WO2023233704A1 - 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法 - Google Patents

溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法 Download PDF

Info

Publication number
WO2023233704A1
WO2023233704A1 PCT/JP2023/002726 JP2023002726W WO2023233704A1 WO 2023233704 A1 WO2023233704 A1 WO 2023233704A1 JP 2023002726 W JP2023002726 W JP 2023002726W WO 2023233704 A1 WO2023233704 A1 WO 2023233704A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
plate
energization
condition
steel
Prior art date
Application number
PCT/JP2023/002726
Other languages
English (en)
French (fr)
Inventor
大起 山岸
央海 澤西
直雄 川邉
克利 ▲高▼島
公一 谷口
広志 松田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023528764A priority Critical patent/JP7355281B1/ja
Publication of WO2023233704A1 publication Critical patent/WO2023233704A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor

Definitions

  • the present invention relates to a welded joint, a welded member, a method for manufacturing the same, and a resistance spot welding method.
  • resistance spot welding which is a type of lap resistance welding
  • this welding method for example, as shown in FIG. ), the steel plates 1-1 and 1-2 (hereinafter, the steel plate placed on the uppermost side in the vertical direction is called the upper steel plate 1-1, and the steel plate placed on the lowermost side in the vertical direction is called the lower steel plate 1-2).
  • This is a method of joining by applying welding current between the upper and lower electrodes while sandwiching the plate set 2 made of stacked sheets (also referred to as 2 sheets) and applying pressure from above and below.
  • a point-shaped weld is obtained by utilizing resistance heat generated by flowing a welding current.
  • nugget 5 This point-shaped weld is called a nugget 5. That is, the nugget 5 is a portion where the steel plates are melted and solidified at a contact point when an electric current is passed through the stacked steel plates. This nugget 5 joins the steel plates to each other in a dotted manner.
  • plated steel sheets surface-treated steel sheets having anti-rust properties such as zinc are used for parts of automobiles that are applied to parts exposed to rainwater.
  • the plated steel sheet refers to a steel sheet that has a metal plating layer on the surface of a base material (substrate steel sheet).
  • metal plating layers include electrogalvanizing, hot-dip galvanizing (including alloyed hot-dip galvanizing), zinc alloy plating containing elements such as aluminum and magnesium in addition to zinc, and aluminum and zinc plating.
  • metal plating layers include aluminum-zinc alloy plating whose main component is aluminum.
  • Patent Document 1 describes resistance spot welding that is applied to a plate assembly in which a plurality of steel plates including such plated steel plates are stacked together.
  • "High-strength plating characterized by spot welding of high-strength plated steel sheets by setting the welding energization time and the holding time after welding energization so as to satisfy the following conditions (1) and (2).
  • Spot welding method for steel plates 0.25 ⁇ (10 ⁇ t+2)/50 ⁇ WT ⁇ 0.50 ⁇ (10 ⁇ t+2)/50 ⁇ (1) 300-500 ⁇ t+250 ⁇ t 2 ⁇ HT...(2)
  • t plate thickness (mm)
  • WT welding energization time (ms)
  • HT holding time after welding energization (ms). is disclosed.
  • ⁇ A method of spot welding a plurality of stacked steel plates, including one or more steel plates coated with plating at the welding location on at least one surface, by sandwiching them between opposing welding electrodes Includes a process to remove plating before spot welding, In the step of removing the plating, the range from which the plating is removed is at least within a circle that is the outer edge of a weld heat affected zone formed on the welding electrode side of a plurality of overlapping steel plates. Spot welding method. ” is disclosed.
  • a method For at least one of the plurality of steel plates, at least the overlapping surface of the welding location is coated with zinc-based plating, and the total plate thickness t (mm) of the plurality of steel plates is 1.35 mm or more, Maintaining the pressure on the welded member by the welding electrode from the time when the current flow between the welding electrodes starts until the time when the current flow between the welding electrodes ends when welding is completed, When welding is completed, the holding time Ht (seconds) after energization from the end of energization between the welding electrodes to the time when the welding electrodes and the workpiece to be welded are brought out of contact should be within the range of formula (1) below.
  • a spot welding method characterized by: 0.015t 2 +0.020 ⁇ Ht ⁇ 0.16t 2 -0.40t+0.70...(1)'' is disclosed.
  • Patent Document 5 ⁇ In the resistance spot welding method, a set of multiple steel plates stacked one on top of the other is sandwiched between a pair of electrodes and joined by applying current while applying pressure. At least one of the plurality of stacked steel plates is a surface-treated steel plate having a metal plating layer on the surface, A main energization step in which energization is performed to form a nugget portion; A non-energization step in which the energization is stopped for a energization stop time Tc (cycle) after the main energization step; After the non-energizing step, a post-energizing step is performed to reheat the nugget portion without growing it; The striking angle of the electrode is A (degrees), the current value of the main energization process is Im (kA), the current value of the post-energization process is Ip (kA), 1+0.1 ⁇ Tc is variable B, 1+0.2 ⁇ Tc is variable When C, the ener
  • resistance spot welding (hereinafter also referred to as resistance spot welding for zinc-based plated steel sheets), which is applied to plate sets made by stacking multiple steel plates including galvanized steel sheets, especially zinc-based plated steel sheets, cracks may occur in the welded parts.
  • the problem is that it is easy to occur.
  • the melting point of zinc plating or zinc alloy plating is lower than the melting point of the base material. Therefore, in resistance spot welding of zinc-based plated steel sheets, the low melting point metal plating layer on the surface of the steel sheets melts during welding. When tensile stress due to the electrode's pressure and the thermal expansion and contraction of the steel sheet is applied to the weld, the molten low-melting point metal invades the grain boundaries of the base material of the zinc-plated steel sheet, strengthening the grain boundaries. and cause cracking. That is, most of the cracks in the welded part that occur during resistance spot welding of zinc-based plated steel sheets are considered to be cracks caused by so-called liquid metal embrittlement (hereinafter also referred to as liquid metal embrittlement cracks).
  • liquid metal embrittlement cracks so-called liquid metal embrittlement
  • Such liquid metal embrittlement cracking is likely to occur when large deformation is applied to the weld.
  • cracks are likely to occur on the surface of the plate assembly 1 that comes into contact with the welding electrodes 3 and 4 as shown in FIG.
  • cracks that occur at the shoulder of the plate assembly surface which is the outer periphery of the contact area between the welding electrode and the plate assembly (hereinafter also referred to as shoulder crack) have a lower welding current value than cracks that occur directly below the electrode. arises from.
  • the thickness ratio of the outermost steel plate (hereinafter also referred to as the surface steel plate) located at the outermost side of the plate set (which comes into contact with the electrode during welding) becomes larger, the thickness ratio between the surface steel plate and the steel plate adjacent to the surface steel plate increases. It becomes difficult to secure a nugget diameter of this size.
  • the thickness ratio of the surface steel plates is a value obtained by dividing the total thickness of the steel plates constituting the plate set by the thickness of the surface steel plates.
  • Patent Documents 1, 2, 4, and 5 are capable of suppressing the occurrence of cracks in welds and stably securing a nugget diameter of a desired size when the thickness ratio of the surface steel plate and the influence of external disturbances are large. At present, it is not possible to achieve both, and improvements in this respect are desired. It should be noted that improvement in this respect is desired not only in steel sheets for automobiles but also in resistance spot welding of zinc-based plated steel sheets for other applications.
  • Patent Document 3 requires a step of removing the plating layer on the surface of the steel sheet in advance (hereinafter also referred to as a plating layer removal step), which significantly increases manufacturing costs. Furthermore, since the plating layer of the steel plate is removed, there is a risk that the corrosion resistance of the welded portion may deteriorate.
  • the present invention has been developed in view of the above-mentioned current situation, and is applicable even when at least one of the surface steel plates of a plate assembly is a zinc-based plated steel plate, and where the thickness ratio of the surface steel plates or the influence of external disturbances is large.
  • An object of the present invention is to provide a welded joint in which cracking of the welded portion is suppressed and the nugget diameter has a desired size.
  • the present invention can be used as resistance spot welding for zinc-based plated steel sheets, and does not require a plating layer removal step, and also prevents cracking of the welded portion even when the thickness ratio of the surface steel sheet or the influence of external disturbances is large.
  • an object of the present invention is to provide a resistance spot welding method that can achieve both suppression and stably securing a nugget diameter of a desired size. Furthermore, an object of the present invention is to provide a welded member having the above-mentioned welded joint and a method for manufacturing the same.
  • the angle of the shoulder is determined by the tensile strength and thickness of the galvanized steel sheet that is placed as the surface steel plate (the outermost steel plate in the plate assembly (in contact with the electrode during welding)), and the tensile strength and thickness of the plate assembly. be appropriately controlled in relation to the total thickness of the steel plates constituting it and the nugget diameter. Specifically, at least one of the following expressions (1) and (2) is satisfied. Thereby, the occurrence of cracks in the welded portion can be effectively suppressed.
  • the shoulder angle a (hereinafter also referred to as shoulder angle a) of the first steel plate of the plate assembly is the thickness direction (hereinafter referred to as shoulder angle a) of the welded joint (plate assembly), as shown in FIG. , in the cut plane (also referred to as the thickness direction), the first shoulder tangent line is made with respect to the surface direction (direction perpendicular to the thickness direction, hereinafter also referred to as the surface direction) of the steel plates that make up the plate set. It's an angle.
  • the first shoulder tangent is the line between the first straight line (hereinafter also referred to as the first straight line) parallel to the thickness direction passing through the nugget end and the shoulder surface of the first steel plate.
  • the shoulder angle b of the n-th steel plate of the plate assembly (hereinafter also referred to as shoulder angle b) is the angle b of the shoulder of the n-th steel plate in the thickness direction of the welded joint, as shown in Fig. 2. This is the angle that the shoulder tangent of the eye makes with the surface direction.
  • the n-th shoulder tangent is the tangent to the shoulder at the intersection between the first straight line and the shoulder surface of the n-th steel plate (hereinafter also referred to as the n-th intersection).
  • angles a and b of the shoulder portion are shown with one of the nugget ends (here, the right end when facing the page) as a representative.
  • a welded joint is basically axially symmetrical at the nugget center position (the welding electrode center position during welding)
  • the angles a and b of the shoulder part are the thickness direction of the welded joint passing through the center of the nugget. What is necessary is just to measure it in arbitrary cut surfaces (hereinafter also referred to as the cut surfaces of welded joints).
  • the shoulder angles a and b change depending on the position (not axially symmetrical), such as when the welding electrode is misaligned or has a striking angle, the maximum value of these is calculated as the shoulder angle a. and b.
  • the steel plate closest to the center position in the thickness direction of the plate set should be Let the surface be a reference surface, and let the surface direction of the reference surface be the surface direction.
  • the cut surface of the welded joint (if the shoulder angle is not axially symmetrical, the shoulder angle
  • the reference position is defined as a position 9 mm away from the center position of the nugget on the surface of the steel plate, which is used as a reference, on the cut surface of the welded joint where the maximum Then, the direction of the straight line connecting the reference positions may be defined as the surface direction.
  • the nugget diameter W referred to here is the long axis (maximum diameter) of the nugget in the surface direction. That is, the nugget diameter W is measured, for example, as the distance between the ends of the nugget in the surface direction on the cut surface of the welded joint.
  • the diameter W0 of the intermediate stage nugget which will be described later, is also the long axis (maximum diameter) of the intermediate stage nugget in the surface direction. That is, the diameter W0 of the intermediate stage nugget is measured, for example, as the distance between the ends of the intermediate stage nugget in the surface direction on the cut surface of the welded joint at the end of the first energization process.
  • expulsion is one of the causes of deformation of the shoulder part of the plate assembly that occurs during welding.
  • the occurrence of scattering the amount of molten metal scattering
  • cracking of the welded portion can be suppressed.
  • the energization process during welding is divided into two processes: a first energization process and a second energization process.
  • a first energization process by adjusting the energization pattern and controlling the amount of heat input, large deformation at the shoulder of the board assembly is suppressed as much as possible, while the intermediate stage nugget (hereinafter also referred to as intermediate stage nugget) form).
  • the intermediate stage nugget is gradually expanded to its final size while suppressing large deformation at the shoulder of the plate as much as possible by using an energization pattern that repeats energization and cooling. get a nugget.
  • the amount of heat input must be controlled by adjusting the energization pattern according to the thickness and tensile strength of the galvanized steel sheets placed as the surface steel sheets of the sheet assemblies, as well as the total thickness of the steel plates that make up the sheet assemblies. It is important to.
  • the energization be carried out under the condition that the diameter of the intermediate stage nugget formed in the first energization step satisfies at least one of the following expressions (7) and (8).
  • the pressure welding part (corona bond part) around the intermediate stage nugget is strengthened to the extent necessary to secure the final nugget diameter and suppress cracking in the welded part in the target plate assembly. can be formed into As a result, even when the thickness ratio of the surface steel plate and the influence of disturbances are large, it is possible to expand the intermediate stage nugget while suppressing the amount of scattering in the second energization step.
  • the desired nugget diameter can be achieved while suppressing the deformation of the shoulder portion of the plate set and the occurrence of cracks in the welded portion after the second energization process is completed.
  • the intermediate stage nugget can be enlarged by energizing at a current value higher than the current value at the end of the energization in the first energization step.
  • the amount of heat input becomes excessive, large deformation will occur at the shoulder portion of the board assembly. Therefore, it is important to use an energization pattern that repeats cooling and energization for a certain period of time or more.
  • the nugget can be expanded in stages while suppressing large deformation at the shoulder portion of the plate set as much as possible.
  • the gist of the present invention is as follows. 1.
  • a welded joint comprising a plate set made by stacking n steel plates and a nugget for joining the steel plates, n is an integer of 2 or more,
  • the plate assembly at least one of the first steel plate and the nth steel plate from the top is a zinc-based plated steel plate,
  • the angle a of the shoulder of the first steel plate of the plate set satisfies the following formula (1)
  • the angle b of the shoulder in the n-th steel plate of the plate set satisfies the following formula (2)
  • the angles a and b of the shoulder portion satisfy the following formulas (1) and (2), respectively
  • the nugget diameter x k (mm) at the boundary level between the k-th steel plate and the k+1-th steel plate is 4.0 ⁇ t k or more
  • k is an integer from 1 to n-1.
  • t k is the thickness (mm) of the thinner steel plate of the k-th steel plate and the k+1-th steel plate.
  • the total thickness T of the n steel plates, the thickness tU of the first steel plate, and the thickness tL of the nth steel plate are determined by the following equations (5) and (6). 3.
  • a resistance spot welding method in which a set of n steel plates stacked one on top of the other is held between a pair of welding electrodes and joined by applying current while applying pressure, the method comprising: n is an integer of 2 or more, In the plate assembly, at least one of the first steel plate and the nth steel plate from the top is a zinc-based plated steel plate, Further, the resistance spot welding method includes: a first energization step forming an intermediate stage nugget; a second energization step of enlarging the intermediate stage nugget; has In the first energization step, when the diameter W0 of the intermediate stage nugget is [Condition 1], the following equation (7) is In the case of [Condition 2], the following equation (8) is written as In the case of [Condition 3], both equations (7) and (8) below are Apply electricity under conditions that satisfy each In the second energization step, Cooling time: Cooling in a non-energized state for 10 ms or more and less than 160
  • the total thickness T of the n steel plates, the thickness t U of the first steel plate, and the thickness t L of the n-th steel plate are at least one of the following (5) and (6). 8.
  • the resistance spot welding method according to any one of 5 to 8 above, which satisfies one or more of the following conditions (A) to (E).
  • A) The welding electrode and plate assembly have a striking angle.
  • B) A pair of welding electrodes are misaligned.
  • E On the surface of the plate set, the shortest distance from the center of the welding point to the end face of the plate set is 10 mm or less.
  • a method for producing a welded member comprising the step of joining a set of n steel plates stacked together by the resistance spot welding method according to any one of 5 to 9 above, where n is an integer of 2 or more.
  • the present invention even when at least one of the surface steel plates in a plate assembly is a zinc-plated steel plate and the thickness ratio of the surface steel plates or the influence of external disturbances is large, cracking of the welded part is suppressed and the desired result is achieved.
  • a welded joint is obtained with a nugget diameter of the same size.
  • the welded member having the welded joint of the present invention has a galvanized steel plate with high corrosion resistance placed on the outermost side, it is suitable for automobile parts, especially automobile parts used in parts exposed to rainwater. It is very suitable for application.
  • FIG. 3 is a diagram schematically showing an example of a resistance spot welding method.
  • FIG. 3 is a diagram schematically showing an example of a cut surface of a welded joint.
  • FIG. 3 is a diagram schematically showing an example of a board assembly with a board gap.
  • the welded joint according to one embodiment of the present invention is A welded joint comprising a plate set made by stacking n steel plates and a nugget for joining the steel plates, n is an integer of 2 or more,
  • the plate assembly at least one of the first steel plate and the nth steel plate from the top is a zinc-based plated steel plate,
  • the angle a of the shoulder of the first steel plate of the plate set satisfies the following formula (1)
  • the angle b of the shoulder in the n-th steel plate of the plate set satisfies the following formula (2)
  • the angles a and b of the shoulder portion satisfy the following formulas (1) and (2), respectively,
