WO2023008263A1 - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
WO2023008263A1
WO2023008263A1 PCT/JP2022/028107 JP2022028107W WO2023008263A1 WO 2023008263 A1 WO2023008263 A1 WO 2023008263A1 JP 2022028107 W JP2022028107 W JP 2022028107W WO 2023008263 A1 WO2023008263 A1 WO 2023008263A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
current value
nugget
spot welding
stage
Prior art date
Application number
PCT/JP2022/028107
Other languages
English (en)
French (fr)
Inventor
直雄 川邉
央海 澤西
克利 ▲高▼島
公一 谷口
広志 松田
大起 山岸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022566087A priority Critical patent/JP7558475B2/ja
Priority to US18/291,661 priority patent/US20240238891A1/en
Priority to EP22849325.0A priority patent/EP4353394A1/en
Priority to KR1020247002299A priority patent/KR20240023636A/ko
Priority to MX2024001130A priority patent/MX2024001130A/es
Priority to CN202280051734.5A priority patent/CN117693411A/zh
Publication of WO2023008263A1 publication Critical patent/WO2023008263A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • B23K11/166Welding of coated materials of galvanized or tinned materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor

Definitions

  • the present invention relates to a resistance spot welding method.
  • a resistance spot welding method which is a type of lap resistance welding method, is used to join two or more steel plates together.
  • this welding method as shown in FIG. 1, two steel plates 1 and 2 are superimposed as a plate set, and the upper and lower sides of the plate set are sandwiched between a pair of electrodes 3 and 4, and the upper and lower sides of the plate set are welded together.
  • a pair of electrodes 3 and 4 apply pressure and a welding current is passed between the upper and lower electrodes to join the steel plates together.
  • a point-like welded portion 5 is obtained by using resistance heat generated by applying a welding current.
  • This point-like welded portion 5 is called a nugget, and is a portion where both steel plates 1 and 2 are melted and solidified at the contact point of the steel plates when a welding current is applied to the superimposed steel plates. Joined in dots.
  • FIG. 1 what superimposed the steel plate of 2 sheets is shown as an example.
  • the surface-treated steel sheet refers to galvanizing, such as electrogalvanizing, hot-dip galvanizing (including alloyed hot-dip galvanizing), and zinc alloy plating containing elements such as aluminum and magnesium in addition to zinc.
  • galvanizing such as electrogalvanizing, hot-dip galvanizing (including alloyed hot-dip galvanizing), and zinc alloy plating containing elements such as aluminum and magnesium in addition to zinc.
  • cracks in welds occur when the low-melting-point metal plating layer on the surface of the steel sheet melts during welding, and when tensile stress is applied to the weld due to pressure from the electrode and thermal expansion and contraction of the steel sheet. It is believed that the cracking is caused by so-called liquid metal embrittlement, in which the melting point metal penetrates into the crystal grain boundary of the base material of the surface-treated steel sheet to reduce the grain boundary strength and cause cracking.
  • Patent Literature 1 proposes a method of suppressing the occurrence of cracks in spot welding of high-strength plated steel sheets by appropriately adjusting the welding energization time and the holding time after welding energization.
  • the energization pattern is energized in three or more stages, and the appropriate current range (current range in which a nugget diameter of a desired nugget diameter or more and a melting residual pressure of 0.05 mm or more can be stably formed). is 1.0 kA or more, preferably 2.0 kA or more. Accordingly, a method for suppressing the occurrence of cracks has been proposed.
  • Patent Document 3 proposes a method of suppressing the occurrence of cracks by appropriately adjusting the holding time after energization.
  • Patent Document 4 proposes a method of improving the cross tensile strength of a joint by applying a short-time post-energization without nugget growth after forming a nugget by main energization.
  • Patent Literature 1 and Patent Literature 2 do not consider the effects of construction disturbances, and there are cases where the countermeasures are inadequate in consideration of the construction work during automobile assembly.
  • Patent Document 3 is a technique that can suppress cracks that occur during the time from the end of energization to the opening of the electrodes, and does not mention cracks that occur during energization, and it is difficult to suppress such cracks. there was a case.
  • Patent Document 4 does not refer to cracking during welding, and under conditions where a large nugget diameter is formed by main energization, deformation of the surface of the steel sheet becomes large, and cracking may occur in some cases.
  • the problem that it is difficult to stably secure a nugget with a large nugget diameter while suppressing the occurrence of cracks during welding in such a surface-treated steel plate is not limited to the case of resistance spot welding of steel plates for automobiles. , and also exist in resistance spot welding of other steel plates.
  • the present invention has been made in view of such circumstances, and provides a resistance spot welding method that can stably secure a nugget with a large nugget diameter while suppressing cracks during welding of surface-treated steel sheets. intended to provide
  • the energization process during welding is divided into two processes, the first energization process and the second energization process.
  • the first energization step energization is performed within a range in which extreme deformation does not occur to form a nugget with a certain nugget diameter.
  • the current value is adjusted to suppress deformation, a sufficiently large nugget is not formed. For example, if there is a disturbance that reduces the nugget diameter, a nugget with a predetermined nugget diameter cannot be secured. may occur.
  • the energization conditions are adjusted so as not to cause large deformation in the welded portion and the nugget is enlarged, thereby suppressing the occurrence of cracks during welding and stabilizing the nugget with a large nugget diameter. to secure it.
  • the energization conditions in the first energization process and the second energization process are shown below.
  • the heat input is adjusted by adjusting the energization pattern, and the pressure contact portion (corona bond portion) around the nugget is firmly bonded.
  • the scale of expulsion (the amount of scattered molten metal) can be suppressed in the subsequent second energization step, so that the deformation of the welded portion is reduced, and as a result, the occurrence of cracks can be suppressed.
  • the nugget can be enlarged by energizing at a current value equal to or higher than the current value in the first energization step. occur. Therefore, by adopting an energization pattern that repeats short-time energization and short-time cooling, it is possible to expand the nugget step by step while suppressing deformation of the welded part, making it possible to suppress the occurrence of cracks during welding. becomes. In such an energization pattern, even if splashing occurs, the scale (amount of molten metal scattered due to the splashing) can be suppressed by energizing for a short period of time. Therefore, the deformation of the welded portion is reduced, and as a result, it is possible to suppress the occurrence of cracks during welding.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. [1] Two or more steel sheets including at least one high-strength zinc-based plated steel sheet are superimposed to form a sheet assembly, the sheet assembly is sandwiched between a pair of welding electrodes, and an electric current is applied while applying pressure to the steel sheet.
  • the high-strength zinc-based plated steel sheet has a carbon equivalent Ceq represented by formula (1) of 0.20% or more and a tensile strength of 780 MPa or more
  • the energization has a first energization step and a second energization step, In the first energization step, Is (kA) is the current value at the start of energization, If (kA) is the current value at the end of energization, and t (mm) is the thickness of the thinnest steel sheet among the superimposed steel sheets.
  • a weld with a nugget diameter of 3.0 ⁇ t (mm) or more and 4.5 ⁇ t (mm) or less form In the second energization step, a cooling step of maintaining a non-energized state for 10 ms or more and less than 160 ms, and a current value Ip (kA) equal to or higher than the current value If (kA) at the end of the energization for 20 ms or more and less than 200 ms.
  • the first energization step is multi-stage energization of n stages (n is an integer of 2 or more),
  • the current value of each stage in the multi-stage energization is I1 to In (kA), and the current value I1 (kA) of the first stage is the same as the current value Is (kA) at the start of the energization, and the n-th stage When the current value In is the same as the current value If (kA) at the end of the energization,
  • the resistance spot welding method according to [1], wherein the current values I1 to In (kA) in each stage satisfy the formula (3).
  • FIG. 1 is a cross-sectional view schematically showing an example of resistance spot welding according to the present invention.
  • FIG. 2 is a diagram showing a test piece for resistance spot welding in an example of the present invention, the upper side being a plan view and the lower side a side view.
  • FIG. 3 is a diagram showing a test piece for resistance spot welding in an example of the present invention, the upper side being a plan view and the lower side a side view.
  • FIG. 4 is a diagram showing a test piece for resistance spot welding in an example of the present invention, the upper side being a plan view and the lower side a side view.
  • FIG. 5 is a cross-sectional view schematically showing an example of crack generation during conventional resistance spot welding.
  • two or more steel plates are superimposed to form a plate assembly, and the plate assembly is sandwiched between a pair of welding electrodes arranged vertically with respect to the plate assembly. It is a resistance spot welding method that forms a nugget by pressing and joins steel plates together.
  • a pair of welding electrodes that is, a welding electrode 4 (hereinafter referred to as "lower The superimposed steel plates (lower steel plate 2 and upper steel plate 1) are sandwiched between the welding electrode 3 (hereinafter also referred to as the “upper electrode”) placed on the upper side of the plate assembly. and energize while applying pressure. It is preferable that the number of steel sheets to be superimposed is 4 or less.
  • the apparatus for carrying out the resistance spot welding method of the present invention is not particularly limited as long as it has a configuration in which pressure is applied by the lower electrode and the upper electrode and the pressing force is controlled.
  • devices such as air cylinders and servomotors can be used.
  • the configuration for supplying current and controlling the current value during energization is not particularly limited, and the present invention can be applied to both direct current and alternating current.
  • current means "rms current.”
  • the forms of the tips of the lower electrode and the upper electrode are not particularly limited. Examples include DR type (dome radius type), R type (radius type), D type (dome type), etc. described in JIS C 9304:1999.
  • the tip diameter of each electrode is, for example, 4 mm to 16 mm.
  • the curvature radius is, for example, 10 mm to 400 mm, and flat-type electrodes with flat tips can also be used.
  • the superimposed steel plates (plate assembly) are sandwiched between a pair of welding electrodes and energized while being pressurized to form a nugget of the required size by resistance heat generation and join the superimposed steel plates. A welded joint is thus obtained.
  • this energization is performed in a specific pattern, which will be described later.
  • the present invention is applied to a plate set in which either one side or both sides of the plate set in contact with the welding electrodes arranged on the upper and lower sides of the plate set is a surface-treated steel plate having a metal plating layer.
  • both sides of the plate set in contact with each welding electrode refers to the two outermost steel plates of the plate set composed of a plurality of steel plates that are in contact with the upper electrode and the lower electrode.
  • either one side of the plate set in contact with each welding electrode refers to the two outermost plates of the plate set composed of a plurality of steel plates that are in contact with the upper electrode or the lower electrode. It refers to either one of the steel plates.
  • the melting point of the metal plating layer is preferably lower than the melting point of the base material of the surface-treated steel sheet.
  • surface-treated steel sheets include electrogalvanizing, hot-dip galvanizing (including alloyed hot-dip galvanizing), and zinc alloys containing elements such as aluminum and magnesium in addition to zinc. It refers to a steel sheet that has a metal plating layer such as plating on the surface of the base material (base steel sheet).
  • a surface-treated steel sheet is called a "zinc-based plated steel sheet”. Therefore, in the present invention, at least one of the plurality of steel sheets constituting the above-described set of sheets is a zinc-based plated steel sheet.
  • the above zinc-based plated steel sheet has a carbon equivalent (Ceq) (%) of 0.20% or more and a tensile strength of 780 MPa or more (high-strength zinc system plated steel sheet).
  • Ceq (%) C + Si/30 + Mn/20 + 2P + 4S (1)
  • the element symbol in the formula (1) indicates the content (% by mass) of each element, and is set to 0 when the element is not contained.
