WO2023231220A1 - 轨道交通车辆牵引变压器总成 - Google Patents

轨道交通车辆牵引变压器总成 Download PDF

Info

Publication number
WO2023231220A1
WO2023231220A1 PCT/CN2022/117798 CN2022117798W WO2023231220A1 WO 2023231220 A1 WO2023231220 A1 WO 2023231220A1 CN 2022117798 W CN2022117798 W CN 2022117798W WO 2023231220 A1 WO2023231220 A1 WO 2023231220A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction transformer
oil
assembly
cooler
cooling
Prior art date
Application number
PCT/CN2022/117798
Other languages
English (en)
French (fr)
Inventor
胡贵
钟珩
朱莉莉
龙谷宗
吴勇
谭文俊
赵康发
陈日新
熊涛
邓凤祥
吕春杰
何健
卜晶
谷秀甜
吴为
Original Assignee
中车株洲电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电机有限公司 filed Critical 中车株洲电机有限公司
Publication of WO2023231220A1 publication Critical patent/WO2023231220A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • This application relates to the fields of rail transit and electrical fields, and in particular to a rail transit vehicle traction transformer assembly.
  • the rail transit vehicle traction transformer is installed on the train to convert the 25kV high-voltage electricity of the contact network into various low-voltage electricity required by the traction system and auxiliary system. It is a power transformer with a special voltage level that needs to meet the drastic changes in traction load. Requirements, at the same time, it is necessary to suppress harmonic currents and limit short-circuit currents to ensure the safe, stable and reliable operation of the train's electric transmission system. It is the power source of rail vehicles and the core and key component of the traction system.
  • the purpose of this application is to provide a rail transit vehicle traction transformer assembly, which is suitable for layout at the bottom of the vehicle. It uses traveling air and a cooler assembly to cool the cooling oil of the traction transformer body. It has high cooling power, can reduce transformer noise, and improve transformer performance. efficiency, reduce inspection and maintenance operations, and reduce the operation and maintenance costs throughout the life cycle of the transformer.
  • this application provides a rail transit vehicle traction transformer assembly, including:
  • Bracket assembly used to be fixed to the bottom of the vehicle and centered relative to the bottom limit of the vehicle;
  • the traction transformer body is installed at one end of the bracket assembly
  • the cooler assembly is suspended separately from the traction transformer body and extends to both sides of the bracket assembly. It is used to circulate and cool the cooling oil in the traction transformer body.
  • the bracket assembly includes a first longitudinal beam and a cross beam.
  • a pair of first longitudinal beams is used to be fixed to both sides of the vehicle bottom along the driving direction;
  • a pair of cross beams are vertically connected to the first longitudinal beam at a preset distance. the first end of the first longitudinal beam;
  • the traction transformer body is fixed between the second ends of a pair of first longitudinal beams.
  • the cooler assembly includes a pair of coolers, a pipeline assembly connecting the cooler and the traction transformer body, and a pump located in the pipeline assembly.
  • An oil pump that delivers cooling oil; a pair of coolers are fixed at both ends of the beam.
  • the traction transformer body includes windings, a fuel tank, a fuel conservator, high-voltage outlet lines, low-voltage outlet lines, a pair of second longitudinal beams parallel to the driving direction and located on both sides of the fuel tank.
  • the connecting stiffener plate of the second longitudinal beam, the second longitudinal beam welding pin, and the traction transformer body are installed on the first longitudinal beam through the pin.
  • the high-voltage outlet line, the low-voltage outlet line, and the oil conservator are evenly located on the side of the fuel tank in the vertical driving direction; or the oil conservator is located on the top of the fuel tank.
  • the cooler includes a cooling tube set, a base plate, an oil box assembly and a mounting frame; the cooling tube set is connected to the oil box assembly through the base plate, and the oil box assembly includes at least two cavities that are respectively connected to both ends of the cooling tube set.
  • the pipeline assembly is connected to the oil inlet end and the oil outlet end of the cooler, and the pipeline assembly is also connected to different cavities of the oil box assembly respectively, and the mounting bracket is fixedly connected to the base plate and installed on the cross beam.
  • the cooling pipe group includes multiple rows of cooling pipe bodies bent in an arc shape with preset gaps.
  • the plane of all cooling pipe bodies is perpendicular to the driving direction.
  • the cooling pipe bodies located on the outer periphery are arranged to conform to the bottom limit of the vehicle. , connecting reinforcing plates between adjacent cooling pipe bodies.
  • the gap between any adjacent cooling tube bodies is tapered from the inner circumference to the outer circumference, and further includes a square tube located in the center of the inner circumference of the cooling tube body, connected to the base plate, and used for flow disturbance.
  • the oil box assembly includes a first oil box, a second oil box and a third oil box
  • the cooling tube group includes a first cooling tube group located at the front end and connected to the first oil box and the second oil box, and a second cooling pipe group located at the rear end and connected to the second oil box and the third oil box, and the gap between the first cooling pipe group and the second cooling pipe group is larger than the first cooling pipe group or the second cooling pipe
  • the group is compared with the gap between the cooling tube bodies; one end of the pipeline component that delivers oil to the cooler is connected to the first oil box, and one end of the pipeline component that is used to extract cooling oil in the cooler is connected to the third oil box.
  • the traction transformer body is elastically suspended from the first longitudinal beam, and the pipeline assembly includes a metal bellows for absorbing vibration displacement of the traction transformer body.
  • a protective cover is provided on the outside of the cooler, and a hollow block/heat dissipation protrusion for fitting the bottom of the vehicle is provided on the top of the cooler.
  • the cooling tube body is provided with reinforcing ribs for flow turbulence.
  • a heat sink is provided at the bottom of the traction transformer body, and the extension direction of the heat sink coincides with the driving direction.
  • the rail transit vehicle traction transformer assembly provided by this application cleverly and reasonably designs the rail transit vehicle traction transformer assembly.
  • the traveling wind around the traction transformer body is utilized when the vehicle is running. Cooling the traction transformer is suitable for vehicle bottom layout with complex flow field and wind speed distribution.
  • the forced ventilation cooling fan can be eliminated, which greatly reduces the transformer noise (can be reduced by >15dB(A)) and improves the transformer efficiency (can be increased by about 2%).
  • there is no consumption of fan driving power greatly reducing inspection and maintenance operations. Filters, original fan protection devices and control logic on the train can be eliminated, simplifying the layout and control of the entire vehicle, reducing the probability of failure, and improving the reliability of the entire vehicle and traction transformer. Reliability, significantly reducing the operation and maintenance costs of the entire life cycle of rail transit traction transformers.
  • Figure 1 is a schematic installation diagram of the rail transit vehicle traction transformer assembly provided by the embodiment of the present application.
  • Figure 2 is a left view of Figure 1;
  • Figure 3 is a left view of the cooler assembly in Figure 1;
  • FIG. 4 is an assembly diagram of the cooler provided by the embodiment of the present application.
  • Figure 5 is an assembly diagram of the cooler provided by the embodiment of the present application from another angle
  • Figure 6 is a top view of Figure 4.
  • Figure 7 is a schematic diagram of a cooler protective cover provided by an embodiment of the present application.
  • FIG. 8 is an internal schematic diagram of the cooling tube body provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of an oil box assembly of a cooler provided by yet another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a cooler provided by yet another embodiment of the present application.
  • Figure 11 is a schematic installation diagram of a rail transit vehicle traction transformer assembly provided by yet another embodiment of the present application.
  • Figure 12 is a schematic installation diagram of a rail transit vehicle traction transformer assembly provided by yet another embodiment of the present application.
  • 1-bracket assembly 2-first pipeline, 3-traction transformer body, 4-oil pump, 5-second pipeline group, 6-beam, 7-third pipeline group, 8-connecting stiffener, 9 -The second longitudinal beam, 10-pin, 11-first longitudinal beam, 12-high voltage outlet, 13-low voltage outlet, 14-heat sink, 15-vehicle bottom limit, 16-cooler, 17-vibration pad, 18-Oil tank, 19-Winding, 20-Oil conservator, 21-Hollow block/heat dissipation boss, 22-Protective cover, 23-Cooling pipe group, 231-First cooling pipe group, 232-Second cooling pipe group , 24-cooling tube body, 241-reinforcement rib, 25-square tube, 26-reinforcement plate, 27-base plate, 28-mounting frame, 29-first oil box, 30-second oil box, 31-third oil Box, 32-flange.
  • This application discloses a rail transit vehicle traction transformer assembly, which can be arranged under the rail transit vehicle and make full use of the complex flow field and traveling wind under the vehicle to cool the traction transformer body 3 without the need to install a fan for cooling.
  • the oil pump 4 drives the cooling oil to circulate between the cooler assembly and the traction transformer body 3, which reduces cooling power consumption and operation and maintenance costs such as fan maintenance and inspection, improves the efficiency of the traction transformer body 3, reduces operating noise, and significantly The operation and maintenance cost during the life span of the traction transformer body 3 is reduced.
  • the direction of the arrow in Figure 1 is the driving direction.
  • the embodiment of the present application provides a rail transit vehicle traction transformer assembly, which mainly includes a bracket assembly 1, a traction transformer body 3, a cooler assembly, etc. part.
  • the middle car of the bracket is fixedly connected to the bottom of the vehicle and is installed centrally relative to the bottom limit 15 of the vehicle.
  • the cooler assembly and the traction transformer body 3 are installed below the bracket assembly 1.
  • the traction transformer body 3 is centrally installed under one end of the bracket assembly 1, and the cooler assembly is installed on both sides of the bracket assembly 1, thereby achieving a symmetrical arrangement centered relative to the vehicle body and the vehicle bottom limit 15, which is conducive to the center of gravity and the vehicle. Center coincidence and improved vehicle dynamic balance.
  • the traveling wind speed near the two sides is greater than that in the middle, and the traveling wind near the bottom limit 15 of the vehicle bottom is greater than the upper end.
  • the traction transformer body 3 is centrally installed on the bracket assembly 1,
  • the cooler assembly is installed on both sides of the bracket assembly 1 to meet the installation requirements of the traction transformer body 3 under the vehicle.
  • the high-speed traveling wind under the vehicle is fully utilized to cool the cooler assembly, and the traction transformer body is heated with the help of fuel.
  • the circulation between 3 and the cooler assembly cools the traction transformer body 3 .
  • the bracket assembly 1 includes a pair of first longitudinal beams 11 and a pair of cross beams 6.
  • the pair of first longitudinal beams 11 are parallel to the driving direction and arranged on both sides of the vehicle bottom at a first preset distance.
  • the pair of cross beams 6 are installed at the first ends of the first longitudinal beams 11 at a second preset distance, and the traction transformer body 3 is installed at the second ends of the pair of first longitudinal beams 11 .
  • the cross beam 6 connects a pair of first longitudinal beams 11, and a chute is provided on the cross beam 6 so that the cooler assembly can be quickly installed in place through T-bolts and the like.
  • the cooler assembly includes a pair of coolers 16, pipeline components and oil pump 4.
  • the cooler 16 is essentially an air-cooled heat exchanger, with an oil side connected to the pipeline assembly and circulating heat exchange with the cooling oil.
  • a pair of coolers 16 are symmetrically installed at both ends of the beam 6, and the pipeline assembly is connected to the traction transformer body 3
  • the oil pump 4 is arranged in the pipeline assembly, so that the heat cooling oil pump 4 in the traction transformer body 3 is sent to the cooler 16 for cooling and then returned to the traction transformer body 3.
  • the traction transformer body 3 includes a winding 19, an oil tank 18, an oil conservator 20, a high-voltage outlet line 12 and a low-voltage outlet line 13.
  • the winding 19 is immersed in the oil tank 18.
  • the oil tank 18 is connected to the pipeline assembly and can be realized through the pipeline assembly and the oil pump 4. Cooling oil circulates between the oil tank 18 and the cooler 16 . In the embodiment shown in FIGS.
  • the high-voltage outlet line 12 and the low-voltage outlet line 13 are arranged on the side of the fuel tank 18 in the vertical driving direction and away from the cooler 16 , making full use of the space under the vehicle and reducing the load on both sides of the traction transformer body 3
  • the equipment is arranged to avoid blocking the traveling air from entering the cooler 16 due to the oil conservator 20, high-voltage outlet 12 and low-voltage outlet 13 being arranged on both sides of the transformer, thereby reducing the resistance of the traveling air flowing to the cooler 16 and increasing the heat dissipation power of the cooler 16 .
  • the oil conservator 20 is arranged on the top of the oil tank 18.
  • the oil conservator 20 and the transformer oil tank 18 are connected by internal pipelines.
  • the traction transformer body 3 also includes connecting ribs 8 and a pair of second longitudinal beams 9.
  • the connecting ribs 8 are arranged on both sides of the fuel tank 18 and connect the fuel tank 18 and the second longitudinal beams 9.
  • the second longitudinal beams 9 are connected to the first longitudinal beams 9.
  • the beams 11 are arranged in parallel, the second longitudinal beam 9 is welded with the pin 10, and the traction transformer body 3 is installed on the first longitudinal beam 11 through the second longitudinal beam 9 and the pin 10.
  • the connecting ribs 8 are configured in an inward concave shape as shown in Figure 2 to reduce the shielding of the cooler 16 in the driving direction, reduce the resistance of traveling wind entering the cooler 16, and increase the heat dissipation power of the cooler 16.
  • the traction transformer body 3 that is, the bottom of the fuel tank 18, is provided with multiple rows of heat sinks 14.
  • the heat sinks 14 extend along the driving direction and are arranged at the bottom of the entire fuel tank 18 to increase the heat dissipation area at the bottom.
  • the radiating fins 14 are preferably arranged at equal intervals, and each row of radiating fins 14 is parallel to the driving direction to reduce the resistance of the traveling wind.
  • the bottom of the radiator 14 does not exceed the limit 15 of the vehicle bottom, but is close to the limit 15 of the vehicle bottom. This arrangement can maximize the surface area of the radiator 14, improve the heat dissipation effect of the radiator 14, and ensure reliable heat dissipation when the vehicle is traveling. .
  • a vibration-damping pad 17 is provided on the outer periphery of the pin 10
  • the first longitudinal beam 11 is provided with a slot for accommodating the vibration-damping pad and the pin 10
  • the pin 10 is installed on the first longitudinal beam through the vibration-damping pad 17 11, the vibration caused by the magnetostriction of the core when the isolation transformer is running is transmitted to the first longitudinal beam 11 and other parts of the vehicle.
  • the layout of the high-voltage outlet line 12, the low-voltage outlet line 13 and the oil conservator 20 can not only refer to the above embodiment, but also refer to the accompanying drawing 11.
  • the high-voltage outlet line 12 and the oil conservator 20 are arranged on the side of the oil tank 18 away from the cooler 16.
  • the low-voltage outlet line 13 is arranged on the side of the oil tank 18 close to the cooler 16. See also Figure 12.
  • the high-voltage outlet line 12 and the low-voltage outlet line 13 are arranged on the side of the oil tank 18 away from the cooler 16.
  • the oil conservator 20 is arranged close to the oil tank 18.
  • the upper side of the cooler 16 that is, the high-voltage outlet line 12 and the low-voltage outlet line 13 and the oil conservator 20 are respectively arranged on two opposite sides of the fuel tank 18 perpendicular to the driving direction.
  • the above arrangements reduce the layout of equipment on both sides of the fuel tank 18 and reduce the shielding of the cooler 16 along the driving direction.
  • the cooler 16 mainly includes a cooling tube group 23, a base plate 27, an oil box assembly and a mounting bracket 28.
  • the oil box assembly includes at least two cavities connected at both ends of the cooling pipe group 23.
  • the pipeline assembly transports hot oil to one of the cavities.
  • the hot oil is dissipated by the cooling pipe group 23 and then transported to the other cavity, and finally Return to the fuel tank 18 through the pipeline assembly.
  • the outer side of the cooler 16, that is, the cooling pipe group 23, is arc-shaped and conforms to the vehicle bottom limit 15.
  • the two coolers 16 are respectively arranged on both sides of the vehicle bottom side limit, making full use of both sides of the vehicle bottom edge.
  • the cooler 16 is arranged in the high flow rate area, which effectively improves the cooling efficiency of the cooler 16.
  • the traction transformer assembly provided by this application also includes a vehicle bottom limit 15.
  • the vehicle bottom limit 15 is used to connect to the bottom of the carriage.
  • the top of the vehicle bottom limit 15 is wide and the bottom is narrow.
  • the two sides extend obliquely from top to bottom toward the center of the carriage.
  • the side is set in an arc shape to fully fit the cooler 16, making it easier to pass through the tunnel while balancing the side airflow, reducing the side resistance of driving, and improving the cooling efficiency of the cooler 16.
  • Both ends of the cooling pipe group 23 are welded to the base plate 27, and the base plate 27 is welded to the oil box assembly.
  • the cooling pipe group 23 is connected to the oil box assembly through the base plate 27.
  • a riveting nut is provided on the opposite side, and the base plate 27 and the mounting bracket 28 are connected through bolts.
  • the pipeline assembly includes a first pipeline 2, a second pipeline group 5 and a third pipeline group 7.
  • the first pipeline 2 is connected between the oil tank 18 and the oil pump 4 and is used to discharge the cooling oil pump 4 in the oil tank 18.
  • the second pipeline group 5 consists of one large pipeline and two small pipelines. After the hot oil passes through the large pipeline, it passes through the tee pipe, enters the two small pipelines, and then enters the two coolers 16.
  • the third pipeline group 7 is the same as the second pipeline group 5 and consists of two small pipelines and one large pipeline. After the oil cooled by the cooler 16 passes through the two small pipelines, it passes through the tee pipe and flows into the large pipe. road.
  • the second pipeline group 5 and the third pipeline group 7 form a parallel pipeline, which effectively reduces the oil flow resistance of the system.
  • the lengths of each part of the second pipeline group 5 and the third pipeline group 7 are consistent, and the liquid flow
  • the resistance of the two coolers 16 is consistent to ensure that the oil flow rate flowing through the two coolers 16 is equal.
  • the oil box assembly includes a first oil box 29 , a second oil box 30 and a third oil box 31 , that is, it has three cavities.
  • the cooling pipe group 23 includes multiple rows of cooling pipe bodies 24 bent in an arc shape with preset gaps.
  • the cooling pipe bodies 24 of each row are arranged coplanarly, and the plane of the cooling pipe body 24 of each row is perpendicular to the driving direction, so that
  • the cooling tube group 23 forms a plurality of channels parallel to the driving direction, which is conducive to the passage of traveling wind through the channels; of course, during specific implementation, the cooling tube bodies 24 of each row can also be staggered and not in the same plane. There are no restrictions on this.
  • a plurality of reinforcing plates 26 are provided between the cooling pipe bodies 24.
  • the plurality of reinforcing plates 26 are parallel to the driving direction and arranged in the vertical driving direction. This can increase the overall strength of the cooling pipe group 23 and prevent large-scale accidents during operation. vibration.
  • the cooling pipe group 23 further includes a first cooling pipe group 231 composed of a plurality of cooling pipe bodies 24 located at the front end in the driving direction, and a first cooling pipe group 231 arranged in parallel with the first cooling pipe group 231 and located at the rear end in the driving direction.
  • the second cooling tube group 232 is composed of a plurality of cooling tube bodies 24 .
  • the gap between the first cooling tube group 231 and the second cooling tube group 232 is larger, and the gap between the first cooling tube group 231 or the second cooling tube group 232 is smaller than the cooling tube body 24, which reduces the traveling wind.
  • the wind resistance entering the second cooling tube group 232 can also be equal to the gap between the first cooling tube group 231 or the second cooling tube group 232 and the cooling tube body 24. This application does not limit this.
  • the pipeline assembly transports the hot cooling oil from the oil tank 18 to the first oil box 29.
  • the first oil box 29 transports the hot cooling oil to the second oil box 30 through the first cooling pipe group 231 on the periphery. After mixing, it flows into the third oil box 31 through the second cooling pipe group 232, and flows back to the oil tank 18 from the third oil box 31 and the pipeline assembly.
  • the above settings significantly extend the cooling flow path of the cooling oil, increase the contact path between the hot cooling oil and the wind, and increase the cooling power.
  • Each oil box is provided with a connecting flange 32 so as to connect the pipeline components through the flange 32 .
  • the cooling tube body 24 can be a round tube, a flat tube, an elliptical tube, etc., and is not limited here.
  • the gap between the cooling tube bodies 24 gradually decreases from the inner circumference to the outer circumference, that is, the cooling tube body 24 on the inner circumference has a larger gap between rows, so that when the train is running, the cooler is carried out in the middle of the cooling tube group 23 16
  • the full exchange and mixing of internal hot air and external cold air is conducive to improving the cooling power of the rear-end cooling pipe group.
  • the cooling pipe bodies 24 can also be arranged at equal intervals, and this application does not limit this.
  • the center of the cooling tube group 23, that is, the innermost cooling tube body 24, is also provided with a square tube 25 connected to the base plate 27 to disturb the air flowing in the middle and increase the heat transfer effect of the cooling tube group 23. Increase cooling power.
  • the outside of the cooler 16 is provided with a grille-shaped protective cover 22 to prevent foreign objects such as stones under the vehicle from impacting the cooler 16.
  • the protective cover is surrounded by folds with holes, and bolts pass through the holes on the folds. Holes connect the shield 22 to the base plate 27, as shown in Figures 4 and 7.
  • the grille ribs at the inlet and outlet of the traveling wind of the protective cover 22 are thin, the cross-section of the ribs is small, and the size of the ribs along the driving direction is long, which increases the strength of the grille while reducing the traveling wind resistance; at the same time, the bottom of the protective cover 22
  • the grille bars near the ground are denser, and the spacing between the grille bars increases in the upward direction. That is, the size of the grille holes located below the protective cover 22 is smaller, thereby increasing the protective effect.
  • the grille located above The larger hole size reduces the resistance of traveling wind entering the cooler 16, taking into account the protective effect of the cooler 16 and reducing wind resistance.
  • Hollow blocks/heat dissipation protrusions 21 are provided above the coolers 16 on both sides to compensate for the gap between the cooler 16 and the vehicle bottom boundary 15, preventing the wind inside the cooler 16 from entering the gap, and at the same time increasing the cooling capacity.
  • the air volume inside the device 16 is increased while the heat dissipation area is increased.
  • the cooling pipe body 24 is also provided with reinforcing ribs 241 as shown in Figure 7.
  • the reinforcing ribs 241 are used to disturb the oil flow and increase the heat transfer effect.
  • the heat dissipation area on the oil side can be increased, improving the heat dissipation power, which is beneficial to the transformer and cooling
  • the cooler 16 is hung separately from the traction transformer body 3.
  • the cooler 16 is directly hung on the vehicle body beam 6, making full use of the vehicle bottom limit 15 to increase the height dimension of the cooler 16, thereby increasing the heat dissipation area of the cooler 16.
  • the cooler 16 can not only be suspended from the cross beam 6, but also directly installed on both sides of the traction transformer body 3; or as shown in Figure 10, a group of coolers 16 can be directly installed laterally and extended to the traction transformer body 3. on both sides to increase the heat exchange area and heat exchange efficiency.
  • the second pipeline group 5 and the third pipeline group 7 are both equipped with metal bellows.
  • the transformer adopts elastic suspension.
  • the cooler 16 is a rigid connection directly bolted.
  • the metal bellows can absorb the energy of the transformer and cooler 16 during operation. displacement difference, while preventing the vibration of the transformer from being transmitted to the cooler 16.
  • Other equipment on the car body next to the cooler assembly are more than 1m away from the cooling system in the driving direction, which increases the utilization rate of the cooler 16 on the traveling wind at the bottom of the vehicle.
  • the oil box assembly can also adopt a structure including a first oil box 29 and a second oil box 30.
  • the first oil box 29 is connected to the pipeline assembly and is used to receive thermal cooling.
  • both ends of the cooling pipe group 23 are connected to the first oil box 29 and the second oil box 30 respectively.
  • the cooling pipe group 23 cools the hot cooling oil and transports it to the second oil box 30.
  • the second oil box 30 passes through the pipeline assembly. Return the cooling oil to tank 18.
  • This application cleverly and rationally designs the rail transit vehicle traction transformer assembly, matches the installation space of the vehicle bottom limit 15, uses the traveling wind around the vehicle bottom traction transformer to cool the traction transformer when the vehicle is running, and is suitable for complex flow fields and wind speed distributions.
  • the bottom layout of the car Compared with the existing traction transformer arranged under the vehicle, the forced ventilation cooling fan can be eliminated, which greatly reduces the noise of the transformer and improves the efficiency of the transformer. There is no consumption of fan driving power, there is no need for maintenance and bearing replacement of the fan, and the cleaning cycle of the cooler 16 is extended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transformer Cooling (AREA)

Abstract

一种轨道交通车辆牵引变压器总成,主要包括支架总成,用于固接于车辆底部并相对车辆底部限界居中设置;牵引变压器本体,安装于所述支架总成的一端;冷却器总成,与所述牵引变压器本体分开悬挂,且延伸至所述支架总成的两侧,用于将所述牵引变压器本体内的冷却油循环冷却。本申请所提供的轨道交通车辆牵引变压器总成适用于车辆底部布置,利用走行风和冷却器总成对牵引变压器本体的冷却油冷却,冷却功率大,可取消强迫通风冷却风机,大幅降低变压器噪声,提升变压器效率,大幅减少检修维护作业,精简整车布置和控制,降低故障发生概率,提升整车及牵引变压器的可靠性,大幅降低变压器全寿命周期运维成本。

Description

轨道交通车辆牵引变压器总成
本申请要求于2022年05月31日提交中国专利局、申请号为202210606648.8、申请名称为“轨道交通车辆牵引变压器总成”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轨道交通及电气领域,特别涉及一种轨道交通车辆牵引变压器总成。
背景技术
轨道交通车辆牵引变压器安装在列车上,将接触网25kV的高压电转换成牵引系统和辅助系统所需的各种低压电,是一种特殊电压等级的电力变压器,需满足牵引负荷变化剧烈的要求,同时需抑制谐波电流和限制短路电流,从而保证列车电传动系统的安全、稳定和可靠运行,是轨道车辆的动力源,是牵引系统的核心、关键部件。
现有轨道交通车辆牵引变压器通常采用冷却风机强迫通风的冷却方式。这种变压器的噪声较大、效率较低、风机需消耗驱动功率,检修维护工作较多、列车需设置专门的保护装置和控制逻辑,以监测冷却风机在列车运行时是否正常工作。随着世界各国对电气设备低能耗要求的提升、轨道交通的快速发展以及人们对乘车舒适性和安全性的需求提升,如何研制出绿色经济、环境友好、安全可靠的更低噪声、更高效率、更低部件驱动功率消耗、更少维护性和更少部件及控制的轨道交通零部件已日趋重要。
发明内容
本申请的目的是提供一种轨道交通车辆牵引变压器总成,适用于车辆底部布置,利用走行风和冷却器总成对牵引变压器本体的冷却油冷却,冷却功率大,能够降低变压器噪声,提升变压器效率,减少检修维护作业,降低变压器全寿命周期运维成本。
为实现上述目的,本申请提供一种轨道交通车辆牵引变压器总成,包 括:
支架总成,用于固接于车辆底部并相对车辆底部限界居中设置;
牵引变压器本体,安装于支架总成的一端;
冷却器总成,与牵引变压器本体分开悬挂,且延伸至支架总成的两侧,用于将牵引变压器本体内的冷却油循环冷却。
在一些实施例中,支架总成包括第一纵梁和横梁,一对第一纵梁用于沿行车方向固接于车辆底部两侧;一对横梁以预设间距垂直第一纵梁连接于第一纵梁的第一端;
牵引变压器本体固定于一对第一纵梁的第二端之间,冷却器总成包括一对冷却器、连通冷却器和牵引变压器本体的管路组件、以及设于管路组件中并用于泵送冷却油的油泵;一对冷却器分别固定于横梁的两端。
在一些实施例中,牵引变压器本体包括绕组、油箱、储油柜、高压出线、低压出线、与行车方向平行且位于油箱两侧的一对第二纵梁、设于油箱两侧并连接油箱和第二纵梁的连接筋板,第二纵梁焊接销轴,牵引变压器本体通过销轴安装于第一纵梁。
在一些实施例中,高压出线、低压出线及储油柜均分设于油箱垂直行车方向的侧面;或储油柜设于油箱的顶部。
在一些实施例中,冷却器包括冷却管组、基板、油盒组件和安装架;冷却管组通过基板连通油盒组件,油盒组件包括分别与冷却管组两端连通的至少两个腔体,管路组件连通冷却器的进油端和出油端,且管路组件还分别连通油盒组件的不同腔体,安装架固连基板并安装于横梁。
在一些实施例中,冷却管组包括多排以预设间隙弯折呈圆弧状的冷却管本体,全部冷却管本体所在平面与行车方向垂直,位于外周的冷却管本体贴合车辆底部限界设置,相邻的冷却管本体之间连接加强板。
在一些实施例中,任意相邻冷却管本体之间的间隙沿内周至外周渐缩,还包括设于内周的冷却管本体的中央、连接基板并用于扰流的方管。
在一些实施例中,油盒组件包括第一油盒、第二油盒和第三油盒,冷却管组包括设于前端且连通第一油盒和第二油盒的第一冷却管组,以及设于后端并连通第二油盒和第三油盒的第二冷却管组,且第一冷却管组和第 二冷却管组之间的间隙大于第一冷却管组或第二冷却管组相较于冷却管本体之间的间隙;管路组件向冷却器送油的一端连通至第一油盒,管路组件用于抽取冷却器内冷却油的一端连通至第三油盒。
在一些实施例中,牵引变压器本体弹性悬挂于第一纵梁,管路组件包括用于吸收牵引变压器本体的振动位移的金属波纹管。
在一些实施例中,冷却器的外侧设置防护罩,冷却器的顶部设置用于贴合车辆底部的空心挡块/散热凸起。
在一些实施例中,冷却管本体内设有用于扰流的加强筋。
在一些实施例中,牵引变压器本体的底部设置散热片,散热片的延伸方向与行车方向重合。
本申请所提供的轨道交通车辆牵引变压器总成巧妙合理地设计轨道交通车辆牵引变压器总成,通过合理设置牵引变压器本体和冷却器总成的相对位置,利用车辆运行时牵引变压器本体周围的走行风对牵引变压器进行冷却,适用于流场和风速分布复杂的车底布置,可取消强迫通风冷却风机,大幅降低变压器噪声(可降低>15dB(A)),提升变压器效率(约可提升2%),无风机驱动功率的消耗,大幅减少检修维护作业,可取消过滤器、列车上原有的风机保护装置和控制逻辑等,精简整车布置和控制,降低故障发生概率,提升整车及牵引变压器的可靠性,大幅降低轨道交通牵引变压器的全寿命周期的运维成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例所提供的轨道交通车辆牵引变压器总成的安装示意图;
图2为图1的左视图;
图3为图1中冷却器总成的左视图;
图4为本申请实施例所提供的冷却器的一个角度的装配图;
图5为本申请实施例所提供的冷却器的另一个角度的装配图;
图6为图4的俯视图;
图7为本申请一种实施例所提供的冷却器防护罩的示意图;
图8为本申请一种实施例所提供的冷却管本体的内部示意图;
图9为本申请又一种实施例所提供的冷却器的油盒组件的示意图;
图10为本申请又一种实施例提供的冷却器的示意图;
图11为本申请又一种实施例所提供的轨道交通车辆牵引变压器总成的安装示意图;
图12为本申请又一种实施例所提供的轨道交通车辆牵引变压器总成的安装示意图。
其中:
1-支架总成、2-第一管路、3-牵引变压器本体、4-油泵、5-第二管路组、6-横梁、7-第三管路组、8-连接筋板、9-第二纵梁、10-销轴、11-第一纵梁、12-高压出线、13-低压出线、14-散热片、15-车辆底部限界、16-冷却器、17-减振垫、18-油箱、19-绕组、20-储油柜、21-空心挡块/散热凸起、22-防护罩、23-冷却管组、231-第一冷却管组、232-第二冷却管组、24-冷却管本体、241-加强筋、25-方管、26-加强板、27-基板、28-安装架、29-第一油盒、30-第二油盒、31-第三油盒、32-法兰。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本技术领域的技术人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
本申请公开一种轨道交通车辆牵引变压器总成,能够实现在轨道交通的车底布置,并且充分利用车底复杂的流场和走行风对牵引变压器本体3进行冷却,无需设置风机冷却,借助微型油泵4驱动冷却油在冷却器总成和牵引变压器本体3之间循环即可实现,减少了冷却功耗和风机维护、检测等运维成本,提升牵引变压器本体3的效率,降低运行噪音,显著降低了牵引变压器本体3寿命期限的运维成本。
请参考图1至图3,图1中的箭头方向为行车方向,本申请实施例提供一种轨道交通车辆牵引变压器总成,主要包括支架总成1、牵引变压器本体3和冷却器总成等部件。支架中车固定连接在车辆底部、相对车辆底部限界15居中安装,冷却器总成和牵引变压器本体3安装在支架总成1的下方。其中,牵引变压器本体3居中安装在支架总成1的一端下方,冷却器总成安装在支架总成1的两侧,从而实现相对车体和车辆底部限界15居中对称布置,有利于重心与车辆中心重合以及改善车辆的动平衡。在车辆底部限界15范围内,靠近两侧的走行风速较中间更大,靠近车辆底部限界15的底部的走行风较上端更大,本申请通过将牵引变压器本体3居中安装在支架总成1,将冷却器总成安装在支架总成1上的两侧,满足牵引变压器本体3的车底安装需求,同时充分利用车底高速的走行风对冷却器总成进行冷却,借助燃油在牵引变压器本体3和冷却器总成之间的循环对牵引变压器本体3冷却。
在一实施例中,支架总成1包括一对第一纵梁11和一对横梁6,一对第一纵梁11与行车方向平行并以第一预设间距布置在车辆底部两侧,一对横梁6以第二预设间距安装在第一纵梁11的第一端,牵引变压器本体3安装在一对第一纵梁11的第二端。横梁6连接一对第一纵梁11,横梁6上开设滑槽,以便冷却器总成通过T型螺栓等快速安装到位。冷却器总成则包括一对冷却器16、管路组件和油泵4。冷却器16本质为风冷换热器,具有与管路组件连通且同冷却油循环换热的油侧,一对冷却器16对称安装在横梁6的两端,管路组件连通牵引变压器本体3和冷却器16,油泵4设置在管路组件中,从而将牵引变压器本体3中的热冷却油泵4送至冷却器16冷却后输回牵引变压器本体3。
牵引变压器本体3包括绕组19、油箱18、储油柜20、高压出线12及低压出线13等,绕组19浸没在油箱18中,油箱18和管路组件连通并能够通过管路组件及油泵4实现冷却油在油箱18和冷却器16之间循环。在图1和图2所示的实施例中,高压出线12和低压出线13均布置在油箱18垂直行车方向且远离冷却器16的侧面,充分利用车下空间,减少牵引变压器本体3两侧的设备布置,避免因储油柜20、高压出线12和低压出线13设置在变压器两侧而阻挡走行风进入冷却器16,减小走行风流动至冷却器16的阻力,增加冷却器16的散热功率。储油柜20设置在油箱18的顶部,储油柜20和变压器油箱18之间由内部管道连通,当变压器内部温度升高时,油箱18内的油体积膨胀流至储油柜20,当变压器内部温度降低时,油箱18内的油体积缩小,储油柜20内的油流入至油箱18进行补偿。
牵引变压器本体3还包括连接筋板8和一对第二纵梁9,连接筋板8设置在油箱18的两侧并连接油箱18和第二纵梁9,第二纵梁9与第一纵梁11平行设置,第二纵梁9焊接销轴10,牵引变压器本体3通过第二纵梁9及销轴10安装在第一纵梁11上。连接筋板8设置为图2所示向内凹的形状,减少在行车方向对冷却器16的遮挡,减小走行风进入冷却器16内的阻力,增加冷却器16散热功率。此外,牵引变压器本体3也即油箱18的底部设置多排散热片14,散热片14沿行车方向延伸并布置于整个油箱18底部,增加底部散热面积。散热片14之间优选等间距设置,每排散热片14与行车方向平行,减少走行风通过的阻力。散热片14的底部不超过车辆底部限界15,但紧靠车底界限,如此设置,可最大限度的增加散热片14的表面积,提升散热片14的散热效果,确保车辆在行进过程中的散热可靠。
在进一步实施例中,销轴10的外周设置减振垫17,第一纵梁11设置容置减震垫及销轴10的槽位,销轴10通过减振垫17安装在第一纵梁11上,隔离变压器运行时因铁心磁致伸缩引起的振动传递至第一纵梁11及车辆其他部位。
高压出线12、低压出线13及储油柜20的布置不仅可以参照上述实施例,还可参见附图11,将高压出线12和储油柜20两者布置在油箱18远 离冷却器16的侧面,低压出线13布置在油箱18靠近冷却器16的侧面,还可参见附图12,将高压出线12和低压出线13布置在油箱18远离冷却器16的侧面,将储油柜20布置在油箱18靠近冷却器16的侧面上部,即将高压出线12和低压出线13两者和储油柜20分别布置在油箱18垂直行车方向且相对的两个侧面。上述设置均减少了油箱18两侧设备的布置,减少了沿行车方向对冷却器16的遮挡。
在本申请所提供的具体实施例中,冷却器16主要包括冷却管组23、基板27、油盒组件和安装架28。油盒组件包括至少两个连接在冷却管组23的两端的腔体,管路组件将热油输送至其中一个腔体,热油经冷却管组23散热后输向另一腔体,并最终通过管路组件回流至油箱18。冷却器16也即冷却管组23的外侧呈圆弧状,与车辆底部限界15适形,同时两个冷却器16分别布置在紧贴车辆底部侧面限界的两侧,充分利用车下两侧边缘的高流速区布置冷却器16,有效提高冷却器16的冷却效率。本申请所提供的牵引变压器总成还包括车辆底部限界15,车辆底部限界15用来连接在车厢的底部,车辆底部限界15的顶部宽,底部窄,两侧面自上下向车厢中央倾斜延伸,两侧面设置为弧形,充分与冷却器16贴合适配,方便经过隧道的同时,均衡侧部气流,减少行车侧部阻力,提高冷却器16的冷却效率。
冷却管组23两端均与基板27焊接,基板27与油盒组件焊接,冷却管组23通过基板27与油盒组件连通,冷却器16的基板27四周设有孔,安装架28在相应位置对侧设有铆接螺母,通过螺栓实现基板27与安装架28连接。
管路组件则包括第一管路2、第二管路组5和第三管路组7,第一管路2连接在油箱18和油泵4之间并用来将油箱18内的冷却油泵4出。第二管路组5由一根大管路和两根小管路组成,热油经过大管路后,通过三通管,分别进入两个小管路后进入两个冷却器16。第三管路组7同第二管路组5,由两根小管路和一根大管路组成,冷却器16冷却后的油经过两根小管路后,通过三通管,汇入大管路。通过大小管路及三通管的组合设计可以合理优化冷却系统各管路部分的流体阻力,减少整个油路的阻力。
第二管路组5和第三管路组7组成了并联管路,有效减小了系统的油流阻力,第二管路组5和第三管路组7的各部分长度一致,液体流过的阻力一致,保证两个冷却器16流过的油流量相等。
结合参考图4至图6,在一实施例中,油盒组件包括第一油盒29、第二油盒30和第三油盒31,也即具有三个腔体。冷却管组23包括多排以预设间隙弯折呈圆弧状的冷却管本体24,每排的冷却管本体24共面设置,且每排的冷却管本体24所在平面与行车方向垂直,使得冷却管组23形成了多个与行车方向平行的通道,有利于走行风从通道中通过;当然,在具体实施时,每排的冷却管本体24也可错开布置,不在一个平面内,本申请对此不作限制。
冷却管本体24之间设有多个加强板26,多个加强板26与行车方向平行、且朝垂直行车方向排列,这样即可增加冷却管组23的整体强度,防止运行过程中产生较大振动。
根据与不同油盒的连接,冷却管组23则又包括位于行车方向前端的若干冷却管本体24构成的第一冷却管组231以及与第一冷却管组231平行设置且位于行车方向后端、由若干冷却管本体24构成的第二冷却管组232。第一冷却管组231和第二冷却管组232之间的间隙较大,而第一冷却管组231或第二冷却管组232相较于冷却管本体24的间隙较小,减小走行风进入第二冷却管组232的风阻。当然,在具体实施时,第一冷却管组231和第二冷却管组232之间的间隙还可等于第一冷却管组231或第二冷却管组232相较于冷却管本体24的间隙,本申请对此不作限制。
其中,管路组件将热冷却油从油箱18输送至第一油盒29,第一油盒29通过外周的第一冷却管组231将输送至第二油盒30,在第二油盒30均匀混合后经第二冷却管组232流入第三油盒31,从第三油盒31和管路组件流回油箱18。上述设置显著延长了冷却油的冷却流径,可增加热冷却油与风的接触路径,增大冷却功率。各油盒设置连接法兰32,以便通过法兰32连接管路组件。
冷却管本体24可采用圆管、扁管和椭圆管等,此处不作限制。冷却管本体24之间的间隙沿内周向外周逐渐减小,也即内周的冷却管本体24在 排与排之间间隙更大,实现列车行走时,在冷却管组23中间进行冷却器16内部热空气与外部冷空气的充分交换混合,有利于提升后端冷却管路组的冷却功率。当然,在具体实施时,冷却管本体24还可等间距设置,本申请对此不作限制。
在一实施例中,冷却管组23的中央也即最内周的冷却管本体24还设置连接基板27的方管25,对中间走行风进行扰流,增加冷却管组23的传热效果,增加冷却功率。冷却器16的外部设有格栅状的防护罩22,防止车下石子等异物对冷却器16的打击,保护罩的四周有折边,折边上开有孔,螺栓穿过折边上的孔将防护罩22与基板27相连,如图4和图7所示。
防护罩22在走行风入口和出口的格栅筋较细,筋的截面小,筋沿行车方向的尺寸较长,在减小走行风阻力的同时,增加格栅的强度;同时防护罩22底部靠近地面处的格栅筋更为密集,格栅筋间的间距沿向上的方向增大,也即,位于防护罩22下方的格栅孔尺寸较小,从而增加防护作用,位于上方的格栅孔尺寸较大,减小走行风进入冷却器16的阻力,兼顾对冷却器16防护效果和减小风阻。
在两侧的冷却器16的上方处设置空心挡块/散热凸起21,补偿冷却器16与车辆底部限界15之间的空隙,防止冷却器16内部的风进入该空隙处,同时增加进入冷却器16内部的风量,同时增加散热面积。冷却管本体24内还如图7所示设置加强筋241,利用加强筋241对油流进行扰动,增加传热效果,同时还可增加油侧的散热面积,提升散热功率,有利于变压器和冷却器16的小型化和轻量化设计。
本申请将冷却器16与牵引变压器本体3分开悬挂,冷却器16直接挂在车体横梁6上,充分利用车辆底部限界15,增加冷却器16的高度尺寸,进而增加冷却器16的散热面积,提高冷却器16功率。在具体实施时,冷却器16不仅可以悬挂于横梁6,还可直接安装在牵引变压器本体3的两侧;或者如图10所示直接采用一组冷却器16横向安装并延伸至牵引变压器本体3的两侧,增大换热面积和换热效率。第二管路组5和第三管路组7均设置有金属波纹管,变压器采用弹性悬挂,冷却器16是直接螺栓连接的刚性连接,通过金属波纹管可吸收变压器和冷却器16在运行过程中的位移 差,同时防止变压器的振动传递到冷却器16。冷却器总成旁边的车体其他设备在行车方向上距离冷却系统1m以上,增加冷却器16对车辆底部走行风的利用率。
在一实施例中,参阅图9,油盒组件还可以采用包括第一油盒29和第二油盒30的结构,此时,第一油盒29与管路组件的连通并用来接收热冷却油,冷却管组23的两端分别连通第一油盒29和第二油盒30,冷却管组23将热冷却油冷却后输送至第二油盒30,第二油盒30通过管路组件将冷却油输回油箱18。
本申请通过巧妙合理地设计轨道交通车辆牵引变压器总成,匹配车辆底部限界15的安装空间,利用车辆运行时车底牵引变压器周围的走行风对牵引变压器进行冷却,适用于流场和风速分布复杂的车底布置。相对现有车底布置牵引变压器,可取消强迫通风冷却风机,大幅降低变压器噪声,提升变压器效率,无风机驱动功率的消耗,无需对风机进行检修维护与轴承的更换,延长冷却器16的清洗周期,大幅减少检修维护作业,可取消过滤器、列车上原有的风机保护装置和控制逻辑等,精简整车布置和控制,降低故障发生概率,提升整车及牵引变压器的可靠性,大幅降低变压器全寿命周期成本。
需要说明的是,在本说明书中,诸如第一和第二之类的关系术语仅仅用来将一个实体与另外几个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。
以上对本申请所提供的轨道交通车辆牵引变压器总成进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (12)

  1. 一种轨道交通车辆牵引变压器总成,其特征在于,包括:
    支架总成,用于固接于车辆底部并相对车辆底部限界居中设置;
    牵引变压器本体,安装于所述支架总成的一端;
    冷却器总成,与所述牵引变压器本体分开悬挂,且延伸至所述支架总成的两侧,用于将所述牵引变压器本体内的冷却油循环冷却。
  2. 根据权利要求1所述的轨道交通车辆牵引变压器总成,其特征在于,所述支架总成包括第一纵梁和横梁,一对所述第一纵梁用于沿行车方向固接于车辆底部两侧;一对所述横梁以预设间距垂直所述第一纵梁连接于所述第一纵梁的第一端;
    所述牵引变压器本体固定于一对所述第一纵梁的第二端之间,所述冷却器总成包括一对冷却器、连通所述冷却器和所述牵引变压器本体的管路组件、以及设于所述管路组件中并用于泵送冷却油的油泵;一对所述冷却器分别固定于所述横梁的两端。
  3. 根据权利要求2所述的轨道交通车辆牵引变压器总成,其特征在于,所述牵引变压器本体包括绕组、油箱、储油柜、高压出线、低压出线、与行车方向平行且位于所述油箱两侧的一对第二纵梁、设于所述油箱两侧并连接所述油箱和所述第二纵梁的连接筋板,所述第二纵梁焊接销轴,所述牵引变压器本体通过所述销轴安装于所述第一纵梁。
  4. 根据权利要求3所述的轨道交通车辆牵引变压器总成,其特征在于,所述高压出线、所述低压出线及所述储油柜均分设于所述油箱垂直行车方向的侧面;或所述储油柜设于所述油箱的顶部。
  5. 根据权利要求2-4任一项所述的轨道交通车辆牵引变压器总成,其特征在于,所述冷却器包括冷却管组、基板、油盒组件和安装架;所述冷却管组通过所述基板连通所述油盒组件,所述油盒组件包括分别与所述冷却管组两端连通的至少两个腔体,所述管路组件连通所述冷却器的进油端和出油端,且所述管路组件还分别连通所述油盒组件的不同腔体,所述安装架固连所述基板并安装于所述横梁。
  6. 根据权利要求5所述的轨道交通车辆牵引变压器总成,其特征在于, 所述冷却管组包括多排以预设间隙弯折呈圆弧状的冷却管本体,全部所述冷却管本体所在平面与行车方向垂直,位于外周的所述冷却管本体贴合车辆底部限界设置,相邻的所述冷却管本体之间连接加强板。
  7. 根据权利要求6所述的轨道交通车辆牵引变压器总成,其特征在于,任意相邻所述冷却管本体之间的间隙沿内周至外周渐缩,还包括设于内周的所述冷却管本体的中央、连接所述基板并用于扰流的方管。
  8. 根据权利要求6所述的轨道交通车辆牵引变压器总成,其特征在于,所述油盒组件包括第一油盒、第二油盒和第三油盒,所述冷却管组包括设于前端且连通所述第一油盒和所述第二油盒的第一冷却管组,以及设于后端并连通所述第二油盒和所述第三油盒的第二冷却管组,且所述第一冷却管组和所述第二冷却管组之间的间隙大于所述第一冷却管组或所述第二冷却管组相较于所述冷却管本体之间的间隙;所述管路组件向所述冷却器送油的一端连通至所述第一油盒,所述管路组件用于抽取所述冷却器内冷却油的一端连通至所述第三油盒。
  9. 根据权利要求5所述的轨道交通车辆牵引变压器总成,其特征在于,所述牵引变压器本体弹性悬挂于所述第一纵梁,所述管路组件包括用于吸收所述牵引变压器本体的振动位移的金属波纹管。
  10. 根据权利要求5所述的轨道交通车辆牵引变压器总成,其特征在于,所述冷却器的外侧设置防护罩,所述冷却器的顶部设置用于贴合车辆底部的空心挡块/散热凸起。
  11. 根据权利要求6所述的轨道交通车辆牵引变压器总成,其特征在于,所述冷却管本体内设有用于扰流的加强筋。
  12. 根据权利要求1所述的轨道交通车辆牵引变压器总成,其特征在于,所述牵引变压器本体的底部设置散热片,所述散热片的延伸方向与行车方向重合。
PCT/CN2022/117798 2022-05-31 2022-09-08 轨道交通车辆牵引变压器总成 WO2023231220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210606648.8A CN114843079A (zh) 2022-05-31 2022-05-31 轨道交通车辆牵引变压器总成
CN202210606648.8 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231220A1 true WO2023231220A1 (zh) 2023-12-07

Family

ID=82572636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117798 WO2023231220A1 (zh) 2022-05-31 2022-09-08 轨道交通车辆牵引变压器总成

Country Status (2)

Country Link
CN (1) CN114843079A (zh)
WO (1) WO2023231220A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843079A (zh) * 2022-05-31 2022-08-02 中车株洲电机有限公司 轨道交通车辆牵引变压器总成
CN115822994A (zh) * 2022-11-18 2023-03-21 中车株洲电机有限公司 一种牵引变压器控制柜及轨道列车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085401A (zh) * 2014-06-30 2014-10-08 南车株洲电机有限公司 一种轨道车辆牵引变压器悬挂装置以及轨道车辆
WO2018051403A1 (ja) * 2016-09-13 2018-03-22 三菱電機株式会社 車両用変圧器
CN207409344U (zh) * 2017-06-06 2018-05-25 中铁二院工程集团有限责任公司 一种应用于电气化铁道的高过载牵引变压器
CN108597763A (zh) * 2018-04-19 2018-09-28 保定多田冷却设备有限公司 变压器用强迫油循环冷却管混合排布型风冷却器
CN114843079A (zh) * 2022-05-31 2022-08-02 中车株洲电机有限公司 轨道交通车辆牵引变压器总成
CN217333794U (zh) * 2022-05-31 2022-08-30 中车株洲电机有限公司 轨道交通车辆牵引变压器总成

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085401A (zh) * 2014-06-30 2014-10-08 南车株洲电机有限公司 一种轨道车辆牵引变压器悬挂装置以及轨道车辆
WO2018051403A1 (ja) * 2016-09-13 2018-03-22 三菱電機株式会社 車両用変圧器
CN207409344U (zh) * 2017-06-06 2018-05-25 中铁二院工程集团有限责任公司 一种应用于电气化铁道的高过载牵引变压器
CN108597763A (zh) * 2018-04-19 2018-09-28 保定多田冷却设备有限公司 变压器用强迫油循环冷却管混合排布型风冷却器
CN114843079A (zh) * 2022-05-31 2022-08-02 中车株洲电机有限公司 轨道交通车辆牵引变压器总成
CN217333794U (zh) * 2022-05-31 2022-08-30 中车株洲电机有限公司 轨道交通车辆牵引变压器总成

Also Published As

Publication number Publication date
CN114843079A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023231220A1 (zh) 轨道交通车辆牵引变压器总成
CN209103897U (zh) 一种应用于火力发电厂的高效散热型变压器
CN101459375B (zh) 牵引变流装置
WO2023231221A1 (zh) 集成式牵引变压器总成
CN217333794U (zh) 轨道交通车辆牵引变压器总成
CN108087053B (zh) 一种具有多重冷却结构的层叠式高效冷却器
WO2023231222A1 (zh) 牵引变压器总成
CN105656289A (zh) 一种电抗器柜体的散热装置
CN217361319U (zh) 集成式牵引变压器总成
CN208767438U (zh) 一种液冷换热器
CN215417799U (zh) 节能变压器
CN207233911U (zh) 一种用于电动车的散热器装置
CN211088042U (zh) 用于牵引变压器的自循环冷却系统
CN212519807U (zh) 一种散热性好的电机控制器
CN211700499U (zh) 一种汽车电池的高效散热装置
CN212012507U (zh) 轨道交通车辆牵引变流器
CN217386853U (zh) 牵引变压器总成
EP4087377A1 (en) Cooling device
CN211088052U (zh) 用于车辆的牵引变压器冷却系统
CN214221576U (zh) 风机控制器
CN218717108U (zh) 一种中冷器散热带
CN212659405U (zh) 一种用于干式变压器的分布式水冷系统及箱式变电站
CN218702833U (zh) 一种电动牵引车热管理系统
CN214708449U (zh) 一种通讯设备用散热装置
CN219042316U (zh) 一种无尘机箱液冷散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944530

Country of ref document: EP

Kind code of ref document: A1