WO2023236010A1 - 改性高镍三元正极材料及其制备方法、应用 - Google Patents

改性高镍三元正极材料及其制备方法、应用 Download PDF

Info

Publication number
WO2023236010A1
WO2023236010A1 PCT/CN2022/097149 CN2022097149W WO2023236010A1 WO 2023236010 A1 WO2023236010 A1 WO 2023236010A1 CN 2022097149 W CN2022097149 W CN 2022097149W WO 2023236010 A1 WO2023236010 A1 WO 2023236010A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel ternary
cathode material
ternary cathode
modified high
optionally
Prior art date
Application number
PCT/CN2022/097149
Other languages
English (en)
French (fr)
Inventor
吴奇
陈强
倪欢
沈重亨
柳娜
范敬鹏
赵栋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/097149 priority Critical patent/WO2023236010A1/zh
Priority to CN202280060839.7A priority patent/CN117981115A/zh
Publication of WO2023236010A1 publication Critical patent/WO2023236010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy

Definitions

  • the present application relates to the field of battery materials, specifically to a modified high-nickel ternary cathode material and its preparation method, as well as secondary batteries, battery modules, battery packs and electrical devices formed from the material.
  • ternary cathode materials In the product structure of ternary cathode materials, based on the perspective of reducing costs and improving endurance of electric vehicles, high-nickel ternary cathode materials have become an industry development trend, with demand continuing to increase and becoming a new demand increase in the nickel industry chain.
  • high-nickel ternary cathode materials battery capacity, cycle performance, safety performance, structural stability, etc. are all very critical properties, and existing technology usually cannot take into account these properties at the same time.
  • patent application CN113241433A discloses a dual-doped coating composite-modified ternary cathode material and its preparation method.
  • the ternary precursor is synthesized through a co-precipitation method, and alkali metal sulfide is added to the ternary precursor for dry mixing.
  • the alkali metal-doped ternary material is obtained by sintering, and then a transition metal salt, sodium sulfide and ternary material are added to the organic solvent, and a layer of transition metal sulfide is coprecipitated on the surface of the ternary material to obtain a finished product, in which the transition metal One or more of Sb, Bi, Sn.
  • this method adds alkali metal sulfide during alkali metal doping.
  • the high-temperature sintering of this compound in an oxygen atmosphere will produce toxic gases such as SO2 , which will harm the environment and human health.
  • SO2 toxic gases
  • the subsequent transition metal sulfide coating sodium salts participating in the reaction are further introduced, which will reduce the capacity of the material.
  • the main purpose of the present invention is to provide a modified high-nickel ternary cathode material and a preparation method thereof.
  • This material can simultaneously improve the capacity, cycle performance, structural stability, and safety of the battery by doping the base material and three-layer coating. It is highly durable and does not introduce toxic or harmful products during the preparation process. Therefore, this material has significant advantages when applied to secondary batteries, battery modules, battery packs, and electrical devices.
  • the present invention provides the following technical solutions.
  • the first aspect of the present invention provides a modified high-nickel ternary cathode material, which includes a base material and a first coating layer, a second coating layer and a third coating layer sequentially coated on the base material. layer;
  • the base material is Li 1.1-a M a ( Nib Co c Mn d ) 1-e A e O 2 E f , and 0.01 ⁇ a ⁇ 0.2, 0.8 ⁇ b ⁇ 1, 0.01 ⁇ c ⁇ 0.2, 0.01 ⁇ d ⁇ 0.2, 0 ⁇ e ⁇ 0.05, 0 ⁇ f ⁇ 0.1;
  • M is selected from one or more alkali metal elements Na, K, Rb, Cs, and A is selected from Al, Mg, Zr, One or more of Ti, W, Y, B, Co, Nb, Mo, Sb, Sr, E is selected from one or more of F, Cl, Br and I;
  • the first coating layer is Li 2 SO 4
  • the second coating layer is a cobalt-containing compound
  • the third coating layer is a compound containing M 1 ; where M 1 is one or more of Al, Ti, B, W, Nb, and Sb.
  • the above modified high-nickel ternary cathode materials are made by doping the base material with a specific proportion of alkali metals, transition metals, halogens, etc., and coating three layers of materials (lithium sulfate, cobalt-containing compounds, Al, Ti, etc.) in a specific order.
  • B compound can improve capacity, cycle performance, structural stability, safety and other aspects of performance, that is, it takes into account multiple key properties of ternary cathode materials in application, thus making them suitable for secondary batteries, battery modules, and batteries. Products such as bags and electrical appliances offer significant advantages.
  • doping the alkali metal M element in the substrate to replace the lithium site can increase the lithium ion transmission channel, effectively improve the first effect and capacity of the material, and help further improve the deintercalation of lithium ions.
  • the structural stability of the material during the process provides the material's cycle performance.
  • doping the A element in the base material is doped into the position of the transition metal element of the ternary material NCM, which can further improve the structural stability of the material and help further improve the long-term performance of the material.
  • doping halogen in the base material can achieve oxygen site doping and improve the safety performance of the material.
  • Li 2 SO 4 is uniformly coated on the surface or grain boundaries of the cathode material particles. Since Li 2 SO 4 is not easily soluble in the electrolyte at high temperatures or during long-term circulation, it can effectively hinder the positive electrode. The side reactions at the interface between materials, especially high-nickel cathode materials, and the electrolyte improve the long-term performance and safety performance of materials such as cycle performance and storage performance.
  • coating the particle surface with a Co compound can reduce surface miscellaneous lithium and further block side reactions between high-priced Ni ions on the surface and the electrolyte, while improving the rate performance and cycle performance of the material.
  • coating the outer layer with Al compounds, B compounds, or Ti compounds can further significantly improve the interface side reactions between the material and the electrolyte, and improve the storage and cycle performance of the material.
  • the base material and each coating layer work together to improve the overall performance of the material based on the above main functions.
  • a can be selected from 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.13, 0.15, 0.17, 0.19, 0.2, etc.
  • the preferred range includes 0.01 ⁇ 0.05, or 0.09 ⁇ 0.15, or 0.15 ⁇ 0.2, etc.
  • b can choose 0.8, 0.83, 0.85, 0.87, 0.89, 0.9, 0.93, 0.95, 0.97, 0.99, 1, etc.
  • c can be selected from 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.13, 0.15, 0.17, 0.19, 0.2, etc.
  • the preferred range includes 0.01 ⁇ 0.05, or 0.09 ⁇ 0.15, or 0.15 ⁇ 0.2, etc.
  • d can be selected from 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.13, 0.15, 0.17, 0.19, 0.2, etc.
  • the preferred range includes 0.01 ⁇ 0.05, or 0.09 ⁇ 0.15, or 0.15 ⁇ 0.2, etc.
  • e can be selected from 0.001, 0.005, 0.01, 0.03, 0.05, etc., and the preferred range includes 0.001 ⁇ 0.01, or 0.01 ⁇ 0.03, 0.01 ⁇ 0.05, etc.
  • the molar ratio of alkali metal M atoms to S atoms is (0.2 ⁇ 4.2):1, to further improve cycle performance, and can be optionally 0.2:1, 0.5:1, 0.7:1, 1:1, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.2:1, etc.
  • the preferred range includes (1 ⁇ 3):1, (0.6 ⁇ 2.8):1, (1.5 ⁇ 2.5):1, (0.36 ⁇ 1.39):1, etc.
  • the ratio of doped lithium to the total amount of nickel, cobalt and manganese in the substrate it is necessary to control (1.1-a):(b+c+d) in the range of 0.9 to 1.1 to improve cycle performance. , long-term performance such as storage performance and security performance.
  • the content of alkali metal M atoms is 100 to 5000 ppm, optionally 500 to 2000 ppm.
  • the above scheme controls the alkali metal doping amount within a reasonable range to fully improve the comprehensive performance such as cycle performance, storage performance, capacity, etc. When there is too much doping, too many lithium sites will be replaced by alkali metal ion doping, which will result in Will reduce active lithium ions, thus reducing capacity.
  • the content of S atoms is 200 to 5000 ppm, and optionally 1000 to 3000 ppm.
  • coating the first layer of Li2SO4 can effectively improve the side reactions between the material and the electrolyte, the coating amount needs to be controlled within a reasonable range to provide good protection and not affect the capacity of the material.
  • the content of cobalt atoms in the second coating layer is 1,000 to 20,000 ppm, optionally 5,000 to 15,000 ppm.
  • the Co coating compound is used to uniformly and effectively coat the surface of the cathode material matrix, further improving the interface side reaction between the material and the electrolyte.
  • it can effectively react with the residual miscellaneous lithium on the surface to generate Li 2 CoO 3 active material without producing too much remaining inactive Co-containing compounds, thereby improving the capacity and rate performance of the material. and cycle performance.
  • the content of M1 atoms is 100-5000 ppm, optionally 500-2000 ppm.
  • Coating compounds containing M1 elements can further significantly improve the interfacial side reactions of the material and improve the material's circulation, storage and safety performance. By controlling its content within the above-mentioned reasonable range, the modification effect can be exerted to a greater extent.
  • the volume distribution particle size Dv50 of the modified high-nickel ternary cathode material is 3-20 ⁇ m, optionally 3-15 ⁇ m.
  • the particle size distribution of the material it can be made to have a suitable particle size, thereby increasing the specific surface area, conducive to full reaction, and conducive to maintaining good structural stability.
  • the modified high-nickel ternary cathode material has a particle size volume particle size distribution diameter (Dv90-Dv10)/Dv50 ⁇ 1.0, so as to significantly improve the volume energy density of the material, optionally, (Dv90- Dv10)/Dv50 ⁇ 1.2.
  • the powdered modified high-nickel ternary cathode material has a compacted density of ⁇ 3.45g/cc under a pressure of 5 tons.
  • the compacted density is closely related to the specific capacity of the electrode piece, efficiency, internal resistance, and battery cycle performance.
  • the ternary material provided by the present invention has a suitable compacted density and has good comprehensive performance when used in batteries.
  • a second aspect of the invention provides a method for preparing a modified high-nickel ternary cathode material, which includes the following steps:
  • the sulfate and alkali solution of nickel, cobalt and manganese are reacted in an alkaline solution environment to form a high-nickel ternary precursor slurry;
  • the alkali solution is a hydroxide solution of an alkali metal M, and the M is Na, K, One or more of Rb and Cs;
  • the lithium salt, the precursor product, the compound containing element A, and the compound containing element E are mixed and sintered for the first time to obtain a high-nickel material doped with alkali metal, element A and element E and coated with the first coating layer.
  • the high-nickel ternary cathode material matrix is mixed with a compound containing cobalt element for a second sintering, and then mixed with a compound containing the M1 element for a third sintering, to obtain a modified high-nickel ternary cathode material;
  • the modified high-nickel ternary cathode material includes a base material and a first coating layer, a second coating layer and a third coating layer sequentially coated on the base material;
  • the base material is Li 1.1-a M a ( Nib Co c Mn d ) 1-e A e O 2 E f , and 0.01 ⁇ a ⁇ 0.2, 0.8 ⁇ b ⁇ 1, 0.01 ⁇ c ⁇ 0.2, 0.01 ⁇ d ⁇ 0.2, 0 ⁇ e ⁇ 0.05, 0 ⁇ f ⁇ 0.1; wherein, M is selected from one or more alkali metal elements Na, K, Rb, Cs, and A is selected from Al, Mg, Zr, One or more of Ti, W, Y, B, Co, Nb, Mo, Sb, Sr, E is selected from one or more of F, Cl, Br and I;
  • the first coating layer is Li 2 SO 4
  • the second coating layer is a cobalt-containing compound
  • the third coating layer is a compound containing M 1 ; where M 1 is Al, Ti, B, W, Nb, Sb. one or more.