  • High-strength steel sheets are highly susceptible to cracking, and cracking during welding is likely to be a problem.
  • the carbon equivalent is adjusted to 0.20% or more and the steel sheet has a tensile strength of 780 MPa or more, the effects of the present invention can be exhibited.
  • a steel sheet having a carbon equivalent of less than 0.20% has a low cracking sensitivity, and cracking during welding is unlikely to pose a problem.
  • the carbon equivalent Ceq is preferably 0.25% or more, more preferably 0.30% or more.
  • the carbon equivalent (Ceq) there is no particular upper limit for the carbon equivalent (Ceq). Steel sheets with extremely high carbon equivalents, that is, extremely sensitive to cracking, may not be sufficiently effective in suppressing cracking even if the energization pattern of the present invention is applied, so the carbon equivalent (Ceq) is 0. 0.60% or less is preferable, and 0.50% or less is more preferable.
  • the chemical composition of the high-strength zinc-based plated steel sheet used in the present invention may be appropriately adjusted so as to obtain the above-described carbon equivalent (Ceq) range and tensile strength.
  • the tensile strength of the zinc-based plated steel sheet is preferably 780 MPa or more.
  • a steel sheet having a high tensile strength tends to contain a large amount of alloying elements, and tends to be highly sensitive to cracking, so that the effects of the present invention are likely to be obtained.
  • Tensile strength is more preferably 980 MPa or more.
  • the tensile strength is preferably 2500 MPa or less.
  • the plate thickness of the steel plate to be resistance spot welded is not particularly limited.
  • it is preferably within the range of 0.5 mm or more and 3.0 mm or less.
  • a steel sheet having a thickness within this range can be suitably used as a member for automobiles.
  • the two or more steel plates to be resistance spot welded may be steel plates of the same type and shape, or may be steel plates of different types or different shapes.
  • a surface-treated steel sheet having a metal plating layer and a steel sheet not having a metal plating layer may be superimposed.
  • a plate set two or more steel sheets including at least one zinc-based plated steel sheet are superimposed to form a plate set, the plate set is sandwiched between a pair of welding electrodes, and a nugget is formed by applying an electric current while applying pressure. Once formed, the steel plates are joined together.
  • This energization includes a first energization step and a second energization step. In the present invention, this energization is performed in a specific pattern described below.
  • the current value at the start of energization is Is (kA)
  • the current value at the end of energization is If (kA)
  • the thickness of the thinnest steel sheet among the superimposed steel sheets is t (mm).
  • the current value Is (kA) at the start of the energization and the current value If (kA) at the end of the energization satisfy the relationship of the formula (2). Form a weld with a nugget diameter of 5 ⁇ t (mm) or less. If>Is (2)
  • the current value If at the end of energization is preferably (Is+1)(kA) or more, more preferably (Is+3)(kA) or more.
  • the current value If at the end of energization is preferably (Is + 10) (kA) or less, more preferably (Is + 8) (kA) or less. and If it is desired to form a nugget without causing expulsion in the first energization step and to obtain a remarkable effect of suppressing expulsion in the second energization step, the current value If at the end of the energization should be in the range of 5 to 15 kA. is preferred.
  • the diameter of the nugget formed in the first energization step is set to 3.0 ⁇ t (mm) or more and 4.5 ⁇ t (mm) or less.
  • the nugget diameter formed in the first energization step is preferably in the range of 4.0 ⁇ t (mm) to 4.5 ⁇ t (mm). If it is in the range of 4.0 ⁇ t (mm) to 4.5 ⁇ t (mm), the effect of enlarging the nugget diameter in the subsequent second energization step can be obtained more significantly.
  • t refers to the plate thickness of the steel plate. Specifically, let t be the thickness of the thinnest steel sheet among the stacked steel sheets forming the set of sheets. For example, when a plurality of steel plates constituting a set of plates have different plate thicknesses, the thickness of the thinnest steel plate among them is t.
  • the current during the energization in the first energization step is controlled so as to satisfy the formula (2), and the current is made variable.
  • Methods for controlling the current to be variable include, for example, multistage energization and up-slope energization.
  • the energization in the first energization step is multi-stage energization of n stages (n is an integer equal to or greater than 2).
  • the current value of each stage in this multistage energization is I1 to In (kA), and the current value I1 (kA) of the first stage is the same as the current value Is (kA) at the start of the energization, and the nth stage If the current value In is the same as the current value If (kA) at the end of energization, it is preferable that the current values I1 to In (kA) at each stage satisfy the formula (3).
  • n which indicates multiple stages, shall be an integer of 2 or more. From the viewpoint of preventing the management of welding conditions during construction from becoming too complicated, n is preferably 5 or less.
  • the energization in the first energization step is preferably up-slope energization in which the current value is continuously increased from the current value Is at the start of the energization to the current value If at the end of the energization.
  • the press-contact portion around the nugget can be firmly joined in the first energization step, and the scale of expulsion can be suppressed in the second energization step later, so that deformation of the welded portion is reduced. As a result, it becomes possible to suppress the occurrence of cracks.
  • the energization time and pressure in the first energization step conditions capable of ensuring the above-described nugget diameter can be appropriately selected.
  • the energization time is 100 to 700 ms as a condition for resistance spot welding in the first energization step.
  • the energization time is 100 ms or less, it is difficult to obtain the effect of firmly joining the pressure contact portion around the nugget.
  • the energization time is 700 ms or longer, the heat input becomes excessively large, which may lead to excessive deformation of the welded portion.
  • the energization time in the step is controlled so that the total energization time in each stage is within the above range. More preferably, it is in the range of 100-500 mms. Further, it is preferable that the pressing force in the first energization step is in the range of 1.5 kN to 8.0 kN.
  • ⁇ Second energization step> After the first energization step described above, the second energization step is performed.
  • a cooling step in which the non-energized state is maintained for 10 ms or more and less than 160 ms, and a current value Ip equal to or higher than the current value If (kA) at the end of the first energization step for 20 ms or more and less than 200 ms.
  • the nugget is enlarged by repeating the energization step of energizing at (kA).
  • the nugget diameter of the welded portion obtained after the second energization process is in the range of 4.5 ⁇ t (mm) to 6.0 ⁇ t (mm). A target diameter is preferred.
  • the non-energization time in the cooling process is set to 10 ms or more and less than 160 ms.
  • the energization time in the energization step is set to 20 ms or more and less than 200 ms.
  • the energization time of this energization step is preferably 160 ms or less, more preferably 150 ms or less.
  • the non-energization time of the cooling process in the second energization process is set to 10 to 80 ms, and the second energization process is performed. It is preferable to set the energization time of the energization step in the process to 20 to 100 ms. More preferably, the non-energization time in this cooling step is 60 ms or less. More preferably, the non-energization time of this cooling step is set to 20 ms or longer. More preferably, the energization time of this energization step is set to 40 ms or longer.
  • the current value Ip (kA) in the energization step is made equal to or greater than the current value If (kA) at the end of the energization in the first energization step.
  • the upper limit of the current value Ip in the energization step is not specified. Under extremely high current conditions, excessive heat input may increase deformation of the welded portion and cause cracking. Therefore, the current value Ip (kA) is preferably (4 x If) (kA) or less, more preferably (3 x If) (kA) or less, and (1.5 x If) (kA) ) below is more preferable.
  • the number of repetitions of the cooling step and the energization step in the second energization step may be one, but is preferably two or more. If the number of repetitions is less than 2, the effect of enlarging the nugget diameter may not be sufficiently obtained. The upper limit of the number of repetitions is not specified. However, if the number of repetitions exceeds 10, the effect of enlarging the nugget is saturated, so it is difficult to obtain a large effect, and the total time of the entire welding process increases, so from the viewpoint of construction efficiency, 10 or less is preferable. . A more preferable number of repetitions is 5 or less. Note that the repeated energization in the second energization step is constant energization.
  • the nugget diameter formed after the first energization step is N1 (mm)
  • the nugget diameter formed after the first energization step and the second energization step are N1 (mm).
  • N2 (mm) the value of (N2-N1), which is the amount of expansion of the nugget diameter in the second energization step, is preferably 0.1 ⁇ t (mm) or more.
  • the value of (N2-N1) is more preferably 0.3 ⁇ t (mm) or more, still more preferably 0.5 ⁇ t (mm) or more.
  • (N2-N1) is more preferably 2.5 ⁇ t (mm) or less, still more preferably 2.0 ⁇ t (mm) or less.
  • the present invention is not limited to the following examples.
  • two steel sheets including a galvanized steel sheet were used, and the steel sheets were stacked to form a sheet set (see Table 1).
  • the carbon equivalent (Ceq) represented by the above formula (1), the tensile strength, and the plate thickness of the steel plate are galvannealed (GA) under the conditions shown in Table 1.
  • Steel sheets and cold-rolled steel sheets were used. Resistance spot welding was performed on the plate assemblies under the conditions shown in Table 2-1 or Table 3-1 to prepare welded joints.
  • Table 2-1 shows the conditions under which the first energizing process is the "multi-step energizing”
  • Table 3-1 shows the conditions under which the first energizing process is the "up slope energizing”.
  • current value I1 (kA) at the first stage” in multi-stage energization refers to "current value Is (kA) at the start of energization”
  • current value at the final stage (nth stage) In (kA) indicates "current value If (kA) at the end of energization”.
  • the current value at the third stage which is the final stage, is the current value at the end of the energization.
  • Resistance spot welding was performed at room temperature, and the welding electrodes (lower electrode, upper electrode) were always water-cooled. Both the lower electrode and the upper electrode had a tip diameter (tip diameter) of 6 mm and a radius of curvature of 40 mm, and were DR type electrodes made of chromium copper. Further, the pressing force was controlled by driving the upper electrode with a servomotor, and a DC power source was supplied at the time of energization.
  • the test piece with the disturbance condition of "already struck” was produced as follows. As shown in FIG. 4, two steel plates (upper steel plate 1, lower steel plate 2) having a size of 30 mm ⁇ 100 mm (short side ⁇ long side) made from the above steel plates are prepared, and the steel plates are superimposed and tested. body. Already welded points 9 and 10 with a nugget diameter of 5 mm are placed at a position 20 mm away from the center of the test body in the longitudinal direction, and then the welded portion 6 at the center of the test body is welded under the conditions shown in Table 2-1 or Table 3-1. A welded joint was prepared by welding with. Using the welded portion 6 of the obtained welded joint, the nugget diameter and the presence or absence of cracking were observed.
  • the amount of expansion of the nugget diameter was observed.
  • the nugget diameter, the amount of expansion of the nugget diameter, and the presence or absence of cracks were evaluated and judged as follows. [Evaluation of nugget diameter and expansion amount of nugget diameter] Regarding the nugget diameter (N1) after the first energization step, the nugget diameter was measured by conducting a welding test in advance only for the first energization step and observing the cross section in the tests under each of the disturbance conditions described above. Here, after etching a cross section obtained by cutting the welded portion, the cross section was observed with an optical microscope to measure the nugget diameter between the steel plates.
  • the obtained measured values are shown in the column “nugget diameter N1 after the first energization step” in Tables 2-2 and 3-2.
  • the nugget diameter (N2) after the second energization step was measured in the same manner as described above using each welded joint obtained by conducting the welding test under the above three disturbance conditions.
  • the obtained measured values are shown in the column of "nugget diameter N2 after the second energization step” in Tables 2-2 and 3-2.
  • the values calculated by (N2-N1) which indicate the expansion amount of the nugget diameter in the second energization step, are shown in the "N2-N1" column in Table 2, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

