WO2023236699A2 - 一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用 - Google Patents

一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用 Download PDF

Info

Publication number
WO2023236699A2
WO2023236699A2 PCT/CN2023/092650 CN2023092650W WO2023236699A2 WO 2023236699 A2 WO2023236699 A2 WO 2023236699A2 CN 2023092650 W CN2023092650 W CN 2023092650W WO 2023236699 A2 WO2023236699 A2 WO 2023236699A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyamino
dimensional graphene
reaction
preparation
porous aerogel
Prior art date
Application number
PCT/CN2023/092650
Other languages
English (en)
French (fr)
Other versions
WO2023236699A3 (zh
Inventor
金燕仙
沈传明
陈章新
余彬彬
沈加坡
颜野迪
冀雅茹
Original Assignee
净化控股集团股份有限公司
台州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 净化控股集团股份有限公司, 台州学院 filed Critical 净化控股集团股份有限公司
Publication of WO2023236699A2 publication Critical patent/WO2023236699A2/zh
Publication of WO2023236699A3 publication Critical patent/WO2023236699A3/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them

Definitions

  • the present invention provides a preparation method and application of porous aerogel containing polyamino three-dimensional graphene.
  • the polyamino hyperbranched polymer is loaded on the porous aerogel containing three-dimensional graphene through a covalent bond grafting method, which can improve the pore structure and specific surface area of the porous aerogel containing three-dimensional graphene and can be used as an adsorption agent.
  • the agent is used for complex adsorption treatment of heavy metal ions in sewage and has excellent adsorption performance in a short time.
  • the polyamino hyperbranched polymers connected by covalent bonds will not enter the water body during the water treatment process, "secondary pollution" to the water body can be reduced.
  • the present invention provides a method for preparing a porous aerogel containing polyamino three-dimensional graphene, which includes the following steps:
  • step (3) Inject the material obtained in step (2) into a mold and perform free radical polymerization to obtain a hydrogel.
  • step (6) the present invention loads the polyamino hyperbranched polymer through covalent bond grafting (the hydroxyl groups on the surface of graphene oxide and single-layer thin-walled carbon nanotubes are combined with the amino groups of the polyamino hyperbranched polymer).
  • the pore structure and specific surface area of porous aerogels can be improved, specifically as follows: 1
  • polyamino hyperbranched polymers penetrate into the pores of porous aerogels and Attached to the surface of the pores, the pore diameter is reduced, and the initial macropores are converted into mesopores while the number of pores remains unchanged.
  • polyamino hyperbranched polymers have a rich number of branched molecular structures. When attached to the pore surface of porous aerogels, they can significantly Increase the specific surface area of the pore channel, thereby having more defect sites that can be used as adsorption sites. In addition, because the covalently bonded polyamino hyperbranched polymer is not easy to enter the water body during the water treatment process, it can reduce "secondary pollution" to the water body.
  • the mass ratio of the porous aerogel containing three-dimensional graphene and the polyamino hyperbranched polymer is 1: (10-30).
  • the team of the present invention found that when the added polyamino hyperbranched polymer is lower than this ratio, there are insufficient sites for chemical adsorption of heavy metal ions on the surface of the adsorbent, resulting in a reduction in adsorption capacity and the inability to form a mesoporous structure; and when the polyamino hyperbranched polymer is added, If the amount of hyperbranched polymer added exceeds this ratio, it is easy to form a second phase and block the pores in the adsorbent, which is not conducive to the diffusion of heavy metal ions inside the adsorbent and reduces the adsorption capacity.
  • the polyamino compound is diethylenetriamine or ethylenediamine or triethylenetetramine.
  • the obtained product is washed and dried in sequence.
  • the covalently bonded polyamino hyperbranched polymer in the present invention will not enter the water body during the water treatment process, which can reduce "secondary pollution" to the water body.
  • the porous aerogel containing polyamino three-dimensional graphene provided by the present invention has a good anti-swelling effect in water, and therefore has good stability as a metal adsorbent in water.
  • Figure 7 is an SEM image of the porous aerogel containing polyamino three-dimensional graphene prepared in Comparative Example 1 of the present invention.
  • the polyamino compound is diethylenetriamine or ethylenediamine or triethylenetetramine.
  • the temperature of the Michael addition reaction is 20-30°C, and the reaction time is 4-6 hours; the temperature of the polycondensation reaction is 90-100°C, and the reaction time is 6-7 hours.
  • the product obtained by the polycondensation reaction is subjected to rotary evaporation to obtain a polyamino hyperbranched polymer, and the temperature of the rotary evaporation is 35 to 40°C.
  • a is an SEM image of a porous aerogel containing three-dimensional graphene
  • b is an SEM image of a porous aerogel containing polyamino three-dimensional graphene. It can be seen that the porous aerogel containing three-dimensional graphene obtained through initial freeze-drying is filled with macropores. After the polymer grafting reaction, the pore size of the mesoporous structure of the adsorbent material is reduced, from the initial macropores to mesoporous, and the number of pores remains essentially unchanged.
  • step (2) of Example 2 The preparation method is the same as step (2) of Example 1, and a porous aerogel containing three-dimensional graphene is obtained.
  • Example 1 The difference from Example 1 is that the mass of the polyamino hyperbranched polymer added in step (4) is 5 g, and the remaining steps are the same as in Example 1.
  • centrifuge tube and its lid required for the experiment into a beaker and soak it in 10% nitric acid for at least 24 hours. Then take out the centrifuge tube, wash it several times with distilled water, dry it after washing and set aside for use.
  • Figure 6 shows the adsorption performance results of various heavy metal ions by porous aerogels containing polyamino three-dimensional graphene and porous aerogels containing three-dimensional graphene.
  • the three-dimensional graphene aerogel with macroporous structure and the polyamino-containing three-dimensional graphene aerogel with mesoporous structure have significant and excellent adsorption of five heavy metal ions in a short period of time. rate, among which the airgel with mesoporous structure adsorbs faster, indicating that the mesoporous structure is conducive to increasing the adsorption speed.