  • eliminating the washing process (usually alkali washing) in the existing precursor synthesis process can significantly reduce the process cost, and provide alkali metal for subsequent sintering of cathode materials, doping with alkali metal ions and coating Li 2 SO 4 ion source and sulfate ion source.
  • Na + and SO 4 2- ions are uniformly coated on the surface of the precursor, when sintering the cathode material, it is beneficial to uniformly dope the Na element and uniformly coat Li 2 SO 4 , which is more conducive to improving the material's properties. performance.
  • this method has the advantages of low cost, improved various properties of materials, and high efficiency.
  • the alkaline solution environment uses ammonia to control the pH value, and the pH value is between 11 and 12. This can stably synthesize precursor whiskers with radial distribution, continuous and stable wide distribution. For bulk products, it is preferably 11.1 to 11.7.
  • the ammonia concentration of the alkaline solution environment is 0.2-0.6 mol/L, also in order to stably synthesize a precursor product with a radial distribution of precursor whiskers, a continuous and stable wide distribution, preferably It is 0.3 ⁇ 0.5mol/L.
  • the high-nickel ternary precursor slurry before the drying process, is centrifuged and washed with water in sequence.
  • excess reactants can be removed through water washing, and the doping amount and subsequent coating amount of lithium sulfate can be controlled by the washing intensity (such as water volume) to achieve uniform doping of alkali metal ions and the in-situ surface or grain boundary of lithium sulfate. Coating, thereby fully increasing the capacity of the material.
  • the weight of water used during water flushing is 0.5 to 5 times the weight of the high nickel ternary precursor slurry, and optionally 1 to 3 times.
  • the conditions for the first sintering are: the sintering temperature is 700 to 950°C, the sintering time is 10 to 20 hours, and the sintering atmosphere is air or O 2 .
  • the sintering temperature is 700 to 950°C
  • the sintering time is 10 to 20 hours
  • the sintering atmosphere is air or O 2 .
  • the conditions for the second sintering are: the sintering temperature is 500-800°C, optionally 550-750°C; the time is 5-15h, 5-10h; and the sintering atmosphere is air or O 2 .
  • the sintering process of this invention can not only effectively react the Co-containing compound with the miscellaneous lithium on the surface of the cathode material matrix, but also firmly coat the Co-containing compound on the surface of the cathode material particles without penetrating into the inner layer of the particles, thereby improving the material. Miscellaneous lithium and coating effect.
  • the conditions for the third sintering are: the sintering temperature is 200-500°C, optionally 200-400°C; the sintering time is 5-15h, optionally 5-10h; and the sintering atmosphere is air. Or O 2 .
  • the M element-containing compound can be firmly coated on the surface of the positive electrode material particles without penetrating into the inner layer of the particles, thereby improving the coating effect.
  • the lithium salt is one or a mixture of lithium carbonate and lithium hydroxide
  • the compound containing cobalt element is one or a mixture of two or more of Co 3 O 4 , Co(OH) 2 , CoO, CoOOH, cobalt acetate, cobalt oxalate, and CoCO 3 ;
  • the compound containing the M1 element is one or a mixture of two or more of the oxides, hydroxides and carbonates of M1;
  • the compound containing element A is one or a mixture of two or more of the oxides, hydroxides and carbonates of A;
  • the compound containing the E element is one or more of a metal compound and a non-metal compound containing the E element, and the E element is one of F, Cl, Br or I.
  • 10% to 40% of the volume of the reactor is pre-added as the bottom liquid before the reaction.
  • selecting appropriate lithium salts and compounds containing M1 elements can both introduce lithium elements and avoid introducing harmful impurities.
  • the compounds containing cobalt element, compound containing element A, and compound containing element E in the coating layer are appropriately selected, which can not only match the sintering process of the present invention, ensure the coating quality, but also avoid affecting the electrochemical reaction performance. Negative Effects.
  • the appropriate amount of water as the bottom liquid can not only ensure the uniformity of doping, but also promote the rapid adsorption of salt and improve the preparation efficiency.
  • a third aspect of the present invention provides a secondary battery, which includes the modified high-nickel ternary cathode material described above, or the modified high-nickel ternary cathode material obtained according to the preparation method described above. .
  • a fourth aspect of the present invention provides a battery module including the above-mentioned secondary battery.
  • a fifth aspect of the present invention provides a battery pack including the battery module according to the above.
  • a sixth aspect of the present invention provides an electrical device, including at least one of the above-described secondary battery, the above-described battery module, or the above-described battery pack.
  • Figure 1 is an SEM image of the high-nickel cathode material prepared in Example 1 of the present invention.
  • Figure 2 is the first charge and discharge curve of the high-nickel cathode material prepared in Example 1 of the present invention.
  • Figure 3 is a 25°C cycle comparison curve of a full battery made from the high-nickel cathode material prepared in Comparative Example 1 and Example 1 of the present invention
  • Figure 4 is a 70°C storage flatulence comparison curve of a full battery made from the high-nickel cathode material prepared in Comparative Example 1 and Example 1 of the present invention
  • Figure 5 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • Figure 6 is an exploded view of the secondary battery according to an embodiment of the present application shown in Figure 5;
  • FIG. 7 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG 9 is an exploded view of the battery pack according to an embodiment of the present application shown in Figure 8.
  • FIG. 10 is a schematic diagram of a power consumption device using a secondary battery as a power source according to an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the present invention provides a modified high-nickel ternary cathode material.
  • the primary cathode material and its preparation method are used in secondary batteries, battery modules, battery packs, electrical devices and other products.
  • the modified high-nickel ternary cathode material of the present invention mainly involves doping the high-nickel ternary cathode material with multiple elements, and then coating it with three layers of different materials (the first coating layer, the second coating layer) in sequence from the inside to the outside. Coating and third coating layer), these multi-faceted modifications can simultaneously improve battery capacity, cycle performance, safety performance, and structural stability.
  • the preparation method corresponding to this includes the following main steps: first using nickel, cobalt and manganese sulfate and alkali solution to form a precursor product, then sintering to complete doping and the formation of the first cladding layer in sequence, and then introducing cobalt-containing elements step by step.
  • the compound and the compound containing the M1 element are sintered one by one, thereby completing the formation of the second cladding layer and the third cladding layer in steps.
  • the type of doped elements, the type of coating, the amount and/or proportion of each element, the type of reactants, sintering conditions, pretreatment conditions, etc. all have an important impact on the final performance of the product, and each doping element and each coating There is synergy between the layers.
  • a secondary battery typically includes a positive electrode plate, a negative electrode plate, an electrolyte and a separator.
  • active ions are inserted and detached back and forth between the positive electrode piece and the negative electrode piece.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes the modified high-nickel ternary positive electrode material of the first aspect of the present application.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material adopts the modified high-nickel ternary positive electrode material provided by the present invention.
  • the positive electrode film layer optionally further includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, binder and any other components in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, where the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode film layer optionally further includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), polysodium acrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the secondary battery further includes a separator film.
  • a separator film There is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 5 shows a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • secondary batteries can be assembled into battery modules, and the number of secondary batteries contained in the battery module can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery module.
  • FIG. 7 shows the battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. The specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the secondary battery, battery module, or battery pack provided by the present application.
  • the secondary battery, battery module, or battery pack may be used as a power source for the electrical device, or may be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a secondary battery, a battery module or a battery pack can be selected according to its usage requirements.
  • Figure 10 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • the device is usually required to be thin and light, and a secondary battery can be used as a power source.
  • A1 Add 10% pure water to a 100L reaction kettle, start stirring, maintain a constant temperature of 40°C, add NaOH solution until the pH is 12.0, and add ammonia solution until the ammonia concentration is 0.6mol/L (i.e. ammonia value).
  • the molar ratio of nickel, cobalt and manganese in the body is 0.9:0.05:0.05.
  • A2 Centrifuge the synthesized high-nickel ternary precursor slurry, rinse it twice with deionized water twice the weight of the slurry during the centrifugation process, and then dry and screen the centrifuged material to obtain high-nickel ternary precursor slurry. Precursor products.
  • B1 Put the lithium salt-lithium hydroxide, the synthesized high-nickel ternary precursor, and ZrO2 into a plow mixer, high mixer, or inclined test mixer according to a certain proportion, where Zr (i.e. A The doping amount of element) is 3000ppm, the Li/Me molar ratio is 1.1, Me is the total metal mole of nickel, cobalt, and manganese; the mixed material is put into the kiln for sintering, the sintering temperature T1 is 700°C, and the sintering time 1 is 20h , the sintering atmosphere is O 2 , and a high-nickel ternary cathode material matrix uniformly doped with Na and Zr elements and coated with the first layer of Li 2 SO 4 coating layer is obtained, in which the Na doping amount is 2000ppm, and the first layer of Li The S coating amount in the 2 SO 4 coating is 3000ppm.
  • Zr i.e. A The doping amount of element
  • step B2 Put the high-nickel ternary cathode material matrix synthesized in step B1 and Co 3 O 4 in a certain ratio (the amount of Co 3 O 4 is measured according to the predetermined coating Co element content), and put it into a plow mixer. Mix, in which the amount of Co added is 15000ppm. The mixed materials are put into the kiln for sintering.
  • the sintering temperature T2 is 500°C
  • the sintering time 2 is 15h
  • the sintering atmosphere is O 2
  • the second layer of Co-containing compound is obtained by sintering.
  • High-nickel ternary cathode material is 500°C
  • the sintering time 2 is 15h
  • the sintering atmosphere is O 2
  • the second layer of Co-containing compound is obtained by sintering.
  • step B3 Put the high-nickel ternary cathode material synthesized in step B2 and Al 2 O 3 in a certain proportion (the amount of Al 2 O 3 is measured according to the predetermined coating Al element content) into a plow mixer, high mixer or inclined Mix in a trial mixer, in which the amount of Al (M1 element) is 2000ppm.
  • the mixed materials are put into the kiln for sintering.
  • the sintering temperature T3 is 200°C
  • the sintering time 3 is 15h
  • the sintering atmosphere is O 2
  • the sintering A finished high-nickel ternary cathode material coated with a third layer of Al compound on the surface is obtained.
