WO2018054378A1 - 一种充电桩 - Google Patents

一种充电桩 Download PDF

Info

Publication number
WO2018054378A1
WO2018054378A1 PCT/CN2017/103378 CN2017103378W WO2018054378A1 WO 2018054378 A1 WO2018054378 A1 WO 2018054378A1 CN 2017103378 W CN2017103378 W CN 2017103378W WO 2018054378 A1 WO2018054378 A1 WO 2018054378A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power
battery
power unit
unit
Prior art date
Application number
PCT/CN2017/103378
Other languages
English (en)
French (fr)
Inventor
李南海
秦真
王红兵
施全富
林永津
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES17852445T priority Critical patent/ES2925109T3/es
Priority to JP2019516235A priority patent/JP6843972B2/ja
Priority to EP17852445.0A priority patent/EP3508371B1/en
Publication of WO2018054378A1 publication Critical patent/WO2018054378A1/zh
Priority to US16/363,564 priority patent/US10926655B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the field of energy, and in particular to a charging pile.
  • the DC charging pile is divided into pile gun integrated charging pile and pile gun split charging pile according to its shape.
  • the pile gun integrated charging pile is mainly composed of IP54 outdoor cabinet, AC power distribution and DC distribution. Electrical and insulation monitoring unit, main control unit (charge metering, charging management), charging module, auxiliary power supply, fan and temperature control, charging gun and so on.
  • the pile gun split charging pile generally consists of two parts, one part is a power cabinet and the other part is a charging terminal. If the power cabinet is placed outdoors, it needs to use an outdoor cabinet with a protection level of at least IP54.
  • the power cabinet is mainly placed with a charging module to complete the conversion from AC to DC.
  • the charging terminal is generally placed outdoors, and is composed of a charging gun, a billing metering and artificial interface, an auxiliary power source, an insulation monitoring unit, and a DC power distribution.
  • the DC charging piles shown in Fig. 1 and Fig. 2 all adopt the traditional charging module, and the charging modules are placed in a fixed frame, and the output adopts a backplane design, and the charging module is controlled by the main control unit or the charging module management unit.
  • the charging module needs to have a higher voltage and a wider output voltage range.
  • most of the current charging modules have an output voltage range of 200 to 500V. Or 300 ⁇ 750V two, if the future charging car requires the voltage to rise to 900V, if the existing architecture, the output voltage range of the charging module will need to reach 200V ⁇ 900V, the charging module reaches such a wide voltage range, the difficulty is greatly increased, also It will bring about an increase in cost, and most of the time, the charging module works in a non-optimal working state, resulting in low efficiency and high energy consumption.
  • the fast charging current since the charging current will be an important indicator of the future charging pile, the fast charging current It means that a large charging current requires more charging modules to be connected in parallel.
  • the number of charging modules and the system cooling capacity have been determined, and the maximum output power in the future. Due to the number of slots in the charging module, it cannot be expanded and cannot meet the needs of future power expansion.
  • the cabinet needs to adopt at least IP54 protection design, and the charging pile has high heat consumption, and the current heat dissipation mode is mostly direct ventilation and heat dissipation, including dustproof. network.
  • the direct ventilation and heat dissipation, dust, oil and the like are easy to enter the cabinet, resulting in high annual failure rate of the charging module and poor reliability.
  • due to the design of the air filter with direct ventilation it needs to be replaced regularly, and the maintenance cost is extremely high.
  • the charging pile provided by the embodiment of the invention is used for meeting the increasing demand of the electric vehicle for the charging voltage and the charging current.
  • an embodiment of the present invention provides a charging post, including: a power system and a charging terminal;
  • the power system includes: a first power unit, a second power unit, a power control unit, a heat sink, a first switch tube, a second switch tube, and a third switch tube; wherein the first power unit and the first The output voltage value U of the two power units is the same, and the output current value I of the first power unit and the second power unit is the same, the power a control unit is configured to control an output voltage and an output current of the first power unit and the second power unit, the first switch tube, the second switch tube and the third switch tube are used to implement the first power unit and The second power unit is connected in series or in parallel, and the heat sink is used to dissipate heat for the power system;
  • the charging terminal includes: a charging control module, a DC power distribution unit, and a charging gun; wherein the charging gun is configured to connect a battery to be charged and charge the battery to be charged, and the DC power distribution unit is used for The charging gun distributes power, and the charging control module is configured to charge and display the charging situation.
  • the charging post provided by the embodiment of the invention is composed of a first power unit, a second power unit, a power control unit, etc., and the two power units realize a series-parallel relationship through three switching tubes to provide flexible and variable charging for the battery to be charged.
  • the voltage and charging current overcome the problem of difficulty in expanding the current charging pile, and meet the increasing demand for charging voltage and charging current of the electric vehicle.
  • the first end of the first switch tube is connected to the first end of the first power unit and the DC power distribution unit, a second end of the first switch is connected to the first end of the second power unit; a first end of the second switch is connected to a second end of the first power unit, and the second switch is The second end is connected to the first end of the second power unit and the second end of the first switch tube; the first end of the third switch tube is connected to the second end of the first power unit and the first end The first end of the second switch tube, the second end of the third switch tube is connected to the second end of the second power unit and the DC power distribution unit.
  • the three switching tubes can flexibly realize the series-parallel relationship of the two power units, thereby providing a flexible and expandable space for the charging voltage and the charging current of the charging post.
  • the charging post includes three working modes:
  • the first working mode is: the first power unit and the second power unit are connected in parallel charging mode;
  • the second working mode is: the first power unit and the second power unit are connected in a charging mode in series;
  • the third working mode is: a hybrid charging mode in which the first power unit and the second power unit are connected in parallel and then connected in series.
  • the three different working modes of the charging pile provide different services for different needs of the battery to be charged.
  • the charging pile can be based on the three different kinds.
  • the working mode is correspondingly responded.
  • the charging control module and the battery to be charged Battery management system BMS battery management system
  • BMS battery management system
  • the charging control module needs to communicate with the power control unit, and the power control unit controls the second switch to be disconnected, and the charging current required by the battery to be charged is greater than or equal to a first preset threshold. Controlling that the first switch tube and the third switch tube are closed to cause the charging post to enter the first working mode.
  • the charging control module when the charging gun is connected to the battery to be charged, the charging control module and the battery to be charged
  • the battery management system BMS communicates, and identifies a charging voltage of the battery to be charged and a charging current required by the battery to be charged, when the range of the charging voltage exceeds a range of values of the U, and is smaller than the first
  • An output voltage of a power unit and the second power unit connected in series, and a charging current required by the battery to be charged is less than the I value
  • the charging control module communicates with the power control unit.
  • the power control unit controls the second switch to be closed and controlled
  • the first switch tube and the third switch tube are disconnected to cause the charging post to enter the second working mode.
  • the charging control module when the charging gun is connected to the battery to be charged, the charging control module and the battery to be charged
  • the battery management system BMS communicates, and identifies a charging voltage of the battery to be charged and a charging current required by the battery to be charged, when the range of the charging voltage exceeds a value range of the U, and the charging is to be charged
  • the charging current required by the battery is greater than the I value
  • the charging control module is in communication with the power control unit, the power control unit controls the second switching tube to be disconnected, and the first switching tube and the
  • the third switch tube is closed, so that the first power unit and the second power unit are output in parallel, and at the same time, the power control unit adjusts output voltages of the first power unit and the second power unit, when When the charging voltage of the battery to be charged reaches the maximum value of the U, the power control unit controls the first switching tube and the third switching tube to be disconnected, and the second is controlled. Tube is closed off, so that the
  • the power heater of the first power unit and the power heater of the second power unit are both Mounted on the heat sink.
  • the heat dissipation is performed by using the heat sink, and no fan can be used for heat dissipation in the entire system.
  • the heat dissipation method does not require a dustproof net, and the entire implementation is realized. On the basis of natural cooling of the system, it also saves costs.
  • the power system is protected by an IP65 protection design.
  • the charging pile provided by the embodiment of the invention adopts the IP65 protection design, which aims to improve reliability and reduce maintenance cost.
  • the charging post includes two or more power systems.
  • an embodiment of the present invention provides a charging post, including: a power system and a charging terminal;
  • the power system includes: a first power unit, a second power unit, a power control unit, and a heat sink; wherein the first power unit and the second power unit have a connection relationship, and the first power unit and The output voltage value U of the second power unit is the same, the output current value I of the first power unit and the second power unit are the same, and the power control unit is configured to control the first power unit and the Output voltage and output current of the second power unit;
  • the charging terminal includes: a charging control module, a DC power distribution unit, and a charging gun; wherein the charging gun is configured to connect a battery to be charged and charge the battery to be charged, and the DC power distribution unit is used for The charging gun distributes power, and the charging control module is configured to charge and display the charging situation.
  • the charging post provided by the embodiment of the present invention is composed of a first power unit, a second power unit, a power control unit, and the like, and the two power units have a connection relationship, thereby providing a flexible variable charging voltage and a charging current for the battery to be charged, thereby It overcomes the problem of difficulty in expanding the current charging pile and meets the increasing demand for electric vehicles for charging voltage and charging current.
  • connection relationship between the first power unit and the second power unit is a parallel connection, or the first power unit and the The connection relationship of the second power units is a series connection.
  • the charging post provided by the embodiment of the present invention is composed of a first power unit, a second power unit, a power control unit, etc., and the two power units have a series or parallel connection relationship, and provide a flexible and variable charging voltage for the battery to be charged and
  • the charging current overcomes the problem that the current charging pile is difficult to expand, and meets the increasing demand for the charging voltage and the charging current of the electric vehicle.
  • the charging post further includes: a first switch tube, a second switch tube, and a third switch tube,
  • the first switch tube, the second switch tube and the third switch tube are configured to implement series connection or parallel connection of the first power unit and the second power unit; wherein the first end of the first switch tube is connected a first end of the first power unit and the DC power distribution unit, a second end of the first switch tube is connected to a first end of the second power unit; and a first end of the second switch tube Connecting the second end of the first power unit, the second end of the second switch tube is connected to the first end of the second power unit and the second end of the first switch tube; the third switch a first end of the tube is connected to the second end of the first power unit and a first end of the second switch tube, and a second end of the third switch tube is connected to the second end of the second power unit and The DC power distribution unit.
  • the three switching tubes can flexibly realize the series-parallel relationship of the two power units, thereby providing a flexible and expandable space for the charging voltage and the charging current of the charging post.
  • the three switch tubes may be disposed in the power system, and may be separately disposed in the power module as a switch module similar to the switch box, which is not limited in the embodiment of the present invention.
  • the charging pile includes three working modes:
  • the first working mode is: the first power unit and the second power unit are connected in parallel charging mode;
  • the second working mode is: the first power unit and the second power unit are connected in a charging mode in series;
  • the third working mode is: a hybrid charging mode in which the first power unit and the second power unit are connected in parallel and then connected in series.
  • the three different working modes of the charging pile provide different services for different needs of the battery to be charged.
  • the charging pile can be based on the three different kinds.
  • the working mode is correspondingly responded.
  • the charging control module and the battery to be charged Battery management system BMS battery management system
  • BMS battery management system
  • the charging control module needs to communicate with the power control unit, and the power control unit controls the second switch to be disconnected, and the charging current required by the battery to be charged is greater than or equal to a first preset threshold. Controlling that the first switch tube and the third switch tube are closed to cause the charging post to enter the first working mode.
  • the charging control module when the charging gun is connected to the battery to be charged, the charging control module and the battery to be charged
  • the battery management system BMS communicates, and identifies a charging voltage of the battery to be charged and a charging current required by the battery to be charged, when the range of the charging voltage exceeds a range of values of the U, and is smaller than the first An output voltage of a power unit and the second power unit connected in series, and a charging current required by the battery to be charged is less than the I value, and the charging control module communicates with the power control unit.
  • the power control unit controls the second switch tube to be closed, and controls the first switch tube and the third switch tube to be disconnected to cause the charging post to enter the second working mode.
  • the charging control module when the charging gun is connected to the battery to be charged, the charging control module and the battery to be charged
  • the battery management system BMS communicates, and identifies a charging voltage of the battery to be charged and a charging current required by the battery to be charged, when the range of the charging voltage exceeds a value range of the U, and the charging is to be charged
  • the charging current required by the battery is greater than the I value
  • the charging control module is in communication with the power control unit, the power control unit controls the second switching tube to be disconnected, and the first switching tube and the
  • the third switch tube is closed, so that the first power unit and the second power unit are output in parallel, and at the same time, the power control unit adjusts output voltages of the first power unit and the second power unit, when When the charging voltage of the battery to be charged reaches the maximum value of the U, the power control unit controls the first switching tube and the third switching tube to be disconnected, and the second is controlled. Tube is closed off, so that the
  • the power system is protected by an IP65 protection design.
  • the charging pile provided by the embodiment of the invention adopts the IP65 protection design, which aims to improve reliability and reduce maintenance cost.
  • the charging post includes two or more power systems.
  • Figure 1 shows a prior art pile gun integrated charging post.
  • Figure 2 shows a prior art pile gun split charging post.
  • FIG. 3 is a structural diagram of a charging post provided by an embodiment of the present invention.
  • FIG. 4 is a structural diagram of another charging post according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of still another charging post according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of still another charging post according to an embodiment of the present invention.
  • first, second, etc. may be used herein to describe various elements, these terms are only used to distinguish one element or another.
  • a first power unit may also be referred to as a second power unit without departing from the scope of the invention.
  • the second power unit may also be referred to as a first work. Rate unit.
  • FIG. 3 shows a charging post 300 according to Embodiment 1 of the present invention.
  • the charging post 300 includes: a power system and a charging terminal;
  • the power system includes: a first power unit, a second power unit, a power control unit, a heat sink, a first switch tube Q1, a second switch tube Q2, and a third switch tube Q3; wherein the first power unit and The output voltage value U of the second power unit is the same, the output current value I of the first power unit and the second power unit are the same, and the power control unit is configured to control the first power unit and the The output voltage and the output current of the second power unit, the first switch tube Q1, the second switch tube Q2 and the third switch tube Q3 are used to implement the series connection of the first power unit and the second power unit or Connected in parallel, the heat sink is used to dissipate heat for the power system;
  • the charging terminal includes: a charging control module, a DC power distribution unit, and a charging gun; wherein the charging gun is configured to connect a battery to be charged and charge the battery to be charged, and the DC power distribution unit is used for The charging gun distributes power, and the charging control module is configured to charge and display the charging situation.
  • the charging post 300 provided by the first embodiment of the present invention is composed of a first power unit, a second power unit, a power control unit, etc., and the two power units realize a series-parallel relationship through three switching tubes to provide flexible and variable capacity for the battery to be charged.
  • the charging voltage and charging current overcome the problem of difficulty in expanding the current charging pile, and meet the increasing demand of the electric vehicle for the charging voltage and the charging current.
  • the power lines shown in the figure are used to transmit current signals, and the control lines shown in the figure are used for transmission control signaling, as is the case in the following figures, and will not be described again.
  • the first end of the first switch tube Q1 is connected to the first end of the first power unit and the DC power distribution unit, and the first switch tube Q1 is The second end is connected to the first end of the second power unit; the first end of the second switch Q2 is connected to the second end of the first power unit, and the second end of the second switch Q2 is connected a first end of the second power unit and a second end of the first switch tube Q1; a first end of the third switch tube Q3 is connected to the second end of the first power unit and the second end The first end of the switch tube Q2, the second end of the third switch tube Q3 is connected to the second end of the second power unit and the DC power distribution unit.
  • the three switching tubes can flexibly realize the series-parallel relationship of the two power units, thereby providing a flexible and expandable space for the charging voltage and the charging current of the charging post.
  • the charging post 300 provided in the above embodiment 1 includes three working modes:
  • the first working mode is: the first power unit and the second power unit are connected in parallel charging mode;
  • the second working mode is: the first power unit and the second power unit are connected in a charging mode in series;
  • the third working mode is: a hybrid charging mode in which the first power unit and the second power unit are connected in parallel and then connected in series.
  • the three different working modes of the charging pile provide different services for different needs of the battery to be charged.
  • the charging pile can be based on the three different kinds.
  • the working mode is correspondingly responded.
  • a battery management system (BMS) communicates, and identifies a charging voltage of the battery to be charged and a charging current required by the battery to be charged, when the range of the charging voltage is within a range of values of the U.
  • BMS battery management system
  • the charging control module is configured to communicate with the power control unit, and the power control unit controls the second switch tube Q2 to be disconnected, and the charging current required by the battery to be charged is greater than or equal to a first preset threshold. Controlling the first switch tube Q1 and the third switch tube Q3 to close, so that the charging post enters the first working mode.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit, and satisfies a large current (greater than or equal to the first preset threshold) to charge a battery to be charged, To quickly fill the battery to be charged, during the charging process, the first power unit and the second power unit need to be evenly distributed, and the load is evenly divided. After the charging is finished, the first switch tube Q1 is second. Both the switch tube Q2 and the third switch tube Q3 are disconnected.
  • the charging control module communicates with the battery management system BMS of the battery to be charged, and identifies the charging voltage of the battery to be charged and the battery to be charged. a charging current, when the range of the charging voltage exceeds a range of values of the U, and is smaller than an output voltage of the first power unit and the second power unit in series, and the battery to be charged is required The charging current is less than the I value, the charging control module is in communication with the power control unit, the power control unit controls the second switching tube Q2 to close, control the first switching tube Q1, and the The third switch tube Q3 is disconnected to cause the charging post to enter the second working mode.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit to meet a charging requirement of a battery to be charged, and the first power unit and the second during charging The output voltage of the power unit is the same, and the load is evenly divided.
  • the first switch tube Q1, the second switch tube Q2, and the third switch tube Q3 are all turned off.
  • the charging control module communicates with the battery management system BMS of the battery to be charged, and identifies the charging voltage of the battery to be charged and the battery to be charged. Charging current, when the range of the charging voltage exceeds the value range of the U, and the charging current required by the battery to be charged is greater than the I value, the charging control module communicates with the power control unit The power control unit controls the second switch tube Q2 to be turned off, and controls the first switch tube Q1 and the third switch tube Q3 to be closed, so that the first power unit and the second power unit are connected in parallel.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit, when a charging voltage of the battery to be charged reaches a maximum value of the U,
  • the power control unit controls the first switch tube Q1 and the third switch tube Q3 to be disconnected, and the second switch tube Q2 is controlled to be closed, so that the first power unit and the second power unit are connected in series Outputting, the charging post enters the third mode of operation.
  • the purpose of adjusting the output current is to satisfy the charging current required for the battery to be charged, and on the other hand to ensure that it does not exceed the battery capacity of the battery to be charged.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit to meet a charging requirement of a battery to be charged, and the first power unit and the second during charging The output voltage of the power unit is the same, and the load is evenly divided.
  • the first switch tube Q1, the second switch tube Q2, and the third switch tube Q3 are all turned off.
  • the above three working modes can flexibly combine the output voltage and the output current of different power units, make full use of the power unit, and make the charging pile work in an optimal state with the lowest cost.
  • the charging control module recognizes the requirements and controls the three switching tubes according to their specific requirements, thereby making the two powers in the charging pile
  • the unit forms different connection modes, so that the charging pile enters the working mode in response in the three working modes to charge the battery to be charged.
  • the charging terminal may be disposed at the top or the side of the power system, and form an integrated charging pile with the power system; or may be separately disposed on the ground.
  • the split charging pile is formed with the power system, which is not limited in this solution.
  • the first switching transistor Q1, the second switching transistor Q2, and the third switching transistor Q3 may be any of a MOSFET, an IGBT, a contactor, and a relay.
  • the power heater of the first power unit and the power heater of the second power unit are mounted on the heat sink.
  • the advantage of this is that the heat sink is used for heat dissipation, and the entire system can be cooled without a fan. Compared with the existing direct ventilation heat dissipation, the heat dissipation method does not require a dustproof net, and the natural heat dissipation of the entire system is realized. And can also save costs.
  • the charging post provided in the first embodiment of the present invention may further include a waterproof fan, and the waterproof fan may be disposed outside the power system for the heat sink or the bumper thereof. The heat dissipation is performed, thereby further enhancing the heat dissipation capability of the charging post.
  • the power system may be mounted on the ground by using the heat sink as a support, or the power system may be hung on the wall or the column through the heat sink.
  • the purpose is also to enhance its ability to dissipate heat.
  • the power system can be protected by the IP65 protection design, and the IP65 protection level is higher than IP54, so
  • the charging post 300 provided by the embodiment of the present invention can be designed without a dustproof net. Therefore, it is not necessary to periodically replace the air filter, and the failure rate of the power unit is greatly reduced, thereby greatly reducing the maintenance cost of the charging post.
  • IP54 The explanation of the degree of protection IP54 is as follows: where IP is the letter of the mark, the number 5 is the first mark number, the number 4 is the second mark number, the first mark number indicates the contact protection and the foreign object protection level, and the second mark number indicates the waterproof protection grade.
  • the industrial grade of protection is generally IP65, and the highest level is IP68. IP54 is a lower level of protection.
  • the embodiment of the present invention further provides a charging post 400.
  • the charging post 400 includes two or more power systems, as shown in the figure. (1 to N), that is, there may be N power systems in the charging post 400, where N is greater than or equal to 2.
  • each power unit is respectively connected to the DC power distribution unit according to the connection manner described in Embodiment 1, thereby achieving large capacity expansion.
  • FIG. 5 shows a charging post 500 according to Embodiment 1 of the present invention.
  • the charging post 500 includes: a power system and a charging terminal;
  • the power system includes: a first power unit, a second power unit, a power control unit, and a heat sink; wherein the first power unit and the second power unit have a connection relationship, and the first power unit and The output voltage value U of the second power unit is the same, the output current value I of the first power unit and the second power unit are the same, and the power control unit is configured to control the first power unit and the An output voltage and an output current of the second power unit, the heat sink being configured to dissipate heat for the power system;
  • the charging terminal includes: a charging control module, a DC power distribution unit, and a charging gun; wherein the charging gun is configured to connect a battery to be charged and charge the battery to be charged, and the DC power distribution unit is used for The charging gun distributes power, and the charging control module is configured to charge and display the charging situation.
  • the charging post provided by the embodiment of the present invention is composed of a first power unit, a second power unit, a power control unit, and the like, and the two power units have a connection relationship, thereby providing a flexible variable charging voltage and a charging current for the battery to be charged, thereby It overcomes the problem of difficulty in expanding the current charging pile and meets the increasing demand for electric vehicles for charging voltage and charging current.
  • connection relationship between the first power unit and the second power unit may be a parallel connection or a series connection. Illustrated in Figure 5 is a parallel connection.
  • the charging post provided by the embodiment of the present invention is composed of a first power unit, a second power unit, a power control unit, etc., and the two power units have a series or parallel connection relationship, and provide a flexible and variable charging voltage for the battery to be charged and
  • the charging current overcomes the problem that the current charging pile is difficult to expand, and meets the increasing demand for the charging voltage and the charging current of the electric vehicle.
  • the charging post 600 can be used as an optional implementation.
  • the charging post 600 can include: The first switch tube Q1, the second switch tube Q2 and the third switch tube Q3.
  • the three switch tubes are used to implement series connection or parallel connection of the first power unit and the second power unit;
  • the first end of the first switch tube Q1 is connected to the first end of the first power unit and the DC power distribution unit, and the second end of the first switch tube Q1 is connected to the second power unit.
  • a first end of the second switch tube Q2 is connected to the second end of the first power unit, and a second end of the second switch tube Q2 is connected to the first end of the second power unit And the second end of the first switch tube Q1;
  • the first end of the third switch tube Q3 is connected to the second end of the first power unit and the first end of the second switch tube Q2,
  • the second end of the third switch tube Q3 is connected to the second end of the second power unit and the DC power distribution unit.
  • the three switching tubes can flexibly realize the series-parallel relationship of the two power units, thereby providing a flexible and expandable space for the charging voltage and the charging current of the charging post.
  • the three switch tubes may be disposed in the power system, and may be separately disposed in the power module as a switch module similar to the switch box, which is not limited in the embodiment of the present invention.
  • the charging post 500 can include the following three working modes:
  • the first working mode is: the first power unit and the second power unit are connected in parallel charging mode;
  • the second working mode is: the first power unit and the second power unit are connected in a charging mode in series;
  • the third working mode is: a hybrid charging mode in which the first power unit and the second power unit are connected in parallel and then connected in series.
  • the three different working modes of the charging pile provide different services for different needs of the battery to be charged.
  • the charging pile can be based on the three different kinds.
  • the working mode is correspondingly responded.
  • the charging control module communicates with a battery management system BMS (battery management system) of the battery to be charged, and identifies a charging voltage of the battery to be charged and the The charging current required for the battery to be charged, when the range of the charging voltage is within the range of the value of U, And the charging control module is configured to communicate with the power control unit, and the power control unit controls the second switch tube Q2 to be disconnected, and the charging current required by the battery to be charged is greater than or equal to a first preset threshold. Controlling the first switch tube Q1 and the third switch tube Q3 to close, so that the charging post enters the first working mode.
  • BMS battery management system
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit, and satisfies a large current (greater than or equal to the first preset threshold) to charge a battery to be charged, To quickly fill the battery to be charged, during the charging process, the first power unit and the second power unit need to be evenly distributed, and the load is evenly divided. After the charging is finished, the first switch tube Q1 is second. Both the switch tube Q2 and the third switch tube Q3 are disconnected.
  • the charging control module communicates with the battery management system BMS of the battery to be charged, and identifies the charging voltage of the battery to be charged and the battery to be charged. a charging current, when the range of the charging voltage exceeds a range of values of the U, and is smaller than an output voltage of the first power unit and the second power unit in series, and the battery to be charged is required The charging current is less than the I value, the charging control module is in communication with the power control unit, the power control unit controls the second switching tube Q2 to close, control the first switching tube Q1, and the The third switch tube Q3 is disconnected to cause the charging post to enter the second working mode.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit to meet a charging requirement of a battery to be charged, and the first power unit and the second during charging The output voltage of the power unit is the same, and the load is evenly divided.
  • the first switch tube Q1, the second switch tube Q2, and the third switch tube Q3 are all turned off.
  • the charging control module communicates with the battery management system BMS of the battery to be charged, and identifies the charging voltage of the battery to be charged and the battery to be charged. Charging current, when the range of the charging voltage exceeds the value range of the U, and the charging current required by the battery to be charged is greater than the I value, the charging control module communicates with the power control unit The power control unit controls the second switch tube Q2 to be turned off, and controls the first switch tube Q1 and the third switch tube Q3 to be closed, so that the first power unit and the second power unit are connected in parallel.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit, when a charging voltage of the battery to be charged reaches a maximum value of the U,
  • the power control unit controls the first switch tube Q1 and the third switch tube Q3 to be disconnected, and the second switch tube Q2 is controlled to be closed, so that the first power unit and the second power unit are connected in series Outputting, the charging post enters the third mode of operation.
  • the purpose of adjusting the output current is to satisfy the charging current required for the battery to be charged, and on the other hand to ensure that it does not exceed the battery capacity of the battery to be charged.
  • the power control unit adjusts an output voltage and an output current of the first power unit and the second power unit to meet a charging requirement of a battery to be charged, and the first power unit and the second during charging The output voltage of the power unit is the same, and the load is evenly divided.
  • the first switch tube Q1, the second switch tube Q2, and the third switch tube Q3 are all turned off.
  • the above three working modes can flexibly combine the output voltage and the output current of different power units, make full use of the power unit, and make the charging pile work in an optimal state with the lowest cost.
  • the charging control module recognizes the requirements, and controls the three switching tubes according to the specific requirements thereof, thereby making the charging pile Two power sheets
  • the elements form different connection modes, so that the charging pile enters the working mode in response in the three working modes to charge the battery to be charged.
  • the charging post 500 provided by the embodiment of the present invention may also have no three switching tubes, and the first two working modes thereof may be separately implemented by separate series design or parallel design, that is, as shown in FIG. 5 .
  • the first power unit and the second power unit are directly connected in parallel to achieve the first working mode described above.
  • the power heater of the first power unit and the power heater of the second power unit are all mounted on the heat sink.
  • the advantage of this is that the heat sink is used for heat dissipation, and the entire system can be cooled without a fan.
  • the heat dissipation method does not require a dustproof net, and the natural heat dissipation of the entire system is realized. And can also save costs.
  • the power system can be protected by the IP65 protection design, and the IP65 protection level is higher than IP54. Therefore, in the charging post 500 or 600 provided by the embodiment of the present invention, the dustproof net design can be omitted, so that the air filter is not required to be periodically replaced, and the failure rate of the power unit is greatly reduced, thereby greatly reducing the maintenance cost of the charging post. .
  • an overall power system may be composed of multiple sub-power systems, and each sub-power system (shown as "power system” in the figure) may only contain one power.
  • the unit, the power unit in each sub-power system realizes the series-parallel connection through the switch tube or not through the switch tube, and is connected with the DC power distribution unit to realize power supply to the charging terminal. That is, we can consider the power system in the charging post 500 as a high power system, in which a plurality of power units are included, and each power unit is included in a separate sub-power system, each sub-power system.
  • the power system described in the claims is not described here.

Abstract

一种充电桩(300)包括:功率系统与充电终端;功率系统包括第一功率单元,第二功率单元,功率控制单元,散热器;第一功率单元和第二功率单元具有连接关系,且第一功率单元和第二功率单元的输出电压及输出电流均相同,功率控制单元用于控制两个功率单元的输出电压和输出电流;充电终端包括:充电控制模块,直流配电单元,充电枪;充电枪用于连接待充电电池并为其充电,直流配电单元用于为充电枪分配电源,充电控制模块用于对充电情况进行计费和显示。本申请通过利用两个功率单元的灵活连接,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。

Description

一种充电桩 技术领域
本发明涉及能源领域,尤其涉及一种充电桩。
背景技术
随着电动车的大量应用,充电桩也在广泛布局,充电桩分交流充电桩与直流充电桩。其中,直流充电桩根据其形态的不一样分桩枪一体式充电桩与桩枪分体式充电桩,如图1所示,桩枪一体式充电桩主要由IP54室外机柜、交流配电、直流配电、绝缘监测单元、主控单元(计费计量、充电管理)、充电模块、辅助电源、风扇及温控、充电枪等组成。如图2所示,桩枪分体式充电桩一般由两部分组成,一部分为功率柜,另一部分为充电终端。功率柜如果放置在室外需要采用防护等级至少为IP54的室外柜,如果放置在室内,需要有专门的机房放置功率柜,功率柜主要放置充电模块,完成交流到直流的转换。充电终端一般放置在室外,由充电枪、计费计量及人工界面、辅助电源、绝缘监测单元、直流配电等组成。
图1和图2所示的直流充电桩均采用传统的充电模块,且这些充电模块被放置在固定的插框内,输出采用有背板设计,由主控单元或充电模块管理单元控制充电模块的输出,工作时,所有充电模块的输出电压保持一致;充电桩的最高输出电压为由单个充电模块的最高输出电压决定,充电桩的最大输出电流为所有充电模块的输出电流和。
随着电动车充电电压的升高,需要更高的充电电压,这意味着需要充电模块具有更高的电压及更宽的输出电压范围,如当前充电模块大部分为输出电压范围为200~500V或300~750V两种,若未来充电车要求电压升到900V,如果采用现有架构,需要充电模块的输出电压范围会到200V~900V,充电模块达到这么宽的电压范围实现难度大大增加,也会带来成本的升高,且大部分时间充电模块工作于非最优工作状态,造成效率低,能耗大;另外,由于充电电流将是未来充电桩的一个重要指标,而快的充电电流意味着大的充电电流,需要更多的充电模块并联,然而在现有充电桩架构下,一旦现有充电桩的设计完成,其充电模块个数、系统散热能力就已经确定,未来最大输出功率受限于充电模块的槽位数,不能再扩容,无法满足未来功率扩展的需要。
并且,由于现有充电桩在放在户外应用时基于散热及防水的要求,机柜至少需要采用IP54的防护设计,而充电桩热耗大,当前的散热方式大部分为直通风散热,包含防尘网。而采用直通风散热,灰尘、油污等极易进入机柜,导致充电模块年失效率极高,可靠性差。且由于直通风有防尘网设计,需要定期更换,维护成本极高。
发明内容
本发明实施例提供的一种充电桩,用于满足电动车对于充电电压和充电电流日益增高的需求。
第一方面,本发明实施例提供一种充电桩,包括:功率系统与充电终端;
所述功率系统包括:第一功率单元,第二功率单元,功率控制单元,散热器,第一开关管,第二开关管,第三开关管;其中,所述第一功率单元和所述第二功率单元的输出电压值U相同,所述第一功率单元和所述第二功率单元的输出电流值I相同,所述功率 控制单元用于控制所述第一功率单元和所述第二功率单元的输出电压和输出电流,所述第一开关管,第二开关管和第三开关管用于实现所述第一功率单元和所述第二功率单元的串联连接或并联连接,所述散热器用于为所述功率系统散热;
所述充电终端包括:充电控制模块,直流配电单元,充电枪;其中,所述充电枪用于连接待充电电池并为所述待充电电池进行充电,所述直流配电单元用于为所述充电枪分配电源,所述充电控制模块用于对所述充电情况进行计费和显示。
由于本发明实施例提供的充电桩由第一功率单元,第二功率单元,功率控制单元等组成,两个功率单元通过三个开关管实现串并联关系,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一开关管的第一端连接所述第一功率单元的第一端及所述直流配电单元,所述第一开关管的第二端连接所述第二功率单元的第一端;所述第二开关管的第一端连接所述第一功率单元的第二端,所述第二开关管的第二端连接所述第二功率单元的第一端及所述第一开关管的第二端;所述第三开关管的第一端连接所述第一功率单元的第二端及所述第二开关管的第一端,所述第三开关管的第二端连接所述第二功率单元的第二端及所述直流配电单元。
三个开关管通过这样的连接方式,可以灵活的实现两个功率单元的串并联关系,从而为充电桩的充电电压和充电电流提供灵活可扩展的空间。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述充电桩包括三种工作模式:
第一工作模式为:所述第一功率单元与所述第二功率单元并联充电模式;
第二工作模式为:所述第一功率单元与所述第二功率单元串联充电模式;
第三工作模式为:所述第一功率单元与所述第二功率单元先并联后串联的混合充电模式。
该充电桩的三种不同工作模式为待充电电池的不同需求提供不同的服务,当电动车上的待充电电池对充电电压和充电电流的需求变动时,该充电桩都可以基于这三种不同的工作模式进行相应的应对。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS(battery management system)通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围在所述U的取值范围以内,且所述待充电电池所需要的充电电流大于或等于第一预设阈值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开、控制所述第一开关管和所述第三开关管闭合,使所述充电桩进入所述第一工作模式。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且小于所述第一功率单元和所述第二功率单元串联后的输出电压,且所述待充电电池所需要的充电电流小于所述所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管闭合、控 制所述第一开关管和所述第三开关管断开,使所述充电桩进入所述第二工作模式。
结合第一方面的第二种可能的实现方式,在第一方面的第五种可能的实现方式中,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且所述待充电电池所需要的充电电流大于所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开,控制所述第一开关管和所述第三开关管闭合,使所述第一功率单元和所述第二功率单元并联输出,同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压,当所述待充电电池的充电电压达到所述U的最大取值时,则所述功率控制单元控制所述第一开关管和所述第三开关管断开,控制所述第二开关管闭合,使所述第一功率单元和所述第二功率单元串联输出,所述充电桩进入所述第三工作模式。
结合第一方面的上述任意一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一功率单元的功率发热器和所述第二功率单元的功率发热器均贴装在所述散热器上。
由于在本发明实施例提供的充电桩中,利用散热器进行散热,整个系统内部可以没有风扇进行散热,与现有的直通风散热相比,这种散热方式不需要防尘网,在实现整个系统自然散热的基础上,还能节约成本。
结合第一方面的上述任意一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述功率系统采用IP65的防护设计进行防护。
与传统的充电桩采用IP54的防护设计对比,本发明实施例提供的充电桩采用IP65的防护设计,旨在提升可靠性,减少维护成本。
结合第一方面的上述任意一种可能的实现方式,在第一方面的第八种可能的实现方式中,所述充电桩包括两个或两个以上的功率系统。
由此实现充电桩的扩容,使其能适应日益增长的对充电电压和充电电流的需求。
第二方面,本发明实施例提供一种充电桩,包括:功率系统与充电终端;
所述功率系统包括:第一功率单元,第二功率单元,功率控制单元,散热器;其中,所述第一功率单元和所述第二功率单元具有连接关系,且所述第一功率单元和所述第二功率单元的输出电压值U相同,所述第一功率单元和所述第二功率单元的输出电流值I相同,所述功率控制单元用于控制所述第一功率单元和所述第二功率单元的输出电压和输出电流;
所述充电终端包括:充电控制模块,直流配电单元,充电枪;其中,所述充电枪用于连接待充电电池并为所述待充电电池进行充电,所述直流配电单元用于为所述充电枪分配电源,所述充电控制模块用于对所述充电情况进行计费和显示。
由于本发明实施例提供的充电桩由第一功率单元,第二功率单元,功率控制单元等组成,两个功率单元具有连接关系,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一功率单元和所述第二功率单元的连接关系为并联连接,或,所述第一功率单元和所述第二功率单元的连接关系为串联连接。
由于本发明实施例提供的充电桩由第一功率单元,第二功率单元,功率控制单元等组成,两个功率单元具有串联或并联的连接关系,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述充电桩还包括:第一开关管,第二开关管和第三开关管,所述第一开关管,第二开关管和第三开关管用于实现所述第一功率单元和所述第二功率单元的串联连接或并联连接;其中,所述第一开关管的第一端连接所述第一功率单元的第一端及所述直流配电单元,所述第一开关管的第二端连接所述第二功率单元的第一端;所述第二开关管的第一端连接所述第一功率单元的第二端,所述第二开关管的第二端连接所述第二功率单元的第一端及所述第一开关管的第二端;所述第三开关管的第一端连接所述第一功率单元的第二端及所述第二开关管的第一端,所述第三开关管的第二端连接所述第二功率单元的第二端及所述直流配电单元。
三个开关管通过这样的连接方式,可以灵活的实现两个功率单元的串并联关系,从而为充电桩的充电电压和充电电流提供灵活可扩展的空间。
值得说明的是,该三个开关管可以设置在所述功率系统内,还可以作为一个类似开关盒的开关模块单独设置在功率系统外部,本发明实施例不做限定。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述充电桩包括三种工作模式:
第一工作模式为:所述第一功率单元与所述第二功率单元并联充电模式;
第二工作模式为:所述第一功率单元与所述第二功率单元串联充电模式;
第三工作模式为:所述第一功率单元与所述第二功率单元先并联后串联的混合充电模式。
该充电桩的三种不同工作模式为待充电电池的不同需求提供不同的服务,当电动车上的待充电电池对充电电压和充电电流的需求变动时,该充电桩都可以基于这三种不同的工作模式进行相应的应对。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS(battery management system)通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围在所述U的取值范围以内,且所述待充电电池所需要的充电电流大于或等于第一预设阈值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开、控制所述第一开关管和所述第三开关管闭合,使所述充电桩进入所述第一工作模式。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且小于所述第一功率单元和所述第二功率单元串联后的输出电压,且所述待充电电池所需要的充电电流小于所述所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管闭合、控制所述第一开关管和所述第三开关管断开,使所述充电桩进入所述第二工作模式。
结合第二方面的第三种可能的实现方式,在第二方面的第六种可能的实现方式中,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且所述待充电电池所需要的充电电流大于所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开,控制所述第一开关管和所述第三开关管闭合,使所述第一功率单元和所述第二功率单元并联输出,同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压,当所述待充电电池的充电电压达到所述U的最大取值时,则所述功率控制单元控制所述第一开关管和所述第三开关管断开,控制所述第二开关管闭合,使所述第一功率单元和所述第二功率单元串联输出,所述充电桩进入所述第三工作模式。
结合第二方面的上述任意一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述功率系统采用IP65的防护设计进行防护。
与传统的充电桩采用IP54的防护设计对比,本发明实施例提供的充电桩采用IP65的防护设计,旨在提升可靠性,减少维护成本。
结合第二方面的上述任意一种可能的实现方式,在第二方面的第八种可能的实现方式中,所述充电桩包括两个或两个以上的功率系统。
由此实现充电桩的扩容,使其能适应日益增长的对充电电压和充电电流的需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了现有技术中的桩枪一体式充电桩。
图2示出了现有技术中的桩枪分体式充电桩。
图3示出了本发明实施例提供的一种充电桩结构图。
图4示出了本发明实施例提供的另一种充电桩结构图。
图5示出了本发明实施例提供的又一种充电桩结构图。
图6示出了本发明实施例提供的再一种充电桩结构图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
还应当理解,尽管在本文中可能采用术语第一、第二等来描述各种元件,但这些术语仅用来将元件或其他相关对象彼此区分开。例如,在不脱离本发明的范围的情况下,第一功率单元也可以被称为第二功率单元,类似地,第二功率单元也可以被称为第一功 率单元。
在本发明的说明中使用的术语是仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明的说明书和所附权利要求中所使用的单数形式的"一个"和"该"也可以包括复数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语"和/或"是指包含一个或多个相关联的特征的任何或所有可能组合。
图3示出了本发明实施例一提供的一种充电桩300。该充电桩300包括:功率系统与充电终端;
所述功率系统包括:第一功率单元,第二功率单元,功率控制单元,散热器,第一开关管Q1,第二开关管Q2,第三开关管Q3;其中,所述第一功率单元和所述第二功率单元的输出电压值U相同,所述第一功率单元和所述第二功率单元的输出电流值I相同,所述功率控制单元用于控制所述第一功率单元和所述第二功率单元的输出电压和输出电流,所述第一开关管Q1,第二开关管Q2和第三开关管Q3用于实现所述第一功率单元和所述第二功率单元的串联连接或并联连接,所述散热器用于为所述功率系统散热;
所述充电终端包括:充电控制模块,直流配电单元,充电枪;其中,所述充电枪用于连接待充电电池并为所述待充电电池进行充电,所述直流配电单元用于为所述充电枪分配电源,所述充电控制模块用于对所述充电情况进行计费和显示。
由于本发明实施例一提供的充电桩300由第一功率单元,第二功率单元,功率控制单元等组成,两个功率单元通过三个开关管实现串并联关系,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。
图中所示的功率线是用于传输电流信号的,图中所示的控制线是用于传输控制信令的,后面的图中都是如此,不再基于此赘述。
在上述实施例一的基础上,进一步的,所述第一开关管Q1的第一端连接所述第一功率单元的第一端及所述直流配电单元,所述第一开关管Q1的第二端连接所述第二功率单元的第一端;所述第二开关管Q2的第一端连接所述第一功率单元的第二端,所述第二开关管Q2的第二端连接所述第二功率单元的第一端及所述第一开关管Q1的第二端;所述第三开关管Q3的第一端连接所述第一功率单元的第二端及所述第二开关管Q2的第一端,所述第三开关管Q3的第二端连接所述第二功率单元的第二端及所述直流配电单元。
三个开关管通过这样的连接方式,可以灵活的实现两个功率单元的串并联关系,从而为充电桩的充电电压和充电电流提供灵活可扩展的空间。
更具体的,上述实施例一所提供的充电桩300包括三种工作模式:
第一工作模式为:所述第一功率单元与所述第二功率单元并联充电模式;
第二工作模式为:所述第一功率单元与所述第二功率单元串联充电模式;
第三工作模式为:所述第一功率单元与所述第二功率单元先并联后串联的混合充电模式。
该充电桩的三种不同工作模式为待充电电池的不同需求提供不同的服务,当电动车上的待充电电池对充电电压和充电电流的需求变动时,该充电桩都可以基于这三种不同的工作模式进行相应的应对。
下面分别介绍三种不同的工作模式的触发条件及具体控制逻辑:
1、当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电 池管理系统BMS(battery management system)通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围在所述U的取值范围以内,且所述待充电电池所需要的充电电流大于或等于第一预设阈值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管Q2断开、控制所述第一开关管Q1和所述第三开关管Q3闭合,使所述充电桩进入所述第一工作模式。
同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,满足大电流(大于或等于所述第一预设阈值)给待充电电池充电,以使得快速充满待充电电池的电,充电过程中所述第一功率单元和所述第二功率单元之间需要进行均流,保持负载均分,充电结束后所述第一开关管Q1,第二开关管Q2和第三开关管Q3均断开。
或,
2、当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且小于所述第一功率单元和所述第二功率单元串联后的输出电压,且所述待充电电池所需要的充电电流小于所述所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管Q2闭合、控制所述第一开关管Q1和所述第三开关管Q3断开,使所述充电桩进入所述第二工作模式。
同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,满足待充电电池的充电需求,充电过程中所述第一功率单元和所述第二功率单元的输出电压相同,保持负载均分,充电结束后所述第一开关管Q1,第二开关管Q2和第三开关管Q3均断开。
或,
3、当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且所述待充电电池所需要的充电电流大于所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管Q2断开,控制所述第一开关管Q1和所述第三开关管Q3闭合,使所述第一功率单元和所述第二功率单元并联输出,同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,当所述待充电电池的充电电压达到所述U的最大取值时,则所述功率控制单元控制所述第一开关管Q1和所述第三开关管Q3断开,控制所述第二开关管Q2闭合,使所述第一功率单元和所述第二功率单元串联输出,所述充电桩进入所述第三工作模式。其中,调节输出电流的目的在于使其满足待充电电池所需的充电电流,另一方面也保证其不超出待充电电池的电池容量。
同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,满足待充电电池的充电要求,充电过程中所述第一功率单元和所述第二功率单元的输出电压相同,保持负载均分,充电结束后所述第一开关管Q1,第二开关管Q2和第三开关管Q3均断开。
上述三种工作模式与传统的方案相比,不同功率单元的输出电压与输出电流能做到灵活组合,充分利用功率单元,使充电桩工作在最佳状态,同时成本又最低。综上,当 不同电动车的待充电电池对于充电电压和充电电流有不同的要求时,充电控制模块识别其要求,并根据其具体要求对三个开关管进行控制,从而使所述充电桩中的两个功率单元形成不同的连接方式,使充电桩进入三种工作模式中响应的工作模式,为待充电电池进行充电。
值得说明的是,上述实施例一提供的充电桩300,其充电终端可以设置于所述功率系统的顶部或侧部,与所述功率系统形成一体式充电桩;或者还可以单独设置于地面,与所述功率系统形成分体式充电桩,本方案对此不做限定。
另外,在上述实施例一提供的充电桩300中,所述第一开关管Q1、所述第二开关管Q2和所述第三开关管Q3可以是MOSFET、IGBT、接触器、继电器中的任一种元器件,即其只要能配合实现所述第一功率单元和所述第二功率单元的串并联关系即可,本方案对其具体形态亦不做限定。
进一步的,在上述实施例一提供的充电桩300中,所述第一功率单元的功率发热器和所述第二功率单元的功率发热器均贴装在所述散热器上。这样的好处在于,利用散热器进行散热,整个系统内部可以不设置风扇进行散热,与现有的直通风散热相比,这种散热方式不需要防尘网,在实现整个系统自然散热的基础上,还能节约成本。
当然,虽然系统内部不设置风扇进行散热,但是本方案实施例一提供的充电桩还可以包括防水风扇,这个防水风扇可以设置在所述功率系统外部,用于对所述散热器或者其翘片进行散热,由此进一步加强该充电桩的散热能力。
在上述实施例的基础上,进一步的,所述功率系统可以利用所述散热器作为支撑安装在地面,或,所述功率系统可以通过所述散热器挂靠在墙上或立柱上,这样做的目的也是为了增强其散热能力。
值得进一步说明的是,与传统的充电桩相比,在本发明实施例提供的充电桩300中,所述功率系统可以采用IP65的防护设计进行防护,由于IP65的防护等级较IP54高,因此在本发明实施例提供的充电桩300中可以无防尘网设计,因此也不需要定期更换防尘网,且功率单元的失效率会大大降低,由此大大减少充电桩的维护成本。
关于防护等级IP54的解释如下:其中IP为标记字母,数字5为第一标记数字,数字4为第二标记数字,第一标记数字表示接触保护和外来物保护等级,第二标记数字表示防水保护等级。防护等级在工业上的应用一般为IP65,最高级为IP68。IP54属等级较低的防护等级。
在本发明实施例提供的充电桩300的基础上,本发明实施例还提供一种充电桩400,如图4所示,该充电桩400包括两个或两个以上的功率系统,如图中的(1~N)即该充电桩400中的功率系统可以有N个,其中N大于或等于2。在各个功率系统中,各功率单元按照实施例一中所述的连接方式分别与直流配电单元相连接,从而实现大容量扩容。
图5示出了本发明实施例一提供的一种充电桩500。该充电桩500包括:功率系统与充电终端;
所述功率系统包括:第一功率单元,第二功率单元,功率控制单元,散热器;其中,所述第一功率单元和所述第二功率单元具有连接关系,且所述第一功率单元和所述第二功率单元的输出电压值U相同,所述第一功率单元和所述第二功率单元的输出电流值I相同,所述功率控制单元用于控制所述第一功率单元和所述第二功率单元的输出电压和输出电流,所述散热器用于为所述功率系统散热;
所述充电终端包括:充电控制模块,直流配电单元,充电枪;其中,所述充电枪用于连接待充电电池并为所述待充电电池进行充电,所述直流配电单元用于为所述充电枪分配电源,所述充电控制模块用于对所述充电情况进行计费和显示。
由于本发明实施例提供的充电桩由第一功率单元,第二功率单元,功率控制单元等组成,两个功率单元具有连接关系,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。
值得说明的是,所述第一功率单元和所述第二功率单元的连接关系可以为并联连接,也可以为串联连接。图5中举例示出的即为并联连接。
由于本发明实施例提供的充电桩由第一功率单元,第二功率单元,功率控制单元等组成,两个功率单元具有串联或并联的连接关系,为待充电电池提供灵活可变的充电电压及充电电流,从而克服了当前充电桩扩容困难的问题,满足电动车对于充电电压和充电电流日益增高的需求。
在本发明实施例提供的充电桩500的基础上,如图6所示,充电桩600可以作为一种可选的实现方式,该充电桩600除了充电桩500所包含的器件,还可以包括:第一开关管Q1,第二开关管Q2和第三开关管Q3。
在这种可选的实现方式中,该三个开关管被用于实现所述第一功率单元和所述第二功率单元的串联连接或并联连接;
其中,所述第一开关管Q1的第一端连接所述第一功率单元的第一端及所述直流配电单元,所述第一开关管Q1的第二端连接所述第二功率单元的第一端;所述第二开关管Q2的第一端连接所述第一功率单元的第二端,所述第二开关管Q2的第二端连接所述第二功率单元的第一端及所述第一开关管Q1的第二端;所述第三开关管Q3的第一端连接所述第一功率单元的第二端及所述第二开关管Q2的第一端,所述第三开关管Q3的第二端连接所述第二功率单元的第二端及所述直流配电单元。
三个开关管通过这样的连接方式,可以灵活的实现两个功率单元的串并联关系,从而为充电桩的充电电压和充电电流提供灵活可扩展的空间。
值得说明的是,这三个开关管可以设置在所述功率系统内,还可以作为一个类似开关盒的开关模块单独设置在功率系统外部,本发明实施例不做限定。
作为另一种可选的实现方式,所述充电桩500可以包括如下三种工作模式:
第一工作模式为:所述第一功率单元与所述第二功率单元并联充电模式;
第二工作模式为:所述第一功率单元与所述第二功率单元串联充电模式;
第三工作模式为:所述第一功率单元与所述第二功率单元先并联后串联的混合充电模式。
该充电桩的三种不同工作模式为待充电电池的不同需求提供不同的服务,当电动车上的待充电电池对充电电压和充电电流的需求变动时,该充电桩都可以基于这三种不同的工作模式进行相应的应对。
下面分别介绍三种不同的工作模式的触发条件及具体控制逻辑:
1、当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS(battery management system)通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围在所述U的取值范围以内, 且所述待充电电池所需要的充电电流大于或等于第一预设阈值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管Q2断开、控制所述第一开关管Q1和所述第三开关管Q3闭合,使所述充电桩进入所述第一工作模式。
同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,满足大电流(大于或等于所述第一预设阈值)给待充电电池充电,以使得快速充满待充电电池的电,充电过程中所述第一功率单元和所述第二功率单元之间需要进行均流,保持负载均分,充电结束后所述第一开关管Q1,第二开关管Q2和第三开关管Q3均断开。
或,
2、当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且小于所述第一功率单元和所述第二功率单元串联后的输出电压,且所述待充电电池所需要的充电电流小于所述所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管Q2闭合、控制所述第一开关管Q1和所述第三开关管Q3断开,使所述充电桩进入所述第二工作模式。
同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,满足待充电电池的充电需求,充电过程中所述第一功率单元和所述第二功率单元的输出电压相同,保持负载均分,充电结束后所述第一开关管Q1,第二开关管Q2和第三开关管Q3均断开。
或,
3、当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且所述待充电电池所需要的充电电流大于所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管Q2断开,控制所述第一开关管Q1和所述第三开关管Q3闭合,使所述第一功率单元和所述第二功率单元并联输出,同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,当所述待充电电池的充电电压达到所述U的最大取值时,则所述功率控制单元控制所述第一开关管Q1和所述第三开关管Q3断开,控制所述第二开关管Q2闭合,使所述第一功率单元和所述第二功率单元串联输出,所述充电桩进入所述第三工作模式。其中,调节输出电流的目的在于使其满足待充电电池所需的充电电流,另一方面也保证其不超出待充电电池的电池容量。
同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压和输出电流,满足待充电电池的充电要求,充电过程中所述第一功率单元和所述第二功率单元的输出电压相同,保持负载均分,充电结束后所述第一开关管Q1,第二开关管Q2和第三开关管Q3均断开。
上述三种工作模式与传统的方案相比,不同功率单元的输出电压与输出电流能做到灵活组合,充分利用功率单元,使充电桩工作在最佳状态,同时成本又最低。综上,当不同电动车的待充电电池对于充电电压和充电电流有不同的要求时,充电控制模块识别其要求,并根据其具体要求对三个开关管进行控制,从而使所述充电桩中的两个功率单 元形成不同的连接方式,使充电桩进入三种工作模式中响应的工作模式,为待充电电池进行充电。
当然,如前所述,本发明实施例提供的充电桩500也可以没有三个开关管,它的前两种工作模式可以通过单独的串联设计,或者并联设计来分开独立实现,即如图5示出的这种方式,将第一功率单元与第二功率单元直接并联以实现上述的第一工作模式,同理,我们还可以将第一功率单元与第二功率单元直接串联以实现上述的第二工作模式。即,在本发明实施例提供的充电桩600中,我们可以不借助开关而直接实现功率单元之间的串并联关系,此处不再赘述。
进一步的,在上述实施例二提供的充电桩500或600中,所述第一功率单元的功率发热器和所述第二功率单元的功率发热器均贴装在所述散热器上。这样的好处在于,利用散热器进行散热,整个系统内部可以不设置风扇进行散热,与现有的直通风散热相比,这种散热方式不需要防尘网,在实现整个系统自然散热的基础上,还能节约成本。
值得进一步说明的是,与传统的充电桩相比,在本发明实施例提供的充电桩500或600中,所述功率系统可以采用IP65的防护设计进行防护,由于IP65的防护等级较IP54高,因此在本发明实施例提供的充电桩500或600中可以无防尘网设计,因此也不需要定期更换防尘网,且功率单元的失效率会大大降低,由此大大减少充电桩的维护成本。
需要说明的是,在如图5所示的充电桩500中,一个整体的功率系统可以由多个子功率系统构成,每个子功率系统(图中所示为“功率系统”)可以只包含一个功率单元,各个子功率系统中的功率单元通过开关管或不通过开关管实现串并联的连接,并与直流配电单元连接实现对充电终端的供电。即,我们可以将充电桩500中的功率系统看成一个大功率系统,在这个大功率系统中,包含多个功率单元,各个功率单元又包含在单独的子功率系统中,每一个子功率系统可以有独立的功率控制单元对其功率单元进行输出电压和输出电流的控制,也可以有自己独立的散热器等相关器件。换句话说,一个大功率系统中除了有两个或两个以上功率单元,还可以有相应的两个或两个以上功率控制单元,散热器等……这个大功率系统就可以被看作我们在权利要求中所述的功率系统,此处不再赘述。
以上对本发明实施例所提供的充电桩进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种充电桩,其特征在于,包括:功率系统与充电终端;
    所述功率系统包括:第一功率单元,第二功率单元,功率控制单元,散热器,第一开关管,第二开关管,第三开关管;其中,所述第一功率单元和所述第二功率单元的输出电压值U相同,所述第一功率单元和所述第二功率单元的输出电流值I相同,所述功率控制单元用于控制所述第一功率单元和所述第二功率单元的输出电压和输出电流,所述第一开关管,第二开关管和第三开关管用于实现所述第一功率单元和所述第二功率单元的串联连接或并联连接,所述散热器用于为所述功率系统散热;
    所述充电终端包括:充电控制模块,直流配电单元,充电枪;其中,所述充电枪用于连接待充电电池并为所述待充电电池进行充电,所述直流配电单元用于为所述充电枪分配电源,所述充电控制模块用于对所述充电情况进行计费和显示。
  2. 根据权利要求1所述的充电桩,其特征在于,所述第一开关管的第一端连接所述第一功率单元的第一端及所述直流配电单元,所述第一开关管的第二端连接所述第二功率单元的第一端;所述第二开关管的第一端连接所述第一功率单元的第二端,所述第二开关管的第二端连接所述第二功率单元的第一端及所述第一开关管的第二端;所述第三开关管的第一端连接所述第一功率单元的第二端及所述第二开关管的第一端,所述第三开关管的第二端连接所述第二功率单元的第二端及所述直流配电单元。
  3. 根据权利要求2所述的充电桩,其特征在于,所述充电桩包括三种工作模式:
    第一工作模式为:所述第一功率单元与所述第二功率单元并联充电模式;
    第二工作模式为:所述第一功率单元与所述第二功率单元串联充电模式;
    第三工作模式为:所述第一功率单元与所述第二功率单元先并联后串联的混合充电模式。
  4. 根据权利要求3所述的充电桩,其特征在于,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS(battery management system)通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围在所述U的取值范围以内,且所述待充电电池所需要的充电电流大于或等于第一预设阈值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开、控制所述第一开关管和所述第三开关管闭合,使所述充电桩进入所述第一工作模式。
  5. 根据权利要求3所述的充电桩,其特征在于,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且小于所述第一功率单元和所述第二功率单元串联后的输出电压,且所述待充电电池所需要的充电电流小于所述所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管闭合、控制所述第一开关管和所述第三开关管断开,使所述充电桩进入所述第二工作模式。
  6. 根据权利要求3所述的充电桩,其特征在于,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值 范围,且所述待充电电池所需要的充电电流大于所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开,控制所述第一开关管和所述第三开关管闭合,使所述第一功率单元和所述第二功率单元并联输出,同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压,当所述待充电电池的充电电压达到所述U的最大取值时,则所述功率控制单元控制所述第一开关管和所述第三开关管断开,控制所述第二开关管闭合,使所述第一功率单元和所述第二功率单元串联输出,所述充电桩进入所述第三工作模式。
  7. 根据权利要求1至6任一所述的充电桩,其特征在于,所述充电终端设置于所述功率系统的顶部或侧部,与所述功率系统形成一体式充电桩;或
    所述充电终端单独设置于地面,与所述功率系统形成分体式充电桩。
  8. 根据权利要求1至7任一所述的充电桩,其特征在于,所述第一开关管、所述第二开关管和所述第三开关管为MOSFET、IGBT、接触器、继电器中的任一种元器件。
  9. 根据权利要求1至8任一所述的充电桩,其特征在于,所述第一功率单元的功率发热器和所述第二功率单元的功率发热器均贴装在所述散热器上。
  10. 根据权利要求9所述的充电桩,其特征在于,所述充电桩还包括防水风扇,所述防水风扇设置在所述功率系统外部,用于对所述散热器进行散热。
  11. 根据权利要求1至10任一所述的充电桩,其特征在于,所述功率系统利用所述散热器作为支撑安装在地面,或,所述功率系统通过所述散热器挂靠在墙上或立柱上。
  12. 根据权利要求1至11任一所述的充电桩,其特征在于,所述功率系统采用IP65的防护设计进行防护。
  13. 一种充电桩,其特征在于,包括:功率系统与充电终端;
    所述功率系统包括:第一功率单元,第二功率单元,功率控制单元,散热器;其中,所述第一功率单元和所述第二功率单元具有连接关系,且所述第一功率单元和所述第二功率单元的输出电压值U相同,所述第一功率单元和所述第二功率单元的输出电流值I相同,所述功率控制单元用于控制所述第一功率单元和所述第二功率单元的输出电压和输出电流,所述散热器用于为所述功率系统散热;
    所述充电终端包括:充电控制模块,直流配电单元,充电枪;其中,所述充电枪用于连接待充电电池并为所述待充电电池进行充电,所述直流配电单元用于为所述充电枪分配电源,所述充电控制模块用于对所述充电情况进行计费和显示。
  14. 根据权利要求13所述的充电桩,其特征在于,所述第一功率单元和所述第二功率单元的连接关系为并联连接,或,所述第一功率单元和所述第二功率单元的连接关系为串联连接。
  15. 根据权利要求14所述的充电桩,其特征在于,所述充电桩还包括:第一开关管,第二开关管和第三开关管,所述第一开关管,第二开关管和第三开关管用于实现所述第一功率单元和所述第二功率单元的串联连接或并联连接;其中,所述第一开关管的第一端连接所述第一功率单元的第一端及所述直流配电单元,所述第一开关管的第二端连接所述第二功率单元的第一端;所述第二开关管的第一端连接所述第一功率单元的第二端,所述第二开关管的第二端连接所述第二功率单元的第一端及所述第一开关管的第二端;所述第三开关管的第一端连接所述第一功率单元的第二端及所述第二开关管的第一端,所述第三开关管的第二端连接所述第二功率单元的第二端及所述直流配电单元。
  16. 根据权利要求15所述的充电桩,其特征在于,所述充电桩包括三种工作模式:
    第一工作模式为:所述第一功率单元与所述第二功率单元并联充电模式;
    第二工作模式为:所述第一功率单元与所述第二功率单元串联充电模式;
    第三工作模式为:所述第一功率单元与所述第二功率单元先并联后串联的混合充电模式。
  17. 根据权利要求16所述的充电桩,其特征在于,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS(battery management system)通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围在所述U的取值范围以内,且所述待充电电池所需要的充电电流大于或等于第一预设阈值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开、控制所述第一开关管和所述第三开关管闭合,使所述充电桩进入所述第一工作模式。
  18. 根据权利要求16所述的充电桩,其特征在于,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且小于所述第一功率单元和所述第二功率单元串联后的输出电压,且所述待充电电池所需要的充电电流小于所述所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管闭合、控制所述第一开关管和所述第三开关管断开,使所述充电桩进入所述第二工作模式。
  19. 根据权利要求16所述的充电桩,其特征在于,当所述充电枪连接所述待充电电池,所述充电控制模块与所述待充电电池的电池管理系统BMS通信,并识别所述待充电电池的充电电压及所述待充电电池所需要的充电电流,当所述充电电压的范围超出所述U的取值范围,且所述待充电电池所需要的充电电流大于所述I值,则所述充电控制模块与所述功率控制单元通信,所述功率控制单元控制所述第二开关管断开,控制所述第一开关管和所述第三开关管闭合,使所述第一功率单元和所述第二功率单元并联输出,同时,所述功率控制单元调节所述第一功率单元和所述第二功率单元的输出电压,当所述待充电电池的充电电压达到所述U的最大取值时,则所述功率控制单元控制所述第一开关管和所述第三开关管断开,控制所述第二开关管闭合,使所述第一功率单元和所述第二功率单元串联输出,所述充电桩进入所述第三工作模式。
  20. 根据权利要求13至19任一所述的充电桩,其特征在于,所述功率系统采用IP65的防护设计进行防护。
PCT/CN2017/103378 2016-09-26 2017-09-26 一种充电桩 WO2018054378A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17852445T ES2925109T3 (es) 2016-09-26 2017-09-26 Poste de carga
JP2019516235A JP6843972B2 (ja) 2016-09-26 2017-09-26 充電パイル
EP17852445.0A EP3508371B1 (en) 2016-09-26 2017-09-26 Charging post
US16/363,564 US10926655B2 (en) 2016-09-26 2019-03-25 Charging pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610851503.9 2016-09-26
CN201610851503.9A CN106364348B (zh) 2016-09-26 2016-09-26 一种充电桩

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/363,564 Continuation US10926655B2 (en) 2016-09-26 2019-03-25 Charging pile

Publications (1)

Publication Number Publication Date
WO2018054378A1 true WO2018054378A1 (zh) 2018-03-29

Family

ID=57897507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103378 WO2018054378A1 (zh) 2016-09-26 2017-09-26 一种充电桩

Country Status (6)

Country Link
US (1) US10926655B2 (zh)
EP (1) EP3508371B1 (zh)
JP (1) JP6843972B2 (zh)
CN (1) CN106364348B (zh)
ES (1) ES2925109T3 (zh)
WO (1) WO2018054378A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109228929A (zh) * 2018-10-08 2019-01-18 江苏宏胜达电子科技有限公司 一种简易防护的充电桩
CN110920443A (zh) * 2019-11-11 2020-03-27 河南美力达汽车有限公司 一种具有散热功能的新能源汽车用充电桩
US11418042B2 (en) * 2018-02-15 2022-08-16 Hitachi Astemo, Ltd. Battery management unit

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106364348B (zh) * 2016-09-26 2019-08-27 华为技术有限公司 一种充电桩
CN106696748B (zh) * 2017-01-25 2019-06-28 华为技术有限公司 一种充电桩系统
CN107031437A (zh) * 2017-03-03 2017-08-11 能科节能技术股份有限公司 一种电动大巴车双枪直流充电桩
CN107020968A (zh) * 2017-03-19 2017-08-08 深圳市丁旺科技有限公司 一种非风冷分布式部署的直流充电桩
CN106685034B (zh) * 2017-03-27 2019-05-24 江苏万帮德和新能源科技股份有限公司 电动汽车充电桩的功率分配方法和系统
JP7333756B2 (ja) * 2017-06-14 2023-08-25 ハダル, インコーポレイテッド 構成可能バッテリ充電のためのシステムおよび方法
CN108400627A (zh) * 2017-12-15 2018-08-14 蔚来汽车有限公司 移动充电装置、控制方法及充电车
CN109318737A (zh) * 2018-01-08 2019-02-12 深圳市网源电气有限公司 一种电动汽车交流充电桩
CN108372791A (zh) * 2018-02-07 2018-08-07 大连罗宾森电源设备有限公司 一种柔性直流充电设备
CN108521150B (zh) * 2018-04-19 2021-06-29 西安交通大学 一种多功能蓄电池充放电装置及其控制方法
CN108631408A (zh) * 2018-06-04 2018-10-09 深圳巴斯巴科技发展有限公司 新能源汽车充电桩智能分配系统
CN110015058B (zh) * 2018-07-11 2021-10-08 中兴通讯股份有限公司 一种充电桩及充电方法
CN109263494A (zh) * 2018-10-30 2019-01-25 徐州晶迪电子有限公司 一种电动车充电方法
EP3671988A1 (en) * 2018-12-19 2020-06-24 ABB Schweiz AG Hermetically sealed switchgear installation with single compartment for circuit breaker, three position disconnector and main bus bar.
CN111071092B (zh) * 2019-12-17 2023-05-02 福建星云电子股份有限公司 一种充电桩功率动态分配系统及方法
GB201918715D0 (en) * 2019-12-18 2020-01-29 Zapinamo Ltd Charging electric vehicles
CN113315183A (zh) * 2020-02-27 2021-08-27 台达电子企业管理(上海)有限公司 充电桩及其功率分配系统与功率分配方法
CN111559270A (zh) * 2020-05-09 2020-08-21 长乐致远技术开发有限公司 基于互联网的电动汽车充电方法
CN113942408B (zh) * 2020-07-15 2024-03-08 许继电气股份有限公司 一种l型充电桩
KR102245454B1 (ko) * 2020-08-28 2021-04-28 (주)에바 전기차용 충전 모듈 그룹핑을 통한 전력 공급 방법, 장치 및 컴퓨터프로그램
CN112224081A (zh) * 2020-10-15 2021-01-15 阳光电源股份有限公司 一种多枪的充电桩及充电桩电路
CN112046323A (zh) * 2020-10-15 2020-12-08 安徽普烁光电科技有限公司 一种可隐藏式充电桩组件
CN112428857A (zh) * 2020-12-10 2021-03-02 安徽原上草节能环保科技有限公司 一种新能源充电桩
CN112874363A (zh) * 2021-04-06 2021-06-01 阳光电源股份有限公司 一种直流充电桩及充电站
CN113064018B (zh) * 2021-04-16 2022-10-28 广东电网有限责任公司计量中心 一种直流充电桩计量检测电路、装置及其方法
MA53185B1 (fr) * 2021-04-26 2023-01-31 Univ Int Rabat Système multiport amovible pour chargeurs unidirectionnels et bidirectionnels ca et cc pour véhicule électrique (ve) et véhicule hybride rechargeable (vhr)
CN113183807A (zh) * 2021-06-11 2021-07-30 杭州创睿新能源科技有限公司 一种模块化的新型充电桩设计
CN113580992A (zh) * 2021-07-13 2021-11-02 万帮数字能源股份有限公司 直流充电系统、充电桩和充电控制方法
CN113580970B (zh) * 2021-07-27 2023-09-05 绿能慧充数字技术有限公司 车辆充电控制系统、方法及计算机可读存储介质
CN117360287A (zh) * 2021-08-17 2024-01-09 华为数字能源技术有限公司 一种充电方法、一种充电装置、一种充电系统
CN114030384B (zh) * 2021-11-19 2024-01-09 广州小鹏汽车科技有限公司 电池组的充电控制方法、电池管理系统、装置及车辆
CN114103693A (zh) * 2021-11-23 2022-03-01 绿能慧充数字技术有限公司 一种私有充电桩共享系统及方法
CN114347826A (zh) * 2022-01-11 2022-04-15 深圳市聚能优电科技有限公司 一种双枪充电桩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207267A1 (es) * 2013-06-28 2014-12-31 Fundación Circe - Centro De Investigacion De Recursos Y Consumos Energeticos Sistema modular de carga inductiva para vehículos eléctricos
CN104467017A (zh) * 2014-12-24 2015-03-25 国家电网公司 一种基于高频磁耦合的多端口光伏储能混合发电系统
CN104882922A (zh) * 2015-05-06 2015-09-02 刘春元 电动汽车快速充电装置
CN105119334A (zh) * 2015-08-31 2015-12-02 深圳驿普乐氏科技有限公司 一种宽电压输出范围的变压电路和直流充电桩
CN106364348A (zh) * 2016-09-26 2017-02-01 华为技术有限公司 一种充电桩

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199752A (ja) * 2007-02-09 2008-08-28 Kyushu Electric Power Co Inc 充電装置
JP2011172318A (ja) * 2010-02-16 2011-09-01 Omron Automotive Electronics Co Ltd 電源システムおよび電源制御方法
JP5777990B2 (ja) * 2011-09-21 2015-09-16 株式会社日立製作所 電気自動車用急速充電器及び急速充電システム
JP5723811B2 (ja) * 2012-03-13 2015-05-27 株式会社トライネット 電気自動車の充電装置及び充電システム
CN203522271U (zh) * 2013-10-18 2014-04-02 珠海泰坦科技股份有限公司 一种设备的充电或者放电系统
US9868357B2 (en) * 2014-10-09 2018-01-16 Paired Power, Inc. Electric vehicle charging systems and methods
US10926649B2 (en) * 2014-12-22 2021-02-23 Flex Power Control, Inc. Method to reduce losses in a high voltage DC link converter
CN204290435U (zh) * 2015-01-06 2015-04-22 山东鲁能智能技术有限公司 一种一桩两充且电能智能负荷分配的电动汽车直流充电桩
CN205212459U (zh) * 2015-10-30 2016-05-04 武汉万实冶金设备制造有限公司 电动汽车充电电路散热装置
CN205595816U (zh) * 2016-01-15 2016-09-21 许继电源有限公司 一种能够同时为多辆电动汽车充电的充电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207267A1 (es) * 2013-06-28 2014-12-31 Fundación Circe - Centro De Investigacion De Recursos Y Consumos Energeticos Sistema modular de carga inductiva para vehículos eléctricos
CN104467017A (zh) * 2014-12-24 2015-03-25 国家电网公司 一种基于高频磁耦合的多端口光伏储能混合发电系统
CN104882922A (zh) * 2015-05-06 2015-09-02 刘春元 电动汽车快速充电装置
CN105119334A (zh) * 2015-08-31 2015-12-02 深圳驿普乐氏科技有限公司 一种宽电压输出范围的变压电路和直流充电桩
CN106364348A (zh) * 2016-09-26 2017-02-01 华为技术有限公司 一种充电桩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508371A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418042B2 (en) * 2018-02-15 2022-08-16 Hitachi Astemo, Ltd. Battery management unit
CN109228929A (zh) * 2018-10-08 2019-01-18 江苏宏胜达电子科技有限公司 一种简易防护的充电桩
CN110920443A (zh) * 2019-11-11 2020-03-27 河南美力达汽车有限公司 一种具有散热功能的新能源汽车用充电桩
CN110920443B (zh) * 2019-11-11 2022-06-21 河南美力达汽车有限公司 一种具有散热功能的新能源汽车用充电桩

Also Published As

Publication number Publication date
ES2925109T3 (es) 2022-10-13
US20190217734A1 (en) 2019-07-18
US10926655B2 (en) 2021-02-23
EP3508371B1 (en) 2022-06-01
JP6843972B2 (ja) 2021-03-17
CN106364348B (zh) 2019-08-27
EP3508371A1 (en) 2019-07-10
CN106364348A (zh) 2017-02-01
EP3508371A4 (en) 2019-09-04
JP2019533414A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018054378A1 (zh) 一种充电桩
US11539212B2 (en) Photovoltaic power generation system and photovoltaic power transmission method
CN102368631B (zh) 一种高效可靠的数据中心电子设备供电架构
CN103117577B (zh) 电动汽车电池组能量均衡电路
US9748796B2 (en) Multi-port energy storage system and control method thereof
CN203851099U (zh) 一种户外环网柜的直流电源控制箱
US9583971B2 (en) Energy-saving and environment-friendly device for communication system equipment
CN213717647U (zh) 一种蓄电池组充放电控制模块
CN207530623U (zh) 高原磷酸铁锂电池监控离网光伏发电装置
CN106627155A (zh) 一种纯电动客车动力系统控制模块配电电路
CN105449310A (zh) 一种电动汽车电池包冷却装置
CN207819499U (zh) 主被动结合升降压电池均衡电路
CN218772001U (zh) 一种太阳能监控系统用控制器
CN210320258U (zh) 风光互补型半导体供能装置
CN111806255B (zh) 一种新能源汽车供电系统及供电控制方法
CN212086052U (zh) 一种充电变流器
CN216184941U (zh) 一种电动汽车域控制器的集成装置
CN212098478U (zh) 用于直流充电桩内的功率分配支援模块
CN212278678U (zh) 一种户外柜光伏制冷系统
CN218216767U (zh) 一种微型水质监测站用供电冗余系统
CN210724255U (zh) 电池包均衡控制系统及电池包
CN114537151A (zh) 基于超级电容的磁浮列车及应用于磁浮列车的充电桩系统
CN117246161A (zh) 一种电动汽车直流充电机散热的实时调控系统
KR20240011505A (ko) 에너지 저장장치
CN115911669A (zh) 储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852445

Country of ref document: EP

Effective date: 20190405