Abstract

本发明涉及水处理领域,公开了一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用,该制备方法包括:(1)将水溶性可聚单体,引发剂和交联剂溶于水,得到水相反应液;(2)将含羟基的氧化石墨烯和含羟基的单层薄壁碳纳米管分散于水相反应液中;(3)注入模具中进行自由基聚合,得到水凝胶;(4)冷冻干燥,得到含三维石墨烯的多孔气凝胶;(5)将多多氨基化合物与丙烯酸甲酯先后进行迈克尔加成反应和缩聚反应,得到多氨基超支化聚合物;(6)利用多氨基超支化聚合物对含三维石墨烯的多孔气凝胶进行接枝反应,得到含多氨基三维石墨烯的多孔气凝胶。本发明的多孔气凝胶可用于污水中重金属离子的络合吸附处理,具有优异的吸附性能。

Description

一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用 技术领域
本发明涉及水处理领域,尤其涉及一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用。
背景技术
随着农村经济的迅速发展,农村水环境污染越来越受人们的关注。除农村生活污水外,畜养殖污水不合理,农业化肥、农药过度使用,乡镇企业废水排放都加剧了农村水环境的污染。而农村污水体量大、成分复杂、深度处理难,常规水处理技术难以达到地表水排放标准。其中,铜、铅、镉等重金属离子即使浓度很低的情况也可以在生物体内积累,扰乱食物链,造成严重的失调和疾病。目前去除废水重金属离子的方法众多,其中吸附法被认为是一种简单高效、低成本去除重金属离子的方法,然而吸附法存在循环再生利用较困难和产生二次污染的缺点。
三维石墨烯多孔碳材料(3D GBMs)作为新兴的碳基吸附材料,在用于去除水中重金属离子具有高的吸附容量。3D GBMs中氧化石墨烯表面的富含氧基团使得它具有良好的亲水性,表面的含氧基团可以和金属离子发生作用,进而可以分离富集于水相的金属离子。这些功能基团不仅有利于金属离子的吸附和聚集,而且为功能化改性提供了活性位点。然而,3D GBMs可控制备仍面临着诸多挑战,前驱体原材料、尺寸、pH的选择与3D GBMs的结构(比表面积、孔隙率)密切相关,进而影响3D GBMs对重金属离子的吸附性能和吸附速率。因此,如何进一步提高3D GBMs对金属离子的吸附能力是目前的主要研究方向。
发明内容
为了解决上述技术问题,本发明提供了一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用。本发明将多氨基超支化聚合物通过共价键嫁接的方法负载在含三维石墨烯的多孔气凝胶上,可改善含三维石墨烯的多孔气凝胶的孔道结构和比表面积,可作为吸附剂用于污水中重金属离子的络合吸附处理,在短时间内具有优异的吸附性能。同时,由于共价键连接的多氨基超支化聚合物在水处理过程中不会进入水体中,可减少对水体的“二次污染”。
本发明的具体技术方案为:
第一方面,本发明提供了一种含多氨基三维石墨烯的多孔气凝胶的制备方法,包括以下步骤:
(1)将水溶性可聚单体,引发剂和交联剂溶于水,得到水相反应液;所述水溶性可聚单体为丙烯酰胺和海藻酸钠,丙烯酰胺和海藻酸钠的摩尔比为1:(3.2-3.3)。
(2)将含羟基的氧化石墨烯和含羟基的单层薄壁碳纳米管分散于所述水相反应液中;所述含羟基的氧化石墨烯、含羟基的单层薄壁碳纳米管和水相反应液的质量比为1:(0.5-1.5):(1650-1700)。
(3)将所述步骤(2)所得物料注入模具中,进行自由基聚合,得到水凝胶。
(4)将所述水凝胶冷冻干燥,得到含三维石墨烯的多孔气凝胶。
(5)将多氨基化合物与丙烯酸甲酯的甲醇溶液在惰性气体保护下混合,先进行迈克尔加成反应,再进行缩聚反应,得到多氨基超支化聚合物;所述多氨基化合物与丙烯酸甲酯的摩尔量比为(0.8-1.2):1。
(6)将所述含三维石墨烯的多孔气凝胶与所述多氨基超支化聚合物混合于含有二环己基碳二亚胺和4-二甲胺基吡啶的四氢呋喃溶液中,超声分散后将体系转入具有氮气鼓泡、搅拌和冷凝回流的反应容器中,在惰性气体保护下进行接枝反应,得到含多氨基三维石墨烯的多孔气凝胶;所述含三维石墨烯的多孔气凝胶、多氨基超支化聚合物的质量比为1:(10-30)。
在步骤(1)~ (4)中,本发明制得了含三维石墨烯的多孔气凝胶,其中,在步骤(3)的自由基聚合过程中,丙烯酰胺和海藻酸钠发生交联形成双骨架水凝胶骨架,而氧化石墨烯和单层薄壁碳纳米管分散于所述水凝胶中。在经过后续的冷冻干燥去除水分后,形成了多孔结构的气凝胶。并且,本发明团队发现,选择丙烯酰胺和海藻酸钠构建的双骨架水凝胶,相较于其他类型的单体,能够更好地减小后续得到的气凝胶在液体中的溶胀作用。
在步骤(6)中,本发明将多氨基超支化聚合物通过共价键嫁接(氧化石墨烯和单层薄壁碳纳米管表面的羟基与多氨基超支化聚合物的氨基结合)的方法负载在含三维石墨烯的多孔气凝胶上,可改善多孔气凝胶的孔道结构和比表面积,具体体现为:①孔道结构方面:多氨基超支化聚合物渗透进入多孔气凝胶的孔道中并在孔道表面附着,孔径缩小,在孔道数量保持不变的前提下将初始的大孔转化为介孔,介孔结构在不影响重金属离子在孔道内部和外部良好扩散的同时,由于吸附目标的尺寸低于0.2nm,更有利于对重金属离子的快速吸附;②比表面积方面:多氨基超支化聚合物具有数量丰富的支链分子结构,当其附着于多孔气凝胶的孔道表面后,可显著增大孔道的比表面积,从而拥有更多的缺陷位点可作为吸附位点。此外,由于共价键连接的多氨基超支化聚合物在水处理过程中不易进入水体中,因此可减少对水体的“二次污染”。
在步骤(6)中,为了更好使多氨基超支化聚合物附着于水凝胶孔道表面将大孔转化为介孔结构,本发明对工艺有针对性地进行了设置。其中,全程氮气鼓泡保证反应在无氧条件下进行,可以避免反应物中存在的缺陷位点被氧化,防止发生副反应;同时,反应过程中长时间的氮气鼓泡会造成溶剂四氢呋喃的损失。另一方面冷凝回流可以大大降低其损失量;全程匀速搅拌保证了体系中物料混合均匀,并且也有助于介孔分布均匀。
此外,需要注意的是,本发明中以下物质的比例需要严格控制:
步骤(1)中,丙烯酰胺和海藻酸钠的摩尔比为1:(3.2-3.3)。本发明团队发现,一方面,当加入海藻酸钠过少时,交联反应不完全,无法形成水凝胶;当海藻酸钠过多时,不利于羟基化碳纳米管和含羟基的氧化石墨烯的分散,无法得到物相均匀的气凝胶。另一方面,海藻酸钠和丙烯酰胺交联后形成双骨架水凝胶,需要将海藻酸钠组分含量控制在合理范围内,才能够减小后续得到的气凝胶在液体中的溶胀作用,从而提高尺寸稳定性。
步骤(2)中,含羟基的氧化石墨烯、含羟基的单层薄壁碳纳米管和水相反应液的质量比为1:(0.5-1.5):(1650-1700)。本发明团队发现,氧化石墨烯和单层薄壁碳纳米管的用量过少,会降低最终吸附剂的吸附效果;氧化石墨烯和单层薄壁碳纳米管的用量过多会无法形成均匀的水凝胶前体。
步骤(6)中,含三维石墨烯的多孔气凝胶、多氨基超支化聚合物的质量比为1:(10-30)。本发明团队发现,当加入的多氨基超支化聚合物低于该比例时,吸附剂表面对重金属离子进行化学吸附的位点不足,致使吸附量减少,同时无法形成介孔结构;而当多氨基超支化聚合物加入量超过该比例,容易形成第二相,堵塞吸附剂中的孔道,不利于重金属离子在吸附剂内部的扩散,降低吸附量。
作为优选,步骤(1)中,所述水溶性可聚单体、引发剂和交联剂的质量比为95-105:0.05-0.15:0.4-0.8;所述交联剂为N-N’亚甲基双丙烯酰胺;所述引发剂为过硫酸铵。
作为优选,步骤(3)中,所述模具由两片石英玻璃夹持一片硅胶垫片制得。
由硅胶垫片隔开石英玻璃生成的孔隙用于控制水凝胶的厚度。
作为优选,步骤(3)中,所述水凝胶的厚度为0.2~50mm。
作为优选,步骤(3)中,所述自由基聚合为热引发聚合,引发剂为过硫酸铵,反应温度为50~70℃,反应时间为4~5h。
作为优选,步骤(4)中,所述冷冻干燥的温度为-50~-40℃,真空度为0-13Pa。
作为优选,步骤(5)中,所述多氨基化合物为二乙烯三胺或乙二胺或三乙烯四胺。
作为优选,步骤(5)中,所述迈克尔加成反应的温度为20~30℃,反应时间为4~6h;所述缩聚反应的温度为90~100℃,时间为6~7h。
作为优选,步骤(5)中,对缩聚反应得到的产物经过旋转蒸发得到多氨基超支化聚合物,所述旋转蒸发的温度为35~40℃。
作为优选,步骤(6)中,接枝反应的温度为50~60℃,时间为5~6h。
作为优选,在接枝反应结束后,对所得产物依次进行洗涤和干燥。
第二方面,本发明提供了上述方法得到的含多氨基三维石墨烯的多孔气凝胶在污水处理中作为金属离子吸附剂中的应用。
本发明含多氨基三维石墨烯的多孔气凝胶可作为吸附剂用于污水中重金属离子的络合吸附处理,在短时间内具有优异的吸附性能。
与现有技术对比,本发明的有益效果是:
(1)本发明将多氨基超支化聚合物通过共价键嫁接的方法负载在含三维石墨烯的多孔气凝胶上,可改善含三维石墨烯的多孔气凝胶的孔道结构和比表面积,可作为吸附剂用于污水中重金属离子的络合吸附处理,在短时间内具有优异的吸附性能。
(2)本发明中共价键连接的多氨基超支化聚合物在水处理过程中不会进入水体中,可减少对水体的“二次污染”。(3)本发明提供的含多氨基三维石墨烯的多孔气凝胶在水体中具有较好的抗溶胀效果,因此作为金属吸附剂在水体中的稳定性好。
附图说明
图1中a为本发明实施例1制备的含三维石墨烯的多孔气凝胶的SEM图;b为含多氨基三维石墨烯的多孔气凝胶的SEM图;
图2为本发明实施例1制备的多氨基超支化聚合物的红外光谱图;
图3为本发明实施例1制备的含多氨基三维石墨烯的多孔气凝胶的拉曼光谱图;
图4为本发明实施例1制备的含三维石墨烯的多孔气凝胶的亲水性测试结果;
图5为本发明实施例1制备的含多氨基三维石墨烯的多孔气凝胶的亲水性测试结果;
图6为本发明实施例1制备的含多氨基三维石墨烯的多孔气凝胶和石墨烯材料对各重金属离子的吸附性能结果;
图7为本发明对比例1制备的含多氨基三维石墨烯的多孔气凝胶的SEM图;
图8为本发明对比例2制备的含多氨基三维石墨烯的多孔气凝胶的SEM图。
实施方式
下面结合实施例对本发明作进一步的描述。
实施例
第一方面,本发明提供了一种含多氨基三维石墨烯的多孔气凝胶的制备方法,包括以下步骤:
(1)将水溶性可聚单体,引发剂和交联剂溶于水,得到水相反应液;所述水溶性可聚单体为丙烯酰胺和海藻酸钠,丙烯酰胺和海藻酸钠的摩尔比为1:(3.2-3.3)。
作为优选,所述水溶性可聚单体、引发剂和交联剂的质量比为95-105:0.05-0.15:0.4-0.8;所述交联剂为N-N’亚甲基双丙烯酰胺;所述引发剂为过硫酸铵。
(2)将含羟基的氧化石墨烯和含羟基的单层薄壁碳纳米管分散于所述水相反应液中;所述含羟基的氧化石墨烯、含羟基的单层薄壁碳纳米管和水相反应液的质量比为1:(0.5-1.5):(1650-1700)。
(3)将所述步骤(2)所得物料注入模具中,进行自由基聚合,得到水凝胶。
作为优选,所述模具由两片石英玻璃夹持一片硅胶垫片制得。所述水凝胶的厚度为0.2~50mm。所述自由基聚合为热引发聚合,引发剂为过硫酸铵,反应温度为50~70℃,反应时间为4~5h。
(4)将所述水凝胶冷冻干燥,得到含三维石墨烯的多孔气凝胶。
作为优选,步骤(4)中,所述冷冻干燥的温度为-50~-40℃,真空度为0-13Pa。
(5)将多氨基化合物与丙烯酸甲酯的甲醇溶液在惰性气体保护下混合,先进行迈克尔加成反应,再进行缩聚反应,得到多氨基超支化聚合物;所述多氨基化合物与丙烯酸甲酯的摩尔量比为(0.8-1.2):1。
作为优选,步骤(5)中,所述多氨基化合物为二乙烯三胺或乙二胺或三乙烯四胺。所述迈克尔加成反应的温度为20~30℃,反应时间为4~6h;所述缩聚反应的温度为90~100℃,时间为6~7h。对缩聚反应得到的产物经过旋转蒸发得到多氨基超支化聚合物,所述旋转蒸发的温度为35~40℃。
(6)将所述含三维石墨烯的多孔气凝胶与所述多氨基超支化聚合物混合于含有二环己基碳二亚胺和4-二甲胺基吡啶的四氢呋喃溶液中,超声分散后将体系转入具有氮气鼓泡、搅拌和冷凝回流的反应容器中,在惰性气体保护下进行接枝反应,得到含多氨基三维石墨烯的多孔气凝胶;所述含三维石墨烯的多孔气凝胶、多氨基超支化聚合物的质量比为1:(10-30)。
作为优选,步骤(6)中,接枝反应的温度为50~60℃,时间为5~6h。在接枝反应结束后,对所得产物依次进行洗涤和干燥。所述洗涤优选为离心洗涤,转速优选为4000-6000r/min,离心时间优选为3-7min。
第二方面,本发明提供了上述方法得到的含多氨基三维石墨烯的多孔气凝胶在污水处理中作为金属离子吸附剂中的应用。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
(1)将5mg海藻酸钠、0.5g丙烯酰胺、3mg N-N’亚甲基双丙烯酰胺和0.5mg过硫酸铵溶于水,得到水相反应液。
(2)将1.2mg单层羟基化薄壁碳纳米管、1.2mg含羟基的氧化石墨烯混于水相反应液中,,超声分散5min后用注射器注入模具中,整体置于烘箱恒温50℃加热4h,得到水凝胶材料。再将水凝胶材料切割成0.5*0.5*0.1cm大小的片状,浸入去离子水中,放入冰箱冷冻12h,后在-48℃下冷冻干燥48h至去离子水完全被除去,得到的气凝胶材料即为含三维石墨烯的多孔气凝胶。
(3)将0.5mol二乙烯三胺加入到氮气保护的三颈烧瓶中,在磁力搅拌下继续加入丙烯酸甲酯(0.5mol)的甲醇(100mL)溶液。混合物在氮气保护下先于25℃恒温5h进行迈克尔加成反应,后于95℃恒温6.5h进行缩聚反应。恒温结束后待混合物冷却至室温,通过旋蒸除去溶剂和多余的反应物,得到目标产物多氨基超支化聚合物(HBP)。
(4)将0.1g含三维石墨烯的多孔气凝胶和1.5g HBP加入到二环己基碳二亚胺(10mg),4-二甲胺基吡啶(4g)的四氢呋喃溶液(100mL)中,超声分散30min后将体系转移至配有氮气鼓泡、磁力搅拌和冷凝回流的三颈烧瓶中,在N2 气氛下匀速搅拌,保持50℃恒温回流5h。反应结束后用甲醇(50mL)和去离子水(100mL)依次离心洗涤,最后将样品放入冰箱冷冻12h,后在-48℃下冷冻干燥48h以上,得到含多氨基三维石墨烯的多孔气凝胶。
采用扫描电镜分别对本实施例中的含三维石墨烯的多孔气凝胶和含多氨基三维石墨烯的多孔气凝胶进行表征,得到SEM图如1所示。图1中,a为含三维石墨烯的多孔气凝胶的SEM图,b为含多氨基三维石墨烯的多孔气凝胶的SEM图。可以看出,初次经过冷冻干燥得到的含三维石墨烯的多孔气凝胶充满了大孔孔道,在经过聚合物接枝反应后,吸附材料中孔结构的孔径缩小,由初始的大孔变为介孔,并且孔的数量基本未发生变化。
采用红外吸收光谱对多氨基超支化聚合物进行表征,得到的红外吸收光谱如图2所示。在图2中,多氨基超支化聚合物的红外吸收光谱图证明了经过迈克尔加成反应和聚合反应的到的产物具有明显的氨基结构:3285cm-1 处的宽峰可归属于伯胺和亚胺中N-H的伸缩振动;1730cm-1 处的峰由C=O的伸缩振动引起,同时-CONH结构中羰基的伸缩振动表现为1650cm-1 处的峰;N-H弯曲振动的峰位于1560cm-1 ;1441cm-1 处的峰属于-CH2 的弯曲振动;1364cm-1 处的峰可归于C-N的伸缩振动;1280cm-1 处的峰属于C-O-C的伸缩振动。
采用拉曼光谱仪对含多氨基三维石墨烯的多孔气凝胶进行表征,得到的拉曼光谱如图3所示。从图3中的拉曼光谱中可以看出属于石墨材料独特的D吸收带和G吸收带,证明含多氨基三维石墨烯的多孔气凝胶中存在石墨烯和碳纳米管,并且两者在吸附材料中的分布较为均匀。从拉曼光谱的D带与G带吸收强度比值大于1,说明含多氨基三维石墨烯的多孔气凝胶具有丰富的缺陷位点,该特征有利于材料在吸附重金属时提供更多的吸附位点。
使用接触角对本实施例中的含三维石墨烯的多孔气凝胶和含多氨基三维石墨烯的多孔气凝胶进行亲水性测试,结果如图4和图5所示。图4为含三维石墨烯的多孔气凝胶的接触角测试,图5为含多氨基三维石墨烯的多孔气凝胶的接触角测试。从两图中可以看出,两吸附材料都具有亲水性,经过多氨基超支化聚合物修饰的吸附材料的亲水性出现了一定程度的下降,但总体仍保持较好的亲水性,这有利于提高吸附材料在水性体系中的吸附性。
实施例
(1)与实施例1步骤(1)的制备方法相同,得到水相反应液。
(2)与实施例1步骤(2)的制备方法相同,得到含三维石墨烯的多孔气凝胶.。
(3)将0.5mol乙二胺加入到氮气保护的三颈烧瓶中,在磁力搅拌下继续加入丙烯酸甲酯(0.5mol)的甲醇(100mL)溶液。混合物在氮气保护下先于25℃恒温5h进行迈克尔加成反应,后于95℃恒温6.5h进行缩聚反应。恒温结束后待混合物冷却至室温,通过旋蒸除去溶剂和多余的反应物,得到目标产物多氨基超支化聚合物(HBP)。
(4)与实施例1步骤(4)的制备方法相同,得到含多氨基三维石墨烯的多孔气凝胶。
实施例
(1)与实施例1步骤(1)的制备方法相同,得到水相反应液。
(2)与实施例1步骤(2)的制备方法相同,得到含三维石墨烯的多孔气凝胶.。
(3)将0.5mol三乙烯四胺加入到氮气保护的三颈烧瓶中,在磁力搅拌下继续加入丙烯酸甲酯(0.5mol)的甲醇(100mL)溶液。混合物在氮气保护下先于25℃恒温5h进行迈克尔加成反应,后于95℃恒温6.5h进行缩聚反应。恒温结束后待混合物冷却至室温,通过旋蒸除去溶剂和多余的反应物,得到目标产物多氨基超支化聚合物(HBP)。
(4)与实施例1步骤(4)的制备方法相同,得到含多氨基三维石墨烯的多孔气凝胶。
对比例1
与实施例1的区别在于:步骤(4)中加入的多氨基超支聚合物的质量为0.5g。
采用电子扫描显微镜对上述得到多氨基三维石墨烯的多孔气凝胶进行形貌表征,得到的SEM图如图7所示,从图7中可以看出在多氨基超支化聚合物投入量过少时,原始气凝胶中的大孔经过接枝反应后未完全转变为介孔。
对比例2
与实施例1的区别在于:步骤(4)中加入的多氨基超支聚合物的质量为5g,其余步骤与实施例1相同。
采用电子扫描显微镜对上述得到的多氨基三维石墨烯的多孔气凝胶进行形貌表征,得到的SEM图如图8所示,从图8中可以看出在多氨基超支化聚合物投入量过多时,原始气凝胶中的孔基本消失,孔道结构不明显。
污水中重金属离子的吸附实验
将实施例1制备的多孔气凝胶应用于污水中重金属离子的吸附实验。
将实验所需的离心管及其盖子放入烧杯中,用10%硝酸浸泡至少24h。随后将离心管取出,用蒸馏水多次洗涤,洗净后烘干待用。
(1)用移液枪分别移取1mL 1000ug/mL多元素标准溶液(Hg、Cr、Cd、Pb、Ni)于100mL的离心管中,配置浓度为10ug/mL的多元素标准溶液。
(2)分别称取0.0492g CNT-rGO和HBP-CNT-rGO材料放置于100mL离心管中。将步骤(2)配好的重元素标准溶液均分成两份并分别加到装有两种材料的两支离心管中。随后分别移取10mL溶液至10mL离心管中标记。将其放入空气恒温振荡器(最大转速:300r/min、室温条件下)进行振荡,振荡经0.5h、1h、1.5h和24h后,再将振荡后的样品稀释500倍至20ppm(由于ICP-MS仪器对于Hg元素浓度要求在5-20ppm之间)作为ICP-MS分析待用。
图6为含多氨基三维石墨烯的多孔气凝胶和含三维石墨烯的多孔气凝胶对各重金属离子的吸附性能结果。从图6中可以看出,在短时间内,具有大孔结构的三维石墨烯气凝胶和具有介孔结构的含多氨基三维石墨烯气凝胶对五种重金属离子具有显著且优异的吸附率,其中,拥有介孔结构的气凝胶吸附速度更快,说明介孔结构有利于吸附速度的提升。从图6中还能发现随着吸附时间的增加,以大孔结构气凝胶为吸附剂的体系中重金属离子浓度出现了回升,而以多氨基气凝胶为吸附剂的体系中重金属离子浓度仍保持下降的趋势,说明经过多氨基超支化聚合物接枝的气凝胶表面具有丰富的化学吸附位点,能有效的避免重金属离子的脱附,从而提高吸附稳定性。上述两部分体现了多氨基超支化聚合物的作用:调控气凝胶的孔道结构,并赋予气凝胶吸附剂化学吸附位点,即同时提高吸附剂的吸附率和吸附稳定性。

Claims (10)

  1. 一种含多氨基三维石墨烯的多孔气凝胶的制备方法,其特征在于包括以下步骤:
    (1)将水溶性可聚单体,引发剂和交联剂溶于水,得到水相反应液;所述水溶性可聚单体为丙烯酰胺和海藻酸钠,丙烯酰胺和海藻酸钠的摩尔比为1:(3.2-3.3);
    (2)将含羟基的氧化石墨烯和含羟基的单层薄壁碳纳米管分散于所述水相反应液中;所述含羟基的氧化石墨烯、含羟基的单层薄壁碳纳米管和水相反应液的质量比为1:(0.5-1.5):(1650-1700);
    (3)将所述步骤(2)所得物料注入模具中,进行自由基聚合,得到水凝胶;
    (4)将所述水凝胶冷冻干燥,得到含三维石墨烯的多孔气凝胶;
    (5)将多氨基化合物与丙烯酸甲酯的甲醇溶液在惰性气体保护下混合,先进行迈克尔加成反应,再进行缩聚反应,得到多氨基超支化聚合物;所述多氨基化合物与丙烯酸甲酯的摩尔量比为(0.8-1.2):1;
    (6)将所述含三维石墨烯的多孔气凝胶与所述多氨基超支化聚合物混合于含有二环己基碳二亚胺和4-二甲胺基吡啶的四氢呋喃溶液中,超声分散后将体系转入具有氮气鼓泡、搅拌和冷凝回流的反应容器中,在惰性气体保护下进行接枝反应,得到含多氨基三维石墨烯的多孔气凝胶;所述含三维石墨烯的多孔气凝胶、多氨基超支化聚合物的质量比为1:(10-30)。
  2. 如权利要求1所述的制备方法,其特征在于:步骤(1)中,
    所述水溶性可聚单体、引发剂和交联剂的质量比为95-105:0.05-0.15:0.4-0.8;
    所述交联剂为N-N’亚甲基双丙烯酰胺;
    所述引发剂为过硫酸铵。
  3. 如权利要求1所述的制备方法,其特征在于:步骤(3)中,所述模具由两片石英玻璃夹持一片硅胶垫片制得。
  4. 如权利要求1或3所述的制备方法,其特征在于:步骤(3)中,所述水凝胶的厚度为0.2~50mm。
  5. 如权利要求1或3所述的制备方法,其特征在于:步骤(3)中,所述自由基聚合为热引发聚合,引发剂为过硫酸铵,反应温度为50~70℃,反应时间为4~5h。
  6. 如权利要求1所述的制备方法,其特征在于:步骤(4)中,所述冷冻干燥的温度为-50~-40℃,真空度为0-13Pa。
  7. 如权利要求1所述的制备方法,其特征在于:步骤(5)中,
    所述多氨基化合物为二乙烯三胺或乙二胺或三乙烯四胺;
    所述迈克尔加成反应的温度为20~30℃,反应时间为4~6h;
    所述缩聚反应的温度为90~100℃,时间为6~7h。
  8. 如权利要求1或7所述的制备方法,其特征在于:步骤(5)中,对缩聚反应得到的产物经过旋转蒸发得到多氨基超支化聚合物,所述旋转蒸发的温度为35~40℃。
  9. 如权利要求1所述的制备方法,其特征在于:步骤(6)中,
    接枝反应的温度为50~60℃,时间为5~6h;
    在接枝反应结束后,对所得产物依次进行洗涤和干燥。
  10. 如权利要求1-9之一所述制备方法得到的含多氨基三维石墨烯的多孔气凝胶在污水处理中作为金属离子吸附剂中的应用。
PCT/CN2023/092650 2022-06-10 2023-05-08 一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用 WO2023236699A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210657589.7A CN115138342B (zh) 2022-06-10 2022-06-10 含多氨基三维石墨烯的多孔气凝胶在污水处理中作为金属离子吸附剂的应用
CN202210657589.7 2022-06-10

Publications (2)

Publication Number Publication Date
WO2023236699A2 true WO2023236699A2 (zh) 2023-12-14
WO2023236699A3 WO2023236699A3 (zh) 2024-02-15

Family

ID=83408455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092650 WO2023236699A2 (zh) 2022-06-10 2023-05-08 一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN115138342B (zh)
WO (1) WO2023236699A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117810459A (zh) * 2024-03-01 2024-04-02 浙江煌能新能源科技有限公司 不锈钢正极集流体、其制备方法、正极片及钠离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115138342B (zh) * 2022-06-10 2023-08-29 净化控股集团股份有限公司 含多氨基三维石墨烯的多孔气凝胶在污水处理中作为金属离子吸附剂的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013235666A1 (en) * 2012-03-22 2014-10-09 Momentive Performance Materials Inc. Hydrophilic macromers and hydrogels comprising the same
JP6210592B2 (ja) * 2013-10-17 2017-10-11 国立研究開発法人物質・材料研究機構 水熱生成グラフェン/cnt複合体エアロゲルの作成方法、水熱生成グラフェン/cnt複合体エアロゲル及びua、da、aa分離検出電極
CN105733016A (zh) * 2016-03-10 2016-07-06 云南中烟工业有限责任公司 一种炭基-聚合物复合气凝胶、其制备方法及其在烟气分析中的应用
CN108940232B (zh) * 2018-07-11 2020-07-28 华南理工大学 端氨基超支化聚合物接枝氧化石墨烯磁性阴离子吸附剂的制备及应用
CN108905981A (zh) * 2018-07-12 2018-11-30 山东联星能源集团有限公司 一种低成本吸附重金属离子的石墨烯/CNTs气凝胶制备方法
CN111187598B (zh) * 2020-01-21 2021-03-09 大连工业大学 一种双网络相变气凝胶及其制备方法
CN115138342B (zh) * 2022-06-10 2023-08-29 净化控股集团股份有限公司 含多氨基三维石墨烯的多孔气凝胶在污水处理中作为金属离子吸附剂的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117810459A (zh) * 2024-03-01 2024-04-02 浙江煌能新能源科技有限公司 不锈钢正极集流体、其制备方法、正极片及钠离子电池

Also Published As

Publication number Publication date
WO2023236699A3 (zh) 2024-02-15
CN115138342B (zh) 2023-08-29
CN115138342A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2023236699A2 (zh) 一种含多氨基三维石墨烯的多孔气凝胶的制备方法及其应用
US11691121B2 (en) Lignin-based hierarchical porous carbon with high specific surface area and preparation method and application thereof
US11045789B1 (en) Biomass intelligent fiber-based amphoteric multifunctional adsorptive material and preparation method and use thereof
CN111530409A (zh) 一种沸石咪唑骨架材料衍生的氮掺杂多孔碳材料及其制备方法
Kang et al. Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization
Shen et al. Microstructure control of RF and carbon aerogels prepared by sol-gel process
CN110841595A (zh) 一种氮掺杂石墨化碳材料的制备方法及应用
CN112934000B (zh) 一种pvdf微滤膜的改性方法
CN108862237B (zh) 一种基于二氧化碳活化造孔的具有超高比表面积的超纯碳气凝胶及其制备方法
CN107879324B (zh) 一种制备氮掺杂碳气凝胶的方法
CN112138631B (zh) 一种氧化石墨烯/活性炭复合材料的制备方法
CN113398776A (zh) 基于双重连续印迹体系制备仿生MOFs基双层分子印迹纳米复合膜的制备方法及其用途
CN115403229B (zh) 一种养殖废水的处理方法
CN111019934A (zh) 一种酶固定化复合材料及制备方法
CN112044392A (zh) 镁改性纳米二氧化硅中空球的制备方法
CN109796002B (zh) 金属改性磺酸基介孔碳材料合成方法
CN116272855B (zh) 一种木浆液衍生炭与磷酸氢锆混合型吸附材料及其制备方法与应用
CN110665457A (zh) 一种蔗糖碳化物/海泡石复合材料及其制备方法
CN117299074B (zh) 一种多孔碳复合介孔锰锌铁氧体的制备方法和应用
CN115678095B (zh) 一种壳聚糖-聚甲基丙烯酸缩水甘油酯纳晶胶介质及其制备方法
CN114735673B (zh) 一种交联微介孔碳复合材料的制备方法及其应用
CN115206692B (zh) 甲氧基化合物与改性碳纳米管复合材料制备方法和应用
CN116870873B (zh) 有机-无机多级孔zsm-5及其制备方法和应用
CN115353599B (zh) 一种离子液体/离子型共价有机框架复合材料的制备方法及应用
CN114558559B (zh) 一种碳球-氧化物复合催化材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818864

Country of ref document: EP

Kind code of ref document: A2