  • Example 2 The difference between Examples 2-5, 7-8 and Example 1 is that the amount of deionized water used for flushing in step A2 is different (referring to the multiple relative to the weight of the slurry), as well as the alkali metal content, S element content and the mole of both.
  • the ratio also changes, and other operations and conditions are the same as in Example 1. See the table below for details.
  • Example 6 The difference between Example 6 and Example 5 is that the type of doped alkali metal is different, and the corresponding doping amount, S element content, and molar ratio of alkali metal to S also change.
  • the other operations and conditions are the same as in Example 5. , see the table below for details.
  • Example alkali metal elements Alkali metal content/ppm S content/ppm Alkali metal/S (molar ratio) 5 Na 500 1000 0.70 6 cs 850 1000 0.20
  • Example 9-13 The difference between Examples 9-13 and Example 1 is that the pH value and ammonia value in step A1 are different.
  • the other operations and conditions are the same as Example 1. See the table below for details.
  • Example pH value Ammonia value/(g/L) 1 12 0.6 9 12.2 0.8 10 11.7 0.5 11 11.4 0.3 12 11 0.2 13 10.8 0.1
  • Example 14 The difference between Example 14 and Example 1 is that the addition amount of pure water (i.e. bottom liquid) and reaction temperature in step A1 are different, and the alkali metal content and S element content also change.
  • the other operations and conditions are the same as in Example 1. , see the table below for details.
  • Example Bottom liquid Step A1 Temperature/°C Alkali metal content/ppm S content/ppm 1 10% 40 2000 3000 14 40% 75 1800 2700
  • Example 1 The difference from Example 1 is that the alkali metal types are different but they are all added in the form of hydroxide, and the molar ratio of the corresponding alkali metal to S also changes. The remaining operations and conditions are the same as Example 1. See the table below for details.
  • Example 1 The difference from Example 1 is that the ratio of the total molar amounts of lithium and nickel, cobalt and manganese is different, that is, the Li/Me molar ratio is different.
  • the remaining operations and conditions are the same as in Example 1. See the table below for details.
  • Example 1 The difference from Example 1 is that the operating conditions in step B1 are different (Li/Me molar ratio, sintering temperature, time, type and content of A element, etc.). Element A is added in the form of oxide, and the remaining operations and conditions are the same as those in step B1. Same as Example 1, see the table below for details.
  • Example T1/°C Time 1/h A element A/ppm 1 700 20 Zr 3000 19 600 20 Zr 3000 20 800 15 Zr 3000 twenty one 950 10 Zr 3000 twenty two 1000 20 Zr 3000 twenty three 700 20 Ti 3000 twenty four 700 20 Zr+W Zr2000+
  • Example 1 The difference from Example 1 is that the operating conditions in step B2 are different (sintering temperature, time, cobalt Co element content, etc.). The other operations and conditions are the same as Example 1. See the table below for details.
  • Example 1 The difference from Example 1 is that the Co source or Co content in step B2 is different, or the operating conditions in step B3 are different (sintering temperature, time, M1 element type and content, etc.), where M1 elements are all in the form of oxides Add, other operations and conditions are the same as Example 1, see the table below for details.
  • Example 1 The only difference from Example 1 is that lithium hydroxide is replaced by lithium fluoride LiF, and other operations and conditions are the same as Example 1.
  • step A2 in the synthesis process of high-nickel ternary precursor material is that step A2 in the synthesis process of high-nickel ternary precursor material:
  • step A2 After the slurry is centrifuged in step A2, before the drying step, add a 0.05-1mol/L NaOH solution to wash and centrifuge the slurry.
  • the washing time is 0.5-5h, and the washing temperature is 45-80°C.
  • the Na doping amount of the high-nickel ternary cathode material is reduced to 50 ppm, and the S coating amount in the first coating layer Li 2 SO 4 is reduced to 100 ppm.
  • the rest is the same as in Example 1. .
  • step A2 in the synthesis process of high-nickel ternary precursor material is that step A2 in the synthesis process of high-nickel ternary precursor material:
  • step A2 After the slurry is centrifuged in step A2, before the drying step, add a 0.05-1mol/L NaOH solution to wash and centrifuge the slurry.
  • the washing time is 0.5-5h, and the washing temperature is 45-80°C.
  • an additional portion of Na 2 CO 3 is added to the mixture for dry mixing and sintering doping, so that the Na doping amount of the high-nickel ternary cathode material remains at the same level as in Example 1 to 2000 ppm.
  • step A2 in the synthesis process of high-nickel ternary precursor material is that step A2 in the synthesis process of high-nickel ternary precursor material:
  • step B1 The lithium salt in step B1 is replaced with aluminum oxide, and the total molar ratio of aluminum element to nickel cobalt manganese remains the same as in Example 1.
  • the powder particle size of the positive electrode material obtained in all the above examples and comparative examples was tested, and the powder compaction at 5 tons was tested, and then used to make a button battery, and its initial discharge capacity and first efficiency were measured at 0.1C. Use it to make a full battery, test the full capacity at 1/3C, test the 25°C cycle at 25°C, 1C/1C, test the 45°C cycle at 45°C, 1C/1C, and test the flatulence tendency at 70°C for 30Days.
  • the test methods for each performance are as follows.
  • the test method for volume distribution particle size is: refer to GB/T19077-2016/ISO13320:2009 particle size distribution laser diffraction method, and the equipment uses Malvern 2000. Take a clean beaker, add an appropriate amount of the sample to be tested to a shading degree of 8% to 12%, add 20ml of deionized water, and ultrasonic for 5 minutes. Turn on the particle size tester to start testing. The test results are expressed as (Dv90-Dv10)/Dv50.
  • the electrolyte is 1 mol/L LiPF 6 /(EC+DEC+DMC) with a volume ratio of 1:1:1. It is assembled into a button battery in a buckle box.
  • FIG. 2 illustrates the first charge-discharge curve of the high-nickel cathode material in Example 1. The capacity of the button battery tested in the table is D0.
  • the modified high-nickel cathode material is used as the cathode active material, and the conductive agent acetylene black and the binder polyvinylidene fluoride (PVDF) are fully stirred and mixed in the N-methylpyrrolidone solvent system at a weight ratio of 94:3:3. Afterwards, it is coated on aluminum foil, dried, and cold pressed to obtain a positive electrode sheet. Add the negative active material artificial graphite, hard carbon, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), and thickener carbon methylcellulose sodium (CMC) in a weight ratio of 90:5:2:2:1.
  • SBR styrene-butadiene rubber
  • CMC thickener carbon methylcellulose sodium
  • PE porous polymer film is used as the isolation membrane.
  • 70°C 100% SOC storage measure the cell OCV, IMP, volume (drainage method test) before and after storage and during the storage, test the cell residual capacity and reversible capacity after storage, take it out every 48 hours, test OCV, IMP after leaving it for 1 hour. After cooling to room temperature, use the drainage method to test the cell volume. End the test after 30 days of storage, or stop storage if the volume expansion exceeds 50%. Protection voltage range: 2.7-4.3V, nominal capacity 2.25Ah.
  • Figure 4 lists the 70°C storage expansion curves of full batteries made from the materials of Comparative Example 1 and Example 1.
  • the precursor of the present invention does not use alkali metal hydroxide solution for washing, and can retain a certain amount of alkali metal ions and sulfate ions to uniformly residually coat the surface of the precursor through sintering of the positive electrode material. , can uniformly dope alkali metal ions in the bulk lithium position of high-nickel ternary cathode materials, which can effectively expand and stabilize the transmission channel of lithium ions, improve the capacity and cycle performance of the material, and can also be used in high-nickel ternary cathode materials.
  • the surface is evenly coated with the first layer of Li 2 SO 4.
  • the coated Li 2 SO 4 is not easily soluble in the electrolyte and does not cause side reactions with the electrolyte, which can significantly improve the performance of high-nickel Long-term cycle performance and storage performance of ternary cathode materials.
  • the present invention eliminates the alkali washing step and can reduce process costs.
  • Comparative Example 2 is based on Comparative Example 1 and is dry-mixed and sintered by the fire method.
  • Na 2 CO 3 and Li 2 SO 4 additives are added to make
  • the doping amount of Na element and the coating amount of lithium sulfate are the same as in Example 1, but due to the poor uniformity of dry mixing, the doping uniformity of Na element and the coating uniformity of Li 2 SO 4 are poor.
  • dry sintering coating of Li 2 SO 4 is not easy to coat the material, resulting in poor coating uniformity and making various performance indicators significantly worse than in Example 1.
  • Example 1 when the A element is doped too much or too low in the first sintering, the performance of the material will also be affected.
  • the A element doping is too low, the structural stability of the high-nickel ternary material will be less improved, which is not conducive to the long-term performance and storage performance of the material; when the A element doping is too high, too much inactive doping will remain in the material. Miscellaneous compounds will affect the capacity and long-term performance of the material.
  • Example 1 when the temperature of the second Co coating is too high or too low, the performance of the material will also be significantly affected.
  • the coating temperature is too low, it is not conducive to the coating firmness of the Co-containing compound and the surface and the degree of reaction between the surface residual lithium and the Co-containing compound, making the residual lithium of the material too high, and at the same time reducing the material's capacity and interface stability.
  • Example 1 Comparing Example 1 with Examples 31 and 35, when the Co-containing compound coating amount is small, the effect of improving interface stability cannot be achieved. When the Co-containing compound coating amount is too much, the surface of the high-nickel ternary material will be damaged. Remaining more inactive residual Co-containing compounds will reduce the capacity and long-term performance of the material.
  • Example 1 Comparing Example 1 with Examples 36 and 39, when the third coating temperature of the compound containing the M1 element is too low, it is not conducive to the coating effect and firmness of the compound containing the M1 element. When the coating temperature is too high, the compound containing the M1 element will be coated. Penetrating into the granular phase of the material is not conducive to improving interface stability.
  • Example 1 Comparing Example 1 with Examples 40 and 41, when the coating amount of the M-element-containing compound is small, the effect of improving interface stability cannot be achieved. When the M-containing compound coating amount is too large, the capacity and long-term performance of the material will be reduced. .
  • Example 1 Comparing Example 1 and Example 13, if the pH value and ammonia value of the precursor synthesis process parameters are too low, the particle size distribution of the synthesized precursor will be very narrow, and the density of the sintered high-nickel ternary cathode material will be low. Will reduce the energy density of the battery core.
  • Example 1 Comparing Example 1 and Example 9, if the pH value and ammonia value of the precursor synthesis process parameters are too high, the Dv50 of the particles will be lower, and the compaction of the material will be reduced. In addition, the crystal structure of the precursor will be poor, which will affect Properties of cathode materials.
  • the modified high-nickel ternary cathode material synthesized using the patented innovative method of the present invention can not only reduce the process cost, but also significantly improve the performance of the high-nickel ternary material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种改性高镍三元正极材料及其制备方法、应用。改性高镍三元正极材料包括基材和依次包覆在所述基材上的第一、第二和第三包覆层;基材为Li1.1-aMa(NibCocMnd)1-eAeO2Ef,0.01≤a≤0.2,0.8≤b≤1,0.01≤c≤0.2,0.01≤d≤0.2,0<e≤0.05,0≤f≤0.1;M选自Na、K、Rb、Cs,A选自Al、Mg、Zr、Ti、W、Y、B、Co、Nb、Mo、Sb、Sr,E选自F、Cl、Br和I;第一、第二、第三包覆层分别为Li2SO4,含钴化合物,含M1化合物。本发明能同时改善电池的容量、循环性能和结构稳定性、安全性,也不会引入有毒、有害产物。