  • the nugget diameter x k (mm) at the boundary level between the k-th steel plate and the k+1-th steel plate is 4.0 ⁇ t k or more
  • k is an integer from 1
  • t k is the thickness (mm) of the thinner of the k-th steel plate and the k+1-th steel plate.
  • the plate set is made by stacking n steel plates, and at least one of the first steel plate and the nth steel plate from the top, that is, at least one of the surface steel plates of the plate set is It is a galvanized steel sheet.
  • the order from the top here may be, for example, the order from the top in the vertical direction when the board set is arranged so that the surface of the board set is parallel to the horizontal plane.
  • a zinc-based plated steel sheet is a steel plate that has a zinc-based plating layer on one or both surfaces of a base steel sheet, such as a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet.
  • a base steel sheet such as a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet.
  • the zinc-based plating layer should be located at the outermost side of the plate assembly. It is preferable.
  • the zinc-based plating layer is a plating layer having a zinc content of 1% by mass or more, preferably 30% by mass or more.
  • the zinc-based plating layer contains a total of 50 alloying elements such as aluminum, magnesium, silicon, nickel, and iron.
  • a zinc alloy plating layer containing less than % by mass is included.
  • the zinc alloy plating layer (steel sheet having it) include Galfan (Zn-5 mass% Al) and Ecogal (registered trademark) (Zn-5 mass% Al-1 mass% or less of Mg and Ni).
  • an aluminum-zinc alloy plating layer for example, galvalume (55 Examples include mass% Al-43.4% Zn-1.6% Si).
  • the zinc-based plating layer preferably has a melting point lower than that of the underlying steel sheet. Further, the remaining components other than the above-mentioned zinc and alloying elements are unavoidable impurities.
  • the base steel plate is not particularly limited, and for example, steel plates having various strengths from mild steel with a tensile strength (hereinafter also referred to as TS) of 270 MPa to steel plates with a TS of 490 to 2500 MPa can be used.
  • TS tensile strength
  • the above-mentioned zinc-based plated steel plates may be used for the steel plates other than the first steel plate and the n-th steel plate.
  • unplated steel plates may be used, for example, steel plates having various strengths ranging from mild steel of TS: 270 MPa class to steel plates of TS: 490 to 2,500 MPa class.
  • the above-mentioned zinc-based plated steel plate may be used for the n-th steel plate, or the above-mentioned non-plated steel plate may be used. good. The same applies to the first steel plate when a zinc-based plated steel plate is used as the nth steel plate.
  • the thickness of the steel plates constituting the plate set is not particularly limited, but is preferably, for example, 0.4 mm or more and 3.2 mm or less.
  • a steel plate having a thickness of 0.4 mm or more and 3.2 mm or less can be suitably used as an automobile member.
  • n which is the number of overlapping steel plates in the plate set, may be an integer of 2 or more. Although the upper limit of n is not particularly limited, for example, n is preferably 7 or less.
  • the shoulder angle a of the first steel plate of the plate set and the shoulder angle b of the nth steel plate of the plate set are respectively According to the above-mentioned [Condition 1] to [Condition 3], it is important to satisfy at least one of the above-mentioned expressions (1) and (2).
  • the shoulder portion is a shoulder portion at a recess on the front surface (front and back surfaces) of the board set, as shown in FIG.
  • numerals 1-1 to 1-3 are steel plates
  • 2 is a plate assembly
  • 5 is a nugget
  • 6 is a shoulder.
  • the depressions on the surfaces (front and back surfaces) of the plate assembly referred to here are welding electrode marks caused by pressure applied by the welding electrode during welding, and the nugget is located between the depressions.
  • Shoulder angles a and b Satisfy at least one of the above equations (1) and (2) according to the above-mentioned [conditions 1] to [conditions 3].
  • cracks in the weld that occur during resistance spot welding of galvanized steel sheets are determined by the deformation of the shoulder of the plate assembly that occurs during welding, in other words, the occurrence of shoulder cracks. It strongly affects angles a and b.
  • the angles a and b of the shoulders are calculated based on the tensile strength and thickness of the galvanized steel plate disposed as the surface steel plate of the plate assembly, the total thickness of the steel plates constituting the plate assembly, and the nugget diameter W.
  • the angle a of the shoulder portion satisfies the following formula (3)
  • the shoulder angle b satisfies the following formula (4)
  • the angles a and b of the shoulder portion satisfy the following expressions (3) and (4), respectively.
  • the lower limits of the angles a and b of the shoulder portions are not particularly limited, and may be 0°.
  • the shoulder angles a and b are each preferably greater than or equal to 1°.
  • Nugget diameter x k (mm) at the boundary level between the k-th steel plate and the k+1-th steel plate 4.0 ⁇ t k or more
  • the nugget diameter x k (mm) at the boundary level is 4.0 ⁇ t k or more.
  • the upper limit of the nugget diameter x k is not particularly limited, from the viewpoint of suppressing the occurrence of scattering, the nugget diameter x k is preferably 10.0 ⁇ t k or less.
  • k is an integer from 1 to n-1
  • t k is the thickness (mm) of the thinner of the k-th steel plate and the k+1-th steel plate.
  • a nugget is a point-like welded portion that joins steel plates of a plate assembly. Further, the nugget is a portion where the steel plates of the plate assembly are melted and solidified.
  • a welding member according to one embodiment of the present invention is a welding member having the above-mentioned weld joint.
  • the welded member according to an embodiment of the present invention has a galvanized steel plate with high corrosion resistance disposed on the outermost side, so it can be applied to automobile parts, especially automobile parts used in parts exposed to rainwater. It is suitable.
  • the welded member according to an embodiment of the present invention may further include another welded joint (welded portion) in addition to the above-mentioned welded joint.
  • a resistance spot welding method includes: A resistance spot welding method in which a set of n steel plates stacked one on top of the other is held between a pair of welding electrodes and joined by applying current while applying pressure, the method comprising: n is an integer of 2 or more, In the plate assembly, at least one of the first steel plate and the nth steel plate from the top is a zinc-based plated steel plate, Further, the resistance spot welding method includes: a first energization step forming an intermediate stage nugget; a second energization step of enlarging the intermediate stage nugget; has In the first energization step, when the diameter W0 of the intermediate stage nugget is [Condition 1], the following equation (7) is In the case of [Condition 2], the following equation (8) is written as In the case of [Condition 3], both equations (7) and (8) below are Apply electricity under conditions that satisfy each In the second energization step, Cooling time: Cooling time: Cooling time: Cooling time: Cooling time
  • a pair of welding electrodes 3 and 4 (upper electrode 3 and lower electrode 4) are used to form steel plates 1-1 and 1-2 (also referred to as upper steel plate 1-1 and lower steel plate 1-2). While sandwiching the stacked plate set 2 and applying pressure from above and below, welding current is applied between the upper electrode and the lower electrode to join them.
  • the welding device that can be used in the resistance spot welding method according to the embodiment of the present invention may include a pair of upper and lower welding electrodes, and can arbitrarily control the pressurizing force and welding current during welding.
  • the format (stationary type, robot gun, etc.), electrode shape, etc. are not particularly limited.
  • the configuration for applying and controlling the pressurizing force is not particularly limited, and conventionally known devices such as air cylinders and servo motors can be used.
  • the configuration for supplying current and controlling the current value during energization is not particularly limited, and conventionally known devices can be used.
  • the current during energization may be either direct current or alternating current.
  • current means "effective current”.
  • the shapes of the tips of the upper electrode 3 and the lower electrode 4 are not particularly limited. ) etc. Further, the tip diameter of the electrode is, for example, 4 mm to 16 mm.
  • the energization process during welding is divided into two processes, the first energization process and the second energization process. Then, in the first energization step, by adjusting the energization pattern and controlling the amount of heat input, an intermediate stage nugget is formed while suppressing large deformation at the shoulder portion of the plate set as much as possible. In addition, in the second energization process, by using an energization pattern that repeats energization and cooling, the intermediate stage nugget is expanded in stages while suppressing large deformation at the shoulder of the plate assembly as much as possible. get.
  • the amount of heat input must be controlled by adjusting the energization pattern according to the thickness and tensile strength of the galvanized steel sheets placed as the surface steel sheets of the sheet assemblies, as well as the total thickness of the steel plates that make up the sheet assemblies. It is important to.
  • the diameter W0 of the intermediate stage nugget (the diameter of the nugget obtained at the end of the first energization step) is determined by the above equations (7) and (8). It is important to conduct electricity under conditions that satisfy at least one of the following.
  • the pressure welding part (corona bond part) around the intermediate stage nugget is strengthened to the extent necessary to secure the final nugget diameter and suppress cracking in the welded part in the target plate assembly. can be formed into As a result, even when the thickness ratio of the surface steel plate and the influence of disturbances are large, it is possible to expand the intermediate stage nugget while suppressing the amount of scattering in the second energization process described later. As a result, the desired nugget diameter can be achieved while suppressing the deformation of the shoulder portion of the plate set and further the occurrence of cracks in the welded portion after the second energization is completed.
  • the upper limit of the diameter W0 of the intermediate stage nugget is not particularly limited, but if W0 becomes too large, there is a risk that the amount of scattering particles in the first energization step will increase. Therefore, the current is applied under conditions such that the diameter W0 of the intermediate stage nugget is preferably W x 0.9 mm or less, more preferably W x 0.8 mm or less. Note that, as described above, W is the nugget diameter of the (finally obtained) welded joint (the diameter of the nugget at the end of the second energization process).
  • the first energization step it is preferable to conduct energization in an upslope manner.
  • Is current value at the start of energization
  • the current value at the end of energization is If (kA)
  • the following equation (11) is satisfied.
  • Is is preferably 2.0 to 14.0 kA. If is preferably 3.0 to 15.0 kA.
  • the maximum current value in the first energization process (for example, the current value at the end of energization in the above-mentioned up-slope energization) is calculated as I1 (current value in the first energization process). value).
  • the intermediate stage nugget formed in the first energization process is expanded in stages while suppressing large deformation at the shoulder of the board as much as possible by using an energization pattern that repeats cooling and energization. Let it get the final size nugget.
  • Cooling time 10 ms or more and less than 160 ms in a non-energized state
  • energizing time 15 ms or more and less than 200 ms
  • energizing at a current value of I1 or more at least once each
  • the board assembly It is necessary to expand the intermediate stage nugget in stages while suppressing large deformation at the shoulder part as much as possible. Therefore, in the second energization process, an energization pattern in which cooling and energization are repeated is performed.
  • cooling in a non-energized state with a cooling time of 10 ms or more and less than 160 ms, and energization with an energization time of 15 ms or more and less than 200 ms and a current value of I1 or more are each performed at least once.
  • the number of times of cooling and energization is preferably two or more times, more preferably three or more times, from the viewpoint of obtaining the above effects more advantageously. Note that if the number of times of cooling and energization exceeds 10 times, the above-mentioned effects will be saturated, but construction efficiency may also be reduced. Therefore, the number of times of cooling and energization are each preferably 10 times or less.
  • the cooling time per time is set to 10 ms or more. Further, from the viewpoint of expanding the intermediate stage nugget in stages while more advantageously suppressing large deformation at the shoulder portion of the plate set, it is preferable that the cooling time per cooling time is 15 ms or more.
  • the cooling time per cooling time is set to less than 160 ms.
  • the cooling time per time is preferably 120 ms or less. Note that cooling may be performed in a non-energized state, and the non-energized time becomes the cooling time.
  • the energization time per time is set to 15 ms or more.
  • the time for each energization is 200 ms or more, excessive heat input will be applied with one energization, and large deformation of the welded part and eventually cracking will occur easily. Therefore, the energization time per time is set to be less than 200 ms.
  • the current application time per time is preferably 160 ms or less.
  • the current value in the above-mentioned energization in order to expand the intermediate stage nugget in stages, the current value needs to be greater than or equal to I1, that is, greater than or equal to the current value of the first energization step.
  • the current value in the above-mentioned energization is preferably 1.1 ⁇ I1 or more.
  • the upper limit of the current value in the above-mentioned energization is not particularly limited, from the viewpoint of suppressing the occurrence of scattering, it is preferable that the current value in the above-mentioned energization is 20 kA or less.
  • cooling time for each cooling in the above cooling may be the same or different each time. The same applies to the energization time and current value in the energization described above.
  • the pressing force may be 1.5 to 10.0 kN.
  • the pressing force may be the same as that in the first energization step, or may be a different value.
  • the current value during energization may be constant or may be changed as appropriate during energization, such as in upslope energization, as long as it is I1 or more.
  • Conditions other than the above are not particularly limited and may be according to conventional methods.
  • the resistance spot welding method according to an embodiment of the present invention is particularly suitable for application to severe welding conditions, for example, when one or more of the following conditions (A) to (E) are satisfied. It is.
  • the welding electrode and plate assembly have a striking angle.
  • B) A pair of welding electrodes are misaligned.
  • the shortest distance from the center of the welding point to the end face of the plate assembly (hereinafter also referred to as the shortest end face distance) is 10 mm or less.
  • the "striking angle" in (A) is the angle of the axis of the welding electrode with respect to the vertical direction of the surface of the plate assembly.
  • a state in which the welding electrode and the plate assembly have a striking angle means that the striking angle is not 0°, that is, the perpendicular direction of the surface of the plate assembly and the axis of the welding electrode (the axis of the upper electrode). (at least one of the axes of the lower electrode) is not parallel to the axis of the lower electrode.
  • the "state in which the pair of welding electrodes are misaligned" in (B) means a state in which the axis of the upper electrode and the axis of the lower electrode of the welding electrodes do not coincide. Further, the misalignment amount is the distance between the axis of the upper electrode and the axis of the lower electrode of the welding electrode.
  • "before pressurizing the plate assembly” means that the plate assembly is connected to a fixed welding electrode (corresponding to the lower electrode in one example) and a driven welding electrode (corresponding to the upper electrode in one example). This means after the welding device is installed in a welding device with a similar type of welding device (equivalent), and before the driven welding electrode is moved and pressurization of the plate assembly is started.
  • the resistance spot welding method according to an embodiment of the present invention is applicable not only to a plate assembly in which two steel plates are stacked together, but also to a plate assembly in which three or more steel plates are stacked together.
  • a method for manufacturing a welded member according to an embodiment of the present invention includes a step of joining the above-mentioned plate set by the above-mentioned resistance spot welding method. Thereby, it is possible to stably secure a desired nugget diameter while suppressing deformation of the shoulder portion of the plate assembly and, ultimately, cracking of the welded portion. As a result, it becomes possible to manufacture various welded parts, particularly automobile parts and the like in which a galvanized steel plate with high corrosion resistance is disposed on the outermost side, with high construction efficiency.
  • Resistance spot welding was performed on the plate sets shown in Table 1 under the conditions shown in Table 2 to produce welded joints. Note that for each sample number, as shown in Table 1, disturbances (the welding states of (A) to (E) above) were simulated. In Table 1, "-" in columns (A), (B), (C), and (E) means that the condition is not satisfied.
  • a plate assembly simulating the plate gap in (D) for example, a three-layer plate assembly, as shown in Fig. 3, 30 mm x 100 mm steel plates are overlapped, and the second and third steel plates are separated. Spacers 7 and 8 of 30 mm x 25 mm were sandwiched between them to provide a gap of 2 mm.
  • resistance spot welding was performed at room temperature and with the welding electrode constantly water-cooled.
  • the upper electrode (driven welding electrode) and the lower electrode (fixed welding electrode) DR type electrodes made of chromium copper and having a tip diameter (tip diameter) of 6 mm and a radius of curvature of 40 mm were used.
  • the pressurizing force was controlled by driving the upper electrode with a servo motor, and DC power was supplied during energization.
  • the plate assembly was arranged so that the first steel plate was in contact with the upper electrode (drive type welding electrode).
  • the nugget diameter at the boundary level between the first steel plate and the second steel plate x 1 was further measured. The results of these measurements are shown in Table 3.
  • A, B, and C in the shoulder crack column have the following meanings, respectively.
  • the judgment column is If the shoulder crack is A and the nugget diameter x k is 4.0 ⁇ t k or more, it is "passed (excellent)".
  • t1 is the thickness of the thinner steel plate of the first steel plate and the second steel plate.
  • t2 is the thickness of the thinner steel plate of the second steel plate and the third steel plate.
  • t3 is the thickness of the thinner of the third and fourth steel plates.
  • a nugget is a dot-like welded portion that joins steel plates of a plate assembly. Further, the nugget is a portion where the steel plates of the plate assembly are melted and solidified.
  • sample numbers 17 and 25 the second energization step was not performed, that is, only one stage of energization was performed, so a desired nugget diameter could not be obtained depending on the boundary level of the steel plate.
  • sample numbers 18 to 24, 33, 36, 37, 40, 43, 46, and 49 the weld part cracked because the current was applied in the first energization process under conditions where the diameter W0 of the intermediate stage nugget did not fall within the predetermined range. Depending on the boundary level of the steel plate, a nugget diameter of the desired size could not be obtained.
  • the cooling time, current value, or energization time in the second energization step is outside the appropriate range, resulting in cracks in the welds or in some cases, depending on the boundary level of the steel plate, the desired size may not be reached. Nugget diameter could not be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

