず、非常に低損失な接続を実現することができる。
【0025】
上記請求項4の構成によれば、AWGフィルタやスプリッタのような多入力・多出力ポートを有する光導波路の入出力端に光ファイバの端面を接続した小型のレンズ列スポットサイズ変換型光回路が実現可能になる。
【0026】
上記請求項5の構成によれば、光導波路と光ファイバとの接続面が斜めに加工されて接続されていることにより、それぞれの端面からの信号光の反射の影響を取り除くことができ、他の端面への反射の影響を抑圧することが可能になり、低クロストーク、低反射の光回路が実現可能になる。
【0027】
上記請求項6の構成によれば、光回路の更なる低損失化を実現できると共に、最終実装や組み立て段階で加工することができるようになる。すなわち、光学特性をモニタしながら光回路を加工することが可能になり、超高Δの光回路を製造する際の歩留まりの向上が期待できる。
【0028】
【発明の実施の形態】
次に、本発明の実施の形態を添付図面に基づいて詳述する。
【0029】
図1(a)は本発明の一実施の形態を示すレンズ列スポットサイズ変換型光回路の正面断面図であり、図1(b)は図1(a)のIb−Ib線断面図であり、図1(c)は図1(b)のIc−Ic線の屈折率分布を示す図である。図1(c)において縦軸は屈折率を示し、横軸は光回路内の位置を示している。
【0030】
図1(a)に示すように、レンズ列スポットサイズ変換型光回路は、比屈折率差Δが高い(Δh:2%から4%の範囲内、スポットサイズ:約4μmから約2μmの範囲内)ガラス導波路からなる光回路本体5と、光回路本体5と光学的に接続され、比屈折率差Δが低い(Δl:0.3%、スポットサイズ:約10μm)光ファイバ6とで構成されている。
【0031】
光回路本体5は、基板(例えば無水石英ガラス基板)1上に、低屈折率nuの下部クラッド層(例えばSiO ガラス層)2dを有し、その下部クラッド層2d上に、高屈折率nwのほぼ矩形断面形状のコア層(例えばSiO −GeO −P ガラス層)3のパターンが形成され、そのコア層3及び下部クラッド層2dを覆うように、低屈折率nuの上部クラッド層(例えばSiO にGeO とB とを添加したガラス膜)2uが形成された構造を有する。
【0032】
光回路本体5は、説明を簡単にするためにコア層3が直線パターンで示されているが、実際には曲線パターンを含む光信号処理回路からなり、例えば導波路格子グレーティング、方向性結合器、カプラ、フィルタ、リング共振器、Y分岐器などを有しても良い。
【0033】
また、コア層3は、光ファイバ6との接続端面11Aに向かって屈折率が徐々に光ファイバ6のコア7の屈折率とほぼ等しい値まで低くなるように、そのコア層3の屈折率nwよりも低くかつ異なる屈折率及び直径を有するほぼ球状のレンズ媒質5a,5bが所定の間隔を隔てて2個(少なくとも1個以上であれば2個に限定されず、また接続端面11Aに位置していても良い。)形成されてなると共にスポットサイズを中間的な値Dgm(4μmから6μm)まで徐々に大きく変換するスポットサイズ変換部4が形成されている(図1(c)参照。)。
【0034】
具体的には、図1(b)に示すように、光ファイバ6との接続端面11Aの近傍に、コア層3の端部からfgb離れたクラッド層2u中に直径Rgb、屈折率ngbのレンズ媒質5bが形成され、さらにそのレンズ媒質5bからfga+fgb、接続端面11Aからfga離れたクラッド層2u中に直径Rga、屈折率ngaの他のレンズ媒質5aが形成されている。
【0035】
また、光ファイバ6は、屈折率ncのコア7の外周に、このコア7よりも低い屈折率nclのクラッド8が形成された構造を有する。
【0036】
この光ファイバ6のコア7内には、光回路本体5の接続端面11Aの近傍に、屈折率が徐々に光回路本体5のコア層3の屈折率とほぼ等しい値まで高くなるように、そのコア7の屈折率ncよりも高くかつ異なる屈折率及び直径を有するほぼ球状のレンズ媒質9a,9bが所定の間隔を隔てて2個(少なくとも1個以上であれば2個に限定されない。)形成されてなると共にスポットサイズを中間的な値Dm(4μmから6μm)まで徐々に小さく変換するスポットサイズ変換部9が形成されている(図1(c)参照。)。
【0037】
具体的には、図1(b)に示すように、光ファイバ6の接続端面の近傍に、その接続端面からfb離れたコア7内に直径Rb、屈折率nbのレンズ媒質9bが形成され、さらにそのレンズ媒質9bからfa+fb離れたコア7内に直径Ra、屈折率naの他のレンズ媒質9aが形成されている。
【0038】
すなわち、スポットサイズ変換部100は、光回路本体5側のガラス導波路型スポットサイズ変換部4と、光ファイバ6側の光ファイバスポットサイズ変換部9とで構成されている。
【0039】
まず、この光ファイバ6側のスポットサイズ変換部9の近似計算による具体的な設計例について述べる。
【0040】
光ファイバ6として、例えば、直径10μm、屈折率n2=1.4619のコア7と、直径125μm、屈折率n1=1.4575のクラッド8とがステップ型屈折率分布(Δl=0.3%)を有するものを用いた場合について説明する。