Description

改性高镍三元正极材料及其制备方法、应用 技术领域
本申请涉及电池材料领域,具体涉及一种改性高镍三元正极材料及其制备方法,以及该材料形成的二次电池、电池模块、电池包和用电装置。
背景技术
在三元正极材料产品结构中,基于电动车降低成本和提高续航能力的角度考虑,高镍三元正极材料成为行业发展趋势,需求持续增加,也成为镍产业链新的需求增量。对高镍三元正极材料而言,电池容量、循环性能、安全性能、结构稳定性等都是非常关键的性能,而现有技术通常无法同时兼顾这些性能。例如,专利申请CN113241433A公开了一种双掺杂包覆复合改性的三元正极材料及其制备方法,通过共沉淀方法合成三元前驱体,加入碱金属硫化物与三元前驱体进行干混烧结得到碱金属掺杂的三元材料,然后通过在有机溶剂中加入过渡金属盐、硫化钠及三元材料,在三元材料表面共沉淀包覆一层过渡金属硫化物得到成品,其中过渡金属Sb、Bi、Sn中的一种或多种。虽然以上技术对三元材料进行碱金属掺杂及过渡金属硫化物包覆,能够对材料的结构及界面稳定性有一定的改善效果,但该方法在碱金属掺杂时加入碱金属硫化物,该化合物在氧气气氛下高温烧结会产生SO 2等有毒气体,会危害环境及人体健康,同时在后续的过渡金属硫化物包覆中,进一步引入了反应参与的钠盐,会降低材料的容量。
为此,提出本发明。
发明内容
本发明的主要目的在于提供一种改性高镍三元正极材料及其制备方法,该材料通过在基材掺杂和三层包覆能够同时改善电池的容量、循环性能和结构稳定性、安全性,同时也不会在制备过程中引入有毒、有害产物,因此将该材料应用于二次电池、电池模块、电池包和用电装置等时具有显著优势。
为了实现以上目的,本发明提供了以下技术方案。
本发明的第一方面提供了一种改性高镍三元正极材料,其包括基材和依次包覆在所述基材上的第一包覆层、第二包覆层和第三包覆层;
其中,所述基材为Li 1.1-aM a(Ni bCo cMn d) 1-eA eO 2E f,并且0.01≤a≤0.2,0.8≤b≤1,0.01≤c≤0.2,0.01≤d≤0.2,0<e≤0.05,0≤f≤0.1;其中,M选自碱金属元素Na、K、Rb、Cs中的一种或多种,A选自Al、Mg、Zr、Ti、W、Y、B、Co、Nb、Mo、Sb、Sr中的一种或多种,E选自F、Cl、Br和I中的一种或多种;第一包覆层为Li 2SO 4,第二包覆层为含钴化合物,第三包覆层为含M 1化合物;其中M 1为Al、Ti、B、W、Nb、Sb中的一种或多种。
以上改性高镍三元正极材料通过在基材中掺杂特定比例的碱金属、过渡金属、卤素等,以及依特定顺序包覆三层材料(硫酸锂、含钴化合物、含Al、Ti、B化合物)可以改善容量、循环性能和结构稳定性、安全性等多方面性能,即兼顾了三元正极材料在应用时的多个关键性能,从而为其应用于二次电池、电池模块、电池包和用电装置等产品提供显著优势。
具体地,从材料组成而言,虽然上述的元素掺杂以及三个包覆层有各自的主要作用,但最终是所有成分作为互补的整体协同 作用改善了材料性能。
例如,对于基材而言,一方面,基材中掺杂碱金属M元素替代锂位,能增大锂离子传输通道,有效提高材料的首效及容量,并有利于进一步提高锂离子脱嵌过程中材料的结构稳定性,提供材料的循环性能。另一方面,基材中掺杂A元素,是掺杂进入三元材料NCM过渡金属元素位置,能进一步提高材料的结构稳定性,利于进一步提高材料的长期性能。又一方面,基材中掺杂卤素可以实现氧位掺杂,提高材料的安全性能。
对于包覆层而言,一方面,在正极材料颗粒表面或晶界均匀包覆Li 2SO 4,由于Li 2SO 4在高温下或长期循环过程中不易溶于电解液中,能有效阻碍正极材料、尤其是高镍正极材料与电解液界面的副反应,提升材料的循环性能、存储性能等长期性能以及安全性能。另一方面,颗粒表面包覆含Co化合物,能降低表面杂锂,并进一步阻隔表面高价Ni离子与电解液之间的副反应,同时提高材料的倍率性能、循环性能。又一方面,外层包覆Al化合物或B化合物或Ti化合物,能再进一步明显改善材料与电解液之间的界面副反应,改善材料存储、循环性能。
基材和各包覆层正是基于以上主要作用后互相协同改善材料的综合性能。
对上述正极材料而言,各元素的含量对产品性能有重要影响,其可以选择上文限定的范围内的任意值。例如a可以选择0.01、0.03、0.05、0.07、0.09、0.1、0.13、0.15、0.17、0.19、0.2等,优选的范围包括0.01~0.05,或者0.09~0.15,或者0.15~0.2等。b可以选择0.8、0.83、0.85、0.87、0.89、0.9、0.93、0.95、0.97、0.99、1等。c可以选择0.01、0.03、0.05、0.07、0.09、0.1、0.13、 0.15、0.17、0.19、0.2等,优选的范围包括0.01~0.05,或者0.09~0.15,或者0.15~0.2等。d可以选择0.01、0.03、0.05、0.07、0.09、0.1、0.13、0.15、0.17、0.19、0.2等,优选的范围包括0.01~0.05,或者0.09~0.15,或者0.15~0.2等。e可以选择0.001、0.005、0.01、0.03、0.05等,优选的范围包括0.001~0.01,或者0.01~0.03,0.01~0.05等。
在一些实施例中,碱金属M原子与S原子的摩尔比为(0.2~4.2):1,以进一步提高循环性能,可以任选0.2:1、0.5:1、0.7:1、1:1、1.5:1、2:1、2.5:1、3:1、3.5:1、4:1、4.2:1等,优选范围包括(1~3):1、(0.6~2.8):1、(1.5~2.5):1、(0.36~1.39):1等。
在一些实施例中,需控制基材中掺杂锂比例与镍钴锰总量的比例,将(1.1-a):(b+c+d)控制在0.9~1.1范围内,以提升循环性能、存储性能等长期性能以及安全性能。
在一些实施例中,以所述改性高镍三元正极材料为基准,碱金属M原子的含量为100~5000ppm,可选为500~2000ppm。以上方案将碱金属掺杂量控制在合理的范围内,以更充分提高循环性能、存储性能、容量等综合性能,当掺杂过多时,使锂位过多被碱金属离子掺杂替代,反而会使活性锂离子降低,从而降低容量。
在一些实施例中,以所述改性高镍三元正极材料为基准,S原子的含量为200~5000ppm,可选为1000~3000ppm。虽然包覆第一层Li2SO4能有效改善材料与电解液之间的副反应,但包覆量需要控制在合理范围内,能够起到较好的保护作用,并且不会影响材料的容量。
在一些实施例中,以所述改性高镍三元正极材料为基准,所 述第二包覆层中钴原子的含量为1000~20000ppm,可选为5000~15000ppm。本发明中采用Co包覆化合物均匀有效地包覆在正极材料基体表面,进一步改善材料与电解液之间的界面副反应。同时采用上述可选的包覆量,既能有效地与表面残余杂锂反应生成Li 2CoO 3活性材质,又不会产生过多的剩余非活性的含Co化合物,提升材料的容量、倍率性能及循环性能。
在一些实施例中,以所述改性高镍三元正极材料为基准,M1原子的含量为100~5000ppm,可选为500~2000ppm。包覆含M1元素化合物能进一步明显改善材料的界面副反应,提升材料的循环、存储及安全性能,通过将其含量控制在上述合理的范围内,可以更大程度发挥改性效果。
在一些实施例中,所述改性高镍三元正极材料的体积分布粒度Dv50为3~20μm,可选为3~15μm。通过控制材料的粒度分布,可以使其具有适合的颗粒大小,从而提高比表面积,利于充分反应,有利于保持良好的结构稳定性。
在一些实施例中,所述改性高镍三元正极材料的颗粒大小体积粒度分布径距(Dv90-Dv10)/Dv50≥1.0,以明显提升材料的体积能量密度,可选地,(Dv90-Dv10)/Dv50≥1.2。
在一些实施例中,粉末状的所述改性高镍三元正极材料的5吨压力下的压实密度≥3.45g/cc。压实密度与极片比容量,效率,内阻,以及电池循环性能有密切的关系,本发明提供的三元材料具有合适的压实密度,用于电池具有良好的综合性能。
本发明的第二方面提供了一种改性高镍三元正极材料的制备方法,其包括下列步骤:
使镍钴锰的硫酸盐、碱液在碱性溶液环境中反应,形成高镍 三元前驱体浆料;所述碱液为碱金属M的氢氧化物溶液,所述M为Na、K、Rb、Cs中的一种或多种;
对所述高镍三元前驱体浆料进行干燥处理,得到前驱体产品;
将锂盐、所述前驱体产品、含A元素的化合物、含E元素的化合物混合进行第一次烧结,得到掺杂碱金属、A元素及E元素且包覆第一包覆层的高镍三元正极材料基体;
然后将所述高镍三元正极材料基体与含钴元素的化合物混合进行第二次烧结,之后与含M1元素的化合物混合进行第三次烧结,得到改性高镍三元正极材料;
所述改性高镍三元正极材料包括基材和依次包覆在所述基材上的第一包覆层、第二包覆层和第三包覆层;
其中,所述基材为Li 1.1-aM a(Ni bCo cMn d) 1-eA eO 2E f,并且0.01≤a≤0.2,0.8≤b≤1,0.01≤c≤0.2,0.01≤d≤0.2,0<e≤0.05,0≤f≤0.1;其中,M选自碱金属元素Na、K、Rb、Cs中的一种或多种,A选自Al、Mg、Zr、Ti、W、Y、B、Co、Nb、Mo、Sb、Sr中的一种或多种,E选自F、Cl、Br和I中的一种或多种;
第一包覆层为Li 2SO 4,第二包覆层为含钴化合物、,第三包覆层为含M 1化合物;其中M 1为Al、Ti、B、W、Nb、Sb中的一种或多种。
以上制备方法能够达到以下技术效果:
一方面,去除现有前驱体合成工艺中的洗涤工艺(通常为碱液洗涤),能明显降低工艺成本,并能为后续正极材料烧结掺杂碱金属离子及包覆Li 2SO 4提供碱金属离子源及硫酸根离子源。
另一方面,由于在前驱体表面Na +及SO 4 2-离子均匀包覆,当 在进行正极材料烧结时,有利于均匀掺杂Na元素及均匀包覆Li 2SO 4,更利于改善材料的性能。
又一方面,采用该正极材料合成方法,能在高镍正极材料表面均匀包覆三层包覆物,在保持高容量的前提条件下,能进一步改善高镍材料表面的界面副反应,提高材料的长期循环及存储性能。
综上,该方法具有成本低、改善材料多方面性能、效率高等优点。
在一些实施例中,所述碱性溶液环境通过氨水控制pH值,所述pH值在11~12之间,这样能稳定合成出前驱体晶须呈径向分布、连续稳定的宽分布的前驱体产品,优选为11.1~11.7。
在一些实施例中,所述碱性溶液环境的氨浓度为0.2~0.6mol/L,同样是为了能稳定合成出前驱体晶须呈径向分布、连续稳定的宽分布的前驱体产品,优选为0.3~0.5mol/L。
在一些实施例中,在所述干燥处理之前,依次对所述高镍三元前驱体浆料进行离心、水冲洗。通过水冲洗一方面可以去除多余的反应物,又可以通过冲洗力度(例如水量)控制掺杂量以及后续包覆的硫酸锂量,实现碱金属离子均匀掺杂和硫酸锂原位表面或者晶界包覆,从而充分提高材料的容量。
基于以上冲洗机理,在一些实施例中,所述水冲洗时的用水重量为所述高镍三元前驱体浆料重量的0.5~5倍,可选为1~3倍。
在一些实施例中,所述第一次烧结的条件为:烧结温度为700~950℃,烧结时间为10~20h,烧结气氛为空气或者O 2。采用该该初烧烧结工艺,能烧结出晶体结构优良的高镍三元正极材料,并能均匀有效进行碱金属、A元素及E元素的均匀掺杂,并在高 镍三元正极材料表面均匀包覆第一层Li 2SO 4包覆物。
在一些实施例中,所述第二次烧结的条件为:烧结温度为500~800℃,可选为550~750℃;时间为5~15h,5~10h;烧结气氛为空气或者O 2。采用该发明烧结工艺,既能有效地使含Co化合物与正极材料基体表面的杂锂发生反应,又能将含Co化合物牢固地包覆在正极材料颗粒表面,并不渗入颗粒里层,改善材料杂锂及包覆效果。
在一些实施例中,所述第三次烧结的条件为:烧结温度为200~500℃,可选为200~400℃;烧结时间为5~15h,可选为5~10h;烧结气氛为空气或者O 2。采用该发明烧结工艺,能将含M元素化合物牢固地包覆在正极材料颗粒表面,并不渗入颗粒里层,改善包覆效果。
在一些实施例中,所述锂盐为碳酸锂、氢氧化锂中的一种或两种混合;
和/或,
所述含钴元素的化合物为Co 3O 4、Co(OH) 2、CoO、CoOOH、醋酸钴、草酸钴、CoCO 3中的一种或两种以上混合;
和/或,
所述含M1元素的化合物为M1的氧化物、氢氧化物、碳酸盐中的一种或两种以上混合;
和/或,
所述含A元素的化合物为A的氧化物、氢氧化物、碳酸盐中的一种或两种以上混合;
和/或,
所述含E元素的化合物为含E元素的金属化合物、非金属化 合物中的一种或多种,所述E元素为F、Cl、Br或I中的一种。
在一些实施例中,所述反应之前预先加入反应釜体积10~40%的水作为底液。
在该实施例中选择合适的锂盐和含M1元素的化合物可以既引入锂元素,又可以避免引入有害杂质。同时包覆层中含钴元素的化合物、含A元素的化合物、含E元素的化合物选择适当,既可以与本发明的烧结工艺匹配,保证包覆质量,又可以避免对电化学反应性能带来不利影响。
同时,水作为底液的量选择适当,既可以保证掺杂的均匀性,又可以促进盐的快速吸附,提高制备效率。
本发明的第三方面提供了一种二次电池,其包括上文所述的改性高镍三元正极材料,或者包括根据上文所述的制备方法得到的改性高镍三元正极材料。
本发明的第四方面提供了一种电池模块,包括上文所述的二次电池。
本发明的第五方面提供了一种电池包,包括根据上文所述的电池模块。
本发明的第六方面提供了一种用电装置,包括上文所述的二次电池、上文所述的电池模块或上文所述的电池包中的至少一种。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本发明实施例1制备得到的高镍正极材料的SEM图;
图2为本发明实施例1制备得到的高镍正极材料制作成扣电的首次充放电曲线;
图3为本发明对比例1与实施例1制备得到的高镍正极材料制作成全电池的25℃循环对比曲线;
图4为本发明对比例1与实施例1制备得到的高镍正极材料制作成全电池的70℃存储胀气对比曲线;
图5是本申请一实施方式的二次电池的示意图;
图6是图5所示的本申请一实施方式的二次电池的分解图;
图7是本申请一实施方式的电池模块的示意图;
图8是本申请一实施方式的电池包的示意图;
图9是图8所示的本申请一实施方式的电池包的分解图;
图10是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如, 可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
如背景技术所述,现有的高镍三元正极材料无法同时兼顾电池容量、循环性能、安全性能、结构稳定性等多方面性能,为此,本发明提供了一种改性的高镍三元正极材料及其制备方法,以将其用于二次电池、电池模块、电池包和用电装置等产品上。
本发明的改性的高镍三元正极材料主要是对高镍三元正极材料进行多种元素掺杂,再由内至外依次包覆三层不同材料(第一包覆层、第二包覆层和第三包覆层),这些多方面的改性可以同时提高电池容量、循环性能、安全性能、结构稳定性。与此对应的制备方法包括以下主要步骤:先用镍钴锰的硫酸盐、碱液形成前驱体产品,然后烧结依次完成掺杂和第一包覆层的形成,之后分步引入含钴元素的化合物、含M1元素的化合物并一一烧结,从而分步完成第二包覆层和第三包覆层的形成。
其中,掺杂的元素类型、包覆物类型及各元素用量和/或比例、反应物类型、烧结条件、预处理条件等对产品最终性能都有重要影响,并且各掺杂元素和各包覆层之间具有协同作用。下文通过列举部分实施例展开本发明达到的技术效果。
另外,以下适当参照附图对本申请的改性的高镍三元正极材料制成的二次电池、电池模块、电池包和用电装置进行说明。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片 之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的改性的高镍三元正极材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
正极活性材料采用本发明提供的改性的高镍三元正极材料
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、 碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申 请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸 锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图5是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图6,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图7是作为一个示例的电池模块4。参照图7,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电 池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图8和图9是作为一个示例的电池包1。参照图8和图9,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图10是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例1
合成高镍三元前驱体
A1:在100L的反应釜中加入10%的纯水,开启搅拌,保持40℃恒温,加入NaOH溶液至pH为12.0,加入氨水溶液至氨浓度为0.6mol/L(即氨值)。将镍钴锰混合金属硫酸盐溶液、氢氧化钠溶液和氨水溶液并流加入至反应釜中,保持反应釜中氨水浓度及pH不变,连续反应合成出浆料产品,其中高镍三元前驱体中镍钴锰的摩尔比为0.9:0.05:0.05。
A2:对合成出的高镍三元前驱体浆料进行离心,在离心过程中通入浆料重量2倍的去离子水冲洗两次,然后对离心物料进行干燥、过筛,得到高镍三元前驱体产品。
合成改性的高镍三元正极材料
B1:将锂盐-氢氧化锂、合成好的高镍三元前驱体、ZrO 2按照一定比例,放入犁刀混、高混机或者斜试混料机中进行混合,其中Zr(即A元素)的掺杂量为3000ppm,Li/Me摩尔比为1.1,Me为镍、钴、锰总金属摩尔;混合物料放入窑炉中进行烧结,烧结温度T1为700℃,烧结时间1为20h,烧结气氛为O 2,烧结得到均匀掺杂Na、Zr元素及包覆第一层Li 2SO 4包覆层的高镍三元正极材料基体,其中Na掺杂量为2000ppm,第一层Li 2SO 4包覆物中S包覆量为3000ppm。
B2:将B1步骤合成的高镍三元正极材料基体与Co 3O 4按照一定比例(Co 3O 4的用量以预定包覆的Co元素含量称量),放入犁刀混混料机中进行混合,其中Co的加入量为15000ppm,混合物料放入窑炉中进行烧结,烧结温度T2为500℃,烧结时间2为15h,烧结气氛为O 2,烧结得到表面包覆第二层含Co化合物的高镍三元正 极材料。
B3:将B2步骤合成的高镍三元正极材料与Al 2O 3按照一定比例(Al 2O 3的用量以预定包覆的Al元素含量称量)放入犁刀混、高混机或者斜试混料机中进行混合,其中Al(M1元素)的加入量为2000ppm,混合物料放入窑炉中进行烧结,烧结温度T3为200℃,烧结时间3为15h,烧结气氛为O 2,烧结得到表面包覆第三层含Al化合物的高镍三元正极材料成品。
实施例2-5、7-8
实施例2-5、7-8与实施例1的区别是A2步骤中冲洗所用的去离子水量不同(指相对于浆料重量的倍数),同时碱金属含量、S元素含量以及二者的摩尔比也发生变化,其余操作及条件均与实施例1相同,详见下表。
实施例 去离子水量 碱金属含量/ppm S含量/ppm 碱金属/S(摩尔比)
1 2倍 2000 3000 0.93
2 0 6000 7000 1.19
3 0.5倍 5000 5000 1.39
4 1倍 3500 4200 1.16
5 3倍 500 1000 0.70
7 7倍 75 150 0.70
8 5倍 100 200 0.70
实施例6
实施例6与实施例5的区别是掺杂的碱金属类型不同,且相应的掺杂量及S元素含量、碱金属与S的摩尔比也发生变化,其余操作及条件均与实施例5相同,详见下表。
实施例 碱金属元素 碱金属含量/ppm S含量/ppm 碱金属/S(摩尔比)
5 Na 500 1000 0.70
6 Cs 850 1000 0.20
实施例9-13
实施例9-13与实施例1的区别是步骤A1中的pH值及氨值不同,其余操作及条件均与实施例1相同,详见下表。
实施例 pH值 氨值/(g/L)
1 12 0.6
9 12.2 0.8
10 11.7 0.5
11 11.4 0.3
12 11 0.2
13 10.8 0.1
实施例14
实施例14与实施例1的区别是步骤A1中纯水(即底液)的加入量、反应温度不同,并且碱金属含量、S元素含量也发生变化,其余操作及条件均与实施例1相同,详见下表。
实施例 底液 步骤A1温度/℃ 碱金属含量/ppm S含量/ppm
1 10% 40 2000 3000
14 40% 75 1800 2700
实施例15-16
与实施例1的区别是碱金属类型不同但均以氢氧化物的形式加 入,且相应碱金属与S的摩尔比也发生变化,其余操作及条件均与实施例1相同,详见下表。
实施例 碱金属元素 碱金属/S(摩尔比)
1 Na 0.93
15 K 1.23
16 Cs 0.36
实施例17-18
与实施例1的区别是锂与镍钴锰总摩尔量的比例不同,即Li/Me摩尔比不同,其余操作及条件均与实施例1相同,详见下表。
实施例 Li/Me摩尔比
1 1.1
17 1
18 0.9
实施例19-26
与实施例1的区别是步骤B1中的操作条件不同(Li/Me摩尔比、烧结温度、时间、A元素类型及含量等),A元素均以氧化物的形式加入,其余操作及条件均与实施例1相同,详见下表。
实施例 T1/℃ 时间1/h A元素 A/ppm
1 700 20 Zr 3000
19 600 20 Zr 3000
20 800 15 Zr 3000
21 950 10 Zr 3000
22 1000 20 Zr 3000
23 700 20 Ti 3000
24 700 20 Zr+W Zr2000+
         W1000
25 700 20 Zr 100
26 700 20 Zr 8000
实施例27-31
与实施例1的区别是步骤B2中的操作条件不同(烧结温度、时间、钴Co元素含量等),其余操作及条件均与实施例1相同,详见下表。
实施例 T2/℃ 时间2/h Co/ppm
1 500 15 15000
27 400 15 15000
28 700 10 15000
29 800 5 15000
30 900 15 15000
31 500 15 500
实施例32-42
与实施例1的区别是步骤B2中的Co源不同或Co含量不同,或者步骤B3中的操作条件不同(烧结温度、时间、M1元素类型及含量等),其中M1元素均以氧化物的形式加入,其余操作及条件均与实施例1相同,详见下表。
实施例 Co源 Co/ppm T3/℃ 时间3/h M1元素 M1/ppm
1 Co3O4 15000 200 15 Al 2000
32 Co3O4 9000 300 5 Al 2000
33 CoOOH 1000 200 15 Al 2000
34 Co3O4 20000 200 15 Al 2000
35 Co3O4 25000 200 15 Al 2000
36 Co3O4 15000 150 15 Al 2000
37 Co3O4 15000 400 10 Al 2000
38 Co3O4 15000 500 5 Al 2000
39 Co3O4 15000 600 15 Al 2000
40 Co3O4 15000 200 15 Al 100
41 Co3O4 15000 200 15 Al 5000
42 Co3O4 15000 15 15 Al与B Al与B各1000
实施例43
与实施例1的区别仅仅是将氢氧化锂替换为氟化锂LiF,其余操作及条件均与实施例1相同。
对比例1
与实施例1不同的是,在高镍三元前驱体材料合成过程中的A2步骤:
在A2步骤中对浆料进行离心后,在干燥步骤前,加一道用0.05~1mol/L的NaOH溶液对浆料进行洗涤及离心工序,洗涤时间0.5~5h,洗涤温度45~80℃。
在正极材料合成过程中的B1步骤,高镍三元正极材料Na掺杂量降低至50ppm,第一层包覆层Li 2SO 4中S的包覆量降低至100ppm,其他与实施例1一样。
对比例2
与实施例1不同的是,在高镍三元前驱体材料合成过程中的A2步骤:
在A2步骤中对浆料进行离心后,在干燥步骤前,加一道用0.05~1mol/L的NaOH溶液对浆料进行洗涤及离心工序,洗涤时间0.5~5h,洗涤温度45~80℃。
在正极材料合成过程中的B1步骤,额外加入部分Na 2CO 3至混料中进行干混烧结掺杂,使高镍三元正极材料Na掺杂量保持与实施例1一致的水平至2000ppm,额外加入部分Li 2SO 4至混料中进行干混烧结包覆,使第一层包覆层Li 2SO 4中S的包覆量保持与实施例1一致的水平至3000ppm,其他与实施例1一样。
对比例3
与实施例1不同的是,在高镍三元前驱体材料合成过程中的A2步骤:
将步骤B1中的锂盐替换为氧化铝,并且铝元素与镍钴锰的总摩尔比保持与实施例1相同。
其它条件同实施例1。
测试以上所有实施例及对比例所得正极材料的粉末粒度、5吨下的粉末压密,并用其制作成扣式电池,0.1C下测其初始放电克容量及首效。用其制作成全电池,1/3C测试全电容量,25℃、1C/1C测试25℃循环,45℃、1C/1C测试45℃循环,70℃.30Days测试其胀 气趋势。各性能的测试方法如下。
粒度测试方法:
体积分布粒度的测试方法为:参考GB/T19077-2016/ISO13320:2009粒度分布激光衍射法,设备采用马尔文2000。取洁净烧杯,加入待测样品适量至遮光度8%~12%,加入20ml去离子水,同时外超声5min,开启粒度测试仪开始测试,测试结果用(Dv90-Dv10)/Dv50表示。
5吨压力下的粉末压实密度
首先,采用压实密度测试的方法利用外力加载颗粒受压环境,并将原粉末与受压粉末分袋保存;其次,将两袋粉送测激光粒度仪检测,并输出指标:Dv1,然后将数据代入碎裂率表达式ΔDv1/Dv1=[Dv1(受压前)-Dv1(受压后)]/Dv1(受压前),计算可得相应数值。所述的压实密度测试方法包括,在特定模具中通过5吨的压力压实样品得到厚度,通过ρc=m/V=m/(S*H)计算压实密度,其中m为物料重量,S为粉末面积,H为粉末高度。
制备扣式电池:
将正极活性物质、PVDF、导电碳加入至一定量的NMP中,加入比例为90:5:5,在干燥房中搅拌制成浆料,在铝箔上涂敷上述浆料,干燥、冷压制成正极极片,采用锂片作为负极,电解液为1mol/L的LiPF 6/(EC+DEC+DMC)体积比为1:1:1,在扣电箱中组装成扣式电池。
扣电初始克容量测试方法:
在2.8~4.3V下,按照0.1C充电至4.3V,然后在4.3V下恒压充电至电流≤0.05mA,静置2min,此时的充电容量记为C0,然后按照0.1C放电至2.8V,此时的放电容量为初始克容量,记为D0,首效即为D0/C0*100%。图2列举了实施例1的高镍正极材料制作成扣电的首次充放电曲线。表中测试的扣电池容量为D0。
制备全电池:
改性的高镍正极材料作为正极活性物质,与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比94:3:3在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀后,涂覆于铝箔上烘干、冷压,得到正极片。将负极活性物质人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂碳甲基纤维素钠(CMC)按照重量比90:5:2:2:1在去离子水溶剂体系中充分搅拌混合均匀后,涂覆于铜箔上烘干、冷压,得到负极片。以PE多孔聚合薄膜作为隔离膜。将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入配好的基础电解液并封装,得到全电池。
全电初始克容量测试方法:
在25℃恒温环境下,静置5min,按照1/3C放电至2.8V,静置5min,按照1/3C充电至4.25V,然后在4.25V下恒压充电至电流≤0.05mA,静置5min,此时的充电容量记为C0,然后按照1/3C放电至2.8V,此时的放电容量为初始克容量,记为D0,首效即为D0/C0*100%。表中测试的1/3C全电容量为D0。
全电25/45℃循环性能测试:
在25℃或者45℃的恒温环境下,在2.8~4.25V下,按照1C充电至4.25V,然后在4.25V下恒压充电至电流≤0.05mA,静置5min,然后按照1C放电至2.8V,容量记为D n(n=0,1,2……),重复前面过程300次,计算出300次循环的容量保持率为(D0-D300)/D0*100%。图3列举了对比例1与实施例1的材料制成的电池的循环曲线。
全电70℃胀气测试:
70℃100%SOC存储,存储前后及过程中测量电芯OCV,IMP,体积(排水法测试),存储结束测试电芯残余容量和可逆容量,每48h出炉,静置1h后测试OCV、IMP,冷却至室温后用排水法测试电芯体积,存储30天结束测试,或者体积膨胀超过50%停止存储,保护电压范围:2.7-4.3V,标称容量2.25Ah。图4列举了对比例1与实施例1材料制作成全电池的70℃存储胀气曲线。
对比例与实施例合成样品性能数据对比表
Figure PCTCN2022097149-appb-000001
Figure PCTCN2022097149-appb-000002
测试结果表明:
对比实施例1与对比例1,本发明的前驱体不采用碱金属氢氧化物溶液进行洗涤,可保留一定量的碱金属离子及硫酸根离子在前驱体表面均匀残余包覆,通过正极材料烧结,可在高镍三元正极材料 体相锂位均匀掺杂碱金属离子,能有效扩大及稳定锂离子的传输通道,能提升材料的容量及循环性能,同时还可以在高镍三元正极材料表面均匀包覆第一层Li 2SO 4,在电芯长循环及高温存储环境下,包覆的Li 2SO 4不易溶于电解液,并不与电解液发生副反应,能明显提高高镍三元正极材料的长期循环性能及存储性能。此外本发明相比常规的前驱体合成工艺,省去了碱洗步骤,能降低工艺成本。
对比实施例1与对比例2,对比例2在对比例1的基础上,通过火法干混烧结,在正极材料第一次烧结步骤中,加入Na 2CO 3与Li 2SO 4添加剂,使Na元素掺杂量与硫酸锂包覆量与实施例1相同,但由于干法混料的均匀性较差,使Na元素的掺杂均匀性及Li 2SO 4的包覆均匀性较差,同时Li 2SO 4的干法烧结包覆不易包覆到材料上,导致包覆均匀性很差,使各项性能指标明显差于实施例1。
对比实施例1至5与实施例7-8,当在前驱体合成步骤A2中采用去离子水对离心浆料进行冲洗的量不同,会对正极材料性能影响较大,如果用过多的去离子水对前驱体离心浆料进行冲洗,会使前驱体表面残余的钠离子和硫酸根离子很少,不利于有效提高材料的结构稳定性及界面的稳定性;当用过少的或者不用去离子水对前驱体离心浆料进行冲洗,会使前驱体表面残余的钠离子和硫酸根离子过多,反而会导致高镍三元正极材料表面残余太多的钠离子及硫酸根离子杂质,影响材料的能量密度及长期性能。
对比实施例1、20、21与实施例19、22,当第一次烧结温度过低,会使高镍三元正极材料结晶不够完善,会使材料的所有性能较 差;当第一次烧结温度过高,会使高镍三元正极材料过度烧结,使材料结构破坏,也会使材料的性能变差。
对比实施例1与实施例25-26,当第一次烧结掺杂A元素过多或者过低,也会影响材料的性能。当A元素掺杂过低,对高镍三元材料的结构稳定性改善较少,不利于材料的长期性能及存储性能;当A元素掺杂过高,会使材料残余过多的非活性掺杂化合物,反而会影响材料的容量及长期性能。
对比实施例1与实施例27和30,当第二次Co包覆的温度过高与过低,也会明显影响材料的性能。当包覆温度过低,不利于含Co化合物与表面的包覆牢固性及表面残余锂与含Co化合物的反应程度,使材料的残余锂过高,同时会降低材料的容量及界面稳定性,降低材料的电化学性能;当包覆温度过高,会使含Co化合物直接掺杂进入颗粒中,达不到包覆改善界面稳定性的效果,会使材料的容量及长期性能较差。
对比实施例1与实施例31和35,当含Co化合物包覆量较少,达不到改善界面稳定性的效果,当含Co化合物包覆量过多,会使高镍三元材料的表面残余较多的非活性残余含Co化合物,反而会降低材料的容量及长期性能。
对比实施例1与实施例36和39,当第三次含M1元素化合物包覆温度过低,不利于含M1化合物的包覆效果及牢固性,当包覆温度过高,会使含M化合物渗入材料的颗粒体相中,不利于改善界面稳定性。
对比实施例1与实施例40和41,当含M元素化合物包覆量较少,达不到改善界面稳定性的效果,当含M化合物包覆量过多,会降低材料的容量及长期性能。
对比实施例1与实施例13,当前驱体合成工艺参数pH值及氨值过低,会使前驱体合成出来的粒度分布很窄,烧结出来的高镍三元正极材料的压密较低,会降低电芯的能量密度。
对比实施例1与实施例9,当前驱体合成工艺参数pH值及氨值过高,会使颗粒Dv50较低,同时会降低材料的压密,此外会使前驱体晶体结构较差,会影响正极材料的性能。
对比实施例1~42与对比例1~3,采用本发明专利创新方法合成出来的改性高镍三元正极材料,既能降低工艺成本,又能明显提升高镍三元材料的性能。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (25)

  1. 一种改性高镍三元正极材料,其特征在于,包括基材和依次包覆在所述基材上的第一包覆层、第二包覆层和第三包覆层;
    其中,所述基材为Li 1.1-aM a(Ni bCo cMn d) 1-eA eO 2E f,并且0.01≤a≤0.2,0.8≤b≤1,0.01≤c≤0.2,0.01≤d≤0.2,0<e≤0.05,0≤f≤0.1;其中,M选自碱金属元素Na、K、Rb、Cs中的一种或多种,A选自Al、Mg、Zr、Ti、W、Y、B、Co、Nb、Mo、Sb、Sr中的一种或多种,E选自F、Cl、Br和I中的一种或多种;
    第一包覆层为Li 2SO 4,第二包覆层为含钴化合物,第三包覆层为含M 1化合物;其中M 1为Al、Ti、B、W、Nb、Sb中的一种或多种。
  2. 如权利要求1所述的改性高镍三元正极材料,其特征在于,碱金属M元素与S元素的摩尔比为(0.2~4.2):1,可选为(0.36~1.39):1。
  3. 如权利要求1或2所述的改性高镍三元正极材料,其特征在于,(1.1-a):(b+c+d)=0.9~1.1。
  4. 如权利要求1或2所述的改性高镍三元正极材料,其特征在于,以所述改性高镍三元正极材料为基准,碱金属M元素的含量为100~5000ppm,可选为500~2000ppm。
  5. 如权利要求1或2所述的改性高镍三元正极材料,其特征在于,以所述改性高镍三元正极材料为基准,S元素的含量为200~5000ppm,可选为1000~3000ppm。
  6. 如权利要求1或2所述的改性高镍三元正极材料,其特征在于,以所述改性高镍三元正极材料为基准,所述第二包覆层中钴元素的含量为1000~20000ppm,可选为5000~15000ppm。
  7. 如权利要求1或2所述的改性高镍三元正极材料,其特征 在于,以所述改性高镍三元正极材料为基准,M1元素的含量为100~5000ppm,可选为500~2000ppm;
    和/或,
    以所述改性高镍三元正极材料为基准,A元素的含量为100~8000ppm,可选为1000~5000ppm;
  8. 如权利要求1所述的改性高镍三元正极材料,其特征在于,所述改性高镍三元正极材料的体积分布粒度Dv50为3~20μm,可选为3~15μm。
  9. 如权利要求1或8所述的改性高镍三元正极材料,其特征在于,所述改性高镍三元正极材料的颗粒大小体积粒度分布径距(Dv90-Dv10)/Dv50≥1.0,可选地,(Dv90-Dv10)/Dv50≥1.2。
  10. 如权利要求1或8所述的改性高镍三元正极材料,其特征在于,所述改性高镍三元正极材料的5吨压力下的压实密度≥3.45g/cc。
  11. 一种改性高镍三元正极材料的制备方法,其特征在于,包括下列步骤:
    使镍钴锰的硫酸盐、碱液在碱性溶液环境中反应,形成高镍三元前驱体浆料;所述碱液为碱金属M的氢氧化物溶液,所述M为Na、K、Rb、Cs中的一种或多种;
    对所述高镍三元前驱体浆料进行干燥处理,得到前驱体产品;
    将锂盐、所述前驱体产品、含A元素的化合物、含E元素的化合物混合进行第一次烧结,得到掺杂碱金属、A元素及E元素,且包覆第一包覆层的高镍三元正极材料基体;
    然后将所述高镍三元正极材料基体与含钴元素的化合物混 合进行第二次烧结,之后与含M1元素的化合物混合进行第三次烧结,得到改性高镍三元正极材料;
    所述改性高镍三元正极材料包括基材和依次包覆在所述基材上的第一包覆层、第二包覆层和第三包覆层;
    其中,所述基材为Li 1.1-aM a(Ni bCo cMn d) 1-eA eO 2,并且0.01≤a≤0.2,0.8≤b≤1,0.01≤c≤0.2,0.01≤d≤0.2,0<e≤0.05;其中,M选自碱金属元素Na、K、Rb、Cs中的一种或多种,A选自Al、Mg、Zr、Ti、W、Y、B、Co、Nb、Mo、Sb、Sr中的一种或多种;
    第一包覆层为Li 2SO 4,第二包覆层为含钴化合物,第三包覆层为含M 1化合物;其中M 1为Al、Ti、B中的一种或多种。
  12. 如权利要求11所述的制备方法,其特征在于,所述碱性溶液环境通过氨水控制pH值,所述pH值在11~12之间,可选为11.1~11.7。
  13. 如权利要求11所述的制备方法,其特征在于,所述碱性溶液环境的氨浓度为0.2~0.6mol/L,可选为0.3~0.5mol/L。
  14. 如权利要求11所述的制备方法,其特征在于,在所述干燥处理之前,依次对所述高镍三元前驱体浆料进行离心、水冲洗。
  15. 如权利要求14所述的制备方法,其特征在于,所述水冲洗时的用水重量为所述高镍三元前驱体浆料重量的0.5~5倍,可选为1~3倍。
  16. 如权利要求11所述的制备方法,其特征在于,所述第一次烧结的条件为:烧结温度为700~950℃,烧结时间为10~20h,烧结气氛为空气或者O 2
  17. 如权利要求11所述的制备方法,其特征在于,所述第二次烧结的条件为:烧结温度为500~800℃,可选为550~750℃; 时间为5~15h,可选为5~10h;烧结气氛为空气或者O 2
  18. 如权利要求11所述的制备方法,其特征在于,所述第三次烧结的条件为:烧结温度为200~500℃,可选为200~400℃;烧结时间为5~15h,可选为5~10h;烧结气氛为空气或者O 2
  19. 如权利要求11所述的制备方法,其特征在于,所述锂盐为碳酸锂、氢氧化锂中的一种或两种混合;
    和/或,
    所述含钴元素的化合物为Co 3O 4、Co(OH) 2、CoO、CoOOH、醋酸钴、草酸钴、CoCO 3中的一种或两种以上混合;
    和/或,
    所述含M1元素的化合物为M1的氧化物、氢氧化物、碳酸盐中的一种或两种以上混合;
    和/或,
    所述含A元素的化合物为A的氧化物、氢氧化物、碳酸盐中的一种或两种以上混合;
    和/或,
    所述含E元素的化合物为含E元素的金属化合物、非金属化合物中的一种或多种,所述E元素为F、Cl、Br或I中的一种。
  20. 如权利要求11所述的制备方法,其特征在于,以M1元素的质量计,所述含M1元素的化合物的掺杂量为100~5000ppm,可选为500~2000ppm;
    和/或,
    以A元素的质量计,所述含A元素的化合物的掺杂量为100~8000ppm,优选为1000~5000ppm。
  21. 如权利要求11所述的制备方法,其特征在于,所述反应 之前预先加入反应釜体积10~40%的水作为底液。
  22. 一种二次电池,其包括权利要求1至10中任一项所述的改性高镍三元正极材料,或者包括根据权利要求16至18中任一项所述的制备方法得到的改性高镍三元正极材料。
  23. 一种电池模块,包括根据权利要求22所述的二次电池。
  24. 一种电池包,包括根据权利要求23所述的电池模块。
  25. 一种用电装置,包括权利要求22所述的二次电池、权利要求23所述的电池模块或权利要求24所述的电池包中的至少一种。
PCT/CN2022/097149 2022-06-06 2022-06-06 改性高镍三元正极材料及其制备方法、应用 WO2023236010A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/097149 WO2023236010A1 (zh) 2022-06-06 2022-06-06 改性高镍三元正极材料及其制备方法、应用
CN202280060839.7A CN117981115A (zh) 2022-06-06 2022-06-06 改性高镍三元正极材料及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097149 WO2023236010A1 (zh) 2022-06-06 2022-06-06 改性高镍三元正极材料及其制备方法、应用

Publications (1)

Publication Number Publication Date
WO2023236010A1 true WO2023236010A1 (zh) 2023-12-14

Family

ID=89117338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097149 WO2023236010A1 (zh) 2022-06-06 2022-06-06 改性高镍三元正极材料及其制备方法、应用

Country Status (2)

Country Link
CN (1) CN117981115A (zh)
WO (1) WO2023236010A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633395A (zh) * 2016-01-14 2016-06-01 苏州林奈新能源有限公司 一种高镍三元锂离子电池正极材料及其制备方法
CN109119628A (zh) * 2018-08-21 2019-01-01 中南大学 一种共掺杂改性的高镍三元材料及制备方法
CN112151775A (zh) * 2019-06-28 2020-12-29 宁德时代新能源科技股份有限公司 一种低产气高容量的三元正极材料
US20210013503A1 (en) * 2019-07-11 2021-01-14 Nichia Corporation Positive electrode active material and method of producing positive electrode active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633395A (zh) * 2016-01-14 2016-06-01 苏州林奈新能源有限公司 一种高镍三元锂离子电池正极材料及其制备方法
CN110589898A (zh) * 2016-01-14 2019-12-20 浙江林奈新能源有限公司 一种高镍正极材料及其制备方法
CN109119628A (zh) * 2018-08-21 2019-01-01 中南大学 一种共掺杂改性的高镍三元材料及制备方法
CN112151775A (zh) * 2019-06-28 2020-12-29 宁德时代新能源科技股份有限公司 一种低产气高容量的三元正极材料
US20210013503A1 (en) * 2019-07-11 2021-01-14 Nichia Corporation Positive electrode active material and method of producing positive electrode active material

Also Published As

Publication number Publication date
CN117981115A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2020143533A1 (zh) 正极活性材料及其制备方法、钠离子电池及包含钠离子电池的装置
JP4713051B2 (ja) 電池用活物質及びその製造方法
WO2021057428A1 (zh) 二次电池及含有该二次电池的电池模块、电池包、装置
WO2021042990A1 (zh) 正极活性材料、其制备方法、正极极片、锂离子二次电池及其相关的电池模块、电池包和装置
WO2020063680A1 (zh) 正极活性材料及其制备方法、电化学电池、电池模块、电池包及装置
US20240097124A1 (en) Positive active material, positive electrode plate and lithium-ion secondary battery
CN103794776B (zh) 一种高电压、高压实锂离子电池复合正极材料及制备方法
CN109802133B (zh) 钴酸锂前驱体及其制备方法与由该钴酸锂前驱体所制备的钴酸锂复合物
WO2021163987A1 (zh) 正极材料和包含所述正极材料的电化学装置
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
JPWO2010106768A1 (ja) 非水電解質二次電池用正極、それを用いた非水電解質二次電池、およびその製造方法
CN112635735A (zh) 一种具有包覆结构的镍钴锰酸锂前驱体、其制备方法及用途
WO2023240544A1 (zh) 正极材料及其制备方法、具备其的二次电池
WO2023015429A1 (zh) 复合金属氧化物材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2024113942A1 (zh) 正极活性材料及其制备方法、二次电池和用电装置
JP2023504478A (ja) 二次電池及び当該二次電池を備える装置
WO2023040357A1 (zh) 改性的高镍三元正极材料及其制备方法,以及用电装置
CN116190561A (zh) 钠离子电池的电池单体、钠离子电池及用电装置
EP4318662A1 (en) Spinel lithium nickel manganese oxide material and preparation method therefor
CN116941067A (zh) 正极材料、其制备方法、正极极片、二次电池和用电装置
WO2023236010A1 (zh) 改性高镍三元正极材料及其制备方法、应用
CN117099225A (zh) 高镍三元正极材料及其制备方法、二次电池、电池模块、电池包和用电装置
WO2021047324A1 (zh) 正极活性材料、其制备方法、锂离子二次电池及其相关的电池模块、电池包和装置
WO2023040358A1 (zh) 三元前驱体及其制备方法,三元正极材料以及用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060839.7

Country of ref document: CN