WO2023234401A1 - 撮像装置、表示システム及び車両 - Google Patents

撮像装置、表示システム及び車両 Download PDF

Info

Publication number
WO2023234401A1
WO2023234401A1 PCT/JP2023/020520 JP2023020520W WO2023234401A1 WO 2023234401 A1 WO2023234401 A1 WO 2023234401A1 JP 2023020520 W JP2023020520 W JP 2023020520W WO 2023234401 A1 WO2023234401 A1 WO 2023234401A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
imaging device
heat exchanger
exchanger plate
lens unit
Prior art date
Application number
PCT/JP2023/020520
Other languages
English (en)
French (fr)
Inventor
貴弘 下野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023234401A1 publication Critical patent/WO2023234401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/18Signals indicating condition of a camera member or suitability of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders

Definitions

  • the present disclosure relates to an imaging device, a display system, and a vehicle.
  • An imaging device including a heating element and a lens unit is known (see Patent Document 1).
  • the imaging device includes a heating element, a lens unit, a heat transfer body interposed between the heating element and the lens unit, to which heat is transferred from the heating element, the lens unit and the heat transfer element.
  • a first heat transfer plate interposed between the transfer bodies, in contact with the heat transfer body on one main surface side, and in contact with the lens unit on the other main surface side, the first heat transfer plate and the heat transfer body is larger than a second contact area between the first heat transfer plate and the lens unit.
  • FIG. 1 is a cross-sectional view of an imaging device according to a first embodiment.
  • FIG. 1 is a plan view of a display system and a vehicle according to a first embodiment.
  • 2 is an enlarged view of region R in FIG. 1.
  • FIG. 1 it is the figure which looked at the 1st heat exchanger plate of an example from the heat exchanger.
  • FIG. 1 it is the figure which looked at the 1st heat exchanger plate of another example from the heat exchanger.
  • FIG. 1 it is the figure which looked at the 1st heat exchanger plate of still another example from the heat exchanger.
  • FIG. 7 is a partially enlarged view showing an example of a fourth convex portion of the imaging device according to the first embodiment.
  • FIG. 1 is a plan view of a display system and a vehicle according to a first embodiment.
  • 2 is an enlarged view of region R in FIG. 1.
  • FIG. 1 it is the figure which looked at the 1st heat exchanger plate of an example from the heat exchanger.
  • FIG. 3 is a perspective view showing an example of a first heat exchanger plate of the imaging device according to the first embodiment.
  • FIG. 3 is a partially enlarged view showing an example of a concave portion and a second convex portion of the imaging device according to the first embodiment.
  • FIG. 7 is a partially enlarged view showing an example of a third convex portion of the imaging device according to the first embodiment.
  • FIG. 7 is a partially enlarged view of an imaging device according to another embodiment.
  • FIG. 7 is a partially enlarged view of an imaging device according to still another embodiment.
  • FIG. 7 is a partially enlarged view of an imaging device according to still another embodiment.
  • FIG. 1 is a cross-sectional view of the imaging device according to the first embodiment.
  • the imaging device 100 is, for example, a vehicle-mounted camera.
  • the imaging device 100 may be mounted on a vehicle 300 (see FIG. 2) together with the display device 200.
  • the imaging device 100 may be fixed to a side mirror of the vehicle 300, for example, in order to capture a peripheral image of the rear field of view.
  • the display device 200 may be provided so as to be visible from the driver's seat.
  • the imaging device 100 and the display device 200 may configure a display system.
  • the imaging device 100 includes a lens unit 10, a heating element 20, a heat transfer body 30, and a heat exchanger plate (first heat exchanger plate) 40.
  • the imaging device 100 may further include a second heat exchanger plate 60.
  • the lens unit 10 may include an imaging optical system 11 and a lens barrel 12.
  • the imaging optical system 11 may form a subject image within the imaging field of view on the imaging element 21.
  • the imaging optical system 11 may include at least one optical element.
  • the imaging optical system 11 may be designed and formed to satisfy desired optical characteristics such as focal length and depth of focus.
  • Optical elements may include lenses, apertures, mirrors, and the like.
  • the lens barrel 12 may be cylindrical.
  • the lens barrel 12 may accommodate the imaging optical system 11 in a holding hole 12h defined by a cylindrical inner peripheral surface.
  • An annular holding portion 11s for fixing the imaging optical system 11 may be formed at the rear edge of the lens barrel 12.
  • the lens barrel 12 may hold the imaging optical system 11 such that the optical axis OA of the imaging optical system 11 passes through the center of the opening 12o defined by the ring of the holding part 11s.
  • a light beam incident on the imaging optical system 11 may pass through the opening 12 Mr.
  • the lens barrel 12 may be a resin member.
  • the heating element 20 may be a structure that generates heat directly or indirectly when the imaging device 100 is driven.
  • the heating element 20 may include, for example, an electronic component 23 and a substrate 22 on which the electronic component 23 is mounted.
  • the heating element 20 may include an image sensor 21, for example.
  • the mounting height of the electronic component 23 on the board 22 may vary depending on the type of the electronic component 23.
  • the image sensor 21 may be placed behind the lens unit 10.
  • the image sensor 21 may capture a subject image formed on a light-receiving surface via the lens unit 10, convert it into an electrical signal, and output the electrical signal.
  • the image sensor 21 may be, for example, a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like.
  • the imaging device 100 may transmit an image signal based on an electrical signal from the imaging device 21 to a device external to the imaging device 100, such as a display device.
  • the image signal may be the electrical signal itself output from the image sensor 21, or may be a signal subjected to necessary image processing by the electronic component 23.
