WO2023230995A1 - 电池调节系统、方法及其用电设备 - Google Patents

电池调节系统、方法及其用电设备 Download PDF

Info

Publication number
WO2023230995A1
WO2023230995A1 PCT/CN2022/096874 CN2022096874W WO2023230995A1 WO 2023230995 A1 WO2023230995 A1 WO 2023230995A1 CN 2022096874 W CN2022096874 W CN 2022096874W WO 2023230995 A1 WO2023230995 A1 WO 2023230995A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switch
module
conversion circuit
charge
Prior art date
Application number
PCT/CN2022/096874
Other languages
English (en)
French (fr)
Inventor
张晨贵
王天生
王升威
陈建利
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/096874 priority Critical patent/WO2023230995A1/zh
Publication of WO2023230995A1 publication Critical patent/WO2023230995A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This application relates to the technical field of new energy vehicles, and specifically relates to a battery conditioning system, method and electrical equipment.
  • new energy four-wheel drive vehicles can be driven by high-voltage battery systems to increase fast charging speed and reduce operating current and heat generation.
  • the electronic components of high-voltage battery systems are not yet mature.
  • the current conventional solution is to combine two battery modules (such as two 400V batteries) to form a high-voltage battery system (such as an 800V battery system).
  • two battery modules supply power to the front and rear motors respectively, thus using a high-voltage battery system to achieve driving.
  • this application provides a battery conditioning system, method and electrical equipment, which can solve the problem of low endurance of the high-voltage battery system caused by the inconsistent state of charge of the two battery modules in the current combined high-voltage battery system.
  • this application provides a battery regulation system, which is applied to electrical equipment including a first motor and a second motor;
  • the battery regulation system includes a battery module, a regulation module and a control module;
  • the regulation module electrical Connect the battery module and the control module;
  • the battery module includes a first battery and a second battery, and the first battery and the second battery are connected in series; where the first battery is used to power the first motor, and the second battery is used to power the second motor.
  • the control module is used to control the adjustment module to adjust the state of charge of the first battery and the second battery when the state of charge of the first battery and the second battery are inconsistent.
  • this solution designs a battery module, a regulating module and a control module.
  • the control module controls the regulating module to control the first battery and the second battery.
  • the state of charge of the second battery is adjusted so that the SOC of the two batteries remains consistent or has a small difference, so that the battery module can fully complete the power output or basically reach a full charge state, thus improving the endurance of the battery module.
  • the second terminal of the first battery and the first terminal of the second battery form a series terminal;
  • the adjustment module includes a first input port, a second input port, a third input port, a first output port, the second output port and the third output port;
  • the first input port and the first output port of the adjustment module are connected to the first end of the first battery, the second input port and the second output port of the adjustment module are connected to the series end, and the adjustment module
  • the third input port and the third output port of the module are connected to the second end of the second battery;
  • the control module is specifically used to control the adjustment module to set a higher state of charge when the state of charge of the first battery and the second battery are inconsistent. The power of the battery is adjusted and transferred to the battery with a lower state of charge.
  • the first input port and the first output port of the adjustment module are designed to be connected to the first terminal of the first battery, the second input port and the second output port of the adjustment module are connected to the series terminal, and the third input port of the adjustment module is connected to the series terminal.
  • the port and the third output port are connected to the second end of the second battery, so that the designed adjustment module can, under the control of the control module, adjust the power of the mobile battery with a higher state of charge and then transfer it to the battery with a higher state of charge. Low battery.
  • the adjustment module includes a DC-AC conversion circuit, a transformer coupling circuit and an AC-DC conversion circuit
  • the control module is electrically connected to the DC-AC conversion circuit; the control module is configured to operate between the first battery and the second battery.
  • the modulation signal is transmitted to the DC-AC conversion circuit, and the battery with a higher state of charge is controlled to transmit DC current to the DC-AC conversion circuit; the DC-AC conversion circuit is used to convert the received battery according to the modulation signal.
  • the DC current is converted into the corresponding AC current, and the converted AC current is transmitted to the transformer coupling circuit; the transformer coupling circuit is used to transmit the converted AC current to the AC-DC conversion circuit through electromagnetic induction; AC -DC conversion circuit, used to convert the AC current transmitted by the transformer coupling circuit into the corresponding DC current, and obtain the converted DC current, so as to use the converted DC current to regulate the battery with a lower state of charge.
  • a DC-AC conversion circuit, a transformer coupling circuit and an AC-DC conversion circuit are designed to form an adjustment module, so that the adjustment module uses the principle of electromagnetic induction to transfer energy, thereby avoiding insulation problems between the first battery and the second battery.
  • the adjustment module further includes a first switch circuit and a second switch circuit, and the control module is electrically connected to the first switch circuit and the second switch circuit respectively; the control module is used to switch between the first battery and the second battery.
  • the first switch circuit is controlled to close to control the battery with a higher state of charge to transmit DC current to the DC-AC conversion circuit; the second switch circuit is controlled to close to transmit the converted DC current to the charger. Battery with a lower state of charge to condition a battery with a lower state of charge.
  • the first switch circuit and the second switch circuit are designed to control the power transmission flow, so that the control of transferring energy from a battery with a higher state of charge to a battery with a lower state of charge can be achieved through simple design.
  • the first switch circuit includes a first switch, a second switch, a third switch, and a fourth switch;
  • the second switch module includes a fifth switch, a sixth switch, a seventh switch, and an eighth switch, each of which The switch is electrically connected to the control module;
  • the first input port is connected to the first input end of the AC-DC conversion circuit through the first switch, and the second input port is connected to the first input end of the DC-AC conversion circuit through the second switch and passes
  • the third switch is connected to the second input end of the DC-AC conversion circuit, the third input port is connected to the second input end of the DC-AC conversion circuit through the fourth switch;
  • the output end of the DC-AC conversion circuit is connected to the transformer coupling circuit
  • One side of the transformer coupling circuit is connected to the AC-DC conversion circuit;
  • the first output end of the AC-DC conversion circuit is connected to the first output port through the fifth switch, and the third side of the AC-DC conversion circuit
  • An output terminal is connected to the second output port through the sixth switch, the
  • the adjustment module further includes a first diode and a second diode, the first switch is connected to the anode of the first diode, and the first input end of the DC-to-AC conversion circuit is connected to the first diode.
  • the cathode of the tube is connected; the fourth switch is connected with the cathode of the second diode, and the second input terminal of the DC-AC conversion circuit is connected with the anode of the second diode.
  • this solution designs diodes in the first switch and the fourth switch to prevent current from flowing in the wrong direction during the process of converting DC to AC, improves the accuracy of DC conversion to AC, and prevents current from flowing back.
  • the second terminal of the first battery and the first terminal of the second battery form a series terminal;
  • the adjustment module includes a first input port, a second input port, a first output port, a second output port and a third Output port; the first input port and the first output port are connected to the first end of the first battery, the second input port and the third output port are connected to the second end of the second battery, and the second output port is connected to the series end;
  • the control module is specifically used to control the adjustment module to adjust the power of the battery module and then transfer it to the battery with a lower state of charge when the state of charge of the first battery and the second battery are inconsistent.
  • the first input port and the first output port of the adjustment module are designed to be connected to the first end of the first battery, and the second input port and the third output port of the adjustment module are connected to the second end of the second battery.
  • the third output port of the module is connected to the series terminal, so that the designed adjustment module can adjust the overall electric energy of the battery module and transmit it to the battery with a lower state of charge under the control of the control module, so that the first battery and The state of charge of the second battery tends to be consistent or differs within a preset range.
  • the adjustment module includes a DC-AC conversion circuit, a transformer coupling circuit and an AC-DC conversion circuit
  • the control module is electrically connected to the DC-AC conversion circuit; the control module is configured to operate between the first battery and the second battery.
  • the modulation signal is transmitted to the DC-AC conversion circuit, and the battery module is controlled to transmit DC current to the DC-AC conversion circuit
  • the DC-AC conversion circuit is used to convert the received DC current into the corresponding AC current, and transmit the converted AC current to the transformer coupling circuit
  • the transformer coupling circuit is used to transmit the converted AC current to the AC-DC conversion circuit through electromagnetic induction
  • the AC-DC conversion circuit is used to The AC current transmitted by the transformer coupling circuit is converted into the corresponding DC current, and the converted DC current is obtained, so that the converted DC current can be used to regulate the battery with a lower state of charge.
  • the adjustment module further includes a first switch circuit and a second switch circuit, and the control module is electrically connected to the first switch circuit and the second switch circuit respectively; the control module is used to switch between the first battery and the second battery.
  • the first switch circuit is controlled to close to control the battery module to transmit DC to the DC-AC conversion circuit; the second switch circuit is controlled to close to transmit the converted DC current to the battery with a lower state of charge. To condition a battery with a lower state of charge.
  • the first switch circuit includes a first switch and a second switch; the second switch circuit includes a third switch, a fourth switch, a fifth switch and a sixth switch, each switch is electrically connected to the control module; An input port is connected to the first input end of the DC-AC conversion circuit through the first switch, and the second input port is connected to the second input end of the DC-AC conversion circuit through the second switch; the output end of the DC-AC conversion circuit is connected to One side of the transformer coupling circuit is connected, and the other side of the transformer coupling circuit is connected to the AC-DC conversion circuit; the first output end of the AC-DC conversion circuit is connected to the first output port through the third switch, and the AC-DC conversion circuit The first output end of the conversion circuit is connected to the second output port through the fourth switch, the second output end of the AC-DC conversion circuit is connected to the second output port through the fifth switch, and the second output end of the AC-DC conversion circuit It is connected to the third output port through the sixth switch.
  • this application provides a vehicle power system.
  • the vehicle power system includes a first motor, a second motor, and a battery conditioning system described in any optional embodiment of the first aspect.
  • the first motor and the first battery Electrically connected, the second motor is electrically connected to the second battery.
  • the battery module, the regulating module and the control module are designed to form the battery regulating system of the power system.
  • the control module can adjust the state of charge of the first battery and the second battery in the battery module when they are inconsistent.
  • the control and adjustment module adjusts the state of charge of the first battery and the second battery so that the SOC of the two batteries remains consistent or has a small gap, so that the battery module can fully complete the power output or can basically reach a full charge state, thereby Improve the endurance of vehicle power system.
  • the present application provides an electrical device, which includes a vehicle, and the vehicle includes the battery conditioning system described in any optional embodiment of the first aspect.
  • the vehicle designed above includes a vehicle power system with a battery regulation system.
  • the control module in the battery regulation system can control the state of charge of the first battery and the second battery in the battery module when they are inconsistent.
  • the control and adjustment module adjusts the state of charge of the first battery and the second battery so that the SOC of the two batteries remains consistent or has a small difference, so that the battery module can fully complete the power output or can basically reach a full charge state, thereby improving Vehicle endurance.
  • the application provides a battery adjustment method.
  • the battery adjustment method is applied to a battery adjustment system.
  • the battery adjustment system includes a battery module, an adjustment module and a control module; the adjustment module is electrically connected to the battery module and the control module; the battery module includes a first The battery and the second battery are connected in series; the first battery is used to power the first motor, and the second battery is used to power the second motor.
  • the method is executed by the control module and includes: in the first When the state of charge of the first battery and the second battery are inconsistent, the control and adjustment module adjusts the state of charge of the first battery and the second battery.
  • the solution controls the adjustment module to adjust the states of charge of the first battery and the second battery so that the two batteries
  • the SOC of each battery remains consistent or has a small gap, so that the battery module can fully complete the power output or basically reach a full charge state, thereby improving the vehicle's endurance.
  • FIG. 1 is a first structural schematic diagram of the battery conditioning system provided by this application.
  • FIG. 2 is a second structural schematic diagram of the battery conditioning system provided by this application.
  • FIG. 3 is a first structural schematic diagram of the adjustment module provided by this application.
  • FIG. 4 is a second structural schematic diagram of the adjustment module provided by this application.
  • FIG. 5 is a third structural schematic diagram of the adjustment module provided by this application.
  • FIG. 6 is a fourth structural schematic diagram of the adjustment module provided by this application.
  • FIG. 7 is a third structural schematic diagram of the battery conditioning system provided by this application.
  • Figure 8 is a fifth structural schematic diagram of the adjustment module provided by this application.
  • FIG. 9 is a sixth structural schematic diagram of the adjustment module provided by this application.
  • FIG. 10 is a first structural schematic diagram of the vehicle power system provided by this application.
  • FIG 11 is a second structural schematic diagram of the vehicle power system provided by this application.
  • FIG 12 is a schematic diagram of the vehicle structure provided by this application.
  • Figure 13 is a schematic flow chart of the battery adjustment method provided by this application.
  • 1-battery conditioning system 10-battery module; 110-first battery; 120-second battery; 20-regulation module; 210-DC-AC conversion circuit; 220-transformer coupling circuit; 230-AC-DC conversion circuit ;30-control module; A1-series terminal; In1-the first input terminal of the regulation module; In2-the second input terminal of the regulation module; In3-the third input terminal of the regulation module; Out1-the first output terminal of the regulation module ; Out2 - the second output terminal of the regulating module; Out3 - the third output terminal of the regulating module; Q1 - the first insulated gate bipolar power tube; Q2 - the second insulated gate bipolar power tube; Q3 - the third insulation Gate bipolar power tube; Q4-the fourth insulated gate bipolar power tube; 240-the first switch circuit; 250-the second switch circuit; 260-filter circuit; S1-the first switch; S2-the second switch; S3-third switch; S4-fourth switch; S5-fifth switch; S6
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. As battery application fields continue to expand, its market demand is also expanding.
  • batteries have been used in the field of electric vehicles.
  • electric four-wheel drive vehicles can be divided into two driving methods.
  • One is low-voltage battery system drive (such as 400V battery system drive); the other is high-voltage battery system drive (for example, 800V battery system driver).
  • high-voltage battery systems can not only increase fast charging speed, but also reduce operating current and heat generation. Therefore, the development of high-voltage battery systems has become a major trend.
  • the electronic components of high-voltage battery systems are currently immature.
  • two battery modules such as 400V battery modules
  • the connection method forms a high-voltage battery system (such as an 800V battery system), in which the two battery modules can respectively drive one motor in the four-wheel drive vehicle to realize the four-wheel drive drive, so that 800V can be used for fast charging, achieving fast charging and low operating current. , the advantage of low calorific value.
  • SOC state of charge
  • the difference is large, which leads to the fact that when the entire high-voltage battery system is outputting power, one of the two battery modules reaches the discharge cutoff state first, causing the high-voltage battery system to be unable to fully complete the power output; when charging, the two battery modules One of them reaches the charging end state first, causing the high-voltage battery system to be unable to fully charge the battery.
  • an adjustment module can be designed to adjust the state of charge of the two batteries in the battery pack when the SOC of the two batteries in the battery pack is inconsistent, thereby solving the above problem.
  • the inventor designed a battery adjustment system, method and electrical equipment, which can adjust the state of charge of two batteries when the SOC of the two batteries is inconsistent, thereby making the SOC of the two batteries consistent. Keeping the same or differing to a certain extent allows the battery pack to fully complete the power output or basically reach a full charge state, thereby improving the battery pack's endurance.
  • the battery conditioning system includes a battery module 10, a conditioning module 20 and a control module 30.
  • the conditioning module 20 is electrically connected to the battery module 10 and the control module 30 respectively.
  • the battery module 10 may include a first battery 110 and a second battery 120, and the first battery 110 and the second battery 120 are connected in series.
  • the negative electrode of the first battery 110 can be connected in series with the positive electrode of the second battery 120 to form the battery module 10; as another possible implementation, the positive electrode of the first battery 110 can be connected with the positive electrode of the second battery 120.
  • the negative electrodes of 120 are connected in series to form the battery module 10 .
  • Each battery can be composed of multiple battery cells connected in series.
  • the first battery 110 and the second battery 120 can respectively supply power to different motors.
  • the first battery 110 can supply power to the first motor M1
  • the second battery 120 can supply power to the third motor M1.
  • Two motors M2 supply power, and the output power of the two motors can be different.
  • control module 30 can send a control signal to the adjustment module 20 when the state of charge of the first battery 110 and the second battery 120 is inconsistent, thereby controlling the adjustment module 20 to control the first battery 110 and the second battery 120 .
  • the state of charge of the second battery 120 is adjusted so that the state of charge of the first battery 110 and the second battery 120 remains consistent, or the difference between the states of charge of the first battery 110 and the second battery 120 is maintained within a preset range. , thereby ensuring that the battery system can be fully charged or discharged, thereby improving the endurance of the battery pack.
  • the adjustment module 20 can transfer the power of the battery with a higher state of charge among the first battery 110 and the second battery 120 to the battery with a lower state of charge for adjustment; or the adjustment module can transfer the power of the battery module 10 transferred to the battery with a lower state of charge for regulation.
  • the control module 30 may be a battery management system (Battery Management System, BMS). On this basis, the control module 30 may be electrically connected to the first battery 110 and the second battery 120 respectively.
  • the control module 30 The state of charge of the first battery 110 and the second battery 120 can be collected, so as to determine whether the states of charge of the first battery 110 and the second battery 120 are consistent by comparing the state of charge of the first battery 110 and the second battery 120 .
  • the control module 30 may determine that the states of charge of the first battery 110 and the second battery 120 are inconsistent when the states of charge of the first battery 110 and the second battery 120 are not equal; for another example, the control module 30 may calculate the The difference in state of charge between the first battery 110 and the second battery 120. When the difference in state of charge is greater than a preset threshold, it is determined that the state of charge of the first battery 110 and the second battery 120 are inconsistent.
  • the control module 30 can collect the state of charge of the first battery 110 and the second battery 120 in real time, thereby Based on the real-time collection of the state of charge of the first battery 110 and the second battery 120 , it can be determined whether the state of charge of the first battery 110 and the second battery 120 meets the requirements. If the requirements are met, the control module 30 can send a request to the adjustment module 20 The cut-off signal is sent to control the adjustment module 20 to end the adjustment of the state of charge of the first battery 110 and the second battery 120 .
  • the control module 30 can be a controller.
  • the battery management system Battery Management System, BMS
  • BMS Battery Management System
  • the control module 30 sends the control signal to the control module 30 for determination.
  • the control module 30 sends a control signal when it determines that the state of charge of the first battery 110 and the second battery 120 are inconsistent.
  • the determination process can also be performed by the BMS.
  • the BMS determines that the state of charge is inconsistent, it sends an adjustment transmission signal to the control module 30 so that the control module 30 sends a control signal to the adjustment module 20 based on the adjustment transmission signal.
  • this solution designs a battery module, a regulation module and a control module.
  • the control module controls the regulation module to control the first battery and the second battery.
  • the state of charge of the battery is adjusted so that the SOC of the two batteries remains consistent or has a small gap, so that the battery module can fully complete the power output or basically reach a full charge state, thus improving the endurance of the battery module.
  • the control module 30 can transfer the power of the battery with a higher state of charge among the first battery 110 and the second battery 120 to the battery with a lower state of charge, thereby achieving SOC adjustment
  • the adjustment module 20 designed in this solution may include a first input port In1, a second input port In2, a third input port In3, a first output port Out1, a second output port Out2 and At the third output port Out3, the second terminal (negative electrode) of the first battery 110 is connected to the first terminal (positive electrode) of the second battery to form a series terminal A1.
  • the first input port In1 and the first output port Out1 of the adjustment module 20 are connected to the first end (positive electrode) of the first battery 110 , and the second input port In2 and the second output port of the adjustment module 20 Out2 is connected to the series terminal A1, and the third input port In3 and the third output port Out3 of the adjustment module 20 are connected to the second terminal (negative electrode) of the second battery 120.
  • the adjustment module 20 with the above structure can, under the control of the control module 30 , adjust the power of the battery with a higher state of charge and then transfer it to the battery with a lower state of charge.
  • the control module 30 controls the first input port In1 and the second input port In1 of the adjustment module 20 .
  • the port In2, the second output port Out2 and the third output port Out3 are turned on, so that the power of the first battery 110 is transmitted to the adjustment module 20 through the first input port In1 and the second input port In2 for adjustment and conversion and then passes through the second output.
  • the port Out2 and the third output port Out3 are transmitted to the second battery 120, so that the state of charge of the first battery 110 gradually decreases, and the state of charge of the second battery 120 gradually increases, thereby causing the first battery 110 and the second The state of charge of the battery 120 tends to be consistent or differ within a preset range to complete the adjustment.
  • the control module 30 can control the second input port In2 and the third input port In2 of the adjustment module 20 .
  • the three input ports In3, the first output port Out1 and the second output port Out2 are turned on, so that the power of the second battery 120 is transmitted to the adjustment module 20 through the second input port In2 and the third input port In3 for adjustment and conversion and then passes through the third input port In3.
  • An output port Out1 and a second output port Out2 are transmitted to the first battery 110, so that the state of charge of the first battery 110 gradually increases, and the state of charge of the second battery 120 gradually decreases, thereby causing the first battery 110 and The state of charge of the second battery 120 tends to be consistent or differ within a preset range to complete the adjustment.
  • the first input port and the first output port of the adjustment module are designed to be connected to the first terminal of the first battery, the second input port and the second output port of the adjustment module are connected to the series terminal, and the third input port of the adjustment module is connected to the series terminal.
  • the port and the third output port are connected to the second end of the second battery, so that the designed adjustment module can adjust the power of the battery with a higher state of charge and then transfer it to the battery with a lower state of charge under the control of the control module. of battery.
  • the adjustment module 20 of this solution can use the principle of electromagnetic induction for energy transfer.
  • the adjustment module 20 may also include a DC-AC conversion circuit 210, a transformer coupling circuit 220 and an AC-DC conversion circuit 230.
  • the control module 30 is electrically connected to the DC-AC conversion circuit 210, and the DC-AC conversion circuit 210 is connected to the transformer coupling circuit 220.
  • One side of the transformer coupling circuit 220 is connected to the AC-DC conversion circuit 230 on the other side.
  • the adjustment module 20 and control module 30 designed above can send a modulation signal to the DC-AC conversion circuit 210 when the state of charge of the first battery and the second movable battery are inconsistent, and control the battery with a higher state of charge to DC.
  • -AC conversion circuit 210 transmits DC current.
  • the modulation signal may specifically be a PWM signal.
  • the DC-AC conversion circuit 210 converts the received DC current into AC current according to the PWM signal, and transmits the converted AC current to the transformer coupling circuit 220.
  • the transformer coupling circuit 220 transmits the AC current to the other side through the principle of electromagnetic induction. side, thereby transmitting the AC current to the AC-DC conversion circuit 230.
  • the AC-DC conversion circuit 230 converts the received AC current into the corresponding DC current, obtains the converted DC current, and transmits the converted DC current to the load.
  • the DC-AC conversion circuit 210 may include a first insulated gate bipolar power transistor Q1, a second insulated gate bipolar power transistor Q2, and a third insulated gate bipolar power transistor Q4.
  • the fourth insulated gate bipolar power transistor Q4, four insulated gate bipolar power transistors IGBT are built to form an H bridge.
  • the control module 30 can control Q1, Q2, Q3 and Q4 to close in an orderly manner through the modulation signal, thereby realizing forward and reverse flow of current, thereby converting DC into AC.
  • the four insulated gate bipolar power transistors can also be replaced by other forms of controllable switches, such as thyristors, field effect transistors, etc.
  • the AC-DC conversion circuit 230 may specifically include an H-bridge formed by four diodes, thereby converting AC into DC.
  • a DC-AC conversion circuit, a transformer coupling circuit and an AC-DC conversion circuit are designed to form an adjustment module, so that the adjustment module uses the principle of electromagnetic induction to transfer energy, thereby avoiding insulation problems between the first battery and the second battery.
  • the adjustment module 20 may further include a first switch circuit 240 and a second switch circuit 250 .
  • the first switch circuit 240 includes a first switch S1 , the second switch S2, the third switch S3 and the fourth switch S4.
  • the second switch circuit includes a fifth switch S5, a sixth switch S6, a seventh switch S7 and an eighth switch S8.
  • Each switch is electrically connected to the control module 30 .
  • Each switch may be a controllable switch, such as a triode, a thyristor, etc.
  • the first input port In1 is connected to the first input terminal N1 of the DC-AC conversion circuit 210 through the first switch S1, and the second input port In2 is connected to the first input terminal N1 of the DC-AC conversion circuit 210 through the second switch S2.
  • the third switch S3 is connected to the second input terminal N2 of the DC-AC conversion circuit 210, and the third input port In3 is connected to the second input terminal N2 of the DC-AC conversion circuit through the fourth switch S4.
  • the output end of the DC-AC conversion circuit 210 is connected to one side of the transformer coupling circuit 220, and the other side of the transformer coupling circuit 220 is connected to the AC-DC conversion circuit 230; the first output end N3 of the AC-DC conversion circuit 230
  • the fifth switch S5 is connected to the first output port Out1
  • the first output terminal N3 of the AC-DC conversion circuit 230 is connected to the second output port Out2 through the sixth switch S6.
  • the second output terminal of the AC-DC conversion circuit 230 N4 is connected to the second output port Out2 through the seventh switch S7, and the second output terminal N4 of the AC-DC conversion circuit 230 is connected to the third output port Out3 through the eighth switch S8.
  • control module 30 can control the corresponding switch to close during adjustment, so that the adjustment module 20 adjusts the power of the battery with a higher state of charge and then transfers it to the battery with a lower state of charge.
  • the control module 30 can control the switches S1, S3, S6 and S8 to close, thereby causing the connection between the DC-AC conversion circuit 210 and the first battery 110 to be conductive, and the AC- The connection between the DC conversion circuit 210 and the second battery 120 is turned on, so that the power of the first battery 110 is transferred to the second battery 120 .
  • the first switch circuit and the second switch circuit are designed to control the power transmission flow, so that the control of transferring energy from a battery with a higher state of charge to a battery with a lower state of charge can be achieved through simple design.
  • the adjustment module 20 may also include a first diode D1 and a second diode.
  • the tube D2 the first switch S1 is connected to the anode of the first diode D1, the first input terminal N1 of the DC-AC conversion circuit 210 is connected to the cathode of the first diode D1; the fourth switch S4 is connected to the second diode D1.
  • the cathode of the tube D2 is connected, and the second input terminal N2 of the DC-AC conversion circuit 210 is connected to the anode of the second diode D2.
  • the adjustment module 20 may also include a filter circuit 260.
  • the filter circuit 260 may specifically be a filter capacitor C1, thereby completing the conversion.
  • the DC current is filtered and transmitted to the battery with a lower state of charge.
  • this solution designs diodes in the first switch and the fourth switch to prevent current from flowing in the wrong direction during the process of converting DC to AC, improves the accuracy of DC conversion to AC and prevents current backflow, and designs a filter circuit. Filter the converted DC current to eliminate interference caused by the process of converting DC to AC and vice versa.
  • this solution can not only transfer the energy of a battery with a high state of charge to a battery with a lower state of charge, but also transfer the entire energy of the battery module 10 to a battery with a lower state of charge. of the battery to adjust the state of charge.
  • the adjustment module 20 designed in this solution includes a first input port In1, a second input port In2, a first output port Out1, a second output port Out2 and a third output port Out3; An input port In1 and a first output port Out1 are connected to the first terminal (positive electrode) of the first battery 110, and a second input port In2 and a third output port Out3 are connected to the second terminal (negative electrode) of the second battery 120.
  • the second output port Out2 is connected to the series terminal A1.
  • the adjustment module 20 designed above can adjust the power of the battery module 10 under the control of the control module 30 and then transfer it to the battery with a lower state of charge.
  • the control module 30 controls the first input port In1 and the second input port In1 of the adjustment module 20 .
  • the port In2, the first output port Out1 and the second output port Out2 are turned on, so that the overall electric energy of the battery module 10 is transmitted to the adjustment module 20 through the first input port In1 and the second input port In2 for adjustment and conversion, and then passes through the first input port In1 and the second input port In2.
  • the output port Out1 and the second output port Out2 are transmitted to the first battery 110, so that the state of charge of the first battery 110 gradually increases, and then the states of charge of the first battery 110 and the second battery 120 tend to be consistent or different. within the preset range to complete the adjustment.
  • the control module 30 controls the first input port In1 and the second input port In1 of the adjustment module 20 .
  • the input port In2, the second output port Out2 and the third output port Out3 are turned on, so that the overall electric energy of the battery module 10 is transmitted to the adjustment module 20 through the first input port In1 and the second input port In2 for adjustment and conversion, and then passes through the first input port In1 and the second input port In2.
  • the second output port Out2 and the third output port Out3 are transmitted to the second battery 120, thereby gradually increasing the state of charge of the first battery 120, thereby causing the state of charge of the first battery 110 and the second battery 120 to become consistent or
  • the phase difference is within the preset range to complete the adjustment.
  • the first input port and the first output port of the adjustment module are designed to be connected to the first end of the first battery, and the second input port and the third output port of the adjustment module are connected to the second end of the second battery.
  • the third output port of the module is connected to the series terminal, so that the designed adjustment module can adjust the overall electric energy of the battery module and then transmit it to the battery with a lower state of charge under the control of the control module, so that the first battery 110 and the state of charge of the second battery 120 tend to be consistent or differ within a preset range.
  • the designed adjustment module 20 may also include a DC-AC conversion circuit 210 and a transformer coupling circuit. 220.
  • the first switch circuit only includes the first switch S1 and the second switch S2.
  • the circuit 250 includes a third switch S3, a fourth switch S4, a fifth switch S5 and a sixth switch S6.
  • the first input port In1 is connected to the first input terminal N1 of the DC-AC conversion circuit 210 through the first switch S1, and the second The input port In2 is connected to the second input terminal N2 of the DC-AC conversion circuit 210 through the second switch S2.
  • the output end of the DC-AC conversion circuit 210 is connected to one side of the transformer coupling circuit 220, and the other side of the transformer coupling circuit 220 is connected to the AC-DC conversion circuit 230; the first output end N3 of the AC-DC conversion circuit 230
  • the third switch S3 is connected to the first output port Out1
  • the first output terminal N3 of the AC-DC conversion circuit 230 is connected to the second output port Out2 through the fourth switch S4.
  • the second output terminal of the AC-DC conversion circuit 230 N4 is connected to the second output port Out2 through the fifth switch S5, and the second output terminal N4 of the AC-DC conversion circuit 230 is connected to the third output port Out3 through the sixth switch S6.
  • control module 30 can control the corresponding switch to close during adjustment, so that the adjustment module 20 adjusts the overall power of the battery module and then transfers it to the battery with a lower state of charge.
  • the control module 30 can control the switches S1, S2, S3, and S5 to close, thereby making the connection between the DC-AC conversion circuit 210 and the battery module 10 conductive, and the AC-DC The connection between the conversion circuit 210 and the first battery 110 is turned on, thereby transferring the entire power of the battery module 10 to the first battery 110 .
  • the DC-AC conversion circuit 210, transformer coupling circuit 220 and AC-DC conversion circuit 230 in this embodiment have the same functions as previously described, and will not be described again here.
  • the first switch circuit and the second switch circuit are designed to control the power transmission flow, so that the control of transferring the overall energy of the battery module to the battery with a lower state of charge can be achieved through simple design.
  • the adjustment module 20 may also include a filter circuit 260, thereby reducing the interference caused by converting DC into AC and alternating AC into DC. Filter out.
  • the present application provides a vehicle power system, as shown in Figures 10 and 11.
  • the vehicle power system includes a first motor M1, a second motor M2, and the battery conditioning system 1 described in any of the aforementioned optional embodiments, wherein the A battery 110 is connected to the first motor M1 to provide power to the first motor M1, and a second battery 120 is connected to the second motor M2 to provide power to the second motor M2.
  • this solution designs the battery module, regulation module and control module to form the battery regulation system of the power system.
  • the control module can control the state of charge of the first battery and the second battery in the battery module when they are inconsistent.
  • the adjustment module adjusts the state of charge of the first battery and the second battery so that the SOC of the two batteries remains consistent or has a small difference, so that the battery module can fully complete the power output or can basically reach a full charge state, thereby improving the vehicle The endurance of the power system.
  • the electrical device may include a vehicle.
  • the vehicle includes the battery conditioning system described above.
  • the first motor M1 is used to drive the front wheels of the vehicle, and the second motor M2 is used to drive the front wheels of the vehicle.
  • the electrical equipment may also include other types of electrical equipment, such as ships, spaceships, etc.
  • the electrical equipment designed above has a battery regulation system.
  • the control module in the battery regulation system can control the regulation module to control the first battery and the second battery when the states of charge of the first battery and the second battery in the battery module are inconsistent.
  • the state of charge is adjusted so that the SOC of the two batteries remains consistent or has a small gap, so that the battery module can fully complete the power output or basically reach a full charge state, thereby improving the vehicle's endurance.
  • the present application provides an adjustment method, which can be applied to the aforementioned battery adjustment system.
  • the adjustment method can be executed by the control module in the aforementioned battery adjustment system. As shown in Figure 13, the adjustment method includes:
  • Step S1300 When the states of charge of the first battery and the second battery are inconsistent, control the adjustment module to adjust the states of charge of the first battery and the second battery.
  • control module can collect the state of charge of the first battery and the second battery to determine whether the state of charge of the first battery and the second battery are consistent.
  • the specific determination method has been described above. No longer.
  • the control module controls the adjustment module to adjust the state of charge of the first battery and the second battery so that the difference in the state of charge of the first battery and the second battery is the same or within a preset range, so that the battery module can fully complete the power output. Or it can basically reach a fully charged state, improving the endurance of the vehicle's power system.
  • the specific adjustment method has been described previously and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种电池调节系统、方法及其用电设备,该电池调节系统应用于包括第一电机和第二电机的车辆;该电池调节系统包括电池模块、调节模块以及控制模块;调节模块电连接电池模块以及控制模块;电池模块包括第一电池和第二电池,第一电池和第二电池串联;其中,第一电池用于给第一电机供电,第二电池用于给第二电机供电;控制模块用于在第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,提高电池模块的续航能力。

Description

电池调节系统、方法及其用电设备 技术领域
本申请涉及新能源汽车技术领域,具体涉及一种电池调节系统、方法及其用电设备。
背景技术
目前,新能源四驱车辆可采用高电压电池系统实现驱动,以提高快充速度,减小工作电流和发热量。
但目前高电压电池系统的电子元器件暂不成熟,为了采用高电压电池系统进行驱动,目前常规方案是将两个电池模块(例如两个400V电池)组成高电压电池系统(例如800V电池系统),两个电池模块分别为前后电机供电,从而采用高电压电池系统实现驱动。
但上述方案由于前后电机功率或前后电机的控制逻辑不一致,容易导致两个电池模块的荷电状态有较大差别,从而使得形成的高电压电池系统无法充满电以及无法将电放空,从而大大降低高电压电池系统的续航能力。
发明内容
鉴于上述问题,本申请提供一种电池调节系统、方法及其用电设备,能够解决目前组合的高电压电池系统中两个电池模块荷电状态不一致导致的高电压电池系统续航能力低的问题。
第一方面,本申请提供了一种电池调节系统,该电池调节系统应用于包括第一电机和第二电机的用电设备;该电池调节系统包括电池模块、调节模块以及控制模块;调节模块电连接电池模块以及控制模块;电池模块包括第一电池和第二电池,第一电池和第二电池串联;其中,第一电池用于给第一电机供电,第二电池用于给第二电机供电;控制模块用于在第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节。
本申请实施例的技术方案中,本方案设计电池模块、调节模块以及控制模块,控制模块在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高电池模块的续航能力。
在第一些实施例中,第一电池的第二端与第二电池的第一端形成串联端;调节模块包括第一输入端口、第二输入端口、第三输入端口、第一输出端口、第二输出端口以及第三输出端口;调节模块的第一输入端口和第一输出端口与第一电池的第一端连接,调节模块的第二输入端口和第二输出端口与串联端连接,调节模块的第三输入端口和第三输出端口与第二电池的第二端连接;控制模块具体用于在第一电池和第二电池的荷电状态不一致时,控制调节模块将荷电状态较高的电池的电量进行调节后传输给荷电状态较低的电池。本申请实施例设计调节模块的第一输入端口和第一输出端口与第一电池的第一端连接,调节模块的第二输入端口和第二输出端口与串联端连接,调节模块的第三输入端口和第三输出端口与第二电池的第二端连接,从而使得设计的调节模块可在控制模块的控制下,将荷电状态较高的动电池的电量进行调节后传输给荷电状态较低的电池。
在一些实施例中,调节模块包括直流-交流转换电路、变压耦合电路以及交流-直流转换电路,控制模块与直流-交流转换电路电连接;控制模块,用于在第一电池和第二电池的荷电状态不一致时,向直流-交流转换电路传输调制信号,并控制荷电状态较高的电池向直流-交流转换电路传输直流电流;直流-交流转换电路,用于根据调制信号将接收的直流电流转换成对应的交流电流,并将转换后的交流电流传输给变压耦合电路;所述变压耦合电路,用于通过电磁感应将转换后的交流电流传输给交流-直流转换电路;交流-直流转换电路,用于将变压耦合电路传输的交流电流转换成对应的直流电流,获得转换完成的直流电流,以利用转换完成的直流电流对荷电状态较低的电池进行调节。本申请实施例设计直流-交流转换电路、变压耦合电路以及交流-直流转换电路组成调节模块,使得调节模块采用电磁感应原理来进行能量传递,从而避免第一电池和第二电池出现绝缘问题。
在一些实施例中,调节模块还包括第一开关电路和第二开关电路,控制模块分别与第一开关电路和第二开关电路电连接;控制模块,用于在第一电池和第二电池的荷电状态不一致时,控制第一开关电路闭合,以控制荷电状态较高的电池向直流-交流转换电路传输直流电流;控制第二开关电路闭合,以将转换完成的直流电流传输给荷电状态较低的电池,以对荷电状态较低的电池进行调节。本申请实施例设计第一开关电路和第二开关电路来实现电能传输流向的控制,从而通过简单设计即可实现将荷电状态较高的电池能量传递给荷电状态较低电池的控制。
在一些实施例中,第一开关电路包括第一开关、第二开关、第三开关、第四开关;第二开关模块包括第五开关、第六开关、第七开关以及第八开关,每一开关与控制模块电连接;第一输入端口通过第一开关与交流-直流转换电路的第一输入端连接,第二输入端口通过第二开关与直流-交流转换电路的第一输入端连接并通过第三开关与直流-交流转换电路的第二输入端连接,第三输入端口通过第四开关与直流-交流转换电路的第二输入端连接;直流-交流转换电路的输出端与变压耦合电路的一侧连接,变压耦合电路的另一侧与交流-直流转换电路连接;交流-直流转换电路的第一输出端通过第五开关与第一输出端口连接,并且交流-直流转换电路的第一输出端通过第六开关与所述第二输出端口连接,交流-直流转换电路的第二输出端通过第七开关与第二输出端口连接,并且交流-直流转换电路的第二输出端通过第八开关与第三输出端口连接。
在一些实施例中,调节模块还包括第一二极管和第二二极管,第一开关与第一二极管的正极连接,直流-交流转换电路的第一输入端与第一二极管的负极连接;第四开关与第二二极管的负极连接,直流-交流转换电路的第二输入端与第二二极管的正极连接。在本实施例中,本方案在第一开关和第四开关中设计二极管,从而预防电流在直流转换成交流过程中出现错误方向流动,提高直流转换交流的精度并且防止电流回流。
在一些实施例中,第一电池的第二端与第二电池的第一端形成串联端;调节模块包括第一输入端口、第二输入端口、第一输出端口、第二输出端口以及第三输出端口;第一输入端口和第一输出端口与第一电池的第一端连接,第二输入端口和第三输出端口与第二电池的第二端连接,第二输出端口与串联端连接;控制模块具体用于在第一电池和第二电池的荷电状态不一致时,控制调节模块将电池模块的电量进行调节后传输给荷电状态较低的电池。本申请实施例设计调节模块的第一输入端口和第一输出端口与第一电池的第一端连接,调节模块的第二输入端口和第三输出端口与第二电池的第二端连接,调节模块的第三输出端口与串联端连接,从而使得设计的调节模块可在控制模块的控制下,将电池模块的整体电能进行调节后传输给荷电状态较低的电池,从而使得第一电池和第二电池的荷电状态趋于一致或相差在预设范围。
在一些实施例中,调节模块包括直流-交流转换电路、变压耦合电路以及交流-直流转换电路,控制模块与直流-交流转换电路电连接;控制模块,用于在第一电池和第二电池的荷电状态不一致时,向直流-交流转换电路传输调制信号,并控制电池模块向直流-交流转换电路传输直流电流;直流-交流转换电路,用于根据调制信号将接收的直流电流转换成对应的交流电流,并将转换后的交流电流传输给变压耦合电路;变压耦合电路,用于通过电磁感应将转换后的交流电流传输给交流-直流转换电路;交流-直流转换电路,用于将变压耦合电路传输的交流电流转换成对应的直流电流,获得转换完成的直流电流,以利用转换完成的直流电流对荷电状态较低的电池进行调节。
在一些实施例中,调节模块还包括第一开关电路和第二开关电路,控制模块分别与第一开关电路和第二开关电路电连接;控制模块,用于在第一电池和第二电池的荷电状态不一致时,控制第一开关电路闭合,以控制电池模块向直流-交流转换电路传输直流;控制第二开关电路闭合,以将转换完成的直流电流传输给荷电状态较低的电池,以对荷电状态较低的电池进行调节。
在一些实施例中,第一开关电路包括第一开关、第二开关;第二开关电路包括第三开关、第四开关、第五开关以及第六开关,每一开关与控制模块电连接;第一输入端口通过第一开关与直流-交流转换电路的第一输入端连接,第二输入端口通过第二开关与直流-交流转换电路的第二输入端连接;直流-交流转换电路的输出端与变压耦合电路的一侧连接,变压耦合电路的另一侧与交流-直流转换电路连接;交流-直流转换电路的第一输出端通过第三开关与第一输出端口连接,并且交流-直流转换电路的第一输出端通过第四开关与第二输出端口连接,交流-直流转换电路的第二输出端通过第五开关与第二输出端口连接,并且交流-直流转换电路的第二输出端通过第六开关与第三 输出端口连接。
第二方面,本申请提供了一种车辆动力系统,该车辆动力系统包括第一电机、第二电机以及第一方面中任一可选实施方式描述的电池调节系统,第一电机与第一电池电连接,第二电机与第二电池电连接。
本申请实施例的技术方案中,本方案设计电池模块、调节模块以及控制模块形成该动力系统的电池调节系统,控制模块可在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高车辆动力系统的续航能力。
第三方面,本申请提供一种用电设备,该用电设备包括车辆,该车辆包括第一方面中任一可选实施方式描述的电池调节系统。
本申请实施例的技术方案中,上述设计的车辆包含具有电池调节系统的车辆动力系统,电池调节系统中的控制模块可在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高车辆的续航能力。
第四方面,本申请提供一种电池调节方法,电池调节方法应用于电池调节系统,电池调节系统包括电池模块、调节模块以及控制模块;调节模块电连接电池模块以及控制模块;电池模块包括第一电池和第二电池,第一电池和第二电池串联;其中,第一电池用于给第一电机供电,第二电池用于给第二电机供电,该方法由控制模块执行,包括:在第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节。
本申请实施例的技术方案中,本方案在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高车辆的续航能力。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请提供的电池调节系统的第一结构示意图;
图2为本申请提供的电池调节系统的第二结构示意图;
图3为本申请提供的调节模块的第一结构示意图;
图4为本申请提供的调节模块的第二结构示意图;
图5为本申请提供的调节模块的第三结构示意图;
图6为本申请提供的调节模块的第四结构示意图;
图7为本申请提供的电池调节系统的第三结构示意图;
图8为本申请提供的调节模块的第五结构示意图;
图9为本申请提供的调节模块的第六结构示意图;
图10为本申请提供的车辆动力系统的第一结构示意图;
图11为本申请提供的车辆动力系统的第二结构示意图;
图12为本申请提供的车辆结构示意图;
图13为本申请提供的电池调节方法流程示意图。
具体实施方式中的附图标号如下:
1-电池调节系统;10-电池模块;110-第一电池;120-第二电池;20-调节模块;210-直流-交流转换电路;220-变压耦合电路;230-交流-直流转换电路;30-控制模块;A1-串联端;In1-调节模块的第一输入端;In2-调节模块的第二输入端;In3-调节模块的第三输入端;Out1-调节模块的第一输出端;Out2-调节模块的第二输出端;Out3-调节模块的第三输出端;Q1-第一绝缘栅双极型功率管;Q2-第二绝缘栅双极型功率管;Q3-第三绝缘栅双极型功率管;Q4-第四绝缘栅双极型功率管;240-第一开关电路;250-第二开关电路;260-滤波电路;S1-第一开关;S2-第二开关;S3-第三开关;S4-第四开关;S5-第五开关;S6-第六开关;S7-第七开关;S8-第八开关;D1-第一二极管;D2-第二二极管;M1-第一电机;M2-第二电机。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动 交通工具,以及军事装备和航空航天等多个领域。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
随着电池技术的发展,电池已应用于电动汽车领域,目前电动四驱车可分为两种驱动方式,一是低电压电池系统驱动(例如400V电池系统驱动);二是高电压电池系统驱动(例如800V电池系统驱动)。
低电压电池系统的所有电子器件目前均比较成熟,因此,低电压电池系统在目前是较为普遍的驱动方式,但是在应用低电压电池系统过程中发现,低电压电池系统驱动方式的充电电流较大,难以提升快充速度,而且工作电流大,发热量较大的缺陷。
而相较于低电压电池系统,高电压电池系统则既能提高快充速度,还能减小工作电流以及发热量。因此,高电压电池系统的发展成为主要趋势,但目前高电压电池系统的电子元件暂不成熟,为了实现高电压电池系统的驱动方式,目前方案中有采用两个电池模块(如400V电池模块)连接的方式组成高电压电池系统(例如800V电池系统),其中,两个电池模块可分别驱动四驱车中的一个电机实现四驱车驱动,从而可利用800V进行快速充电,实现快充并且工作电流小,发热量小的优点。
在上述情形基础上,本发明人注意到,由于四驱车的前轮驱动电机和后轮驱动电机功率或控制策略的不同,非常容易导致两个电池模块的荷电状态(State of Charge,SOC)差别较大,从而导致整个高电压电池系统进行功率输出时,两个电池模块中的其中一个先达到放电截止状态,导致高电压电池系统无法充分完成功率输出;在进行充电时,两个电池模块中的其中一个先达到充电截止状态,导致高电压电池系统无法进行电池满充。
发明人研究发现,可设计一种调节模块在电池包中两个电池SOC不一致的情况下,对两个电池的荷电状态进行调节,从而解决上述问题。
发明人经过深入研究,设计了一种电池调节系统、方法及其用电设备,可在两个电池SOC不一致的情况下,对两个电池的荷电状态进行调节,从而使得两个电池的SOC保持一致或相差在一定程度,从而使得电池包可充分完成功率输出或能够基本达到满充状态,从而提高电池包的续航能力。
本申请提供一种电池调节系统,如图1所示,该电池调节系统包括电池模块10、调节模块20以及控制模块30,该调节模块20分别与电池模块10和控制模块30电连接。
该电池模块10可包括第一电池110和第二电池120,该第一电池110和第二电池120串联。作为一种可能的实施方式,第一电池110的负极可与第二电池120的正极串联,从而形成电池模块10;作为另一种可能的实施方式,第一电池110的正极可与第二电池120的负极串联,从而形成电池模块10。其中,每个电池可通过串联的多个电池单体构成。
上述设计的电池调节系统,在应用时,第一电池110和第二电池120可分别给不同的电机进行供电,例如,第一电池110可给第一电机M1供电,第二电池120可给第二电机M2供电,两个电机的输出功率可不同。
在上述基础上,控制模块30可在第一电池110和第二电池120的荷电状态不一致时,控制模块30可向调节模块20发送控制信号,从而控制调节模块20对第一电池110和第二电池120的荷电状态进行调节,使得第一电池110和第二电池120的荷电状态保持一致,或者使得第一电池110和第二电池120的荷电状态的差值维持在预设范围,进而保障电池系统可以充满电或将电放空,提高电池包的续航能力。其中,调节模块20可将第一电池110和第二电池120中荷电状态较高的电池的电量传输给荷电状态较低的电池,从而进行调节;或调节模块可将电池模块10的电量传输给荷电状态较低的电池,从而进行调节。
作为一种可能的实施方式,控制模块30可为电池管理系统(Battery Management System,BMS),在此基础上,控制模块30可分别与第一电池110和第二电池120电连接,控制模块30可采集第一电池110和第二电池120的荷电状态,从而通过比较第一电池110和第二电池的荷电状态来判定第一电池110和第二电池120的荷电状态是否一致。例如,控制模块30可在第一电池110 和第二电池120的荷电状态不相等时,判定第一电池110和第二电池120的荷电状态不一致;再例如,控制模块30可计算出第一电池110和第二电池120的荷电状态差值,当荷电状态差值大于预设阈值时,判定第一电池110和第二电池120的荷电状态不一致。
同样的,控制模块30在通过调节模块20对第一电池110和第二电池120的荷电状态进行调节后,控制模块30可实时采集第一电池110和第二电池120的荷电状态,从而基于实时采集第一电池110和第二电池120的荷电状态可判定第一电池110和第二电池120的荷电状态是否满足要求,在满足要求的情况下,控制模块30可向调节模块20发送截止信号,以控制调节模块20结束对第一电池110和第二电池120的荷电状态的调节。
作为另一种可能的实施方式,该控制模块30可为控制器,在此基础上,电池管理系统(Battery Management System,BMS)可采集第一电池110和第二电池120的荷电状态,从而发送给控制模块30进行判定,控制模块30在判定第一电池110和第二电池120的荷电状态不一致时发送控制信号。这里需要说明的是,判定过程也可以由BMS执行,BMS在判定荷电状态不一致时,向控制模块30发出调节发射信号,使得控制模块30基于调节发射信号向调节模块20发送控制信号。
上述设计的电池调节系统,本方案设计电池模块、调节模块以及控制模块,控制模块在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高电池模块的续航能力。
根据本申请的一些实施例,前面描述到控制模块30可将第一电池110和第二电池120中荷电状态较高的电池的电量传输给荷电状态较低的电池,从而实现SOC调节,在此基础上,如图2所示,本方案设计的调节模块20可包括第一输入端口In1、第二输入端口In2、第三输入端口In3、第一输出端口Out1、第二输出端口Out2以及第三输出端口Out3,第一电池110的第二端(负极)与第二电池的第一端(正极)连接形成串联端A1。
请参照图2所示,调节模块20的第一输入端口In1和第一输出端口Out1与第一电池110的第一端(正极)连接,调节模块20的第二输入端口In2和第二输出端口Out2与串联端A1连接,调节模块20的第三输入端口In3和第三输出端口Out3与第二电池120的第二端(负极)连接。
上述结构的调节模块20,可在控制模块30的控制下,将荷电状态较高的电池的电量进行调节后传输给荷电状态较低的电池。
例如,依照图2所示的结构,当第一电池110的荷电状态相对于第二电池120的荷电状态较高时,控制模块30控制调节模块20的第一输入端口In1、第二输入端口In2、第二输出端口Out2以及第三输出端口Out3导通,这样使得第一电池110的电量通过第一输入端口In1和第二输入端口In2传输给调节模块20进行调节转换后通过第二输出端口Out2以及第三输出端口Out3传输给第二电池120,从而使得第一电池110的荷电状态逐渐减小,第二电池120的荷电状态逐渐增大,进而使得第一电池110和第二电池120的荷电状态趋于一致或相差在预设范围,以完成调节。
再例如,依照图2所示的结构,当第一电池110的荷电状态相对于第二电池120的荷电状态较低时,控制模块30可控制调节模块20的第二输入端口In2、第三输入端口In3、第一输出端口Out1以及第二输出端口Out2导通,这样使得第二电池120的电量通过第二输入端口In2和第三输入端口In3传输给调节模块20进行调节转换后通过第一输出端口Out1以及第二输出端口Out2传输给第一电池110,从而使得第一电池110的荷电状态逐渐增大,第二电池120的荷电状态逐渐减小,进而使得第一电池110和第二电池120的荷电状态趋于一致或相差在预设范围,以完成调节。
本申请实施例设计调节模块的第一输入端口和第一输出端口与第一电池的第一端连接,调节模块的第二输入端口和第二输出端口与串联端连接,调节模块的第三输入端口和第三输出端口与第二电池的第二端连接,从而使得设计的调节模块可在控制模块的控制下,将荷电状态较高的电池的电量进行调节后传输给荷电状态较低的电池。
根据本申请的一些实施例,为了避免第一电池110和第二电池120出现绝缘问题,本方案 的调节模块20可采用电磁感应原理来进行能量传递,具体的,如图3所示,调节模块20还可包括直流-交流转换电路210、变压耦合电路220以及交流-直流转换电路230,控制模块30与直流-交流转换电路210电连接,该直流-交流转换电路210与变压耦合电路220的一侧连接,变压耦合电路220的另一侧与交流-直流转换电路230。
上述设计的调节模块20,控制模块30可在第一电池和第二动电池的荷电状态不一致时,向该直流-交流转换电路210发送调制信号,并控制荷电状态较高的电池向直流-交流转换电路210传输直流电流。其中,该调制信号具体可为PWM信号。
直流-交流转换电路210根据PWM信号将接收的直流电流转换成交流电流,并将转换后的交流电流传输给变压耦合电路220,变压耦合电路220通过电磁感应原理将交流电流传输到另一侧,从而将交流电流传输给交流-直流转换电路230,交流-直流转换电路230将接收的交流电流转换成对应的直流电流,获得转换完成的直流电流,从而将转换完成的直流电流传输给荷电状态较低的电池,以实现调节过程。
具体的,如图4所示,直流-交流转换电路210具体可包括第一绝缘栅双极型功率管Q1、第二绝缘栅双极型功率管Q2、第三绝缘栅双极型功率管Q4以及第四绝缘栅双极型功率管Q4,四个绝缘栅双极型功率管IGBT搭建形成H桥。控制模块30可通过调制信号控制Q1、Q2、Q3以及Q4有序闭合,从而实现电流的正向流动和反向流动,从而将直流转换成交流。其中,四个绝缘栅双极型功率管也可以替换为其他形式的可控开关,例如,晶闸管、场效应管等等。
该交流-直流转换电路230具体可包括四个二极管形成的H桥,从而将交流转换成直流。
本申请实施例设计直流-交流转换电路、变压耦合电路以及交流-直流转换电路组成调节模块,使得调节模块采用电磁感应原理来进行能量传递,从而避免第一电池和第二电池出现绝缘问题。
根据本申请的一些实施例,作为一种可能的示例,如图5所示,调节模块20还可包括第一开关电路240和第二开关电路250,该第一开关电路240包括第一开关S1、第二开关S2、第三开关S3以及第四开关S4,第二开关电路包括第五开关S5、第六开关S6、第七开关S7以及第八开关S8,每一开关与控制模块30电连接。其中,每一开关可为可控开关,例如,三极管、可控硅等。
第一输入端口In1通过第一开关S1与直流-交流转换电路210的第一输入端N1连接,第二输入端口In2通过第二开关S2与直流-交流转换电路210的第一输入端N1连接并通过第三开关S3与直流-交流转换电路210的第二输入端N2连接,第三输入端口In3通过第四开关S4与直流-交流转换电路的第二输入端N2连接。
直流-交流转换电路210的输出端与变压耦合电路220的一侧连接,变压耦合电路220的另一侧与交流-直流转换电路230连接;交流-直流转换电路230的第一输出端N3通过第五开关S5与第一输出端口Out1连接,并且交流-直流转换电路230的第一输出端N3通过第六开关S6与第二输出端口Out2连接,交流-直流转换电路230的第二输出端N4通过第七开关S7与第二输出端口Out2连接,并且交流-直流转换电路230的第二输出端N4通过第八开关S8与第三输出端口Out3连接。
上述设计的调节模块20,在调节时控制模块30可控制对应的开关闭合,以实现调节模块20将荷电状态较高的电池的电量进行调节后传输给荷电状态较低的电池。
例如,在第一电池110的荷电状态较高时,控制模块30可控制开关S1、S3、S6以及S8闭合,从而使得直流-交流转换电路210与第一电池110的连接导通,交流-直流转换电路210与第二电池120的连接导通,实现第一电池110的电量转移给第二电池120。
本申请实施例设计第一开关电路和第二开关电路来实现电能传输流向的控制,从而通过简单设计即可实现将荷电状态较高的电池能量传递给荷电状态较低电池的控制。
根据本申请的一些实施例,进一步地,为了预防电流在直流转换成交流过程中出现错误方向流动,如图6所示,该调节模块20还可包括第一二极管D1和第二二极管D2,第一开关S1与第 一二极管D1的正极连接,直流-交流转换电路210的第一输入端N1与第一二极管D1的负极连接;第四开关S4与第二二极管D2的负极连接,直流-交流转换电路210的第二输入端N2与第二二极管D2的正极连接。
更进一步地,为了滤波直流变交流,交流变直流所带来的干扰,如图6所示,调节模块20还可包括滤波电路260,该滤波电路260具体可为滤波电容C1,从而对转换完成的直流电流进行滤波,进而传输给荷电状态较低的电池。
在本实施例中,本方案在第一开关和第四开关中设计二极管,从而预防电流在直流转换成交流过程中出现错误方向流动,提高直流转换交流的精度并且防止电流回流,并且设计滤波电路对转换完成的直流电流进行滤波,进而消除直流变交流以及交流变直流过程中带来的干扰。
根据本方案的一些实施例,前面描述到本方案不仅可以将荷电状态高的电池的能量转移给荷电状态较低的电池,还可以将电池模块10整个的能量转移给荷电状态较低的电池,从而实现荷电状态的调节。
在上述基础上,如图7所示,本方案设计的调节模块20包括第一输入端口In1、第二输入端口In2、第一输出端口Out1、第二输出端口Out2以及第三输出端口Out3;第一输入端口In1和第一输出端口Out1与第一电池110的第一端(正极)连接,第二输入端口In2和第三输出端口Out3与第二电池120的第二端(负极)连接,第二输出端口Out2与串联端A1连接。
上述设计的调节模块20,可在控制模块30控制下将电池模块10的电量进行调节后传输给荷电状态较低的电池。
例如,依照图7所示的结构,当第一电池110的荷电状态相对于第二电池120的荷电状态较低时,控制模块30控制调节模块20的第一输入端口In1、第二输入端口In2、第一输出端口Out1以及第二输出端口Out2导通,这样使得电池模块10的整体电能通过第一输入端口In1和第二输入端口In2传输给调节模块20进行调节转换后,通过第一输出端口Out1以及第二输出端口Out2传输给第一电池110,从而使得第一电池110的荷电状态逐渐增大,进而使得第一电池110和第二电池120的荷电状态趋于一致或相差在预设范围,以完成调节。
再例如,依照图7所示的结构,当第二电池120的荷电状态相对于第一电池110的荷电状态较低时,控制模块30控制调节模块20的第一输入端口In1、第二输入端口In2、第二输出端口Out2以及第三输出端口Out3导通,这样使得电池模块10的整体电能通过第一输入端口In1和第二输入端口In2传输给调节模块20进行调节转换后,通过第二输出端口Out2以及第三输出端口Out3传输给第二电池120,从而使得第一电池120的荷电状态逐渐增大,进而使得第一电池110和第二电池120的荷电状态趋于一致或相差在预设范围,以完成调节。
本申请实施例设计调节模块的第一输入端口和第一输出端口与第一电池的第一端连接,调节模块的第二输入端口和第三输出端口与第二电池的第二端连接,调节模块的第三输出端口与串联端连接,从而使得设计的调节模块可在控制模块的控制下,将电池模块的整体电能进行调节后传输给荷电状态较低的电池,从而使得第一电池110和第二电池120的荷电状态趋于一致或相差在预设范围。
根据本方案的一些实施例,作为一种具体的实施方式,在图7所示原理基础上,如图8所示,设计的调节模块20也可包括直流-交流转换电路210、变压耦合电路220、交流-直流转换电路230、第一开关电路240以及第二开关电路250,不同的是,在本实施方式中,第一开关电路仅包含第一开关S1和第二开关S2,第二开关电路250包含第三开关S3、第四开关S4、第五开关S5以及第六开关S6,第一输入端口In1通过第一开关S1与直流-交流转换电路210的第一输入端N1连接,第二输入端口In2通过第二开关S2与直流-交流转换电路210的第二输入端N2连接。
直流-交流转换电路210的输出端与变压耦合电路220的一侧连接,变压耦合电路220的另一侧与交流-直流转换电路230连接;交流-直流转换电路230的第一输出端N3通过第三开关S3与第一输出端口Out1连接,并且交流-直流转换电路230的第一输出端N3通过第四开关S4与第二输出端口Out2连接,交流-直流转换电路230的第二输出端N4通过第五开关S5与第二输出端口Out2连接,并且交流-直流转换电路230的第二输出端N4通过第六开关S6与第三输出端口Out3连 接。
上述设计的调节模块20,在调节时控制模块30可控制对应的开关闭合,以实现调节模块20将电池模块的整体电量进行调节后传输给荷电状态较低的电池。
例如,在第一电池110的荷电状态较低时,控制模块30可控制开关S1、S2、S3以及S5闭合,从而使得直流-交流转换电路210与电池模块10的连接导通,交流-直流转换电路210与第一电池110的连接导通,实现电池模块10的整体电量转移给第一电池110。这里需要说明的是本实施例中的直流-交流转换电路210、变压耦合电路220以及交流-直流转换电路230与前述的功能一致,在这里不再赘述。
本申请实施例设计第一开关电路和第二开关电路来实现电能传输流向的控制,从而通过简单设计即可实现将电池模块的整体能量传递给荷电状态较低电池的控制。
根据本申请的一些实施例,同样的,本实施例图8所示的电路结构中如图9所示,调节模块20还可包含滤波电路260,从而对直流变交流,交流变直流产生的干扰进行滤除。
本申请提供一种车辆动力系统,如图10和图11所示,该车辆动力系统包括第一电机M1、第二电机M2以及前述任一可选实施方式描述的电池调节系统1,其中,第一电池110与第一电机M1连接,以给第一电机M1供电,第二电池120与第二电机M2连接,以给第二电机M2供电。
上述设计的车辆动力系统,本方案设计电池模块、调节模块以及控制模块形成该动力系统的电池调节系统,控制模块可在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高车辆动力系统的续航能力。
本申请提供一种用电设备,如图12所示,该用电设备可包括车辆,该车辆包括前述描述的电池调节系统,第一电机M1用于驱动车辆的前轮,第二电机M2用于驱动车辆的后轮。其中,该用电设备还可包括其他类型的用电设备,如轮船、飞船等等。
上述设计的用电设备具有电池调节系统,电池调节系统中的控制模块可在电池模块中的第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节,使得两个电池的SOC保持一致或差距较小,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,从而提高车辆的续航能力。
本申请提供一种调节方法,该调节方法可应用于前述的电池调节系统,该调节方法可由前述的电池调节系统中的控制模块执行,如图13所示,该调节方法包括:
步骤S1300:在第一电池和第二电池的荷电状态不一致时,控制调节模块对第一电池和第二电池的荷电状态进行调节。
上述实施方式中,控制模块可采集第一电池和第二电池的荷电状态从而判定第一电池和第二电池的荷电状态是否一致,其中,具体的判定方式在前文已进行了描述在这里不再赘述。
控制模块控制调节模块对第一电池和第二电池的荷电状态的调节,使得第一电池和第二电池的荷电状态差异相同或差异在预设范围,从而使得电池模块可充分完成功率输出或能够基本达到满充状态,提高车辆动力系统的续航能力。其中,具体的调节方式在前文已进行了描述在这里不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求 的范围内的所有技术方案。

Claims (12)

  1. 一种电池调节系统,其特征在于,所述电池调节系统应用于包括第一电机和第二电机的用电设备;所述电池调节系统包括电池模块、调节模块以及控制模块;
    所述调节模块电连接所述电池模块以及所述控制模块;
    所述电池模块包括第一电池和第二电池,所述第一电池和第二电池串联;其中,所述第一电池用于给所述第一电机供电,所述第二电池用于给所述第二电机供电;
    所述控制模块用于在所述第一电池和第二电池的荷电状态不一致时,控制所述调节模块对第一电池和第二电池的荷电状态进行调节。
  2. 根据权利要求1所述的电池调节系统,其特征在于,所述第一电池的第二端与所述第二电池的第一端形成串联端;
    所述调节模块包括第一输入端口、第二输入端口、第三输入端口、第一输出端口、第二输出端口以及第三输出端口;
    所述调节模块的第一输入端口和第一输出端口与所述第一电池的第一端连接,所述调节模块的第二输入端口和第二输出端口与所述串联端连接,所述调节模块的第三输入端口和第三输出端口与所述第二动电池的第二端连接;
    所述控制模块用于在所述第一电池和第二电池的荷电状态不一致时,控制所述调节模块将荷电状态较高的电池的电量传输给荷电状态较低的电池。
  3. 根据权利要求2所述的电池调节系统,其特征在于,所述调节模块包括直流-交流转换电路、变压耦合电路以及交流-直流转换电路,所述控制模块与直流-交流转换电路电连接;
    所述控制模块,用于在第一电池和第二电池的荷电状态不一致时,向所述直流-交流转换电路传输调制信号,并控制所述荷电状态较高的电池向所述直流-交流转换电路传输直流电流;
    所述直流-交流转换电路,用于根据所述调制信号将接收的直流电流转换成对应的交流电流,并将转换后的交流电流传输给所述变压耦合电路;
    所述变压耦合电路,用于通过电磁感应将转换后的交流电流传输给所述交流-直流转换电路;
    所述交流-直流转换电路,用于将所述变压耦合电路传输的交流电流转换成对应的直流电流,获得转换完成的直流电流,以利用转换完成的直流电流对荷电状态较低的电池进行调节。
  4. 根据权利要求3所述的电池调节系统,其特征在于,所述调节模块还包括第一开关电路和第二开关电路,所述控制模块分别与所述第一开关电路和第二开关电路电连接;
    所述控制模块,用于在第一电池和第二电池的荷电状态不一致时,控制所述第一开关电路闭合,以控制所述荷电状态较高的电池向所述直流-交流转换电路传输直流电流;控制所述第二开关电路闭合,以将转换完成的直流电流传输给荷电状态较低的电池。
  5. 根据权利要求4所述的电池调节系统,其特征在于,所述第一开关电路包括第一开关、第二开关、第三开关、第四开关;所述第二开关模块包括第五开关、第六开关、第七开关以及第八开关,每一开关与所述控制模块电连接;
    所述第一输入端口通过第一开关与所述交流-直流转换电路的第一输入端连接,所述第二输入端口通过第二开关与所述直流-交流转换电路的第一输入端连接并通过第三开关与所述直流-交流转换电路的第二输入端连接,所述第三输入端口通过第四开关与所述直流-交流转换电路的第二输入端连接;
    所述直流-交流转换电路的输出端与所述变压耦合电路的一侧连接,所述变压耦合电路的另一侧与所述交流-直流转换电路连接;
    所述交流-直流转换电路的第一输出端通过第五开关与所述第一输出端口连接,并且所述交流-直流转换电路的第一输出端通过第六开关与所述第二输出端口连接,所述交流-直流转换电路的第二输出端通过第七开关与所述第二输出端口连接,并且所述交流-直流转换电路的第二输出端通过第八开关与所述第三输出端口连接。
  6. 根据权利要求5所述的电池调节系统,其特征在于,所述调节模块还包括第一二极管和第二二极管,所述第一开关与所述第一二极管的正极连接,所述直流-交流转换电路的第一输入端与所述第一二极管的负极连接;
    所述第四开关与所述第二二极管的负极连接,所述直流-交流转换电路的第二输入端与所述第二二极管的正极连接。
  7. 根据权利要求1所述的电池调节系统,其特征在于,第一电池的第二端与所述第二电池的第一端形成串联端;
    所述调节模块包括第一输入端口、第二输入端口、第一输出端口、第二输出端口以及第三输出端口;
    所述第一输入端口和第一输出端口与所述第一电池的第一端连接,所述第二输入端口和第三输出端口与所述第二电池的第二端连接,所述第二输出端口与所述串联端连接;
    所述控制模块具体用于在所述第一电池和第二电池的荷电状态不一致时,控制所述调节模块将所述电池模块的电量传输给荷电状态较低的电池。
  8. 根据权利要求7所述的电池调节系统,其特征在于,所述调节模块包括直流-交流转换电路、变压耦合电路以及交流-直流转换电路,所述控制模块与直流-交流转换电路电连接;
    所述控制模块,用于在第一电池和第二电池的荷电状态不一致时,向所述直流-交流转换电路传输调制信号,并控制所述电池模块向所述直流-交流转换电路传输直流电流;
    所述直流-交流转换电路,用于根据所述调制信号将接收的直流电流转换成对应的交流电流,并将转换后的交流电流传输给所述变压耦合电路;
    所述变压耦合电路,用于通过电磁感应将转换后的交流电流传输给所述交流-直流转换电路;
    所述交流-直流转换电路,用于将所述变压耦合电路传输的交流电流转换成对应的直流电流,获得转换完成的直流电流,以利用转换完成的直流电流对荷电状态较低的电池进行调节。
  9. 根据权利要求8所述的电池调节系统,其特征在于,所述调节模块还包括第一开关电路和第二开关电路,所述控制模块分别与所述第一开关电路和第二开关电路电连接;
    所述控制模块,用于在第一电池和第二电池的荷电状态不一致时,控制所述第一开关电路闭合,以控制所述电池模块向所述直流-交流转换电路传输直流;控制所述第二开关电路闭合,以将转换完成的直流电流传输给荷电状态较低的电池。
  10. 根据权利要求9所述的电池调节系统,其特征在于,所述第一开关电路包括第一开关、第二开关;所述第二开关电路包括第三开关、第四开关、第五开关以及第六开关,每一开关与所述控制模块电连接;
    所述第一输入端口通过第一开关与所述直流-交流转换电路的第一输入端连接,所述第二输入端口通过第二开关与所述直流-交流转换电路的第二输入端连接;
    所述直流-交流转换电路的输出端与所述变压耦合电路的一侧连接,所述变压耦合电路的另一侧与所述交流-直流转换电路连接;
    所述交流-直流转换电路的第一输出端通过第三开关与所述第一输出端口连接,并且所述交流-直流转换电路的第一输出端通过第四开关与所述第二输出端口连接,所述交流-直流转换电路的第二输出端通过第五开关与所述第二输出端口连接,并且所述交流-直流转换电路的第二输出端通过第六开关与所述第三输出端口连接。
  11. 一种如权利要求1-10中任一项中所述的用电设备,所述用电设备包括车辆,所述车辆包括所述电池调节系统。
  12. 一种电池调节方法,其特征在于,所述电池调节方法应用于电池调节系统,所述电池调节系统包括电池模块、调节模块以及控制模块;所述调节模块电连接所述电池模块以及所述控制模块;所述电池模块包括第一电池和第二电池,所述第一电池和第二电池串联;其中,所述第一电池用于给所述第一电机供电,所述第二电池用于给所述第二电机供电,所述方法由所述控制模块执行,包括:
    在所述第一电池和第二电池的荷电状态不一致时,控制所述调节模块对第一电池和第二电池的荷电状态进行调节。
PCT/CN2022/096874 2022-06-02 2022-06-02 电池调节系统、方法及其用电设备 WO2023230995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096874 WO2023230995A1 (zh) 2022-06-02 2022-06-02 电池调节系统、方法及其用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096874 WO2023230995A1 (zh) 2022-06-02 2022-06-02 电池调节系统、方法及其用电设备

Publications (1)

Publication Number Publication Date
WO2023230995A1 true WO2023230995A1 (zh) 2023-12-07

Family

ID=89026761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096874 WO2023230995A1 (zh) 2022-06-02 2022-06-02 电池调节系统、方法及其用电设备

Country Status (1)

Country Link
WO (1) WO2023230995A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767541A (zh) * 2008-12-29 2010-07-07 北汽福田汽车股份有限公司 基于分布式动力电池组的电动汽车动力系统及电动汽车
DE102018008888A1 (de) * 2018-11-12 2019-05-16 Daimler Ag Energiemanagementsystem zur Energieversorgung eines elektrisch betriebenen Fahrzeugs
CN109789758A (zh) * 2016-09-28 2019-05-21 北极星工业有限公司 用于控制车辆中的两个独立动力传动系的系统和方法
CN109937153A (zh) * 2016-11-16 2019-06-25 蔚来汽车有限公司 电动车辆控制器
CN210693501U (zh) * 2019-11-25 2020-06-05 安徽江淮汽车集团股份有限公司 电池均衡电路、装置及供电系统
CN111434519A (zh) * 2019-01-11 2020-07-21 通用汽车环球科技运作有限责任公司 用于多组电驱动机动车辆的电池组平衡系统和控制逻辑
CN113824169A (zh) * 2020-06-19 2021-12-21 马自达汽车株式会社 车辆用驱动系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767541A (zh) * 2008-12-29 2010-07-07 北汽福田汽车股份有限公司 基于分布式动力电池组的电动汽车动力系统及电动汽车
CN109789758A (zh) * 2016-09-28 2019-05-21 北极星工业有限公司 用于控制车辆中的两个独立动力传动系的系统和方法
CN109937153A (zh) * 2016-11-16 2019-06-25 蔚来汽车有限公司 电动车辆控制器
DE102018008888A1 (de) * 2018-11-12 2019-05-16 Daimler Ag Energiemanagementsystem zur Energieversorgung eines elektrisch betriebenen Fahrzeugs
CN111434519A (zh) * 2019-01-11 2020-07-21 通用汽车环球科技运作有限责任公司 用于多组电驱动机动车辆的电池组平衡系统和控制逻辑
CN210693501U (zh) * 2019-11-25 2020-06-05 安徽江淮汽车集团股份有限公司 电池均衡电路、装置及供电系统
CN113824169A (zh) * 2020-06-19 2021-12-21 马自达汽车株式会社 车辆用驱动系统

Similar Documents

Publication Publication Date Title
WO2020135733A1 (zh) 电池加热系统及其控制方法
WO2021056976A1 (zh) 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩
CN106712191B (zh) 基于外部储能单元与lc准谐振的电池组均衡电路及方法
WO2018054378A1 (zh) 一种充电桩
US9413046B2 (en) Method for heating energy storage cells of an energy storage system, and heatable energy storage system
WO2021227537A1 (zh) 一种车载充电机的充电电路、车载充电机及充电控制方法
US10017073B2 (en) Coolant channels for power module assemblies
WO2022156387A1 (zh) 一种充电系统及电动汽车
CN106532852B (zh) 基于lc串联储能的电池组均衡电路
CN110356268A (zh) 一种车载充放电装置和系统
CN108390420A (zh) 通过电机控制器实现动力电池交流快充的装置及方法
US11801763B2 (en) Integrated DC vehicle charger
CN113506934B (zh) 一种锂电池加热系统及加热方法
CN112186305B (zh) 一种低温电池混合自加热装置及基于其的自加热方法
WO2023040448A1 (zh) 一种储能系统、不间断电源及电池均衡的方法
WO2023246710A1 (zh) 一种功率转换装置、充电桩、车载充电器和电动汽车
WO2022006706A1 (zh) 一种集成控制装置和新能源汽车
WO2023155413A1 (zh) 一种动力电池组装置、加热控制系统及电动汽车
CN109193852A (zh) 电动汽车模块化逆变器高压转低压变换充电电路
WO2023230995A1 (zh) 电池调节系统、方法及其用电设备
CN213027469U (zh) 电池储能系统
WO2020114501A1 (zh) 用电保护电路
CN208035982U (zh) 一种通过电机控制器实现动力电池交流快充的装置
CN207819499U (zh) 主被动结合升降压电池均衡电路
CN104685774B (zh) Dc‑dc转换器、使用该dc‑dc转换器的太阳能控制器及移动体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944324

Country of ref document: EP

Kind code of ref document: A1