板組の表層鋼板の少なくとも一方が亜鉛系めっき鋼板であり、かつ、表層鋼板の厚さ比や外乱の影響が大きい場合にも、溶接部の割れが抑制され、所望の大きさのナゲット径を有する、溶接継手を提供する。 板組の1枚目の鋼板における肩部の角度aおよび板組のn枚目の鋼板における肩部の角度bについて、(1)式および(2)式の少なくとも一方を満足させる。

Description

溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
 本発明は、溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法に関する。
 自動車の組み立てでは、重ね合わせた鋼板同士を接合するにあたり、コストや製造効率の観点から、重ね抵抗溶接方法の一種である抵抗スポット溶接方法が多く用いられている。この溶接方法は、例えば、図1に示すように、一対の溶接電極3、4(以下、鉛直方向上側に配置される電極を上電極3、鉛直方向下側に配置される電極を下電極4ともいう)により、鋼板1-1、1-2(以下、鉛直方向において最も上側に配置される鋼板を上鋼板1-1、鉛直方向において最も下側に配置される鋼板を下鋼板1-2ともいう)を重ね合わせた板組2を挟んでその上下から加圧しつつ、上下電極間に溶接電流を通電して接合する方法である。この溶接方法では、溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部を得る。この点状の溶接部はナゲット5と呼ばれる。すなわち、ナゲット5は、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で鋼板が溶融し、凝固した部分である。このナゲット5により、鋼板同士が点状に接合される。
 近年、自動車分野において、燃費向上に向けた車体の軽量化が進められている。これに伴い、自動車部品への高強度鋼板の適用が増加している。また、自動車部品のうち、雨水に曝される部位に適用される部品には、耐食性の観点から、亜鉛等の防錆能を有するめっき鋼板(表面処理鋼板)が使用される。ここで、めっき鋼板とは、金属めっき層を母材(下地鋼板)の表面上に有する鋼板をいう。金属めっき層としては、電気亜鉛めっき、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛のほかにアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金めっき、アルミニウムと亜鉛を主成分とするアルミニウム-亜鉛合金めっきなどが挙げられる。
 このようなめっき鋼板を含む複数の鋼板を重ね合わせた板組に適用される抵抗スポット溶接として、例えば、特許文献1には、
「高強度めっき鋼板のスポット溶接において、下記条件(1)および(2)を満足させるように溶接通電時間および溶接通電後の保持時間を設定してスポット溶接を行うことを特徴とする高強度めっき鋼板のスポット溶接方法。
0.25・(10・t+2)/50≦WT≦0.50・(10・t+2)/50  ・・(1)
300-500・t+250・t2≦HT                      ・・(2)
ただし、t:板厚(mm)、WT:溶接通電時間(ms)、HT:溶接通電後の保持時間(ms)」
が開示されている。
 特許文献2には、
「高張力亜鉛系めっき鋼板を3段以上の多段通電によりスポット溶接するにあたり、形成されるナゲットが、下記(1)式で定義される所望のナゲット径d0以上でかつ溶融残厚0.05mm以上となるように溶接条件を調整することを特徴とする高張力亜鉛めっき鋼板のスポット溶接方法。
            記
0=k√t      ………(1)
ここで、d0:所望のナゲット径(mm)
k:係数;3~6の間で施工条件に合わせて選択される係数
t:鋼板板厚(mm)」
が開示されている。
 特許文献3には、
「少なくとも一方の表面の溶接箇所にめっきが被覆された鋼板を1枚以上含む重ね合わされた複数の鋼板を対向する溶接電極で挟み込みスポット溶接する方法であって、
 スポット溶接の前に、めっきを除去する工程を含み、
 上記めっきを除去する工程において、めっきが除去される範囲を、少なくとも、外周が重ね合わされた複数の鋼板の溶接電極側に形成される溶接熱影響部外縁となる円内とすることを特徴とするスポット溶接方法。」
が開示されている。
 特許文献4には、
「少なくとも溶接箇所が重ね合わされた複数枚の鋼板で構成される被溶接部材を溶接電極により加圧して通電する本溶接を行い、更に、前通電及び後通電の少なくとも一方の通電工程を行うスポット溶接方法であって、
  前記複数枚の鋼板の少なくとも一つについて、少なくとも前記溶接箇所の重ね合わせ面が亜鉛系めっきで被覆され、前記複数枚の鋼板の総板厚t(mm)が1.35mm以上であり、
  前記溶接電極間の通電開始時から、溶接終了の際の当該溶接電極間の通電終了時まで、当該溶接電極による前記被溶接部材の加圧を保持したままとし、
  溶接終了の際、前記溶接電極間の通電終了時から当該溶接電極と前記被溶接部材とを非接触とするまでの通電後保持時間Ht(秒)を下記(1)式の範囲内とすることを特徴とするスポット溶接方法。
  0.015t+0.020≦Ht≦0.16t-0.40t+0.70 ・・・(1)」
が開示されている。
 特許文献5には、
「複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
 重ね合わせた複数の鋼板のうち少なくとも1枚は、表面に金属めっき層を有する表面処理鋼板であり、
 通電として、ナゲット部を形成する通電を行なう主通電工程と、
 主通電工程の後に通電休止時間Tc(サイクル)の間通電を休止する無通電工程と、
 無通電工程の後にナゲット部を成長させずに再加熱する通電を行なう後通電工程とを有し、
 電極の打角をA(度)、主通電工程の電流値をIm(kA)、後通電工程の電流値をIp(kA)、1+0.1・Tcを変数B、1+0.2・Tcを変数Cとしたとき、前記通電は、下記式(I)の関係を満たす抵抗スポット溶接方法。
式(I)
0<A<3の場合は、(22+A)・B/100<Ip/Im<C
3≦A<7の場合は、(17+A)・B/80<Ip/Im<C
7≦A<15の場合は、(11+A)・B/60<Ip/Im<C」
が開示されている。
特開2003-103377号公報 特開2003-236676号公報 国際公開第2016/159169号 特開2017-47476号公報 国際公開第2018/159764号
 ところで、めっき鋼板、特には亜鉛系めっき鋼板を含む複数の鋼板を重ね合わせた板組に適用される抵抗スポット溶接(以下、亜鉛系めっき鋼板に対する抵抗スポット溶接ともいう)では、溶接部に割れが生じやすいという問題がある。
 一般的に、亜鉛めっきや亜鉛合金めっきの融点は、母材の融点よりも低い。そのため、亜鉛系めっき鋼板に対する抵抗スポット溶接では、溶接中に、鋼板表面の低融点の金属めっき層が溶融する。そして、電極の加圧力ならびに鋼板の熱膨張および収縮による引張応力が溶接部に加わった際に、溶融した低融点の金属が亜鉛系めっき鋼板の母材の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす。すなわち、亜鉛系めっき鋼板に対する抵抗スポット溶接で発生する溶接部の割れの多くは、いわゆる液体金属脆化に起因する割れ(以下、液体金属脆化割れともいう)であると考えられる。
 このような液体金属脆化割れは、溶接部に大きな変形が加わる場合に発生しやすい。例えば、散りが発生するような条件で溶接した場合、図1のような溶接電極3、4と接する板組1の表面において割れが発生しやすくなる。特に、溶接電極と板組の接触領域の外周部である板組表面の肩部で発生する割れ(以下、肩部割れともいう)は、電極直下で発生する割れと比較して低い溶接電流値から発生する。
 一方で、継手強度の確保の観点からは、所定以上の大きさのナゲットを確保することが重要となる。しかし、板組において最外側に位置する(溶接時に電極と接触する)鋼板(以下、表層鋼板ともいう)の厚さ比が大きくなるほど、表層鋼板と該表層鋼板に隣接する鋼板との間で所望の大きさのナゲット径を確保することが困難となる。ここで、表層鋼板の厚さ比とは、板組を構成する鋼板の合計厚さを、表層鋼板の厚さで除した値である。また、自動車組立て時の実施工では、溶接に際して外乱が存在する場合、例えば、固定式の溶接電極と板組との間に隙間がある場合や、板組の鋼板間に隙間がある場合がある。このような場合にも、所望の大きさのナゲット径を確保することが困難となる。
 この点、溶接時の電流値を大きく設定すれば、ナゲット径を大きくすることが可能である。しかし、溶接時の電流値を大きく設定すると、例えば、散りの発生により、溶接部の大きな変形が生じ、溶接部の割れ、特には、肩部割れに代表される液体金属脆化割れの発生リスクが高まる。
 実際、特許文献1、2、4および5の技術では、表層鋼板の厚さ比や外乱の影響が大きい場合に、溶接部の割れの発生抑制と、所望の大きさのナゲット径の安定確保とを両立できず、この点の改善が望まれているのが現状である。なお、この点の改善は、自動車用鋼板のみならず、他の用途の鋼板での亜鉛系めっき鋼板に対する抵抗スポット溶接でも同様に望まれている。
 また、特許文献3の技術では、事前に鋼板表面のめっき層を除去する工程(以下、めっき層の除去工程ともいう)が必要であるため、製造コストが大幅に増加する。また、鋼板のめっき層を除去するため、溶接部の耐食性の低下を招くおそれもある。
 本発明は、上記の現状に鑑み開発されたものであって、板組の表層鋼板の少なくとも一方が亜鉛系めっき鋼板であり、かつ、表層鋼板の厚さ比や外乱の影響が大きい場合にも、溶接部の割れが抑制され、所望の大きさのナゲット径を有する、溶接継手を提供することを目的とする。
 また、本発明は、亜鉛系めっき鋼板に対する抵抗スポット溶接として、めっき層の除去工程が不要であり、かつ、表層鋼板の厚さ比や外乱の影響が大きい場合にも、溶接部の割れの発生抑制と所望の大きさのナゲット径の安定確保とを両立できる、抵抗スポット溶接方法を提供することを目的とする。
 さらに、本発明は、上記の溶接継手を有する溶接部材およびその製造方法を提供することを目的とする。
 さて、発明者らは、上記の目的を達成すべく、鋭意検討を重ねたところ、以下の知見を得た。
 亜鉛系めっき鋼板に対する抵抗スポット溶接において発生する溶接部の割れ、特に、肩部割れの発生有無は、溶接時に発生する板組の肩部での変形、特には、肩部の角度に強く影響する。そして、肩部の角度を、板組の表層鋼板(板組において最外側に位置する(溶接時に電極と接触する)鋼板)として配置される亜鉛系めっき鋼板の引張強さおよび厚さ、板組を構成する鋼板の合計厚さ、ならびに、ナゲット径との関係で適切に制御する。具体的には、後述する(1)式および(2)式の少なくとも一方を満足させる。これにより、溶接部の割れの発生を有効に抑制できる。
 ここで、板組の1枚目の鋼板における肩部の角度a(以下、肩部の角度aともいう)とは、図2に示すように、溶接継手(板組)の厚さ方向(以下、厚さ方向ともいう)の切断面において、1枚目の肩部接線が、板組を構成する鋼板の表面方向(厚さ方向に直角な方向、以下、表面方向ともいう)に対してなす角度である。ここで、1枚目の肩部接線とは、ナゲット端部を通る厚さ方向に平行な第1の直線(以下、第1の直線ともいう)と1枚目の鋼板の肩部表面との交点(以下、1枚目の交点ともいう)における肩部の接線である。また、板組のn枚目の鋼板における肩部の角度b(以下、肩部の角度bともいう)とは、図2に示すように、溶接継手の厚さ方向の切断面において、n枚目の肩部接線が、表面方向に対してなす角度である。ここで、n枚目の肩部接線とは、第1の直線と、n枚目の鋼板の肩部表面との交点(以下、n枚目の交点ともいう)における肩部の接線である。図2では、ナゲット端部の一方(ここでは、紙面向かって右側の端部)を代表として、肩部の角度aおよびbを表示している。
 なお、溶接継手は、基本的に、ナゲット中心位置(溶接時の溶接電極中心位置)で軸対象となるため、肩部の角度aおよびbは、ナゲットの中心を通る溶接継手の厚さ方向の任意の切断面(以下、溶接継手の切断面ともいう)において測定すればよい。ただし、溶接電極が芯ずれする場合や打角を有する場合など、位置によって肩部の角度aおよびbが変化する(軸対象でない)場合には、そのうちの最大値をそれぞれ、肩部の角度aおよびbとする。
 また、溶接時の変形などにより、板組を構成する鋼板によって表面方向が異なる場合には、板組を構成する鋼板の各表面のうち、板組の厚さ方向中心位置に最も近接した鋼板の表面を基準表面とし、当該基準表面の表面方向を表面方向とする。また、溶接時の変形などにより、鋼板の表面方向を一義的に決定することが困難である場合には、溶接継手の切断面(肩部の角度が軸対象でない場合には、肩部の角度が最大となる溶接継手の切断面)において、基準とする鋼板表面のナゲット中心位置から9mm離間した位置を基準位置とする。そして、当該基準位置同士を結ぶ直線の方向を、表面方向とすればよい。