  • the electronic component 23 may be mounted on the board 22. There may be a single substrate 22 or a plurality of substrates. By applying a plurality of substrates, size constraints for accommodation inside the imaging device 100 can be easily satisfied.
  • the electronic component 23 may be a component for driving the image sensor 21, processing image signals, etc., for example.
  • the heat transfer body 30 is interposed between the heat generating body 20 and the lens unit 10. Heat is transferred from the heating element 20 to the heat transfer element 30.
  • the heat transfer body 30 may include an opening (first opening) 30 1958.
  • the heat transfer body 30 may be in contact with the heat generating body 20 at the end (inner peripheral surface) of the first opening 30o.
  • the heat transfer body 30 is arranged in the imaging device 100 so that the optical axis OA of the imaging optical system 11 is located within the first opening 30o. A light beam incident on the imaging optical system 11 may pass through the first opening 30 Schau.
  • Heat transfer body 30 may be solid or liquid.
  • the heat transfer body 30 may be an elastic solid body. In the following description, unless otherwise specified, the heat transfer body 30 is an elastic solid.
  • the heat transfer body 30 may be made of highly thermally conductive resin such as silicone resin.
  • the heat transfer body 30 may be made of carbon-based highly thermally conductive resin. By applying carbon-based high thermal conductivity resin to the heat transfer body 30, the thermal conductivity in the in-plane direction of the heat transfer body 30 can be higher than the thermal conductivity in the thickness direction.
  • the heat transfer plate 40 is interposed between the lens unit 10 and the heat transfer body 30.
  • the heat exchanger plate 40 may be made of a material with higher heat conductivity than the heat transfer body 30, and may include metals such as aluminum, nickel silver, and copper. By employing metal for the heat transfer plate 40, electromagnetic interference can be reduced. By employing metal for the heat exchanger plate 40, electromagnetic compatibility can be improved.
  • the heat exchanger plate 40 may be made of an elastic solid material.
  • the heat exchanger plate 40 may be made of, for example, a highly thermally conductive resin such as silicone resin. By molding the heat exchanger plate 40 with resin, the heat exchanger plate 40 with a complicated shape can be easily manufactured.
  • the heat exchanger plate 40 may have a main body portion 40m and a tip portion 40t.
  • the tip portion 40t may be continuous on at least a portion of the outer edge of the main body portion 40m.
  • the tip portion 40t may be formed by bending the main surface of the main body portion 40m in one direction.
  • the main surface means the surface having the maximum area in a rectangular parallelepiped plate.
  • the main body portion 40m may be provided with a convex portion or a concave portion, but in a configuration including a surface on which an uneven surface is formed, the main surface is a surface having the maximum area macroscopically considering the surface unevenness as a plane. means.
  • the main body portion 40m may have an opening (second opening) 40o near the center.
  • the heat exchanger plate 40 may be arranged within the imaging device 100 such that the main surface (for example, the main surface 40b) of the main body portion 40m is orthogonal to the optical axis OA of the imaging optical system 11.
  • the heat exchanger plate 40 may be arranged within the imaging device 100 so that the tip end 40t faces the lens unit 10 side.
  • the heat exchanger plate 40 may extend to the outside of the lens unit 10 in the imaging device 100 when viewed from the direction along the optical axis OA. More specifically, at least a portion of the outer edge of the main body portion 40m of the heat exchanger plate 40 may extend to the outside of the lens unit 10 within the imaging device 100.
  • the second opening 40o of the heat transfer plate 40 may be coaxial with the first opening 30o of the heat transfer body 30 in the imaging device 100. With such a configuration, the light beam incident on the imaging optical system 11 may pass through the second opening 40 Schau.
  • the heat transfer plate 40 may be in contact with the heat transfer body 30 on one main surface 40a side.
  • the heat exchanger plate 40 contacts the lens unit 10 on the other main surface 40b side. More specifically, the heat exchanger plate 40 may be in contact with the lens barrel 12 in the lens unit 10.
  • the first contact area between the heat exchanger plate 40 and the heat transfer body 30 is larger than the second contact area between the heat exchanger plate 40 and the lens unit 10 .
  • FIG. 3 is an enlarged view of region R in FIG. 1.
  • Region R is a part of the cross section of the imaging device 100.
  • Region R includes a portion of the rear edge of the lens barrel 12, a heat transfer plate 40, a heat transfer body 30, and a heating element (electronic component) 23.
  • the heat exchanger plate 40 may include a first convex portion 41 on one main surface 40a side.
  • the first convex portion 41 may have a protrusion shape.
  • the first convex portion 41 may have a ridge shape of a line segment, as shown in FIG. 5 .
  • the first protrusion 41 may be in the shape of a ring ridge, as shown in FIG.
  • the heat exchanger plate 40 may include three or more first convex portions 41.
  • the three or more first convex portions do not need to exist in the same straight line.
  • the first convex portion 41 may have a hemispherical shape.
  • the first convex portion 41 may have a conical shape or a polygonal pyramid shape with an axis perpendicular to the main surfaces 40a, 40b.
  • the first convex portion 41 may have a semi-cylindrical shape or a polygonal column shape whose axis is parallel to the main surfaces 40a and 40b. It is preferable that the edge of the first convex portion 41 be formed gently. In other words, the first convex portion 41 and the other portions of the heat exchanger plate 40 may smoothly transition. With this configuration, the gap between the heat transfer plate 40 and the heat transfer body 30 may be reduced.
  • the heights of the plurality of first convex portions 41 in other words, the lengths in the normal direction of the main surface (one of the main surfaces 40a) may be different.
