WO2023236928A1 - 仪器化压痕测试金属材料强度性能的方法 - Google Patents

仪器化压痕测试金属材料强度性能的方法 Download PDF

Info

Publication number
WO2023236928A1
WO2023236928A1 PCT/CN2023/098496 CN2023098496W WO2023236928A1 WO 2023236928 A1 WO2023236928 A1 WO 2023236928A1 CN 2023098496 W CN2023098496 W CN 2023098496W WO 2023236928 A1 WO2023236928 A1 WO 2023236928A1
Authority
WO
WIPO (PCT)
Prior art keywords
indentation
test
instrumented
testing
sample
Prior art date
Application number
PCT/CN2023/098496
Other languages
English (en)
French (fr)
Inventor
李颖
徐芳
杨璟
Original Assignee
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发商用航空发动机有限责任公司 filed Critical 中国航发商用航空发动机有限责任公司
Publication of WO2023236928A1 publication Critical patent/WO2023236928A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid

Definitions

  • the invention relates to the technical field of material analysis and testing, and specifically relates to a method for instrumented indentation testing of the strength properties of metal materials.
  • the mechanical properties of metal materials are of extremely important significance for evaluating the applicability of materials in engineering structures and their service behavior.
  • the most commonly used testing methods are tests conducted under simple stress states, such as uniaxial tension, compression, and torsion.
  • the other type is tests conducted under complex stress states, such as local indentation tests (hardness tests), which are mainly used to characterize the material's ability to resist local deformation.
  • the local indentation test technology has been further developed, that is, the instrumented indentation test, which can press an indenter of a certain diameter into On the surface of the sample to be tested, the load and depth of the indentation process are measured at the same time.
  • the technical problem to be solved by the present invention is to provide a method for instrumented indentation testing of the strength properties of metal materials in order to overcome the shortcomings in the prior art of relatively large deviations between the strength properties of materials and the results of tensile tests.
  • a method for instrumented indentation testing of the strength properties of metal materials which uses an indentation instrument for testing.
  • the method of instrumented indentation testing of the strength properties of metal materials includes the following steps:
  • hpile/hcx f(n)*g(hmax/R)
  • hpile is the indentation depth considering accumulation and dent effects
  • hcx only considers elastic deformation.
  • the indentation depth, n is the hardening index of the tensile test, hmax is the maximum indentation depth under the maximum test force, and R is the radius of the indenter ball of the indentation instrument;
  • the material strength properties of the sample to be tested are calculated based on the instrumented indentation test.
  • the step of calibrating material parameters for instrumented indentation testing specifically includes the following steps:
  • the elastic modulus E and hardening index n of the material are obtained;
  • the material parameters of the instrumented indentation test are calibrated.
  • the step of performing an instrumented indentation test on the sample to be tested specifically includes the following steps:
  • the sample to be tested is subjected to an indentation experiment by loading to a preset load and unloading multiple times, where the load value of the preset load loaded each time is different.
  • the diameter of the indenter ball of the indentation instrument is in the range of 0.7 mm to 2 mm.
  • the indenter ball of the indentation instrument is a silicon carbide spherical indenter.
  • the stiffness of the indenter is high, which can ensure the smooth progress of the indentation experiment, and the experimental numbers obtained are more accurate.
  • the step of calculating the material strength properties of the sample to be tested based on the instrumented indentation test specifically includes the following steps:
  • the tensile strength and/or yield strength of the sample to be tested is obtained based on the stress and strain.
  • the indentation contact radius is first calculated based on the results of the indentation test, and then the stress and strain are calculated based on the indentation contact radius, and then the tensile strength and/or yield strength of the sample to be tested, and the resistance of the sample to be tested are obtained.
  • the results of tensile strength and yield strength are more reliable and have smaller deviations.
  • the step of calculating the indented contact radius r c of a single load based on the results of the instrumented indentation test specifically includes the following steps:
  • the step of calculating hcx according to the loading depth curve specifically includes the following steps:
  • the step of determining the yield strength of the sample to be tested based on the stress and strain specifically includes the following steps:
  • the yield strength is obtained from the yield stress.
  • the yield strength is calculated by intersecting the straight line of the hardening section and the straight line of the elastic section.
  • the obtained yield strength deviation value is small, which solves the problem of using a power function to calculate the yield strength with a large deviation.
  • the step of determining the tensile strength of the sample to be tested based on the stress and strain specifically includes the following steps:
  • K e B , where ⁇ is the stress, ⁇ is the strain, y is the natural logarithm of the corresponding stress, and x is the corresponding strain Natural logarithm, A is the slope of the linear fitting, B is the intercept of the linear fitting, n c is the hardening index measured by the instrumented indentation test, and K is the strength coefficient of the power function relationship;
  • the positive and progressive effect of the present invention is that: in the present invention, a complete method for testing the strength properties of metal materials by instrumented indentation is proposed. By using the results of the instrumented indentation test, the strength performance index of the material can be accurately obtained by this method. , and this method can be a useful supplement to the tensile performance test of components, and can realize the evaluation of local mechanical properties of components such as welds and heat-affected zones. Using this method, a portable tensile performance detector can be formed, which can be used for online measurement The system evaluates the mechanical properties of components in situ.
  • Figure 1 is a first flow chart of the method for instrumented indentation testing of metal material strength properties according to the present invention
  • Figure 2 is a second flow chart of the method for instrumented indentation testing of metal material strength properties according to the present invention
  • Figure 3 is the third flow chart of the method for instrumented indentation testing of metal material strength properties according to the present invention.
  • Figure 4 is a fourth flow chart of the method for instrumented indentation testing of metal material strength properties according to the present invention.
  • Figure 5 is the fifth flow chart of the method for instrumented indentation testing of metal material strength properties according to the present invention.
  • Figure 6 is a schematic diagram of the indentation accumulation and depression of the method of instrumented indentation testing of the strength properties of metal materials according to the present invention
  • Figure 7 is the loading depth curve of the instrumented indentation test of the method of instrumented indentation testing of the strength properties of metal materials according to the present invention
  • Figure 8 is a schematic diagram of the yield point calculation method of the method of instrumented indentation testing of metal material strength properties according to the present invention.
  • the present invention provides a method for instrumented indentation testing of the strength properties of metal materials, which uses an indentation instrument for testing.
  • the method of instrumented indentation testing of the strength properties of metal materials includes the following steps:
  • hpile/hcx f(n)*g(hmax/R)
  • hpile the indentation depth that considers the accumulation and dent effects
  • hcx the indentation depth that only considers the accumulation and dent effects.
  • the indentation depth of elastic deformation n is the hardening index of the tensile test
  • hmax the maximum indentation depth under the maximum test force
  • R is the radius of the indenter ball of the indentation instrument
  • the unit of hpile is mm
  • the unit of hcx is mm
  • the unit of R is mm.
  • step S10 specifically includes the following steps:
  • This method effectively solves the problem of parameter calibration by combining tensile testing and simulation.
  • the problem of numerical calibration is solved, and the parameter calibration is more reasonable, which is helpful to improve the accuracy of later calculation of material strength properties.
  • step S30 specifically includes the following steps:
  • the number of loading times in step S32 may be more, not limited to 10 times, and the unloading method may be partial or full unloading.
  • the diameter of the indenter ball of the indentation instrument is in the range of 0.7 mm to 2 mm.
  • the indenter ball of the indentation instrument is a silicon carbide spherical indenter.
  • the high stiffness of the indenter can ensure the smooth progress of the indentation experiment, and the experimental numbers obtained are more accurate.
  • step S40 specifically includes the following steps:
  • This method first calculates the indentation contact radius based on the results of the indentation test, and then calculates the stress and strain based on the indentation contact radius, and then obtains the tensile strength and or yield strength of the sample to be tested, and the tensile strength and The yield strength results are more reliable and have smaller deviations.
  • step S42 calculates the stress ⁇ and strain ⁇ through the following formula:
  • step S41 specifically includes the following steps:
  • the loading depth curve is shown in Figure 7.
  • the abscissa in the figure is the depth, in mm, and the ordinate is the load, in N.
  • the instrumented indentation test is partially unloaded after loading to the preset load. The way.
  • step S412 specifically includes the following steps:
  • step S43 specifically includes the following steps:
  • Figure 8 for the hardening straight line and elastic segment straight line.
  • the abscissa is strain (%)
  • the ordinate is stress (MPa)
  • the solid line represents the hardening straight line
  • the dotted line represents the elastic segment straight line
  • the circle represents Table indentation data
  • the intersection point of the hardening straight line and the elastic segment straight line is the yield point
  • the stress corresponding to the yield point is the yield stress.
  • the yield strength is calculated by intersecting the straight line of the hardening section and the straight line of the elastic section.
  • the obtained yield strength deviation value is small, which solves the problem of using a power function to calculate the yield strength with a large deviation.
  • step S43 also includes the following steps:
  • K e B , where y is the natural logarithm of the corresponding stress, x is the natural logarithm of the corresponding strain, A is the slope of the linear fitting, B is the intercept of the linear fitting, n c is the instrumented indentation test measurement The obtained hardening index, K is the strength coefficient of the power function relationship;

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种仪器化压痕测试金属材料强度性能的方法,涉及材料分析测试技术领域,其采用压痕仪器进行测试,包括以下步骤:标定仪器化压痕测试的材料参数;建立hpile/hcx与n和hmax/R的函数关系:hpile/hcx=f(n)*g(hmax/R),其中,hpile为考虑堆积和凹陷效应的压入深度,hcx为只考虑弹性变形的压入深度,n为拉伸试验的硬化指数,hmax为在最大试验力作用下的最大压入深度,R为压痕仪器的压头球的半径;通过压痕仪器对待测样品进行仪器化压痕试验;根据仪器化压痕试验计算待测样品的材料强度性能。提出了完整的仪器化压痕测试金属材料强度性能的方法,利用仪器化压痕试验的结果,通过该方法可以准确的获得材料的强度性能指标。

Description

仪器化压痕测试金属材料强度性能的方法 技术领域
本发明涉及材料分析测试技术领域,具体涉及一种仪器化压痕测试金属材料强度性能的方法。
背景技术
金属材料的力学性能,尤其是屈服强度和抗拉强度性能对于评价材料在工程结构方面的适用性及其服役行为具有极为重要的意义。其中,最常用的测试方法是在简单应力状态下进行的试验,如单轴拉伸、压缩和扭转等。另一类则是在复杂应力状态下进行的试验,如局部压入试验(硬度试验),主要用于表征材料抵抗局部变形的能力。在剑桥大学TABOR和HAGGAG教授研究工作的基础上,借助于高精度位移及载荷测试装置,局部压入试验技术获得了进一步的发展,即仪器化压痕试验,能将一定直径的压头压入待测样品表面,同时测量出压入过程的载荷和压入的深度。
如何利用仪器化压痕试验的结果,获得材料的强度性能指标是工程领域比较关心的问题。现有的技术中尚未形成统一的方法,而且已有的一些方法中获得材料的强度性能与拉伸试验的结果偏差还比较大。
发明内容
本发明要解决的技术问题是为了克服现有技术中获得材料的强度性能与拉伸试验的结果偏差比较大的缺陷,提供一种仪器化压痕测试金属材料强度性能的方法。
本发明是通过下述技术方案来解决上述技术问题:
一种仪器化压痕测试金属材料强度性能的方法,其采用压痕仪器进行测试,所述仪器化压痕测试金属材料强度性能的方法包括以下步骤:
标定仪器化压痕测试的材料参数;
建立hpile/hcx与n和hmax/R的函数关系:hpile/hcx=f(n)*g(hmax/R),其中,hpile为考虑堆积和凹陷效应的压入深度,hcx为只考虑弹性变形的压入深度,n为拉伸试验的硬化指数,hmax为在最大试验力作用下的最大压入深度,R为所述压痕仪器的压头球的半径;
通过所述压痕仪器对待测样品进行仪器化压痕试验;
根据仪器化压痕试验计算所述待测样品的材料强度性能。
在本方案中,提出了完整的仪器化压痕测试金属材料强度性能的方法,利用仪器化压痕试验的结果,通过该方法可以准确的获得材料的强度性能指标,并且通过该方法可以对构件拉伸性能试验进行有益补充,可实现焊缝、热影响区的等构件局部力学性能的评估,利用该方法,可以形成便携式拉伸性能检测仪,可用于在线测量系统原位评估构件的力学性能。
较佳地,所述标定仪器化压痕测试的材料参数的步骤具体包括以下步骤:
根据所述待测样品的拉伸试验数据,获得该材料弹性模量E和硬化指数n;
根据所述待测样品的拉伸试验数据,建立该材料的有限元仿真材料模型;
根据所述有限元仿真材料模型,建立压入试验的仿真模型;
根据所述压入试验的仿真模型,标定仪器化压痕测试的材料参数。
在本方案中,采用拉伸试验和仿真相结合进行参数标定,有效的解决了参数标定的问题,参数标定更加合理,有利于提升后期计算材料强度性能的准确性。
较佳地,所述函数关系:hpile/hcx=f(n)*g(hmax/R)中的f(n)和g(hmax/R)为二次多项式。
在本方案中,为二次多项式的函数关系,有利于简化运算,提升运算效率。
较佳地,所述对所述待测样品进行仪器化压痕试验的步骤具体包括以下步骤:
将所述待测样品放置在压痕仪器上;
采用多次加载到预设载荷并卸载的方式对所述待测样品进行压痕实验,其中,每一次加载到的预设载荷的载荷值均不同。
在本方案中,通过多次加载预设载荷,并且每次的预设载荷的载荷值均不同,能够得到多组实验数据,有利于后期计算材料的强度性能。
较佳地,所述压痕仪器的压头球的直径在0.7mm~2mm的范围中。
较佳地,所述压痕仪器的压头球为碳化硅球形压头。
在本方案中,压头的刚度高,能够保证压痕实验的顺利进行,并且,获取的实验数更为准确。
较佳地,所述根据仪器化压痕试验计算所述待测样品的材料强度性能的步骤具体包括以下步骤:
根据所述仪器化压痕试验的结果计算单次加载的压入接触半径rc
根据rc计算每个加载点的应力和应变;
根据所述应力和应变求取所述待测样品的抗拉强度和或屈服强度。
在本方案中,通过压痕试验的结果首先计算压入接触半径,然后根据压入接触半径计算应力和应变,进而再求取待测样品的抗拉强度和或屈服强度,待测样品的抗拉强度和屈服强度的结果更为可靠,偏差较小。
较佳地,所述根据所述仪器化压痕试验的结果计算单次加载的压入接触半径rc的步骤具体包括以下步骤:
根据所述仪器化压痕试验的结果得出所述待测样品上多个点的加载深度曲线;
根据所述加载深度曲线,计算hcx;
根据所述函数关系:hpile/hcx=f(n)*g(hmax/R)计算hpile;
通过公式hc=hpile+hcx计算接触深度hc;
通过公式计算rc
在本方案中,首先通过加载深度曲线计算hcx,再利用函数关系 hpile/hcx=f(n)*g(hmax/R)计算hpile,其中hpile考虑了堆积和凹陷效应,结果更为准确,从而可以计算得到rc,rc的结果也会更为准确。
较佳地,所述根据所述加载深度曲线,计算hcx的步骤具体包括以下步骤:
根据所述加载深度曲线的卸载段,计算所述卸载段的接触刚度S;
通过公式hcx=hmax-0.75*(Fmax/S),计算hcx,其中Fmax为仪器化压入试验单次加载的最大试验力。
在本方案中,提供了从加载深度曲线计算hcx的方法。
较佳地,所述根据所述应力和应变求取所述待测样品的屈服强度的步骤具体包括以下步骤:
根据所述每个加载点的应力和应变获得线性拟合的硬化直线;
根据所述待测样品的弹性模量获得弹性段直线;
获取所述硬化直线与所述弹性段直线的交点对应的屈服应力;
根据所述屈服应力求得所述屈服强度。
在本方案中,采用硬化段直线和弹性段直线相交求取屈服强度的方法,得出的屈服强度偏差值较小,解决了利用幂函数求取屈服强度偏差较大的问题。
较佳地,所述根据所述应力和应变求取所述待测样品的抗拉服强度的步骤具体包括以下步骤:
对每个点的应力和应变求取对数,并采用最小二乘法线性拟合这些点的数据拟合过程通过以下公式进行:
y=lnσ,
x=lnε,
y=Ax+B,
nc=A,
K=eB,其中σ为应力,ε为应变,y为对应力取自然对数,x为对应变取 自然对数,A为线性拟合的斜率,B为线性拟合的截距,nc为仪器化压入试验测得的硬化指数,K为幂函数关系的强度系数;
通过公式求取所述待测样品的抗拉强度。
本发明的积极进步效果在于:在本发明中,提出了完整的仪器化压痕测试金属材料强度性能的方法,利用仪器化压痕试验的结果,通过该方法可以准确的获得材料的强度性能指标,并且通过该方法可以对构件拉伸性能试验进行有益补充,可实现焊缝、热影响区的等构件局部力学性能的评估,利用该方法,可以形成便携式拉伸性能检测仪,可用于在线测量系统原位评估构件的力学性能。
附图说明
图1为本发明仪器化压痕测试金属材料强度性能的方法第一流程图;
图2为本发明仪器化压痕测试金属材料强度性能的方法第二流程图;
图3为本发明仪器化压痕测试金属材料强度性能的方法第三流程图;
图4为本发明仪器化压痕测试金属材料强度性能的方法第四流程图;
图5为本发明仪器化压痕测试金属材料强度性能的方法第五流程图;
图6为本发明仪器化压痕测试金属材料强度性能的方法的压痕压入堆积和凹陷示意图;
图7为本发明仪器化压痕测试金属材料强度性能的方法的仪器化压痕测试的加载深度曲线;
图8为本发明仪器化压痕测试金属材料强度性能的方法的屈服点求取示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在 所述的实施例范围之中。
如图1所示,本发明提供了一种仪器化压痕测试金属材料强度性能的方法,其采用压痕仪器进行测试,仪器化压痕测试金属材料强度性能的方法包括以下步骤:
S10、标定仪器化压痕测试的材料参数;
S20、建立hpile/hcx与n和hmax/R的函数关系:hpile/hcx=f(n)*g(hmax/R),其中,hpile为考虑堆积和凹陷效应的压入深度,hcx为只考虑弹性变形的压入深度,n为拉伸试验的硬化指数,hmax为在最大试验力作用下的最大压入深度,R为压痕仪器的压头球的半径;
具体的,在本实施例中,hpile的单位为mm,hcx的单位为mm,R的单位为mm。
S30、通过压痕仪器对待测样品进行仪器化压痕试验;
S40、根据仪器化压痕试验计算待测样品的材料强度性能。
在本方案中,提出了完整的仪器化压痕测试金属材料强度性能的方法,利用仪器化压痕试验的结果,通过该方法可以准确的获得材料的强度性能指标,并且通过该方法可以对构件拉伸性能试验进行有益补充,可实现焊缝、热影响区的等构件局部力学性能的评估,利用该方法,可以形成便携式拉伸性能检测仪,可用于在线测量系统原位评估构件的力学性能。
如图2所示,在本实施例中步骤S10具体包括以下步骤:
S11、根据待测样品的拉伸试验数据,获得该材料弹性模量E和硬化指数n;
S12、根据待测样品的拉伸试验数据,建立该材料的有限元仿真材料模型;
S13、根据有限元仿真材料模型,建立压入试验的仿真模型;
S14、根据压入试验的仿真模型,标定仪器化压痕测试的材料参数。
本方法通过采用拉伸试验和仿真相结合进行参数标定,有效的解决了参 数标定的问题,参数标定更加合理,有利于提升后期计算材料强度性能的准确性。
在本实施例中,函数关系:hpile/hcx=f(n)*g(hmax/R)中的f(n)和g(hmax/R)为二次多项式。采用二次多项式的函数关系,有利于简化运算,提升运算效率。
在本实施例中,步骤S30具体包括以下步骤:
S31、将待测样品放置在压痕仪器上;
S32、采用10次加载到预设载荷并卸载的方式对待测样品进行压痕实验,其中,每一次加载到的预设载荷的载荷值均不同。
通过多次加载预设载荷,并且每次的预设载荷的载荷值均不同,能够得到多组实验数据,有利于后期计算材料的强度性能。
在本实施例中,步骤S32中也可以加载的次数也可以更多,不局限于10次,其中卸载的方式可以为部分卸载也可以全部卸载。
在本实施例中,压痕仪器的压头球的直径在0.7mm~2mm的范围中。
在本实施例中,压痕仪器的压头球为碳化硅球形压头。压头的刚度高,能够保证压痕实验的顺利进行,并且,获取的实验数更为准确。
在本实施例中,如图3所示,步骤S40具体包括以下步骤:
S41、根据仪器化压痕试验的结果计算单次加载的压入接触半径rc
S42、根据rc计算每个加载点的应力和应变;
S43、根据应力和应变求取待测样品的抗拉强度和或屈服强度。
本方法通过压痕试验的结果首先计算压入接触半径,然后根据压入接触半径计算应力和应变,进而再求取待测样品的抗拉强度和或屈服强度,待测样品的抗拉强度和屈服强度的结果更为可靠,偏差较小。
其中,步骤S42通过以下公式求取应力σ和应变ε:
在本实施例中,如图4所示,步骤S41具体包括以下步骤:
S411、根据仪器化压痕试验的结果得出待测样品上多个点的加载深度曲线;
S412、根据加载深度曲线,计算hcx;
S413、根据函数关系:hpile/hcx=f(n)*g(hmax/R)计算hpile;
S414、通过公式hc=hpile+hcx计算接触深度hc;
S415、通过公式计算rc
其中hc、hmax、hcx、hpile和R的关系图如图6所示。
加载深度曲线如图7所示,图中横坐标为深度,单位mm,纵坐标为载荷,单位N,在本实施例中的仪器化压痕试验在加载到预设载荷后,采取了部分卸载的方式。
本方法,首先通过加载深度曲线计算hcx,再利用函数关系hpile/hcx=f(n)*g(hmax/R)计算hpile,其中hpile考虑了堆积和凹陷效应,结果更为准确,从而可以计算得到rc,rc的结果也会更为准确。
在本实施例中,如图5所示,步骤S412具体包括以下步骤:
S4121、根据加载深度曲线的卸载段,计算卸载段的接触刚度S;
S4122、通过公式hcx=hmax-0.75*(Fmax/S),计算hcx,其中Fmax为仪器化压入试验单次加载的最大试验力。
在本方案中,提供了从加载深度曲线计算hcx的方法。
在本实施例中,如图5所示,步骤S43具体包括以下步骤:
S431、根据每个加载点的应力和应变获得线性拟合的硬化直线;
S432、根据待测样品的弹性模量获得弹性段直线;
S433、获取硬化直线与弹性段直线的交点对应的屈服应力;
S434、根据屈服应力求得屈服强度。
其中,硬化直线和弹性段直线请参考图8,图中,横坐标为应变(%),纵坐标为应力(MPa),实线代表硬化直线,虚线代表弹性段直线,圆圈代 表压痕数据,硬化直线与弹性段直线的交点为屈服点,屈服点对应的应力为屈服应力。
在本方案中,采用硬化段直线和弹性段直线相交求取屈服强度的方法,得出的屈服强度偏差值较小,解决了利用幂函数求取屈服强度偏差较大的问题。
在本实施例中,步骤S43还包括以下步骤:
S435、对每个点的应力和应变求取对数,并采用最小二乘法线性拟合这些点的数据拟合过程通过以下公式进行:
y=lnσ,
x=lnε,
y=Ax+B,
nc=A,
K=eB,其中y为对应力取自然对数,x为对应变取自然对数,A为线性拟合的斜率,B为线性拟合的截距,nc为仪器化压入试验测得的硬化指数,K为幂函数关系的强度系数;
S436、通过公式求取待测样品的抗拉强度。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (11)

  1. 一种仪器化压痕测试金属材料强度性能的方法,其特征在于,其采用压痕仪器进行测试,所述仪器化压痕测试金属材料强度性能的方法包括以下步骤:
    标定仪器化压痕测试的材料参数;
    建立hpile/hcx与n和hmax/R的函数关系:hpile/hcx=f(n)*g(hmax/R),其中,hpile为考虑堆积和凹陷效应的压入深度,hcx为只考虑弹性变形的压入深度,n为拉伸试验的硬化指数,hmax为在最大试验力作用下的最大压入深度,R为所述压痕仪器的压头球的半径;
    通过所述压痕仪器对待测样品进行仪器化压痕试验;
    根据仪器化压痕试验计算所述待测样品的材料强度性能。
  2. 如权利要求1所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述标定仪器化压痕测试的材料参数的步骤具体包括以下步骤:
    根据所述待测样品的拉伸试验数据,获得该材料弹性模量E和硬化指数n;
    根据所述待测样品的拉伸试验数据,建立该材料的有限元仿真材料模型;
    根据所述有限元仿真材料模型,建立压入试验的仿真模型;
    根据所述压入试验的仿真模型,标定仪器化压痕测试的材料参数。
  3. 如权利要求1所述的一种仪器化压痕测试金属材料强度性能的方法,其特征在于,所述函数关系:hpile/hcx=f(n)*g(hmax/R)中的f(n)和g(hmax/R)为二次多项式。
  4. 如权利要求1所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述对所述待测样品进行仪器化压痕试验的步骤具体包括以下步骤:
    将所述待测样品放置在压痕仪器上;
    采用多次加载到预设载荷并部分卸载的方式对所述待测样品进行压痕实验,其中,每一次加载到的预设载荷的载荷值均不同。
  5. 如权利要求4所述的仪器化压痕测试金属材料强度性能的方法,其特 征在于,所述压痕仪器的压头球的直径在0.7mm~2mm的范围中。
  6. 如权利要求4所述的一种仪器化压痕测试金属材料强度性能的方法,其特征在于,所述压痕仪器的压头球为碳化硅球形压头。
  7. 如权利要求1所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述根据仪器化压痕试验计算所述待测样品的材料强度性能的步骤具体包括以下步骤:
    根据所述仪器化压痕试验的结果计算单次加载的压入接触半径rc
    根据rc计算每个加载点的应力和应变;
    根据所述应力和应变求取所述待测样品的抗拉强度和或屈服强度。
  8. 如权利要求7所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述根据所述仪器化压痕试验的结果计算单次加载的压入接触半径rc的步骤具体包括以下步骤:
    根据所述仪器化压痕试验的结果得出所述待测样品上多个点的加载深度曲线;
    根据所述加载深度曲线,计算hcx;
    根据所述函数关系:hpile/hcx=f(n)*g(hmax/R)计算hpile;
    通过公式hc=hpile+hcx计算接触深度hc;
    通过公式计算rc
  9. 如权利要求8所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述根据所述加载深度曲线,计算hcx的步骤具体包括以下步骤:
    根据所述加载深度曲线的卸载段,计算所述卸载段的接触刚度S;
    通过公式hcx=hmax-0.75*(Fmax/S),计算hcx,其中Fmax为仪器化压入试验单次加载的最大试验力。
  10. 如权利要求7所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述根据所述应力和应变求取所述待测样品的屈服强度的步骤具体包括以下步骤:
    根据所述每个加载点的应力和应变获得线性拟合的硬化直线;
    根据所述待测样品的弹性模量获得弹性段直线;
    获取所述硬化直线与所述弹性段直线的交点对应的屈服应力;
    根据所述屈服应力求得所述屈服强度。
  11. 如权利要求7所述的仪器化压痕测试金属材料强度性能的方法,其特征在于,所述根据所述应力和应变求取所述待测样品的抗拉服强度的步骤具体包括以下步骤:
    对每个点的应力和应变求取对数,并采用最小二乘法线性拟合这些点的数据拟合过程通过以下公式进行:
    y=lnσ,
    x=lnε,
    y=Ax+B,
    nc=A,
    K=e B,其中σ为应力,ε为应变,y为对应力取自然对数,x为对应变取自然对数,A为线性拟合的斜率,B为线性拟合的截距,nc为仪器化压入试验测得的硬化指数,K为幂函数关系的强度系数;
    通过公式求取所述待测样品的抗拉强度。
PCT/CN2023/098496 2022-06-07 2023-06-06 仪器化压痕测试金属材料强度性能的方法 WO2023236928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210638459.9 2022-06-07
CN202210638459.9A CN117233012A (zh) 2022-06-07 2022-06-07 仪器化压痕测试金属材料强度性能的方法

Publications (1)

Publication Number Publication Date
WO2023236928A1 true WO2023236928A1 (zh) 2023-12-14

Family

ID=89089869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098496 WO2023236928A1 (zh) 2022-06-07 2023-06-06 仪器化压痕测试金属材料强度性能的方法

Country Status (2)

Country Link
CN (1) CN117233012A (zh)
WO (1) WO2023236928A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091185A (zh) * 2011-10-31 2013-05-08 湘潭大学 一种利用压痕法表征金属材料弹塑性力学性能的方法
KR101407405B1 (ko) * 2013-01-31 2014-06-17 (주)프론틱스 계장화 구형 압입 시험의 변수를 이용한 가공경화물의 항복 강도 산출 방법 및 인장 강도 산출 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091185A (zh) * 2011-10-31 2013-05-08 湘潭大学 一种利用压痕法表征金属材料弹塑性力学性能的方法
KR101407405B1 (ko) * 2013-01-31 2014-06-17 (주)프론틱스 계장화 구형 압입 시험의 변수를 이용한 가공경화물의 항복 강도 산출 방법 및 인장 강도 산출 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHENG -BAO WU ,, GUAN KAI -SHU: "Finite Element Analysis of Determining Tensile Properties of Materials Using Ball Indentation Technique", PRESSURE VESSEL TECHNOLOGY, vol. 29, no. 9, 30 September 2012 (2012-09-30), pages 33 - 38, 49, XP093113137 *
伍声宝 (WU, SHENGBAO): "连续球压痕法表征金属材料拉伸性能的研究 (Non-official translation: Research on Characterizing Tensile Properties of Metal Materials by means of Continuous Ball Indentation Method)", 中国博士学位论文全文数据库 工程科技I辑 (ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE), no. 8, 15 August 2016 (2016-08-15), ISSN: ISSN 1674-022X *
瞿力铮 (QU, LIZHENG): "连续球压痕法金属材料拉伸性能试验和仿真研究 (Non-official translation: Tensile Properties Experiment and Simulation Research of Metal Materials based on Continuous Ball Indentation Method)", 中国优秀硕士学位论文全文数据库 工程科技I辑 (ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA MASTER'S THESES FULL-TEXT DATABASE), no. 6, 15 June 2020 (2020-06-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN117233012A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
Brown et al. Plane strain crack toughness testing of high strength metallic materials
CN109299568B (zh) 基于纳米压痕试验的焊接接头本构模型反推方法
KR100948035B1 (ko) 인장시험과 유한요소법을 이용한 고 변형률에 대한 진변형률-진응력 곡선의 획득 방법 및 이를 이용한 인장 시험기
WO2020199235A1 (zh) 一种利用压痕法计算断裂韧性的方法
KR101707492B1 (ko) 연속압입시험법을 이용한 파괴인성 측정방법
CN104655505B (zh) 一种基于仪器化球压入技术的残余应力检测方法
Peng et al. Biaxial residual stress measurement by indentation energy difference method: Theoretical and experimental study
CN111539144B (zh) 一种含裂纹结构件的断裂韧性计算方法及系统
CN112284921B (zh) 基于高温液压鼓胀试样测试的材料单轴应力-应变关系确定方法
Ruggieri Low constraint fracture toughness testing using SE (T) and SE (B) specimens
Xue et al. An approach for obtaining mechanical property of austenitic stainless steel by using continuous indentation test analysis
CN109870258B (zh) 一种平面任意残余应力的仪器化球形压入检测方法
WO2023236928A1 (zh) 仪器化压痕测试金属材料强度性能的方法
Zhai et al. Numerical analysis for small punch creep tests by finite-element method
Gao et al. A modified normalization method for determining fracture toughness of steel
CN108548720B (zh) I型裂纹弹塑性理论公式获取延性材料j阻力曲线的方法
CN111767664A (zh) 基于能量释放率确定金属材料平面应变断裂韧性的方法
RU2599069C1 (ru) Способ определения предела выносливости материала при растяжении-сжатии
CN113776963B (zh) 一种利用球形压痕法计算断裂韧性的方法
JP4112830B2 (ja) 構造材料健全性評価方法およびプログラム
CN111157338B (zh) 一种金属哑铃型试样大应变范围压缩硬化曲线的测量方法
CN111982635A (zh) 一种材料内部夹杂的弹性模量测定方法
CN114611354A (zh) 一种基于纳米压痕试验的电子封装材料残余应力计算方法
Sung et al. Simulations of Crack Extensions in Small Arc-Shaped Tension Specimens of Uncharged and Hydrogen-Charged 21-6-9 Austenitic Stainless Steels Using Nodal Release Method
CN114065576B (zh) 一种蠕变疲劳载荷下缺口部件的缺口效应评价方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819093

Country of ref document: EP

Kind code of ref document: A1