 加えて、ここでいうナゲット径Wとは、表面方向におけるナゲットの長径(最大径)である。すなわち、ナゲット径Wは、例えば、溶接継手の切断面において、表面方向におけるナゲットの端部間距離として測定する。同様に、後述する中間段階ナゲットの径W0も、表面方向における中間段階ナゲットの長径(最大径)である。すなわち、中間段階ナゲットの径W0は、例えば、第1通電工程終了時点での溶接継手の切断面において、表面方向における中間段階ナゲットの端部間距離として測定する。
 また、溶接時に発生する板組の肩部の変形の原因の1つとして、散りがある。そして、散りの発生(飛散する溶融金属の量)を抑制することによって、溶接部の割れが抑制できる。この点を踏まえ、発明者らは、表層鋼板の厚さ比や外乱の影響が大きい場合にも、溶接部の割れの発生抑制と、所望の大きさのナゲット径の安定確保とを両立できる、抵抗スポット溶接方法を得るべく、さらに検討を重ねた。
 その結果、発明者らは、以下の(a)~(c)を同時に満足させることが有効であるという知見を得た。
(a)溶接時の通電工程を第1通電工程と第2通電工程の2つの工程に分ける。
(b)第1通電工程においては、通電パターンを調整して入熱量を制御することにより、板組の肩部での大きな変形を極力抑止しつつ、中間段階のナゲット(以下、中間段階ナゲットともいう)を形成する。
(c)第2通電工程においては、通電と冷却を繰り返す通電パターンにより、板組の肩部での大きな変形を極力抑止しつつ、中間段階ナゲットを段階的に拡大させて、最終的な大きさのナゲットを得る。
 すなわち、第1通電工程では、後工程である第2通電工程において板組の肩部での大きな変形が発生しないように、最終的に目標とするナゲットよりも小さな中間段階ナゲットを形成することが必要である。そのためには、板組の表層鋼板として配置される亜鉛系めっき鋼板の厚さおよび引張強さ、ならびに、板組を構成する鋼板の合計厚さに応じて通電パターンを調整して入熱量を制御することが重要である。特には、第1通電工程で形成する中間段階ナゲットの径が、後述する(7)式および(8)式の少なくとも一方を満足する条件で通電を行うことが重要である。これによって、中間段階ナゲットの周囲の圧接部(コロナボンド部)を、対象とする板組において最終的に得られるナゲット径の確保と溶接部の割れ抑制を実現するために必要な範囲において、強固に形成することができる。その結果、表層鋼板の厚さ比や外乱の影響が大きい場合にも、第2通電工程において散りの飛散量を抑制しつつ中間段階ナゲットを拡大することが可能となる。これにより、第2通電工程終了後に板組の肩部の変形、ひいては溶接部の割れの発生を抑制した上で、所望のナゲット径が実現される。
 また、第2通電工程では、第1通電工程の通電終了時の電流値以上での通電を行うことにより、中間段階ナゲットを拡大させることができる。ただし、入熱量が過剰になると、板組の肩部での大きな変形が発生してしまう。そこで、一定時間以上の冷却と通電を繰り返す通電パターンを用いることが重要である。これによって、板組の肩部での大きな変形を極力抑止しつつ、ナゲットを段階的に拡大させることができる。
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.n枚の鋼板を重ね合わせた板組と、該鋼板同士を接合するナゲットと、を有する、溶接継手であって、
 nは2以上の整数であり、
 前記板組において、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方が亜鉛系めっき鋼板であり、
 [条件1]の場合には、前記板組の1枚目の鋼板における肩部の角度aが、以下の(1)式を満足し、
 [条件2]の場合には、前記板組のn枚目の鋼板における肩部の角度bが、以下の(2)式を満足し、
 [条件3]の場合には、前記肩部の角度aおよびbがそれぞれ、以下の(1)式および(2)式を満足し、
 前記板組において、k枚目の鋼板とk+1枚目の鋼板の境界レベルでのナゲット径x(mm)が4.0√t以上であり、kが1~n―1までの整数であり、tがk枚目の鋼板とk+1枚目の鋼板のうちの薄い方の鋼板の厚さ(mm)である、溶接継手。
  a≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×11×W0.3+15  ・・・(1)
  b≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×11×W0.3+15  ・・・(2)
 式中、
  a:板組の1枚目の鋼板における肩部の角度(°)、
  b:板組のn枚目の鋼板における肩部の角度(°)、
  T:n枚の鋼板の合計厚さ(mm)、
  t:1枚目の鋼板の厚さ(mm)、
  t:n枚目の鋼板の厚さ(mm)、
  S:1枚目の鋼板の引張強さ(MPa)、
  S:n枚目の鋼板の引張強さ(MPa)、
  W:ナゲット径(mm)、
 である。
 また、[条件1]~[条件3]は、以下のとおりである。
[条件1]
 板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板のみが亜鉛系めっき鋼板である。
[条件2]
 板組の1枚目の鋼板とn枚目の鋼板のうち、n枚目の鋼板のみが亜鉛系めっき鋼板である。
[条件3]
 板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板およびn枚目の鋼板の両方が亜鉛系めっき鋼板である。
2.前記[条件1]の場合には、前記肩部の角度aが、以下の(3)式を満足し、
 前記[条件2]の場合には、前記肩部の角度bが、以下の(4)式を満足し、
 前記[条件3]の場合には、前記肩部の角度aおよびbがそれぞれ、以下の(3)式および(4)式を満足する、前記1に記載の溶接継手。
  a≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×6×W0.3+9  ・・・(3)
  b≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×6×W0.3+9  ・・・(4)
3.前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)式および(6)式のうちの少なくとも一方を満足する、前記1または2に記載の溶接継手。
  T/t>2  ・・・(5)
  T/t>2  ・・・(6)
4.前記1~3のいずれかに記載の溶接継手を有する、溶接部材。
5.n枚の鋼板を重ね合わせた板組を一対の溶接電極で挟持し、加圧しながら通電して接合する抵抗スポット溶接方法であって、
 nは2以上の整数であり、
 前記板組において、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方が亜鉛系めっき鋼板であり、
 また、前記抵抗スポット溶接方法は、
  中間段階ナゲットを形成する、第1通電工程と、
  前記中間段階ナゲットを拡大する、第2通電工程と、
を有し、
 前記第1通電工程では、前記中間段階ナゲットの径W0が
 [条件1]の場合には、以下の(7)式を、
 [条件2]の場合には、以下の(8)式を、
 [条件3]の場合には、以下の(7)式および(8)式の両方を、
それぞれ満足する条件で通電を行い、
 前記第2通電工程では、
 冷却時間:10ms以上160ms未満の無通電状態での冷却と、
 通電時間:15ms以上200ms未満および電流値:前記第1通電工程の電流値以上での通電と、をそれぞれ1回以上行う、抵抗スポット溶接方法。
  (T0.3/t 0.2)×(S/980)0.1×2.0≦W0  ・・・(7)
  (T0.3/t 0.2)×(S/980)0.1×2.0≦W0  ・・・(8)
 式中、
  W0:中間段階ナゲットの径(mm)、
  T:n枚の鋼板の合計厚さ(mm)、
  t:1枚目の鋼板の厚さ(mm)、
  t:n枚目の鋼板の厚さ(mm)、
  S:1枚目の鋼板の引張強さ(MPa)、
  S:n枚目の鋼板の引張強さ(MPa)、
 である。
 また、[条件1]~[条件3]は、以下のとおりである。
[条件1]
 板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板のみが亜鉛系めっき鋼板である。
[条件2]
 板組の1枚目の鋼板とn枚目の鋼板のうち、n枚目の鋼板のみが亜鉛系めっき鋼板である。
[条件3]
 板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板およびn枚目の鋼板の両方が亜鉛系めっき鋼板である。
6.前記第1通電工程において、前記中間段階ナゲットの径W0が
 前記[条件1]の場合には、以下の(9)式を、
 前記[条件2]の場合には、以下の(10)式を、
 前記[条件3]の場合には、以下の(9)式および(10)式の両方を、
それぞれ満足する条件で通電を行う、前記5に記載の抵抗スポット溶接方法。
  (T0.45/t 0.3)×(S/980)0.15×2.0≦W0  ・・・(9)
  (T0.35/t 0.3)×(S/980)0.15×2.0≦W0  ・・・(10)
7.前記第1通電工程において、以下の(11)式を満足する条件で通電を行う、前記5または6に記載の抵抗スポット溶接方法。
  If>Is  ・・・(11)
 式中、
  Is:第1通電工程での通電開始時の電流値(kA)、
  If:第1通電工程での通電終了時の電流値(kA)、
 である。
8.前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)および(6)のうちの少なくとも一方を満足する、前記5~7のいずれかに記載の抵抗スポット溶接方法。
  T/t>2  ・・・(5)
  T/t>2  ・・・(6)
9.以下の(A)~(E)の状態の1つまたは2つ以上を満足する、前記5~8のいずれかの記載の抵抗スポット溶接方法。
(A)溶接電極と板組が打角を有する。
(B)一対の溶接電極が芯ずれする。
(C)板組の加圧前に、固定式の溶接電極と板組との間に隙間がある。
(D)板組の加圧前に、板組の鋼板間において少なくとも1箇所以上に隙間がある。
(E)板組の表面において、溶接打点の中心から板組の端面までの最短距離が10mm以下である。
10.前記5~9のいずれかに記載の抵抗スポット溶接方法により、n枚の鋼板を重ね合わせた板組を接合する工程を有し、nが2以上の整数である、溶接部材の製造方法。
 本発明によれば、板組の表層鋼板の少なくとも一方が亜鉛系めっき鋼板であり、かつ、表層鋼板の厚さ比や外乱の影響が大きい場合にも、溶接部の割れが抑制され、所望の大きさのナゲット径を有する、溶接継手が得られる。
 また、本発明の溶接継手を有する溶接部材は、最外側に高い耐食性をそなえる亜鉛系めっき鋼板が配置されるので、自動車部品、特には、雨水に曝される部位に使用される自動車部品などに適用して極めて好適である。
抵抗スポット溶接方法の例を模式的に示す図である。 溶接継手の切断面の一例を模式的に示す図である。 板隙のある板組の例を模式的に示す図である。
 本発明を、以下の実施形態に基づき説明する。まず、本発明の一実施形態に従う溶接継手について、説明する。
[1]溶接継手
 本発明の一実施形態に従う溶接継手は、
 n枚の鋼板を重ね合わせた板組と、該鋼板同士を接合するナゲットと、を有する、溶接継手であって、
 nは2以上の整数であり、
 前記板組において、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方が亜鉛系めっき鋼板であり、
 [条件1]の場合には、前記板組の1枚目の鋼板における肩部の角度aが、以下の(1)式を満足し、
 [条件2]の場合には、前記板組のn枚目の鋼板における肩部の角度bが、以下の(2)式を満足し、
 [条件3]の場合には、前記肩部の角度aおよびbがそれぞれ、以下の(1)式および(2)式を満足し、
 前記板組において、k枚目の鋼板とk+1枚目の鋼板の境界レベルでのナゲット径x(mm)が4.0√t以上であり、kが1~n―1までの整数であり、tがk枚目の鋼板とk+1枚目の鋼板のうちの薄い方の鋼板の厚さ(mm)である、というものである。
  a≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×11×W0.3+15  ・・・(1)
  b≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×11×W0.3+15  ・・・(2)
 式中、
  a:板組の1枚目の鋼板における肩部の角度(°)、
  b:板組のn枚目の鋼板における肩部の角度(°)、
  T:n枚の鋼板の合計厚さ(mm)、
  t:1枚目の鋼板の厚さ(mm)、
  t:n枚目の鋼板の厚さ(mm)、
  S:1枚目の鋼板の引張強さ(MPa)、
  S:n枚目の鋼板の引張強さ(MPa)、
  W:ナゲット径(mm)、
 である。
 また、[条件1]~[条件3]は、以下のとおりである。
[条件1]
 板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板のみが亜鉛系めっき鋼板である。