  • the height of the first convex portion 41 may vary depending on the distance between the heating element 20 and the heat exchanger plate 40 that face each other with the heat exchanger 30 interposed therebetween. More specifically, the wider the distance, the higher the first convex portion 41 may become. With such a configuration, the heat transfer body 30 pressed by the first convex portion 41 is deformed according to the height of the first convex portion 41, so that the heat transfer body 30 is moved to the side opposite to the first convex portion.
  • the height of the protrusion may vary.
  • the first convex portion 41 may include a through hole 44h that penetrates from one main surface 40a side to the other main surface 40b side.
  • the heat exchanger plate 40 may have the fourth protrusion 44 in which the through hole 44h is formed.
  • the heat transfer body 30 may enter into the through hole 44h.
  • the heat transfer body 30 may contact the inner circumferential surface and the outer circumferential surface of the fourth convex portion 44 .
  • the total contact area between the inner peripheral surface and the outer peripheral surface of the heat transfer body 30 may be larger than the area of the through hole 44h. In other words, by forming the through hole 44h, the contact area between the heat transfer body 30 and the fourth convex portion 44 may become larger.
  • the heat transfer body 30 does not need to contact the lens unit 10.
  • the fourth convex portion 44 of the heat transfer plate 40 is pressed against the heat transfer body 30, and the heat transfer body 30 wraps around the inner peripheral surface of the fourth convex portion 44. good.
  • the first protrusion 41 having the through hole 44h may have a slit shape as a whole.
  • the first convex portion 41 of the heat transfer plate 40 may be pressed against the heat transfer body 30, and the heat transfer body 30 may enter the slit.
  • the heat exchanger plate 40 or the lens unit 10 may be formed so that the heat exchanger plate 40 and the lens unit 10 come into contact with each other while reducing their contact area.
  • the heat exchanger plate 40 may include a recess 42 on the other main surface 40b side.
  • the heat exchanger plate 40 may include three or more second convex portions 43 on the other main surface 40b side. The three or more second convex portions 43 do not need to exist in the same straight line.
  • the lens unit 10 may include three or more third convex portions 13 that are in contact with the heat exchanger plate 40, as shown in FIG.
  • the three or more third convex portions 13 do not need to exist in the same straight line.
  • Both the second convex portion 43 and the third convex portion 13 may be provided so that the total number is three or more.
  • a portion of the heat exchanger plate 40 near the second opening 40 Wenn may be inclined toward one main surface 40a. Therefore, a portion of the heat exchanger plate 40 near the second opening 40o may be inclined toward the heating element 20 within the imaging device 100.
  • the periphery of the second opening 40o of the heat exchanger plate 40 may be bent to form an inclined portion 40i that is inclined toward the heating element 20 side.
  • the heat transfer body 30 is a solid having elasticity, the heat transfer body 30 can be deformed to match the shape of the heat transfer plate 40 when the heat transfer plate 40 presses the heat transfer body 30.
  • the heat transfer body 30 may also be inclined toward the heating element 20 in the vicinity of the second opening 40 1958.
  • the angle ⁇ of the inclined portion 40i with respect to the optical axis OA of the lens unit 10 may be larger than the incident angle of the light ray that passes through the aperture of the optical system and enters the image sensor 21. With this configuration, light rays that pass through the aperture of the optical system and enter the image sensor 21 can reach the image sensor 21 without being blocked by the heat transfer plate 40 or the heat transfer body 30.
  • the first convex portion 41 when viewed from the in-plane direction of the heat exchanger plate 40 (direction perpendicular to the paper plane of FIG. 11), the first convex portion 41 is asymmetrical with respect to the normal l of the heat exchanger plate 40. It's fine.
  • the heat exchanger plate 40 may have the first convex portion (fifth convex portion) 41 that is asymmetrical with respect to the normal l of the heat exchanger plate 40 .
  • the cross-sectional shape of the first convex portion 41 may be a right triangle. One side of the right triangle may include the normal l. The other side of the right triangle may be the oblique side that is closer to the image sensor 21 than the normal l.
  • the image sensor 21 may be in contact with the heat transfer body 30 in the in-plane direction of the heat transfer body 30 .
  • the first protrusion 41 is pressed by the image sensor 21 via the heat transfer body 30, so the first protrusion 41 can generate a large elastic repulsion force. Therefore, the image sensor 21 and the heat transfer body 30 are brought into closer contact with each other, and the heat of the image sensor 21 can be easily transferred to the heat transfer body 30.
  • the density of the first convex portion (sixth convex portion) 41 increases as the distance from the opening (third opening) 40 Wenn of the heat exchanger plate 40 increases. It's fine.
  • the first convex portions 41 may be sparsely arranged in the first region 40f near the opening 40 réelle.
  • the first protrusions 41 may be arranged more densely in the second region 40s away from the third opening 40 Wenn than in the first region 40f.
  • the light rays that pass through the aperture of the optical system and enter the image sensor 21 may be less likely to be blocked by the heat transfer body 30.
  • the contact area between the heat transfer body 30 and the first convex portion 41 of the heat transfer plate 40 may become large. Therefore, the heat of the heat transfer body 30 can be efficiently transferred to the heat transfer plate 40.
  • the first convex portions 41 may be densely arranged in the first region 40f.
  • the first convex portions 41 may be arranged sparserly in the second region 40s than in the first region 40f.
  • the second heat exchanger plate 60 may be in direct or indirect contact with the first heat exchanger plate 40.