【0041】
この構造でコア7内を伝搬しているビームのスポットサイズ(約10μm)が出射端(光ファイバの接続端面)で小さなビームスポットサイズDmに変換できる条件を次の数2式から数4式の近似式を用いて算出する。
【0042】
尚、レンズ媒質9aからfa離れた位置のコア7内のスポットサイズをwiと仮定して計算する。
【0043】
【数2】Dm=fb・wi/fa
【数3】fa=na・Ra/[2(na−n2)]
【数4】fb=nb・Rb/[2(nb−n2)]
ここで、wi=10μm、na=1.4722、Ra=4μm、nb=1.4797、Rb=2μmとすると、Dmを3.3μmに絞り込むことができる。
【0044】
また、他の例としてwi=10μm、na=1.4722、Ra=4μm、nb=1.4797、Rb=1.25μmとすると、Dmを2.0μmに絞り込むことができる。
【0045】
しかし、光ファイバ6側のスポットサイズ変換部9だけでΔhが4%の超高Δの光回路本体(コア層3の屈折率:1.5182、コア層3の厚み及び幅:1.5μm)5のスポットサイズ(約1.3μm)にまでは近づけることが難しい。そこで、本実施の形態のように光回路本体5側にもスポットサイズ変換部4を形成する。このスポットサイズ変換部4の実現方法を以下に示す。
【0046】
まず、光回路本体5側の入力端(接続端面11A)近傍のコア層3の一部を切断除去し、その切断除去した部分及びコア層3全体をクラッド層2uで埋め込み、そのカットされたコア層3の端部の延長線上のクラッド層2uの領域内に超短パルスレーザービームを集光、照射して、そのコア層3の端部からfgb離れたクラッド層2u中に直径Rgb、屈折率ngbのレンズ媒質5bを形成し、そのレンズ媒質5bからfga+fgb離れていると共に端面11Aからfga離れたクラッド層2u中に直径Rga、屈折率ngaの他のレンズ媒質5aを形成する。
【0047】
このような構造を有する光回路本体5のコア層3内を伝搬するビームのスポットサイズwgi(約1.3μm)が出射端(接続端面11A)で大きなビームスポットサイズDgmに変換できる条件を次の数5式から数7式の近似式を用いて算出する。
【0048】
【数5】Dgm=fga・wgi/fgb
【数6】fga=nga・Rga/[2(nga−nu)]
【数7】fgb=ngb・Rgb/[2(ngb−nu)]
ここで、wgi=1.3μm、nga=1.4722、Rga=4.4μm、ngb=1.4797、Rgb=2μmとすると、Dgmを3.3μmにまで大きくすることができ、光ファイバ6側のスポットサイズ変換部9のビームスポットサイズDmと等しくすることができる。
【0049】
すなわち、この光ファイバ6と光回路本体5とをモードフィールド整合をとって接続することができる。
【0050】
この方法は、今まで全く実現されていなかった、Δが4%までの超高Δ光回路用のビームスポット変換を実現するものである。
【0051】
次に、図1(a)の超高Δ光回路の製造方法を図2(a)から図2(j)を用いて作用と共に説明する。
【0052】
図2(a)から図2(e)はレンズ列スポットサイズ変換型光回路の製造方法を説明するための中間体の正面断面図であり、図2(f)から図2(j)は図2(a)から図2(e)の右側面図である。
【0053】
超高Δ光回路を製造するに際しては、まず、図2(a)、図2(f)に示すように、アルコキシド系の原料ソースを用いたプラズマCVD法により、低温(例えば400℃)で、例えば直径約10.16cm(4インチ)の無水石英ガラス基板1上に下部クラッド層(SiO ガラス層)2dを例えば厚さ20μm形成し、その下部クラッド層2d上にコア層(SiO −GeO −P ガラス層)3aを例えば厚さ1.5μm形成し、コア層3aと下部クラッド層2dとの比屈折率差Δが約4%の光導波路を作製する。
【0054】
次に、図示されていないが、スパッタリング法により、コア層3aの上にWSi膜を厚さ約0.5μm形成し、そのWSi膜上にフォトレジストを塗布した後、フォトマスクを用いてフォトリソグラフィ工程により、フォトレジストパターンを形成し、ついでそのフォトレジストパターンをマスクにしてドライエッチング工程により、WSi膜をパターニングする。
【0055】
その後、図2(b)、図2(g)に示すように、図示されていないWSi膜パターンをマスクにして、ほぼ矩形断面形状のコアパターン(光信号処理回路)に加工したコア層3を形成する。また、下部クラッド層2dの端面近傍をエッチングにより除去し、段差部11を形成する。
【0056】
そして、図2(c)、図2(h)に示すように、コア層3を覆うように、下部クラッド層2d上に上部クラッド層2uを形成する。この上部クラッド層2uにはSiO にGeO とB とを添加したガラス膜を用い、屈折率がSiO のガラス膜と同程度の値になるようにGeO とB の添加量を制御する。
【0057】
