WO2023237418A1 - Herstellung von flammwidrigem polyurethanschaum - Google Patents

Herstellung von flammwidrigem polyurethanschaum Download PDF

Info

Publication number
WO2023237418A1
WO2023237418A1 PCT/EP2023/064765 EP2023064765W WO2023237418A1 WO 2023237418 A1 WO2023237418 A1 WO 2023237418A1 EP 2023064765 W EP2023064765 W EP 2023064765W WO 2023237418 A1 WO2023237418 A1 WO 2023237418A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
foam
group
composition according
Prior art date
Application number
PCT/EP2023/064765
Other languages
English (en)
French (fr)
Inventor
Michael SUCHAN
Carsten Schiller
Original Assignee
Evonik Operations Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations Gmbh filed Critical Evonik Operations Gmbh
Publication of WO2023237418A1 publication Critical patent/WO2023237418A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5006Polyethers having heteroatoms other than oxygen having halogens having chlorine and/or bromine atoms
    • C08G18/5012Polyethers having heteroatoms other than oxygen having halogens having chlorine and/or bromine atoms having bromine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6662Compounds of group C08G18/42 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/327Aluminium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates

Definitions

  • the present invention lies in the field of polyurethanes, preferably polyurethane foams, in particular rigid polyurethane foams.
  • polyurethanes preferably polyurethane foams, in particular rigid polyurethane foams.
  • it relates to the production of flame-retardant polyurethane foams, preferably flame-retardant rigid polyurethane foams using a combination of synergistic components, as well as compositions for producing such foams and furthermore the use of these foams.
  • polyurethane is understood to mean, in particular, a product obtainable by reacting a polyisocyanate component with a polyol component or compounds with isocyanate-reactive groups.
  • other functional groups such as uretdiones, carbodiimides, isocyanurates, allophanates, biurets, ureas and/or uretimines can also be formed. Therefore, for the purposes of the present invention, PU means both polyurethane and polyisocyanurate, polyureas and polyisocyanate reaction products containing uretdione, carbodiimide, allophanate, biuret and uretimine groups.
  • polyurethane foam is understood to mean foam which is obtained as a reaction product of a polyisocyanate component and a polyol component or compounds with isocyanate-reactive groups.
  • PU foam polyurethane foam
  • other functional groups such as allophanates, biurets, ureas, carbodiimides, uretdiones, isocyanurates or uretimines can also be formed.
  • PU rigid foam is a fixed technical term.
  • soft foam shows elastic behavior and therefore the deformation is reversible.
  • Hard foam on the other hand, is permanently deformed.
  • foam and foam are used synonymously within the meaning of this invention. This also applies to terms based on this, such as PU foam and PU foam, etc.
  • the amount of flame retardants used is generally increased.
  • the effects that can be achieved and the maximum possible amount used are limited by the fact that the flame retardants have a negative influence on the overall properties of the foam, such as its mechanical strength and/or the processing and production of the polyurethane foam.
  • the use of triethyl phosphate (TEP), tris(2-chloro-ethyl) phosphate (TCEP) or tris(1-chloro-2-propyl) phosphate (TCPP) usually has a strong plasticizing effect, which reduces the mechanical strength and thereby limiting the amount used.
  • the specific object of the present invention was to enable the provision of PU foams, in particular rigid PU foams, which meet increased requirements for flame retardancy, preferably according to KS F ISO 5660-1:2015-03, that is preferably a total heat release of a maximum of 8 MJ/m 2 and a heat release rate of a maximum of 200 kW/m 2 at a heating rate of 50 kW/m 2 and a test duration of 600 s, but do not or only slightly influence the processing and the foam properties.
  • compositions for producing PU foam preferably rigid PU foam, in particular rigid PU foam with an index greater 200, makes it possible to solve the above task.
  • the processing and foam properties are not or only slightly influenced.
  • the above problem is solved by the subject matter of the invention.
  • the subject of the invention is a composition for producing PU foam, preferably PU rigid foam
  • TCPP tris(1-chloro-2-propyl) phosphate
  • TEP triethyl phosphate
  • TCEP tris(2-chloroethyl) phosphate
  • DMMP dimethyl methane phosphonate
  • DMPP dimethyl propane phosphonate
  • red phosphorus and at least one polyisocyanate component, the composition having an index of at least 200.
  • An upper limit for the index can preferably be, for example, 1000, preferably 500.
  • the object according to the invention is accompanied by a variety of advantages. It thus enables the provision of PU foams, preferably rigid PU foams, which meet particularly high requirements in terms of flame retardancy, in particular as defined in KS F ISO 5660-1:2015-03. This is advantageously made possible without impairing the other properties of the foam, in particular its mechanical properties. With regard to the provision of PU foams, preferably PU rigid foams, particularly fine-celled, uniform and low-disturbance foam structures are also made possible. This makes it possible to provide appropriate PU foams with particularly good usage properties. Overall, the invention enables simple processing in the context of foam production.
  • red phosphorus used according to the invention (CAS No. 7723-14-0) is microencapsulated, then this is a particularly preferred embodiment of the invention. Microencapsulation of red phosphorus is well known in the art. A possible variant is described, for example, in EP 1 262 453 A2.
  • composition according to the invention additionally contains at least one smoke reducer, preferably selected from the group consisting of antimony trioxide, zinc stannate, zinc hydroxystannate, zinc borate, calcium borate, zinc pyrophosphate, aluminum orthophosphate and aluminum phosphinate(s), with antimony trioxide and/or zinc borate being most preferred, so There is a particularly preferred embodiment of the invention.
  • a component or at least one component, such as a chemical compound, in the sense of this invention is selected from a group “consisting of” several components, such as several chemical compounds, this means in the sense of this invention, that each of the mentioned components of this group can be selected or mixtures of this group can also be selected.
  • flue gas reducers this means that, for example, zinc stannate or, for example, antimony trioxide, etc. can be selected, or, for example, antimony trioxide and zinc hydroxystannate or, for example, other mixtures can be selected.
  • the solid flame retardants used such as red phosphorus or flue gas reducers, can be introduced into the reaction mixture, for example, via one of the two reaction components (i.e. via the polyol component or via the polyisocyanate component). Incorporation via the polyol component is preferred.
  • the at least one halogenated polyol is selected from the group consisting of
  • brominated and/or chlorinated aliphatic or aromatic polyetherdiol and/or polyethertriol preferably brominated, aliphatic or aromatic polyetherdiol and/or polyethertriol
  • polyester polyol based on tetrabromophthalate preferably compound 1
  • composition according to the invention contains compound 1 and TCPP and/or TEP as well as antimony trioxide and/or zinc borate, then there is a further particularly preferred embodiment of the invention.
  • composition according to the invention contains at least one catalyst, preferably at least one trimerization catalyst, in particular selected from the group consisting of ammonium and metal salts of 2-ethylhexanoic acid, formic acid, acetic acid, propionic acid, neodecanoic acid and pivalic acid.
  • at least one catalyst preferably at least one trimerization catalyst, in particular selected from the group consisting of ammonium and metal salts of 2-ethylhexanoic acid, formic acid, acetic acid, propionic acid, neodecanoic acid and pivalic acid.
  • the at least one physical blowing agent is selected from the group consisting of dimethoxymethane, methyl formate, HFC-245fa, 1233zd, 1336mzz, cyclopentane, isopentane and n-pentane, particularly preferably selected from the group consisting of HFC-245fa , 1233zd, cyclopentane, isopentane and n-pentane. This also corresponds to a further particularly preferred embodiment of the invention.
  • composition according to the invention is characterized in that, based on 100 parts by weight of the total halogen-free polyol component,
  • halogenated polyol in a total amount of 1 to 80 parts by weight, preferably 1.5 to 50 parts by weight, particularly preferably 2 to 40 parts by weight,
  • Flame retardants selected from (a) the group of phosphoric acid esters, preferably TCPP, TEP and/or TCEP and/or selected from (b) the group of phosphonates, preferably DMMP and/or DMPP, in a total amount of 2 to 60 parts by weight, preferably 5 to 50 parts by weight, particularly preferably 5 to 40 parts by weight,
  • red phosphorus in a total amount of 1 to 45 parts by weight, preferably 2 to 35 parts by weight, particularly preferably 5 to 30 parts by weight,
  • optionally flue gas reducer preferably selected from the group consisting of antimony trioxide, zinc stannate, zinc hydroxystannate, zinc borate, calcium borate, zinc pyrophosphate, aluminum orthophosphate and aluminum phosphinate(s) in a total amount of 0 to 40 parts by weight, preferably 1 to 35 parts by weight, particularly preferably 1.5 to 25 parts by weight are included, this also corresponds to a particularly preferred embodiment of the invention.
  • a further particularly preferred embodiment of the invention is when the composition according to the invention is characterized in that, based on 100 parts by weight of the total halogen-free polyol component,
  • Compound 1 in a total amount of 1 to 80 parts by weight, preferably 1.5 to 50 parts by weight, particularly preferably 2 to 40 parts by weight,
  • TCPP and/or TEP in a total amount of 2 to 60 parts by weight, preferably 5 to 50 parts by weight, particularly preferably 5 to 40 parts by weight,
  • Red phosphorus in a total amount of 1 to 45 parts by weight, preferably 2 to 35 parts by weight, particularly preferably 5 to 30 parts by weight,
  • Antimony trioxide and/or zinc borate are contained in a total amount of 1 to 40 parts by weight, preferably 1.5 to 35 parts by weight, particularly preferably 1.5 to 25 parts by weight. Furthermore, it is particularly preferred if the composition according to the invention additionally contains at least one foam stabilizer, preferably based on a polyethersiloxane, in particular in amounts of 0.1 to 4 parts, based on 100 parts of the total polyol component. This corresponds to a particularly preferred embodiment of the invention.
  • Foam stabilizers that are used in connection with the production of PU foams, preferably those based on a polyethersiloxane, are known per se. Suitable foam stabilizers are also described below.
  • composition according to the invention contains water and/or formic acid, this represents a further particularly preferred embodiment of the invention.
  • composition according to the invention can also contain further optional additives, as are known from the prior art in connection with the production of polyurethanes, in particular PU foams, and are usually used.
  • a further subject of the invention is a process for producing PU foams, preferably rigid PU foams, using foamable reaction mixtures containing a composition according to the invention, in particular as defined in one of claims 1 to 10, or as before, in particular in the preferred embodiments, described.
  • the foamable reaction mixture can preferably also consist of the composition according to the invention mentioned.
  • a particularly preferred PU foam formulation, in particular rigid PU foam formulation, within the meaning of this invention has the composition mentioned in Table 1:
  • Yet another object of the present invention is a PU foam, preferably rigid PU foam, produced according to the aforementioned method according to the invention, in particular using a composition according to the invention.
  • the PU foam according to the invention in particular rigid PU foam, has a density of 5 to 900 kg/m 3 , preferably 5 to 350 kg/m 3 , in particular 10 to 200 kg/m 3 , then this is a preferred embodiment of the invention .
  • a further subject of the present invention relates to the use of PU foam according to the invention, in particular rigid PU foam, as mentioned above, as insulating material and/or as a construction material, in particular in construction applications, in particular as spray foam or in the cooling area or pipe casings for tubes.
  • the composition according to the invention contains in particular the following components: a) polyol component, comprising at least one halogen-free polyester polyol and at least one halogenated polyol, b) polyisocyanate component (at least one polyisocyanate and/or polyisocyanate prepolymer) c ) Catalyst that catalyzes the reaction of isocyanate groups with OH, NH, or other isocyanate-reactive groups and/or the reaction of isocyanate groups with each other d) Optional foam stabilizer e) Blowing agent f) Flame retardant g) Optional further additives.
  • the polyol component comprises at least one organic compound with at least two isocyanate-reactive groups, selected from OH groups, SH groups, NH groups and/or NH2 groups, in particular OH groups.
  • a functionality that is not an integer, for example 1.8, can result from mixing at least one connection with a higher functionality, for example greater than or equal to 2, with at least one connection with a functionality of, for example, 1. This can happen in particular if a polyisocyanate component (b) with a functionality greater than 2 or additional crosslinkers are used as optional additives (g).
  • Particularly preferred compounds are all polyether polyols and polyester polyols commonly used for the production of polyurethane systems, in particular polyurethane foams.
  • Polyether polyols can be prepared by known processes, for example by polymerizing alkylene oxides, preferably ethylene oxide, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, and/or tetrahydrofuran.
  • Preferred polyester polyols are based on esters of polyvalent aliphatic or aromatic carboxylic acids, preferably with 2 to 12 carbon atoms.
  • aliphatic carboxylic acids are succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid and fumaric acid.
  • aromatic carboxylic acids are phthalic acid, isophthalic acid, terephthalic acid and the isomeric naphthalenedicarboxylic acids.
  • Preferred polyester polyols can be obtained in particular by condensation of these polyhydric carboxylic acids with polyhydric alcohols, preferably diols or triols with 2 to 12, particularly preferably with 2 to 6 carbon atoms, preferably trimethylolpropane, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol and / or glycerin.
  • polyhydric alcohols preferably diols or triols with 2 to 12, particularly preferably with 2 to 6 carbon atoms, preferably trimethylolpropane, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol and / or glycerin.
  • polyether polycarbonate polyols polyols based on natural oils (Natural oil based polyols, NOPs; described in WO 2005/033167, US 2006/0293400, WO 2006/094227, WO 2004/096882, US 2002/0103091, WO 2006/116 456, EP 1678232), filler polyols, prepolymer-based polyols and/or recycled polyols can be used.
  • Recycled polyols are polyols that are obtained from the chemical recycling, for example by solvolysis, such as glycolysis, hydrolysis, acidolysis or aminolysis, of polyurethanes.
  • solvolysis such as glycolysis, hydrolysis, acidolysis or aminolysis
  • the use of recycled polyols represents a particularly preferred embodiment of the invention.
  • the polyol component necessarily comprises at least one halogen-free polyester polyol and at least one halogenated polyol, as already described above.
  • polyisocyanates with two or more isocyanate groups can generally be used as the polyisocyanate component (b).
  • Suitable polyisocyanates for the purposes of this invention are all organic isocyanates with two or more isocyanate groups, in particular the known aliphatic, cycloaliphatic, arylaliphatic and preferably aromatic polyvalent isocyanates.
  • Alkylene diisocyanates with 4 to 12 carbon atoms in the alkylene radical such as 1,12-dodecane diisocyanate, 2-ethyl-tetramethylene-1,4-diisocyanate, 2-methyl-pentamethylene-1,5-diisocyanate, tetramethylene-1, may be mentioned here as examples ,4-diisocyanate, pentamethylene diisocyanate (PDI) and preferably hexamethylene-1,6-diisocyanate (HMDI), cycloaliphatic diisocyanates such as cyclohexane-1,3- and -1-4-diisocyanate and the corresponding isomer mixtures, 4,4' -Methylene dicyclohexyl diisocyanate (H12MDI), isophorone diisocyanate (IPDI), 2,4- and 2,6-methylcyclohexyl diisocyanate as well as the corresponding isomer mixtures and
  • the organic polyisocyanates can be used individually or in the form of mixtures.
  • Corresponding “oligomers” of diisocyanates can also be used, such as IPDI Trimer based on isocyanurate, biurete or urethdione.
  • prepolymers based on the above-mentioned isocyanates is possible.
  • Particularly suitable is the mixture of MDI and higher condensed analogues known as “polymeric MDI” (also referred to as “crude MDI” or “crude MDI”) with an average functionality of 2 to 4, as well as the various isomers of TDI in pure form or as a mixture of isomers.
  • isocyanates that have been modified by incorporating urethane, uretdione, isocyanurate, allophanate and other groups, so-called modified isocyanates.
  • modified isocyanates are also listed, for example, in EP 1712578, EP 1161474, WO 00/58383, US 2007/0072951, EP 1678232 and WO 2005/085310, to which reference is made in full here.
  • a preferred ratio of total polyisocyanate component and total polyol component, expressed as an index of the formulation, i.e. as the stoichiometric ratio of isocyanate groups to isocyanate-reactive groups (e.g. OH groups, NH groups) multiplied by 100, is in the range of 200 to 1000, preferably 200 to 500.
  • An index of 100 represents a molar ratio of the reactive groups of 1 to 1.
  • the claimed composition has an index of at least 200.
  • Suitable catalysts (c), which can be used for the production of polyurethanes, in particular PU foams, are known to those skilled in the art from the prior art.
  • all compounds can be used which are capable of catalyzing the reaction of isocyanate groups with OH, NH or other isocyanate-reactive groups and/or the reaction of isocyanate groups with one another.
  • Compounds that catalyze the reaction of the isocyanate groups with one another, in particular the trimerization reaction are also known to those skilled in the art as trimerization catalysts and are described, for example, in EP 1 745 847 A1.
  • catalysts known from the prior art can be used here, including, for example, amines (cyclic, acyclic; monoamines, diamines, oligomers with one or more amino groups), ammonium compounds, organometallic compounds and/or metal salts, preferably those of tin , iron, bismuth, potassium and/or zinc.
  • amines cyclic, acyclic; monoamines, diamines, oligomers with one or more amino groups
  • ammonium compounds preferably those of tin , iron, bismuth, potassium and/or zinc.
  • organometallic compounds and/or metal salts preferably those of tin , iron, bismuth, potassium and/or zinc.
  • mixtures of several such compounds can be used as catalysts.
  • Foam stabilizers (d) and their use in the production of PU foams are known to those skilled in the art.
  • the use of foam stabilizers is optional; one or more foam stabilizers are preferably used.
  • Surface-active compounds (surfactants) in particular can be used as foam stabilizers.
  • Foam stabilizers are preferably used in the production of PU foams. They can be used to optimize the desired cell structure and the foaming process.
  • one or more of the known Si-containing compounds can be used in particular, which support foam production (stabilization, cell regulation, cell opening, etc.). These compounds are well known from the prior art.
  • Particularly preferably, at least one foam stabilizer based on a polyethersiloxane can be used.
  • siloxane structures that can be used in the context of this invention are described, for example, in the following patent specifications, although their use is only described in classic PU foams (e.g. as molded foam, mattress, insulation material, construction foam, etc.): CN 103665385, CN 103657518, CN 103055759, CN 103044687, US 2008/0125503, US 2015/0057384, EP 1520870 A1, EP 1211279, EP 0867464, EP 0867465, EP 0275563.
  • Si can also -free surfactants are used.
  • EP2295485 A1 describes the use of lecithin and US 3746663 describes the use of vinylpyrrolidone-based structures as a foam stabilizer for the production of rigid PU foam.
  • Further Si-free foam stabilizers are described, for example, in EP 2511328 B1, DE 1020011007479 A1, DE 3724716 C1, EP 0734404, EP 1985642, DE 2244350 and US 5236961.
  • Blowing agents (e) and their use in the production of PU foams are known to those skilled in the art.
  • the use of one or a combination of several blowing agents (e) fundamentally depends on the type of foaming process used, the type of system and the application of the PU foam obtained.
  • at least one physical blowing agent is used.
  • Chemical blowing agents can also be used.
  • a high or low density foam is produced. Foams with densities of 5 kg/m 3 to 900 kg/m 3 , preferably 5 to 350, particularly preferably 8 to 200 kg/m 3 , in particular 8 to 150 kg/m 3 can be produced.
  • One or more of the corresponding compounds with suitable boiling points and mixtures thereof can be used as physical blowing agents.
  • Physical blowing agents that can be used with preference have already been mentioned.
  • One or more compounds can be used as chemical blowing agents which react with NCO groups to release gases, such as water or formic acid, or which release gases due to the increase in temperature during the reaction, such as sodium hydrogen carbonate. It corresponds to a particularly preferred embodiment of the invention if the composition according to the invention contains, in addition to the physical blowing agent, water and/or formic acid as a chemical blowing agent.
  • the preferred flame retardants (f), as already described, are at least one compound from the group of phosphoric acid esters, preferably TCPP, TEP and/or TCEP and/or from the group of phosphonates, preferably DMMP and/or DMPP, and additionally red phosphorus, preferably microencapsulated red phosphorus used.
  • Foams such as crosslinkers, chain extenders, stabilizers against oxidative degradation (so-called antioxidants), biocides, cell-refining additives, nucleating agents, cell openers, solid fillers, antistatic additives, thickeners, dyes, pigments, color pastes, fragrances and / or emulsifiers , etc.
  • composition according to the invention optionally contains so-called smoke gas reducers.
  • smoke gas reducers that can be used with preference have already been mentioned. These are advantageously characterized by the fact that, when used alone, they have no direct effect on flame retardancy, but sometimes significantly increase the effect of other flame retardants and/or reduce the development of smoke gases.
  • Flue gas reducers are known to those skilled in the art and include, for example, antimony trioxide, zinc hydroxystannate, zinc stannate, zinc borate, calcium borate or antimony pentoxide. These are also e.g. in Weil, Edward D. Levchik, Sergei V.
  • any preferred or particularly preferred embodiment of the invention may be combined with one or more of the other preferred or particularly preferred embodiments of the invention.
  • the process according to the invention for producing PU foams can be carried out using all known methods, for example by hand mixing or preferably with the help of foaming machines. If the process is carried out using foaming machines, high-pressure or low-pressure machines can be used.
  • the process according to the invention can be carried out both batchwise and continuously and, for example, 1K, 1.5K or 2K systems as described in EP3717538 A1, US7776934 B2, EP1400547 B1 or EP2780384 B2 can be used.
  • ranges general formulas or compound classes are given, these should include not only the corresponding ranges or groups of compounds that are explicitly mentioned, but also all sub-ranges and sub-groups of compounds that are obtained by removing individual values (ranges) or compounds can.
  • documents are quoted in the context of the present description, their content, in particular with regard to the matter in which the document was quoted, should belong entirely to the disclosure content of the present invention. Unless otherwise stated, percentages are in percent by weight. If mean values are given, so Unless otherwise stated, these are numerical averages. If parameters are stated that were determined by measurement, the measurements were carried out at a temperature of 23 °C and normal pressure, unless otherwise stated.
  • the formulations shown in Tables 2 and 3 were used for the application technology comparison.
  • the comparison foaming was carried out using the hand mixing process.
  • polyol component, catalysts, water, foam stabilizer, flame retardant, physical blowing agent and optionally other additives were weighed into a beaker and mixed with a plate stirrer (6 cm diameter) for 30 s at 1000 rpm (batch size 500 g).
  • the amount of blowing agent evaporated during the mixing process was determined by weighing again and replenished.
  • the pMDI (“polymeric MDI”) was added, the mixture was stirred with the stirrer described for 5 s at 3000 rpm and immediately transferred to an aluminum mold measuring 25 cm x 50 cm x 7 cm that was thermostated at 60 °C and lined with polyethylene film was. After 10 minutes, the foams were removed from the mold. The foams were analyzed one day after foaming. The surface of the top and bottom as well as the internal disturbances were subjectively assessed using a scale of 1 to 10, with 10 representing (idealized) undisturbed foam and 1 representing extremely disturbed foam.
  • the fire behavior was determined using a cone calorimeter according to KS F ISO 5660-1:2015-03. For this purpose, 3 test specimens of 10x10x5 cm each were cut from each foam and the total heat release (“Total Heat Release” - THR in MJ/m 2 ) within 600 s, the maximum heat release rate (“Peak Heat Release Rate” - PHRR in kW/m 2 ) within 600 s, the mass loss during the burning time (in %) as well as the burning time (in s), more precisely, the time between ignition and extinguishing of the flame, was measured. The heating rate was 50 kW/m 2 . The arithmetic mean was determined from the values of the 3 test specimens. The test is considered passed if a THR ⁇ 8 MJ/m 2 and PHRR ⁇ 200 kW/m 2 were achieved. The results are shown in Tables 4 and 5.
  • Table 2 PU rigid foam formulations (composition in parts by weight)
  • Table 3 PU rigid foam formulations (composition in parts by weight)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Zusammensetzung zur Herstellung von PU-Schaum, vorzugsweise PU-Hartschaum, umfassend ̵ mindestens ein halogenfreies Polyesterpolyol und mindestens ein halogeniertes Polyol, ̵ mindestens ein physikalisches Treibmittel, ̵ mindestens ein Flammschutzmittel, ausgewählt aus (a) der Gruppe der Phosphorsäureester, vorzugsweise TCPP, TEP und/oder TCEP, insbesondere TCPP und/oder TEP, und/oder (b) der Gruppe der Phosphonate, vorzugsweise DMMP und/oder DMPP, ̵ roter Phosphor, sowie mindestens eine Polyisocyanat-Komponente, wobei die Zusammensetzung einen Index von mindestens 200 aufweist.

Description

Herstellung von flammwidrigem Polyurethanschaum
Die vorliegende Erfindung liegt auf dem Gebiet der Polyurethane, vorzugsweise der Polyurethanschäume, insbesondere Polyurethanhartschäume. Insbesondere betrifft sie die Herstellung von flammwidrigen Polyurethanschäumen, vorzugsweise flammwidrigen Polyurethanhartschäumen unter Verwendung einer Kombination synergistisch wirkender Bestandteile, sowie Zusammensetzungen zur Herstellung solcher Schäume sowie weiterhin die Verwendung dieser Schäume.
Unter Polyurethan (PU) wird im Rahmen der vorliegenden Erfindung insbesondere ein Produkt erhältlich durch Reaktion einer Polyisocyanat-Komponente mit einer Polyol-Komponente bzw. Verbindungen mit Isocyanat-reaktiven Gruppen verstanden. Es können hierbei neben dem Polyurethan auch weitere funktionelle Gruppen, wie z.B. Uretdione, Carbodiimide, Isocyanurate, Allophanate, Biurete, Harnstoffe und/oder Uretimine, gebildet werden. Daher werden unter PU im Sinne der vorliegenden Erfindung sowohl Polyurethan als auch Polyisocyanurat, Polyharnstoffe und Uretdion-, Carbodiimid-, Allophanat-, Biuret- und Uretimin-Gruppen enthaltende Polyisocyanat- Reaktionsprodukte verstanden. Unter Polyurethanschaum (PU-Schaum) wird im Rahmen der vorliegenden Erfindung Schaum verstanden, der als Reaktionsprodukt einer Polyisocyanat- Komponente und einer Polyol-Komponente bzw. Verbindungen mit Isocyanat-reaktiven Gruppen erhalten wird. Es können hierbei neben dem Namen gebenden Polyurethan auch weitere funktionelle Gruppen, wie z.B. Allophanate, Biurete, Harnstoffe, Carbodiimide, Uretdione, Isocyanurate oder Uretimine, gebildet werden.
PU-Hartschaum ist ein feststehender technischer Begriff. Der bekannte und prinzipielle Unterschied zwischen Weichschaum und Hartschaum ist der, dass ein Weichschaum ein elastisches Verhalten zeigt und demzufolge die Verformung reversibel ist. Hartschaum wird demgegenüber dauerhaft verformt. Die Begriffe Schaum und Schaumstoff werden im Sinne dieser Erfindung synonym verwendet. Das gilt entsprechend auch für darauf aufbauende Begriffe wie z.B. PU-Schaum und PU- Schaumstoff usw.
Im Zusammenhang mit der Bereitstellung von PU-Schäumen, insbesondere PU-Hartschäumen ist es ein besonders wichtiges Anliegen, PU-Schäume hervorzubringen, welche über gute Flammschutzeigenschaften verfügen. Aus diesem Grunde werden Flammschutzmittel eingesetzt. Flammschutzmittel sind an sich bekannte Stoffe, welche eingesetzt werden, um die Ausbreitung von Bränden einzuschränken, zu verlangsamen oder zu verhindern. Im bekannten Stand der Technik, z.B. in "Plastics Flammability Handbook", Carl Hanser Verlag, 3. Auflage 2004 werden entsprechende Flammschutzmittel beschrieben, welche flammhemmende Eigenschaften aufweisen und für den Einsatz im PU-Schaum geeignet sind. In den letzten Jahren sind die globalen Anforderungen an Konstruktionswerkstoffe im Baubereich, insbesondere an Dämm- und Isolationsmaterialien, hinsichtlich Flammschutz, aufgrund einer Vielzahl an Brandereignissen sehr stark angestiegen. Dies führt dazu, das herkömmliche Polyurethanhartschäume in Ländern mit besonders hohen Anforderungen, wie z.B. Japan oder Südkorea, gar nicht mehr eingesetzt werden können, da sie die neuen geltenden Normen nicht erfüllen. So ist beispielsweise in Südkorea im Cone-Kalorimeter nach KS F ISO 5660-1 :2015-03, eine Gesamtwärmefreisetzung von höchsten 8 MJ/m2 und eine Wärmefreisetzungsrate von höchstens 200 kW/m2 vorgeschrieben, wodurch die dortigen Anforderungen an Polyurethanhartschaum zu den höchsten weltweit gehören.
Um die Flammschutzeigenschaften von Polyurethanschäumen, insbesondere Polyurethanhartschäumen, zu verbessern wird im Allgemeinen die Menge an eingesetzten Flammschutzmitteln erhöht. Die dadurch erzielbaren Effekte und die maximal mögliche Einsatzmenge sind jedoch dadurch begrenzt, dass die Flammschutzmittel die Gesamteigenschaften des Schaums, wie z.B. seine mechanische Festigkeit und/oder die Verarbeitung und Herstellung des Polyurethanschaumes negativ beeinflussen. So hat beispielsweise der Einsatz von Triethylphosphat (TEP), Tris(2-chlor- ethyl)phosphat (TCEP) oder Tris(1-chlor-2-propyl)phosphat (TCPP) gewöhnlich eine stark weichmachende Wirkung, was die mechanische Belastbarkeit senkt und dadurch die Einsatzmenge begrenzt. Andere Flammschutzmittel, allen voran solche, die als Feststoff eingesetzt werden, bringen erhebliche Probleme hinsichtlich der Dispergierung in den flüssigen Ausgangsstoffen mit sich und führen zu einer Zunahme der Viskosität, was die Verarbeitung deutlich erschwert oder sogar unmöglich macht. Da viele Flammschutzmittel zudem ökologische und toxikologische Nachteile aufweisen, wird angestrebt, deren Einsatz, bei gleichzeitiger Erfüllung aller Anforderungen, zu minimieren.
Die konkrete Aufgabe der vorliegenden Erfindung lag vor diesem Hintergrund darin, die Bereitstellung von PU-Schäumen, insbesondere PU-Hartschäumen, zu ermöglichen, welche erhöhte Anforderungen an den Flammschutz, vorzugsweise nach KS F ISO 5660-1 :2015-03, das heißt vorzugsweise eine Gesamtwärmefreisetzung von höchsten 8 MJ/m2 und eine Wärmefreisetzungsrate von höchstens 200 kW/m2 bei einer Heizrate von 50 kW/m2 und einer Versuchsdauer von 600 s, erfüllen, aber die Verarbeitung und die Schaumeigenschaften nicht oder nur geringfügig beeinflussen.
In diesem Zusammenhang konnte im Rahmen der vorliegenden Erfindung überraschend gefunden werden, dass der Einsatz einer speziellen Kombination von Verbindungen, wie in Anspruch 1 beschrieben, in Zusammensetzungen zur Herstellung von PU Schaum, vorzugsweise PU-Hart- schaum, insbesondere PU Hartschaum mit einem Index größer 200, es ermöglicht, die oben genannte Aufgabe zu lösen. Dabei werden die Verarbeitungs- und Schaumeigenschaften nicht oder nur in geringem Maße beeinflusst. Die o.g. Aufgabe wird gelöst vom Gegenstand der Erfindung. Der Gegenstand der Erfindung ist eine Zusammensetzung zur Herstellung von PU-Schaum, vorzugsweise PU-Hartschaum, umfassend
• mindestens ein halogenfreies Polyesterpolyol und mindestens ein halogeniertes Polyol,
• mindestens ein physikalisches Treibmittel,
• mindestens ein Flammschutzmittel, ausgewählt aus
(a) der Gruppe der Phosphorsäureester, vorzugsweise Tris(1-chlor-2-propyl)phosphat (TCPP), Triethylphosphat (TEP) und/oder Tris(2-chlorethyl)phosphat (TCEP), insbesondere TCPP und/oder TEP, und/oder
(b) der Gruppe der Phosphonate, vorzugsweise Dimethylmethanphosphonat (DMMP) und/oder Dimethylpropanphosphonat (DMPP),
• roter Phosphor, sowie mindestens eine Polyisocyanat-Komponente, wobei die Zusammensetzung einen Index von mindestens 200 aufweist. Eine Obergrenze für den Index kann vorzugsweise z.B. bei 1000 liegen, bevorzugt bei 500 liegen.
Der erfindungsgemäße Gegenstand geht mit vielfältigen Vorteilen einher. So ermöglicht er die Bereitstellung von PU-Schäumen, vorzugsweise PU-Hartschäumen, welche besonders hohe Anforderungen hinsichtlich Flammschutz erfüllen, insbesondere wie in KS F ISO 5660-1 :2015-03 definiert. Vorteilhafterweise wird dies ermöglicht, ohne die sonstigen Eigenschaften des Schaums, insbesondere seine mechanischen Eigenschaften, zu beeinträchtigen. Mit Blick auf die Bereitstellung von PU-Schäumen, vorzugsweise PU-Hartschaumstoffen, werden überdies besonders feinzellige, gleichmäßige und störungsarme Schaumstrukturen ermöglicht. So gelingt die Bereitstellung entsprechender PU-Schäume mit besonders guten Gebrauchseigenschaften. Die Erfindung ermöglicht insgesamt eine einfache Verarbeitung im Rahmen der Schaumherstellung.
Wenn der erfindungsgemäß eingesetzte rote Phosphor (CAS No. 7723-14-0) mikroverkapselt ist, dann liegt eine besonders bevorzugte Ausführungsform der Erfindung vor. Die Mikroverkapselung von rotem Phosphor ist aus dem Stand der Technik wohlbekannt. Eine mögliche Variante wird z.B. in EP 1 262 453 A2 beschrieben.
Wenn die erfindungsgemäße Zusammensetzung zusätzlich mindestens einen Rauchgasminderer enthält, vorzugsweise ausgewählt aus der Gruppe bestehend aus Antimontrioxid, Zinkstannat, Zinkhydroxystannat, Zinkborat, Calciumborat, Zinkpyrophosphat, Aluminiumorthophosphat und Alu- miniumphosphinat(en), wobei Antimontrioxid und/oder Zinkborat am meisten bevorzugt sind, so liegt eine besonders bevorzugte Ausführungsform der Erfindung vor.
Wenn eine Komponente oder mindestens eine Komponente, wie z.B. eine chemische Verbindung, im Sinne dieser Erfindung ausgewählt ist aus einer Gruppe „bestehend aus“ mehreren Komponenten, wie z.B. mehreren chemischen Verbindungen, so bedeutet dies im Sinne dieser Erfindung, dass jede einzelne der genannten Komponenten dieser Gruppe ausgewählt werden kann oder auch Mischungen dieser Gruppe ausgewählt werden können. Am Beispiel der zuvor genannten Rauchgasminderer bedeutet dies, dass z.B. Zinkstannat oder z.B. Antimontrioxid usw. ausgewählt werden kann, oder z.B. Antimontrioxid und Zinkhydroxystannat oder z.B. andere Mischungen ausgewählt werden können.
Die eingesetzten festen Flammschutzmittel wie zum Beispiel roter Phosphor oder Rauchgasminderer können beispielsweise über eine der beiden Reaktionskomponenten (also über die Polyol-Komponente oder über die Polyisocyanat-Komponente) in das Reaktionsgemisch eingebracht werden. Das Einbringen über die Polyol-Komponente ist dabei bevorzugt.
Wenn in einer erfindungsgemäßen Zusammensetzung das mindestens eine halogenierte Polyol ausgewählt ist aus der Gruppe bestehend aus
(i) bromiertes und/oder chloriertes aliphatisches oder aromatisches Polyetherdiol und/oder Polyethertriol, bevorzugt bromiertes, aliphatisches oder aromatisches Polyetherdiol und/oder Polyethertriol und
(ii) Polyesterpolyol basierend auf Tetrabromphthalat, vorzugsweise Verbindung 1 ,
Figure imgf000005_0001
Verbindung 1 (CAS 77098-07-8), wobei die Verbindung 1 am meisten bevorzugt ist, so entspricht dies einer besonders bevorzugten Ausführungsform der Erfindung.
Wenn die erfindungsgemäße Zusammensetzung die Verbindung 1 und TCPP und/oder TEP sowie weiterhin Antimontrioxid und/oder Zinkborat enthält, so liegt eine weitere besonders bevorzugte Ausführungsform der Erfindung vor.
Weiterhin ist es bevorzugt, dass die erfindungsgemäße Zusammensetzung mindestens einen Katalysator, vorzugsweise mindestens einen Trimerisierungskatalysator, enthält, insbesondere ausgewählt aus der Gruppe bestehend aus Ammonium- und Metallsalzen der 2-Ethylhexansäure, der Ameisensäure, der Essigsäure, der Propionsäure, der Neodekansäure und der Pivalinsäure.
Auch dies entspricht einer weiteren besonders bevorzugten Ausführungsform der Erfindung.
Ebenso ist es bevorzugt, dass das mindestens eine physikalische Treibmittel ausgewählt ist aus der Gruppe bestehend aus Dimethoxymethan, Methylformiat, HFC-245fa, 1233zd, 1336mzz, Cyclopentan, Isopentan und n-Pentan, besonders bevorzugt ausgewählt ist aus der Gruppe bestehend aus HFC-245fa, 1233zd, Cyclopentan, Isopentan und n-Pentan. Dies entspricht ebenfalls einer weiteren besonders bevorzugten Ausführungsform der Erfindung.
Wenn die erfindungsgemäße Zusammensetzung sich dadurch auszeichnet, dass bezogen auf 100 Gewichtsteile der gesamten halogenfreien Polyolkomponente,
• halogeniertes Polyol in einer Gesamtmenge von 1 bis 80 Gewichtsteile, vorzugsweise 1 ,5 bis 50 Gewichtsteile, besonders bevorzugt 2 bis 40 Gewichtsteile,
• Flammschutzmittel, ausgewählt aus (a) der Gruppe der Phosphorsäureester, vorzugsweise TCPP, TEP und/oder TCEP und/oder ausgewählt aus (b) der Gruppe der Phosphonate, vorzugsweise DMMP und/oder DMPP, in einer Gesamtmenge von 2 bis 60 Gewichtsteile, vorzugsweise 5 bis 50 Gewichtsteile, besonders bevorzugt 5 bis 40 Gewichtsteile,
• roter Phosphor in einer Gesamtmenge von 1 bis 45 Gewichtsteile, vorzugsweise 2 bis 35 Gewichtsteile, besonders bevorzugt 5 bis 30 Gewichtsteile,
• optional Rauchgasminderer, bevorzugt ausgewählt aus der Gruppe bestehend aus Antimontrioxid, Zinkstannat, Zinkhydroxystannat, Zinkborat, Calciumborat, Zinkpyrophosphat, Aluminiumorthophosphat und Aluminiumphosphinat(en) in einer Gesamtmenge von 0 bis 40 Gewichtsteile, vorzugsweise 1 bis 35 Gewichtsteile, besonders bevorzugt 1 ,5 bis 25 Gewichtsteile enthalten sind, so entspricht dies ebenfalls einer besonders bevorzugten Ausführungsform der Erfindung.
Eine weitere besonders bevorzugte Ausführungsform der Erfindung liegt vor, wenn die erfindungsgemäße Zusammensetzung sich dadurch auszeichnet, dass bezogen auf 100 Gewichtsteile der gesamten halogenfreien Polyolkomponente,
• Verbindung 1 in einer Gesamtmenge von 1 bis 80 Gewichtsteile, vorzugsweise 1 ,5 bis 50 Gewichtsteile, besonders bevorzugt 2 bis 40 Gewichtsteile,
• TCPP und/oder TEP in einer Gesamtmenge von 2 bis 60 Gewichtsteile, vorzugsweise 5 bis 50 Gewichtsteile, besonders bevorzugt 5 bis 40 Gewichtsteile,
• Roter Phosphor in einer Gesamtmenge von 1 bis 45 Gewichtsteile, vorzugsweise 2 bis 35 Gewichtsteile, besonders bevorzugt 5 bis 30 Gewichtsteile,
• Antimontrioxid und/oder Zinkborat in einer Gesamtmenge von 1 bis 40 Gewichtsteile, vorzugsweise 1 ,5 bis 35 Gewichtsteile, besonders bevorzugt 1 ,5 bis 25 Gewichtsteile enthalten sind. Weiterhin ist es besonders bevorzugt, wenn die erfindungsgemäße Zusammensetzung zusätzlich mindestens einen Schaumstabilisator, vorzugsweise auf Basis eines Polyethersiloxans, insbesondere in Mengen von 0,1 bis 4 Teilen, bezogen auf 100 Teile der gesamten Polyolkomponente enthält. Dies entspricht einer besonders bevorzugten Ausführungsform der Erfindung. Schaumstabilisatoren die im Zusammenhang mit der Herstellung von PU-Schäumen Einsatz finden, vorzugsweise solche auf Basis eines Polyethersiloxans, sind an sich bekannt. Geeignete Schaumstabilisatoren werden auch weiter unten beschrieben.
Wenn die erfindungsgemäße Zusammensetzung Wasser und/oder Ameisensäure enthält, so liegt eine weitere besonders bevorzugte Ausführungsform der Erfindung vor.
Selbstverständlich kann die erfindungsgemäße Zusammensetzung gewünschtenfalls noch weitere optionale Additive enthalten, wie sie aus dem Stand der Technik im Zusammenhang mit der Herstellung von Polyurethanen, insbesondere von PU-Schäumen, bekannt sind und üblicherweise Verwendung finden.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von PU-Schaumstoffen, vorzugsweise PU-Hartschaumstoffen, unter Einsatz schaumfähiger Reaktionsmischungen enthaltend eine erfindungsgemäße Zusammensetzung, insbesondere wie in einem der Ansprüche 1 bis 10 definiert, oder wie zuvor, insbesondere in den bevorzugten Ausführungsformen, beschrieben. Die schaumfähige Reaktionsmischung kann vorzugsweise auch aus genannter erfindungsgemäßer Zusammensetzung bestehen.
Eine besonders bevorzugte PU-Schaumformulierung, insbesondere PU-Hartschaumformulierung, im Sinne dieser Erfindung hat die in Tabelle 1 genannte Zusammensetzung:
Tabelle 1 : Zusammensetzung einer bevorzugten PU-Hartschaumformulierung
Figure imgf000008_0001
Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein PU-Schaum, vorzugsweise PU- Hartschaumstoff, hergestellt gemäß dem zuvor genannten erfindungsgemäßen Verfahren, insbesondere unter Einsatz einer erfindungsgemäßen Zusammensetzung.
Wenn der erfindungsgemäße PU-Schaumstoff, insbesondere PU-Hartschaumstoff, ein Raumgewicht von 5 bis 900 kg/m3, vorzugsweise 5 bis 350 kg/m3, insbesondere 10 bis 200 kg/m3 aufweist, so liegt eine bevorzugte Ausführungsform der Erfindung vor.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung von erfindungsgemäßem PU-Schaumstoff, insbesondere PU-Hartschaumstoff, wie zuvor genannt, als Dämmstoff und/oder als Konstruktionswerkstoff, insbesondere in Bauanwendungen, insbesondere als Sprühschaum oder im Kühlbereich oder Rohrummantelungen für Röhren.
Die Erfindung wurde somit bereits ausführlich beschrieben und die Herstellung von PU, insbesondere PU-Schäumen unter Einsatz mindestens einer Polyol-Komponente und mindestens einer Polyisocyanat-Komponente ist dem Fachmann geläufig. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung enthält die erfindungsgemäße Zusammensetzung insbesondere die folgenden Bestandteile: a) Polyol-Komponente, umfassend mindestens ein halogenfreies Polyesterpolyol und mindestens ein halogeniertes Polyol, b) Polyisocyanat-Komponente (Mindestens ein Polyisocyanat und/oder Polyisocyanat- Prepolymer) c) Katalysator, der die Reaktion von Isocyanat-Gruppen mit OH-, NH-, oder anderen isocyanat- reaktiven Gruppen und/oder die Reaktion von Isocyanat-Gruppen untereinander katalysiert d) Optional Schaumstabilisator e) Treibmittel f) Flammschutzmittel g) Optional weitere Additive.
Als Polyol-Komponente (a) können eine oder mehrere organische Verbindungen mit OH-Gruppen, SH-Gruppen, NH-Gruppen und/oder NH2-Gruppen, mit einer Funktionalität von 1 ,8 bis 8 eingesetzt werden. Dabei umfasst die Polyol-Komponente mindestens eine organische Verbindung mit mindestens zwei Isocyanat-reaktiven Gruppen, ausgewählt aus OH-Gruppen, SH-Gruppen, NH- Gruppen und/oder NH2-Gruppen, insbesondere OH-Gruppen.
Ein Funktionalität, die keine ganze Zahl ist, also z.B. 1 ,8, kann sich dadurch ergeben, dass mindestens eine Verbindung mit einer höheren Funktionalität z.B. größer oder gleich 2, mit mindestens einer Verbindung mit einer Funktionalität von z.B. 1 gemischt wird. Dies kann insbesondere geschehen, wenn ein Polyisocyanat-Komponente (b) mit einer Funktionalität größer 2 oder zusätzliche Vernetzer als optionale Additive (g) eingesetzt werden.
Entsprechende Verbindungen, die üblicherweise bei der Herstellung von PU eingesetzt werden können, sind dem Fachmann bekannt und beispielsweise beschrieben im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 3.1. Üblicherweise kommen Verbindungen mit OH-Zahlen im Bereich von 10 bis 1200 mg KOH/g zum Einsatz.
Besonders bevorzugte Verbindungen sind alle zur Herstellung von Polyurethansystemen, insbesondere Polyurethanschaumstoffen üblicherweise verwendeten Polyetherpolyole und Polyesterpolyole.
Polyetherpolyole können nach bekannten Verfahren, z.B. durch Polymerisation von Alkylenoxiden, vorzugsweise Ethylenoxid, 1 ,3-Propylenoxid, 1 ,2- bzw. 2,3-Butylenoxid, und/oder Tetrahydrofuran, hergestellt werden.
Bevorzugte Polyesterpolyole basieren auf Estern mehrwertiger aliphatischer oder aromatischer Carbonsäuren, bevorzugt mit 2 bis 12 Kohlenstoffatomen. Beispiele für aliphatische Carbonsäuren sind Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Maleinsäure und Fumarsäure. Beispiele für aromatische Carbonsäuren sind Phthalsäure, Isophthalsäure, Terephthalsäure und die isomeren Naphthalindicarbonsäuren. Bevorzugte Polyesterpolyole können insbesondere durch Kondensation dieser mehrwertigen Carbonsäuren mit mehrwertigen Alkoholen, vorzugsweise von Diolen oder Trioien mit 2 bis 12, besonders bevorzugt mit 2 bis 6 Kohlenstoffatomen, bevorzugt Trimethylolpropan, Ethylenglykol, Diethylenglykol, Propylenglykol, Dipropylenglykol und/oder Glycerin erhalten werden.
Zudem können Polyetherpolycarbonatpolyole, auf natürlichen Ölen basierende Polyole (Natural oil based polyols, NOPs; beschrieben in WO 2005/033167, US 2006/0293400, WO 2006/094227, WO 2004/096882, US 2002/0103091 , WO 2006/116456, EP 1678232), Füllkörperpolyole, prepolymerbasierte Polyole und/oder Recyclingpolyole eingesetzt werden.
Recyclingpolyole sind Polyole, die aus dem chemischen Recycling, zum Beispiel durch Solvolyse, wie beispielsweise Glykolyse, Hydrolyse, Acidolyse oder Aminolyse, von Polyurethanen erhalten werden. Der Einsatz von Recyclingpolyolen stellt eine besonders bevorzugte Ausführungsform der Erfindung dar.
Im Rahmen dieser Erfindung umfasst die Polyol-Komponente zwingend mindestens ein halogenfreies Polyesterpolyol und mindestens ein halogeniertes Polyol, wie weiter oben bereits beschrieben.
Als Polyisocyanat-Komponente (b) können im Allgemeinen ein oder mehrere Polyisocyanate mit zwei oder mehr Isocyanat-Gruppen eingesetzt werden. Geeignete Polyisocyanate im Sinne dieser Erfindung sind alle organischen Isocyanate mit zwei oder mehr Isocyanat-Gruppen, insbesondere die an sich bekannten aliphatischen, cycloaliphatischen, arylaliphatischen und vorzugsweise aromatischen mehrwertigen Isocyanate.
Beispielhaft genannt werden können hier Alkylendiisocyanate mit 4 bis 12 Kohlenstoffatomen im Alkylenrest, wie 1 ,12-Dodecandiisocyanat, 2-Ethyl-tetramethylen-1 ,4-diisocyanat, 2-Methyl-penta- methylen-1 ,5-diisocyanat, Tetramethylen-1 ,4-diisocyanat, Pentamethylendiisocyanat (PDI) und vorzugsweise Hexamethylen-1 ,6-diisocyanat (HMDI), cycloaliphatische Diisocyanate, wie Cyclo- hexan-1 ,3- und -1-4-diisocyanat sowie die entsprechenden Isomerengemische, 4,4’-Methylen- dicyclohexyldiisocyanat (H12MDI), Isophorondiisocyanat (IPDI), 2,4- und 2,6-Methylcyclohexyl- diisocyanat sowie die entsprechenden Isomerengemische und vorzugsweise aromatische Di- und Polyisocyanate, wie 2,4- und 2,6-Toluoldiisocyanat (TDI) sowie die entsprechenden Isomerengemische, Naphthylendiisocyanat, Diethyltoluoldiisocyanat, 4,4’- oder 2,2‘- oder 2,4‘-Diphenyl- methandiisocyanat (MDI) und Polymethylen-polyphenyl-polyisocyanat (PMDI, “polymeres MDI“). Die organischen Polyisocyanate können einzeln oder in Form ihrer Mischungen eingesetzt werden. Ebenso können entsprechende „Oligomere“ der Diisocyanate eingesetzt werden, wie z.B. das IPDI- Trimer auf Basis des Isocyanurates, Biurete oder Urethdione. Des Weiteren ist der Einsatz von Prepolymeren auf Basis der oben genannten Isocyanate möglich. Besonders geeignet ist das als "polymeres MDI" (auch als "crude MDI" oder „Roh-MDI“ bezeichnet) bekannte Gemisch aus MDI und höher kondensierten Analoga mit einer mittleren Funktionalität von 2 bis 4, sowie die verschiedenen Isomere des TDI in reiner Form oder als Isomerengemisch. Es ist auch möglich, Isocyanate einzusetzen, die durch den Einbau von Urethan-, Uretdion-, Isocyanurat-, Allophanat- und anderen Gruppen modifiziert wurden, sogenannte modifizierte Isocyanate. Beispiele für besonders geeignete Isocyanate sind auch z.B. in EP 1712578, EP 1161474, WO 00/58383, US 2007/0072951 , EP 1678232 und der WO 2005/085310 aufgeführt, auf die hier in vollem Umfang Bezug genommen wird.
Ein bevorzugtes Verhältnis von gesamter Polyisocyanat-Komponente und gesamter Polyol- Komponente, ausgedrückt als Index der Formulierung, d.h. als stöchiometrisches Verhältnis von Isocyanat-Gruppen gegenüber Isocyanat reaktiven Gruppen (z.B. OH-Gruppen, NH-Gruppen) multipliziert mit 100, liegt im Bereich von 200 bis 1000, bevorzugt 200 bis 500. Ein Index von 100 steht für ein molares Verhältnis der reaktiven Gruppen von 1 zu 1 . Erfindungsgemäß weist die beanspruchte Zusammensetzung einen Index von mindestens 200 auf.
Geeignete Katalysatoren (c), die für die Herstellung von Polyurethanen, insbesondere PU- Schäumen, einsetzbar sind, sind dem Fachmann aus dem Stand der Technik bekannt. Im Sinne der vorliegenden Erfindung sind alle Verbindungen einsetzbar, die in der Lage sind, die Reaktion von Isocyanat-Gruppen mit OH-, NH-, oder anderen isocyanat-reaktiven Gruppen und/oder die Reaktion von Isocyanat-Gruppen untereinander zu katalysieren. Verbindungen, die die Reaktion der Isocyanat-Gruppen untereinander katalysieren, insbesondere die Trimerisierungsreaktion, sind den Fachmann auch als Trimierisierungskatalysatoren bekannt und beispielsweise in EP 1 745 847 A1 beschrieben.
Hierbei kann auf die üblichen aus dem Stand der Technik bekannten Katalysatoren zurückgegriffen werden, umfassend z.B. Amine (Cyclische, acyclische; Monoamine, Diamine, Oligomere mit einer oder mehreren Aminogruppen), Ammonium-Verbindungen, metallorganische Verbindungen und/oder Metallsalze, vorzugsweise die des Zinn, Eisen, Bismut, Kalium und/oder Zink. Insbesondere können als Katalysatoren Gemische mehrerer solcher Verbindungen eingesetzt werden.
Schaumstabilisatoren (d) und deren Einsatz bei der Herstellung von PU-Schäumen sind dem Fachmann bekannt. Der Einsatz von Schaumstabilisatoren ist optional, vorzugsweise werden ein oder mehrere Schaumstabilisatoren eingesetzt. Als Schaumstabilisatoren können insbesondere oberflächenaktive Verbindungen (Tenside) eingesetzt werden. Bevorzugt werden Schaumstabilisatoren bei der Herstellung von PU-Schäumen eingesetzt. Sie können dazu dienen, die gewünschte Zellstruktur und den Verschäumungsprozess zu optimieren. Es können im Rahmen dieser Erfindung insbesondere eine oder mehrere der bekannten Si-haltigen Verbindungen eingesetzt werden, die die Schaumherstellung unterstützen (Stabilisierung, Zellregulierung, Zellöffnung, etc.). Diese Verbindungen sind aus dem Stand der Technik hinreichend bekannt. Besonders bevorzugt kann mindestens ein Schaumstabilisator auf Basis eines Polyethersiloxans eingesetzt werden. Entsprechende, im Sinne dieser Erfindung einsetzbare Siloxanstrukturen werden z.B. in den folgenden Patentschriften beschrieben, wobei die Verwendung allerdings nur in klassischen PU-Schäumen (z.B. als Formschaum, Matratze, Isolationsmaterial, Bauschaum, etc.) beschrieben ist: CN 103665385, CN 103657518, CN 103055759, CN 103044687, US 2008/0125503, US 2015/0057384, EP 1520870 A1 , EP 1211279, EP 0867464, EP 0867465, EP 0275563. Neben oberflächenaktiven Si-haltigen Verbindungen, können auch Si-freie Tenside eingesetzt werden. So wird beispielsweise in EP2295485 A1 die Verwendung von Lecithin und in US 3746663 die Verwendung von Vinylpyrrolidon-basierten Strukturen als Schaumstabilisator zur Herstellung von PU-Hartschaum beschrieben. Weitere Si-freie Schaumstabilisatoren sind beispielsweise in EP 2511328 B1 , DE 1020011007479 A1 , DE 3724716 C1 , EP 0734404, EP 1985642, DE 2244350 und US 5236961 beschrieben.
Treibmittel (e) und deren Einsatz bei der Herstellung von PU-Schäumen sind dem Fachmann bekannt. Die Verwendung von einem oder einer Kombination aus mehreren Treibmitteln (e) ist grundsätzlich abhängig von der Art des verwendeten Verschäumungsverfahrens, der Art des Systems und der Anwendung des erhaltenen PU-Schaums. Erfindungsgemäß wird mindestens ein physikalisches Treibmittel eingesetzt. Es können zusätzlich auch chemische Treibmittel verwendet werden. Je nach Menge des verwendeten Treibmittels wird ein Schaum mit hoher oder niedriger Dichte hergestellt. So können Schäume mit Dichten von 5 kg/m3 bis 900 kg/m3, bevorzugt 5 bis 350, besonders bevorzugt 8 bis 200 kg/m3, insbesondere 8 bis 150 kg/m3 hergestellt werden.
Als physikalische Treibmittel können eine oder mehrere der entsprechenden Verbindungen mit passenden Siedepunkten sowie deren Mischungen eingesetzt werden. Bevorzugt einsetzbare physikalische Treibmittel wurden bereits genannt.
Als chemische Treibmittel können eine oder mehrere Verbindungen eingesetzt werden, die mit NCO- Gruppen unter Freisetzung von Gasen reagieren, wie z.B. Wasser oder Ameisensäure oder durch den Temperaturanstieg während der Reaktion Gase freisetzen wie z.B. Natriumhydrogencarbonat. Es entspricht einer besonders bevorzugten Ausführungsform der Erfindung, wenn die erfindungsgemäße Zusammensetzung neben dem physikalischen Treibmittel, Wasser und/oder Ameisensäure als chemisches Treibmittel enthält.
Als Flammschutzmittel (f) werden bevorzugt, wie bereits beschrieben mindestens eine Verbindung aus der Gruppe der Phosphorsäureester, bevorzugt TCPP, TEP und/oder TCEP und/oder aus der Gruppe der Phosphonate, bevorzugt DMMP und/oder DMPP sowie zusätzlich roter Phosphor, bevorzugt mikroverkapselter roter Phosphor eingesetzt.
Als optionale Additive (g) können eine oder mehrere der nach dem Stand der Technik bekannten Substanzen verwendet werden, die bei der Herstellung von Polyurethanen, insbesondere von PU- Schäumen, Verwendung finden, wie zum Beispiel Vernetzer, Kettenverlängerer, Stabilisatoren gegen oxidativen Abbau (sogenannte Antioxidantien), Biozide, zellverfeinernde Additive, Nukleierungsmittel, Zellöffner, feste Füllstoffe, Antistatik-Additive, Verdicker, Farbstoffe, Pigmente, Farbpasten, Duftstoffe und/oder Emulgatoren, usw.
Des Weiteren enthält die erfindungsgemäße Zusammensetzung optional sogenannte Rauchgasminderer. Bevorzugt einsetzbare Rauchgasminderer wurden bereits genannt. Diese zeichnen sich vorteilhafterweise dadurch aus, dass sie, alleine eingesetzt, keine unmittelbare Auswirkung auf den Flammschutz haben, aber die Wirkung anderer Flammschutzmittel, teilweise erheblich steigern und/oder die Rauchgasentwicklung reduzieren. Rauchgasminderer sind dem Fachmann bekannt und umfassen z.B. Antimontrioxid, Zinkhydroxystannat, Zinkstannat, Zinkborat, Calciumborat oder Antimonpentoxid. Diese sind auch z.B. in Weil, Edward D. Levchik, Sergei V. (2016) Flame Retardants for Plastics and Textiles - Practical Applications (2. Auflage); Carl Hanser Verlag, Kapitel 4 oder WO 2009109318 A1 oder Su et al., Polymer degradation and stability, 2012;97(11):2128-2135 oder Horrocks et al., Journal of Fire Sciences, 2010;28(3):217-248 beschrieben.
Wenn aus dieser Beschreibung nichts anderes hervorgeht, dann kann jegliche bevorzugte oder besonders bevorzugte Ausführungsform der Erfindung mit einer oder mehrerer der übrigen bevorzugten oder besonders bevorzugten Ausführungsformen der Erfindung kombiniert werden.
Das erfindungsgemäße Verfahren zur Herstellung von PU-Schäumen kann nach allen bekannten Methoden durchgeführt werden, z.B. im Handmischverfahren oder bevorzugt mit Hilfe von Verschäumungsmaschinen. Wird das Verfahren mittels Verschäumungsmaschinen durchgeführt, können Hochdruck- oder Niederdruckmaschinen verwendet werden. Das erfindungsgemäße Verfahren kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden und es können z.B. 1 K, 1.5K oder 2K Systeme wie in EP3717538 A1 , US7776934 B2, EP1400547 B1 oder EP2780384 B2 beschrieben, verwendet werden.
Die erfindungsgemäßen Gegenstände sind nachfolgend beispielhaft beschrieben, ohne dass die Erfindung, deren Anwendungsbreite sich aus der gesamten Beschreibung und den Ansprüchen ergibt, auf diese beispielhaften Ausführungsformen beschränkt sein soll.
Sind Bereiche, allgemeine Formeln oder Verbindungsklassen angegeben, so sollen diese nicht nur die entsprechenden Bereiche oder Gruppen von Verbindungen umfassen, die explizit erwähnt sind, sondern auch alle Teilbereiche und Teilgruppen von Verbindungen, die durch Herausnahme von einzelnen Werten (Bereichen) oder Verbindungen erhalten werden können. Werden im Rahmen der vorliegenden Beschreibung Dokumente zitiert, so soll deren Inhalt, insbesondere in Bezug auf den Sachverhalt, in dessen Zusammenhang das Dokument zitiert wurde, vollständig zum Offenbarungsgehalt der vorliegenden Erfindung gehören. Bei Prozentangaben handelt es sich, wenn nicht anders angegeben, um Angaben in Gewichtsprozent. Werden Mittelwerte angegeben, so handelt es sich, wenn nicht anderes angegeben, um Zahlenmittel. Werden Parameter angegeben, die durch Messung bestimmt wurden, so wurden die Messungen, wenn nicht anders angegeben, bei einer Temperatur von 23 °C und Normaldruck durchgeführt.
Beispiele:
Für den anwendungstechnischen Vergleich wurden die in Tabelle 2 und 3 dargestellten Formulierungen verwendet. Die Durchführung der Vergleichsverschäumungen erfolgte im Handmischverfahren. Dazu wurden Polyol-Komponente, Katalysatoren, Wasser, Schaumstabilisator, Flammschutzmittel, physikalisches Treibmittel und optional weitere Additive in einen Becher eingewogen und mit einem Tellerrührer (6 cm Durchmesser) 30 s bei 1000 Upm vermischt (Ansatzgröße 500 g). Durch erneutes Abwiegen wurde die beim Mischvorgang verdunstete Treibmittelmenge bestimmt und wieder ergänzt. Jetzt wurde das pMDI (“polymeres MDI“) zugegeben, die Mischung mit dem beschriebenen Rührer 5 s bei 3000 Upm verrührt und sofort in eine auf 60 °C thermostatisierte Aluminiumform von 25 cm x 50 cm x 7 cm Größe überführt, welche mit Polyethylenfolie ausgekleidet war. Nach 10 min wurden die Schaumstoffe entformt. Einen Tag nach der Verschäumung wurden die Schaumstoffe analysiert. Die Oberfläche der Ober- und Unterseite sowie die Innenstörungen wurden subjektiv anhand einer Skala von 1 bis 10 beurteilt, wobei 10 einem (idealisierten) ungestörten Schaum und 1 einen extrem stark gestörten Schaum repräsentiert.
Das Brandverhalten wurde mittels Cone Kalorimeter nach KS F ISO 5660-1 :2015-03 bestimmt. Dazu wurden aus jeden Schaumstoff 3 Probekörper zu je 10x10x5 cm geschnitten und die Gesamtwärmefreisetzung („Total Heat Release“ - THR in MJ/m2) innerhalb von 600 s, die maximale Wärmefreisetzungsrate („Peak Heat Release Rate“ - PHRR in kW/m2) innerhalb von 600 s, der Masseverlust während der Brenndauer (in %) sowie die Brenndauer (in s), genauer gesagt, die Zeit zwischen Entzündung und Verlöschen der Flamme, gemessen. Die Heizrate betrug 50 kW/m2. Es wurde der arithmetische Mittelwert aus den Werten der 3 Probekörper ermittelt. Der Test gilt als bestanden, wenn eine THR < 8 MJ/m2 und PHRR < 200 kW/m2 erzielt wurden. Die Ergebnisse sind in Tabelle 4 und 5 dargestellt.
Tabelle 2: PU-Hartschaum Formulierungen (Zusammensetzung in Gewichtsteilen)
Figure imgf000016_0001
Tabelle 3: PU-Hartschaum Formulierungen (Zusammensetzung in Gewichtsteilen)
Figure imgf000017_0001
* Diethylenglycol-Phthalsäureanhydrid basiertes Polyesterpolyol mit Hydroxylzahl 315 mg KOH/g ** Polyethersiloxan basierter Schaumstabilisator der Firma Evonik Operations GmbH
*** Aminkatalysator der Firma Evonik Operations GmbH
**** Trimerisierungskatalysator der Firma Evonik Operations GmbH
***** Bromiertes aliphatisches Polyethertriol mit Hydroxylzahl 330 mg KOH/g und 31.5 gew.% Brom Tabelle 4: Physikalische Eigenschaften und Brandverhalten
Figure imgf000018_0001
Tabelle 5: Physikalische Eigenschaften und Brandverhalten
Figure imgf000018_0002
Die Ergebnisse zeigen, dass die Schäume, basierend auf der erfindungsgemäßen Zusammensetzung im Gegensatz zu den gewählten nicht-erfindungsgemäßen Referenzen, die Flammschutzanforderungen erfüllen und die relevanten Schaumeigenschaften durch die Verwendung der erfindungsgemäßen Zusammensetzung nicht oder nur geringfügig beeinflusst werden. Der deutlich geringere Masseverlust als auch die kürzere Brenndauer der erfindungsgemäßen Zusammensetzungen ist zudem ein Anzeichen für eine deutlich geringere
Rauchgasentwicklung, da weniger Material in die Gasphase gelangt. Probe 20 und 21 ergaben sehr grobe, nicht gebrauchsfähige Schäume, sodass Brandversuche nicht durchführbar waren.

Claims

Patentansprüche:
1. Zusammensetzung zur Herstellung von PU-Schaum, vorzugsweise PU-Hartschaum, umfassend mindestens ein halogenfreies Polyesterpolyol und mindestens ein halogeniertes Polyol, mindestens ein physikalisches Treibmittel, mindestens ein Flammschutzmittel, ausgewählt aus
(a) der Gruppe der Phosphorsäureester, vorzugsweise Tris(1-chlor-2-propyl)- phosphat, Triethylphosphat und/oder Tris(2-chlorethyl)phosphat, insbesondere Tris(1-chlor-2-propyl)phosphat und/oder Triethylphosphat, und/oder
(b) der Gruppe der Phosphonate, vorzugsweise Dimethylmethanphosphonat und/oder Dimethylpropanphosphonat, roter Phosphor, sowie mindestens eine Polyisocyanat-Komponente, wobei die Zusammensetzung einen Index von mindestens 200 aufweist.
2. Zusammensetzung gemäß Anspruch 1 , dadurch gekennzeichnet, dass diese zusätzlich mindestens einen Rauchgasminderer enthält, vorzugsweise ausgewählt aus der Gruppe bestehend aus Antimontrioxid, Zinkstannat, Zinkhydroxystannat, Zinkborat, Calciumborat, Zinkpyrophosphat, Aluminiumorthophosphat und Aluminiumphosphinat(en), wobei Antimontrioxid und/oder Zinkborat am meisten bevorzugt sind.
3. Zusammensetzung gemäß Anspruch 1 oder 2 dadurch gekennzeichnet, dass das mindestens eine halogenierte Polyol ausgewählt ist aus der Gruppe bestehend aus
(i) bromiertes und/oder chloriertes aliphatisches oder aromatisches Polyetherdiol und/oder Polyethertriol, bevorzugt bromiertes, aliphatisches oder aromatisches Polyetherdiol und/oder Polyethertriol und
(ii) Polyesterpolyol basierend auf Tetrabromphthalat, vorzugsweise Verbindung 1 ,
Figure imgf000019_0001
Verbindung 1 (CAS 77098-07-8), wobei die Verbindung 1 am meisten bevorzugt ist.
4. Zusammensetzung gemäß einem der vorigen Ansprüche, dadurch gekennzeichnet, dass diese die Verbindung 1 und Tris(1-chlor-2-propyl)phosphat und/oder Triethylphosphat sowie weiterhin Antimontrioxid und/oder Zinkborat enthält.
5. Zusammensetzung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass diese mindestens einen Katalysator, vorzugsweise mindestens einen Trimerisierungskatalysator, enthält, insbesondere ausgewählt aus der Gruppe bestehend aus Ammonium- und Metallsalzen der 2-Ethylhexansäure, der Ameisensäure, der Essigsäure, der Propionsäure, der Neodekansäure und der Pivalinsäure.
6. Zusammensetzung gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mindestens eine physikalische Treibmittel ausgewählt ist aus der Gruppe bestehend aus Dimethoxymethan, Methylformiat, HFC-245fa, 1233zd, 1336mzz, Cyclopentan, Isopentan und n-Pentan, besonders bevorzugt ausgewählt ist aus der Gruppe bestehend aus HFC-245fa, 1233zd, Cyclopentan, Isopentan und n-Pentan.
7. Zusammensetzung gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass, bezogen auf 100 Gewichtsteile der gesamten halogenfreien Polyolkomponente, halogeniertes Polyol in einer Gesamtmenge von 1 bis 80 Gewichtsteile, vorzugsweise 1 ,5 bis 50 Gewichtsteile, besonders bevorzugt 2 bis 40 Gewichtsteile, Flammschutzmittel, ausgewählt aus (a) der Gruppe der Phosphorsäureester, vorzugsweise Tris(1-chlor-2-propyl)phosphat, Triethylphosphat und/oder Tris(2-chlor- ethyl)phosphat und/oder ausgewählt aus (b) der Gruppe der Phosphonate, vorzugsweise Dimethylmethanphosphonat und/oder Dimethylpropanphosphonat, in einer Gesamtmenge von 2 bis 60 Gewichtsteile, vorzugsweise 5 bis 50 Gewichtsteile, besonders bevorzugt 5 bis 40 Gewichtsteile, roter Phosphor in einer Gesamtmenge von 1 bis 45 Gewichtsteile, vorzugsweise 2 bis 35 Gewichtsteile, besonders bevorzugt 5 bis 30 Gewichtsteile, optional Rauchgasminderer, bevorzugt ausgewählt aus der Gruppe bestehend aus Antimontrioxid, Zinkstannat, Zinkhydroxystannat, Zinkborat, Calciumborat, Zinkpyrophosphat, Aluminiumorthophosphat und Aluminiumphosphinat(en) in einer Gesamtmenge von 0 bis 40 Gewichtsteile, vorzugsweise 1 bis 35 Gewichtsteile, besonders bevorzugt 1 ,5 bis 25 Gewichtsteile enthalten sind.
8. Zusammensetzung gemäß einem der vorigen Ansprüche, dadurch gekennzeichnet, dass, bezogen auf 100 Gewichtsteile der gesamten halogenfreien Polyolkomponente, Verbindung 1 in einer Gesamtmenge von 1 bis 80 Gewichtsteile, vorzugsweise 1 ,5 bis 50 Gewichtsteile, besonders bevorzugt 2 bis 40 Gewichtsteile, Tris(1-chlor-2-propyl)phosphat und/oder Triethylphosphat in einer Gesamtmenge von 2 bis 60 Gewichtsteile, vorzugsweise 5 bis 50 Gewichtsteile, besonders bevorzugt 5 bis 40 Gewichtsteile,
Roter Phosphor in einer Gesamtmenge von 1 bis 45 Gewichtsteile, vorzugsweise 2 bis 35 Gewichtsteile, besonders bevorzugt 5 bis 30 Gewichtsteile,
Antimontrioxid und/oder Zinkborat in einer Gesamtmenge von 1 bis 40 Gewichtsteile, vorzugsweise 1 ,5 bis 35 Gewichtsteile, besonders bevorzugt 1 ,5 bis 25 Gewichtsteile enthalten sind.
9. Zusammensetzung gemäß einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass mindestens ein Schaumstabilisator, vorzugsweise auf Basis eines Polyethersiloxans, insbesondere in Mengen von 0,1 bis 4 Teilen, bezogen auf 100 Teile der gesamten Polyolkomponente enthalten ist.
10. Zusammensetzung gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sie Wasser und/oder Ameisensäure enthält.
11. Verfahren zur Herstellung von PU-Schaumstoffen, vorzugsweise PU-Hartschaumstoffen, unter Einsatz schaumfähiger Reaktionsmischungen enthaltend eine Zusammensetzung wie in einem der Ansprüche 1 bis 10 definiert.
12. PU-Schaumstoff, vorzugsweise PU-Hartschaumstoff, hergestellt gemäß dem Verfahren nach Anspruch 11 .
13. Verwendung von PU-Schaumstoff, vorzugsweise PU-Hartschaumstoff gemäß Anspruch 12 als Dämmstoff und/oder als Konstruktionswerkstoff, insbesondere in Bauanwendungen, insbesondere als Sprühschaum oder im Kühlbereich oder als Rohrummantelungen für Röhren.
PCT/EP2023/064765 2022-06-08 2023-06-02 Herstellung von flammwidrigem polyurethanschaum WO2023237418A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2022065519 2022-06-08
EPPCT/EP2022/065519 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023237418A1 true WO2023237418A1 (de) 2023-12-14

Family

ID=82214438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/064765 WO2023237418A1 (de) 2022-06-08 2023-06-02 Herstellung von flammwidrigem polyurethanschaum

Country Status (1)

Country Link
WO (1) WO2023237418A1 (de)

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244350A1 (de) 1971-09-13 1973-03-22 Air Prod & Chem Zellstabilisatoren fuer kunststoffschaeume und verfahren zu ihrer herstellung
DE3724716C1 (de) 1987-07-25 1988-06-01 Goldschmidt Ag Th Verfahren zur Herstellung von Polyurethan- und/oder Polyisocyanurat-Hartschaeumen
EP0275563A1 (de) 1986-12-31 1988-07-27 Union Carbide Corporation Polysiloxan-polyoxyalkylen-Zusammensetzungen für die Herstellung von Polyurethanschaum
US5236961A (en) 1992-12-30 1993-08-17 Basf Corporation Water-blown integral skin polyurethane foams having a skin with abrasion resistance
EP0734404A1 (de) 1993-12-17 1996-10-02 The Dow Chemical Company Polymere auf der grundlage von polyisocyanat hergestellt uas formulierungen enthaltende silikonfreie tenside und verfahren zu deren herstellung
EP0867465A1 (de) 1997-03-29 1998-09-30 Th. Goldschmidt AG Verwendung von Blockcopolymeren mit verknüpften Siloxanblöcken bei der Herstellung von Polyrethanschaumstoffen
EP0867464A1 (de) 1997-03-26 1998-09-30 Th. Goldschmidt AG Verwendung von organofunktionell modifizierten Polysiloxanen bei der Herstellung von Polyurethanschaum
WO2000058383A1 (en) 1999-03-31 2000-10-05 Oxid L.P. Aromatic polyester polyols made from a natural oil
EP1161474A1 (de) 1999-02-13 2001-12-12 Bayer Ag Feinzellige, wassergetriebene polyurethanhartschaumstoffe
EP1211279A1 (de) 2000-11-28 2002-06-05 Goldschmidt AG Verwendung von Mischungen organofunktionell modifizierter Polysiloxane mit verzweigten Alkoholen bei der Herstellung von Polyurethanweichschäumen
US20020103091A1 (en) 2001-01-29 2002-08-01 Kodali Dharma R. Reactive oil compositions and uses thereof
EP1262453A2 (de) 2001-06-01 2002-12-04 Bayer Ag Mikroverkapselung von rotem Phosphor
WO2004096882A1 (en) 2003-04-25 2004-11-11 Dow Global Technologies, Inc. Vegetable oil based polyols and polyurethanes made therefrom
EP1520870A1 (de) 2003-10-04 2005-04-06 Goldschmidt GmbH Verfahren zur Herstellung von organischen Siliciumverbindungen
WO2005033167A2 (en) 2003-09-30 2005-04-14 Cargill Incorporated Flexible polyurethane foams prepared using modified vegetable oil-based polyols
WO2005085310A2 (de) 2004-03-08 2005-09-15 Rathor Ag Phasenstabile polyurethanprepolymere
WO2006094227A2 (en) 2005-03-03 2006-09-08 South Dakota Soybean Processors, Llc Novel polyols derived from a vegetable oil using an oxidation process
EP1712578A1 (de) 2005-04-13 2006-10-18 Bayer MaterialScience LLC Aus Pflanzenölhydroxylaten, Polymerpolyolen und aliphatischen Polyhydroxyalkoholen hergestellte Polyurethanschäume
WO2006116456A1 (en) 2005-04-25 2006-11-02 Cargill, Incorporated Polyurethane foams comprising oligomeric polyols
US20060293400A1 (en) 2003-04-25 2006-12-28 Wiltz Jr Eugene P Dow global technologies inc
EP1745847A1 (de) 2005-07-21 2007-01-24 Goldschmidt GmbH Trimerisierungskatalysatoren
EP1400547B1 (de) 2002-09-23 2007-03-14 HILTI Aktiengesellschaft Zweikomponenten-Schaumsystem für die Herstellung von Bauschäumen und deren Verwendung
US20070072951A1 (en) 2005-09-27 2007-03-29 Bender Jared D Silanol-functionalized compounds for the preparation of polyurethane foams
US20080125503A1 (en) 2006-07-01 2008-05-29 Goldschmidt Gmbh Silicone stabilizers for flame-retarded rigid polyurethane or polyisocyanurate foams
EP1985642A1 (de) 2007-04-25 2008-10-29 Air Products and Chemicals, Inc. Zusatzstoffe zur verbesserten Flächenhärtung und dimensionale Stabilität von Polyurethan-Schäumen
WO2009109318A1 (de) 2008-03-03 2009-09-11 Clariant International Ltd Verfahren zur herstellung flammwidriger, nicht korrosiver und gut fliessfähiger polyamid- und polyesterformmassen
US7776934B2 (en) 2006-02-22 2010-08-17 Dow Global Technologies Inc. One-component polyurethane foam compositions and methods for their use
EP2295485A1 (de) 2009-09-11 2011-03-16 Evonik Goldschmidt GmbH Lecithin enthaltende Zusammensetzung geeignet zur Herstellung von Polyurethanhartschäumen
DE102011007479A1 (de) 2011-04-15 2012-10-18 Evonik Goldschmidt Gmbh Zusammensetzung, enthaltend spezielle Amide und organomodifizierte Siloxane, geeignet zur Herstellung von Polyurethanschäumen
CN103044687A (zh) 2012-12-21 2013-04-17 江苏美思德化学股份有限公司 一种含氟有机硅聚醚共聚物及其制备方法
CN103055759A (zh) 2012-12-21 2013-04-24 南京美思德新材料有限公司 一种兼有稳泡和开孔性能的聚氨酯泡沫有机硅表面活性剂
CN103665385A (zh) 2013-12-16 2014-03-26 江苏美思德化学股份有限公司 一种含烯酸酯有机硅聚醚共聚物及其制备方法
CN103657518A (zh) 2013-12-16 2014-03-26 南京美思德新材料有限公司 一种非离子有机硅表面活性剂及其制备方法
US20150057384A1 (en) 2009-07-29 2015-02-26 Evonik Degussa Gmbh Method for producing polyurethane foam
EP2511328B1 (de) 2011-04-15 2018-07-04 Evonik Degussa GmbH Zusammensetzung, enthaltend spezielle Carbamat-artige Verbindungen, geeignet zur Herstellung von Polyurethanschäumen
EP2780384B2 (de) 2011-11-16 2020-06-10 Soudal Verbesserte polyurethanschaumzusammensetzung
EP3717538A1 (de) 2017-11-30 2020-10-07 Covestro Deutschland AG Reaktionssystem für einen 1k-polyurethan-hartschaumstoff
KR102339722B1 (ko) * 2021-06-09 2021-12-20 주식회사 알피티 라돈 차폐 발포체 및 시공방법

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244350A1 (de) 1971-09-13 1973-03-22 Air Prod & Chem Zellstabilisatoren fuer kunststoffschaeume und verfahren zu ihrer herstellung
US3746663A (en) 1971-09-13 1973-07-17 Air Prod & Chem Process for preparation of a polyurethane foam using a polymeric liquid foam stabilizer
EP0275563A1 (de) 1986-12-31 1988-07-27 Union Carbide Corporation Polysiloxan-polyoxyalkylen-Zusammensetzungen für die Herstellung von Polyurethanschaum
DE3724716C1 (de) 1987-07-25 1988-06-01 Goldschmidt Ag Th Verfahren zur Herstellung von Polyurethan- und/oder Polyisocyanurat-Hartschaeumen
US5236961A (en) 1992-12-30 1993-08-17 Basf Corporation Water-blown integral skin polyurethane foams having a skin with abrasion resistance
EP0734404A1 (de) 1993-12-17 1996-10-02 The Dow Chemical Company Polymere auf der grundlage von polyisocyanat hergestellt uas formulierungen enthaltende silikonfreie tenside und verfahren zu deren herstellung
EP0867464A1 (de) 1997-03-26 1998-09-30 Th. Goldschmidt AG Verwendung von organofunktionell modifizierten Polysiloxanen bei der Herstellung von Polyurethanschaum
EP0867465A1 (de) 1997-03-29 1998-09-30 Th. Goldschmidt AG Verwendung von Blockcopolymeren mit verknüpften Siloxanblöcken bei der Herstellung von Polyrethanschaumstoffen
EP1161474A1 (de) 1999-02-13 2001-12-12 Bayer Ag Feinzellige, wassergetriebene polyurethanhartschaumstoffe
WO2000058383A1 (en) 1999-03-31 2000-10-05 Oxid L.P. Aromatic polyester polyols made from a natural oil
EP1211279A1 (de) 2000-11-28 2002-06-05 Goldschmidt AG Verwendung von Mischungen organofunktionell modifizierter Polysiloxane mit verzweigten Alkoholen bei der Herstellung von Polyurethanweichschäumen
US20020103091A1 (en) 2001-01-29 2002-08-01 Kodali Dharma R. Reactive oil compositions and uses thereof
EP1262453A2 (de) 2001-06-01 2002-12-04 Bayer Ag Mikroverkapselung von rotem Phosphor
EP1400547B1 (de) 2002-09-23 2007-03-14 HILTI Aktiengesellschaft Zweikomponenten-Schaumsystem für die Herstellung von Bauschäumen und deren Verwendung
WO2004096882A1 (en) 2003-04-25 2004-11-11 Dow Global Technologies, Inc. Vegetable oil based polyols and polyurethanes made therefrom
US20060293400A1 (en) 2003-04-25 2006-12-28 Wiltz Jr Eugene P Dow global technologies inc
WO2005033167A2 (en) 2003-09-30 2005-04-14 Cargill Incorporated Flexible polyurethane foams prepared using modified vegetable oil-based polyols
EP1678232A2 (de) 2003-09-30 2006-07-12 Cargill, Incorporated Mit polyolen auf basis von modifiziertem pflanzenöl hergestellte polyurethan-weichschaumstoffe
EP1520870A1 (de) 2003-10-04 2005-04-06 Goldschmidt GmbH Verfahren zur Herstellung von organischen Siliciumverbindungen
WO2005085310A2 (de) 2004-03-08 2005-09-15 Rathor Ag Phasenstabile polyurethanprepolymere
WO2006094227A2 (en) 2005-03-03 2006-09-08 South Dakota Soybean Processors, Llc Novel polyols derived from a vegetable oil using an oxidation process
EP1712578A1 (de) 2005-04-13 2006-10-18 Bayer MaterialScience LLC Aus Pflanzenölhydroxylaten, Polymerpolyolen und aliphatischen Polyhydroxyalkoholen hergestellte Polyurethanschäume
WO2006116456A1 (en) 2005-04-25 2006-11-02 Cargill, Incorporated Polyurethane foams comprising oligomeric polyols
EP1745847A1 (de) 2005-07-21 2007-01-24 Goldschmidt GmbH Trimerisierungskatalysatoren
US20070072951A1 (en) 2005-09-27 2007-03-29 Bender Jared D Silanol-functionalized compounds for the preparation of polyurethane foams
US7776934B2 (en) 2006-02-22 2010-08-17 Dow Global Technologies Inc. One-component polyurethane foam compositions and methods for their use
US20080125503A1 (en) 2006-07-01 2008-05-29 Goldschmidt Gmbh Silicone stabilizers for flame-retarded rigid polyurethane or polyisocyanurate foams
EP1985642A1 (de) 2007-04-25 2008-10-29 Air Products and Chemicals, Inc. Zusatzstoffe zur verbesserten Flächenhärtung und dimensionale Stabilität von Polyurethan-Schäumen
WO2009109318A1 (de) 2008-03-03 2009-09-11 Clariant International Ltd Verfahren zur herstellung flammwidriger, nicht korrosiver und gut fliessfähiger polyamid- und polyesterformmassen
US20150057384A1 (en) 2009-07-29 2015-02-26 Evonik Degussa Gmbh Method for producing polyurethane foam
EP2295485A1 (de) 2009-09-11 2011-03-16 Evonik Goldschmidt GmbH Lecithin enthaltende Zusammensetzung geeignet zur Herstellung von Polyurethanhartschäumen
DE102011007479A1 (de) 2011-04-15 2012-10-18 Evonik Goldschmidt Gmbh Zusammensetzung, enthaltend spezielle Amide und organomodifizierte Siloxane, geeignet zur Herstellung von Polyurethanschäumen
EP2511328B1 (de) 2011-04-15 2018-07-04 Evonik Degussa GmbH Zusammensetzung, enthaltend spezielle Carbamat-artige Verbindungen, geeignet zur Herstellung von Polyurethanschäumen
EP2780384B2 (de) 2011-11-16 2020-06-10 Soudal Verbesserte polyurethanschaumzusammensetzung
CN103044687A (zh) 2012-12-21 2013-04-17 江苏美思德化学股份有限公司 一种含氟有机硅聚醚共聚物及其制备方法
CN103055759A (zh) 2012-12-21 2013-04-24 南京美思德新材料有限公司 一种兼有稳泡和开孔性能的聚氨酯泡沫有机硅表面活性剂
CN103665385A (zh) 2013-12-16 2014-03-26 江苏美思德化学股份有限公司 一种含烯酸酯有机硅聚醚共聚物及其制备方法
CN103657518A (zh) 2013-12-16 2014-03-26 南京美思德新材料有限公司 一种非离子有机硅表面活性剂及其制备方法
EP3717538A1 (de) 2017-11-30 2020-10-07 Covestro Deutschland AG Reaktionssystem für einen 1k-polyurethan-hartschaumstoff
KR102339722B1 (ko) * 2021-06-09 2021-12-20 주식회사 알피티 라돈 차폐 발포체 및 시공방법

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Kunststoffhandbuch, Band 7, Polyurethane", 1993, CARL HANSER VERLAG
"Plastics Flammability Handbook", 2004, CARL HANSER VERLAG
CAS , no. 7723-14-0
HORROCKS ET AL., JOURNAL OF FIRE SCIENCES, vol. 28, no. 3, 2010, pages 217 - 248
SU ET AL., POLYMER DEGRADATION AND STABILITY, vol. 97, no. 11, 2012, pages 2128 - 2135
WEIL, EDWARD D. LEVCHIK, SERGEI V.: "Flame Retardants for Plastics and Textiles - Practical Applications", 2016, CARL HANSER VERLAG

Similar Documents

Publication Publication Date Title
EP3717538B1 (de) Reaktionssystem für einen 1k-polyurethan-hartschaumstoff
DE102013226575B4 (de) Zusammensetzung, geeignet zur Herstellung von Polyurethanschäumen, enthaltend mindestens einen ungesättigten Fluorkohlenwasserstoff oder ungesättigten Fluorkohlenwasserstoff als Treibmittel, Polyurethanschäume, Verfahren zu deren Herstellung und deren Verwendung
EP2295485B1 (de) Lecithin enthaltende Zusammensetzung geeignet zur Herstellung von Polyurethanhartschäumen
DE60107232T2 (de) Integralschäume mit pentafluorbutan als treibmittel
DE102013211349A1 (de) Isocyanat-Siloxanpolyether-Zusammensetzung
DE60002050T3 (de) Graphit mit niedriger thermischer leitfähigkeit enthaltender offenzelliger polyurethanschaum
DE102005034052A1 (de) Trimerisierungskatalysatoren
DE60319689T2 (de) Mit teilfluorierten fluorkohlenwasserstoffen und kohlendioixd getriebene polyurethan- oder polyisocyanatschaumstoffe
DE3819940A1 (de) Verfahren zur herstellung von polyurethan-weichblockschaumstoffen
EP3908617A1 (de) Herstellung von polyurethanhartschaum
EP2634201A1 (de) Polyurethan-Hartschaumstoffe
WO2021165149A1 (de) Polyurethan-isolierschaumstoffe und ihre herstellung
EP1142941A2 (de) Halogenfreier, flammwidriger Polyurethanhartschaum und ein Verfahren zu seiner Herstellung
WO2020144004A1 (de) Herstellung von polyurethanhartschaum
EP2417181A1 (de) Polyesterpolyole aus terephthalsäure und oligoalkylenoxiden
EP4259684A1 (de) Herstellung von polyurethanschaum
EP3472219B1 (de) Verfahren zur herstellung einer isocyanat- und isocyanuratgruppen enthaltenden zusammensetzung und daraus hergestellter pur/pir-hartschaumstoff
EP3719047A1 (de) Verfahren zur herstellung von flammgeschützten pur-/pir-schaumstoffen
DE1924302C3 (de) Verfahren zur Herstellung von Biuretgruppen und Urethangruppen aufweisenden Schaumstoffen
EP1674492A1 (de) Polyolzusammensetzung und Isocyanatprepolymer für 1-Komponenten-Polyurethanschaumsysteme
EP3459984A1 (de) Herstellung von polyurethanschaum
WO2022184543A1 (de) Herstellung von polyurethanschaum
WO2023237418A1 (de) Herstellung von flammwidrigem polyurethanschaum
DE69416209T2 (de) Verwendung eines halogenfreien Trialkylphosphats in einem Verfahren zur Herstellung von Polyisocyanurat-Schäumen
EP3077434A1 (de) Reaktionssystem für einen monomerarmen 1-K Polyurethanschaum II

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23730477

Country of ref document: EP

Kind code of ref document: A1