  • the second heat exchanger plate 60 may surround the electronic component (heating element) 23 from the direction intersecting the optical axis OA of the lens unit 10.
  • the second heat exchanger plate 60 may surround the electronic component 23 from a direction perpendicular to the optical axis OA of the lens unit 10.
  • the second heat exchanger plate 60 may surround the electronic component 23 around an axis parallel to a direction orthogonal to the optical axis OA of the lens unit 10.
  • the second heat exchanger plate 60 may have a rectangular or cylindrical shape.
  • the second heat exchanger plate 60 may surround the electronic component 23 together with the first heat exchanger plate 40.
  • the second heat exchanger plate 60 may have a main body portion 60m and a contact portion 60t.
  • the contact portion 60t may be continuous with the main body portion 60m at the rear end portion of the imaging device 100.
  • the contact portion 60t may be formed by bending the main surface of the main body portion 60m in one direction.
  • the second heat exchanger plate 60 may be arranged within the imaging device 100 so that the main surface of the main body portion 60m is parallel to the optical axis OA of the imaging optical system 11.
  • the main body 60m may extend rearward from the heat exchanger plate 40. With this configuration, the heat of the heating element 20 can be transferred in a direction away from the lens unit 10.
  • the main body portion 60m may be fixed to the casing 80 of the imaging device 100 with an adhesive.
  • the adhesive may be a thermally conductive material.
  • the contact portion 60t may be attached to the internal heat transfer member 70.
  • the internal heat transfer member 70 may be placed on the rear side of the imaging device 100.
  • Internal heat transfer member 70 may have heat transfer and insulation properties.
  • the internal heat transfer member 70 can be realized by, for example, a silicone heat transfer sheet or heat transfer potting, but is not limited thereto.
  • the second heat exchanger plate 60 may be in contact with the tip portion 40t of the heat exchanger plate 40. Specifically, the main body portion 60m of the second heat exchanger plate 60 may contact the tip portion 40t of the heat exchanger plate 40. At least a portion of the second heat transfer plate 60 and the tip portion 40t may be in contact with each other via a heat conductive material.
  • the thermally conductive material can improve the contact or heat transfer between the second heat exchanger plate 60 and the tip portion 40t.
  • the thermally conductive material may be solid or liquid.
  • the end of the tip portion 40t of the heat exchanger plate 40 may be located in the recess 80r of the housing 80 together with the end of the contact portion 60t of the second heat exchanger plate 60.
  • the end of the tip 40t of the heat exchanger plate 40 may be located in the recess of the lens barrel 12.
  • the recess may be located on the heat exchanger plate 40 side of the housing 80.
  • the recess may be filled with a thermally conductive material.
  • the thermally conductive material may be a highly thermally conductive resin.
  • the imaging device 100 of the present embodiment includes a heat transfer body 30 that is interposed between the heat generating body 20 and the lens unit 10 and to which heat is transferred from the heat generating body 20, and a heat transfer body 30 that is interposed between the lens unit 10 and the heat transfer body 30.
  • a heat transfer plate that contacts the heat transfer body 30 on one main surface side and contacts the lens unit 10 on the other main surface side, the first contact between the heat transfer plate 40 and the heat transfer body 30;
  • the area is larger than the second contact area between the heat exchanger plate 40 and the lens unit 10.
  • an imaging device mounted on a vehicle is sometimes housed in a space-saving space such as a side mirror, which is narrow and easily traps heat. Furthermore, since the external environmental temperature is also added, the imaging device is required to operate stably at extremely high temperatures. Further, since an imaging device for peripheral monitoring is required to have a wide angle of view, the focal length of the imaging device is generally short. Therefore, the height of the imaging device is inevitably reduced, and heat dissipation is likely to deteriorate. Furthermore, in vehicle imaging devices, the lens surface on the objective side of the imaging device tends to get cold due to driving wind, rainy weather, snowfall, etc., and water vapor in the cooled spherical space of the lens may condense on the lens surface, resulting in poor visibility.
  • the imaging device 100 having the above-described configuration is effective in a space-saving configuration such as a side mirror of a vehicle.
  • the heat transfer plate 40 extends to the outside of the lens unit 10 when viewed from the direction of the normal l to the main surface (for example, the other main surface 4b) of the heat transfer plate 40. With this configuration, the imaging device 100 can transfer the heat transferred to the heat transfer plate 40 to a space or an object outside the lens unit 10.
  • the imaging device 100 of the present embodiment includes a second heat exchanger plate 60 that surrounds the heating element from a direction intersecting the optical axis OA of the lens unit 10, and the second heat exchanger plate 60 is connected to the first heat exchanger plate 40.
  • the heating element in direct or indirect contact is the electronic component 23 .
  • electromagnetic interference or electromagnetic compatibility may be improved.
  • Imaging device 10 Lens unit 11 Imaging optical system 11s Holding part 12 Lens barrel 12r Recessed part 12o Opening 12h Holding hole 13 Third convex part 20 Heating element 21 Imaging element 22 Substrate 23 Electronic component 30 Heat transfer body 30o First opening 40 Heat exchanger plate 40
  • Second opening third opening 40a, 40b Main surface 40i Inclined part 40m Main body 40t Tip 41 First convex part, fifth convex part 42 Concave part 43 Second convex part 44 Fourth convex part 44h Through hole 45
  • Slit 60 Second heat transfer plate 60t Contact portion 60m Main body 70 Internal heat transfer member 80 Housing 200 Display device 300 Vehicle OA Optical axis R Region l Normal line ⁇ Angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Indication In Cameras, And Counting Of Exposures (AREA)
  • Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)