さらに、図2(d)、図2(i)に示すように、コア層3の端部の位置12Aからfgb離れた位置に、波長800nmの超短パルスレーザービーム14(パルス幅:150fs、パルス繰り返し周波数200kHz、平均出力600mW)をクラッド層2u内にレンズ15で集光、照射し、コア層3の端部の位置12Aから所定距離fgb離れた位置に、屈折率ngb、レンズ径Rgaのレンズ5bを形成し、ついで集光、照射位置をコア層3の端部の位置12Aから光回路本体5の端面の位置12Bの方向に矢印13のごとく所定距離fga+fgbずらして、屈折率nga、レンズ径Rgaのレンズ媒質5aを形成する。
【0058】
そして、図2(e)、図2(j)に示すように、今度は光ファイバ6のコア7内の所定の位置に、波長800nmの超短パルスレーザービーム14(パルス幅:150fs、パルス繰り返し周波数200kHz、平均出力600mW)を集光、照射し、コア7内の屈折率を高めて屈折率na、レンズ径Raのレンズ媒質9aを形成する。ついで、光回路本体5の端面方向に矢印16のごとく所定距離fa+fbずらして、同様にコア7内に集光、照射して屈折率を高めて屈折率nb、レンズ径Rbのレンズ媒質9bを形成し、レンズ列スポットサイズ変換型光回路が製造される。
【0059】
なお、レンズ媒質9a,9bの屈折率及び直径はレーザービーム14のパワー、スポット径、照射時間等を変えることにより制御する。具体的には、レンズ媒質9a,9bの直径はレーザービーム14のスポット径に依存しており、そのスポット径で調整することができる。また、レンズ媒質9a,9bの屈折率はレーザービーム14の照射エネルギー(照射時間、照射パワー、パルス幅、パルス繰り返し周波数)に依存しており、そのエネルギーが大きいほど屈折率を大きくできるが、あまりエネルギーを大きくすると飽和傾向になり、さらに大きくしていくとコア7内に空孔が発生してしまう。従って、レーザービーム14の照射で実現できる最大屈折率は1.485程度であり、数3式、数4式、数6式及び数7式に用いた屈折率を十分に達成することができる。
【0060】
また、超短パルスレーザービーム14は、波長は400nmから980nmの範囲内、パルス幅は30fsから250fsの範囲内、パルス繰り返し周波数は1kHzから250kHzの範囲内、平均出力は200mWから800mWの範囲内が好ましい。
【0061】
このようにしてスポットサイズ変換部を形成することにより、光学特性をモニタしながら加工することが可能になり、光回路の更なる低損失化を実現できると共に、最終実装や組み立て段階で加工することができるようになる。すなわち、超高Δ光回路を製造する際の歩留まりの向上が期待できる。
【0062】
また、本実施の形態の光回路は、光ファイバ6内を伝搬する信号光のスポットサイズがコア径とほぼ等しい10μm程度の大きなスポットサイズから端面に向かって中間的な値Dmのスポットサイズになるように変換され、また光回路本体5内のコア層3のスポットサイズも端面11Aに向かって中間的な値Dgmになるように変換されているので、光回路本体5と光ファイバ6とが低損失で接続されていることになる。
【0063】
さらに、両スポットサイズ変換部4,9として、2つ以上の異なる直径のレンズ媒質5a,5b,9a,9bを用いているため、スポットサイズ変換部4,9の光軸方向の長さを短くすることができると共に、それぞれのスポットサイズ変換部4,9が急激にスポットサイズを変換していないので、これらのスポットサイズ変換部4,9の屈折率及びコアの断面積も急激に変化せず、非常に低損失な接続を実現することができる。
【0064】
また、Δhが2%以上4%程度以下の超高Δの光回路本体5と、Δlが0.3%から1.5%の範囲内の光ファイバ6とをモードフィールド整合をとって接続することが可能になるので、従来の低Δ(Δ:約0.75%)の光回路に比して1/20から1/40に超小型化した超高Δの光回路が実現可能になる。これにより、光回路の生産量が従来の20倍以上に増大し、光回路生産に必要な電力費用も1/20以下になり、光回路のコストを1/15以下にすることが可能になる。
【0065】
次に、本発明の他の実施の形態について詳述する。
【0066】
図3は本発明の他の実施の形態を示すレンズ列スポットサイズ変換型光回路の正面断面図である。
【0067】
図3に示すように、このレンズ列スポットサイズ変換型光回路は、光回路本体25のコア層23の両端部23a,23bが異なる端面21A,21Bの近傍に形成されており、それぞれスポットサイズ変換部24a,24bが形成されている。さらに、それらのスポットサイズ変換部24a,24bの両端面21A,21Bに、それぞれスポットサイズ変換部29,29を有する光ファイバ26,26が接続されて構成されている。
【0068】
光回路本体25は、図1(a)に示した光回路本体と同様に、基板21上に、低屈折率nuの下部クラッド層22dを有し、その下部クラッド層22d上に、高屈折率nwのほぼ矩形断面状のコア層23のパターンが形成され、そのコア層23及び下部クラッド層22dを覆うように、低屈折率nuの上部クラッド層22uが形成された構造を有する。また、光ファイバ26は、図1(a)に示した光ファイバと同様に、屈折率ncのコア27の外周に、このコア27よりも低い屈折率nclのクラッド28が形成された構造を有する。
【0069】
