WO2023238270A1 - 発光デバイス - Google Patents

発光デバイス Download PDF

Info

Publication number
WO2023238270A1
WO2023238270A1 PCT/JP2022/023053 JP2022023053W WO2023238270A1 WO 2023238270 A1 WO2023238270 A1 WO 2023238270A1 JP 2022023053 W JP2022023053 W JP 2022023053W WO 2023238270 A1 WO2023238270 A1 WO 2023238270A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
film
emitting device
emitting element
moisture
Prior art date
Application number
PCT/JP2022/023053
Other languages
English (en)
French (fr)
Inventor
真伸 水崎
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2022/023053 priority Critical patent/WO2023238270A1/ja
Publication of WO2023238270A1 publication Critical patent/WO2023238270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present disclosure relates to a light-emitting device including a light-emitting element.
  • a light emitting device includes a light emitting element, a first inorganic film covering the light emitting element, a hydrophobic organic film located outside the first inorganic film, and an outside of the hydrophobic organic film. and a moisture absorbing membrane located at.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to Embodiment 1.
  • FIG. 1 is a schematic enlarged view of a cross section of a light emitting device according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device according to Embodiment 2.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device according to Embodiment 3.
  • FIG. FIG. 3 is a schematic cross-sectional view of a light emitting device according to Embodiment 4.
  • FIG. 7 is a schematic cross-sectional view of a light emitting device according to Embodiment 5.
  • the substrate 2 may be, for example, a glass substrate or a resin film substrate having a drive circuit that can individually drive any electrode of the light emitting element 3 described later.
  • the substrate 2 may include a drive circuit including a metal material or a conductive transparent material.
  • the light emitting element 3 is an element that emits light when driven by the drive circuit for the substrate 2 described above, and is, for example, a laminated field injection type light emitting element having a light emitting layer containing a light emitting material between electrodes.
  • the light-emitting element 3 is a quantum dot light-emitting element having semiconductor nanoparticles (quantum dots) as a light-emitting material in the light-emitting layer, or an organic light-emitting element (for example, an OLED element) containing an organic fluorescent material or an organic phosphorescent material in the light-emitting layer. ).
  • the light emitting element 3 may include a mixture of a host material and a dopant material in the light emitting layer.
  • the light emitting element 3 includes, for example, an anode, a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, an electron injection layer, in order from the substrate 2 side. and a cathode.
  • the stacking order of each layer of the light emitting element 3 may be reversed to the above-mentioned order.
  • the light-emitting material included in the light-emitting layer of the light-emitting element 3 may be a material that emits light by excitons generated by recombination of holes from the anode and electrons from the cathode.
  • the light emitting device 1 may obtain light emission from the light emitting layer of the light emitting element 3 by driving the light emitting element 3 by the driving circuit of the substrate 2.
  • the light emitted from the light emitting layer of the light emitting element 3 may be extracted from the light emitting element 3 to the cover film 5 side.
  • the moisture-absorbing film 42 is an organic sealing film having hygroscopic properties, and particularly absorbs foreign matter such as moisture from the outside of the sealing layer 4 side of the light-emitting device 1 to the light-emitting element 3, and removes the foreign matter from the light-emitting element 3. It has the function of delaying the penetration of
  • the hygroscopic film 42 may include an organic polymer having hygroscopic properties.
  • the hydrophobic organic film 41 and the moisture absorption film 42 may be adjacent to each other.
  • the hygroscopic film 42 may include an organic polymer that has both hygroscopicity and adhesion to the hydrophobic organic film 41.
  • the moisture absorption film 42 may include an organic polymer having both hydrophilicity and hydrophobicity.
  • the moisture absorption film 42 may be formed at a position covering the hydrophobic organic film 41.
  • a hydrophilic functional group may refer to a functional group that causes a contact angle between the surface of a polymer membrane having the hydrophilic functional group and water to be less than 25 degrees.
  • the hydrophilic functional group may refer to a functional group having a polarity greater than that of water molecules.
  • a hydrophobic functional group may refer to a functional group that provides a contact angle of 25 degrees or more between the surface of a polymer membrane having the hydrophobic functional group and water.
  • a hydrophilic functional group may refer to a functional group having a polarity less than that of a water molecule.
  • the hydrophilic functional group of the first organic polymer may include at least one selected from the group consisting of an amide group and a carboxylic acid group.
  • the first organic polymer may include at least one selected from the group consisting of polyamic acid, polyamic acid, polyimide acid, partially imidized polyamic acid, and polyacrylic acid.
  • the first organic polymer may include at least one selected from the group consisting of polymers represented by the following general formula (1).
  • X represents any one of the following.
  • the polymer represented by general formula (1) contains a polyamic acid containing an amide group and a carboxylic acid group as a hydrophilic functional group. Moreover, X and Y of the polymer represented by general formula (1) are part of the molecular skeleton having hydrophobicity.
  • the first organic polymer may be a polymer obtained by polymerizing a monomer having a hydrophilic functional group.
  • the first organic polymer may include at least one selected from the group consisting of polymers represented by the following chemical formula.
  • the polymer represented by the chemical formula below may be obtained by polymerizing a monomer containing a hydrophilic functional group and having a hydrophobic molecular skeleton.
  • the moisture absorption film 42 may include a second organic polymer having a hydrophilic functional group and a hydrophobic functional group, as an organic polymer having both hydrophilicity and hydrophobicity.
  • the hydrophilic functional group of the second organic polymer may include at least one selected from the group consisting of an amide group and a carboxylic acid group.
  • the hydrophobic functional group of the second organic polymer may include at least one selected from the group consisting of an alkyl group and a functional group having an aromatic ring.
  • the second organic polymer may include at least one selected from the group consisting of polyamic acid, polyamic acid, polyimide acid, partially imidized polyamic acid, and polyacrylic acid.
  • the second organic polymer may include at least one selected from the group consisting of polymers represented by the following general formula (2).
  • X represents any one of the following.
  • Y represents any one of the following.
  • Z represents any one of the following.
  • the polymer represented by general formula (2) contains a polyamic acid containing an amide group and a carboxylic acid group as a hydrophilic functional group.
  • X and Y of the polymer represented by general formula (2) are part of the molecular skeleton having hydrophobicity, and Z is a hydrophobic functional group.
  • the second organic polymer may be a polymer obtained by polymerizing monomers having a hydrophilic functional group and a hydrophobic functional group.
  • it may be a polymer obtained by polymerizing monomers in which a portion of a monomer having a hydrophilic functional group is substituted with a hydrophobic functional group.
  • the second organic polymer may include at least one selected from the group consisting of polymers represented by the following chemical formula, where X is an alkyl group that is a hydrophobic functional group.
  • the concentration of the second organic polymer in the portion of the moisture absorbing film 42 on the hydrophobic organic film 41 side is higher than the concentration of the second organic polymer in the portion of the moisture absorbing film 42 on the side opposite to the hydrophobic organic film 41 side.
  • Tomoyoshi In other words, when the direction from the substrate 2 to the cover film 5 in the light emitting device 1 is set upward, the concentration of the second organic polymer in the upper part of the moisture absorbing film 42 is the same as the concentration of the second organic polymer in the lower part of the moisture absorbing film 42. It may be higher than the concentration of the organic polymer.
  • the adhesion between the hydrophobic organic film 41 and the hygroscopic film 42 is improved on the hydrophobic organic film 41 side of the hygroscopic film 42 .
  • the hygroscopicity is improved on the side of the hygroscopic film 42 opposite to the hydrophobic organic film 41 side, in other words, on the external side of the light emitting device 1, and moisture, etc., is transferred from the outside of the light emitting device 1 to the light emitting element 3. Penetration of foreign substances can be reduced.
  • the moisture permeability of the moisture absorption membrane 42 is 30 g/(m 2 ⁇ 24 h) or less. It may be 20 g/(m 2 ⁇ 24 h) or less. In order to ensure sufficient hygroscopicity in the hygroscopic film 42 with respect to the hydrophobic organic film 41, the moisture permeability of the hygroscopic film 42 is 1/3 or less, or 1/2 or less of the water permeability of the hydrophobic organic film 41. It may be.
  • the thickness T2 of the moisture absorption film 42 may be 50 nm or more, 100 nm or more, or 200 nm or more.
  • the total thickness T3 of the hydrophobic organic film 41 and the hygroscopic film 42 may be 500 nm or more.
  • the ratio of the film thickness T2 to the film thickness T1 is set to 0.05 or more. It may be 20 or less.
  • the second inorganic film 43 may have the same configuration as the first inorganic film 40 except for the formation position.
  • the second inorganic film 43 may be formed at a position covering the moisture absorption film 42.
  • the first inorganic film 40 may be formed on the substrate 2 closer to the outer circumference of the light emitting device 1 than the hydrophobic organic film 41 and the moisture absorption film 42 .
  • the second inorganic film 43 may be in direct contact with the peripheral edge 44 of the first inorganic film 40.
  • the outer peripheral side of the light emitting device 1 in the sealing layer 4 is covered with an inorganic sealing film. Therefore, with the above configuration, the light emitting device 1 can reduce penetration of foreign substances such as moisture from around the sides of the light emitting device 1 by the sealing layer 4 .
  • cover film> The cover film 5 is formed by being attached to the side of the sealing layer 4 opposite to the substrate 2.
  • the cover film 5 may include, for example, a translucent resin material.
  • the cover film 5 may be formed to protect the light emitting element 3 and the sealing layer 4 of the light emitting device 1.
  • the cover film 5 may have a conductive transparent electrode such as an electrode of a touch panel.
  • FIG. 2 is an enlarged schematic diagram of region A in the cross section of the light emitting device 1 shown in FIG. In other words, FIG. 2 shows a cross section of the light emitting device 1 shown in FIG. FIG.
  • a plurality of fine pinholes H penetrating in the film thickness direction may be formed in the first inorganic film 40 and the second inorganic film 43.
  • Such pinholes H are caused, for example, by the introduction of foreign matter during the manufacturing process of the first inorganic film 40 and the second inorganic film 43, or by the occurrence of film thickness unevenness in the first inorganic film 40 and the second inorganic film 43. may occur.
  • the cover film 5 will be pasted on the moisture absorbing film 42, but in this case, a minute gap may be formed in a part between the moisture absorbing film 42 and the cover film 5. Therefore, even in the above case, the moisture from the moisture absorption membrane 42 is released into the gap between the moisture absorption membrane 42 and the cover film 5 rather than penetrating into the hydrophobic organic membrane 41 which has hydrophobicity and is a solid. occurs preferentially.
  • the sealing layer 4 efficiently releases the moisture absorbed by the moisture absorbing film 42 toward the outside of the light emitting device 1 and reduces the penetration of moisture into the light emitting element 3.
  • the sealing layer 4 can more effectively reduce the penetration of moisture from the outside of the light emitting device 1 into the light emitting element 3. Note that the sealing layer 4 can also reduce the penetration of liquid foreign matter from the outside of the light emitting device 1 into the light emitting element 3 in addition to moisture by the same mechanism as described above.
  • the moisture absorption film 42 includes a polymer having a hydrophobic functional group or a polymer including a molecular skeleton having hydrophobicity. Therefore, the moisture absorbing film 42 can improve its adhesion to the hydrophobic organic film 41 having hydrophobic properties. By bringing the hydrophobic organic film 41 and the moisture absorption film 42 into closer contact with each other, the sealing layer 4 can further reduce the penetration of foreign substances such as moisture from between the two layers.
  • a substrate 2 containing Ag and ITO was prepared as a drive circuit and an anode of the light emitting element 3.
  • a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transporting layer, and an electron blocking layer of a predetermined thickness are deposited under predetermined vapor deposition conditions.
  • the injection layer and cathode were deposited.
  • the light-emitting material of the light-emitting layer an organic fluorescent material that emits blue light was used.
  • the electron injection layer was formed by depositing LiF
  • the cathode was formed by depositing a metal material containing Mg and Ag.
  • a top emission type blue OLED element was formed on the substrate 2 as the light emitting element 3.
  • a capping layer made of an organic material was formed on the blue OLED element.
  • a first inorganic film 40 was formed by forming a SiN film with a thickness of 0.1 ⁇ m on the substrate 2 and the light emitting element 3 using a sputtering method.
  • the acrylic resin material is irradiated with light to form a hydrophobic organic film having a thickness of 0.5 ⁇ m. 41 was formed.
  • a moisture absorption film 42 was formed by the following method. First, a polymeric material containing a polyamic acid containing an alkyl group in its side chain and a polyamic acid containing no alkyl group in its side chain at a weight ratio of 20:80 was synthesized. Next, the polymer material was coated to form a film and heated at 200°C. As a result, a moisture absorption film 42 having a film thickness of 0.5 ⁇ m was formed. Furthermore, a second inorganic film 43 was formed by forming a SiN film with a thickness of 0.1 ⁇ m by sputtering, and the sealing layer 4 was formed. Through the above steps, the light emitting device according to Example 1 was completed.
  • the water vapor permeability of the hydrophobic organic film 41 is 60 g/(m 2 ⁇ 24 h), and the water vapor permeability of the moisture absorbing film 42 is 25 g/(m 2 ⁇ 24 h).
  • Comparative Examples 1 to 4 In order to evaluate the characteristics of the light emitting device according to Example 1, light emitting devices according to each of Comparative Examples 1 to 4 were also manufactured.
  • the light emitting devices according to each comparative example were manufactured by changing the structure of the sealing layer 4 in the light emitting device according to Example 1 described above as follows.
  • the film thickness and material of the first inorganic film 40 and the second inorganic film 43 are the same as the film thickness of the first inorganic film 40 and the second inorganic film 43 according to Example 1. and materials are the same.
  • the materials of the hydrophobic organic film 41 and the moisture absorbing film 42 are the same as those of the hydrophobic organic film 41 and the moisture absorbing film 42 according to Example 1.
  • the sealing layer of the light emitting device according to Comparative Example 1 includes, from the light emitting element 3 side, a first inorganic film 40, a hydrophobic organic film 41 with a film thickness of 1 ⁇ m, and a second inorganic film 43.
  • the sealing layer of the light emitting device according to Comparative Example 2 includes, from the light emitting element 3 side, a first inorganic film 40, a hygroscopic film 42 with a film thickness of 20 nm, a hydrophobic organic film 41 with a film thickness of 1 ⁇ m, and a second inorganic film 43.
  • the sealing layer of the light emitting device according to Comparative Example 3 includes, from the light emitting element 3 side, a first inorganic film 40, a moisture absorption film 42 with a film thickness of 1 ⁇ m, and a second inorganic film 43.
  • the sealing layer of the light emitting device according to Comparative Example 4 includes, from the light emitting element 3 side, a first inorganic film 40, a hygroscopic film 42 with a film thickness of 0.13 ⁇ m, a hydrophobic organic film 41 with a film thickness of 0.2 ⁇ m, and a second inorganic film 40. It has an inorganic film 43.
  • Example 2 A light-emitting device according to another example was manufactured in which a light-emitting element is sealed with a sealing layer having the same configuration as the sealing layer 4 according to the embodiment described above, and the characteristics were compared with a light-emitting device according to a comparative example. did.
  • a light emitting device according to Example 2 a light emitting device was manufactured according to the following procedure.
  • the substrate 2 and the light emitting element 3 were manufactured by the same method as the manufacturing method of the substrate 2 and the light emitting element 3 according to Example 1, except for the following.
  • an organic fluorescent material that emits green light was used as the luminescent material of the luminescent layer.
  • a capping layer made of an organic material was formed on the green OLED element.
  • a moisture absorption film 42 having a film thickness of 0.4 ⁇ m was formed. Furthermore, a second inorganic film 43 was formed by forming a SiN film with a thickness of 0.1 ⁇ m by sputtering, and the sealing layer 4 was formed.
  • a light emitting device according to Example 2 was completed.
  • the water vapor permeability of the hydrophobic organic film 41 is 65 g/(m 2 ⁇ 24 h)
  • the water vapor permeability of the moisture absorbing film 42 is 30 g/(m 2 ⁇ 24 h).
  • the sealing layer of the light emitting device according to Comparative Example 7 includes, from the light emitting element 3 side, a first inorganic film 40, a moisture absorption film 42 with a film thickness of 1 ⁇ m, and a second inorganic film 43.
  • FIG. 3 is a schematic cross-sectional view of the light emitting device 1 according to this embodiment.
  • the light emitting device 1 according to this embodiment differs in configuration from the light emitting device 1 according to the previous embodiment only in that it includes a tandem light emitting element 6 as a light emitting element instead of the light emitting element 3. Therefore, the first inorganic film 40 of the sealing layer 4 covers the tandem light emitting element 6.
  • the tandem light emitting device 6 includes a first portion 60, a charge generation layer 61, and a second portion 62 on the substrate 2 in this order.
  • the tandem light emitting device 6 includes a light emitting layer corresponding to the light emitting layer of the light emitting device 3 described above in the first portion 60 and the second portion 62, respectively.
  • the tandem light emitting element 6 includes a plurality of light emitting layers.
  • the charge generation layer 61 is a layer for injecting electrons into the first portion 60 side and holes into the second portion 62 side, for example, when the tandem light emitting element 6 is driven.
  • the charge generation layer 61 includes, for example, an n-type charge generation layer on the first portion 60 side and a p-type charge generation layer on the second portion 62 side.
  • the n-type charge generation layer may include, for example, a mixed material of an organic material having an electron transporting property and Yb, or a mixed material of an organic or inorganic material having an electron transporting property and Li.
  • the p-type charge generation layer may include, for example, an organic material having electron-accepting properties.
  • the charge generation layer 61 may be a layer that generates charges by being driven by a circuit board formed on the substrate 2, for example.
  • the charge generation layer 61 may be a layer that generates the above-mentioned charges due to a potential difference between the anode of the first portion 60 and the cathode of the second portion 62.
  • the light emitting device 1 can obtain light emission from the respective light emitting layers of the first portion 60 and the second portion 62 by driving the tandem light emitting element 6.
  • the light emitting device 1 according to this embodiment also includes a sealing layer 4 that seals the tandem light emitting element 6, like the light emitting device 1 according to the previous embodiment. Therefore, the sealing layer 4 according to this embodiment can more effectively reduce the penetration of moisture from the outside of the light emitting device 1 into the tandem light emitting element 6.
  • Example 3 A light emitting device according to another example was manufactured in which a tandem light emitting element was sealed with a sealing layer having the same configuration as the sealing layer 4 according to the embodiment described above, and the characteristics were compared with the light emitting device according to a comparative example. compared.
  • a light emitting device according to Example 3 a light emitting device was manufactured according to the following procedure.
  • the substrate 2 and the tandem light emitting element 6 were manufactured by the same method as the manufacturing method of the substrate 2 and the light emitting element 3 according to Example 1, except for the following.
  • each layer of the first portion 60 and the second portion 62 were the same as those of each layer of the light emitting element 3 according to Example 1.
  • a capping layer made of an organic material was formed on the tandem light emitting element 6.
  • the lifespan of the light-emitting device according to Example 3 is longer than the lifespan of the light-emitting devices according to each comparative example.
  • the sealing layer 4 reduces penetration of foreign substances such as moisture from the outside of the light-emitting device into the tandem light-emitting element 6, compared to the light-emitting devices according to each comparative example. This is thought to be because of this.
  • FIG. 4 is a schematic cross-sectional view of the light emitting device 1 according to this embodiment.
  • the light emitting device 1 according to the present embodiment is different from the light emitting device 1 according to the first embodiment only in that the sealing layer 4 has a buffer layer 45 between the hydrophobic organic film 41 and the moisture absorption film 42. are different.
  • the buffer layer 45 is, for example, a hygroscopic organic sealing film like the moisture absorbing film 42, and particularly absorbs foreign substances such as moisture from the outside of the sealing layer 4 side of the light emitting device 1 to the light emitting element 3. , has a function of delaying penetration of the foreign matter into the light emitting element 3.
  • the buffer layer 45 may be formed at a position covering the hydrophobic organic film 41, and the moisture absorption film 42 may be formed at a position covering the buffer layer 45.
  • the buffer layer 45 may have higher hydrophobicity than the moisture absorption film 42 and lower than the hydrophobic organic film 41.
  • the buffer layer 45 may contain, for example, an organic polymer that is more hydrophobic than the moisture absorption film 42.
  • the buffer layer 45 may include at least one of the first organic polymer and the second organic polymer, for example, like the moisture absorbing film 42.
  • the buffer layer 45 may include, for example, a first organic polymer having a lower concentration of hydrophilic functional groups relative to the hydrophobic molecular skeleton than the first organic polymer included in the moisture absorbing film 42 .
  • the buffer layer 45 may include, for example, a second organic polymer having a lower ratio of hydrophilic functional groups to hydrophobic functional groups than the second organic polymer included in the moisture absorbing film 42 .
  • the buffer layer 45 may be formed, for example, similarly to the moisture absorbing film 42, by coating a material containing an organic polymer.
  • the buffer layer 45 and the moisture absorption film 42 may be formed by separate coating films, or may be formed in the same coating film process.
  • coating materials containing organic polymers having mutually different hydrophobicities may be applied onto the hydrophobic organic film 41.
  • the more hydrophobic organic polymer of the coating material may move to the hydrophobic organic film 41 side due to its own weight or attraction by the hydrophobic organic film 41 having hydrophobicity.
  • the buffer layer 45 and the moisture absorption film 42 may be formed simultaneously by curing the coating material.
  • the buffer layer 45 has higher hydrophobicity than the moisture absorption film 42. Therefore, as described above, the moisture absorbed into the moisture absorbing film 42 through the pinholes H of the second inorganic film 43 is absorbed into the second inorganic film 43 rather than permeating into the buffer layer 45, which is hydrophobic and solid. It is preferentially emitted to the pinhole H in the film 43.
  • the buffer layer 45 has lower hydrophobicity than the hydrophobic organic film 41. Therefore, even when moisture permeates into the buffer layer 45 through the moisture absorbing film 42, the moisture preferentially penetrates into the highly hydrophilic moisture absorbing film 42 rather than penetrating into the highly hydrophobic organic film 41. to penetrate.
  • the sealing layer 4 efficiently releases the moisture absorbed by the moisture absorbing film 42 or the buffer layer 45 to the outside of the light emitting device 1, and reduces the penetration of moisture into the light emitting element 3.
  • the buffer layer 45 has higher hydrophobicity than the moisture absorption film 42 and lower than the hydrophobic organic film 41. Therefore, the adhesion between the hydrophobic organic film 41 and the buffer layer 45 and the adhesion between the buffer layer 45 and the hygroscopic film 42 are both higher than the adhesion between the hydrophobic organic film 41 and the hygroscopic film 42. expensive. Therefore, the light emitting device 1 according to the present embodiment can further reduce the penetration of foreign substances such as moisture from between the sealing layers 4.
  • FIG. 5 is a schematic cross-sectional view of the light emitting device 1 according to this embodiment.
  • the light emitting device 1 according to the present embodiment is different from the light emitting device 1 according to the first embodiment only in that the sealing layer 4 includes an inorganic intermediate film 46 between a hydrophobic organic film 41 and a moisture absorption film 42.
  • the configuration is different.
  • the inorganic intermediate film 46 may have the same configuration as the first inorganic film 40 or the second inorganic film 43 except for the formation position.
  • the inorganic intermediate film 46 may be formed at a position covering the hydrophobic organic film 41, and the moisture absorption film 42 may be formed at a position covering the inorganic intermediate film 46.
  • the inorganic intermediate film 46 reduces the permeation of moisture from the moisture absorption film 42 to the hydrophobic organic film 41. Therefore, the sealing layer 4 more efficiently releases the moisture absorbed by the moisture absorption film 42 toward the outside of the light emitting device 1 and reduces the penetration of moisture into the light emitting element 3.
  • the moisture absorption film 42 that is formed after the formation of the inorganic intermediate film 46 is formed in the pinhole H. Therefore, the moisture absorption film 42 contacts the hydrophobic organic film 41 at the pinhole H of the inorganic intermediate film 46 . Therefore, the moisture from the hygroscopic film 42 leaks to the outside of the light emitting device 1 through the pinholes H of the second inorganic film 43 rather than penetrating the hydrophobic organic film 41 through the pinholes H of the inorganic intermediate film 46. preferentially released. Therefore, the sealing layer 4 more efficiently releases the moisture absorbed by the moisture absorption film 42 toward the outside of the light emitting device 1 and reduces the penetration of moisture into the light emitting element 3.
  • FIG. 6 is a schematic cross-sectional view of the light emitting device 1 according to this embodiment.
  • the light emitting device 1 according to the present embodiment has a plurality of light emitting elements including a red light emitting element 7R, a green light emitting element 7G, and a blue light emitting element 7B instead of the light emitting element 3.
  • the structure differs only in that it includes a light emitting element.
  • the red light emitting element 7R, the green light emitting element 7G, and the blue light emitting element 7B each have a light emitting layer that emits red, green, and blue light. Except for the color of light emitted by the light emitting layer, the red light emitting element 7R, the green light emitting element 7G, and the blue light emitting element 7B have the same configuration as the light emitting element 3 described above.
  • the light-emitting device 1 may include a plurality of light-emitting element sets including a red light-emitting element 7R, a green light-emitting element 7G, and a blue light-emitting element 7B arranged two-dimensionally on the substrate 2.
  • the light emitting device 1 may function as a color display device by individually driving each of the light emitting element sets including the red light emitting element 7R, the green light emitting element 7G, and the blue light emitting element 7B.
  • the first inorganic film 40 is formed at a position covering each of the red light emitting element 7R, the green light emitting element 7G, and the blue light emitting element 7B. Therefore, the sealing layer 4 seals the red light emitting element 7R, the green light emitting element 7G, and the blue light emitting element 7B. Therefore, the sealing layer 4 according to the present embodiment can more effectively reduce the penetration of moisture from the outside of the light emitting device 1 into each of the red light emitting element 7R, the green light emitting element 7G, and the blue light emitting element 7B. I can do it.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

発光デバイス(1)は、発光素子(3)と、発光素子を覆う第1無機膜(40)と、第1無機膜の外側に位置する疎水性有機膜(41)と、疎水性有機膜の外側に位置する吸湿膜(42)と、を備える。

Description

発光デバイス
 本開示は、発光素子を備えた発光デバイスに関する。
 特許文献1は、親水性高分子膜と無機保護膜とを有する封止薄膜によって封止された有機発光素子を有する有機発光表示装置を開示する。
日本国特開2011-113967号
 特許文献1に記載の有機発光表示装置においては、無機保護膜のピンホール等を通過して親水性高分子膜に吸収された水分等の異物が、有機発光素子に向かって放出される場合があり、有機発光素子が劣化する場合がある。
 本開示の一実施形態に係る発光デバイスは、発光素子と、前記発光素子を覆う第1無機膜と、前記第1無機膜の外側に位置する疎水性有機膜と、前記疎水性有機膜の外側に位置する吸湿膜と、を備える。
 吸湿膜が吸収した水分等の異物が、発光素子に向かって放出されることを低減し、発光素子の劣化を低減する。
実施形態1に係る発光デバイスの概略断面図である。 実施形態1に係る発光デバイスの断面の概略拡大図である。 実施形態2に係る発光デバイスの概略断面図である。 実施形態3に係る発光デバイスの概略断面図である。 実施形態4に係る発光デバイスの概略断面図である。 実施形態5に係る発光デバイスの概略断面図である。
 〔実施形態1〕
 <発光デバイス:概要>
 本実施形態においては、電界注入型の発光素子を備えた発光デバイスを例に挙げて説明する。
 図1は本実施形態に係る発光デバイス1の概略断面図である。なお、本明細書における発光デバイス1の概略断面図は、何れも、後述する発光素子を通り、かつ、当該発光素子の積層方向と略平行な方向における断面を示す。
 図1に示すように、発光デバイス1は、基板2と、発光素子3と、封止層4と、カバーフィルム5とを備える。特に、発光デバイス1は、基板2上に発光素子3を備え、当該発光素子3を覆い基板2との間に発光素子3を封止する封止層4を備える。また、封止層4の基板2とは反対の側にカバーフィルム5を貼り付けて備えてもよい。
 発光デバイス1の各部は、屈曲可能な程度に柔軟な部材であってもよく、または、屈曲可能な程度の膜厚を有してもよい。この場合、発光デバイス1はフレキシブルデバイスとして構成されてもよい。
 <発光デバイス:基板>
 基板2は、例えば、後述する発光素子3の何れかの電極を個々に駆動可能な駆動回路を有するガラス基板または樹脂フィルム基板等であってもよい。例えば、基板2は、金属材料または導電性を有する透明材料を含む駆動回路を有してもよい。
 <発光デバイス:発光素子>
 発光素子3は、上述した基板2の駆動回路による駆動によって光を発する素子であり、例えば、電極間に発光材料を含む発光層を有する積層電界注入型の発光素子である。例えば、発光素子3は、発光層に発光材料として半導体ナノ粒子(量子ドット)を有する量子ドット発光素子、または、発光層に有機蛍光材料または有機りん光材料を含む有機発光素子(例えば、OLED素子)であってもよい。発光素子3は、発光層にホスト材料とドーパント材料とを混合して含んでもよい。
 発光素子3が有する発光材料は、赤色、緑色、または青色の何れかの色に発光する発光材料を含んでもよく、あるいは、これらの発光材料を少なくとも2種以上含んでもよい。なお、本明細書において、赤色光とは、例えば、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。また、緑色光とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。さらに、青色光とは、例えば、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。
 より具体的に、発光素子3は、例えば、基板2側から順に、アノード、正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、電子注入層、およびカソードを有してもよい。ただし、発光素子3の各層の積層順は上述した順序とは逆順であってもよい。
 基板2の駆動回路による発光素子3の駆動により、発光素子3のアノードおよびカソードからは、それぞれ正孔および電子が発光層に向かって注入されてもよい。正孔注入層、正孔輸送層、および電子ブロック層は、アノードからの正孔を発光層まで輸送する機能を有してもよい。また、電子注入層、電子輸送層、および正孔ブロック層は、カソードからの電子を発光層まで輸送する機能を有してもよい。なお、電子ブロック層は発光層からアノード側への電子の輸送を阻害する機能を有してもよく、正孔ブロック層は発光層からカソード側への正孔の輸送を阻害する機能を有してもよい。
 発光素子3の発光層が含む発光材料は、アノードからの正孔とカソードからの電子との再結合により生成された励起子によって発光する材料であってもよい。これにより、発光デバイス1は、基板2の駆動回路による発光素子3の駆動により、発光素子3の発光層から発光を得てもよい。なお、発光素子3の発光層からの発光は、発光素子3からカバーフィルム5側に取り出されてもよい。この場合、発光素子3と後述する封止層4との間における光反射を制御し、発光素子3からの発光の取り出し効率を高めるために、発光デバイス1は、発光素子3と封止層4との間にキャッピングレイヤを備えてもよい。あるいは、基板2が透明基板である場合、発光素子3の発光層からの発光は、発光素子3から基板2側に取り出されてもよい。
 <発光デバイス:封止層:概要>
 封止層4は、基板2との間に発光素子3を封止することにより、発光デバイス1の封止層4側の外部から発光素子3への水分等の異物の浸透を低減する。図1に示すように、封止層4は、基板2および発光素子3の側から順に、少なくとも発光素子3を覆う第1無機膜40と、第1無機膜40の外側に位置する疎水性有機膜41と、疎水性有機膜41の外側に位置する吸湿膜42と、を備える。本実施形態において、封止層4は、さらに、吸湿膜42よりも外側に位置し、かつ、吸湿膜42を覆う第2無機膜43を備える。
 <発光デバイス:封止層:第1無機膜>
 第1無機膜40は、例えば、シリコン酸化物、シリコン窒化物、マグネシウム酸化物、マグネシウム窒化物、アルミニウム酸化物、アルミニウム窒化物、亜鉛酸化物、および亜鉛窒化物から成る群から選択された少なくとも1種を含んでもよい。特に、第1無機膜40は、シリコン酸化物またはシリコン窒化物を含んでもよい。
 第1無機膜40が発光素子3への水分等の異物の浸透を十分に低減するため、あるいは、後述するピンホールの形成を十分に低減するために、第1無機膜40の膜厚は100nm以上であってもよい。また、発光デバイス1がフレキシブルデバイスである場合、第1無機膜40の柔軟性を十分に確保するために、第1無機膜40の膜厚は2000nm以下であってもよい。
 <発光デバイス:封止層:疎水性有機膜>
 疎水性有機膜41は、疎水性を有する有機材料を含む有機封止膜であり、例えば、アクリル系樹脂を含む。例えば、疎水性有機膜41が有する有機材料の極性は、水の極性よりも低くともよい。あるいは、疎水性有機膜41と水との接触角は、25度以上であってもよい。
 疎水性有機膜41の膜厚T1は、50nm以上であってもよく、100nm以上であってもよく、200nm以上であってもよい。疎水性有機膜41が厚いほど、発光デバイス1は疎水性有機膜41の吸湿性を高めることができ、発光デバイス1の外部から発光素子3への水分等の異物の浸透を低減できる。
 疎水性有機膜41の透湿度は、60g/(m・24h)以上1000g/(m・24h)以下であってもよい。疎水性有機膜41の透湿度が60g/(m・24h)以上であることにより、発光デバイス1は疎水性有機膜41の吸湿性を高めることができ、発光デバイス1の外部から発光素子3への水分等の異物の浸透を低減できる。疎水性有機膜41の透湿度が1000g/(m・24h)以下であることにより、発光デバイス1は疎水性有機膜41が吸収した水分が疎水性有機膜41をそのまま透過し第1無機膜40側に到達することを低減できる。
 <発光デバイス:封止層:吸湿膜>
 吸湿膜42は、吸湿性を有する有機封止膜であり、特に、発光デバイス1の封止層4側の外部から発光素子3への水分等の異物を吸収し、当該異物の発光素子3への浸透を遅らせる機能を有する。例えば、吸湿膜42は、吸湿性を有する有機高分子を有してもよい。
 本実施形態において、疎水性有機膜41と吸湿膜42とは、互いに隣り合ってもよい。この場合、吸湿膜42は、吸湿性と疎水性有機膜41に対する密着性との双方を有する有機高分子を有してもよい。換言すれば、吸湿膜42は、親水性と疎水性とを双方有する有機高分子を有してもよい。特に、吸湿膜42は疎水性有機膜41を覆う位置に形成されてもよい。
 <発光デバイス:封止層:吸湿膜の高分子>
 例えば、吸湿膜42は、親水性と疎水性とを双方有する有機高分子として、親水性官能基を有し、かつ、分子骨格の少なくとも一部が疎水性である第1有機高分子を有してもよい。特に、第1有機高分子は、疎水性官能基を有していなくともよい。
 なお、本明細書において、親水性官能基とは、当該親水性官能基を有する高分子膜の表面と水との接触角が25度未満となる官能基を指してもよい。あるいは、親水性官能基は、水分子以上の極性を有する官能基を指してもよい。一方、本明細書において、疎水性官能基とは、当該疎水性官能基を有する高分子膜の表面と水との接触角が25度以上となる官能基を指してもよい。あるいは、親水性官能基は、水分子未満の極性を有する官能基を指してもよい。
 第1有機高分子の親水性官能基は、アミド基およびカルボン酸基から成る群から選択された少なくとも1種を含んでもよい。特に、第1有機高分子は、ポリアミック酸、ポリアミド酸、ポリイミド酸、部分的にイミド化されたポリアミック酸、およびポリアクリル酸から成る群から選択された少なくとも1種を含んでもよい。具体的に、第1有機高分子は、下記一般式(1)で表されるポリマーから成る群から選択された少なくとも1種を含んでもよい。
Figure JPOXMLDOC01-appb-C000010
 ただし、上記一般式(1)において、Xは以下のうち何れかを示す。
Figure JPOXMLDOC01-appb-C000011
 また、上記一般式(1)において、Yは以下のうち何れかを示す。
Figure JPOXMLDOC01-appb-C000012
 換言すれば、一般式(1)で表されるポリマーは、親水性官能基として、アミド基およびカルボン酸基を含むポリアミック酸を含む。また、一般式(1)で表されるポリマーのXおよびYは、疎水性を有する分子骨格の一部である。
 また、第1有機高分子は、親水性官能基を有するモノマーが重合したポリマーであってもよい。特に、第1有機高分子は、下記化学式で表されるポリマーから成る群から選択された少なくとも1種を含んでもよい。換言すれば、下記化学式で表されるポリマーは、親水性官能基を含み、かつ、疎水性を有する分子骨格を有するモノマーを重合して得られてもよい。
Figure JPOXMLDOC01-appb-C000013
 他に、吸湿膜42は、親水性と疎水性とを双方有する有機高分子として、親水性官能基および疎水性官能基を有する第2有機高分子を有してもよい。
 特に、第2有機高分子の親水性官能基は、アミド基およびカルボン酸基から成る群から選択された少なくとも1種を含んでもよい。また、第2有機高分子の疎水性官能基は、アルキル基および芳香環を有する官能基から成る群から選択された少なくとも1種を含んでもよい。特に、第2有機高分子は、ポリアミック酸、ポリアミド酸、ポリイミド酸、部分的にイミド化されたポリアミック酸、およびポリアクリル酸から成る群から選択された少なくとも1種を含んでもよい。具体的に、第2有機高分子は、下記一般式(2)で表されるポリマーから成る群から選択された少なくとも1種を含んでもよい。
Figure JPOXMLDOC01-appb-C000014
 ただし、上記一般式(2)において、Xは以下のうち何れかを示す。
Figure JPOXMLDOC01-appb-C000015
 また、上記一般式(2)において、Yは以下のうち何れかを示す。
Figure JPOXMLDOC01-appb-C000016
 さらに、上記一般式(2)において、Zは以下のうち何れかを示す。
Figure JPOXMLDOC01-appb-C000017
 換言すれば、一般式(2)で表されるポリマーは、親水性官能基として、アミド基およびカルボン酸基を含むポリアミック酸を含む。また、一般式(2)で表されるポリマーのXおよびYは、疎水性を有する分子骨格の一部であり、Zは疎水性官能基である。
 また、第2有機高分子は、親水性官能基と疎水性官能基とを有するモノマーが重合したポリマーであってもよい。例えば、親水性官能基を有するモノマーの一部が疎水性官能基に置換されたモノマーが重合したポリマーであってもよい。具体的に、第2有機高分子は、Xを疎水性官能基であるアルキル基として、下記化学式で表されるポリマーから成る群から選択された少なくとも1種を含んでもよい。
Figure JPOXMLDOC01-appb-C000018
 吸湿膜42は、上述した第1有機高分子および第2有機高分子の双方を含んでもよい。この場合、第1有機高分子の分子骨格は、第2有機高分子の分子骨格と同一であってもよい。換言すれば、吸湿膜42は、第1有機高分子の一部の末端または側鎖を疎水性官能基に置換したものであってもよい。吸湿膜42における吸湿度と疎水性有機膜41に対する密着性との双方を十分に確保するために、吸湿膜42における第1有機高分子の物質量に対する第2有機高分子の物質量の比率は、0.05以上20以下であってもよい。
 吸湿膜42の疎水性有機膜41側の部分における第2有機高分子の濃度は、吸湿膜42の疎水性有機膜41側と反対の側の部分における第2有機高分子の濃度よりも、大きくともよい。換言すれば、発光デバイス1において基板2からカバーフィルム5への方向を上方向とした場合、吸湿膜42の上側部分における第2有機高分子の濃度は、吸湿膜42の下側部分における第2有機高分子の濃度よりも、大きくともよい。この場合、吸湿膜42のうち疎水性有機膜41側において、疎水性有機膜41と吸湿膜42との密着性が向上する。また、吸湿膜42のうち疎水性有機膜41側と反対の側、換言すれば、発光デバイス1の外部側において、吸湿性が向上し、発光デバイス1の外部から発光素子3への水分等の異物の浸透を低減できる。
 <発光デバイス:封止層:吸湿膜の特性>
 吸湿膜42が吸収した水分が吸湿膜42をそのまま透過し疎水性有機膜41側に到達することを低減するため、吸湿膜42の透湿度は、30g/(m・24h)以下であってもよく、20g/(m・24h)以下であってもよい。また、疎水性有機膜41に対する吸湿膜42における吸湿性を十分に確保するために、吸湿膜42の透湿度は、疎水性有機膜41の透湿度の1/3以下、あるいは、1/2以下であってもよい。
 吸湿膜42の膜厚T2は、50nm以上であってもよく、100nm以上であってもよく、200nm以上であってもよい。吸湿膜42が厚いほど、発光デバイス1は吸湿膜42の吸湿性を高めることができ、発光デバイス1の外部から発光素子3への水分等の異物の浸透を低減できる。
 疎水性有機膜41と吸湿膜42との双方における吸湿性を高めるため、疎水性有機膜41と吸湿膜42との膜厚の合計T3は、500nm以上であってもよい。また、疎水性有機膜41と吸湿膜42との吸湿性と、疎水性有機膜41と吸湿膜42との密着性とを両立するため、膜厚T1に対する膜厚T2の比率は0.05以上20以下であってもよい。
 <発光デバイス:封止層:第2無機膜>
 第2無機膜43は、形成位置の除き、第1無機膜40と同一の構成を有してもよい。特に、第2無機膜43は、吸湿膜42を覆う位置に形成されてもよい。ここで、第1無機膜40は、基板2上のうち、疎水性有機膜41および吸湿膜42よりも発光デバイス1の外周側まで形成されてもよい。この場合、第2無機膜43は、第1無機膜40の周縁部44と直接接触してもよい。これにより、封止層4のうち発光デバイス1の外周側は、無機の封止膜によって覆われる。したがって、上記構成により、発光デバイス1は、発光デバイス1の側周囲からの水分等の異物の浸透を封止層4によって低減できる。
 <発光デバイス:カバーフィルム>
 カバーフィルム5は、封止層4の基板2とは反対の側に貼り付けられて形成される。カバーフィルム5は、例えば、透光性を有する樹脂材料を含んでもよい。カバーフィルム5は、発光デバイス1の発光素子3および封止層4を保護するために形成されてもよい。カバーフィルム5は、タッチパネルの電極等、導電性を有する透明電極を有してもよい。
 <封止層による発光素子の防湿機構>
 封止層4によって発光デバイス1の外部から発光素子3への水分等の異物の浸透を低減する機構について、図2を参照し詳細に説明する。図2は、図1に示す発光デバイス1の断面のうち領域Aについて拡大した概略図である。換言すれば、図2は、図1に示す発光デバイス1の断面のうち、発光素子3の封止層4の側の端部近傍から第2無機膜43の吸湿膜42の側の端部近傍までの一部を拡大した概略図である。
 発光デバイス1の外部からの水分は、例えば、カバーフィルム5を透過して、または、カバーフィルム5と封止層4との間等を透過して、発光素子3に向かって浸透する場合がある。本実施形態においては、主に第2無機膜43が、封止層4のカバーフィルム5の側から浸透した水分の発光素子3への浸透を低減する。
 ここで、第1無機膜40および第2無機膜43には、図2に示すように、膜厚方向に貫通する微細なピンホールHが複数形成される場合がある。このようなピンホールHは、例えば、第1無機膜40および第2無機膜43の製造工程における異物の混入、または、第1無機膜40および第2無機膜43の膜厚ムラの発生等により生じる場合がある。
 このため、図2の浸透方向D1に示すように、封止層4のカバーフィルム5の側から浸透した水分は、第2無機膜43に形成されたピンホールHを介して吸湿膜42まで浸透する場合がある。この場合においても、吸湿膜42が親水性を有する高分子により当該水分を吸収するため、封止層4は発光デバイス1の外部から発光素子3への水分の浸透を遅らせることができる。
 吸湿膜42による水分の吸収が進み、吸湿膜42における水分量が飽和すると、吸湿膜42からの水分の放出が生じる場合がある。ここで、吸湿膜42からの水分の放出は、図2に示す、放出方向D2または浸透方向D3に向かって生じる。放出方向D2は、吸湿膜42から第2無機膜43のピンホールHを介して発光デバイス1の外部に放出される方向である。浸透方向D3は、吸湿膜42から疎水性有機膜41、換言すれば、発光素子3に向かって浸透する方向である。
 吸湿膜42からの水分は、疎水性を有しかつ固体である疎水性有機膜41へ浸透するよりも、第2無機膜43の空孔であるピンホールHへ放出する方が優先的に生じる。換言すれば、吸湿膜42からの水分の放出は、浸透方向D3よりも放出方向D2に向かって優先的に生じる。
 なお、例えば、発光デバイス1が第2無機膜43を備えていなかったとする。この場合、吸湿膜42上にカバーフィルム5が張り付けられることとなるが、この場合、吸湿膜42とカバーフィルム5との間の一部には、微細な隙間が形成される場合がある。このため、上述の場合においても、吸湿膜42からの水分は、疎水性を有しかつ固体である疎水性有機膜41へ浸透するよりも、吸湿膜42とカバーフィルム5との隙間へ放出する方が優先的に生じる。
 このため、吸湿膜42が吸収した水分は、発光素子3へ向かって浸透する割合よりも、発光デバイス1の外部に向かって放出される割合の方が大きくなる。これにより、封止層4は、吸湿膜42が吸収した水分を効率的に発光デバイス1の外部に向かって放出し、発光素子3への水分の浸透を低減する。
 さらに、疎水性有機膜41もある程度の膜厚および吸湿性を有するため、吸湿膜42から疎水性有機膜41への水分の浸透が生じた場合においても、疎水性有機膜41は発光素子3への水分の浸透を遅らせることができる。加えて、疎水性有機膜41から発光素子3への水分の放出は第1無機膜40によって低減される。
 以上により、封止層4は、発光デバイス1の外部から発光素子3への水分の浸透をより効果的に低減することができる。なお、封止層4は、上記と同様の機構により、水分の他、液体の異物が発光デバイス1の外部から発光素子3へ浸透することも低減することができる。
 また、上述の通り、吸湿膜42は、疎水性官能基を有する高分子、または、疎水性を有する分子骨格を含む高分子を有している。このため、吸湿膜42は、疎水性を有する疎水性有機膜41との密着性を高めることができる。疎水性有機膜41と吸湿膜42とがより密着することにより、封止層4は、当該2層間からの水分等の異物の浸透をより低減することができる。
 <発光デバイスの特性評価:実施例1>
 上述した実施形態に係る封止層4と同一の構成を有する封止層にて発光素子を封止する、実施例に係る発光デバイスを製造し、比較例に係る発光デバイスと特性を比較した。実施例1に係る発光デバイスとして、以下の手順により発光デバイスを製造した。
 はじめに、駆動回路、および発光素子3のアノードとして、AgおよびITOを有する基板2を用意した。次いで、基板2に形成されたアノード上に、所定の蒸着条件にて、所定膜厚の正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、電子注入層、およびカソードを蒸着形成した。ここで、発光層の発光材料は青色光を発する有機蛍光材料を採用した。また、電子注入層はLiF、カソードはMgとAgとを含む金属材料を蒸着することにより形成した。これにより、基板2上に、発光素子3として、トップエミッション型の青色OLED素子を形成した。なお、実施例1においては、当該青色OLED素子上に有機材料からなるキャッピングレイヤを形成した。
 次いで、スパッタリング法によりSiN膜を基板2および発光素子3上に、0.1μmの膜厚にて成膜することにより、第1無機膜40を形成した。次いで、第1無機膜40上に、光硬化性を有するアクリル系樹脂材料を成膜した後、当該アクリル系樹脂材料に光照射を行うことにより、0.5μmの膜厚を有する疎水性有機膜41を形成した。
 次いで、以下の方法により吸湿膜42を形成した。はじめに、側鎖にアルキル基を含むポリアミック酸と、側鎖にアルキル基を含まないポリアミック酸とを、20:80の重量比にて含む高分子材料を合成した。次に、当該高分子材料を塗布成膜し、200℃にて加熱した。これにより、0.5μmの膜厚を有する吸湿膜42を形成した。さらに、スパッタリング法によりSiN膜を0.1μmの膜厚にて成膜することにより、第2無機膜43を形成し、封止層4を形成した。以上により実施例1に係る発光デバイスを完成させた。なお、実施例1に係る発光デバイスにおいて、疎水性有機膜41の透湿度は60g/(m・24h)であり、吸湿膜42の透湿度は25g/(m・24h)である。
 <発光デバイスの特性評価:比較例1~4>
 実施例1に係る発光デバイスの特性の評価のために、比較例1~4のそれぞれに係る発光デバイスを併せて製造した。各比較例に係る発光デバイスは、上述した実施例1に係る発光デバイスのうち、封止層4の構成を以下の通りに変更することにより製造した。なお、各比較例の封止層において、第1無機膜40と第2無機膜43との膜厚および材料は、実施例1に係る第1無機膜40と第2無機膜43との膜厚および材料と同一である。また、各比較例の封止層において、疎水性有機膜41と吸湿膜42との材料は、実施例1に係る疎水性有機膜41と吸湿膜42との材料と同一である。
 比較例1に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚1μmの疎水性有機膜41、および第2無機膜43を有する。比較例2に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚20nmの吸湿膜42、膜厚1μmの疎水性有機膜41、および第2無機膜43を有する。比較例3に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚1μmの吸湿膜42、および第2無機膜43を有する。比較例4に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚0.13μmの吸湿膜42、膜厚0.2μmの疎水性有機膜41、および第2無機膜43を有する。
 <発光デバイスの特性評価:評価結果>
 実施例1および各比較例に係る発光デバイスの特性を測定し、以下の表1にまとめた。
Figure JPOXMLDOC01-appb-T000019
 なお、表1を含む本明細書の表において、「外部量子効率(%)」の欄は、各発光デバイスの発光素子3の外部量子効率を示す。「色度(x,y)」の欄は、各発光デバイスから得られた発光のうち、中心波長を有する光の色度座標上の座標を示す。「寿命(h)」の欄は、気温45℃湿度90%の環境下において、50mA/cmの電流駆動試験を行った際に、各発光デバイスの輝度が初期輝度の90%に到達するまでの時間を示す。
 表1から明らかであるように、実施例1と各比較例との間において、発光素子3の外部量子効率および当該発光素子3からの光の色度はほとんど変わらなかった。換言すれば、上記は実施例1における封止層4が発光デバイスの発光効率および発光色に与える影響はごく軽微であることを示す。
 また、表1から明らかであるように、実施例1に係る発光デバイスの寿命は、各比較例に係る発光デバイスの寿命と比較して長期化している。上記は、実施例1に係る発光デバイスにおいて、各比較例に係る発光デバイスと比較して、封止層4がより発光デバイスの外部から発光素子3への水分等の異物の浸透を低減したことにより、発光素子3の劣化を低減したためであると考えられる。
 <発光デバイスの特性評価:実施例2>
 上述した実施形態に係る封止層4と同一の構成を有する封止層にて発光素子を封止する、他の実施例に係る発光デバイスを製造し、比較例に係る発光デバイスと特性を比較した。実施例2に係る発光デバイスとして、以下の手順により発光デバイスを製造した。
 はじめに、実施例1に係る基板2および発光素子3の製造方法と、下記を除いて同一の方法により、基板2および発光素子3を製造した。本実施例において、発光層の発光材料は緑色光を発する有機蛍光材料を採用した。なお、実施例2においては、当該緑色OLED素子上に有機材料からなるキャッピングレイヤを形成した。
 次いで、スパッタリング法によりSiN膜を基板2および発光素子3上に、0.1μmの膜厚にて成膜することにより、第1無機膜40を形成した。次いで、第1無機膜40上に、光硬化性を有するアクリル系樹脂材料を成膜した後、当該アクリル系樹脂材料に光照射を行うことにより、0.6μmの膜厚を有する疎水性有機膜41を形成した。
 次いで、以下の方法により吸湿膜42を形成した。はじめに、下記化学式に示すモノマーからなる、アミド結合を有する樹脂材料を成膜し、紫外線照射により硬化させた。
Figure JPOXMLDOC01-appb-C000020
 これにより、0.4μmの膜厚を有する吸湿膜42を形成した。さらに、スパッタリング法によりSiN膜を0.1μmの膜厚にて成膜することにより、第2無機膜43を形成し、封止層4を形成した。以上により実施例2に係る発光デバイスを完成させた。なお、実施例2に係る発光デバイスにおいて、疎水性有機膜41の透湿度は65g/(m・24h)であり、吸湿膜42の透湿度は30g/(m・24h)である。
 <発光デバイスの特性評価:比較例5~7>
 実施例2に係る発光デバイスの特性の評価のために、比較例5~7のそれぞれに係る発光デバイスを併せて製造した。各比較例に係る発光デバイスは、上述した実施例2に係る発光デバイスのうち、封止層4の構成を以下の通りに変更することにより製造した。なお、各比較例の封止層において、第1無機膜40と第2無機膜43との膜厚および材料は、実施例2に係る第1無機膜40と第2無機膜43との膜厚および材料と同一である。また、各比較例の封止層において、疎水性有機膜41と吸湿膜42との材料は、実施例2に係る疎水性有機膜41と吸湿膜42との材料と同一である。
 比較例5に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚1μmの疎水性有機膜41、および第2無機膜43を有する。比較例6に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚20nmの吸湿膜42、膜厚1μmの疎水性有機膜41、および第2無機膜43を有する。比較例7に係る発光デバイスの封止層は、発光素子3側から、第1無機膜40、膜厚1μmの吸湿膜42、および第2無機膜43を有する。
 <発光デバイスの特性評価:評価結果>
 実施例2および各比較例に係る発光デバイスの特性を測定し、以下の表2にまとめた。
Figure JPOXMLDOC01-appb-T000021
 表2から明らかであるように、実施例2と各比較例との間において、発光素子3の外部量子効率および当該発光素子3からの光の色度はほとんど変わらなかった。換言すれば、上記は実施例2における封止層4が発光デバイスの発光効率および発光色に与える影響はごく軽微であることを示す。
 また、表2から明らかであるように、実施例2に係る発光デバイスの寿命は、各比較例に係る発光デバイスの寿命と比較して長期化している。上記は、実施例2に係る発光デバイスにおいて、各比較例に係る発光デバイスと比較して、封止層4がより発光デバイスの外部から発光素子3への水分等の異物の浸透を低減したためであると考えられる。
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。以降、本明細書において、説明の便宜上、以前の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 <タンデム型の発光素子を備えた発光デバイス>
 図3は本実施形態に係る発光デバイス1の概略断面図である。本実施形態に係る発光デバイス1は、前実施形態に係る発光デバイス1と比較して、発光素子3に代えてタンデム型発光素子6を発光素子として備える点においてのみ、構成が異なる。このため、封止層4の第1無機膜40は、タンデム型発光素子6を覆う。
 タンデム型発光素子6は、基板2上に、第1部分60、電荷発生層61、および第2部分62をこの順に含む。特に、タンデム型発光素子6は、第1部分60と第2部分62とに、上述した発光素子3の発光層に対応する発光層をそれぞれ備える。換言すれば、タンデム型発光素子6は複数の発光層を備える。
 例えば、第1部分60は、基板2上に、アノード、正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、および電子輸送層をこの順に含む。タンデム型発光素子6は、電荷発生層61を第1部分60の電子輸送層上に含む。第2部分62は、電荷発生層61上に、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、電子注入層、およびカソードをこの順に含む。第1部分60および第2部分62の各層は、上述した発光素子3の各層と同一の構成を有する。
 電荷発生層61は、例えば、タンデム型発光素子6の駆動時に、第1部分60側に電子を、第2部分62側に正孔を注入するための層である。電荷発生層61は、例えば、第1部分60側のn型電荷発生層と、第2部分62側のp型電荷発生層と、を含む。n型電荷発生層は、例えば、電子輸送性を有する有機材料とYbとの混合材料、または、電子輸送性を有する有機または無機の材料とLiとの混合材料を含んでもよい。p型電荷発生層は、例えば、電子受容性を有する有機材料を含んでもよい。この場合、第1部分60のアノードと第2部分のカソードとの間に電位差が生じることにより、電荷発生層61のn型電荷発生層からは第1部分60側に電子が、電荷発生層61のp型電荷発生層からは第2部分62側に正孔が、それぞれ注入される。なお、電荷発生層61は、例えば、基板2に形成された回路基板によって駆動されることにより、電荷を生じさせる層であってもよい。あるいは、電荷発生層61は、第1部分60のアノードと第2部分62のカソードとの電位差によって、上述した電荷を生じさせる層であってもよい。
 このため、第1部分60が有する発光層には、第1部分60のアノードからの正孔と、電荷発生層61からの電子が注入される。また、第2部分62が有する発光層には、第2部分62のカソードからの電子と、電荷発生層61からの正孔が注入される。これにより、本実施形態に係る発光デバイス1は、タンデム型発光素子6の駆動により、第1部分60と第2部分62とのそれぞれの発光層から発光を得ることができる。
 本実施形態に係る発光デバイス1も、前実施形態に係る発光デバイス1と同じく、タンデム型発光素子6を封止する封止層4を備える。このため、本実施形態に係る封止層4は、発光デバイス1の外部からタンデム型発光素子6への水分の浸透をより効果的に低減することができる。
 <発光デバイスの特性評価:実施例3>
 上述した実施形態に係る封止層4と同一の構成を有する封止層にてタンデム型発光素子を封止する、他の実施例に係る発光デバイスを製造し、比較例に係る発光デバイスと特性を比較した。実施例3に係る発光デバイスとして、以下の手順により発光デバイスを製造した。
 はじめに、実施例1に係る基板2および発光素子3の製造方法と、下記を除いて同一の方法により、基板2およびタンデム型発光素子6を製造した。
 本実施例において、基板2を用意した後、基板2に形成されたアノード上に、正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、および電子注入層を蒸着形成し、第1部分60を形成した。次いで、所定の蒸着条件により所定膜厚の電荷発生層61を第1部分60の電子注入層上に形成した。次いで、電荷発生層61上に、正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、電子注入層、およびカソードを蒸着形成し、第2部分62を形成した。第1部分60および第2部分62の各層の材料、蒸着条件、および膜厚は、実施例1に係る発光素子3の各層と同一とした。なお、実施例3においては、当該タンデム型発光素子6上に有機材料からなるキャッピングレイヤを形成した。
 次いで、スパッタリング法によりSiN膜を基板2およびタンデム型発光素子6上に、0.1μmの膜厚にて成膜することにより、第1無機膜40を形成した。次いで、第1無機膜40上に、光硬化性を有するアクリル系樹脂材料を成膜した後、当該アクリル系樹脂材料に光照射を行うことにより、0.3μmの膜厚を有する疎水性有機膜41を形成した。次いで、実施例1にて説明した方法と同一の方法により、実施例1と同一の材料を含み、0.6μmの膜厚を有する吸湿膜42を形成した。さらに、スパッタリング法によりSiN膜を0.1μmの膜厚にて成膜することにより、第2無機膜43を形成し、封止層4を形成した。以上により実施例3に係る発光デバイスを完成させた。なお、実施例3に係る発光デバイスにおいて、疎水性有機膜41の透湿度は60g/(m・24h)であり、吸湿膜42の透湿度は25g/(m・24h)である。
 <発光デバイスの特性評価:比較例8~11>
 実施例3に係る発光デバイスの特性の評価のために、比較例8~11のそれぞれに係る発光デバイスを併せて製造した。比較例8~11のそれぞれに係る発光デバイスは、上述した実施例3に係る発光デバイスのうち、封止層4の構成を、比較例1~4のそれぞれに係る封止層の構成に変更することにより製造した。
 <発光デバイスの特性評価:評価結果>
 実施例3および各比較例に係る発光デバイスの特性を測定し、以下の表3にまとめた。
Figure JPOXMLDOC01-appb-T000022
 表3から明らかであるように、実施例3と各比較例との間において、タンデム型発光素子6の外部量子効率および当該タンデム型発光素子6からの光の色度はほとんど変わらなかった。換言すれば、上記は実施例3における封止層4がタンデム型発光素子の発光効率および発光色に与える影響はごく軽微であることを示す。
 また、表3から明らかであるように、実施例3に係る発光デバイスの寿命は、各比較例に係る発光デバイスの寿命と比較して長期化している。上記は、実施例3に係る発光デバイスにおいて、各比較例に係る発光デバイスと比較して、封止層4がより発光デバイスの外部からタンデム型発光素子6への水分等の異物の浸透を低減したためであると考えられる。
 〔実施形態3〕
 <バッファ層>
 図4は本実施形態に係る発光デバイス1の概略断面図である。本実施形態に係る発光デバイス1は、実施形態1に係る発光デバイス1と比較して、封止層4が疎水性有機膜41と吸湿膜42との間にバッファ層45を有する点においてのみ構成が異なる。
 バッファ層45は、例えば、吸湿膜42と同じく、吸湿性を有する有機封止膜であり、特に、発光デバイス1の封止層4側の外部から発光素子3への水分等の異物を吸収し、当該異物の発光素子3への浸透を遅らせる機能を有する。特に、バッファ層45は疎水性有機膜41を覆う位置に形成されてもよく、吸湿膜42はバッファ層45を覆う位置に形成されてもよい。
 本実施形態において、バッファ層45は、吸湿膜42よりも高く、かつ、疎水性有機膜41よりも低い疎水性を有してもよい。バッファ層45は、例えば、吸湿膜42がよりも疎水性の高い有機高分子を含んでもよい。
 バッファ層45は、例えば、吸湿膜42と同じく、第1有機高分子または第2有機高分子の少なくとも一方を有してもよい。この場合、バッファ層45は、例えば、吸湿膜42が有する第1有機高分子よりも、疎水性を有する分子骨格に対する親水性官能基の濃度が低い第1有機高分子を有してもよい。または、バッファ層45は、例えば、吸湿膜42が有する第2有機高分子よりも、疎水性官能基に対する親水性官能基の割合が低い第2有機高分子を有してもよい。
 バッファ層45は、例えば、吸湿膜42と同じく、有機高分子を含む材料を塗布成膜することにより形成してもよい。特に、バッファ層45と吸湿膜42とは、個々の塗布成膜により形成されてもよく、あるいは、同一の塗布成膜の工程にて形成されてもよい。
 例えば、バッファ層45および吸湿膜42の形成工程において、疎水性有機膜41上に、互いに疎水性の異なる有機高分子を含む塗布材料を塗布してよい。この場合、当該塗布材料のうち、より疎水性の高い有機高分子が自重または疎水性を有する疎水性有機膜41による誘引により、疎水性有機膜41の側に移動してもよい。この状態において、当該塗布材料が硬化されることにより、バッファ層45および吸湿膜42が同時に形成されてもよい。
 本実施形態において、上述の通り、バッファ層45は吸湿膜42より高い疎水性を有する。このため、上述の通り、第2無機膜43のピンホールHを介して吸湿膜42に吸収された水分は、疎水性を有しかつ固体であるバッファ層45に浸透するよりも、第2無機膜43のピンホールHへ優先的に放出される。
 また、本実施形態において、上述の通り、バッファ層45は疎水性有機膜41より低い疎水性を有する。このため、吸湿膜42を介してバッファ層45に水分が浸透した場合においても、当該水分は、疎水性の高い疎水性有機膜41に浸透するよりも、親水性の高い吸湿膜42へ優先的に浸透する。
 このため、吸湿膜42またはバッファ層45が吸収した水分は、発光素子3へ向かって浸透する割合よりも、発光デバイス1の外部に向かって放出される割合の方が大きくなる。これにより、封止層4は、吸湿膜42またはバッファ層45が吸収した水分を効率的に発光デバイス1の外部に向かって放出し、発光素子3への水分の浸透を低減する。
 さらに、バッファ層45は、吸湿膜42より高く、かつ、疎水性有機膜41より低い疎水性を有する。このため、疎水性有機膜41とバッファ層45との密着性、および、バッファ層45と吸湿膜42との密着性は、何れも、疎水性有機膜41と吸湿膜42との密着性よりも高い。したがって、本実施形態に係る発光デバイス1は、封止層4の層間からの水分等の異物の浸透をより低減できる。
 〔実施形態4〕
 <無機中間膜>
 図5は本実施形態に係る発光デバイス1の概略断面図である。本実施形態に係る発光デバイス1は、実施形態1に係る発光デバイス1と比較して、封止層4が疎水性有機膜41と吸湿膜42との間に無機中間膜46を有する点においてのみ構成が異なる。
 無機中間膜46は、形成位置を除き、第1無機膜40または第2無機膜43と同一の構成を有してもよい。特に、無機中間膜46は、疎水性有機膜41を覆う位置に形成されてもよく、吸湿膜42は、無機中間膜46を覆う位置に形成されてもよい。
 無機中間膜46は、吸湿膜42から疎水性有機膜41への水分の浸透を低減する。このため、封止層4は、吸湿膜42が吸収した水分をより効率的に発光デバイス1の外部に向かって放出し、発光素子3への水分の浸透を低減する。
 また、無機中間膜46に上述したピンホールHが形成された場合においても、当該ピンホールH中には、無機中間膜46の形成後に成膜される吸湿膜42が形成される。したがって、無機中間膜46のピンホールHにおいて、吸湿膜42は疎水性有機膜41と接する。したがって、吸湿膜42からの水分は、無機中間膜46のピンホールHを介して疎水性有機膜41に浸透するよりも、第2無機膜43のピンホールHを介して発光デバイス1の外部に優先的に放出される。このため、封止層4は、吸湿膜42が吸収した水分をより効率的に発光デバイス1の外部に向かって放出し、発光素子3への水分の浸透を低減する。
 〔実施形態5〕
 <カラー発光デバイス>
 図6は本実施形態に係る発光デバイス1の概略断面図である。本実施形態に係る発光デバイス1は、実施形態1に係る発光デバイス1と比較して、発光素子3に代えて、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bを含む、複数の発光素子を備える点においてのみ構成が異なる。
 赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bは、それぞれ、赤色、緑色、および青色に発光する発光層を有する。発光層が発する光の色を除き、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bは、上述した発光素子3と同一の構成を有する。
 赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bのそれぞれのアノードは、何れも基板2上に形成された回路基板と電気的に接続してもよく、個々に駆動されてもよい。このため、本実施形態に係る発光デバイス1は、赤色光、緑色光、および青色光の少なくとも一種を個々に発してもよい。したがって、本実施形態に係る発光デバイス1は、カラー発光デバイスであってもよい。
 発光デバイス1は、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bを含む発光素子の組を、基板2上に複数、2次元的に配置して備えてもよい。この場合、発光デバイス1は、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bを含む発光素子の組のそれぞれを個々に駆動することにより、カラー表示デバイスとして機能してもよい。
 本実施形態において、第1無機膜40は、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bのそれぞれを覆う位置に形成される。このため、封止層4は、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bを封止する。したがって、本実施形態に係る封止層4は、発光デバイス1の外部から、赤色発光素子7R、緑色発光素子7G、および青色発光素子7Bのそれぞれへの水分の浸透をより効果的に低減することができる。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1  発光デバイス
 3  発光素子
 4  封止層
 6  タンデム型発光素子
 7B 青色発光素子
 7G 緑色発光素子
 7R 赤色発光素子
 40 第1無機膜
 41 疎水性有機膜
 42 吸湿膜
 43 第2無機膜
 44 周縁部
 46 無機中間膜

 

Claims (35)

  1.  発光素子と、前記発光素子を覆う第1無機膜と、前記第1無機膜の外側に位置する疎水性有機膜と、前記疎水性有機膜の外側に位置する吸湿膜と、を備える発光デバイス。
  2.  前記吸湿膜を覆う第2無機膜を備える、請求項1に記載の発光デバイス。
  3.  前記第1無機膜の周縁部に前記第2無機膜が直接接触している、請求項2に記載の発光デバイス。
  4.  前記疎水性有機膜と前記吸湿膜とが隣り合う、請求項1~3の何れか1項に記載の発光デバイス。
  5.  前記吸湿膜と前記疎水性有機膜との間に位置する無機中間膜を備える、請求項1~3の何れか1項に記載の発光デバイス。
  6.  前記吸湿膜の透湿度は、前記疎水性有機膜の透湿度の1/2以下である、請求項1~5の何れか1項に記載の発光デバイス。
  7.  前記吸湿膜の透湿度は、前記疎水性有機膜の透湿度の1/3以下である、請求項1~6の何れか1項に記載の発光デバイス。
  8.  前記吸湿膜の透湿度は、30g/(m・24h)以下である、請求項1~7の何れか1項に記載の発光デバイス。
  9.  前記疎水性有機膜の透湿度は、60g/(m・24h)以上1000g/(m・24h)以下である、請求項1~8の何れか1項に記載の発光デバイス。
  10.  前記吸湿膜の厚さは、50nm以上である、請求項1~9の何れか1項に記載の発光デバイス。
  11.  前記疎水性有機膜の厚さは、50nm以上である、請求項1~10の何れか1項に記載の発光デバイス。
  12.  前記吸湿膜の厚さと前記疎水性有機膜の厚さとの合計は、500nm以上である、請求項1~9の何れか1項に記載の発光デバイス。
  13.  前記吸湿膜の厚さに対する前記疎水性有機膜の厚さとの比率は、0.05以上20以下である請求項1~10の何れか1項に記載の発光デバイス。
  14.  前記吸湿膜は、
      親水性官能基を有し、分子骨格の少なくとも一部が疎水性である第1有機高分子と、
      親水性官能基および疎水性官能基を有する第2有機高分子と、の少なくとも一方
    を含む請求項1~13の何れか1項に記載の発光デバイス。
  15.  前記第1有機高分子の前記親水性官能基は、アミド基およびカルボン酸基から成る群から選択された少なくとも1種を含む請求項14に記載の発光デバイス。
  16.  前記第1有機高分子は、前記親水性官能基を有するモノマーが重合したポリマーである請求項14または15に記載の発光デバイス。
  17.  前記第1有機高分子は、ポリアミック酸、ポリアミド酸、ポリイミド酸、部分的にイミド化されたポリアミック酸、およびポリアクリル酸から成る群から選択された少なくとも1種を含む、請求項14~16の何れか1項に記載の発光デバイス。
  18.  前記第1有機高分子は、下記一般式(1)で表されるポリマーから成る群から選択された少なくとも1種を含む、請求項14~17の何れか1項に記載の発光デバイス。
    Figure JPOXMLDOC01-appb-C000001
     ただし、上記一般式(1)において、Xは以下のうち何れかを示し、
    Figure JPOXMLDOC01-appb-C000002
     Yは以下のうち何れかを示す。
    Figure JPOXMLDOC01-appb-C000003
  19.  前記第1有機高分子は、下記化学式で表されるポリマーから成る群から選択された少なくとも1種を含む、請求項14~18の何れか1項に記載の発光デバイス。
    Figure JPOXMLDOC01-appb-C000004
  20.  前記第2有機高分子の前記親水性官能基は、アミド基およびカルボン酸基から成る群から選択された少なくとも1種を含む請求項14~19の何れか1項に記載の発光デバイス。
  21.  前記疎水性官能基は、アルキル基および芳香環を有する官能基から成る群から選択された少なくとも1種を含む請求項14~20の何れか1項に記載の発光デバイス。
  22.  前記第2有機高分子は、前記親水性官能基と前記疎水性官能基とを有するモノマーが重合したポリマーである請求項14~21の何れか1項に記載の発光デバイス。
  23.  前記第2有機高分子は、ポリアミック酸、ポリアミド酸、ポリイミド酸、部分的にイミド化されたポリアミック酸、およびポリアクリル酸から成る群から選択された少なくとも1種を含む、請求項14~22の何れか1項に記載の発光デバイス。
  24.  前記第2有機高分子は、下記一般式(2)で表されるポリマーから成る群から選択された少なくとも1種を含む、請求項14~23の何れか1項に記載の発光デバイス。
    Figure JPOXMLDOC01-appb-C000005
     ただし、上記一般式(2)において、Xは以下のうち何れかを示し、
    Figure JPOXMLDOC01-appb-C000006
     Yは以下のうち何れかを示し、
    Figure JPOXMLDOC01-appb-C000007
     Zは以下のうち何れかを示す。
    Figure JPOXMLDOC01-appb-C000008
  25.  前記第2有機高分子は、Xをアルキル基として、下記化学式で表されるポリマーから成る群から選択された少なくとも1種を含む、請求項14~24の何れか1項に記載の発光デバイス。
    Figure JPOXMLDOC01-appb-C000009
  26.  前記吸湿膜は、前記第1有機高分子および前記第2有機高分子を含む請求項14~25の何れか1項に記載の発光デバイス。
  27.  前記第1有機高分子の分子骨格は、前記第2有機高分子の分子骨格と同一である請求項26に記載の発光デバイス。
  28.  前記吸湿膜における前記第1有機高分子の物質量に対する前記第2有機高分子の物質量の比率は、0.05以上20以下である請求項26または27に記載の発光デバイス。
  29.  前記吸湿膜の前記疎水性有機膜側の部分における前記第2有機高分子の濃度は、前記吸湿膜の前記疎水性有機膜側と反対の側の部分における前記第2有機高分子の濃度よりも、大きい請求項26~28の何れか1項に記載の発光デバイス。
  30.  前記第1無機膜は、シリコン酸化物、シリコン窒化物、マグネシウム酸化物、マグネシウム窒化物、アルミニウム酸化物、アルミニウム窒化物、亜鉛酸化物、および亜鉛窒化物から成る群から選択された1種を含む、請求項1~29の何れか1項に記載の発光デバイス。
  31.  前記第1無機膜は、シリコン酸化物またはシリコン窒化物を含む、請求項1~30の何れか1項に記載の発光デバイス。
  32.  前記発光素子は、赤色に発光する赤色発光素子と、緑色に発光する緑色発光素子と、
    青色に発光する青色発光素子と、を含む請求項1~31の何れか1項に記載の発光デバイス。
  33.  前記発光素子は、複数の発光層を有するタンデム型発光素子を含む請求項1~32の何れか1項に記載の発光デバイス。
  34.  前記発光素子は、発光材料として有機材料を含む有機発光素子を含む請求項1~33の何れか1項に記載の発光デバイス。
  35.  前記発光素子は、発光材料として量子ドットを含む量子ドット発光素子を含む請求項1~34の何れか1項に記載の発光デバイス。
PCT/JP2022/023053 2022-06-08 2022-06-08 発光デバイス WO2023238270A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023053 WO2023238270A1 (ja) 2022-06-08 2022-06-08 発光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023053 WO2023238270A1 (ja) 2022-06-08 2022-06-08 発光デバイス

Publications (1)

Publication Number Publication Date
WO2023238270A1 true WO2023238270A1 (ja) 2023-12-14

Family

ID=89118080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023053 WO2023238270A1 (ja) 2022-06-08 2022-06-08 発光デバイス

Country Status (1)

Country Link
WO (1) WO2023238270A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022359A (ja) * 2002-06-17 2004-01-22 Toyota Central Res & Dev Lab Inc 有機電界発光素子及び有機電子デバイス
JP2007141750A (ja) * 2005-11-22 2007-06-07 Seiko Epson Corp 発光装置および電子機器
JP2009090633A (ja) * 2007-09-20 2009-04-30 Fujifilm Corp ガスバリアフィルムおよびその製造方法、ならびに、ガスバリアフィルムを用いた電子デバイス
JP2011113967A (ja) * 2009-11-25 2011-06-09 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
JP2017039315A (ja) * 2015-08-18 2017-02-23 東洋製罐グループホールディングス株式会社 水分バリア性積層体
JP2018073710A (ja) * 2016-11-01 2018-05-10 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
JP2020102463A (ja) * 2016-09-30 2020-07-02 パイオニア株式会社 発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022359A (ja) * 2002-06-17 2004-01-22 Toyota Central Res & Dev Lab Inc 有機電界発光素子及び有機電子デバイス
JP2007141750A (ja) * 2005-11-22 2007-06-07 Seiko Epson Corp 発光装置および電子機器
JP2009090633A (ja) * 2007-09-20 2009-04-30 Fujifilm Corp ガスバリアフィルムおよびその製造方法、ならびに、ガスバリアフィルムを用いた電子デバイス
JP2011113967A (ja) * 2009-11-25 2011-06-09 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
JP2017039315A (ja) * 2015-08-18 2017-02-23 東洋製罐グループホールディングス株式会社 水分バリア性積層体
JP2020102463A (ja) * 2016-09-30 2020-07-02 パイオニア株式会社 発光装置
JP2018073710A (ja) * 2016-11-01 2018-05-10 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法

Similar Documents

Publication Publication Date Title
KR101317011B1 (ko) 구조화된 발광 전환층
US7621793B2 (en) Organic electro luminescent device and method of manufacturing organic electro luminescent device
JP5708482B2 (ja) 有機電界発光装置,及び有機電界発光装置の製造方法
US9012017B2 (en) Barrier layer-attached substrate, display component, and method for manufacturing display component
KR101970361B1 (ko) 유기 발광 표시 장치 및 이의 제조방법
US20060145599A1 (en) OLEDs with phosphors
JP4977548B2 (ja) 有機エレクトロルミネッセンス装置およびその製造方法
CN1710998A (zh) 有机el元件和有机el显示面板
KR20110064670A (ko) 게터 조성물 및 상기 게터 조성물을 포함하는 유기 발광 장치
KR101125637B1 (ko) 유기 발광 장치
CN1671260A (zh) 白色发光有机电致发光器件及其有机电致发光显示器
WO2016031877A1 (ja) 有機エレクトロルミネッセンス素子
WO2012011385A1 (ja) 有機エレクトロルミネッセンス素子
JP5162179B2 (ja) 発光素子およびその製造方法並びに照明装置
JP2012209209A (ja) 有機エレクトロルミネッセンスパネルの製造方法
CN112205075A (zh) 有机电致发光显示元件用密封剂
JP2004119201A (ja) 有機el表示装置
WO2012063445A1 (ja) 有機el表示装置およびその製造方法
US20170012179A1 (en) Light-emitting device and method of producing a light-emitting device
WO2023238270A1 (ja) 発光デバイス
JP2011076759A (ja) 有機エレクトロルミネッセンスパネルの製造方法およびパッシベーション層成膜用マスク
JP2013211102A (ja) 有機エレクトロルミネセンスディスプレイパネルおよびその製造方法
JP5359731B2 (ja) 有機el素子の製造方法
JP2014067599A (ja) 有機elディスプレイの製造方法及び有機elディスプレイ
JP2011210614A (ja) 有機el素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945776

Country of ref document: EP

Kind code of ref document: A1