抵抗スポット溶接方法の提供を目的とする。本発明の抵抗スポット溶接方法は、板組に用いる高強度亜鉛系めっき鋼板の炭素当量が0.20%以上かつ引張強さが780MPa以上であり、第1通電工程では、通電開始時の電流値をIs、通電終了時の電流値をIf、重ね合わせた鋼板のうち最も薄い鋼板の板厚をtとするとき、通電終了時の電流値IfがIf>Isの関係を満たすように通電して3.0√tmm以上4.5√tmm以下のナゲット径となる溶接部を形成し、第2通電工程では、10ms以上160ms未満の間、無通電状態を保持する冷却工程と、20ms以上200ms未満の間、通電終了時の電流値If以上の電流値Ipで通電する通電工程とを繰り返す。

Description

抵抗スポット溶接方法
 本発明は、抵抗スポット溶接方法に関する。
 一般に、2枚以上の鋼板を重ね合わせた鋼板同士の接合には、重ね抵抗溶接方法の一種である抵抗スポット溶接方法が用いられている。この溶接方法は、図1に示すように、重ね合わせた2枚の鋼板1、2を板組とし、その板組の上下側を一対の電極3、4により挟み、その板組の上下側から一対の電極3、4で加圧しつつ、上下電極間に溶接電流を通電して鋼板同士を接合する方法である。溶接電流を流すことで発生する抵抗発熱を使用して、点状の溶接部5を得る。この点状の溶接部5はナゲットと呼ばれ、重ね合わせた鋼板に溶接電流を流した際に鋼板の接触箇所で両鋼板1、2が溶融し、凝固した部分であり、これにより鋼板同士が点状に接合される。なお、図1には、一例として2枚の鋼板を重ね合わせたものを示している。
 しかしながら、表面処理鋼板を含む複数の鋼板を重ね合わせた板組の抵抗スポット溶接では、溶接部に割れが生じることがあるという問題がある。ここで、表面処理鋼板とは、電気亜鉛めっき、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛のほかにアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金めっきなどの金属めっき層を、母材(下地鋼板)の表面上に有する鋼板を言う。亜鉛めっきや亜鉛合金めっきの融点は、母材の融点よりも低いため、以下のような問題がある。
 すなわち、溶接部の割れは、溶接中に鋼板表面の低融点の金属めっき層が溶融し、電極による加圧力や鋼板の熱膨張および収縮による引張応力が溶接部に加わった際に、溶融した低融点の金属が表面処理鋼板の母材の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす、いわゆる液体金属脆性に起因する割れであると考えられている。
 このような割れは、溶接部に大きな変形が加わる場合に発生しやすく、例えば散りが発生するような条件で溶接した場合に図5のような電極3、4と接する側の鋼板1、2の表面において発生しやすくなる。一方で、継手強度の確保の観点からは、ナゲット径の大きなナゲットを確保することが重要となる。実施工においては、溶接時に、溶接したい領域の近傍に存在する溶接打点への分流や、連続打点による電極の損耗などの施工外乱の影響により、溶接したい領域に十分な電流密度が確保できない場合がある。そのような場合には入熱量が減少するため、所定のナゲット径を確保することが困難となる。上記の入熱量が減少するケースを考慮したうえで溶接時の電流値を大きく設定することで、ナゲット径の大きなナゲットを確保することが可能となるが、その場合には散りの発生に代表されるような、溶接部の大きな変形が発生し、割れ発生のリスクが高まる。以上のように、実施工において溶接時の割れの発生を抑制しつつ、ナゲット径の大きなナゲットを安定して確保することは難しく、表面処理鋼板の実用上の課題となっている。
 このような課題への対策として、例えば特許文献1~4に記載の技術が挙げられる。特許文献1では、高強度めっき鋼板のスポット溶接において、溶接通電時間および溶接通電後の保持時間を適正に調整することで、割れの発生を抑制する方法が提案されている。
 また、特許文献2では、通電パターンを3段以上の通電とし、適正電流範囲(所望のナゲット径以上で、かつ溶融残圧が0.05mm以上であるナゲット径を安定して形成できる電流範囲)が1.0kA以上、好ましくは2.0kA以上となるように、通電時間、溶接電流などの溶接条件を調整し、各段の間に冷却時間を設ける。これにより、割れの発生を抑制する方法が提案されている。
 また、特許文献3では、通電後の保持時間を適正に調整することで、割れの発生を抑制する方法が提案されている。
 また、特許文献4では、本通電でナゲットを形成した後に、ナゲットの成長を伴わない短時間後通電を付与することで継手の十字引張強度を向上する方法が提案されている。
特開2003-103377号公報 特開2003-236676号公報 特開2017-47476号公報 特開2012-187639号公報
 しかしながら、特許文献1および特許文献2では、施工外乱の影響については検討されておらず、自動車組み立て時の実施工を考慮すると、対策としては不十分な場合があった。
また、特許文献3は通電終了後から電極開放までの時間に発生する割れを抑止できる技術であり、通電中に発生する割れについては言及されておらず、このような割れを抑止することは困難な場合があった。
また、特許文献4は溶接時の割れについては言及されておらず、本通電で大きなナゲット径を形成する条件では鋼板表面の変形が大きくなり、割れが発生する場合があった。
 なお、このような表面処理鋼板において溶接時の割れの発生を抑制しつつ、ナゲット径の大きなナゲットを安定して確保することが難しいという問題は、自動車用鋼板を抵抗スポット溶接する場合に限らず、その他の鋼板の抵抗スポット溶接においても同様に存在する。
 本発明は、かかる事情に鑑みてなされたものであって、表面処理鋼板の溶接時の割れを抑制しつつ、ナゲット径の大きなナゲットを安定して確保することが可能な、抵抗スポット溶接方法を提供することを目的とする。
 本発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
 溶接時の割れは、溶接部に大きな変形が発生した場合に生じやすい。そのため、変形を最小限に抑えつつナゲットを拡大させることができれば、溶接時の割れを抑制し、かつナゲット径の大きなナゲットを安定して確保することができる。また、溶接部の変形の原因の一つに散りがあり、大きな散り(すなわち、飛散する液体金属量の多い散り)を抑制することが、溶接時の割れの抑制に有効であることが分かった。
 溶接時の通電工程を第1通電工程と第2通電工程の2工程に分ける。第1通電工程では、極端な変形が起こらない範囲で通電し、ある程度のナゲット径のナゲットを形成する。この際、変形を抑えるために電流値を調整するため、十分に大きなナゲットが形成されず、例えばナゲット径が小さくなるような外乱が存在する場合には所定のナゲット径となるナゲットを確保できない問題が生じる場合がある。そこで、第2通電工程では、溶接部に大きな変形を発生させないように通電条件を調整してナゲットを拡大させることで、溶接時の割れの発生を抑制しつつ、ナゲット径の大きなナゲットを安定して確保するのである。
 以下に、第1通電工程および第2通電工程における通電条件について示す。
 第1通電工程では、後の第2通電工程において大きな変形が発生しないような溶接部を形成することが重要となる。この工程では、通電パターンを調整することにより入熱を調整し、ナゲットの周囲の圧接部(コロナボンド部)を強固に接合する。これにより、後の第2通電工程において散りの規模(飛散する溶融金属の量)を小さく抑えることができるため、溶接部の変形が小さくなり、その結果割れの発生を抑えることが可能となる。
 第2通電工程では、第1通電工程における電流値以上の電流値で通電することでナゲットを拡大させることができるが、長時間の通電を行うと、入熱が過大となり溶接部に大きな変形が発生してしまう。そこで、短時間通電と短時間冷却を繰り返す通電パターンとすることで、ナゲットを段階的に拡大させつつ、溶接部の変形を抑えることができるため、溶接時の割れの発生を抑制することが可能となる。このような通電パターンにおいては、散りが発生した場合においても、短時間通電によりその規模(散りによって飛散する溶融金属の量)を小さく抑えることができる。このため、溶接部の変形が小さくなり、その結果、溶接時の割れの発生を抑えることが可能となる。
 本発明は、以上の知見に基づいてなされたものであり、要旨は以下のとおりである。
[1] 少なくとも1枚の高強度亜鉛系めっき鋼板を含む2枚以上の鋼板を重ね合わせて板組とし、該板組を1対の溶接電極で挟持し、加圧しながら通電して前記鋼板を接合する抵抗スポット溶接方法であって、
 前記高強度亜鉛系めっき鋼板は、(1)式で表される炭素当量Ceqが0.20%以上、引張強さが780MPa以上であり、
 前記通電は、第1通電工程と第2通電工程とを有し、
前記第1通電工程では、通電開始時の電流値をIs(kA)、通電終了時の電流値をIf(kA)、重ね合わせた鋼板のうち最も薄い鋼板の板厚をt(mm)とするとき、
通電終了時の電流値If(kA)が(2)式を満たすように通電することで、3.0√t(mm)以上4.5√t(mm)以下のナゲット径となる溶接部を形成し、
前記第2通電工程では、10ms以上160ms未満の間、無通電状態を保持する冷却工程と、20ms以上200ms未満の間、前記通電終了時の電流値If(kA)以上の電流値Ip(kA)で通電する通電工程とを繰り返すことでナゲットを拡大する、抵抗スポット溶接方法。
Ceq=C+Si/30+Mn/20+2P+4S  (1)
If >Is   (2)
ここで、(1)式中の元素記号は各元素の含有量(質量%)を示し、元素が含有されていない場合は0とする。
[2] 前記第1通電工程は、n段(nは2以上の整数)の多段通電であり、
 該多段通電での各段の電流値をI1~In(kA)とし、かつ、1段目の電流値I1(kA)が前記通電開始時の電流値Is(kA)と同一およびn段目の電流値Inが前記通電終了時の電流値If(kA)と同一とするとき、
各段の電流値I1~In(kA)が(3)式を満たす、[1]に記載の抵抗スポット溶接方法。
I1 < I2 < I3 <・・・<In  (3)
[3] 前記第1通電工程は、前記通電開始時の電流値Isから前記通電終了時の電流値Ifまで、連続的に電流値を増加させるアップスロープ通電である、[1]に記載の抵抗スポット溶接方法。
[4] 前記第2通電工程における前記冷却工程と前記通電工程との繰り返し数が、2回以上である、[1]~[3]のいずれか1つに記載の抵抗スポット溶接方法。
[5] 前記第1通電工程の終了後に形成されるナゲット径をN1(mm)、前記第1通電工程および前記第2通電工程の終了後に形成されるナゲット径をN2(mm)とするとき、
(N2-N1)で表される前記第2通電工程でのナゲット径の拡大量が0.1√t(mm)以上である、[1]~[4]のいずれか1つに記載の抵抗スポット溶接方法。
 本発明によれば、表面処理鋼板の溶接時の割れ発生を抑制しつつ、径の大きなナゲットを安定的に形成することができるので、産業上格段の効果を奏する。
図1は、本発明の抵抗スポット溶接の例を模式的に示す断面図である。 図2は、本発明の実施例における抵抗スポット溶接の試験片を示す図であり、上側が平面図、下側が側面図である。 図3は、本発明の実施例における抵抗スポット溶接の試験片を示す図であり、上側が平面図、下側が側面図である。 図4は、本発明の実施例における抵抗スポット溶接の試験片を示す図であり、上側が平面図、下側が側面図である。 図5は、従来の抵抗スポット溶接時の割れの発生例を模式的に示す断面図である。
 以下、各図を参照して、本発明の抵抗スポット溶接方法について説明する。なお、本発明はこの実施形態に限定されない。
 本発明は、2枚以上の鋼板を重ね合わせて板組とし、この板組に対して上下方向に配置する1対の溶接電極で板組を挟持し、加圧しながら後述する通電パターンで通電してナゲットを形成すると共に、鋼板同士を接合する抵抗スポット溶接方法である。
 例えば、図1に示すように、2枚の鋼板を重ね合わせた板組を抵抗スポット溶接する場合、1対の溶接電極、すなわち板組の下側に配置される溶接電極4(以下、「下電極」と称する場合もある)および板組の上側に配置される溶接電極3(以下、「上電極」と称する場合もある)で、重ね合わせた鋼板(下鋼板2と上鋼板1)を挟持して、加圧しながら通電する。重ね合わせる鋼板の枚数は、4枚以下とすることが好ましい。
 なお、本発明の抵抗スポット溶接方法を実施する装置は、下電極と上電極によって加圧し、且つその加圧力を制御する構成であればよく、この構成は特に限定されない。例えば、エアシリンダやサーボモータ等の機器が使用できる。また、通電の際に電流を供給し、且つ電流値を制御する構成も特に限定されず、直流、交流のいずれにも本発明を適用できる。交流の場合は、「電流」は「実効電流」を意味する。
 また、下電極や上電極の先端の形式も特に限定されない。例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)等が挙げられる。各電極の先端径は、例えば4mm~16mmである。曲率半径は例えば10mm~400mmであり、先端が平坦なFlat型電極とすることもできる。
 このように、重ね合わせた鋼板(板組)を1対の溶接電極で挟持した状態で加圧しながら通電して、抵抗発熱によって必要なサイズのナゲットを形成すると共に、重ね合わせた鋼板を接合することで、溶接継手が得られる。そして、本発明では、この通電を後述の特定パターンで行う。
 本発明は、板組の上側および下側に配置される各溶接電極と接する板組の両面、もしくは片面のいずれか一方が、金属めっき層を有する表面処理鋼板である板組に適用される。ここで、上記の「各溶接電極と接する板組の両面」とは、上電極および下電極と接する、複数の鋼板で構成される板組のうち最も外側に配置される2枚の鋼板を指す。また、上記の「各溶接電極と接する板組の片面のいずれか一方」とは、上電極あるいは下電極と接する、複数の鋼板で構成される板組のうち最も外側に配置される2枚の鋼板のいずれか一方の鋼板を指す。なお、金属めっき層の融点は、表面処理鋼板の母材の融点よりも低いものを対象とすることが好ましい。
 上述のように、表面処理鋼板とは、電気亜鉛めっき、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛のほかにアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金めっきなどの金属めっき層を、母材(下地鋼板)の表面上に有する鋼板を言う。ここでは、このような表面処理鋼板を「亜鉛系めっき鋼板」と称する。したがって、本発明では、上記の板組を構成する複数の鋼板のうち、少なくとも1枚が亜鉛系めっき鋼板とする。
 上述の亜鉛系めっき鋼板は、以下に示す(1)式で表される炭素当量(Ceq)(%)が0.20%以上であり、引張強さが780MPa以上の高強度鋼板(高強度亜鉛系めっき鋼板)である。
Ceq(%)=C+Si/30+Mn/20+2P+4S   (1)
ここで、(1)式中の元素記号は、各元素の含有量(質量%)を示し、元素が含有されていない場合は0とする。
 高強度鋼板は割れに対する感受性が高く、溶接時の割れ発生が問題になりやすい。しかし上記炭素当量を0.20%以上に調整し、引張強さが780MPa以上の鋼板であっても本発明の効果を発揮することができる。炭素当量が0.20%未満の鋼板は割れ感受性が低く、そもそも溶接時の割れ発生が問題になりにくい。より一層効果を発揮させる観点から、炭素当量Ceqは、好ましくは0.25%以上であり、より好ましくは0.30%以上である。
 炭素当量(Ceq)の上限は特に規定しない。炭素当量の極端に高い、すなわち割れに対する感受性が極端に高い鋼板は、本発明の通電パターンを適用しても割れ抑止効果を十分に得られない場合があることから、炭素当量(Ceq)は0.60%以下とすることが好ましく、0.50%以下とすることがより好ましい。
なお、本発明で用いる高強度亜鉛系めっき鋼板の成分組成は、上述の炭素当量(Ceq)の範囲および引張強さを得られるように適宜調整すればよい。
 亜鉛系めっき鋼板の引張強さは780MPa以上とすることが好ましい。引張強さが大きい鋼板は合金成分を多く含む傾向にあり、割れに対する感受性が高くなりやすいため、本発明の効果を得られやすい。引張強さは、より好ましくは980MPa以上である。また、鋼板の引張強さの上限は特に規定しないが、引張強さは好ましくは2500MPa以下とする。
 なお、本発明において、抵抗スポット溶接する鋼板の板厚は、特に限定されない。例えば0.5mm以上3.0mm以下の範囲内であることが好ましい。板厚がこの範囲内である鋼板は、自動車用部材として好適に使用することができる。
 抵抗スポット溶接する2枚以上の鋼板は、同種および同形状の鋼板であってもよいし、異種や異形状の鋼板であってもよい。また、金属めっき層を有する表面処理鋼板と金属めっき層を有さない鋼板とを重ね合わせてもよい。
 次いで、本発明の抵抗スポット溶接方法における通電パターンについて説明する。
 本発明では、少なくとも1枚の亜鉛系めっき鋼板を含む2枚以上の鋼板を重ね合わせて板組とし、該板組を1対の溶接電極で挟持し、加圧しながら通電することで、ナゲットを形成すると供に鋼板を接合する。この通電として、第1通電工程と第2通電工程を有する。本発明では、この通電を以下に説明する特定パターンで行う。
 <第1通電工程>
 まず、第1通電工程では、通電開始時の電流値をIs(kA)、通電終了時の電流値をIf(kA)、重ね合わせた鋼板のうち最も薄い鋼板の板厚をt(mm)とするとき、通電開始時の電流値Is(kA)と通電終了時の電流値If(kA)が(2)式の関係を満たすように通電することで、3.0√t(mm)以上4.5√t(mm)以下のナゲット径となる溶接部を形成する。
If >Is    (2)
 開始時の電流値Isと通電終了時の電流値Ifの関係がIf≦Isの場合には、圧接部への入熱不足となる。その結果、第1通電工程においてナゲット周囲の圧接部を強固に接合することができず、後の第2通電工程において発生する可能性のある散りの規模を小さく抑える効果が得られない。またナゲットを十分に成長させることが難しく、上記した範囲のナゲット径を得られない可能性もある。通電終了時の電流値Ifは、好ましくは(Is+1)(kA)以上とし、より好ましくは(Is+3)(kA)以上とする。
 なお、通電終了時の電流値Ifの上限は特に規定しない。しかし第1通電工程での急激な電流上昇による散り発生を抑制する観点から、通電終了時の電流値Ifは、好ましくは(Is+10)(kA)以下とし、より好ましくは(Is+8)(kA)以下とする。
 第1通電工程で散り発生することなくナゲットを形成し、第2通電工程での散りを抑止する効果を顕著に得たい場合は、通電終了時の電流値Ifは、5~15kAの範囲とすることが好ましい。
 形成するナゲット径が3.0√t(mm)未満の場合は、第1通電工程において形成されるナゲット径が小さすぎるため、後の第2通電工程においてナゲットを効果的に拡大することが難しくなる。その結果、大きなナゲット径の確保が困難となる。また、形成するナゲット径が4.5√t(mm)を超える場合は、通電による入熱が過大となり溶接部が変形し、割れが発生しやすい。したがって、第1通電工程で形成するナゲット径は、3.0√t(mm)以上4.5√t(mm)以下とする。
 第1通電工程で形成するナゲット径は、4.0√t(mm)~4.5√t(mm)の範囲とすることが好ましい。4.0√t(mm)~4.5√t(mm)の範囲であるならば、後の第2通電工程においてナゲット径を拡大させる効果をより顕著に得ることができる。
なお、上記「t」は鋼板の板厚を指す。具体的には、板組を構成する重ね合わせた鋼板のうち、最も薄い鋼板の板厚をtとする。例えば、板組を構成する複数の鋼板の板厚がそれぞれ異なる場合には、その中で最も薄い鋼板の板厚をtとする。
 本発明では、上述のように、第1通電工程において、後の第2通電工程で大きな変形が発生しないような溶接部を形成することが重要である。そのために、第1通電工程の通電時の電流が(2)式を満足するように制御し、可変電流としている。電流が可変となるように制御する方法としては、例えば多段通電やアップスロープ通電が挙げられる。このように電流が増加するように可変に制御することで、第1通電工程においてナゲット周囲の圧接部を強固に接合し、後の第2通電工程において散りの規模を小さく抑えることができるため、溶接部の変形が小さくなり、その結果割れの発生を抑えることが可能となる。
以下に、具体的な方法の一例について説明する。
 〔多段通電〕
 第1通電工程の通電は、n段(nは2以上の整数)の多段通電とする。この多段通電での各段の電流値をI1~In(kA)とし、かつ、1段目の電流値I1(kA)が上記の通電開始時の電流値Is(kA)と同一およびn段目の電流値Inが上記の通電終了時の電流値If(kA)と同一とするとき、各段の電流値I1~In(kA)が(3)式を満たすことが好ましい。
I1 <I2 < I3 <・・・< In  (3)
 n段の多段通電とするとき、1段目の電流値I1(kA)、2段目の電流値I2(kA)、3段目の電流値I3(kA)、・・・・、n段目の電流値In(kA)が、(3)式を満たさない場合、圧接部への入熱不足となる。その結果、第1通電工程においてナゲット周囲の圧接部を強固に接合することができず、後の第2通電工程において発生する可能性のある散りの規模を小さく抑える効果が得られない。またナゲットを十分に成長させることが難しく、上記した範囲のナゲット径を得られない可能性もある。
 多段を示す「n」は2以上の整数とする。施工時の溶接条件の管理が複雑になりすぎることを防ぐ観点では、nは5以下とすることが好ましい。
 〔アップスロープ通電〕
 第1通電工程の通電は、上記の通電開始時の電流値Isから上記の通電終了時の電流値Ifまで、連続的に電流値を増加させるアップスロープ通電とすることが好ましい。これにより、第1通電工程においてナゲット周囲の圧接部を強固に接合し、後の第2通電工程において散りの規模を小さく抑えることができるため、溶接部の変形が小さくなる。その結果、割れの発生を抑えることが可能となる。
 なお、第1通電工程における通電時間および加圧力は、上記のナゲット径を確保することが可能な条件を適宜選択することができる。本発明では、散りを発生させることなく上記のナゲット径となるナゲットを形成する観点から、第1通電工程における抵抗スポット溶接の条件として、通電時間は100~700msとすることが好ましい。該通電時間が100ms以下の場合は、ナゲット周囲の圧接部を強固に接合する効果が得られにくい。該通電時間が700ms以上の場合は、入熱が過大となり溶接部の過大な変形を招く可能性がある。ここで、第1通電工程を多段通電とする場合、該工程での通電時間は、各段における通電時間の合計が上記範囲内となるように制御する。より好ましくは100~500mmsの範囲である。
また、第1通電工程における加圧力は1.5kN~8.0kNの範囲とすることが好ましい。
 <第2通電工程>
 上述の第1通電工程の後、第2通電工程を行う。第2通電工程では、10ms以上160ms未満の間、無通電状態を保持する冷却工程と、20ms以上200ms未満の間、第1通電工程の通電終了時の電流値If(kA)以上の電流値Ip(kA)で通電する通電工程とを繰り返すことで、ナゲットを拡大する。
 なお、本発明では、十分な継手強度を確保するために、第2通電工程後に得られる溶接部のナゲット径は、4.5√t(mm)~6.0√t(mm)の範囲を目標径とすることが好ましい。
 [冷却工程]
 冷却工程における無通電時間が10ms未満の場合には、溶接部は十分な冷却効果を得ることができず、後の通電工程の際に溶接部の大きな変形が発生しやすくなる。その結果、溶接部に割れが発生しやすい。一方、冷却工程における無通電時間が160ms以上の場合には、冷却時のナゲット縮小の影響が大きすぎるため、冷却工程と通電工程とを繰り返し通電することによるナゲットの拡大効果を十分に得られない。したがって、冷却工程における無通電時間は、10ms以上160ms未満とする。
 [通電工程]
 通電工程における通電時間が20ms未満の場合には、入熱不足によりナゲットの拡大効果を十分に得られない。一方、通電工程における通電時間が200ms以上の場合には、一度の通電で過大な入熱を加えることにより溶接部の大きな変形が発生しやすく、溶接部の割れが発生しやすい。したがって、通電工程における通電時間は、20ms以上200ms未満とする。この通電工程の通電時間は、好ましくは160ms以下とし、より好ましくは150ms以下とする。
 なお、溶接部の変形を抑えつつ、ナゲット径を安定的に拡大する効果を、より顕著に得たい場合には、第2通電工程における冷却工程の無通電時間を10~80msとし、第2通電工程における通電工程の通電時間を20~100msとすることが好ましい。より好ましくは、この冷却工程の無通電時間は60ms以下とする。
より好ましくは、この冷却工程の無通電時間は20ms以上とする。より好ましくは、この通電工程の通電時間は40ms以上とする。
 また、通電工程における電流値Ip(kA)が第1通電工程の通電終了時の電流値If(kA)未満の場合には、入熱不足により、ナゲットを拡大する効果が得られない。したがって、通電工程における電流値Ip(kA)は、第1通電工程の通電終了時の電流値If(kA)以上とする。通電工程における電流値Ipの上限は、特に規定しない。極端に電流が大きい条件では、入熱過多により溶接部の変形が大きくなり、割れが発生する場合がある。そのため、電流値Ip(kA)は、(4×If)(kA)以下とすることが好ましく、(3×If)(kA)以下とすることがより好ましく、(1.5×If)(kA)以下とすることがさらに好ましい。
 本発明では、第2通電工程における冷却工程と通電工程の繰り返し数は、1回でもいいが、2回以上とすることが好ましい。繰り返し数が2回未満の場合には、ナゲット径を拡大する効果が十分に得られない可能性がある。繰り返し数の上限は特に規定しない。しかし、繰り返し数が10回を超える場合には、ナゲットの拡大効果が飽和するため大きな効果を得られにくく、溶接工程全体の総時間が長くなることから、施工効率の観点では10回以下が好ましい。より好ましい繰り返し数は、5回以下とする。
 なお、第2通電工程における繰り返し通電は、一定通電とする。
 また、本発明で径の大きなナゲットを確保する観点からは、第1通電工程終了後に形成されるナゲット径をN1(mm)、第1通電工程および第2通電工程終了後に形成されるナゲット径をN2(mm)とするとき、第2通電工程でのナゲット径の拡大量である(N2-N1)の値は0.1√t(mm)以上であることが好ましい。(N2-N1)の値は、より好ましくは0.3√t(mm)以上であり、さらに好ましくは0.5√t(mm)以上である。また、第2通電工程でのナゲット径の拡大が極端に大きい場合は、入熱過多により溶接部の変形が大きくなり、割れが発生する場合があるため、上記拡大量は3.0√t(mm)以下とすることが好ましい。(N2-N1)の値は、より好ましくは2.5√t(mm)以下であり、さらに好ましくは2.0√t(mm)以下である。
 以上の説明では、2枚の鋼板を重ね合わせて抵抗スポット溶接する場合について主に述べたが、本発明は3枚以上の鋼板を重ね合わせて溶接する場合についても、同様に適用可能であり、同様に上述の効果を得ることができる。
 以下、本発明の作用および効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 本実施例では、亜鉛系めっき鋼板を含む2枚の鋼板を使用し、該鋼板を重ね合わせて板組とした(表1を参照)。ここでは、上鋼板および下鋼板として、上述の(1)式で表される炭素当量(Ceq)、引張強さ、および鋼板の板厚が表1に示す条件の合金化溶融亜鉛めっき(GA)鋼板および冷延鋼板を用いた。板組に対して表2-1または表3-1に示す条件で抵抗スポット溶接を行い、溶接継手を作製した。
 なお、表2-1は第1通電工程を「多段通電」とする条件であり、表3-1は第1通電工程を「アップスロープ通電」とする条件である。表2-1に多段通電において「1段目の電流値I1(kA)」とは「通電開始時の電流値Is(kA)」を指しており、「最終段(n段目)の電流値In(kA)とは「通電終了時の電流値If(kA)」を指している。すなわち、n=3の多段通電とする場合、最終段となる3段目の電流値が通電終了時の電流値となる。
 抵抗スポット溶接は常温で行い、溶接電極(下電極、上電極)を常に水冷した状態で行った。下電極と上電極は、いずれも先端の直径(先端径)が6mm、曲率半径が40mmとし、クロム銅製のDR形電極とした。また、上電極をサーボモータで駆動することによって加圧力を制御し、通電の際には直流電源を供給した。
 溶接継手は、1つの溶接条件につき「外乱なし」、「板隙あり」、「既打点あり」の3つの外乱条件で作製し、得られた各溶接継手を用いてナゲット径および割れ(LME割れ)の発生有無を観察した。また、ナゲット径の拡大量(N2―N1)を観察した。
 ここで、図2~図4を参照して、上記の3つの外乱条件で溶接継手を作製する場合について説明する。各図には抵抗スポット溶接の鋼板を重ね合わせた状態の試験体を示しており、上側の図がその平面図であり、下側の図がその側面図である。
 外乱条件が「外乱なし」の溶接継手については、次のように作製した。図2に示すように、上記の鋼板から作製した30mm×100mm(短辺×長辺)の大きさの鋼板(上鋼板1、下鋼板2)を2枚準備し、該鋼板を重ね合わせて試験体とし、試験体中央の溶接部6を表2-1または表3-1に示す条件で溶接して溶接継手を作製した。得られた溶接継手の溶接部6を用いて、ナゲット径および割れの発生有無を観察した。また、ナゲット径の拡大量を観察した。
 外乱条件が「板隙あり」の溶接継手については、次のように作製した。図3に示すように、上記の鋼板から作製した30mm×100mm(短辺×長辺)の大きさの鋼板(上鋼板1、下鋼板2)を2枚準備し、該鋼板の2枚の間で該鋼板の両端部分に、厚さが1.6mmで30mm×25mm(長辺×短辺)の大きさのスペーサ7、8を挟み込んで試験体とした。試験体中央の溶接部6を表2-1または表3-1に示す条件で溶接して溶接継手を作製した。得られた溶接継手の溶接部6を用いて、ナゲット径および割れの発生有無を観察した。また、ナゲット径の拡大量を観察した。
 外乱条件が「既打点あり」の試験体については、次のように作製した。図4に示すように、上記の鋼板から作製した30mm×100mm(短辺×長辺)の大きさの鋼板(上鋼板1、下鋼板2)を2枚準備し、該鋼板を重ね合わせて試験体とした。試験体中央から長手方向に20mm離れた位置にそれぞれナゲット径5mmとなる既溶接点9、10を配置し、その後、試験体中央の溶接部6を表2-1または表3-1に示す条件で溶接して溶接継手を作製した。得られた溶接継手の溶接部6を用いて、ナゲット径および割れの発生有無を観察した。また、ナゲット径の拡大量を観察した。
 ナゲット径、ナゲット径の拡大量および割れの発生有無の評価、および判定は、以下の通り行った。
 〔ナゲット径およびナゲット径の拡大量の評価〕
 第1通電工程後のナゲット径(N1)については、上記の各外乱条件における試験で、第1通電工程のみの溶接試験を事前に実施し、断面観察を行うことでナゲット径を測定した。ここでは、溶接部を切断した断面をエッチング後、光学顕微鏡により観察し、鋼板間におけるナゲット径を測定した。得られた測定値を、表2-2および表3-2の「第1通電工程後のナゲット径N1」欄に示した。
 第2通電工程後のナゲット径(N2)については、上記の3つの外乱条件で溶接試験を実施して得られた各溶接継手を用い、上述と同様の方法で測定した。得られた測定値を、表2-2および表3-2の「第2通電工程後のナゲット径N2」欄に示した。
 また、第2通電工程でのナゲット径の拡大量を示す(N2-N1)で算出される値を、表2中の「N2-N1」欄にそれぞれ示した。
 〔割れの評価〕
 割れ(LME割れ)の評価は、上記の3つの外乱条件で溶接試験を実施して得られた各溶接継手を用いて行った。溶接部断面を光学顕微鏡で観察した結果、溶接部表面に200μm以上の割れが観察された場合に、「割れあり」と評価した。一方、200μm以上の割れが観察されなかった場合に、「割れなし」と評価した。「割れあり」の場合には、表2-2の「LME割れ」欄に「あり」と記載し、「割れなし」の場合には、同欄に「なし」と記載した。
 〔判定〕
 判定については、上記の3つの外乱条件の全てで、ナゲット径(N2)が4.5√t(mm)以上、かつ割れが発生しなかったものを「〇(合格)」と評価した。一方、それ以外のものを「×(不合格)」と評価した。評価結果を表2-2および表3-2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2-2および表3-2から明らかなように、本発明例では外乱の条件に関わらず、割れがなく、かつナゲット径が目標径を確保された良好な溶接継手を得られたのに対して、比較例では良好な溶接継手が得られなかった。
 1    上鋼板
 2    下鋼板
 3    上電極
 4    下電極
 5    ナゲット
 6    溶接部
 7、8    スペーサ
 9、10   既溶接点

Claims (5)

  1.  少なくとも1枚の高強度亜鉛系めっき鋼板を含む2枚以上の鋼板を重ね合わせて板組とし、該板組を1対の溶接電極で挟持し、加圧しながら通電して前記鋼板を接合する抵抗スポット溶接方法であって、
     前記高強度亜鉛系めっき鋼板は、(1)式で表される炭素当量が0.20%以上、引張強さが780MPa以上であり、
     前記通電は、第1通電工程と第2通電工程とを有し、
    前記第1通電工程では、通電開始時の電流値をIs(kA)、通電終了時の電流値をIf(kA)、重ね合わせた鋼板のうち最も薄い鋼板の板厚をt(mm)とするとき、
    通電終了時の電流値If(kA)が(2)式を満たすように通電することで、3.0√t(mm)以上4.5√t(mm)以下のナゲット径となる溶接部を形成し、
    前記第2通電工程では、10ms以上160ms未満の間、無通電状態を保持する冷却工程と、20ms以上200ms未満の間、前記通電終了時の電流値If(kA)以上の電流値Ip(kA)で通電する通電工程とを繰り返すことでナゲットを拡大する、抵抗スポット溶接方法。
    Ceq=C+Si/30+Mn/20+2P+4S  (1)
    If >Is   (2)
    ここで、(1)式中の元素記号は各元素の含有量(質量%)を示し、元素が含有されていない場合は0とする。
  2.  前記第1通電工程は、n段(nは2以上の整数)の多段通電であり、
     該多段通電での各段の電流値をI1~In(kA)とし、かつ、1段目の電流値I1(kA)が前記通電開始時の電流値Is(kA)と同一およびn段目の電流値Inが前記通電終了時の電流値If(kA)と同一とするとき、
    各段の電流値I1~In(kA)が(3)式を満たす、請求項1に記載の抵抗スポット溶接方法。
    I1 < I2 < I3 <・・・<In  (3)
  3.  前記第1通電工程は、前記通電開始時の電流値Isから前記通電終了時の電流値Ifまで、連続的に電流値を増加させるアップスロープ通電である、請求項1に記載の抵抗スポット溶接方法。
  4.  前記第2通電工程における前記冷却工程と前記通電工程との繰り返し数が、2回以上である、請求項1~3のいずれか1項に記載の抵抗スポット溶接方法。
  5.  前記第1通電工程の終了後に形成されるナゲット径をN1(mm)、前記第1通電工程および前記第2通電工程の終了後に形成されるナゲット径をN2(mm)とするとき、
    (N2-N1)で表される前記第2通電工程でのナゲット径の拡大量が0.1√t(mm)以上である、請求項1~4のいずれか1項に記載の抵抗スポット溶接方法。
PCT/JP2022/028107 2021-07-30 2022-07-19 抵抗スポット溶接方法 WO2023008263A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022566087A JP7558475B2 (ja) 2021-07-30 2022-07-19 抵抗スポット溶接方法
US18/291,661 US20240238891A1 (en) 2021-07-30 2022-07-19 Resistance spot welding method
EP22849325.0A EP4353394A1 (en) 2021-07-30 2022-07-19 Resistance spot welding method
KR1020247002299A KR20240023636A (ko) 2021-07-30 2022-07-19 저항 스폿 용접 방법
MX2024001130A MX2024001130A (es) 2021-07-30 2022-07-19 Metodo de soldadura por resistencia por puntos.
CN202280051734.5A CN117693411A (zh) 2021-07-30 2022-07-19 电阻点焊方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021125022 2021-07-30
JP2021-125022 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008263A1 true WO2023008263A1 (ja) 2023-02-02

Family

ID=85087613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028107 WO2023008263A1 (ja) 2021-07-30 2022-07-19 抵抗スポット溶接方法

Country Status (6)

Country Link
US (1) US20240238891A1 (ja)
EP (1) EP4353394A1 (ja)
KR (1) KR20240023636A (ja)
CN (1) CN117693411A (ja)
MX (1) MX2024001130A (ja)
WO (1) WO2023008263A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103377A (ja) 2001-09-27 2003-04-08 Nippon Steel Corp 高強度めっき鋼板のスポット溶接方法
JP2003236676A (ja) 2002-02-19 2003-08-26 Jfe Steel Kk 高張力亜鉛系めっき鋼板のスポット溶接方法
JP2012187639A (ja) 2008-10-16 2012-10-04 Jfe Steel Corp 高強度鋼板の抵抗スポット溶接方法
WO2015049998A1 (ja) * 2013-10-04 2015-04-09 Jfeスチール株式会社 抵抗スポット溶接方法
JP2017047476A (ja) 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
WO2019124467A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
WO2019124464A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
WO2020059804A1 (ja) * 2018-09-19 2020-03-26 日本製鉄株式会社 テーラードブランク、テーラードブランクの製造方法、プレス成形品、及び、プレス成形品の製造方法
JP2021079416A (ja) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 抵抗スポット溶接方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103377A (ja) 2001-09-27 2003-04-08 Nippon Steel Corp 高強度めっき鋼板のスポット溶接方法
JP2003236676A (ja) 2002-02-19 2003-08-26 Jfe Steel Kk 高張力亜鉛系めっき鋼板のスポット溶接方法
JP2012187639A (ja) 2008-10-16 2012-10-04 Jfe Steel Corp 高強度鋼板の抵抗スポット溶接方法
WO2015049998A1 (ja) * 2013-10-04 2015-04-09 Jfeスチール株式会社 抵抗スポット溶接方法
JP2017047476A (ja) 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
WO2019124467A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
WO2019124464A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
WO2020059804A1 (ja) * 2018-09-19 2020-03-26 日本製鉄株式会社 テーラードブランク、テーラードブランクの製造方法、プレス成形品、及び、プレス成形品の製造方法
JP2021079416A (ja) * 2019-11-20 2021-05-27 トヨタ自動車株式会社 抵抗スポット溶接方法

Also Published As

Publication number Publication date
KR20240023636A (ko) 2024-02-22
US20240238891A1 (en) 2024-07-18
CN117693411A (zh) 2024-03-12
MX2024001130A (es) 2024-02-23
EP4353394A1 (en) 2024-04-17
JPWO2023008263A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
JP6278154B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP7115223B2 (ja) 抵抗スポット溶接継手の製造方法
CN110325313B (zh) 电阻点焊方法
JP6160581B2 (ja) 抵抗スポット溶接方法
WO2020036198A1 (ja) 抵抗スポット溶接部材及びその製造方法
WO2023008263A1 (ja) 抵抗スポット溶接方法
JP7522977B2 (ja) 抵抗スポット溶接方法
JP7558475B2 (ja) 抵抗スポット溶接方法
WO2022219968A1 (ja) 抵抗スポット溶接方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
KR102709518B1 (ko) 저항 스폿 용접 방법, 및 저항 스폿 용접 이음매의 제조 방법
JP7296985B2 (ja) 抵抗スポット溶接方法、および抵抗スポット溶接継手の製造方法
KR102589429B1 (ko) 저항 스폿 용접 방법, 저항 스폿 용접 이음매의 제조 방법
WO2023153247A1 (ja) 抵抗スポット溶接継手および抵抗スポット溶接方法
JP7485242B1 (ja) 溶接部材およびその製造方法
JP7355281B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2023233705A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
JP7435935B1 (ja) 溶接部材およびその製造方法
WO2023233704A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2024122355A1 (ja) 抵抗スポット溶接方法
KR20240134244A (ko) 용접 이음매, 용접 부재 및 그 제조 방법, 그리고 저항 스폿 용접 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022566087

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317089599

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022849325

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022849325

Country of ref document: EP

Effective date: 20240110

ENP Entry into the national phase

Ref document number: 20247002299

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002299

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401000439

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280051734.5

Country of ref document: CN

Ref document number: MX/A/2024/001130

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 18291661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE