WO2023231277A1 - 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法 - Google Patents

低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法 Download PDF

Info

Publication number
WO2023231277A1
WO2023231277A1 PCT/CN2022/126599 CN2022126599W WO2023231277A1 WO 2023231277 A1 WO2023231277 A1 WO 2023231277A1 CN 2022126599 W CN2022126599 W CN 2022126599W WO 2023231277 A1 WO2023231277 A1 WO 2023231277A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
water
filter element
sewage
pipe
Prior art date
Application number
PCT/CN2022/126599
Other languages
English (en)
French (fr)
Inventor
邢兆强
周永利
王晓伟
关新跃
杨思悦
樊志军
Original Assignee
天津国投津能发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津国投津能发电有限公司 filed Critical 天津国投津能发电有限公司
Publication of WO2023231277A1 publication Critical patent/WO2023231277A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • B01D29/682Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles with a rotary movement with respect to the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/70Regenerating the filter material in the filter by forces created by movement of the filter element
    • B01D29/74Regenerating the filter material in the filter by forces created by movement of the filter element involving centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/90Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/94Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging the filter cake, e.g. chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/12Devices for taking out of action one or more units of multi- unit filters, e.g. for regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention relates to the technical field of seawater desalination, and in particular to an automatic backwash filtration device and method for a low-temperature multi-effect distillation seawater desalination system.
  • the IPC classification number is C02F.
  • the low-temperature multi-effect seawater desalination system technology refers to the desalination water production technology that controls the maximum evaporation temperature of raw seawater below 70°C. It is characterized by evenly distributing raw seawater or concentrated seawater through nozzles in each effect body through the feeding system.
  • the outer surface of the heat exchange tube bundle of the evaporator is distributed in a thin film and flows from top to bottom. Part of the seawater absorbs the latent heat of the condensed steam in the heat exchange tube and vaporizes.
  • the remaining concentrated seawater is pumped into the next effect group of the evaporator through the feed pump. , repeat the above process to realize the desalination water production process.
  • the spray system nozzles cannot evenly distribute concentrated seawater to the heat exchange tube bundle.
  • the uncondensed steam causes insufficient heat exchange in the local thermal efficiency group.
  • the temperature of the heat exchange tube bundle is above the critical fouling point for a long time, causing the outer wall surface of the local heat exchange tube bundle to be There was obvious scaling, and at the same time, the local spray pipe bundles and ancillary components of the sprinkler system also suffered from long-term pressure and stress, causing local aging flanges or weak components to break.
  • this application proposes an automatic backwash filtration device and method for a low-temperature multi-effect distillation seawater desalination system to solve the above technical problems.
  • the present invention is mainly aimed at the filter device of the low-temperature multi-effect seawater desalination system with a single structure, large space occupation, high equipment cost, long downtime, low work efficiency, cumbersome cleaning implementation, low degree of automation, and the inability to realize continuous automatic backwashing of the filter device for a long time Issues such as efficient and stable operation of the cycle.
  • the automatic backwash filtration device and method of the low-temperature multi-effect distillation seawater desalination system are proposed.
  • This invention uses upper and lower dual water inlet and water distribution devices to independently supply dual modular filtering devices that are mutually backup, and utilizes overfrequency oscillation, cyclone filter, and aeration disturbance.
  • the combined action method significantly improves the backwashing effect, has the advantages of shortened downtime, high degree of automation, stable operating performance, online continuous operation and significant effects.
  • an automatic backwash filtering device of a low-temperature multi-effect distillation seawater desalination system including a shell, an automatic control device, a water inlet pipe, an outlet pipe, a sewage pipe and a filtering device, with automatic control
  • the device is connected to one side of the casing, the water inlet pipe is set at the front end of the casing, the two ends of the water inlet pipe are connected to the upper and lower ends of the casing respectively, the water outlet pipe and the sewage pipe are connected to both sides of the casing respectively, and the filter
  • the device is installed inside the housing;
  • a first water chamber and a second water chamber are provided inside the housing, and the filtering device is installed inside the first water chamber and the second water chamber respectively.
  • the filtering device includes an aeration partition and a support. Frame, supporting partition, filter element duct and cyclone filter element.
  • the aeration partition is set at the lower end of the supporting partition.
  • the aeration partition and the supporting partition are fixedly connected to each other through the supporting frame.
  • An aeration control valve is installed on the top, and multiple filter core conduits are arranged on the supporting partition.
  • a clean water collection port is connected to the filter core conduit.
  • the clean water collection port and the water outlet pipe are connected to each other and connected on one side of the water outlet pipe.
  • the cyclone filter element is arranged at the upper end of the filter element duct, and multiple cyclone filter elements are fixedly connected to the filter element duct.
  • An overfrequency oscillator is installed at the center of the cyclone filter element, and a conical structure is provided at the lower end of the aeration partition.
  • the sewage collection tank has a backwash sewage outlet connected to the center of the bottom of the sewage collection tank, and telescopic sliders are slidingly connected to both ends of the sewage collection tank at the bottom of the second water chamber;
  • the upper end of the cyclone filter element is connected with a support clip, and the lower end of the cyclone filter element is connected with a drive clip, which is used to provide rotational sliding support for the cyclone filter element and balance the radial thrust, and is used to provide rotational sliding support for the cyclone filter element and balance the axial direction.
  • Thrust, multiple directional cyclone guide vanes are provided inside the cyclone filter element.
  • the upper and lower ends of the water inlet pipe extend into the interior of the housing respectively.
  • the upper and lower ends of the water inlet pipe are connected to water distribution devices.
  • the upper end of the water inlet pipe is connected to the water distribution device.
  • the device is located inside the first water chamber, and the water distribution device connected to the lower end of the water inlet pipe is located inside the second water chamber.
  • the water distribution device has four water outlets arranged symmetrically and evenly across each other, for evenly distributing the feed seawater medium in the first water chamber and the second water chamber.
  • a plurality of aeration water caps are fixedly connected to the aeration partition board.
  • the aeration water caps are two-way fine pore blasting water caps used to evenly distribute the compressed air into a large number of fine bubbles.
  • a connecting pipe A and a connecting pipe B are provided on one side of the housing.
  • the connecting pipe B is provided at the lower end of the connecting pipe A.
  • One ends of the connecting pipe A and the connecting pipe B are connected to the first water chamber and the second water chamber respectively.
  • the clean water collection ports are connected to each other.
  • the other ends of connecting pipe A and connecting pipe B are connected to the water outlet pipe.
  • a first air inlet control valve is installed on connecting pipe A, and a first air inlet control valve is installed on connecting pipe B. Two intake control valves.
  • a bypass pipe is connected to the lower end of the water inlet pipe, a first water inlet control valve and a bypass control valve are connected to the bypass pipe, and a first pressure difference transmitter and a third pressure difference transmitter are connected to the water inlet pipe.
  • one end of the sewage pipe is connected to the backwash sewage outlet of the first water chamber.
  • a connecting pipe C is provided between the sewage pipe and the housing.
  • One end of the connecting pipe C is connected to the backwash sewage outlet of the second water chamber. They are connected to each other, and the other end of the connecting pipe C and the sewage pipe are connected to each other.
  • the first sewage control valve is connected to the sewage pipe, and the second sewage control valve is connected to the connecting pipe C.
  • a balance exhaust valve, an aeration safety valve and a lifting lock are connected to the top of the housing.
  • a maintenance manhole is provided on one side of the housing, and an oscillation regulator is connected on the other side of the housing.
  • the oscillation regulator There is a controllable connection between the overclocking oscillator and the overclocking oscillator, a peek inspection hole is provided at the front end of the housing, and a plurality of housing arms are fixedly connected to the bottom of the housing.
  • Step S1 Operate the filtering devices in the first water chamber and the second water chamber simultaneously.
  • the first water inlet control valve, the second water inlet control valve and the third water inlet control valve are all open, and the bypass control valve , the first sewage control valve, the second sewage control valve, the first air intake control valve and the second air intake control valve are all closed;
  • Step S2 The feed seawater enters through the cyclone filter elements in the first water chamber and the second water chamber respectively, and the cyclone filter element is filtered through the filter element conduit to collect the clean water and then discharge it through the clean water collection port;
  • Step S3 The incoming seawater enters through the cyclone filter element in the second water chamber.
  • the filter element duct filters the cyclone filter element and collects the clean water, and then flows out through the clean water collection port.
  • One part is discharged from the third water outlet control valve, and the other part is auxiliary pressurized. After the device is pressurized, it enters the cyclone filter element at intervals for backwash operation.
  • the compressed air enters through the first air inlet control valve and leads to the cyclone filter element and aeration water cap respectively to form a mixing disturbance, and causes tangential scouring stress and rotation to the cyclone filter element.
  • the centrifugal stress promotes the peeling off of adsorbed impurity particles on the filter.
  • the backwash impurities and sewage pass through the backwash drain port of the sewage collection tank and are discharged to the ditch by the first sewage control valve.
  • the compressed air is discharged through the balance exhaust valve and aeration safety valve, completing the process. Backwash filter.
  • the present invention provides an automatic backwash filtration device and method for a low-temperature multi-effect distillation seawater desalination system, which has the following advantages:
  • the present invention can effectively ensure the continuous, efficient and stable operation of the low-temperature multi-effect seawater desalination system, intercept impurity particles in the raw seawater or concentrated seawater, delay the nozzle blockage, disassembly and cleaning frequency of the spray system, and improve the system output range and water production.
  • the present invention adopts upper and lower dual water inlet and water distribution devices to independently supply dual modular filtering devices that are mutually backup. It uses the combined action of overfrequency oscillation, cyclone filter, and aeration disturbance to significantly improve the backwashing effect and shorten downtime. It has the advantages of high degree of automation, stable operating performance, continuous online operation and remarkable effects.
  • the filtering devices in the present invention are respectively arranged in the first water chamber and the second water chamber.
  • the filtering device in the first water chamber is the main filtering unit group
  • the filtering device in the second water chamber is the auxiliary filtering unit group.
  • the filtration devices in the first water chamber and the second water chamber are mutually backup double modular filter unit sets, and can automatically control the operation and backwash status according to the automatic control device, with high filtration efficiency.
  • sewage collection tanks at the bottom of the first water chamber and the second water chamber.
  • the two sewage collection tanks have a tapered structure, which can quickly collect the particulate impurities shed by the backwash of the filter element and avoid leaving sewage in dead corners. Incomplete; the sewage collection tank can also be used as a partition to separate the first water chamber and the second water chamber, so that the two sets of filtering devices can operate independently of each other and serve as backup for each other.
  • the second water chamber sewage collection tank of the present invention is slidingly connected to the telescopic slider, and has a telescopic sliding space. Its function is: the feed seawater in the normal filtering state enters the impact shunt through the second water chamber water distribution device, and the sewage collection tank is connected to the telescopic slider.
  • the slider shrinks and reserves a medium circulation channel at the edge of the aeration partition; the sewage collection tank and the telescopic slider extend and seal the medium circulation channel with the edge of the aeration partition, which can prevent backwash sewage impurities from depositing into the bottom space of the filter device.
  • water distribution devices are connected to both the upper and lower ends of the water inlet pipe.
  • the water distribution device connected to the upper end of the water inlet pipe is located inside the first water chamber.
  • the water distribution device connected to the lower end of the water inlet pipe is located inside the first water chamber.
  • the water distribution device has four water outlets arranged symmetrically and evenly across each other. Its function is to evenly distribute the feed seawater medium in the first water chamber and the second water chamber to avoid partial blockage of the filter element caused by uneven fluid distribution and the impact on the second water chamber.
  • the first differential pressure transmitter and the second differential pressure transmitter monitor the differential pressure signal and the combined effect of backwashing causes deviations.
  • the oscillation regulator in the present invention is independently and controllably connected to the overfrequency oscillator in the first water chamber and the second water chamber.
  • the vibration of the overfrequency oscillator is automatically controlled according to the logic control instructions of the automatic control device.
  • Amplitude and intensity; the overfrequency oscillator is located in the center of the cyclone filter element. Its function is to generate high-frequency oscillation waves of a certain amplitude and frequency according to the logic control instructions of the automatic control device in the backwash state, thereby promoting the peeling off of impurity particles adsorbed on the outer wall surface of the cyclone filter element. .
  • support clamps and drive clamps are respectively provided at the upper and lower ends of the cyclone filter element; the support clamps can provide rotational sliding support for the cyclone filter element and balance the radial thrust; the drive clamps can provide rotational sliding support for the cyclone filter element and balance the radial thrust.
  • Balance the axial thrust; multiple directional cyclone guide vanes are installed inside the cyclone filter element.
  • the cyclone guide vanes forwardly guide clean water into the filter element conduit in the normal filtration state.
  • the compressed air is reversely directed to drive the cyclone filter element to rotate at high speed, which can assist aeration.
  • the air-water cap forms bursting bubbles that peel off the filter to absorb particles. It can also form tangential scouring stress and rotational centrifugal stress during the high-speed rotation of the cyclone filter element, which promotes the peeling filter to absorb particles and achieves good filtration effect.
  • Figure 1 is a schematic structural diagram of the present invention
  • Figure 2 is a left side cross-sectional structural schematic diagram of the present invention.
  • Figure 3 is a schematic cross-sectional view of the structure of the present invention.
  • FIG. 4 is a schematic structural diagram of the filter core conduit in the present invention.
  • Figure 5 is a schematic structural diagram of the aeration partition in the present invention.
  • Figure 6 is a schematic structural diagram of the cyclone filter element in the present invention.
  • the second water outlet control valve 14. The third water outlet control valve; 15. The first pressure difference transmitter;
  • Second differential pressure transmitter 17. Peeping inspection hole; 18. Maintenance manhole;
  • Supporting frame 20. Balanced exhaust valve; 21. Aeration safety valve;
  • mounted should be interpreted broadly. , for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or it can be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be inside two components of connectivity.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • FIG. 1 is a schematic structural diagram of the present invention
  • Figure 2 is a schematic cross-sectional structural diagram of the present invention on the left side
  • Figure 3 is a schematic structural diagram of a top cross-section of the present invention.
  • the automatic backwash filtering device of the seawater desalination system includes a shell 1, an automatic control device 2, a water inlet pipe 3, a water outlet pipe 44, a sewage pipe 47 and a filter device.
  • the automatic control device 2 is connected to one side of the shell 1, and the water inlet
  • the pipe 3 is arranged at the front end of the housing 1.
  • the two ends of the water inlet pipe 3 are connected to the upper and lower ends of the housing 1 respectively.
  • the water outlet pipe 44 and the sewage pipe 47 are connected to both sides of the housing 1 respectively.
  • the filtering device is installed on the housing 1. Inside body 1;
  • an oscillation regulator 22 is connected to the other side of the housing 1.
  • the oscillation regulator 22 and the overfrequency oscillator 23 are controllably connected.
  • the oscillation regulator 22 is connected to the first water chamber 42 and the second water chamber 43 respectively.
  • the overfrequency oscillator 23 is independently controllable and connected.
  • the vibration amplitude and intensity of the overfrequency oscillator 23 are automatically controlled according to the logic control instructions of the automatic control device 2; the overfrequency oscillator 23 is located at the center of the cyclone filter element 34, and its The function is to generate high-frequency oscillation waves of a certain amplitude and frequency according to the logic control instructions of the automatic control device 2 in the backwash state, thereby promoting the peeling off of impurity particles adsorbed on the outer wall surface of the cyclone filter element 34.
  • a peek inspection hole 17 is provided at the front end of the housing 1 , its function is to assist the first differential pressure transmitter 15 and the second differential pressure transmitter 16 to determine the clogging status of the filter element of the filter device, and provide a reference basis for judging the cleaning end point.
  • the present invention has multiple fixed connections at the bottom of the housing 1
  • the function of the housing support arm 29 is to bear the role of supporting the support structure and reserve space for the arrangement of the water inlet pipe 3 at the bottom of the housing 1 .
  • FIG. 4 is a schematic structural diagram of the filter element duct 32 in the present invention.
  • Figure 6 is a schematic structural diagram of the cyclone filter element 34 in the present invention.
  • the cyclone filter element 34 is disposed at the upper end of the filter element duct 32.
  • There are multiple cyclone filter elements. 34 are fixedly connected to the filter core conduit 32.
  • An overfrequency oscillator 23 is installed at the center of the cyclone filter core 34.
  • a conical sewage collection tank 24 is provided at the lower end of the aeration partition 30.
  • a backwash sewage outlet 27 is connected to the bottom center of the second water chamber 43, and telescopic sliders 40 are slidingly connected to both ends of the sewage collection tank 24 at the bottom of the second water chamber 43;
  • the upper end of the cyclone filter element 34 is connected to a support clamp 35, and the lower end of the cyclone filter element 34 is connected to a drive clamp 37, which is used to provide rotational sliding support for the cyclone filter element 34 and to balance the radial thrust, and to provide rotation for the cyclone filter element 34. Sliding supports and balances the axial thrust.
  • a plurality of directional cyclone guide vanes 36 are provided inside the cyclone filter element 34. The cyclone guide vanes 36 forwardly guide clean water into the filter element conduit 32 in the normal filtering state, and reversely conduct the compressed air in the backwashing and sewage discharge state. Drive the cyclone filter element 34 to rotate at high speed;
  • the upper and lower ends of the water inlet pipe 3 extend into the interior of the housing 1 respectively.
  • the upper and lower ends of the water inlet pipe 3 are connected with water distribution devices 28.
  • the upper end of the water inlet pipe 3 The connected water distribution device 28 is located inside the first water chamber 42, and the connected water distribution device 28 at the lower end of the water inlet pipe 3 is located inside the second water chamber 43.
  • the water distribution device 28 has four water outlets arranged symmetrically and evenly crossed. , its function is to evenly distribute the feed seawater medium in the first water chamber 42 and the second water chamber 43 to avoid partial blockage of the filter element caused by uneven fluid distribution and damage to the first differential pressure transmitter 15 and the second differential pressure transmitter 16 Monitoring the pressure difference signal and the comprehensive effect of backwashing cause deviations.
  • aeration water caps 26 are fixedly connected to the aeration partition 30.
  • the aeration water caps 26 are bidirectional fine pore blasting water caps used to compress the The air is evenly distributed into a large number of fine bubbles so that uniform fluid medium disturbance is produced after the bubbles explode.
  • FIG. 5 is a schematic structural diagram of the aeration partition 30 in the present invention.
  • the present invention is provided with a first water chamber 42 and a second water chamber 43 inside the housing 1, and the filtering devices are respectively installed in Inside the first water chamber 42 and the second water chamber 43, the filtering device includes an aeration partition 30, a supporting frame 19, a supporting partition 31, a filter element conduit 32 and a cyclone filter element 34.
  • the aeration partition 30 It is arranged at the lower end of the supporting partition 31.
  • the aeration partition 30 and the supporting partition 31 are fixedly connected to each other through the supporting frame 19.
  • An aeration control valve 25 and multiple filter elements are installed on the aeration partition 30.
  • the conduit 32 is arranged on the supporting partition 31.
  • the filter core conduit 32 is connected to a clean water collection port 33.
  • the clean water collection port 33 and the water outlet pipe 44 are connected to each other.
  • An auxiliary booster is connected to one side of the water outlet pipe 44.
  • Device 12; the auxiliary boosting device 12 is located at the outlet end of the first water outlet control valve 11 and the second water outlet control valve 13.
  • the auxiliary boosting device 12 is a double-suction two-way medium booster delivery pump. Its function is: (1) Normal filtration state It is only used as a medium conveying channel; (2) The backwashing and sewage discharge state cooperates with the first water outlet control valve 11 and the second water outlet control valve 13 to clean the cyclone filter element 34 in the first water chamber 42 and the second water chamber 43 by pressurizing and conveying cleaning water source;
  • the first water outlet control valve 11 and the second water outlet control valve 13 in the present invention are respectively fixedly connected to the outlet pipe section of the first water chamber 42, the second water chamber 43, the clean water collection port 33, and their functions are: (1) Normal filtration state According to the logic control instructions of the automatic control device 2, the second water inlet control valve 7 and the third water inlet control valve 8 are coordinated to control the output state of the filtering device; (2) The backwashing and sewage discharge state is coordinated with the auxiliary boosting device 12 to continuously reverse the cleaning of the cyclone filter element. 34 delivers clean water source; (3) The aeration disturbance state cooperates with the first air inlet control valve and the second air inlet control valve to deliver compressed air to the cleaning cyclone filter element 34 in reverse direction;
  • the present invention is provided with a connecting pipe A45 and a connecting pipe B46 on one side of the housing 1.
  • the connecting pipe B46 is arranged at the lower end of the connecting pipe A45.
  • One ends of the connecting pipe A45 and the connecting pipe B46 are connected to the first water chamber 42 and the second water chamber respectively.
  • the clean water collection ports 33 of the chamber 43 are connected to each other, and the other ends of the connecting pipe A45 and the connecting pipe B46 are connected to the water outlet pipe 44.
  • a first air inlet control valve is installed on the connecting pipe A45, and the first air inlet control valve is installed on the connecting pipe B46.
  • a second air inlet control valve is installed on the upper body.
  • the housing 1 in the present invention adopts a corrosion-resistant stainless steel lined with nitrile rubber double-layer anti-corrosion protection design, which avoids the outage process of the filter device caused by the traditional electrochemical anti-corrosion method of regularly replacing the sacrificial anode. And improper protection may cause accelerated corrosion of device components;
  • a bypass pipe 49 is connected to the lower end of the water inlet pipe 3.
  • the bypass pipe 49 is connected to the first water inlet control valve 5 and the bypass control valve 6.
  • the water inlet pipe 3 is connected to a first pressure difference.
  • the functions of the transmitter, the second differential pressure transmitter, the second water inlet control valve 7 and the third water inlet control valve 8 are: (1) Automatically adjust the amount of water entering the filter device of the first water chamber 42 and the filter device of the second water chamber 43 according to the logic control instructions of the automatic control device 2; (2) According to the first differential pressure transmitter 15 and the second differential pressure transmitter 16 After the feedback signal is judged by the automatic control device 2, the backwash operation process of the filter unit is implemented;
  • the bypass control valve 6 in the present invention is in a closed state in a normal state, and its function is to ensure the transportation and circulation of the feed seawater system in an emergency state, and to avoid insufficient transportation flow to cause uneven flow distribution of the feed system of the seawater desalination device and reduce the output;
  • the first water inlet control valve 5 can automatically adjust the opening change according to the logic control instruction of the automatic control device 2. Its function is to control the total amount of water in the backwash filter device and coordinate with the second water inlet control valve 7 and the third water inlet control valve.
  • the valve 8 controls the amount of water entering the filter device of the first water chamber 42 and the filter device of the second water chamber 43; the function of the first differential pressure transmitter 15 and the second differential pressure transmitter 16 is to monitor the first water chamber in real time.
  • the washing operation program is a fixed time interval, and also refers to the monitoring data of the first water chamber 42 and the second water chamber 43 corresponding to the first pressure difference transmitter 15 and the second pressure difference transmitter 16 after the backwash operation. If the backwash operation If the pressure difference does not meet the normal operating flow requirements of the filter device, a second backwash operation process will be performed;
  • one end of the sewage pipe 47 is connected to the backwash sewage outlet 27 of the first water chamber 42.
  • a connecting pipe C48 is provided between the sewage pipe 47 and the housing 1.
  • One end of the connecting pipe C48 is connected to the second water chamber.
  • the backwash drain ports 27 of 43 are connected to each other, the other end of the connecting pipe C48 and the drain pipe 47 are connected to each other, the drain pipe 47 is connected to the first drain control valve 9, and the connecting pipe C48 is connected to the second drain control valve Valve 10.
  • a balance exhaust valve 20, an aeration safety valve 21 and a hoisting lock 4 are connected to the top of the casing 1.
  • the function of the balance safety valve is to discharge the aeration disturbed compressed air in a timely manner during backwashing and sewage discharge.
  • the function of the aeration safety valve 21 is to
  • the balance exhaust valve 20 is a passive safety blasting valve when the exhaust is not exhausted in time, to prevent the internal pressure of the first water chamber 42 from being too high and causing overpressure leakage at the connection part; the hoisting lock 4 is fixedly connected to the top of the shell 1, and its function During the installation and construction of the filter device, the hoisting center of gravity is evenly balanced and transported.
  • a maintenance manhole 18 is provided on one side of the housing 1.
  • the maintenance manhole 18 is provided with a quick lock pin and a support lifting eye to quickly open or close the manhole. Its function It is to provide a passage space for personnel to enter the filter device to replace the cyclone filter element 34 during maintenance.
  • the invention also provides a filtration method for an automatic backwash filtration device of a low-temperature multi-effect distillation seawater desalination system, which includes the following steps:
  • Step S1 Simultaneously operate the filtering devices in the first water chamber 42 and the second water chamber 43.
  • the first water inlet control valve 5, the second water inlet control valve 7 and the third water inlet control valve 8 are all open.
  • the bypass control valve 6, the first blowdown control valve 9, the second blowdown control valve 10, the first air intake control valve and the second air intake control valve are all closed;
  • Step S2 The feed seawater enters through the cyclone filter element 34 in the first water chamber 42 and the second water chamber 43 respectively.
  • the cyclone filter element 34 is filtered through the filter element conduit 32 and the clean water is collected and then discharged through the clean water collection port 33;
  • Step S3 When the filter device of the first water chamber 42 is in the backwash and sewage discharge state, and the filter device of the second water chamber 43 is in the running state, at this time, the first water inlet control valve 5, the third water inlet control valve 8, The first water outlet control valve 11, the second water outlet control valve 13, the third water outlet control valve 14, the first sewage control valve 9, and the first air inlet control valve are all in the open state, and the second water inlet control valve, bypass The road control valve 6, the second blowdown control valve 10 and the second air intake control valve are all in a closed state;
  • Step S4 The incoming seawater enters through the cyclone filter element 34 of the second water chamber 43, and the filter element conduit 32 filters the cyclone filter element 34 to collect the clean water, collects it, and then flows out through the clean water collection port 33, and part of it is discharged from the third water outlet control valve 14. The other part is pressurized by the auxiliary boosting device 12 and then enters the cyclone filter element 34 at intervals for backwashing operation.
  • the compressed air enters through the first air inlet control valve and leads to the cyclone filter element 34 and the aeration water cap 26 respectively to form a mixing disturbance effect, and
  • the tangential scouring stress and rotational centrifugal stress on the cyclone filter element 34 promote the peeling off of adsorbed impurity particles on the filter.
  • the backwash impurities and sewage pass through the backwash drain outlet 27 of the sewage collection tank 24 and are discharged to the ditch by the first sewage control valve 9 and compressed
  • the air is discharged through the balance exhaust valve 20 and the aeration safety valve 21.
  • the operating state of the filter device after backwashing is the same as step S1.
  • the operating state of the filter device in the second water chamber 43 is the same as the backwash discharge of the filter device in the first water chamber 42.
  • the running status is the same as step S2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cyclones (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Filtration Of Liquid (AREA)

Abstract

一种低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法。低温多效蒸馏海水淡化系统自动反洗过滤装置包括壳体(1)、自动控制装置(2)、进水管道(3)、出水管(44)、排污管(47)与过滤装置,自动控制装置(2)连接在壳体(1)的一侧,进水管道(3)设置在壳体(1)的前端,进水管道(3)的两端分别与壳体(1)上下两端相互连接,出水管(44)与排污管(47)分别连接在壳体(1)的两侧,过滤装置安装在壳体(1)的内部;壳体(1)的内部设置有第一水室(42)与第二水室(43)。还公开了一种低温多效蒸馏海水淡化系统自动反洗过滤的方法。

Description

低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法 技术领域
本发明涉及海水淡化技术领域,尤其涉及低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法,IPC分类号为C02F。
背景技术
目前,低温多效海水淡化系统工艺是指将原海水的最高蒸发温度控制在70℃以下的淡化水生产技术,其特征是通过入料系统将原海水或浓缩海水通过喷嘴均匀分布在各效体蒸发器的换热管束外表面呈薄膜装分布,自上而下流动,部分海水吸收换热管内冷凝蒸汽的潜热而汽化,剩余浓缩海水通过入料泵打入到蒸发器的下一效组中,重复以上过程实现淡化水生产过程。
目前,部分热法海水淡化效体蒸发器壳体选用价格便宜的碳钢材质内衬防腐涂层的方式,因此对于防腐施工工艺及后续的涂层的修补防护要求极其严格,一旦蒸发器壳体内部局部发生涂层脱落现象,加之效体蒸发器内部空间部件布置密集,不具备全面修复防腐涂层的施工空间。将导致该部位受电化学腐蚀作用加快金属的腐蚀及防腐涂层的脱落,脱落后的防腐涂层随海水淡化入料水系统进入喷淋系统,进而引发喷淋管喷嘴局部污堵或堵塞,造成喷淋系统喷嘴不能将浓缩海水均匀分布到换热管束,未能冷凝的蒸汽引发局部热效组换热不充分,换热管束温度长期处于临界结垢点以上,造成局部换热管束外壁表面结垢明显,同时喷淋系统局部喷淋管束及附属部件也因长期承压受力造成局部位置老化法兰或薄弱部件发生断裂。最终造成海淡装置蒸汽(热源)、海水(冷源)接触换热面积逐渐减少,热交换效率持续降低而导致海水淡化系统造水比降低。
现有技术方案通常采用的双列母管制布置过滤器使之互为备用,涉及具体清洗方式仅能通过人工拆除过滤器上部端盖,取出滤网进行外部清洗,实 施过程较为复杂,尤其在海水淡化系统运行期间进行清洗滤网操作过程,对系统的连续安全稳定运行带来极大隐患,同时还存在“安全风险高、清洗频率高、工作效率低、停机时间长、检修成本高”等方面的不利因素,且不能从根本上解决过滤器滤网堵塞快速清洗的问题,所以采用常规过滤方式效果并不理想。
对此,本申请特提出低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法以解决上述技术问题
发明内容
本发明主要针对低温多效海水淡化系统过滤装置结构形式单一,空间占地大,设备成本高,停机时间长,工作效率低,清洗实施繁琐,自动化程度低,无法实现过滤装置连续自动反洗长周期高效稳定运行等问题。而提出低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法,实施后有效保障低温多效海水淡化系统连续高效稳定运行,截留入料原海水或浓缩海水中的杂质颗粒,延缓喷淋系统喷嘴堵塞拆解及清洗频率,提高系统出力范围及造水比,本发明采用上下双进水布水装置独立供应互为备用的双模块化过滤装置,利用超频振荡、气旋滤网、曝气扰动联合作用方式显著提升反洗效果,具有缩短停运时间,自动化程度高,操作性能稳定,在线连续运行且效果显著的优点。
本发明为解决上述技术问题所采用的技术方案是:低温多效蒸馏海水淡化系统自动反洗过滤装置,包括壳体、自动控制装置、进水管道、出水管、排污管与过滤装置,自动控制装置连接在壳体的一侧,进水管道设置在壳体的前端,进水管道的两端分别与壳体上下两端相互连接,出水管与排污管分别连接在壳体的两侧,过滤装置安装在壳体的内部;
所述壳体的内部设置有第一水室与第二水室,所述过滤装置分别安装在第一水室、第二水室的内部,所述过滤装置包括有曝气隔板、承托框架、承 托隔板、滤芯导管与气旋滤芯,曝气隔板设置在承托隔板的下端,曝气隔板与承托隔板之间通过承托框架相互固定连接,在曝气隔板上安装有曝气控制阀,多条滤芯导管布置在承托隔板上,在滤芯导管上连接有清水收集口,清水收集口与所述出水管之间相互连接,在出水管的一侧连接有辅助增压装置;
所述气旋滤芯设置在滤芯导管的上端,多条气旋滤芯均与滤芯导管之间固定连接,在气旋滤芯的中心位置处安装有超频振荡器,在曝气隔板的下端设置有锥形结构的排污收集槽,在排污收集槽的底部中心处连接有反洗排污口,在第二水室底部的排污收集槽两端滑动连接有伸缩滑块;
所述气旋滤芯的上端连接有支撑卡件,气旋滤芯的下端连接有驱动卡件,用于为气旋滤芯提供旋转滑动支撑并平衡径向推力,用于为气旋滤芯提供旋转滑动支撑并平衡轴向推力,在气旋滤芯的内部设置有多条定向气旋导叶。
进一步,所述进水管道的上、下两端分别伸入至所述壳体的内部,在进水管道的上、下两端均连接有布水装置,进水管道的上端连接的布水装置位于第一水室的内部,进水管道的下端连接的布水装置位于第二水室的内部。
进一步,所述布水装置具有对称均匀交叉布置的四个出水口,用于均匀分配第一水室与第二水室的入料海水介质。
进一步,所述曝气隔板上固定连接有多个曝气水帽,曝气水帽为双向细微气孔爆破水帽,用于将压缩空气均匀分配成大量细微气泡。
进一步,所述壳体的一侧设置有连接管A与连接管B,连接管B设置在连接管A的下端,连接管A与连接管B的一端分别与第一水室、第二水室的清水收集口之间相互连接,连接管A与连接管B的另一端均与出水管之间相互连接,在连接管A上安装有第一进气控制阀,在连接管B上安装有第二进气控制阀。
进一步,所述进水管道的下端连接有旁路管,在旁路管上连接有第一进水控制阀与旁路控制阀,在进水管道上连接有第一压差变送器、第二压差变送器、第二进水控制阀与第三进水控制阀。
进一步,所述排污管的一端与第一水室的反洗排污口相互连接,在排污管与壳体之间设置有连接管C,连接管C的一端与第二水室的反洗排污口相互连接,连接管C的另一端与排污管之间相互连接。
进一步,所述排污管上连接有第一排污控制阀,在连接管C上连接有第二排污控制阀。
进一步,所述壳体的顶部连接有平衡排气阀、曝气安全阀与吊装锁具,在壳体的一侧开设有检修人孔,在壳体的另一侧连接有振荡调节器,振荡调节器与超频振荡器之间可控连接,在壳体的前端开设有窥视检查孔,在壳体的底部固定连接有多条壳体支臂。
低温多效蒸馏海水淡化系统自动反洗过滤装置的过滤方法,包括以下步骤:
步骤S1:同时运行第一水室与第二水室中的过滤装置,此时第一进水控制阀、第二进水控制阀与第三进水控制阀均处开启状态,旁路控制阀、第一排污控制阀、第二排污控制阀、第一进气控制阀与第二进气控制阀均处关闭状态;
步骤S2:入料海水分别由第一水室、第二水室中的气旋滤芯进入,通过滤芯导管将气旋滤芯过滤后收集清水汇集后通过清水收集口排出;
步骤S3:入料海水分别经第二水室的气旋滤芯进入,由滤芯导管将气旋滤芯过滤后收集清水汇集后通过清水收集口流出,一部分从第三出水控制阀排出,另一部分经辅助增压装置增压后间隔进入气旋滤芯进行反洗操作,同时压缩空气经第一进气控制阀进入分别通向气旋滤芯和曝气水帽形成混合扰动作用,并对气旋滤芯形成切向冲刷应力及旋转离心应力促进滤网吸附杂质 颗粒剥离,反洗杂质及污水经排污收集槽的反洗排污口并由第一排污控制阀排放至地沟,压缩空气通过平衡排气阀与曝气安全阀排出,完成反洗过滤。
本发明的优点在于:本发明提供了低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法,具有以下优点:
1.本发明可以有效保障低温多效海水淡化系统连续高效稳定运行,截留入料原海水或浓缩海水中的杂质颗粒,延缓喷淋系统喷嘴堵塞拆解及清洗频率,提高系统出力范围及造水比,本发明采用上下双进水布水装置独立供应互为备用的双模块化过滤装置,利用超频振荡、气旋滤网、曝气扰动联合作用方式显著提升反洗效果,具有缩短停运时间,自动化程度高,操作性能稳定,在线连续运行且效果显著的优点。
2.本发明中的过滤装置分别设置在第一水室与第二水室中,第一水室中的过滤装置为主要过滤单元组,第二水室为中的过滤装置为辅助过滤单元组,第一水室、第二水室中的过滤装置互为备用双模块化过滤单元组,并可根据自动控制装置自动控制运行与反洗状态,过滤效率高。
3.本发明中在第一水室、第二水室的底部均设置有排污收集槽,两个排污收集槽为锥形结构,可以快速收集滤芯反洗脱落的颗粒杂质,避免遗落死角排污不彻底;排污收集槽还可以作为第一水室、第二水室隔断隔板,使两组过滤装置相互独立运行并互为备用。
4.本发明第二水室排污收集槽与伸缩滑块滑动连接,具有伸缩滑动空间,其作用在于:正常过滤状态入料海水经第二水室布水装置进入冲击分流,排污收集槽与伸缩滑块收缩并在曝气隔板边缘预留介质流通通道;排污收集槽与伸缩滑块伸展并与曝气隔板边缘密封介质流通通道,可以避免反洗排污杂质沉积到过滤装置底部空间。
5.本发明在进水管道的上、下两端均连接有布水装置,进水管道的上端连接的布水装置位于第一水室的内部,进水管道的下端连接的布水装置位于 第二水室的内部,布水装置对称均匀交叉布置四个出水口,其作用在于均匀分配第一水室与第二水室的入料海水介质,避免流体分配不均造成滤芯局部堵塞对第一压差变送器、第二压差变送器监测压差信号及反洗综合效果造成影响偏差。
6.本发明中的振荡调节器分别与第一水室、第二水室内的超频振荡器独立可控连接,在反洗排污状态下客根据自动控制装置逻辑控制指令自动控制超频振荡器的振动振幅和强度;超频振荡器位于气旋滤芯的中心位置,其作用在于反洗状态下根据自动控制装置逻辑控制指令产生一定振幅和频率的高频振荡波,进而促进气旋滤芯外壁表面吸附的杂质颗粒剥落。
7.本发明在气旋滤芯的上下两端分别设置支撑卡件与驱动卡件;支撑卡件可以为气旋滤芯提供旋转滑动支撑并平衡径向推力;驱动卡件可以为气旋滤芯提供旋转滑动支撑并平衡轴向推力;在气旋滤芯内部设置多个定向气旋导叶,气旋导叶正常过滤状态正向导通清水进入滤芯导管,反洗排污状态在压缩空气逆向导通驱动气旋滤芯高速旋转,可以辅助曝气水帽形成爆破气泡剥落滤网吸附颗粒,还可以在气旋滤芯高速旋转过程形成切向冲刷应力及旋转离心应力,促进剥落滤网吸附颗粒,过滤效果良好。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明的左侧剖视结构示意图;
图3为本发明的俯向剖面结构示意图;
图4为本发明中滤芯导管的结构示意图;
图5为本发明中曝气隔板的结构示意图;
图6为本发明中气旋滤芯的结构示意图;
其中:
1、壳体;               2、自动控制装置;        3、进水管道;
4、吊装锁具;           5、第一进水控制阀;      6、旁路控制阀;
7、第二进水控制阀;     8、第三进水控制阀;      9、第一排污控制阀;
10、第二排污控制阀;    11、第一出水控制阀;     12、辅助增压装置;
13、第二出水控制阀;    14、第三出水控制阀;     15、第一压差变送器;
16、第二压差变送器;    17、窥视检查孔;         18、检修人孔;
19、承托框架;          20、平衡排气阀;         21、曝气安全阀;
22、振荡调节器;        23、超频振荡器;         24、排污收集槽;
25、曝气控制阀;        26、曝气水帽;           27、反洗排污口;
28、布水装置;          29、壳体支臂;           30、曝气隔板;
31、承托隔板;          32、滤芯导管;           33、清水收集口;
34、气旋滤芯;          35、支撑卡件;           36、气旋导叶;
37、驱动卡件;          38、第一进气控制阀       39、第二进气控制阀;
40、伸缩滑块;          41、平衡滑块;           42、第一水室;
43、第二水室;          44、出水管;             45、连接管A;
46、连接管B;          47、排污管;            48、连接管C;
49、旁路管。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
图1为本发明的结构示意图,图2为本发明的左侧剖视结构示意图,图3为本发明的俯向剖面结构示意图,如图1,图2与图3所示的低温多效蒸馏海水淡化系统自动反洗过滤装置,包括壳体1、自动控制装置2、进水管道3、出水管44、排污管47与过滤装置,自动控制装置2连接在壳体1的一侧,进水管道3设置在壳体1的前端,进水管道3的两端分别与壳体1上下两端 相互连接,出水管44与排污管47分别连接在壳体1的两侧,过滤装置安装在壳体1的内部;
本发明在壳体1的另一侧连接有振荡调节器22,振荡调节器22与超频振荡器23之间可控连接,振荡调节器22分别与第一水室42、第二水室43内的超频振荡器23独立可控连接,在反洗排污状态下客根据自动控制装置2逻辑控制指令自动控制超频振荡器23的振动振幅和强度;超频振荡器23位于气旋滤芯34的中心位置,其作用在于反洗状态下根据自动控制装置2逻辑控制指令产生一定振幅和频率的高频振荡波,进而促进气旋滤芯34外壁表面吸附的杂质颗粒剥落,在壳体1的前端开设有窥视检查孔17,其作用在于辅助第一压差变送器15、第二压差变送器16判断过滤装置滤芯堵塞状态,为清洗终点判断提供参考依据,本发明在壳体1的底部固定连接有多条壳体支臂29,其作用在于承担承托支撑结构的作用,并为壳体1底部的进水管道3预留布置空间。
图4为本发明中滤芯导管32的结构示意图,图6为本发明中气旋滤芯34的结构示意图,如图4与图6所示,气旋滤芯34设置在滤芯导管32的上端,多条气旋滤芯34均与滤芯导管32之间固定连接,在气旋滤芯34的中心位置处安装有超频振荡器23,在曝气隔板30的下端设置有锥形结构的排污收集槽24,在排污收集槽24的底部中心处连接有反洗排污口27,第二水室43底部的排污收集槽24两端滑动连接有伸缩滑块40;
所述气旋滤芯34的上端连接有支撑卡件35,气旋滤芯34的下端连接有驱动卡件37,用于为气旋滤芯34提供旋转滑动支撑并平衡径向推力,用于为气旋滤芯34提供旋转滑动支撑并平衡轴向推力,在气旋滤芯34的内部设置有多条定向气旋导叶36,气旋导叶36正常过滤状态正向导通清水进入滤芯导管32,反洗排污状态在压缩空气逆向导通驱动气旋滤芯34高速旋转;
本发明中进水管道3的上、下两端分别伸入至所述壳体1的内部,在进水管道3的上、下两端均连接有布水装置28,进水管道3的上端连接的布水装置28位于第一水室42的内部,进水管道3的下端连接的布水装置28位于第二水室43的内部,布水装置28具有对称均匀交叉布置的四个出水口,其作用在于均匀分配第一水室42、第二水室43的入料海水介质,避免流体分配不均造成滤芯局部堵塞对第一压差变送器15、第二压差变送器16监测压差信号及反洗综合效果造成影响偏差,本发明在曝气隔板30上固定连接有多个曝气水帽26,曝气水帽26为双向细微气孔爆破水帽,用于将压缩空气均匀分配成大量细微气泡,以便气泡爆破后产生均匀的流体介质扰动作用。
图5为本发明中曝气隔板30的结构示意图,如图5所示,本发明在壳体1的内部设置有第一水室42与第二水室43,所述过滤装置分别安装在第一水室42、第二水室43的内部,所述过滤装置包括有曝气隔板30、承托框架19、承托隔板31、滤芯导管32与气旋滤芯34,曝气隔板30设置在承托隔板31的下端,曝气隔板30与承托隔板31之间通过承托框架19相互固定连接,在曝气隔板30上安装有曝气控制阀25,多条滤芯导管32布置在承托隔板31上,在滤芯导管32上连接有清水收集口33,清水收集口33与所述出水管44之间相互连接,在出水管44的一侧连接有辅助增压装置12;辅助增压装置12位于第一出水控制阀11与第二出水控制阀13出口端,辅助增压装置12为双吸双向介质增压输送泵,其作用在于:(一)正常过滤状态仅作为介质输送通道;(二)反洗排污状态协同第一出水控制阀11、第二出水控制阀13逆向为清洗第一水室42、第二水室43中的气旋滤芯34增压输送清洁水源;
本发明中的第一出水控制阀11、第二出水控制阀13分别与所述第一水室42第二水室43清水收集口33出口管段固定连接,其作用在于:(一)正常过滤状态根据自动控制装置2逻辑控制指令协同第二进水控制阀7、第三进水控制阀8控制所在过滤装置出力状态;(二)反洗排污状态协同辅助增 压装置12连续逆向为清洗气旋滤芯34输送清洁水源;(三)曝气扰动状态协同第一进气控制阀、第二进气控制阀间隔逆向为清洗气旋滤芯34输送压缩空气;
本发明在壳体1的一侧设置有连接管A45与连接管B46,连接管B46设置在连接管A45的下端,连接管A45与连接管B46的一端分别与第一水室42、第二水室43的清水收集口33之间相互连接,连接管A45与连接管B46的另一端均与出水管44之间相互连接,在连接管A45上安装有第一进气控制阀,在连接管B46上安装有第二进气控制阀,本发明中的壳体1采用耐腐蚀不锈钢内衬丁晴橡胶双层防腐防护设计方式,避免了传统定期更换牺牲阳极电化学防腐方式造成过滤装置停运过程及防护不当而引发装置部件加速腐蚀问题;
本发明在进水管道3的下端连接有旁路管49,在旁路管49上连接有第一进水控制阀5与旁路控制阀6,在进水管道3上连接有第一压差变送器、第二压差变送器、第二进水控制阀7与第三进水控制阀8,第二进水控制阀7与第三进水控制阀8的作用在于:(一)根据自动控制装置2逻辑控制指令自动调节进入第一水室42过滤装置及第二水室43过滤装置的水量;(二)根据第一压差变送器15、第二压差变送器16反馈数据信号经自动控制装置2判定后实施过滤单元反洗操作流程;
本发明中的旁路控制阀6常规状态处于关闭状态,其作用在于事故应急状态下保证入料海水系统输送流通,避免输送流量不足造成海水淡化装置入料系统流量分配不均而降低出力;第一进水控制阀5可以根据自动控制装置2逻辑控制指令自动调节开度变化,其作用在于控制反洗过滤装置进水总量,并协同配合第二进水控制阀7、第三进水控制阀8控制进入第一水室42过滤装置装置及第二水室43过滤装置的进水量;第一压差变送器15与第二压差变送器16的作用在于实时监测第一水室42与第二水室43过滤装置的压差变 化,判断过滤运行状态,并将监测信号反馈给自动控制装置2用于确定过滤装置反洗终点及反洗操作过程效果;自动控制装置2控制反洗操作程序为间隔固定时间,同时也参照反洗操作后第一水室42、第二水室43对应第一压差变送器15、第二压差变送器16监测数据,若反洗压差不满足过滤装置正常运行流量要求将进行二次反洗操作流程;
本发明中的排污管47的一端与第一水室42的反洗排污口27相互连接,在排污管47与壳体1之间设置有连接管C48,连接管C48的一端与第二水室43的反洗排污口27相互连接,连接管C48的另一端与排污管47之间相互连接,在排污管47上连接有第一排污控制阀9,在连接管C48上连接有第二排污控制阀10。
本发明在壳体1的顶部连接有平衡排气阀20、曝气安全阀21与吊装锁具4,平衡安全阀作用在于反洗排污状态及时排出曝气扰动压缩空气,曝气安全阀21作用在于平衡排气阀20排气不及时状态下的被动保障安全爆破阀,避免第一水室42内部压力过高而造成连接部位超压泄露情况;吊装锁具4与壳体1顶部固定连接,其作用在于过滤装置安装施工期间吊装重心均匀平衡调运运输,在壳体1的一侧开设有检修人孔18,检修人孔18设置快速锁销和支撑吊耳,以便快速开启或封闭人孔,其作用在于为检修期间人员进入过滤装置更换气旋滤芯34提供通道空间。
本发明还提供了低温多效蒸馏海水淡化系统自动反洗过滤装置的过滤方法,包括以下步骤:
步骤S1:同时运行第一水室42与第二水室43中的过滤装置,此时第一进水控制阀5、第二进水控制阀7与第三进水控制阀8均处开启状态,旁路控制阀6、第一排污控制阀9、第二排污控制阀10、第一进气控制阀与第二进气控制阀均处关闭状态;
步骤S2:入料海水分别由第一水室42、第二水室43中的气旋滤芯34进入,通过滤芯导管32将气旋滤芯34过滤后收集清水汇集后通过清水收集口33排出;
步骤S3:当第一水室42的过滤装置处于反洗排污状态,第二水室43的过滤装置在处于运行状态时,此时第一进水控制阀5、第三进水控制阀8、第一出水控制阀11、第二出水控制阀13与、第三出水控制阀14、第一排污控制阀9、与第一进气控制阀均处开启状态,第二进进水控制阀、旁路控制阀6、第二排污控制阀10与第二进气控制阀均处关闭状态;
步骤S4:入料海水分别经第二水室43的气旋滤芯34进入,由滤芯导管32将气旋滤芯34过滤后收集清水汇集后通过清水收集口33流出,一部分从第三出水控制阀14排出,另一部分经辅助增压装置12增压后间隔进入气旋滤芯34进行反洗操作,同时压缩空气经第一进气控制阀进入分别通向气旋滤芯34和曝气水帽26形成混合扰动作用,并对气旋滤芯34形成切向冲刷应力及旋转离心应力促进滤网吸附杂质颗粒剥离,反洗杂质及污水经排污收集槽24的反洗排污口27并由第一排污控制阀9排放至地沟,压缩空气通过平衡排气阀20与曝气安全阀21排出,过滤装置反洗结束后的运行状态同步骤S1,第二水室43过滤装置的工作状态与第一水室42过滤装置的反洗排污运行状态同步骤S2。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

  1. 低温多效蒸馏海水淡化系统自动反洗过滤装置,包括壳体(1)、自动控制装置(2)、进水管道(3)、出水管(44)、排污管(47)与过滤装置,自动控制装置(2)连接在壳体(1)的一侧,进水管道(3)设置在壳体(1)的前端,进水管道(3)的两端分别与壳体(1)上下两端相互连接,出水管(44)与排污管(47)分别连接在壳体(1)的两侧,过滤装置安装在壳体(1)的内部;
    其特征在于:所述壳体(1)的内部设置有第一水室(42)与第二水室(43),所述过滤装置分别安装在第一水室(42)、第二水室(43)的内部,所述过滤装置包括有曝气隔板(30)、承托框架(19)、承托隔板(31)、滤芯导管(32)与气旋滤芯(34),曝气隔板(30)设置在承托隔板(31)的下端,曝气隔板(30)与承托隔板(31)之间通过承托框架(19)相互固定连接,在曝气隔板(30)上安装有曝气控制阀(25),多条滤芯导管(32)布置在承托隔板(31)上,在滤芯导管(32)上连接有清水收集口(33),清水收集口(33)与所述出水管(44)之间相互连接,在出水管(44)的一侧连接有辅助增压装置(12);
    所述气旋滤芯(34)设置在滤芯导管(32)的上端,多条气旋滤芯(34)均与滤芯导管(32)之间固定连接,在气旋滤芯(34)的中心位置处安装有超频振荡器(23),在曝气隔板(30)的下端设置有锥形结构的排污收集槽(24),在排污收集槽(24)的底部中心处连接有反洗排污口(27),在第二水室(43)底部的排污收集槽(24)两端滑动连接有伸缩滑块(40);
    所述气旋滤芯(34)的上端连接有支撑卡件(35),气旋滤芯(34)的下端连接有驱动卡件(37),用于为气旋滤芯(34)提供旋转滑动支撑并平衡径向推力,用于为气旋滤芯(34)提供旋转滑动支撑并平衡轴向推力,在气旋滤芯(34)的内部设置有多条定向气旋导叶(36);
    所述壳体(1)的顶部连接有平衡排气阀(20)、曝气安全阀(21)与吊装锁具(4),在壳体(1)的一侧开设有检修人孔(18),在壳体(1)的另一 侧连接有振荡调节器(22),振荡调节器(22)与超频振荡器(23)之间可控连接,在壳体(1)的前端开设有窥视检查孔(17),在壳体(1)的底部固定连接有多条壳体支臂(29);
    基于所述低温多效蒸馏海水淡化系统自动反洗过滤装置的过滤方法,包括以下步骤:
    步骤S1:同时运行第一水室(42)与第二水室(43)中的过滤装置,此时第一进水控制阀(5)、第二进水控制阀(7)与第三进水控制阀(8)、第一出水控制阀(11)、第二出水控制阀(13)、第三出水控制阀(14)均处开启状态,旁路控制阀(6)、第一排污控制阀(9)、第二排污控制阀(10)、第一进气控制阀(38)与第二进气控制阀(39)均处关闭状态;入料海水分别由第一水室(42)、第二水室(43)中的气旋滤芯(34)进入,通过滤芯导管(32)将气旋滤芯(34)过滤后收集清水汇集后通过清水收集口(33)排出;
    步骤S2:当第一水室(42)中的过滤装置处于反洗状态,第二水室(43)中的过滤装置处于运行状态时。此时第一进水控制阀(5)、第三进水控制阀(8)、第一出水控制阀(11)、第二出水控制阀(13)、第三出水控制阀(14)、第一排污控制阀(9)与第一进气控制阀(38)均处于开启状态;旁路控制阀(6)、第二进水控制阀(7)、第二进气控制阀(39)、第二排污控制阀(10)均处关闭状态;入料海水分别经第二水室(43)的气旋滤芯(34)进入,由滤芯导管(32)将第二水室(43)的气旋滤芯(34)过滤后收集清水汇集后通过清水收集口(33)流出,一部分从第三出水控制阀(14)排出,另一部分经辅助增压装置(12)增压后间隔进入第一水室(42)的气旋滤芯(34)进行反洗操作,同时压缩空气经第一进气控制阀(38)进入分别通向第一水室(42)的气旋滤芯(34)和曝气水帽(26)形成混合扰动作用,并对第一水室(42)的气旋滤芯(34)形成切向冲刷应力及旋转离心应力促进滤网吸附杂质颗粒剥离,反洗杂质及污水经排污收集槽(24)的反洗排污口(27) 并由第一排污控制阀(9)排放至地沟,压缩空气通过平衡排气阀(20)与曝气安全阀(21)排出,完成反洗过滤;
    步骤S3:当第一水室(42)中的过滤装置处于运行状态,第二水室(43)中的过滤装置处于反洗状态时,此时第一进水控制阀(5)、第二进水控制阀(7)、第一出水控制阀(11)、第二出水控制阀(13)、第三出水控制阀(14)、第二排污控制阀(10)与第二进气控制阀(39)均处于开启状态;旁路控制阀(6)、第三进水控制阀(8)、第一进气控制阀(38)、第一排污控制阀(9)均处关闭状态;入料海水分别经第一水室(42)的气旋滤芯(34)进入,由滤芯导管(32)将第一水室(42)的气旋滤芯(34)过滤后收集清水汇集后通过清水收集口(33)流出,一部分从第三出水控制阀(14)排出,另一部分经辅助增压装置(12)增压后间隔进入第二水室(43)的气旋滤芯(34)进行反洗操作,同时压缩空气经第一进气控制阀(38)进入分别通向第二水室(43)的气旋滤芯(34)和曝气水帽(26)形成混合扰动作用,并对第二水室(43)的气旋滤芯(34)形成切向冲刷应力及旋转离心应力促进滤网吸附杂质颗粒剥离,反洗杂质及污水经排污收集槽(24)的反洗排污口(27)并由第二排污控制阀(10)排放至地沟,压缩空气通过平衡排气阀(20)与曝气安全阀(21)排出,完成反洗过滤;
    步骤S4:同时停运第一水室(42)与第二水室(43)中的过滤装置,此时第一进水控制阀(5)、旁路控制阀(6)均处开启状态;第二进水控制阀(7)与第三进水控制阀(8)、第一出水控制阀(11)、第二出水控制阀(13)、第三出水控制阀(14)、第一排污控制阀(9)、第二排污控制阀(10)、第一进气控制阀(38)与第二进气控制阀(39)均处关闭状态;入料海水经第一进水控制阀(5)进入,由旁路控制阀(6)排出。
  2. 根据权利要求1所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述进水管道(3)的上、下两端分别伸入至所述壳体(1) 的内部,在进水管道(3)的上、下两端均连接有布水装置(28),进水管道(3)的上端连接的布水装置(28)位于第一水室(42)的内部,进水管道(3)的下端连接的布水装置(28)位于第二水室(43)的内部。
  3. 根据权利要求2所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述布水装置(28)具有对称均匀交叉布置的四个出水口,用于均匀分配第一水室(42)与第二水室(43)的入料海水介质。
  4. 根据权利要求1所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述曝气隔板(30)上固定连接有多个曝气水帽(26),曝气水帽(26)为双向细微气孔爆破水帽,用于将压缩空气均匀分配成大量细微气泡。
  5. 根据权利要求1所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述壳体(1)的一侧设置有连接管A(45)与连接管B(46),连接管B(46)设置在连接管A(45)的下端,连接管A(45)与连接管B(46)的一端分别与第一水室(42)、第二水室(43)的清水收集口(33)之间相互连接,连接管A(45)与连接管B(46)的另一端均与出水管(44)之间相互连接,在连接管A(45)上安装有第一进气控制阀(38),在连接管B(46)上安装有第二进气控制阀(39)。
  6. 根据权利要求1所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述进水管道(3)的下端连接有旁路管(49),在旁路管(49)上连接有第一进水控制阀(5)与旁路控制阀(6),在进水管道(3)上连接有第一压差变送器(15)、第二压差变送器(16)、第二进水控制阀(7)与第三进水控制阀(8)。
  7. 根据权利要求1所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述排污管(47)的一端与第一水室(42)的反洗排污口(27)相互连接,在排污管(47)与壳体(1)之间设置有连接管C(48), 连接管C(48)的一端与第二水室(43)的反洗排污口(27)相互连接,连接管C(48)的另一端与排污管(47)之间相互连接。
  8. 根据权利要求7所述的低温多效蒸馏海水淡化系统自动反洗过滤装置,其特征在于:所述排污管(47)上连接有第一排污控制阀(9),在连接管C(48)上连接有第二排污控制阀(10)。
PCT/CN2022/126599 2022-05-31 2022-10-21 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法 WO2023231277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210606429.XA CN114681980B (zh) 2022-05-31 2022-05-31 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法
CN202210606429.X 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231277A1 true WO2023231277A1 (zh) 2023-12-07

Family

ID=82131156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126599 WO2023231277A1 (zh) 2022-05-31 2022-10-21 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法

Country Status (2)

Country Link
CN (1) CN114681980B (zh)
WO (1) WO2023231277A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117466388A (zh) * 2023-12-14 2024-01-30 河北军通电子装备科技有限公司 便携式海水淡化装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114681980B (zh) * 2022-05-31 2022-08-23 天津国投津能发电有限公司 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法
CN116440583B (zh) * 2023-06-15 2023-09-26 天津国投津能发电有限公司 一种海水预处理定向置换过滤装置及使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282268A (zh) * 1997-12-18 2001-01-31 阿-卡尔塑料制品公司 逆流旋转清洁液体过滤器
CN1321532A (zh) * 2001-02-28 2001-11-14 区裕雄 锥面微旋过滤机
JP2009233623A (ja) * 2008-03-28 2009-10-15 Kanko Kigyo Kofun Yugenkoshi 水処理ろ過装置
WO2015149643A1 (zh) * 2014-03-31 2015-10-08 王桂林 海水淡化装置及海水淡化方法和药水清洗方法
CN106731115A (zh) * 2016-12-06 2017-05-31 中冶京诚工程技术有限公司 一种水力自清洗过滤器
US20170173504A1 (en) * 2014-02-11 2017-06-22 Tavlit Plastic Ltd. Air flow enhanced self-cleaning disc filter apparatus
CN108483520A (zh) * 2018-03-01 2018-09-04 同济大学 交互清洗海水过滤装置
CN214389124U (zh) * 2020-12-30 2021-10-15 优斯曼(江苏)智能科技有限公司 前置过滤器反冲洗旋转喷洗装置
CN114681980A (zh) * 2022-05-31 2022-07-01 天津国投津能发电有限公司 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201186186Y (zh) * 2008-01-30 2009-01-28 南通航海机械有限公司 全自动反冲洗滤器
DE202014104200U1 (de) * 2014-06-11 2015-09-14 Boll & Kirch Filterbau Gmbh Rückspülfilter und Filtereinsatz hierfür
DE102017001970A1 (de) * 2016-10-12 2018-04-12 Hydac Process Technology Gmbh Filtervorrichtung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282268A (zh) * 1997-12-18 2001-01-31 阿-卡尔塑料制品公司 逆流旋转清洁液体过滤器
CN1321532A (zh) * 2001-02-28 2001-11-14 区裕雄 锥面微旋过滤机
JP2009233623A (ja) * 2008-03-28 2009-10-15 Kanko Kigyo Kofun Yugenkoshi 水処理ろ過装置
US20170173504A1 (en) * 2014-02-11 2017-06-22 Tavlit Plastic Ltd. Air flow enhanced self-cleaning disc filter apparatus
WO2015149643A1 (zh) * 2014-03-31 2015-10-08 王桂林 海水淡化装置及海水淡化方法和药水清洗方法
CN106731115A (zh) * 2016-12-06 2017-05-31 中冶京诚工程技术有限公司 一种水力自清洗过滤器
CN108483520A (zh) * 2018-03-01 2018-09-04 同济大学 交互清洗海水过滤装置
CN214389124U (zh) * 2020-12-30 2021-10-15 优斯曼(江苏)智能科技有限公司 前置过滤器反冲洗旋转喷洗装置
CN114681980A (zh) * 2022-05-31 2022-07-01 天津国投津能发电有限公司 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117466388A (zh) * 2023-12-14 2024-01-30 河北军通电子装备科技有限公司 便携式海水淡化装置
CN117466388B (zh) * 2023-12-14 2024-04-26 河北军通电子装备科技有限公司 便携式海水淡化装置

Also Published As

Publication number Publication date
CN114681980B (zh) 2022-08-23
CN114681980A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023231277A1 (zh) 低温多效蒸馏海水淡化系统自动反洗过滤装置及其方法
CN103623626B (zh) 一种高效节能的颗粒状滤料过滤器及反冲洗方法
CN206350944U (zh) 一种可自清洗的过滤器
CN218608292U (zh) 用于过滤炼化凝结水的前置处理装置
CN209393635U (zh) 一种新型蒸汽发生器二次侧管板泥渣抽吸系统
CN213253847U (zh) 一种膜浓缩设备
CN203816331U (zh) 一种可视自清洗过滤器
CN209604152U (zh) 一种燃机水洗系统
CN215232596U (zh) 一种低温多效海水淡化系统自动反洗过滤装置
CN215879099U (zh) 冷却导管在线自循环清洗装置
CN206372699U (zh) 一种无反洗管路连续运行的超滤膜装置
CN215929530U (zh) 一种电极蒸汽锅炉的液面排污装置
CN204661741U (zh) 高炉冲渣水热能综合利用系统
CN211513595U (zh) 一种带有检测装置的高效过滤器
CN215822790U (zh) 一种用于印染废水的高效预处理装置
CN111271261A (zh) 真空泵进气前处理装置
CN103585816B (zh) 一种处理炉气后产生的废硫酸的处理方法及处理系统
CN213408181U (zh) 一种管式降膜吸收器
CN212843137U (zh) 一种冷却塔内部配水结构
CN216044309U (zh) 一种真空或压缩空气系统的前置气液分离设备
CN212594160U (zh) 一种斜管沉淀池冲洗装置
CN208104545U (zh) 一种铝环式离子交换器的清洗装置
CN212236751U (zh) 一种新型维生素b12中间体处理装置
CN201760178U (zh) 二并联四寸加大组合网式过滤器
CN208389497U (zh) 一种立式可抽芯式除污器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944585

Country of ref document: EP

Kind code of ref document: A1