Abstract

撮像体は、発熱体と、レンズユニットと、熱伝達体と、第1伝熱板と、を有する。熱伝達体は、発熱体及びレンズユニットの間に介在する。発熱体から熱伝達体に熱が伝達される。第1伝熱板は、レンズユニット及び熱伝達体の間に介在する。第1伝熱板は、一方の主面側で熱伝達体と接触し、他方の主面側でレンズユニットと接触する。第1伝熱板と熱伝達体との間の第1接触面積が、第1伝熱板とレンズユニットとの間の第2接触面積よりも大きい。

Description

撮像装置、表示システム及び車両 関連出願の相互参照
 本出願は、2022年6月1日に日本国に特許出願された特願2022-089758の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本開示は、撮像装置、表示システム及び車両に関するものである。
 発熱体及びレンズユニットを含む撮像装置が知られている(特許文献1参照)。
特開2005-64591号公報
 一実施形態において、撮像装置は、発熱体と、レンズユニットと、前記発熱体及び前記レンズユニットの間に介在し、前記発熱体から熱が伝達される熱伝達体と、前記レンズユニット及び前記熱伝達体の間に介在し、一方の主面側で前記熱伝達体と接触し、他方の主面側で前記レンズユニットと接触する第1伝熱板と、を備え、前記第1伝熱板と前記熱伝達体との間の第1接触面積が、前記第1伝熱板と前記レンズユニットとの間の第2接触面積よりも大きい。
第1実施形態に係る撮像装置の断面図である。 第1実施形態に係る表示システム及び車両の平面図である。 図1の領域Rの拡大図である。 図1において、熱伝達体から一例の第1伝熱板を見た図である。 図1において、熱伝達体から他の例の第1伝熱板を見た図である。 図1において、熱伝達体から更に他の例の第1伝熱板を見た図である。 第1実施形態に係る撮像装置の第4凸部の例を示す部分拡大図である。 第1実施形態に係る撮像装置の第1伝熱板の例を示す斜視図である。 第1実施形態に係る撮像装置の凹部及び第2凸部の例を示す部分拡大図である。 第1実施形態に係る撮像装置の第3凸部の例を示す部分拡大図である。 他の実施形態に係る撮像装置の部分拡大図である。 更に他の実施形態に係る撮像装置の部分拡大図である。 更に他の実施形態に係る撮像装置の部分拡大図である。
 以下、本開示を適用した撮像装置の実施形態が、図面を参照して説明される。
 図1は、第1実施形態に係る撮像装置の断面図である。撮像装置100は、例えば車載カメラである。撮像装置100は、表示装置200とともに車両300(図2参照)に搭載されてよい。撮像装置100は、例えば後方の視界の周辺画像を撮像するために、車両300のサイドミラー等に固定されてよい。表示装置200は、運転席から視認可能に設けられてよい。撮像装置100及び表示装置200は、表示システムを構成してよい。
 撮像装置100は、レンズユニット10と、発熱体20と、熱伝達体30と、伝熱板(第1伝熱板)40と、を含んで構成される。撮像装置100は、更に、第2伝熱板60を含んで構成されてよい。
 以下では、図1のレンズユニット10の光軸OAに平行で、撮像装置100から被写体に向かう方向(光軸OAの矢印が指し示す方向)を、「後」から「前」に向かう方向として説明する。
 レンズユニット10は、撮像光学系11及びレンズバレル12を有してよい。
 撮像光学系11は、撮像視野内の被写体像を撮像素子21に結像させてよい。撮像光学系11は、少なくとも1つの光学素子を含んでよい。撮像光学系11は、焦点距離、焦点深度等の所望の光学特性を満たすように設計され、形成されてよい。光学素子は、レンズ、絞り、ミラー等を含んでよい。
 レンズバレル12は、筒状であってよい。レンズバレル12は、筒状の内周面が画定する保持孔12hに撮像光学系11を収容してよい。レンズバレル12の後縁には、撮像光学系11を固定するための円環状の保持部11sが形成されてよい。保持部11sの円環が画定する開口部12oの中心を撮像光学系11の光軸OAが通過するように、レンズバレル12は撮像光学系11を保持してよい。開口部12оを、撮像光学系11に入射する光束が通過してよい。レンズバレル12は樹脂部材であってよい。
 発熱体20は、撮像装置100の駆動により直接的に又は間接的に発熱する構造体であってよい。発熱体20は、例えば、電子部品23、及び当該電子部品23を実装する基板22を含んでよい。発熱体20は、例えば、撮像素子21を含んでよい。電子部品23の、基板22における実装高さは、電子部品23の種類によって異なり得る。
 撮像素子21は、レンズユニット10の後方に配置されてよい。撮像素子21は、レンズユニット10を介して受光面上に結像される被写体像を撮像して電気信号に変換して出力してよい。撮像素子21には、例えばCCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等が用いられてよい。撮像装置100は、撮像素子21からの電気信号に基づく画像信号を、例えば、表示装置のように、撮像装置100の外部の装置に伝送してよい。画像信号は、撮像素子21から出力された電気信号そのものであってもよいし、電子部品23によって必要な画像処理を施された信号であってもよい。
 基板22は、電子部品23を実装してよい。基板22は単一であってもよいし、複数であってもよい。複数の基板を適用することにより、撮像装置100の内部に収容するためのサイズの制約が容易に満たされ得る。電子部品23は、例えば撮像素子21の駆動、画像信号の信号処理等のための部品であってよい。
 熱伝達体30は、発熱体20及びレンズユニット10の間に介在する。熱は、発熱体20から熱伝達体30に伝達される。熱伝達体30は、開口部(第1開口部)30оを含んでよい。熱伝達体30は、第1開口部30oの端部(内周面)において、発熱体20と接触してよい。熱伝達体30は、撮像装置100において、撮像光学系11の光軸OAが第1開口部30o内に位置するように配置されている。第1開口部30оを、撮像光学系11に入射する光束が通過してよい。熱伝達体30は固形又は液状であってよい。熱伝達体30は弾性を有する固形であってよい。以下の説明では、特に断らない限り、熱伝達体30は弾性を有する固形である。熱伝達体30はシリコーン樹脂等の高熱伝導性樹脂であってよい。熱伝達体30はカーボン系の高熱伝導性樹脂であってよい。熱伝達体30にカーボン系の高熱伝導性樹脂を適用することにより、熱伝達体30の面内方向の熱伝導性が、厚み方向の熱伝導性よりも高くなり得る。
 伝熱板40は、レンズユニット10及び熱伝達体30の間に介在する。伝熱板40は、熱伝達体30に比べて、伝熱性の高い材質であってよく、例えばアルミ、洋白、銅等の金属を含んでよい。伝熱板40に金属を採用することにより、電磁妨害(Electromagnetic Interference)が低減され得る。伝熱板40に金属を採用することにより、電磁的両立性(Electromagnetic Compatibility)が向上され得る。
 又は、伝熱板40は、弾性を有する固形の材質であってよい。伝熱板40は例えば、シリコーン樹脂等の高熱伝導性樹脂であってよい。伝熱板40を樹脂成形することによって、複雑な形状の伝熱板40が容易に製造され得る。
 伝熱板40は、本体部40m及び先端部40tを有してよい。先端部40tは、本体部40mの外縁の少なくとも一部において連続してよい。先端部40tは、本体部40mの主面の一方向側に屈曲させることにより形成されてよい。本願明細書において、主面は、直方体である板における最大面積を有する面を意味する。後述するように、本体部40mには凸部又は凹部が設けられ得るが、凹凸が形成される面を含む構成において、主面は巨視的に表面の凹凸を平面とみなした最大面積を有する面を意味する。本体部40mは、中央近傍に開口部(第2開口部)40oを有してよい。
 伝熱板40は、本体部40mの主面(例えば主面40b)が撮像光学系11の光軸OAに直交するように、撮像装置100内に配置されていてよい。伝熱板40は、先端部40tがレンズユニット10側を向くように、撮像装置100内に配置されてよい。
 伝熱板40は、撮像装置100内において、光軸OAに沿った方向から見て、レンズユニット10よりも外側まで延びてよい。より具体的には、伝熱板40の本体部40mの外縁の少なくとも一部は、撮像装置100内において、レンズユニット10よりも外側まで延びてよい。伝熱板40の第2開口部40oは、撮像装置100内において、熱伝達体30の第1開口部30oと同軸であってよい。このような構成により、撮像光学系11に入射する光束が第2開口部40оを通過してよい。
 伝熱板40は、一方の主面40a側で熱伝達体30と接触してよい。伝熱板40は、他方の主面40b側でレンズユニット10と接触する。より具体的には、伝熱板40は、レンズユニット10におけるレンズバレル12と接触してよい。伝熱板40と熱伝達体30との間の第1接触面積は、伝熱板40とレンズユニット10との第2接触面積より大きい。以下に、伝熱板40の具体的な構造とともに、伝熱板40が熱伝達体30及びレンズユニット10と接触する具体的な構成が説明される。
 図3は、図1の領域Rの拡大図である。領域Rは、撮像装置100の断面の一部である。領域Rは、レンズバレル12の後縁の一部と、伝熱板40と、熱伝達体30と、発熱体(電子部品)23とを含む。図3及び図4に示すように、伝熱板40は、一方の主面40a側に第1凸部41を含んでよい。第1凸部41は、突起状であってよい。又は、第1凸部41は、図5に示すように、線分の畝状であってよい。又は、第1凸部41は、図6に示すように、環の畝状であってよい。
 第1凸部41が突起状である構成において、伝熱板40は、3つ以上の第1凸部41を含んでよい。3つ以上の第1凸部は、同一直線状に存在しなくてよい。第1凸部41は、半球状であってよい。第1凸部41は、軸線が主面40a,40bに直交する円錐状又は多角錐状であってよい。第1凸部41は、軸線が主面40a,40bに平行な半円筒状又は多角柱状であってよい。第1凸部41の縁部はなだらかに形成されていることが好ましい。言換えれば、伝熱板40の第1凸部41と他の以外の部分とは、滑らかに移行してよい。当該構成では、伝熱板40と熱伝達体30との間の隙間が減少され得る。
 第1凸部41が突起状である構成において、複数の第1凸部41の高さ、言換えると主面(一方の主面40a)の法線方向における長さが異なっていてよい。第1凸部41の高さは、熱伝達体30を介して対向する発熱体20と伝熱板40との間隔に応じて異なっていてよい。より具体的には、当該間隔が広がるほど第1凸部41が高くなってよい。このような構成により、第1凸部41に押圧される熱伝達体30が、第1凸部41の高さに応じて変形することにより、熱伝達体30が第1凸部とは反対側に突出する突出高さが変わり得る。
 図7に示すように、第1凸部41は、一方の主面40a側から他方の主面40b側に貫通する貫通孔44hを含んでよい。言換えると、伝熱板40は、貫通孔44hが形成された第4凸部44を有してよい。貫通孔44hの内部に、熱伝達体30が侵入してよい。熱伝達体30は、第4凸部44の内周面及び外周面に接触してよい。貫通孔44hの面積よりも、熱伝達体30の内周面及び外周面における合計の接触面積が大きくてよい。言換えれば、貫通孔44hが形成されることで、熱伝達体30と第4凸部44との接触面積がより大きくなってよい。熱伝達体30は、レンズユニット10に接触しなくてよい。当該実施形態の撮像装置を製造するにあたり、伝熱板40の第4凸部44が、熱伝達体30に押し付けられて、熱伝達体30が第4凸部44の内周面に回り込んでよい。
 図8に示すように、第1凸部41が線分の畝状である構成においては、貫通孔44hを有する第1凸部41は、全体的にスリット状であってよい。当該実施形態の撮像装置を製造するにあたり、伝熱板40の第1凸部41が熱伝達体30に押し付けられて、熱伝達体30がスリットに入り込んでよい。
 他方の主面40b側において、伝熱板40とレンズユニット10との接触面積を低減しながら接触するように、伝熱板40又はレンズユニット10が形成されていてよい。例えば、図3に示すように、伝熱板40は、他方の主面40b側に凹部42を含んでよい。又は、図9に示すように、伝熱板40は、他方の主面40b側に、3つ以上の第2凸部43を含んでよい。3つ以上の第2凸部43は、同一直線状に存在しなくてよい。又は、伝熱板に凹部42又は第2凸部43を設ける代わりに、図10に示すように、レンズユニット10は伝熱板40と接触する第3凸部13を3つ以上含んでよい。3つ以上の第3凸部13は、同一直線状に存在しなくてよい。第2凸部43と第3凸部13の個数の両方が、合計3つ以上となるように設けられても良い。
 図1に示すように、伝熱板40の第2開口部40оの近傍の一部は、一方の主面40a側に傾斜していてよい。したがって、伝熱板40の第2開口部40oの近傍の一部は、撮像装置100内において、発熱体20に向かって傾斜してよい。例えば、伝熱板40の第2開口部40oの周囲が屈曲して、発熱体20側に傾斜する傾斜部40iを形成してよい。上述した、熱伝達体30が弾性を有する固形である構成では、伝熱板40が熱伝達体30を押圧することにより、熱伝達体30は伝熱板40の形状に合わせて変形し得る。熱伝達体30も、第2開口部40оの近傍において、発熱体20に向かって傾斜し得る。
 傾斜部40iの、レンズユニット10の光軸OAに対する角度θは、光学系の絞りの際を通って撮像素子21に入射する光線の入射角より大きくてよい。当該構成により、光学系の絞りの際を通って撮像素子21に入射する光線が、伝熱板40又は熱伝達体30に遮られることなく、撮像素子21に到達し得る。
 図11に示すように、伝熱板40の面内方向(図11の紙面に直交する方向)から見て、第1凸部41は、伝熱板40の法線lに対して非対称であってよい。言換えると、伝熱板40は、伝熱板40の法線lに対して非対称である第1凸部(第5凸部)41を有してよい。第1凸部41の断面形状は、直角三角形であってよい。直角三角形の一辺は法線lを含んでよい。直角三角形の他の辺は法線lよりも撮像素子21側に存在する斜辺であってよい。撮像素子21は、熱伝達体30の面内方向で熱伝達体30に当接してよい。当該構成により、第1凸部41が撮像素子21から熱伝達体30を介して押圧されるので、第1凸部41は大きな弾性反発力を発生させ得る。したがって、撮像素子21と熱伝達体30とはより密着し、撮像素子21の熱が熱伝達体30に伝達しやすくなり得る。
 図12に示すように、一方の主面40aにおいて、第1凸部(第6凸部)41の密度は、伝熱板40の開口部(第3開口部)40оから離れるに応じて大きくなってよい。例えば、図4から6に示すように、第1凸部41は、開口部40о近傍の第1領域40fでは疎に配置されてよい。第1凸部41は、第3開口部40оから離れた第2領域40sでは、第1凸部41が第1領域40fよりも密に配置されてよい。当該構成により、開口部40о近傍では、第1凸部41から熱伝達体30への押圧が弱くなり、熱伝達体30の面内方向への膨張が小さくなる。したがって、光学系の絞りの際を通って撮像素子21に入射する光線は、熱伝達体30に遮られにくくなり得る。一方で、開口部40оから離れた領域では、熱伝達体30と伝熱板40の第1凸部41との接触面積が広くなり得る。したがって、熱伝達体30の熱が効率的に伝熱板40に伝達され得る。
 又は、第1凸部41は、第1領域40fでは密に配置されてよい。第1凸部41は、第2領域40sでは、第1凸部41が第1領域40fよりも疎に配置されてよい。当該構成により、開口部40о近傍では、熱伝達体30と伝熱板40の第1凸部41との接触面積が広くなり得る。したがって、発熱体20の近傍において、熱伝達体30の熱が効率的に伝熱板40に伝達され得る。
 図1に示すように、第2伝熱板60は、第1伝熱板40と直接又は間接的に接触してよい。第2伝熱板60は、電子部品(発熱体)23を、レンズユニット10の光軸OAと交わる方向から囲ってよい。例えば、第2伝熱板60は、電子部品23を、レンズユニット10の光軸OAと直交する方向から囲ってよい。言換えれば、第2伝熱板60は、電子部品23を、レンズユニット10の光軸OAと直交する方向に平行な軸線周りに囲ってよい。第2伝熱板60は、角筒状又は円筒状であってよい。又は、第2伝熱板60は、第1伝熱板40とともに電子部品23を囲繞してよい。
 第2伝熱板60は、本体部60m及び接触部60tを有してよい。接触部60tは、本体部60mと、撮像装置100における後端部で連続してよい。接触部60tは、本体部60mの主面の一方向側に屈曲させることにより形成されてよい。
 第2伝熱板60は、本体部60mの主面が撮像光学系11の光軸OAに平行になるように、撮像装置100内に配置されていてよい。撮像装置100において、本体部60mは、伝熱板40から後方に向かって延存してよい。当該構成により、発熱体20の熱がレンズユニット10から離れる方向に伝達され得る。
 本体部60mは、接着剤によって、撮像装置100の筐体80に固定されてよい。接着剤は、熱伝導材料であってよい。
 接触部60tは、内部伝熱部材70に取付けられてよい。内部伝熱部材70は、撮像装置100の後側に配置されてよい。内部伝熱部材70は、伝熱性および絶縁性を有してよい。内部伝熱部材70は、例えばシリコーン製の伝熱シートまたは伝熱ポッティング等によって実現できるが、これらに限定されるものではない。
 第2伝熱板60は、伝熱板40の先端部40tと接触してよい。具体的に、第2伝熱板60の本体部60mは、伝熱板40の先端部40tと接触してよい。第2伝熱板60と先端部40tとの間の少なくとも一部が、熱伝導材料を介して接触してよい。熱伝導材料は、第2伝熱板60と先端部40tとの接触性又は熱伝達性を向上させ得る。熱伝導材料は、固形又は液状であってよい。
 図13に示すように、伝熱板40の先端部40tの端部が、第2伝熱板60の接触部60tの端部とともに、筐体80の凹部80rに位置してよい。又は、伝熱板40の先端部40tの端部が、レンズバレル12の凹部に位置してよい。凹部は、筐体80の伝熱板40側に位置してよい。凹部には、熱伝導材料が充填されていてよい。熱伝導材料は、高熱伝導性樹脂であってよい。
 本実施形態の撮像装置100は、発熱体20及びレンズユニット10の間に介在し、発熱体20から熱が伝達される熱伝達体30と、レンズユニット10及び熱伝達体30の間に介在し、一方の主面側で熱伝達体30と接触し、他方の主面側でレンズユニット10と接触する伝熱板とを備え、伝熱板40と熱伝達体30との間の第1接触面積が、伝熱板40とレンズユニット10との間の第2接触面積よりも大きい。このような構成により、撮像装置100は、発熱体20の熱を、レンズユニット10への熱伝達を低減させながら、熱伝達体30を介して伝熱板40に伝達し得る。
 一般に、車両に搭載される撮像装置は、サイドミラー等の省スペースで狭く熱のこもり易い空間に収納される場合がある。さらに外部環境温度も加わる為、撮像装置は非常に高温下での安定動作を求められる。また、周辺監視用途の撮像装置においては広い画角を求められることから、撮像装置の焦点距離は一般的に短くなる。したがって、必然的に撮像装置は低背化することになり、放熱性は悪化し易い。さらに車両撮像装置においては走行風、雨天、降雪等により撮像装置の対物側のレンズ面が冷え易く、冷やされたレンズの球欠空間内の水蒸気がレンズ面に結露し視認不良となることがある。この結露現象は一般的に対物側レンズ面の温度が高い程に発生し易い。したがって、発熱体からの効率的な熱伝達、及びレンズユニットへの熱伝達の軽減が求められている。上述した構成を有する撮像装置100は、車両のサイドミラー等の省スペースに設けられる構成において有効である。
 本実施形態の撮像装置100において、伝熱板40は、伝熱板40の主面(例えば他方の主面4b)の法線lの方向から見て、レンズユニット10よりも外側まで延びる。この構成により、撮像装置100は、伝熱板40に伝熱された熱を、レンズユニット10外の空間又は物体に伝達させ得る。
 本実施形態の撮像装置100は、発熱体を、レンズユニット10の光軸OAと交わる方向から囲う第2伝熱板60を有し、第2伝熱板60は、第1伝熱板40と直接又は間接的に接触し、発熱体は電子部品23である。この構成において、第1伝熱板40又は第2伝熱板60に金属を採用することにより、電磁妨害又は電磁的両立性が向上され得る。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
 100 撮像装置
 10 レンズユニット
 11 撮像光学系
 11s 保持部
 12 レンズバレル
 12r 凹部
 12o 開口部
 12h 保持孔
 13 第3凸部
 20 発熱体
 21 撮像素子
 22 基板
 23 電子部品
 30 熱伝達体
 30o 第1開口部
 40 伝熱板
 40о 第2開口部、第3開口部
 40a、40b 主面
 40i 傾斜部
 40m 本体部
 40t 先端部
 41 第1凸部、第5凸部
 42 凹部
 43 第2凸部
 44 第4凸部
 44h 貫通孔
 45 スリット
 60 第2伝熱板
 60t 接触部
 60m 本体部
 70 内部伝熱部材
 80 筐体
 200 表示装置
 300 車両
 OA 光軸
 R 領域
 l 法線
 θ 角度

Claims (12)

  1.  発熱体と、
     レンズユニットと、
     前記発熱体及び前記レンズユニットの間に介在し、前記発熱体から熱が伝達される熱伝達体と、
     前記レンズユニット及び前記熱伝達体の間に介在し、一方の主面側で前記熱伝達体と接触し、他方の主面側で前記レンズユニットと接触する第1伝熱板と、
    を備え、
     前記第1伝熱板と前記熱伝達体との間の第1接触面積が、前記第1伝熱板と前記レンズユニットとの間の第2接触面積よりも大きい、撮像装置。
  2.  前記第1伝熱板は、前記第1伝熱板の主面の法線方向から見て、前記レンズユニットよりも外側まで延びる、請求項1に記載の撮像装置。
  3.  前記第1伝熱板は、前記一方の主面側に第1凸部を含み、
     前記第1凸部は、半球状、円錐状、半円筒状、多角柱状又は多角錐状である
    請求項1又は2に記載の撮像装置。
  4.  前記第1伝熱板は前記レンズユニットと接触する第2凸部を含み、又は前記レンズユニットは前記第1伝熱板と接触する第3凸部を含む
    請求項1乃至3のいずれか一項に記載の撮像装置。
  5.  前記第1伝熱板は、前記一方の主面側に第4凸部を含み、前記第4凸部は貫通孔を含み、前記熱伝達体は前記第4凸部の内周面及び外周面に接触する
    請求項1乃至4のいずれか一項に記載の撮像装置。
  6.  前記熱伝達体は前記レンズユニットの光軸を含む第1開口部を含み、
     前記第1伝熱板は前記レンズユニットの光軸を含む第2開口部を含む、
    請求項1乃至5のいずれか一項に記載の撮像装置。
  7.  前記熱伝達体は弾性を有する固形であり、
     前記第1伝熱板は、前記第2開口部の近傍において、前記発熱体に向かって傾斜する請求項6に記載の撮像装置。
  8.  前記熱伝達体は弾性を有する固形であり、
     前記第1伝熱板は、前記一方の主面側に第5凸部を含み、
     前記第1伝熱板の面内方向から見て、前記第5凸部は前記第1伝熱板の法線に対して非対称である
    請求項1乃至7のいずれか一項に記載の撮像装置。
  9.  前記第1伝熱板は前記レンズユニットの光軸を含む第3開口部を含み、
     前記第1伝熱板は、前記一方の主面側に第6凸部を含み、
     前記一方の主面において、前記第6凸部の密度は、前記第3開口部から離れるに応じて大きい
    請求項1乃至8のいずれか一項に記載の撮像装置。
  10.  前記発熱体を、前記レンズユニットの光軸と交わる方向から囲う第2伝熱板を有し、
     前記第2伝熱板は、前記第1伝熱板と直接又は間接的に接触し、
     前記発熱体は電子部品である、
    請求項1乃至9のいずれか一項に記載の撮像装置。
  11.  請求項1乃至10のいずれか一項に記載の撮像装置と、
     前記撮像装置が撮像した画像を表示する表示装置と、を有する、表示システム。
  12.  請求項1乃至10のいずれか一項に記載の撮像装置を有する、車両。
PCT/JP2023/020520 2022-06-01 2023-06-01 撮像装置、表示システム及び車両 WO2023234401A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022089758A JP2023177063A (ja) 2022-06-01 2022-06-01 撮像装置、表示システム及び車両
JP2022-089758 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023234401A1 true WO2023234401A1 (ja) 2023-12-07

Family

ID=89025008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020520 WO2023234401A1 (ja) 2022-06-01 2023-06-01 撮像装置、表示システム及び車両

Country Status (2)

Country Link
JP (1) JP2023177063A (ja)
WO (1) WO2023234401A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278603A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 撮像モジュール
JP2017184035A (ja) * 2016-03-30 2017-10-05 京セラ株式会社 撮像モジュール
JP2017198754A (ja) * 2016-04-25 2017-11-02 日本電産コパル株式会社 撮像装置
JP2021057628A (ja) * 2019-09-26 2021-04-08 京セラ株式会社 撮像装置及び移動体
JP2022070434A (ja) * 2020-10-27 2022-05-13 フォルシアクラリオン・エレクトロニクス株式会社 撮像装置
JP2023076018A (ja) * 2021-11-22 2023-06-01 ニデックプレシジョン株式会社 撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278603A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 撮像モジュール
JP2017184035A (ja) * 2016-03-30 2017-10-05 京セラ株式会社 撮像モジュール
JP2017198754A (ja) * 2016-04-25 2017-11-02 日本電産コパル株式会社 撮像装置
JP2021057628A (ja) * 2019-09-26 2021-04-08 京セラ株式会社 撮像装置及び移動体
JP2022070434A (ja) * 2020-10-27 2022-05-13 フォルシアクラリオン・エレクトロニクス株式会社 撮像装置
JP2023076018A (ja) * 2021-11-22 2023-06-01 ニデックプレシジョン株式会社 撮像装置

Also Published As

Publication number Publication date
JP2023177063A (ja) 2023-12-13

Similar Documents

Publication Publication Date Title
US8970700B2 (en) Imaging apparatus
WO2017163584A1 (ja) 車載画像処理装置
US20170187931A1 (en) Vehicle-mounted camera
JP5871534B2 (ja) 撮像装置
WO2009098875A1 (ja) 固体撮像装置およびその製造方法
KR102494347B1 (ko) 카메라 모듈
CN109257526A (zh) 摄像设备
US20220236513A1 (en) Camera module
JP2014011565A (ja) カメラモジュール
JP4552784B2 (ja) 撮像素子の固定構造およびレンズユニット並びに撮像装置
WO2023234401A1 (ja) 撮像装置、表示システム及び車両
US20080198556A1 (en) Heatsink structure for solid-state image sensor
JP2006222776A (ja) 撮像装置
JP2020060639A (ja) レンズユニットおよびカメラモジュール
CN113890966A (zh) 相机模块
WO2022052057A1 (zh) 车载多目结构及车辆
JP6595388B2 (ja) 撮像モジュール
JP2022070434A (ja) 撮像装置
JP2021152609A (ja) 撮像装置および車両
EP3471391B1 (en) A camera
US20200395396A1 (en) Image sensor package
JP7336315B2 (ja) 撮像装置
WO2023248756A1 (ja) 光学部品、カメラ及び車両
US20230199289A1 (en) Image pickup apparatus
CN220820446U (zh) 导热粘尘滤光模组和摄像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816158

Country of ref document: EP

Kind code of ref document: A1