[条件2]
 板組の1枚目の鋼板とn枚目の鋼板のうち、n枚目の鋼板のみが亜鉛系めっき鋼板である。
[条件3]
 板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板およびn枚目の鋼板の両方が亜鉛系めっき鋼板である。
 ここで、板組は、n枚の鋼板を重ね合わせたものであり、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方、すなわち、板組の表層鋼板の少なくとも一方が亜鉛系めっき鋼板である。なお、ここでいう上からの順は、例えば、板組の表面が水平面と平行となるように板組を配置したときの鉛直方向上側からの順番とすればよい。
 また、亜鉛系めっき鋼板とは、溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板などの下地鋼板の一方または両方の表面に亜鉛系めっき層を有する鋼板である。なお、下地鋼板の一方の表面に亜鉛系めっき層を有する鋼板を1枚目の鋼板およびn枚目の鋼板として使用する場合、亜鉛系めっき層が板組において最外側に位置するように配置することが好ましい。ここで、亜鉛系めっき層は、亜鉛含有量が1質量%以上、好ましくは亜鉛含有量が30質量%以上であるめっき層である。亜鉛系めっき層には、例えば、溶融亜鉛めっき層や合金化溶融亜鉛めっき層、電気亜鉛めっき層などの亜鉛めっき層に加え、アルミニウムやマグネシウム、シリコン、ニッケル、鉄などの合金元素を合計で50質量%未満含む亜鉛合金めっき層が含まれる。また、亜鉛合金めっき層(を有する鋼板)としては、例えば、ガルファン(Zn-5質量%Al)やエコガル(登録商標)(Zn-5質量%Al-1質量%以下のMgおよびNi)などが挙げられる。さらに、亜鉛合金めっき層としては、アルミニウムおよび亜鉛を合計で67質量%以上含み、マグネシウムやシリコン、ニッケル、鉄などの合金元素を33質量%未満含むアルミニウム-亜鉛合金めっき層(例えば、ガルバリウム(55質量%Al-43.4質量%Zn-1.6質量%Si)など)も挙げられる。なお、亜鉛系めっき層は、その融点が下地鋼板の融点よりも低いものが好ましい。また、上記の亜鉛および合金元素以外の残部の成分は不可避的不純物である。また、下地鋼板については特に限定されず、例えば、引張強さ(以下、TSともいう):270MPa級の軟鋼からTS:490~2500MPa級の鋼板までの各種強度を有する鋼板を適用できる。
 加えて、板組を構成する鋼板のうち、1枚目の鋼板とn枚目の鋼板以外の鋼板については、上記の亜鉛系めっき鋼板を使用してもよい。また、めっきなしの鋼板、例えば、TS:270MPa級の軟鋼からTS:490~2500MPa級の鋼板までの各種強度を有する鋼板を使用してもよい。なお、1枚目の鋼板に亜鉛系めっき鋼板を使用する場合、n枚目の鋼板には、上記の亜鉛系めっき鋼板を使用してもよいし、上記のめっきなしの鋼板を使用してもよい。n枚目の鋼板に亜鉛系めっき鋼板を使用する場合の1枚目の鋼板についても同様である。
 なお、板組を構成する鋼板の厚さは特に限定されるものではないが、例えば、0.4mm以上3.2mm以下であることが好ましい。厚さ:0.4mm以上3.2mm以下の鋼板は、自動車用部材として、好適に使用することができる。
 また、板組における鋼板の重ね合わせ枚数であるnは2以上で整数であればよい。nの上限は特に限定されるものではないが、例えば、nは7以下とすることが好ましい。
 そして、本発明の一実施形態に従う溶接継手では、上述したように、板組の1枚目の鋼板における肩部の角度aおよび板組のn枚目の鋼板における肩部の角度bについてそれぞれ、上述した[条件1]~[条件3]に応じて、上掲(1)式および(2)式の少なくとも一方を満足させることが重要である。なお、肩部とは、図2に示す、板組の表面(表裏面)のくぼみでの肩部である。図中、符号1-1~1-3は鋼板、2は板組、5はナゲット、6は肩部である。また、ここでいう、板組の表面(表裏面)におけるくぼみは、溶接時の溶接電極による加圧により生じる溶接電極痕であり、当該くぼみの間にナゲットが位置する。
肩部の角度aおよびb:上述した[条件1]~[条件3]に応じて上掲(1)式および(2)式の少なくとも一方を満足させる。
 上述したように、亜鉛系めっき鋼板に対する抵抗スポット溶接において発生する溶接部の割れ、特に、肩部割れの発生有無は、溶接時に発生する板組の肩部の変形、換言すれば、肩部の角度aおよびbに強く影響する。そして、肩部の角度aおよびbを、板組の表層鋼板として配置される亜鉛系めっき鋼板の引張強さおよび厚さ、板組を構成する鋼板の合計厚さ、ならびに、ナゲット径Wとの関係で適切に制御することにより、溶接部の割れの発生を有効に抑制できる。
 具体的には、
 上述した[条件1]の場合には、肩部の角度aが上掲(1)式を満足し、
 上述した[条件2]の場合には、肩部の角度bが上掲(2)式を満足し、
 上述した[条件3]の場合には、肩部の角度aおよびbがそれぞれ、上掲(1)式および(2)式をそれぞれ満足する、
ことにより、溶接部の割れの発生を有効に抑制できる。なお、肩部の角度aおよびb、ならびに、ナゲット径Wの測定方法は上述のとおりである。
 また、上述した[条件1]の場合には、肩部の角度aが以下の(3)式を満足し、
 上述した[条件2]の場合には、肩部の角度bが以下の(4)式を満足し、
 上述した[条件3]の場合には、肩部の角度aおよびbがそれぞれ、以下の(3)式および(4)式を満足する、ことが好ましい。これにより、溶接部の割れの発生をより有効に抑制できる、特には、肩部における長さ100μm未満の微小なLME割れの発生をも有効に抑制することが可能となる。
  a≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×6×W0.3+9  ・・・(3)
  b≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×6×W0.3+9  ・・・(4)
 なお、肩部の角度aおよびbの下限は特に限定されず、0°であってもよい。肩部の角度aおよびbはそれぞれ、好ましくは1°以上である。
 また、以下の(5)式または(6)式の少なくとも一方を満足させることが好ましい。上述したように、T/tまたはT/tが大きい板組、つまり、被接合材である板組全体の厚さの中心位置(板組の厚さ1/2位置)から離れた位置において板組を構成する鋼板同士の境界がある板組では、ナゲットの大きさを確保することが困難である場合がある。そのため、このような板組を用いる場合には、本発明の効果がより有効に発揮されることになる。さらには、以下の(12)式または(13)式の少なくとも一方を満足する板組において、当該き裂の発生を抑制することがより好適である。
 T/t>2  ・・・(5)
 T/t>2  ・・・(6)
 T/t>3  ・・・(12)
 T/t>3  ・・・(13)
k枚目の鋼板とk+1枚目の鋼板の境界レベルでのナゲット径x(mm):4.0√t以上
 継手強度を確保する観点から、k枚目の鋼板とk+1枚目の鋼板の境界レベルでのナゲット径x(mm)を4.0√t以上とする。ナゲット径xの上限は特に限定されるものではないが、散りの発生を抑制する観点から、ナゲット径xは10.0√t以下が好ましい。ここで、kは1~n-1までの整数であり、tはk枚目の鋼板とk+1枚目の鋼板のうちの薄い方の鋼板の厚さ(mm)である。なお、ナゲットとは、板組の鋼板同士を接合する点状の溶接部である。また、ナゲットは、板組の鋼板が溶融して凝固した部分である。
[2]溶接部材
 本発明の一実施形態に従う溶接部材は、上記の溶接継手を有する溶接部材である。本発明の一実施形態に従う溶接部材は、最外側に高い耐食性をそなえる亜鉛系めっき鋼板が配置されるので、自動車部品、特には、雨水に曝される部位に使用される自動車部品などに適用して好適である。なお、本発明の一実施形態に従う溶接部材には、上記の溶接継手に加えて、別の溶接継手(溶接部)をさらに有していてもよい。
[3]抵抗スポット溶接方法
 本発明の一実施形態に従う抵抗スポット溶接方法は、
 n枚の鋼板を重ね合わせた板組を一対の溶接電極で挟持し、加圧しながら通電して接合する抵抗スポット溶接方法であって、
 nは2以上の整数であり、
 前記板組において、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方が亜鉛系めっき鋼板であり、
 また、前記抵抗スポット溶接方法は、
  中間段階ナゲットを形成する、第1通電工程と、
  前記中間段階ナゲットを拡大する、第2通電工程と、
を有し、
 前記第1通電工程では、前記中間段階ナゲットの径W0が
 [条件1]の場合には、以下の(7)式を、
 [条件2]の場合には、以下の(8)式を、
 [条件3]の場合には、以下の(7)式および(8)式の両方を、
それぞれ満足する条件で通電を行い、
 前記第2通電工程では、
 冷却時間:10ms以上160ms未満の無通電状態での冷却と、
 通電時間:15ms以上200ms未満および電流値:前記第1通電工程の電流値以上での通電と、をそれぞれ1回以上行う、というものである。
  (T0.3/t 0.2)×(S/980)0.1×2.0≦W0  ・・・(7)
  (T0.3/t 0.2)×(S/980)0.1×2.0≦W0  ・・・(8)
 式中、
  W0:中間段階ナゲットの径(mm)、
  T:n枚の鋼板の合計厚さ(mm)、
  t:1枚目の鋼板の厚さ(mm)、
  t:n枚目の鋼板の厚さ(mm)、
  S:1枚目の鋼板の引張強さ(MPa)、
  S:n枚目の鋼板の引張強さ(MPa)、
 である。
 また、[条件1]~[条件3]については、上述のとおりである。
 例えば、図1に示すように、一対の溶接電極3、4(上電極3および下電極4)により、鋼板1-1、1-2(上鋼板1-1および下鋼板1-2ともいう)を重ね合わせた板組2を挟んでその上下から加圧しつつ、上電極-下電極間に溶接電流を通電して接合する。なお、本発明の一実施形態に係る抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の溶接電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能であればよく、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。また、加圧力を付加および制御する構成についても特に限定されず、エアシリンダやサーボモータ等の従来から知られている機器が使用できる。さらに、通電の際に電流を供給し、電流値を制御する構成も特に限定されず、従来から知られている機器が使用できる。また、通電時の電流は、直流および交流のいずれであってもよい。なお、交流の場合、「電流」は「実効電流」を意味する。また、上電極3および下電極4の先端の形式も特に限定されず、例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)等が挙げられる。また、電極の先端径は、例えば、4mm~16mmである。
 そして、本発明の一実施形態に従う抵抗スポット溶接方法では、上述したように、溶接時の通電工程を第1通電工程と第2通電工程の2つの工程に分ける。そのうえで、第1通電工程では、通電パターンを調整して入熱量を制御することにより、板組の肩部での大きな変形を極力抑止しつつ、中間段階ナゲットを形成する。また、第2通電工程では、通電と冷却を繰り返す通電パターンにより、板組の肩部での大きな変形を極力抑止しつつ、中間段階ナゲットを段階的に拡大させて、最終的な大きさのナゲットを得る。
 以下、第1通電工程および第2通電工程について、説明する。なお、本発明の一実施形態に従う抵抗スポット溶接方法で使用する板組に関する説明は、[1]溶接継手における板組での説明と同様なので、ここでは記載を省略する。
・第1通電工程
 第1通電工程では、後工程である第2通電工程において板組の肩部での大きな変形が発生しないように、ナゲットを形成することが必要である。そのためには、板組の表層鋼板として配置される亜鉛系めっき鋼板の厚さおよび引張強さ、ならびに、板組を構成する鋼板の合計厚さに応じて通電パターンを調整して入熱量を制御することが重要である。特には、上述した[条件1]~[条件3]に応じて、中間段階ナゲットの径W0(第1通電工程終了時点で得られるナゲットの径)が上掲(7)式および(8)式の少なくとも一方を満足する条件で通電を行うことが重要である。
通電条件:[条件1]~[条件3]に応じて、中間段階ナゲットの径W0が(7)式および(8)式の少なくとも一方を満足する条件で通電を行う。
 上述したように、第1通電工程では、通電パターンを調整して入熱量を制御する、特には、上述した[条件1]~[条件3]に応じて、中間段階ナゲットの径W0が上掲(7)式および(8)式の少なくとも一方を満足する条件で通電を行う。これによって、中間段階ナゲットの周囲の圧接部(コロナボンド部)を、対象とする板組において最終的に得られるナゲット径の確保と溶接部の割れ抑制を実現するために必要な範囲において、強固に形成することができる。その結果、表層鋼板の厚さ比や外乱の影響が大きい場合にも、後述する第2通電工程において散りの飛散量を抑制しつつ中間段階ナゲットを拡大することが可能となる。これにより、第2通電終了後に板組の肩部の変形、ひいては溶接部の割れの発生を抑制した上で所望のナゲット径が実現される。
 また、上述した[条件1]の場合には、以下の(9)式を、
 上述した[条件2]の場合には、以下の(10)式を、
 上述した[条件3]の場合には、以下の(9)式および(10)式を、
それぞれ満足する条件で通電を行うことが好ましい。これにより、溶接部の割れの発生をより有効に抑制できる。特には、肩部における長さ100μm未満の微小なLME割れの発生をも有効に抑制することが可能となる。
  (T0.45/t 0.3)×(S/980)0.15×2.0≦W0  ・・・(9)
  (T0.35/t 0.3)×(S/980)0.15×2.0≦W0  ・・・(10)
 なお、中間段階ナゲットの径W0の上限は特に限定されないが、W0が過度に大きくなると、第1通電工程での散りの飛散量が増加するおそれがある。そのため、中間段階ナゲットの径W0が、好ましくはW×0.9mm以下、より好ましくはW×0.8mm以下となる条件で通電を行う。なお、Wは、上述したように、(最終的に得られる)溶接継手のナゲット径(第2通電工程終了時点でのナゲットの径)である。
 中間段階ナゲットの径W0が上記の範囲を満足する条件(以下、適正条件ともいう)で通電を行えば、その他の条件については特に限定されず、常法に従えばよい。なお、適正条件は、板組によって異なる。この点、例えば、被接合材とする板組と同じ板組を準備し、第1通電工程の電流値(以下、単にI1ともいう)を2.0~15.0kAの範囲、通電時間を15~2000msの範囲、および、加圧力を1.5~10.0kNの範囲から種々選択する。そして、当該選択した種々の条件に従う予備溶接試験を行う。これによって、板組ごとに適正条件を得ることができる。
 また、第1通電工程では、アップスロープ状の通電を行うことが好ましい。例えば、通電開始時の電流値をIs(kA)、通電終了時の電流値をIf(kA)としたときに、以下の(11)式を満足することが好ましい。これにより、ナゲットの周囲の圧接部(コロナボンド部)を強固に接合する効果、および、第1通電工程において変形を抑制しつつ大きな中間段階ナゲットを形成する効果をより有利に得ることができる。
  If>Is  ・・・(11)
 なお、Isは、好ましくは2.0~14.0kAである。Ifは、好ましくは3.0~15.0kAである。
 また、通電中に電流値が変化する場合、第1通電工程での最大の電流値(例えば、上記したアップスロープの通電では通電終了時の電流値)を、I1(第1通電工程での電流値)とみなすものとする。
・第2通電工程
 第2通電工程では、冷却と通電を繰り返す通電パターンにより、板組の肩部での大きな変形を極力抑止しつつ、第1通電工程で形成した中間段階ナゲットを段階的に拡大させて、最終的な大きさのナゲットを得る。
冷却時間:10ms以上160ms未満の無通電状態での冷却と、通電時間:15ms以上200ms未満および電流値:I1以上での通電:それぞれ1回以上
 上述したように、第2通電工程では、板組の肩部での大きな変形を極力抑止しつつ、中間段階ナゲットを段階的に拡大させる必要がある。そのため、第2通電工程では、冷却と通電を繰り返す通電パターンを行うものとする。特には、冷却時間:10ms以上160ms未満の無通電状態での冷却と、通電時間:15ms以上200ms未満および電流値:I1以上での通電とをそれぞれ1回以上行うものとする。冷却および通電の回数はそれぞれ、上記の効果をより有利に得る観点から、好ましくは2回以上、より好ましくは3回以上である。なお、冷却および通電の回数が10回を超えると、上記の効果が飽和する一方、施工効率の低下を招く場合もある。そのため、冷却および通電の回数はそれぞれ、好ましくは10回以下である。
 また、上記の冷却では、1回あたりの冷却時間が10ms未満になると、十分な冷却効果が得られない。そのため、板組の肩部で大きな変形が発生しやすくなり、溶接部の割れが発生しやすくなる。よって、1回あたりの冷却時間は10ms以上とする。また、より有利に板組の肩部での大きな変形を抑止しつつ、中間段階ナゲットを段階的に拡大させる観点から、1回あたりの冷却時間は15ms以上とすることが好ましい。一方、1回あたりの冷却時間が160ms以上になると、冷却と通電を繰り返す通電パターンによる中間段階ナゲットの拡大効果が十分に得られなくなるおそれがある。そのため、1回あたりの冷却時間は160ms未満とする。1回あたりの冷却時間は、好ましくは120ms以下である。なお、冷却は、無通電状態として行えばよく、無通電時間が冷却時間となる。
 さらに、上記の通電では、1回あたりの通電時間が15ms未満になると、入熱量の不足により、第2通電工程において中間段階ナゲットを十分に拡大させることができない。そのため、1回あたりの通電時間は15ms以上とする。一方、1回あたりの通電時間が200ms以上になると、一度の通電で過大な入熱を加えることになり、溶接部の大きな変形、ひいては、割れが発生しやすい。そのため、1回あたりの通電時間は200ms未満とする。1回あたりの通電時間は好ましくは160ms以下である。
 加えて、上記の通電では、中間段階ナゲットを段階的に拡大させるために、電流値をI1以上、すなわち、第1通電工程の電流値以上とする必要がある。上記の通電での電流値は好ましくは1.1×I1以上である。上記の通電での電流値の上限は特に限定されるものではないが、散りの発生を抑制する観点から、上記の通電での電流値は20kA以下とすることが好ましい。
 なお、上記の冷却における1回あたりの冷却時間は、各回とも同じであってもよく、異なっていてもよい。また、上記の通電における通電時間および電流値についても同様である。
 上記以外の条件については特に限定されず、常法に従えばよい。例えば、加圧力は1.5~10.0kNとすればよい。また、加圧力は、第1通電工程と同じであっても、異なる値であってもよい。なお、通電時の電流値は、I1以上であれば、一定であっても、アップスロープ状の通電のように、通電中に適宜変化させてもよい。
 上記以外の条件については特に限定されず、常法に従えばよい。
 また、本発明の一実施形態に従う抵抗スポット溶接方法では、外乱の影響や板組によらず、溶接部の割れの発生が抑制しつつ、所望の大きさのナゲット径が得られる。そのため、本発明の一実施形態に従う抵抗スポット溶接方法は、厳しい溶接条件、例えば、以下の(A)~(E)の状態の1つまたは2つ以上を満足する場合に適用して、特に好適である。
(A)溶接電極と板組が打角を有する。
(B)一対の溶接電極が芯ずれする。
(C)板組の加圧前に、固定式の溶接電極と板組との間に隙間(以下、電極-板組間隙間ともいう)がある。
(D)板組の加圧前に、板組の鋼板間において少なくとも1箇所以上に隙間(以下、板隙ともいう)がある。
(E)板組の表面において、溶接打点の中心から板組の端面までの最短距離(以下、端面最短距離ともいう)が10mm以下である。
 ここで、(A)の「打角」とは、板組の表面の垂直方向に対する溶接電極の軸芯の角度である。また、「溶接電極と板組が打角を有する状態」とは、打角が0°ではない場合、つまり、板組の表面の垂直方向と、溶接電極の軸芯(上電極の軸芯と下電極の軸芯の少なくとも一方)とが平行にならない状態を意味する。
 (B)の「一対の溶接電極が芯ずれしている状態」とは、溶接電極の上電極の軸芯と下電極の軸芯が一致しない状態を意味する。また、芯ずれ量は、溶接電極の上電極の軸芯と下電極の軸芯の距離である。
 (C)および(D)の「板組の加圧前」とは、板組を、固定式の溶接電極(一例においては下電極に相当)と駆動式の溶接電極(一例においては上電極に相当)を有する溶接装置に設置した後で、かつ、駆動式の溶接電極を移動させて板組の加圧を開始する前を意味する。
 なお、本発明の一実施形態に従う抵抗スポット溶接方法は、2枚の鋼板を重ね合わせた板組だけでなく、3枚以上の鋼板を重ね合わせた板組にも適用可能である。
[4]溶接部材の製造方法
 本発明の一実施形態に従う溶接部材の製造方法は、上記の抵抗スポット溶接方法により、上記の板組を接合する工程を有するというものである。これにより、板組の肩部の変形、ひいては溶接部の割れの発生を抑制しつつ、所望の大きさのナゲット径を安定的に確保できる。その結果、種々の溶接部材、特には、最外側に高い耐食性をそなえる亜鉛系めっき鋼板を配置した自動車部品等を、高い施工効率の下、製造することが可能となる。
 表1に示す板組について、表2に示す条件で抵抗スポット溶接を行い、溶接継手を作製した。なお、各試料番号では、表1に示すように、外乱(上記(A)~(E)の溶接状態)を模擬した。表1中、(A)、(B)、(C)および(E)の欄の「-」は、当該状態を満足しないことを意味する。また、(D)の板隙を模擬した板組、例えば、3枚重ねの板組では、図3に示すように、30mm×100mmの鋼板を重ね合わせ、2枚目と3枚目の鋼板の間に30mm×25mmのスペーサ7、8を挟み込んで2mmの板隙を設けた。なお、(D)の板隙の欄の「0mm」は、板隙がないことを意味する。また、表1中、(E)の欄で「-」と表記しているものについては、30mm×100mmの鋼板の中心が溶接打点の中心となるように、溶接部(ナゲット)を形成した。また、第1通電工程は、試料番号10、21、22を除き、アップスロープ状の通電を行った。試料番号10、21、22では、一定の電流値で通電を行った。第2通電工程は、冷却→通電の順で行い、各回の冷却および通電とも、それぞれ同じ条件で行った。
 また、抵抗スポット溶接は、常温で、かつ、溶接電極を常に水冷した状態で行った。上電極(駆動式の溶接電極)および下電極(固定式の溶接電極)にはいずれも、先端の直径(先端径):6mm、曲率半径:40mmであるクロム銅製のDR形電極を使用した。また、上電極をサーボモータで駆動することによって加圧力を制御し、通電の際には、直流電源を供給した。なお、いずれの試料番号でも、1枚目の鋼板が上電極(駆動式の溶接電極)と接触するように、板組を配置した。
 かくして得られた溶接継手について、上述した要領により、板組の肩部の角度aおよびb、ならびに、ナゲット径Wを測定した。これらの測定結果を表3に示す。
 また、得られた溶接継手について、1枚目の鋼板と2枚目の鋼板の境界レベルでのナゲット径x、3枚の鋼板の板組ではさらに2枚目の鋼板と3枚目の鋼板の境界レベルでのナゲット径x、4枚の鋼板の板組ではさらに3枚目の鋼板と4枚目の鋼板の境界レベルでのナゲット径xを測定した。これらの測定結果を表3に示す。
 さらに、溶接継手のナゲットの表面および断面の観察を行い、肩部割れの有無を目視により確認した。結果を表3に併記する。
 なお、表3中、肩部割れの欄におけるA、BおよびCはそれぞれ以下の意味である。
 A(合格、特に優れる):割れの発生なし
 B(合格):割れの発生はあるが、長さが100μm未満
 C(不合格):100μm以上の長さの割れが発生
 また、表3中の判定の欄は、
 肩部割れがAであり、ナゲット径xが4.0√t以上である場合を「合格(優)」、
 肩部割れがBであり、ナゲット径xが4.0√t以上である場合を「合格(良)」、
 上記以外の場合、つまり、1つでも目標特性が得られなかった場合を「不合格」と表記した。
 なお、tは1枚目の鋼板と2枚目の鋼板のうちの薄い方の鋼板の厚さである。tは2枚目の鋼板と3枚目の鋼板のうちの薄い方の鋼板の厚さである。tは3枚目の鋼板と4枚目の鋼板のうちの薄い方の鋼板の厚さである。また、ナゲットとは、板組の鋼板同士を接合する点状の溶接部である。また、ナゲットは、板組の鋼板が溶融して凝固した部分である。
 さらに、それぞれの試料番号と同じ条件で第1通電工程までの通電を行った試料を別途作製した。そして、当該試料において、上述した要領により、中間段階ナゲットの径W0を測定した。測定結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
 表3より、発明例ではいずれも、溶接部の割れの発生を抑制しつつ、鋼板の各境界レベルにおいて所望の大きさのナゲット径を得ることができた。
 一方、試料番号17、25では、第2通電工程を行わない、つまり、1段のみの通電を行ったため、鋼板の境界レベルによっては所望の大きさのナゲット径が得られなかった。
 試料番号18~24、33、36、37、40、43、46および49では、第1通電工程において中間段階ナゲットの径W0が所定の範囲にならない条件で通電を行ったため、溶接部の割れが発生したり、鋼板の境界レベルによっては所望の大きさのナゲット径が得られなかった。
 試料番号26~30では、第2通電工程の冷却時間、電流値、または、通電時間が適正範囲外となるため、溶接部の割れが発生したり、鋼板の境界レベルによっては所望の大きさのナゲット径が得られなかった。
 1-1 鋼板(上鋼板)
 1-2 鋼板(下鋼板)
 1-3 鋼板
 2 板組
 3 溶接電極(上電極)
 4 溶接電極(下電極)
 5 ナゲット
 6 肩部
 7 スペーサ
 8 スペーサ

Claims (16)

  1.  n枚の鋼板を重ね合わせた板組と、該鋼板同士を接合するナゲットと、を有する、溶接継手であって、
     nは2以上の整数であり、
     前記板組において、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方が亜鉛系めっき鋼板であり、
     [条件1]の場合には、前記板組の1枚目の鋼板における肩部の角度aが、以下の(1)式を満足し、
     [条件2]の場合には、前記板組のn枚目の鋼板における肩部の角度bが、以下の(2)式を満足し、
     [条件3]の場合には、前記肩部の角度aおよびbがそれぞれ、以下の(1)式および(2)式を満足し、
     前記板組において、k枚目の鋼板とk+1枚目の鋼板の境界レベルでのナゲット径x(mm)が4.0√t以上であり、kが1~n―1までの整数であり、tがk枚目の鋼板とk+1枚目の鋼板のうちの薄い方の鋼板の厚さ(mm)である、溶接継手。
      a≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×11×W0.3+15  ・・・(1)
      b≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×11×W0.3+15  ・・・(2)
     式中、
      a:板組の1枚目の鋼板における肩部の角度(°)、
      b:板組のn枚目の鋼板における肩部の角度(°)、
      T:n枚の鋼板の合計厚さ(mm)、
      t:1枚目の鋼板の厚さ(mm)、
      t:n枚目の鋼板の厚さ(mm)、
      S:1枚目の鋼板の引張強さ(MPa)、
      S:n枚目の鋼板の引張強さ(MPa)、
      W:ナゲット径(mm)、
     である。
     また、[条件1]~[条件3]は、以下のとおりである。
    [条件1]
     板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板のみが亜鉛系めっき鋼板である。
    [条件2]
     板組の1枚目の鋼板とn枚目の鋼板のうち、n枚目の鋼板のみが亜鉛系めっき鋼板である。
    [条件3]
     板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板およびn枚目の鋼板の両方が亜鉛系めっき鋼板である。
  2.  前記[条件1]の場合には、前記肩部の角度aが、以下の(3)式を満足し、
     前記[条件2]の場合には、前記肩部の角度bが、以下の(4)式を満足し、
     前記[条件3]の場合には、前記肩部の角度aおよびbがそれぞれ、以下の(3)式および(4)式を満足する、請求項1に記載の溶接継手。
      a≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×6×W0.3+9  ・・・(3)
      b≦{(980/S)0.3×(1/T0.3)×(T/t)0.2}×6×W0.3+9  ・・・(4)
  3.  前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)式および(6)式のうちの少なくとも一方を満足する、請求項1または2に記載の溶接継手。
      T/t>2  ・・・(5)
      T/t>2  ・・・(6)
  4.  請求項1または2に記載の溶接継手を有する、溶接部材。
  5.  請求項3に記載の溶接継手を有する、溶接部材。
  6.  n枚の鋼板を重ね合わせた板組を一対の溶接電極で挟持し、加圧しながら通電して接合する抵抗スポット溶接方法であって、
     nは2以上の整数であり、
     前記板組において、上から順に1枚目の鋼板とn枚目の鋼板のうちの少なくとも一方が亜鉛系めっき鋼板であり、
     また、前記抵抗スポット溶接方法は、
      中間段階ナゲットを形成する、第1通電工程と、
      前記中間段階ナゲットを拡大する、第2通電工程と、
    を有し、
     前記第1通電工程では、前記中間段階ナゲットの径W0が
     [条件1]の場合には、以下の(7)式を、
     [条件2]の場合には、以下の(8)式を、
     [条件3]の場合には、以下の(7)式および(8)式の両方を、
    それぞれ満足する条件で通電を行い、
     前記第2通電工程では、
     冷却時間:10ms以上160ms未満の無通電状態での冷却と、
     通電時間:15ms以上200ms未満および電流値:前記第1通電工程の電流値以上での通電と、をそれぞれ1回以上行う、抵抗スポット溶接方法。
      (T0.3/t 0.2)×(S/980)0.1×2.0≦W0  ・・・(7)
      (T0.3/t 0.2)×(S/980)0.1×2.0≦W0  ・・・(8)
     式中、
      W0:中間段階ナゲットの径(mm)、
      T:n枚の鋼板の合計厚さ(mm)、
      t:1枚目の鋼板の厚さ(mm)、
      t:n枚目の鋼板の厚さ(mm)、
      S:1枚目の鋼板の引張強さ(MPa)、
      S:n枚目の鋼板の引張強さ(MPa)、
     である。
     また、[条件1]~[条件3]は、以下のとおりである。
    [条件1]
     板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板のみが亜鉛系めっき鋼板である。
    [条件2]
     板組の1枚目の鋼板とn枚目の鋼板のうち、n枚目の鋼板のみが亜鉛系めっき鋼板である。
    [条件3]
     板組の1枚目の鋼板とn枚目の鋼板のうち、1枚目の鋼板およびn枚目の鋼板の両方が亜鉛系めっき鋼板である。
  7.  前記第1通電工程において、前記中間段階ナゲットの径W0が
     前記[条件1]の場合には、以下の(9)式を、
     前記[条件2]の場合には、以下の(10)式を、
     前記[条件3]の場合には、以下の(9)式および(10)式の両方を、
    それぞれ満足する条件で通電を行う、請求項6に記載の抵抗スポット溶接方法。
      (T0.45/t 0.3)×(S/980)0.15×2.0≦W0  ・・・(9)
      (T0.35/t 0.3)×(S/980)0.15×2.0≦W0  ・・・(10)
  8.  前記第1通電工程において、以下の(11)式を満足する条件で通電を行う、請求項6に記載の抵抗スポット溶接方法。
      If>Is  ・・・(11)
     式中、
      Is:第1通電工程での通電開始時の電流値(kA)、
      If:第1通電工程での通電終了時の電流値(kA)、
     である。
  9.  前記第1通電工程において、以下の(11)式を満足する条件で通電を行う、請求項7に記載の抵抗スポット溶接方法。
      If>Is  ・・・(11)
     式中、
      Is:第1通電工程での通電開始時の電流値(kA)、
      If:第1通電工程での通電終了時の電流値(kA)、
     である。
  10.  前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)および(6)のうちの少なくとも一方を満足する、請求項6に記載の抵抗スポット溶接方法。
      T/t>2  ・・・(5)
      T/t>2  ・・・(6)
  11.  前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)および(6)のうちの少なくとも一方を満足する、請求項7に記載の抵抗スポット溶接方法。
      T/t>2  ・・・(5)
      T/t>2  ・・・(6)
  12.  前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)および(6)のうちの少なくとも一方を満足する、請求項8に記載の抵抗スポット溶接方法。
      T/t>2  ・・・(5)
      T/t>2  ・・・(6)
  13.  前記n枚の鋼板の合計厚さT、前記1枚目の鋼板の厚さtおよび前記n枚目の鋼板の厚さtが、以下の(5)および(6)のうちの少なくとも一方を満足する、請求項9に記載の抵抗スポット溶接方法。
      T/t>2  ・・・(5)
      T/t>2  ・・・(6)
  14.  以下の(A)~(E)の状態の1つまたは2つ以上を満足する、請求項6~13のいずれかの記載の抵抗スポット溶接方法。
    (A)溶接電極と板組が打角を有する。
    (B)一対の溶接電極が芯ずれする。
    (C)板組の加圧前に、固定式の溶接電極と板組との間に隙間がある。
    (D)板組の加圧前に、板組の鋼板間において少なくとも1箇所以上に隙間がある。
    (E)板組の表面において、溶接打点の中心から板組の端面までの最短距離が10mm以下である。
  15.  請求項6~13のいずれかに記載の抵抗スポット溶接方法により、n枚の鋼板を重ね合わせた板組を接合する工程を有し、nが2以上の整数である、溶接部材の製造方法。
  16.  請求項14に記載の抵抗スポット溶接方法により、n枚の鋼板を重ね合わせた板組を接合する工程を有し、nが2以上の整数である、溶接部材の製造方法。
     
PCT/JP2023/002726 2022-06-03 2023-01-27 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法 WO2023233704A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023528764A JP7355281B1 (ja) 2022-06-03 2023-01-27 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022091183 2022-06-03
JP2022-091183 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023233704A1 true WO2023233704A1 (ja) 2023-12-07

Family

ID=89025991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002726 WO2023233704A1 (ja) 2022-06-03 2023-01-27 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法

Country Status (1)

Country Link
WO (1) WO2023233704A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236676A (ja) * 2002-02-19 2003-08-26 Jfe Steel Kk 高張力亜鉛系めっき鋼板のスポット溶接方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法
US20120193331A1 (en) * 2011-01-28 2012-08-02 GM Global Technology Operations LLC Crack avoidance in resistance spot welded materials
WO2014045431A1 (ja) * 2012-09-24 2014-03-27 新日鐵住金株式会社 継手強度に優れた高強度鋼板のスポット溶接方法
WO2019124464A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
JP2019536631A (ja) * 2016-11-04 2019-12-19 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. 継手性能が良好な亜鉛めっき高張力鋼の抵抗スポット溶接方法
JP2020127958A (ja) * 2019-02-08 2020-08-27 日本製鉄株式会社 抵抗スポット溶接用電極、及び抵抗スポット溶接継手の製造方法
WO2020212741A1 (en) * 2019-04-19 2020-10-22 Arcelormittal A method for resistance spot welding of zinc-coated high strength steels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236676A (ja) * 2002-02-19 2003-08-26 Jfe Steel Kk 高張力亜鉛系めっき鋼板のスポット溶接方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法
US20120193331A1 (en) * 2011-01-28 2012-08-02 GM Global Technology Operations LLC Crack avoidance in resistance spot welded materials
WO2014045431A1 (ja) * 2012-09-24 2014-03-27 新日鐵住金株式会社 継手強度に優れた高強度鋼板のスポット溶接方法
JP2019536631A (ja) * 2016-11-04 2019-12-19 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. 継手性能が良好な亜鉛めっき高張力鋼の抵抗スポット溶接方法
WO2019124464A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
JP2020127958A (ja) * 2019-02-08 2020-08-27 日本製鉄株式会社 抵抗スポット溶接用電極、及び抵抗スポット溶接継手の製造方法
WO2020212741A1 (en) * 2019-04-19 2020-10-22 Arcelormittal A method for resistance spot welding of zinc-coated high strength steels

Similar Documents

Publication Publication Date Title
KR101419191B1 (ko) 이재 접합 방법
KR102058305B1 (ko) 저항 스폿 용접 방법 및 용접 부재의 제조 방법
JP6108018B2 (ja) スポット溶接方法
WO2017038981A1 (ja) スポット溶接方法
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6108017B2 (ja) スポット溶接方法
WO2018159764A1 (ja) 抵抗スポット溶接方法
KR102491219B1 (ko) 저항 스폿 용접 부재 및 그 제조 방법
JP7355281B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7115223B2 (ja) 抵抗スポット溶接継手の製造方法
WO2023233704A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2020105266A1 (ja) 接合構造体及び接合構造体の製造方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2023233705A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2024014146A1 (ja) 抵抗スポット溶接方法
WO2024063011A1 (ja) 溶接部材およびその製造方法
WO2024063009A1 (ja) 溶接部材およびその製造方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
WO2022219968A1 (ja) 抵抗スポット溶接方法
JP7435935B1 (ja) 溶接部材およびその製造方法
WO2024063012A1 (ja) 溶接部材およびその製造方法
JP7364113B2 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
WO2023008263A1 (ja) 抵抗スポット溶接方法
JP6372639B1 (ja) 抵抗スポット溶接方法
WO2021059720A1 (ja) 抵抗スポット溶接方法、および抵抗スポット溶接継手の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023528764

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815468

Country of ref document: EP

Kind code of ref document: A1