光回路本体25のスポットサイズ変換部24a,24bのレンズ媒質25a,25bは、同様に、それぞれ光ファイバ26,26との接続端面21A,21Bに向かってコア層23の屈折率が変化するように配置されている。
【0070】
このように構成することにより、例えば、AWGフィルタ、スプリッタ、光スイッチなどの多ポート入出力を有する光回路等に適用することができる。
【0071】
この場合、適用する光回路の入出力の数に合わせて、光回路本体25の両端面21A,21B側にはスポットサイズ変換部をN及びM個(N,M:≧1)設ければ良い。
【0072】
また、図4は本発明の他の実施の形態を示すレンズ列スポットサイズ変換型光回路の正面断面図である。
【0073】
図4に示すように、このレンズ列スポットサイズ変換型光回路は、基本的な構成は図1(a)に示した光回路と同様であるが、光回路本体35と光ファイバ36との接続端面35A,36Aがそれぞれ光軸の垂線に対して斜めに加工されている点で異なるものである。
【0074】
具体的には、光回路本体35と光ファイバ36とにわたって伝搬する信号光の光軸の垂線に対する傾斜角をθとすると、θは2°から8°の範囲内が好ましい。
【0075】
そして、光回路本体35と光ファイバ36とを接続することにより、それぞれの接続端面35A,36Aからの信号光の不要な反射の影響を取り除くことができ、他の端面への反射の影響を抑圧することができ、低クロストーク、低反射の光回路を得ることができる。
【0076】
また、接続部の間隔は透過損失を低減するため10μm以下が好ましい。
【0077】
尚、本発明は、上述した実施の形態に限定されない。
【0078】
まず、比屈折率差Δの低い(Δl)光ファイバ6,26,36のΔlは、0.3%から1.5%の範囲内から選ぶことができるので、種々の光ファイバを用いて超高Δ光回路を実現することができる。このΔlが大きいほど、そのコア7,27,37内に形成されるレンズ媒質9a,9b,25a,25bの屈折率を大きくすることができるので、数3式及び数4式から分かるように、直径Ra,Rbを小さくしてビームスポットサイズDmを小さくすることができる。さらに、光回路本体5,25,35側のスポットサイズ変換部4,24a,24b,34のDgmも小さい値で良いために、非常に低損失のスポットサイズ変換部4,24a,24b,34を構成することができる。
【0079】
また、本発明に用いられる光ファイバ6,26,36としては、光ファイバ6,26,36の外周部に被覆材料が形成されていても良い。例えば、プリコーティング材料、2次被覆材料の高分子材料が被覆されていても良い。また、光ファイバ6,26,36のコア径も10μm以外に、数μmから10μmの範囲内のものを用いることができる。また数2式から数7式においてfa,fb,na,nb,Ra,Rb,fga,fgb,nga,ngb,Rga,Rgb等の値は広い範囲から選ぶことができる。例えば、Ra及びRbは1μmから10μmの範囲内から、na及びnbは1.458から1.490の範囲内から選んでそれぞれ加工することができる。
【0080】
さらに、本実施の形態にあっては、スポットサイズ変換部4,9,24a,24b,29,34,39が2個或いは3個のレンズ媒質で構成されているが、1個以上であれば良い。また、光ファイバ6,26,36はその先端部に向けて先細りするようにテーパ構造に加工されていても良い。また、光ファイバ6,26は先端部が球状に加工されていても良い。
【0081】
また、光回路本体5,25,35の基板1,21として、ガラス基板以外に、Si基板、GaAs基板等の半導体基板、LiNbO 、LiTaO 等の強誘電体基板、セラミックス基板、或いはプラスチックス基板などを用いても良い。
【0082】
さらに、光回路本体5,25,35のΔhは1.5%から4.0%の範囲内のものを用いることができるが、光ファイバ6,26,36のΔlに高いものを用いれば、さらに高いΔhのものに適用することもできる。
【0083】
【発明の効果】
以上要するに本発明によれば、光ファイバと光導波路とが低損失で接続され、かつ小型化、低コスト化を実現できるレンズ列スポットサイズ変換型光回路を提供できる。
【図面の簡単な説明】
【図1】(a)は本発明の一実施の形態を示すレンズ列スポットサイズ変換型光回路の正面断面図であり、(b)は(a)のIb−Ib線断面図であり、(c)は(b)のIc−Ic線の屈折率分布を示す図である。
【図2】(a)から(e)はレンズ列スポットサイズ変換型光回路の中間体の正面断面図であり、(f)から(j)は(a)から(e)の右側面図である。
【図3】本発明の他の実施の形態を示すレンズ列スポットサイズ変換型光回路の正面断面図である。
【図4】本発明の他の実施の形態を示すレンズ列スポットサイズ変換型光回路の正面断面図である。
【図5】従来のモード変換方式を説明するための説明図である。
【図6】従来のモード変換方式を説明するための説明図である。
【符号の説明】
2u,2d クラッド層
3 コア層
4 スポットサイズ変換部
5 光回路本体
5a,5b レンズ媒質
6 光ファイバ
7 コア
9 スポットサイズ変換部
9a,9b レンズ媒質

Claims (6)

  1. 光導波路のコア層の光軸と光ファイバのコアの光軸とが一致するように上記光導波路と上記光ファイバとが接続された光回路において、上記光導波路の上記光ファイバとの接続部側のコア層の端面がクラッド層で覆われており、該コア層の端面を覆う部分のクラッド層内のコア層の光軸上に、上記光導波路から上記光ファイバに向かって屈折率を徐々に変化させた複数の略球状レンズ媒質を有するスポットサイズ変換部が形成されていると共に、上記光ファイバの接続部近傍のコア内に、上記光ファイバから上記光導波路に向かって屈折率を徐々に変化させた複数の略球状レンズ媒質を有する他のスポットサイズ変換部が形成されていることを特徴とするレンズ列スポットサイズ変換型光回路。
  2. 上記光導波路のコア層とクラッド層との比屈折率差は2.0%から4.0%の範囲内にあり、かつ上記光ファイバのコアとクラッドとの比屈折率差は0.3%から1.5%の範囲内にあると共に、上記光導波路内に形成された上記スポットサイズ変換部は上記光ファイバと接続される端面方向に向かって略球状のレンズ媒質の屈折率が徐々に低くなり、かつ上記光ファイバ内に形成された上記他のスポットサイズ変換部は上記光導波路と接続される端面方向に向かって略球状のレンズ媒質の屈折率が徐々に高くなる請求項1に記載のレンズ列スポットサイズ変換型光回路。
  3. 上記光導波路内に形成された上記スポットサイズ変換部は、上記光ファイバと接続される端面方向に向かって略球状のレンズ媒質を複数個、所望間隔、所望径、所望屈折率を持つように形成してなる請求項1又は2に記載のレンズ列スポットサイズ変換型光回路。
  4. 上記光導波路と上記光ファイバとの接続部を少なくとも1つ以上有すると共に、各接続部近傍に上記スポットサイズ変換部がそれぞれ形成されている請求項1から3のいずれかに記載のレンズ列スポットサイズ変換型光回路。
  5. 上記光導波路のコア層と上記光ファイバのコアとの接続面は、光軸の垂線に対して斜めに加工されている請求項1から4のいずれかに記載のレンズ列スポットサイズ変換型光回路。
  6. 上記レンズ媒質は、パルス幅が30fsから200fsの範囲内でありかつパルス繰り返し周波数が1kHzから250kHzの範囲内である超短パルスレーザービームのビームスポットサイズ及び照射エネルギーを変えて集光、照射されることによって形成されたものである請求項1から5のいずれかに記載のレンズ列スポットサイズ変換型光回路。
JP2003038569A 2003-02-17 2003-02-17 レンズ列スポットサイズ変換型光回路 Expired - Fee Related JP4003658B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038569A JP4003658B2 (ja) 2003-02-17 2003-02-17 レンズ列スポットサイズ変換型光回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038569A JP4003658B2 (ja) 2003-02-17 2003-02-17 レンズ列スポットサイズ変換型光回路

Publications (2)

Publication Number Publication Date
JP2004246282A true JP2004246282A (ja) 2004-09-02
JP4003658B2 JP4003658B2 (ja) 2007-11-07

Family

ID=33023066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038569A Expired - Fee Related JP4003658B2 (ja) 2003-02-17 2003-02-17 レンズ列スポットサイズ変換型光回路

Country Status (1)

Country Link
JP (1) JP4003658B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117569A1 (ja) * 2011-02-28 2012-09-07 オムロン株式会社 レーザ加工装置
CN114603251A (zh) * 2022-03-15 2022-06-10 广东国志激光技术有限公司 通过多阶梯光纤改变光束参数积的光学搅拌器及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106468810B (zh) * 2015-08-20 2019-12-06 中兴通讯股份有限公司 一种光斑转换器及光学装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117569A1 (ja) * 2011-02-28 2012-09-07 オムロン株式会社 レーザ加工装置
CN114603251A (zh) * 2022-03-15 2022-06-10 广东国志激光技术有限公司 通过多阶梯光纤改变光束参数积的光学搅拌器及方法

Also Published As

Publication number Publication date
JP4003658B2 (ja) 2007-11-07

Similar Documents

Publication Publication Date Title
KR101121459B1 (ko) 광섬유 및 평면 광학 도파관을 치밀하게 결합하는 방법 및장치
JP3581224B2 (ja) 平面型光学導波路素子
JP2007114253A (ja) 導波路型光分岐素子
JP3563376B2 (ja) 光合分波器の製造方法
KR20000051355A (ko) 모드모양 변환기, 그 제작 방법 및 이를 구비한 집적광학 소자
JP2004133446A (ja) 光モジュール及び製造方法
US6915029B2 (en) High density integrated optical chip with low index difference and high index difference waveguide functions
JP2003207684A (ja) 光結合器及びその製造方法
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
JP3952696B2 (ja) 光結合構造
US6553164B1 (en) Y-branch waveguide
JP3841969B2 (ja) Y分岐光導波路及び光集積回路
US7046881B2 (en) Manufacturing method for optical coupler/splitter and method for adjusting optical characteristics of planar lightwave circuit device
JP2004029073A (ja) 光導波路回路およびその製造方法
JP2003240992A (ja) 導波路素子および導波路デバイス
JP4003658B2 (ja) レンズ列スポットサイズ変換型光回路
JP3969320B2 (ja) 導波路型光部品
WO2001009652A1 (fr) Reseau de diffraction matrice de guide d'ondes
JP2004170627A (ja) 平面導波路及びアレイ導波路型回折格子
JP3775673B2 (ja) アレイ導波路格子型光合分波回路
JP2008281639A (ja) 光偏向素子、光偏向モジュール及び光スイッチモジュール、並びに光偏向方法
JP2001235645A (ja) 光導波回路
JPH09230151A (ja) 光分岐デバイス
JP3925384B2 (ja) 光部品及びその製造方法
RU2712985C1 (ru) Устройство модового конвертера

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees