WO2023230905A1 - 信号接收装置、信号识别系统及方法 - Google Patents

信号接收装置、信号识别系统及方法 Download PDF

Info

Publication number
WO2023230905A1
WO2023230905A1 PCT/CN2022/096431 CN2022096431W WO2023230905A1 WO 2023230905 A1 WO2023230905 A1 WO 2023230905A1 CN 2022096431 W CN2022096431 W CN 2022096431W WO 2023230905 A1 WO2023230905 A1 WO 2023230905A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
receiving circuit
inductor
receiving
circuit
Prior art date
Application number
PCT/CN2022/096431
Other languages
English (en)
French (fr)
Inventor
孙拓
王艳丽
赵西玉
温梦阳
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/096431 priority Critical patent/WO2023230905A1/zh
Publication of WO2023230905A1 publication Critical patent/WO2023230905A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • the present disclosure relates to the field of signal identification, and in particular, to a signal receiving device, a signal identification system and a method.
  • an inductor can be coupled to a light-emitting device.
  • the inductor senses an electromagnetic signal, the inductor can generate a driving current to drive the light-emitting device to emit light. Whether there is an electromagnetic signal can be determined by identifying the brightness of the light-emitting device.
  • a signal receiving device includes a first receiving circuit, a second receiving circuit, a third receiving circuit and a light emitting device.
  • the first receiving circuit is configured to receive a first electromagnetic wave and obtain a first signal according to the first electromagnetic wave.
  • the first electromagnetic wave is an electromagnetic wave generated by modulating the first signal onto the first carrier wave.
  • the second receiving circuit is coupled to the first receiving circuit and configured to amplify the amplitude of the first signal output by the first receiving circuit to obtain a second signal.
  • the third receiving circuit is configured to receive the third signal and output the fourth signal.
  • the light-emitting device is coupled between the second receiving circuit and the third receiving circuit, and is configured to be in an extinguishing state when the second signal is the same as the fourth signal, and to be in a light-emitting state when the second signal is different from the fourth signal.
  • the second receiving circuit is further configured to receive a third signal.
  • the second receiving circuit includes a multi-stage sub-receiving circuit connected in series, and each sub-receiving circuit includes an amplifying device, a first inductor and a rectifying device.
  • the amplifying device is coupled to the first receiving circuit and configured to amplify the amplitude of the first signal output by the first receiving circuit.
  • the first inductor is coupled to the amplifying device and configured to receive the third signal and provide power to the amplifying device.
  • the rectifying device is coupled between the amplifying device and the first inductor, and is configured to rectify the induced current generated by the first inductor.
  • the inductance value of the inductor in the series-connected multi-stage sub-receiving circuit increases step by step.
  • the amplifying device is an amplifier or an inverter.
  • the first signal and the third signal have the same frequency, and the phases of the first signal and the third signal are the same or opposite.
  • the second receiving circuit when the first signal and the third signal have the same phase, the second receiving circuit includes an even number of inverters; when the first signal and the third signal have opposite phases, the second receiving circuit includes The number of inverters is an odd number.
  • the third receiving circuit includes a second inductor, the second inductor having an inductance value greater than the inductance value of the first inductor.
  • the inductance value of the first inductor in the last stage sub-receiving circuit in the above-mentioned multi-stage sub-receiving circuit is the same as the inductance value of the second inductor.
  • a signal identification system including a signal transmitting device and a signal receiving device according to any one of the above embodiments, wherein the signal transmitting device includes a first transmitting circuit and a second transmitting circuit.
  • the first transmitting circuit is configured to modulate the first signal onto the first carrier wave to generate a first electromagnetic wave; the second transmitting circuit is configured to emit a third signal.
  • the frequency range of the first signal is 1 kHz to 20 kHz.
  • the first receiving circuit includes a first antenna
  • the first transmitting circuit includes a second antenna
  • the frequencies of the first antenna and the second antenna are the same or similar.
  • the center frequency of the first antenna and the second antenna is greater than or equal to 100 MHz.
  • a signal identification method is provided, applied to the signal identification system described in any of the above embodiments, and the method includes:
  • the first receiving circuit receives the first electromagnetic wave from the first transmitting circuit and obtains a first signal according to the first electromagnetic wave.
  • the first transmitting circuit is configured to modulate the first signal onto the first carrier wave to generate the first electromagnetic wave.
  • the second receiving circuit amplifies the amplitude of the first signal output by the first receiving circuit to obtain a second signal.
  • the third receiving circuit receives the third signal from the second transmitting circuit and outputs a fourth signal; when the second signal and the fourth signal are the same, the light-emitting device is in an extinguishing state; when the second signal and the fourth signal are different , the light-emitting device is in a light-emitting state.
  • Figure 1 is a structural block diagram of a signal recognition system according to some embodiments.
  • Figure 2 is a structural block diagram of another signal recognition system according to some embodiments.
  • Figure 3 is a circuit diagram of a signal recognition system according to some embodiments.
  • Figure 4 is a circuit diagram of another signal recognition system according to some embodiments.
  • Figure 5 is a circuit diagram of yet another signal recognition system according to some embodiments.
  • FIG. 6 is a flow chart of a signal identification method according to some embodiments and a circuit diagram of a second receiving circuit.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “in response to” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrase “if it is determined" or “if [stated condition or event] is detected” is optionally interpreted to mean “when it is determined" or “in response to the determination" or “on detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • the method of identifying electromagnetic signals is to couple an inductor (also called a coil) to a light-emitting device.
  • the inductor senses an electromagnetic signal
  • the inductor can generate a driving current to drive the light-emitting device to emit light.
  • inductors have poor ability to distinguish electromagnetic signals with lower frequencies, in the low frequency range, such as the frequency range of 1kHz to 20kHz, the receiving efficiency of electromagnetic signals of different frequencies on the same inductor is close, so inductor coupling is used
  • the technology of light-emitting devices to identify electromagnetic signals can only distinguish the presence or absence of electromagnetic signals, and cannot further distinguish electromagnetic signals of specific frequencies. For example, when the inductor senses an electromagnetic signal with a frequency of 12 kHz, the brightness of the light-emitting device is the first brightness, and when the inductor senses an electromagnetic signal with a frequency of 18 kHz, the brightness of the light-emitting device is the second brightness.
  • the receiving efficiency on the inductor is close, and the difference between the first brightness and the second brightness is small, so the first brightness and the second brightness cannot be distinguished. That is to say, if the goal is to identify an electromagnetic signal with a frequency of 12kHz, the above method cannot accurately identify whether the electromagnetic signal sensed by the inductor is an electromagnetic signal with a frequency of 12kHz or an electromagnetic signal with a frequency of 18kHz.
  • the center frequency of the inductor is required to be low, making it easier for the receiving end to be forged.
  • the first receiving end is set to receive an electromagnetic signal with a frequency of 12 kHz.
  • the electromagnetic signal received by the second receiving end is an electromagnetic signal with a frequency of 18 kHz. Since the first brightness and the second brightness cannot be distinguished, the first receiving end and the second receiving end cannot be distinguished, that is to say, the first receiving end cannot be distinguished. It can be faked as the second receiving end, and the second receiving end can also be faked as the first receiving end.
  • the signal recognition system includes a signal receiving device 100, wherein the signal receiving device 100 includes a first receiving circuit 101, a second receiving circuit 101, and a second receiving circuit 101. circuit 102, a third receiving circuit 103 and a light emitting device 104.
  • the first receiving circuit 101 is configured to receive the first electromagnetic wave S0 and obtain the first signal S1 according to the first electromagnetic wave S0.
  • the first electromagnetic wave S0 is an electromagnetic wave generated by modulating the first signal S1 onto the first carrier wave.
  • the signal identification system further includes a signal transmitting device 200 , and the signal transmitting device 200 includes a first transmitting circuit 201 .
  • the first transmitting circuit 201 is configured to modulate the first signal S1 onto the first carrier wave to generate the first electromagnetic wave S0. That is, the first receiving circuit 101 can receive the first electromagnetic wave S0 from the first transmitting circuit 201.
  • the first receiving circuit 101 includes a first antenna A1 and a filtering device.
  • the filtering device may be a diode L0.
  • the first transmitting circuit 201 includes a second antenna A0, and the frequencies of the first antenna A1 and the second antenna A0 are the same or similar.
  • the frequency of the first antenna A1 and the second antenna A0 is similar means that the difference between the frequency of the first antenna A1 and the frequency of the second antenna A0 is less than or equal to 10 MHz. That is to say, when the frequency difference between the first antenna A1 and the second antenna A0 is within the range of 10 MHz, signal transmission can be performed between the first antenna A1 and the second antenna A0.
  • the efficiency of signal transmission between the first antenna A1 and the second antenna A0 is relatively high, which means that the signal emitted by the second antenna A0 can be transmitted to the maximum extent.
  • the ground is received by the first antenna A1, and the distortion of the data received by the first antenna A1 can be avoided as much as possible.
  • the center frequency of the second antenna A0 is 100MHz
  • the frequencies of the first antenna A1 and the second antenna A0 are the same or similar
  • the frequencies of the first antenna A1 and the second antenna A0 are the same or similar.
  • Signal transmission can be carried out between the two antennas A0.
  • the frequencies of the first antenna A1 and the second antenna A0 are greater than or equal to 100 MHz.
  • the second antenna A0 modulates the first signal S1 onto the first carrier wave of 100 MHz to generate the first electromagnetic wave S0.
  • the second antenna A0 emits the first electromagnetic wave S0.
  • the filtering device processes the first electromagnetic wave S0 and obtains the first Signal S1.
  • the second receiving circuit 102 is coupled to the first receiving circuit 101 and is configured to amplify the amplitude of the first signal S1 output by the first receiving circuit 101 to obtain the second signal S2.
  • the second receiving circuit 102 is further configured to receive the third signal S3 to generate current. It can be understood that this current can power the electronic components of the second receiving circuit 102, which means that the second receiving circuit 102 does not need to be connected to an external power supply, so the size of the signal recognition system can be reduced and a flexible system can be realized.
  • the signal transmitting device 200 further includes a second transmitting circuit 202 configured to transmit the third signal S3. That is, the second receiving circuit 102 may receive the third signal S3 from the second transmitting circuit 202.
  • the third receiving circuit 103 is configured to receive the third signal S3 from the second transmitting circuit 202 and output the fourth signal S4. Based on the principle of electromagnetic induction, the phases of the fourth signal S4 and the third signal S3 are exactly the same, and the amplitudes of the fourth signal S4 and the third signal S3 may be the same or different.
  • the second transmitting circuit 202 includes an inductor H0
  • the third receiving circuit 103 includes a second inductor Ht.
  • the inductor H0 transmits the third signal S3
  • the second inductor Ht can sense the third signal S3 and output the fourth signal S4, and at the same time generate a current, which can supply power to the light-emitting device 104 and cause the light-emitting device 104 to emit light.
  • the first signal S1 and the third signal S3 have the same frequency, and the phases of the first signal S1 and the third signal S3 are the same or opposite.
  • FIG. 3 and FIG. 4 illustrate by taking the example that the frequencies of the first signal S1 and the third signal S3 are the same, and the phases of the first signal S1 and the third signal S3 are also the same. In practical applications, the phases of the first signal S1 and the third signal S3 may also be opposite, that is, the phases of the first signal S1 and the third signal S3 differ by 180°.
  • the light-emitting device 104 is coupled between the second receiving circuit 102 and the third receiving circuit 103 and is configured to be in an off state when the second signal S2 and the fourth signal S4 are the same.
  • the second signal S2 and the fourth signal S4 are not in the light-emitting state at the same time.
  • the light-emitting device 104 when the second signal S2 and the fourth signal S4 are the same, the light-emitting device 104 is in the extinguishing state, which means that when the second signal S2 and the fourth signal S4 are the same, the light-emitting device 104 is always in the extinguishing state.
  • the light-emitting device 104 is in the light-emitting state. This means that when the second signal S2 and the fourth signal S4 are different, the light-emitting device 104 is always in the light-emitting state, or the light-emitting device 104 is in a high-frequency flashing state. It can be understood that when the light-emitting device 104 is in a high-frequency flashing state, the light-emitting device 104 switches between the light-emitting state and the extinguished state at a higher frequency.
  • the light-emitting device 104 may be an organic light-emitting diode (OLED), a quantum dot electroluminescent diode (Quantum Dot Light Emitting Diodes, QLED) or an active matrix organic Light Emitting Diode (Active-Matrix Organic Light Emitting Diode, AMOLED).
  • OLED organic light-emitting diode
  • QLED quantum dot electroluminescent diode
  • AMOLED active matrix organic Light Emitting Diode
  • the embodiment of the present application does not place any special restrictions on the specific type of the light-emitting device 104. The following embodiment will be described in detail by taking the light-emitting device 104 as an OLED as an example.
  • the anode of the light-emitting diode OLED is coupled to the second inductor Ht, and the cathode of the light-emitting diode OLED is coupled to the output end of the second receiving circuit 102 .
  • the light-emitting diode OLED Due to the structural characteristics of the light-emitting diode OLED, the light-emitting diode OLED has a current or voltage threshold. For example, when the voltage difference across the light-emitting diode OLED is greater than or equal to the voltage threshold, the light-emitting diode OLED emits light; when the voltage difference across the light-emitting diode OLED is less than the voltage threshold, the light-emitting diode OLED goes out.
  • the light-emitting diode OLED turns off. That is to say, the above-mentioned second signal S2 and the fourth signal S4 being the same may include that the amplitudes of the second signal S2 and the fourth signal S4 are exactly the same, or may include that the amplitudes of the second signal S2 and the fourth signal S4 are almost the same. (For example, the amplitude difference between the second signal S2 and the fourth signal S4 is less than the threshold voltage of the light-emitting diode OLED).
  • the third signal S3 when there is current passing through the inductor H0, based on the principle of electromagnetic induction, the third signal S3 will be generated in and around the inductor H0, and the second inductor Ht will generate the third signal S3 after sensing the third signal S3. Current, this current can drive the light-emitting diode OLED to emit light, and output the fourth signal S4 to the anode of the light-emitting diode OLED.
  • the second signal S2 may not be generated, so there will be a voltage difference between the cathode and anode of the light-emitting diode OLED, and the light-emitting diode OLED will glow.
  • the second signal S2 When the second signal S2 has been generated and is the same as the fourth signal S4, and there is no voltage difference between the cathode and anode of the light-emitting diode OLED (or the voltage difference is less than the threshold voltage of the light-emitting diode OLED), the light-emitting diode OLED will go out.
  • the signal identification system receives the first electromagnetic wave signal S0 through the first receiving circuit 101 and obtains the first signal S1, and the second receiving circuit 102 amplifies the first signal S1 to obtain the second signal.
  • the third receiving circuit 103 receives the third signal S3 and obtains the fourth signal S4, and the frequencies of the first signal S1 and the third signal S3 are the same. Therefore, when the light-emitting diode OLED turns off, it means that the second signal S2 is the same as the fourth signal S4. At this time, the signal identification system can identify the frequency of the first signal or the third signal.
  • the signal identification system of the embodiment of the present disclosure can identify the signal of a specific frequency (i.e., the frequency of the first signal or the third signal).
  • the second receiving circuit 102 includes a series-connected multi-stage sub-receiving circuit.
  • the multi-stage sub-receiving circuit includes a first-stage sub-receiving circuit 1021, a second-stage sub-receiving circuit 1022,... , and the n-th sub-receiving circuit 102n, where n is an integer greater than or equal to 3.
  • the embodiment of the present disclosure does not limit the number of multi-stage sub-receiving circuits included in the second receiving circuit 102.
  • Each stage of the sub-receiving circuit is configured to amplify the amplitude of the first signal S1, and the multi-stage sub-receiving circuit is configured to amplify the amplitude of the first signal S1 step by step.
  • the first-stage sub-receiving circuit 1021 is configured to amplify the amplitude of the first signal S1 to obtain the first-stage amplified signal S11 and output the first-stage amplified signal S11 to the second-stage sub-receiving circuit 1022.
  • the second-stage sub-receiving circuit 1022 is configured to amplify the first-stage amplified signal S11 to obtain a second-stage amplified signal S12, and output the second-stage amplified signal S12 to the third-stage sub-receiving circuit 1023.
  • the n-th level sub-receiving circuit 102n is configured to amplify the n-1 level amplification signal to obtain an n-th level amplification signal, and output the n-th level amplification signal.
  • the n-th level amplified signal is the second signal S2.
  • the method of amplifying the first signal S1 step by step through a multi-stage sub-receiving circuit is more controllable, and each stage of the sub-receiving circuit An appropriate amplification factor can be set to make the output second signal S2 more stable.
  • the amplification factors of different sub-receiving circuits in the multi-stage sub-receiving circuits included in the second receiving circuit 102 may be the same, may be different, or may be partially the same, and this disclosure is not limited thereto.
  • the amplification factor of each sub-receiving circuit can be 3 to 5 times, that is, each sub-receiving circuit can amplify the signal it receives by 3 to 5 times before outputting it.
  • the embodiment of the present disclosure does not limit the amplification factor of each sub-receiving circuit.
  • the amplification factor of each sub-receiving circuit is related to the inductance value of the inductor in each sub-receiving circuit. In practical applications, the amplification factor of each sub-receiving circuit can be set according to different application scenarios.
  • each stage of the sub-receiving circuit includes an amplifying device Ix (for example, I1, I2...In), a first inductor Hx (for example, H1, H2...Hn) and a rectifier Device Lx (e.g., L1, L2...Ln).
  • the amplifying device Ix is coupled to the first receiving circuit 101 and is configured to amplify the amplitude of the first signal S1 output by the first receiving circuit 101.
  • the first inductor Hx is coupled to the amplifying device Ix and is configured to receive the third signal S3 from the second transmitting circuit 202 and generate a current to power the amplifying device Ix.
  • the rectifying device Lx is coupled between the amplifying device Ix and the first inductor Hx, and is configured to rectify the current generated by the first inductor Hx.
  • the amplifying device may be an inverter.
  • the amplifying device Ix includes an inverter I1, an inverter I2, ..., or an inverter In.
  • the first inductor Hx includes the first inductor H1, the first inductor H2, ..., or the first inductor Hn.
  • the rectifying device Lx includes a rectifying device L1, a rectifying device L2, ..., or a rectifying device Ln.
  • the inductor H0 may also be called a transmitting coil
  • the first inductor Hx (for example, H1, H2...Hn) and the second inductor Ht may also be called a receiving coil.
  • the first terminal of the inverter I1 in the first-stage sub-receiving circuit 1021 is coupled to the output terminal of the first-stage receiving circuit 101 , and the first terminal of the inverter I1 in the first-stage sub-receiving circuit 1021
  • Two terminals are coupled to the first terminal of the inverter I2 in the second-stage sub-receiving circuit 1022
  • the third terminal of the inverter I1 in the first-stage sub-receiving circuit 1021 is coupled to one terminal of the first inductor H1
  • the other end of the first inductor H1 is coupled to one end of the rectifier L1
  • the other end of the rectifier L1 is coupled to the fourth end of the inverter I1 in the first-stage sub-receiving circuit 1021 .
  • the second end of the inverter I2 in the second-stage sub-receiving circuit 1021 is coupled to the first end of the inverter I3 in the third-stage sub-receiving circuit 1023, and the inverter in the second-stage sub-receiving circuit 1022
  • the third end of I2 is coupled to one end of the first inductor H2.
  • the other end of the first inductor H2 is coupled to one end of the rectifier device L2.
  • the other end of the rectifier device L2 is coupled to the second-stage sub-receiving circuit 1021. the fourth terminal of inverter I1.
  • connection methods of the amplifying device Ix, the first inductor Hx and the rectifying device Lx in the other-stage sub-receiving circuits are similar to those of the first-stage sub-receiving circuit 1021 and the second-stage sub-receiving circuit 1022, and will not be described again here.
  • the structure of the inverter can be a low temperature polysilicon (Low Temperature Poly Silicon, LTPS) thin film transistor (for example, a p-type transistor, an n-type transistor), an indium gallium zinc oxide (Indium Gallium Zinc Oxide, IGZO) thin film transistor Or other oxide thin film transistors (Thin Film Transistor, TFT) (for example, n-type transistor), amorphous silicon TFT (for example, n-type transistor), carbon nanotubes (for example, p-type transistor), two-dimensional materials (for example, p-type transistor, n-type transistor), etc. are implemented.
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS Low Temperature Poly Silicon
  • LTPS
  • the amplifying device may also include an amplifier.
  • the amplification device includes an amplifier, the amplifier will not convert the phase of the first signal S1 when amplifying the amplitude of the first signal S1. Therefore, the phases of the first signal S1 and the third signal S3 must be the same to ensure the accuracy of the signal recognition system.
  • Normal operation, and the number of amplifiers can be an even number or an odd number.
  • the embodiment of the present disclosure does not limit the number of amplifiers. In actual applications, it can be set according to different application scenarios.
  • the amplifying device is an inverter, compared with an amplifier, the amplifier has higher power requirements, while the inverter has simpler power requirements.
  • a DC power supply can drive the inverter. Therefore, when the amplifying device is an inverter, When, it is easier to implement a flexible system.
  • the following embodiments are described by taking the amplification device as an inverter as an example.
  • the inductor H0 in the second transmitting circuit 202 emits the third signal S3, due to the electromagnetic induction between the inductors, the first inductor H1, the first inductor H2,..., and the first inductor H2 in each sub-receiving circuit
  • An inductor Hn can sense the third signal S3 and generate an induced current, respectively supplying power to the inverter I1, the inverter I2, ..., the inverter In in each sub-receiving circuit. Therefore, the second receiving circuit 102 requires no external power supply.
  • the inductance values of the first inductor H1, the first inductor H2, ..., and the first inductor Hn can be increased step by step. That is to say, the inductance value of the first inductor H1 is smaller than the inductance value of the first inductor H2, ..., and the inductance value of the first inductor Hn-1 is smaller than the inductance value of the first inductor Hn.
  • the embodiment of the present disclosure does not limit the inductance values of the first inductor H1, the first inductor H2, ..., and the first inductor Hn. In actual applications, the inductance value of each first inductor can be set according to different application scenarios. Inductance value.
  • the inductance value of the second inductor Ht is greater than the inductance value of the first inductor Hx in each stage of the sub-receiving circuit. That is, the inductance value of the second inductor Ht is greater than the inductance values of the first inductor H1, the first inductor H2, ..., and the first inductor Hn.
  • the second signal S2 is obtained by multi-stage amplification of the first signal S1 by a plurality of first inductors Hx
  • the fourth signal S4 is obtained directly from the second inductor Ht in response to the third signal S3, only when the inductance value of the second inductor Ht is greater than that of the first inductor H1, the first inductor H2,..., and the first inductor Hn Only when the inductance value is high can the second signal S2 and the fourth signal S4 be made the same.
  • the inductance value of the second inductor Ht can be obtained based on the inductance values of the first inductor H1, the first inductor H2,..., and the first inductor Hn in the multi-stage sub-receiving circuit.
  • the inductance values of the first inductors H2,..., the first inductor Hn, and the second inductor Ht are not limited. In actual applications, the inductance value of the second inductor Ht can be set according to different application scenarios.
  • the inductance value of the first inductor Hn in the last sub-reception circuit of the multi-stage sub-reception circuit may be the same as the inductance value of the second inductor Ht.
  • the inductance value of the first inductor Hn can be the same as the inductance value of the second inductor Ht, which can ensure that the amplitudes of the second signal S2 and the fourth signal S4 are not much different.
  • the phase of the second signal S2 and the fourth signal S4 are the same and the amplitude is not much different, which can ensure that the light-emitting diode OLED It is always in the extinguished state, so that the signal of a specific frequency (ie, the frequency of the first signal or the third signal) can be more accurately identified.
  • each sub-receiving circuit the current generated by each first inductor is rectified by a diode and then fed to the inverter, which can provide a stable current for the inverter.
  • the working principle of the second receiving circuit 102 is as follows:
  • the first receiving circuit 101 outputs the first signal S1.
  • the first inductor H1 senses the third signal S3 and generates a current, which flows to the inverter I1 via the diode L1 and drives the inverter I1 to convert the first signal S1
  • the amplitude is amplified, and the phase of the first signal S1 is converted into an inverted phase to obtain a first-stage amplified signal S11.
  • the first-stage amplified signal S11 is output to the input end of the inverter I2.
  • the first inductor H2 senses the third signal S3 and generates a current.
  • the current flows to the inverter I2 via the diode L2 and drives the inverter I2 to amplify the first-stage signal.
  • the amplitude of S11 is amplified, and the phase of the first signal S1 is converted into an inverted phase to obtain a second-stage amplified signal S12.
  • the second-stage amplified signal S12 is output to the input end of the inverter I3.
  • the first inductor Hn senses the third signal S3 and generates a current.
  • This current flows to the inverter In through the diode Ln and drives the inverter In to
  • the amplitude of the n-1th stage amplified signal S1n-1 is amplified, the phase of the first signal S1 is converted into the inverse phase to obtain the nth stage amplified signal, and the nth stage amplified signal is output to the light emitting diode OLED.
  • the first-stage amplified signal is the second signal S2.
  • the first signal S1 and the third signal S3 have the same frequency, and the phases of the first signal S1 and the third signal S3 may be the same or opposite. Since the light-emitting device 104 only turns off when the second signal S2 and the fourth signal S4 are the same, the second signal S2 is obtained by multi-level amplification of the first signal S1 by a plurality of first inductors, and the fourth signal S4 is It is obtained directly from the second inductor Ht in response to the third signal S3. Therefore, in order to realize that the second signal S2 and the fourth signal S4 are the same, the frequencies of the first signal S1 and the third signal S3 must be the same. The following will give an example of how to realize that the second signal S2 and the fourth signal S4 are the same when the phases of the first signal S1 and the third signal S3 are the same or opposite.
  • the first signal S1 and the third signal S3 are the same and the number n of inverters included in the second receiving circuit 102 is an even number
  • the first signal S1 passes through the inverter Ix
  • the number of inversions is an even number. That is to say, the n-th stage amplified signal output by the inverter In has the same phase as the first signal S1, that is, the phase of the second signal S2 is the same as the phase of the first signal S1. Since the first signal S1 and the third signal S3 have the same phase, and the fourth signal S4 and the third signal S3 have the same phase, the second signal S2 and the fourth signal S4 have the same phase.
  • the first signal S1 passes through the inverter Ix.
  • the number of inversions is an odd number. That is to say, the n-th stage amplified signal output by the inverter In is opposite in phase to the first signal S1, that is, the phase of the second signal S2 is opposite to the phase of the first signal S1. Since the first signal S1 and the third signal The phase of S3 is opposite, and the phase of the fourth signal S4 and the third signal S3 are the same. Therefore, the phases of the second signal S2 and the fourth signal S4 are the same.
  • the frequency range of the first signal S1 is 1 kHz to 20 kHz.
  • the signal identification system of the embodiment of the present disclosure can be used to identify signals with a specific frequency.
  • the specific frequency can be a signal in the frequency range of 1 kHz to 20 kHz. The following is how the signal identification system of the present disclosure identifies signals of a specific frequency and does not Identify signals that are not of this specific frequency and give an example.
  • the frequencies of the first signal S1 and the third signal S3 are both 12kHz. Only when the first signal S1 with a frequency of 12kHz and the third signal S3 with a frequency of 12kHz When the three signals S3 are all sent out, due to the principle of electromagnetic induction, the second inductor Ht senses the third signal S3 with a frequency of 12 kHz and generates a current. This current can drive the light-emitting diode OLED to emit light and output the fourth signal to the anode of the light-emitting diode OLED. Signal S4, the frequency of the fourth signal is also 12kHz.
  • the first inductor Hx generates a current after sensing the third signal S3 with a frequency of 12 kHz.
  • the current is rectified by the diode Lx and drives the inverter Ix.
  • the first signal S1 with a frequency of 12 kHz is amplified step by step by the inverter Ix to output a second signal S2.
  • the frequency of the second signal S2 is also 12 kHz.
  • the light emitting diode OLED If there is no voltage difference between the cathode and anode, the light-emitting diode OLED will go out.
  • the signal recognition system of the embodiment of the present disclosure has recognized a signal with a specific frequency, that is, a signal with a frequency of 12 kHz.
  • the second inductor Ht may respond to the first interference signal, and generate a fourth signal S4 corresponding to the first interference signal.
  • the first antenna A1 cannot receive the first interference signal
  • the second signal S2 corresponding to the first interference signal will not be generated. Since the second signal S2 and the fourth signal S4 are different at this time, the light-emitting diode OLED will not go out, that is to say, the signal identification system of the embodiment of the present disclosure can distinguish that the first interference signal does not include a signal with a specific frequency of 12 kHz.
  • the second interference signal is composed of a second carrier and a frequency of 12 kHz.
  • the second interference signal is modulated for the 18kHz signal. Since the frequency of the first antenna A1 is the same as the first carrier, and without knowing the frequency of the first carrier, it is difficult to reversely study the frequency of the first carrier. , so it is difficult to adjust the frequency of the second carrier to be the same or approximately the same as the frequency of the first carrier.
  • the first signal S1 is embodied as DC
  • the second signal S2 is also embodied as DC. Therefore, even if the second inductor Ht may respond to the second interference signal and generate the fourth signal S4 corresponding to the second interference signal, since the second signal S2 and the fourth signal S4 are not the same at this time, the light emitting diode OLED will not go out, that is to say, the signal identification system of the embodiment of the present disclosure can distinguish that the second interference signal does not include a signal with a specific frequency of 12 kHz.
  • the first transmitting circuit 201 modulates the first signal onto the high-frequency first carrier wave, generates the first electromagnetic wave, and transmits the high-frequency first electromagnetic wave through the second antenna A0. That is to say, the embodiment of the present disclosure uses a high-frequency carrier to transmit low-frequency signals. Since the high-frequency carrier itself is more sensitive to the design of the receiving antenna, it is not easy to be counterfeited and can largely prevent the receiving end from being counterfeited.
  • the electromagnetic induction between the inductor H0 and the first inductor can generate a current to drive the inverter, so that the inverter does not need an external power supply.
  • the electromagnetic induction between the inductor H0 and the second inductor Ht can generate current flowing to the light-emitting diode OLED.
  • the signal identification system of the embodiment of the present disclosure can accurately identify signals of specific frequencies without requiring an external power supply, and can implement a flexible system.
  • the signal receiving device may be the signal receiving device 100 described in any of the above embodiments. The structure and function of the signal receiving device 100 will not be described again here.
  • Some embodiments of the present disclosure also provide a signal identification method, which is applied to the signal identification system of any of the above embodiments. As shown in Figure 6, the method includes:
  • Step 601 the first receiving circuit 101 receives the first electromagnetic wave S0 from the first transmitting circuit 201, and obtains the first signal S1 according to the first electromagnetic wave S0.
  • the first transmitting circuit 201 is configured to modulate the first signal S1 to the first signal S1. on the carrier wave to generate the first electromagnetic wave S0.
  • Step 602 The second receiving circuit 102 amplifies the amplitude of the first signal S1 output by the first receiving circuit 101 to obtain the second signal S2.
  • Step 603 the third receiving circuit 103 receives the third signal S3 from the second transmitting circuit 202, and outputs the fourth signal S4; wherein, when the second signal S2 and the fourth signal S4 are the same, the light-emitting device 104 is in an extinguishing state; When the second signal S2 and the fourth signal S4 are different, the light-emitting device 104 is in a light-emitting state.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种信号接收装置,该信号接收装置包括第一接收电路、第二接收电路、第三接收电路和发光器件。第一接收电路,被配置为接收第一电磁波,并根据第一电磁波得到第一信号,第一电磁波为将第一信号调制至第一载波上生成的电磁波。第二接收电路,耦接至第一接收电路,且被配置为将第一接收电路输出的第一信号的幅值放大,得到第二信号。第三接收电路,被配置为接收第三信号,并输出第四信号。发光器件,耦接至第二接收电路和第三接收电路之间,且被配置为在第二信号与第四信号相同时处于熄灭状态,在第二信号与第四信号不同时处于发光状态。

Description

信号接收装置、信号识别系统及方法 技术领域
本公开涉及信号识别领域,尤其涉及一种信号接收装置、信号识别系统及方法。
背景技术
为了识别电磁信号,可以将电感器耦接至发光器件,当该电感器感应到电磁信号时,该电感器可以产生驱动电流驱动发光器件发光。通过识别发光器件的亮暗可以确定是否有电磁信号。
发明内容
一方面,提供一种信号接收装置,该信号接收装置包括第一接收电路、第二接收电路、第三接收电路和发光器件。第一接收电路,被配置为接收第一电磁波,并根据第一电磁波得到第一信号,第一电磁波为将第一信号调制至第一载波上生成的电磁波。第二接收电路,耦接至第一接收电路,且被配置为将第一接收电路输出的第一信号的幅值放大,得到第二信号。第三接收电路,被配置为接收第三信号,并输出第四信号。发光器件,耦接至第二接收电路和第三接收电路之间,且被配置为在第二信号与第四信号相同时处于熄灭状态,在第二信号与第四信号不同时处于发光状态。
在一些实施例中,第二接收电路,还被配置为接收第三信号。
在一些实施例中,第二接收电路包括多级子接收电路,多级子接收电路串联连接,每个子接收电路包括放大装置、第一电感器和整流装置。放大装置,耦接至第一接收电路,且被配置为将第一接收电路输出的第一信号的幅值放大。第一电感器,耦接至放大装置,且被配置为接收的第三信号,并向放大装置供电。整流装置,耦接至放大装置和第一电感器之间,且被配置为对第一电感器产生的感应电流进行整流。
在一些实施例中,串联连接的多级子接收电路中的电感器的电感值逐级增加。
在一些实施例中,放大装置为放大器或反相器。
在一些实施例中,第一信号与第三信号的频率相同,第一信号与第三信号的相位相同或相反。
在一些实施例中,第一信号与第三信号的相位相同时,第二接收电路包括的反相器的数量为偶数;第一信号与第三信号的相位相反时,第二接收电路包括的反相器的数量为奇数。
在一些实施例中,第三接收电路包括第二电感器,第二电感器的电感值大于第一电感器的电感值。
在一些实施例中,上述多级子接收电路中最后一级子接收电路中的第一电感的电感值与第二电感器的电感值相同。
另一方面,提供一种信号识别系统,包括信号发射装置与上述实施例中任一项实施例所述的信号接收装置,其中,信号发射装置包括第一发射电路和第二发射电路。第一发射电路被配置为将第一信号调制至第一载波上,以生成第一电磁波;所述第二发射电路被配置为发出第三信号。
在一些实施例中,第一信号的频率范围为1kHz~20kHz。
在一些实施例中,第一接收电路包括第一天线,第一发射电路包括第二天线,第一天线和第二天线的频率相同或相近。
在一些实施例中,第一天线和第二天线的中心频率大于或等于100MHz。
又一方面,提供一种信号识别方法,应用于上述实施例中任一实施例所述的信号识别系统,方法包括:
第一接收电路接收来自第一发射电路的第一电磁波,并根据第一电磁波得到第一信号,第一发射电路被配置为将第一信号调制至第一载波上,以生成第一电磁波。
第二接收电路将第一接收电路输出的第一信号的幅值放大,得到第二信号。
第三接收电路接收来自第二发射电路的第三信号,并输出第四信号;其中,在第二信号与第四信号相同时,发光器件处于熄灭状态;在第二信号与第四信号不同时,发光器件处于发光状态。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种信号识别系统结构框图;
图2为根据一些实施例的另一种信号识别系统结构框图;
图3为根据一些实施例的一种信号识别系统的电路图;
图4为根据一些实施例的另一种信号识别系统的电路图;
图5为根据一些实施例的又一种信号识别系统的电路图;
图6为根据一些实施例的一种信号识别方法的流程图第二接收电路的电路图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
通常,识别电磁信号的方法是将电感器(也可以称为线圈)耦接至发光器件,当该电感器感应到电磁信号,该电感器可以产生驱动电流驱动发光器件发光,通过识别发光器件的亮暗,可以确定是否有电磁信号。
由于电感器对于频率较低的电磁信号的区分能力差,在低频范围内,比如1kHz~20kHz的频率范围内,不同频率的电磁信号在同一电感的上的接收效率接近,因此采用电感器耦接发光器件识别电磁信号的技术只能区分出有没有电磁信号,无法进一步区分出特定频率的电磁信号。比如,电感器感应到频率为12kHz的电磁信号时发光器件的亮度为第一亮度,电感器感应到频率为18kHz的电磁信号时发光器件的亮度为第二亮度,由于不同频率的电磁信号在同一电感的上的接收效率接近,第一亮度与第二亮度相差较小,因此无法区分出第一亮度与第二亮度。也是说如果目标是需要识别出频率为12kHz的电磁信号,通过上述方法无法精准识别出电感器感应到的电磁信号是频率为12kHz的电磁信号还是频率为18kHz的电磁信号。
同时,由于采用上述方法识别电磁信号时,对电感器的中心频率要求较低,导致接收端比较容易被伪造,比如,第一接收端设定接收的电磁信号是频率为12kHz的电磁信号,第二接收端设定接收的电磁信号是频率为18kHz的电磁信号,由于无法区分出第一亮度与第二亮度,因此无法区分出第一接收端与第二接收端,也就是说第一接收端可以伪造为第二接收端,第二接收端也可以伪造为第一接收端。
为解决上述问题,本公开一些实施例提供一种信号识别系统,如图1所示,信号识别系统包括信号接收装置100,其中,所述信号接收装置100包括第一接收电路101,第二接收电路102,第三接收电路103和发光器件104。
第一接收电路101,被配置为接收第一电磁波S0,并根据第一电磁波S0得到第一信号S1。该第一电磁波S0为将第一信号S1调制至第一载波上生成的电磁波。
在一些实施例中,如图2所示,信号识别系统还包括信号发射装置200,所述信号发射装置200包括第一发射电路201。第一发射电路201被配置为将第一信号S1调制至第一载波上,以生成第一电磁波S0。即,第一接收电路101可以接收来自第一发射电路201的第一电磁波S0。
在一些实施例中,如图3所示,第一接收电路101包括第一天线A1和滤波装置,示例性地,滤波装置可以为二极管L0。第一发射电路201包括第二天线A0,第一天线A1和第二天线A0的频率相同或相近。示例性地,第一天线A1和第二天线A0的频率相近是指第一天线A1的频率和第二天线A0的频率的差值小于或等于10MHz。也就是说,当第一天线A1和第二天线A0的频率相差在10MHz的范围内时,第一天线A1和第二天线A0之间可以进行信号传输。而且当第一天线A1和第二天线A0的频率相同或相近时,第一天线A1与第二天线A0之间信号传递的效率较高,也就是说第二天线A0发出的信号,可以最大程度地由第一天线A1接收,可以尽量避免第一天线A1接收到的数据失真。
例如,当第二天线A0的中心频率为100MHz时,若第一天线A1的频率在95MHZ至105MHz范围内时,第一天线A1和第二天线A0的频率相同或相近,第一天线A1和第二天线A0之间可以进行信号传输。
在一些实施例中,第一天线A1和第二天线A0的频率大于或等于100MHz。示例性的,当第一天线A1和第二天线A0的频率为100MHz时,第二天线A0将第一信号S1调制至100MHz的第一载波上,生成第一电磁波S0。如图3所示,第二天线A0发射第一电磁波S0,第一天线A1接收第一电 磁波S0后,将第一电磁波S0输出至滤波装置,滤波装置对第一电磁波S0进行处理后得到第一信号S1。
如图1至图3所示,第二接收电路102耦接至第一接收电路101,且被配置为将第一接收电路101输出的第一信号S1的幅值放大,得到第二信号S2。在一些实施例中,如图2和图3所示,第二接收电路102,还被配置为接收第三信号S3,以产生电流。可以理解地,该电流可以为第二接收电路102的电子元件供电,也就是说第二接收电路102无需额外接入外部电源,因此可以减小信号识别系统的体积,并实现柔性系统。
在一些实施例中,如图2所示,信号发射装置200还包括第二发射电路202,第二发射电路202被配置为发出所述第三信号S3。即,第二接收电路102可以接收来自第二发射电路202的第三信号S3。
如图1和图2所示,第三接收电路103被配置为接收来自第二发射电路202的第三信号S3,并输出第四信号S4。基于电磁感应原理,第四信号S4与第三信号S3的相位完全相同,第四信号S4与第三信号S3的幅值可以相同,也可以不同。
在一些实施例中,如图3所示,第二发射电路202包括电感器H0,第三接收电路103包括第二电感器Ht,当电感器H0发射第三信号S3,由于电感器之间存在电磁感应,第二电感器Ht可以感应到第三信号S3,并输出第四信号S4,同时产生电流,该电流可以为发光器件104供电,使发光器件104发光。
在一些实施例中,第一信号S1与第三信号S3的频率相同,第一信号S1与第三信号S3的相位相同或相反。图3和图4以第一信号S1与第三信号S3的频率相同,第一信号S1与第三信号S3的相位也相同为例进行示例性说明。实际应用中,第一信号S1与第三信号S3的相位也可以相反,即第一信号S1与第三信号S3的相位相差180°。
如图1和图2所示,发光器件104耦接至第二接收电路102和第三接收电路103之间,且被配置为在第二信号S2与第四信号S4相同时处于熄灭状态,在第二信号S2与第四信号S4不同时处于发光状态。
示例性地,第二信号S2与第四信号S4相同时发光器件104处于熄灭状态是指:当第二信号S2与第四信号S4相同时,发光器件104一直处于熄灭状态。第二信号S2与第四信号S4不同时发光器件104处于发光状态是指:第二信号S2与第四信号S4不同时,发光器件104一直处于发光状态,或者发光器件104处于高频闪烁状态。可以理解地,当发光器件104处于高频闪 烁状态时,发光器件104以较高的频率在发光状态与熄灭状态之间进行切换。
示例性地,如图3所示,发光器件104可以为有机电致发光二极管(Organic Light-Emitting Diode,OLED)、量子点电致发光二极管(Quantum Dot Light Emitting Diodes,QLED)或有源矩阵有机发光二极管(Active-Matrix Organic Light Emitting Diode,AMOLED)。本申请实施例对发光器件104的具体类型不做特殊限制。以下实施例以发光器件104为OLED为例进行详细说明。发光二极管OLED的阳极耦接至第二电感器Ht,发光二极管OLED的阴极耦接至第二接收电路102的输出端。由于发光二极管OLED的结构特性,使得发光二极管OLED具有电流或电压阈值。例如,当发光二极管OLED两端的电压差大于或等于该电压阈值时,发光二极管OLED发光;当发光二极管OLED两端的电压差小于该电压阈值时,发光二极管OLED熄灭。可以理解的,当第二信号S2与第四信号S4的相位相同,且第二信号S2与第四信号S4的幅值差小于发光二极管OLED的阈值电压时,发光二极管OLED熄灭。也就是说,上述第二信号S2与第四信号S4相同既可以包括第二信号S2与第四信号S4的幅值完全相同,也可以包括第二信号S2与第四信号S4的幅值几乎相同(比如,第二信号S2与第四信号S4的幅值差小于发光二极管OLED的阈值电压)。
如图2与图3所示,当电感器H0内有电流通过,基于电磁感应原理,电感器H0内部及周围会产生第三信号S3,且第二电感器Ht感应到第三信号S3后产生电流,该电流可以驱动发光二极管OLED发光,并向发光二极管OLED的阳极输出第四信号S4,此时第二信号S2可能并未被生成,因此发光二极管OLED的阴阳极会存在电压差,发光二极管OLED就会发光。当第二信号S2已经被生成并且与第四信号S4相同时,发光二极管OLED的阴阳极没有电压差(或者电压差小于发光二极管OLED的阈值电压),则发光二极管OLED将熄灭。
可以理解地,本公开实施例提供的信号识别系统,通过第一接收电路101接收第一电磁波信号S0并得到第一信号S1,第二接收电路102对该第一信号S1进行放大得到第二信号S2,第三接收电路103接收第三信号S3并得到第四信号S4,而且第一信号S1与第三信号S3的频率相同。因此当发光二极管OLED熄灭时,说明第二信号S2与第四信号S4相同,此时信号识别系统能够识别出第一信号或第三信号的频率。也就是说,当具有相同频率的第一信号S1和第三信号S3均被发射并被接收,才有可能使得第二信号S2与第四信号S4相同,此时发光二极管OLED熄灭。当发光二极管OLED熄灭时,本公 开实施例的信号识别系统能够识别出特定频率(即第一信号或第三信号的频率)的信号。
在一些实施例中,如图2所示,第二接收电路102包括串联连接的多级子接收电路,多级子接收电路包括第一级子接收电路1021、第二级子接收电路1022,…,和第n级子接收电路102n,n为大于或等于3的整数。本公开实施例对于第二接收电路102包括的多级子接收电路的数量并不限定。
每级子接收电路被配置为将第一信号S1的幅值放大,多级子接收电路被配置为将第一信号S1的幅值进行逐级放大。例如,如图2和图3所示,第一级子接收电路1021被配置为对第一信号S1的幅值进行放大,得到第一级放大信号S11,并将该第一级放大信号S11输出至第二级子接收电路1022。第二级子接收电路1022被配置为将该第一级放大信号S11进行放大,得到第二级放大信号S12,并将该第二级放大信号S12输出至第三级子接收电路1023。以此类推,第n级子接收电路102n被配置为将第n-1级放大信号进行放大,得到第n级放大信号,并将该第n级放大信号输出。该第n级放大信号即为第二信号S2。相较于将第一信号S1经过一次放大得到第二信号S2的方式而言,通过多级子接收电路对第一信号S1进行逐级放大的方式更具可控性,而且每级子接收电路可以设置合适的放大倍数,使得输出的第二信号S2更稳定。
在一些实施例中,第二接收电路102包括的多级子接收电路中不同子接收电路的放大倍数可以相同,也可以不同,还可以部分相同,本公开对此并不限定。
在一些实施例中,每级子接收电路的放大倍数可以为3~5倍,即每级子接收电路可以将其接收的信号放大3~5后输出。本公开实施例对于每级子接收电路的放大倍数并不限定,每级子接收电路的放大倍数与每级子接收电路中电感器的电感值有关。实际应用中,可以根据不同的应用场景设置每级子接收电路的放大倍数。
在一些实施例中,如图2和图3所示,每级子接收电路包括放大装置Ix(例如,I1、I2…In)、第一电感器Hx(例如,H1、H2…Hn)和整流装置Lx(例如,L1、L2…Ln)。放大装置Ix耦接至第一接收电路101,且被配置为将第一接收电路101输出的第一信号S1的幅值放大。第一电感器Hx耦接至放大装置Ix,且被配置为接收来自第二发射电路202的第三信号S3,并产生电流,为放大装置Ix供电。整流装置Lx耦接至放大装置Ix和第一电感器Hx之间,且被配置为对第一电感器Hx产生的电流进行整流。
示例性地,放大装置可以为反相器。如图3所示,放大装置Ix包括反相 器I1,反相器I2,…,或反相器In。第一电感器Hx包括第一电感器H1,第一电感器H2,…,或第一电感器Hn。整流装置Lx包括整流装置L1,整流装置L2,…,或整流装置Ln。在一些实施例中,电感器H0也可以称为发射线圈,第一电感器Hx(例如,H1、H2…Hn)与第二电感器Ht也可以称为接收线圈。
如图3所示,第一级子接收电路1021中的反相器I1的第一端耦接至第一接收电路101的输出端,第一级子接收电路1021中的反相器I1的第二端耦接至第二级子接收电路1022中的反相器I2的第一端,第一级子接收电路1021中的反相器I1的第三端耦接至第一电感器H1的一端,第一电感器H1的另一端耦接至整流装置L1的一端,整流装置L1的另一端耦接至第一级子接收电路1021中的反相器I1的第四端。第二级子接收电路1021中的反相器I2的第二端耦接至第三级子接收电路1023中的反相器I3的第一端,第二级子接收电路1022中的反相器I2的第三端耦接至第一电感器H2的一端,第一电感器H2的另一端耦接至整流装置L2的一端,整流装置L2的另一端耦接至第二级子接收电路1021中的反相器I1的第四端。其他级子接收电路中放大装置Ix、第一电感器Hx和整流装置Lx的连接方式与第一级子接收电路1021和第二级子接收电路1022类似,在此不再赘述。
示例性的,反相器的结构可以通过低温多晶硅(Low Temperature Poly Silicon,LTPS)薄膜晶体管(例如,p型晶体管、n型晶体管),铟镓锌氧化物(Indium Gallium Zinc Oxide,IGZO)薄膜晶体管或其他氧化物薄膜晶体管(Thin Film Transistor,TFT)(例如,n型晶体管)、非晶硅TFT(例如,n型晶体管)、碳纳米管(例如,p型晶体管)、二维材料(例如,p型晶体管、n型晶体管)等实现。本公开实施例对于反相器的具体结构并不限定。
在一些实施例中,如图4所示,放大装置也可以包括放大器。当放大装置包括放大器时,放大器在放大第一信号S1的幅值时,不会转换第一信号S1的相位,因此第一信号S1与第三信号S3的相位必须相同才能够保证信号识别系统的正常运行,而且放大器的数量可以为偶数也可以为奇数,本公开实施例对放大器的数量不做限定。实际应用中,可以根据不同的应用场景设置。放大装置为反相器与放大装置为放大器相比,放大器对电源的要求更高,而反相器对电源的要求较简单,直流电源就可以驱动反相器,因此当放大装置为反相器时,更便于实现柔性系统。下述实施例以放大装置为反相器为例进行说明。
当第二发射电路202中的电感器H0发出第三信号S3时,由于电感器之 间存在电磁感应,每级子接收电路中的第一电感器H1、第一电感器H2,…,和第一电感器Hn可以感应到第三信号S3,并产生感应电流,分别为每级子接收电路中的反相器I1、反相器I2,…,反相器In供电,因此,第二接收电路102无需外接电源。
在一些实施例中,为了保证放大装置的放大倍数是逐级增大的,第一电感器H1,第一电感器H2,…,和第一电感器Hn的电感值可以逐级增大。也就是说,第一电感器H1的电感值小于第一电感器H2的电感值,…,第一电感器Hn-1的电感值小于第一电感器Hn的电感值。本公开实施例对于第一电感器H1,第一电感器H2,…,和第一电感器Hn的电感值并不限定,实际应用中,可以根据不同的应用场景设置每个第一电感器的电感值。
在一些实施例中,第二电感器Ht的电感值大于每级子接收电路中第一电感器Hx的电感值。即,第二电感器Ht的电感值大于第一电感器H1,第一电感器H2,…,和第一电感器Hn的电感值。由于发光二极管OLED只有在第二信号S2与第四信号S4相同时熄灭,第二信号S2是由多个第一电感器Hx对第一信号S1进行多级放大而得到的,而第四信号S4是直接由第二电感器Ht响应于第三信号S3而得到的,只有当第二电感器Ht的电感值大于第一电感器H1,第一电感器H2,…,和第一电感器Hn的电感值时,才能够使得第二信号S2与第四信号S4相同。第二电感器Ht的电感值可以根据多级子接收电路中第一电感器H1,第一电感器H2,…,和第一电感器Hn的电感值得出,本公开对于第一电感器H1,第一电感器H2,…,和第一电感器Hn以及第二电感器Ht的电感值并不限定。实际应用中,可以根据不同的应用场景设置第二电感器Ht的电感值。
在一些实施例中,多级子接收电路中最后一级子接收电路中的第一电感Hn的电感值可以与第二电感器Ht的电感值相同。例如,如图3所示,第一电感器Hn的电感值可以与第二电感器Ht的电感值相同,能够确保第二信号S2与第四信号S4的幅值相差不大。如此一来,当具有相同频率的第一信号S1和第三信号S3均被发射并被接收时,第二信号S2与第四信号S4的相位相同且幅值相差不大,能够确保发光二极管OLED一直处于熄灭状态,从而更加准确的识别出特定频率(即第一信号或第三信号的频率)的信号。
示例性地,如图3所示,在每级子接收电路中,每一个第一电感器产生的电流经一个二极管整流后向反相器,可以为反相器提供稳定的电流。
如图3所示,第二接收电路102的工作原理如下:
第一接收电路101输出第一信号S1。在第一级子接收电路1021中,第一 电感器H1感应到第三信号S3,并产生电流,该电流经由二极管L1流至反相器I1,并驱动反相器I1将第一信号S1的幅值进行放大,将第一信号S1的相位转换为反相,得到第一级放大信号S11,将该第一级放大信号S11输出至反相器I2的输入端。在第二级子接收电路1022中,第一电感器H2感应到第三信号S3,并产生电流,该电流经由二极管L2流至反相器I2,并驱动反相器I2将第一级放大信号S11的幅值进行放大,将第一信号S1的相位转换为反相得到第二级放大信号S12,将该第二级放大信号S12输出至反相器I3的输入端。以此类推,在第n级子接收电路102n中,由第一电感器Hn感应到第三信号S3,并产生电流,该电流经由二极管Ln流至反相器In,并驱动反相器In将第n-1级放大信号S1n-1的幅值进行放大,将第一信号S1的相位转换为反相得到第n级放大信号,并将第n级放大信号输出至发光二极管OLED,该第n级放大信号即为第二信号S2。
在一些实施例中,第一信号S1与第三信号S3的频率相同,第一信号S1与第三信号S3的相位可以相同或相反。由于发光器件104只有在第二信号S2与第四信号S4相同时熄灭,第二信号S2是由多个第一电感器对第一信号S1进行多级放大而得到的,而第四信号S4是直接由第二电感器Ht响应于第三信号S3而得到的,所以为了实现第二信号S2与第四信号S4相同,第一信号S1与第三信号S3的频率必须相同。下面将举例说明第一信号S1与第三信号S3的相位相同或相反的情况下,如何实现第二信号S2与第四信号S4相同。
示例性地,如图3所示,第一信号S1与第三信号S3的相位相同时,第二接收电路102包括的反相器的数量n为偶数,则第一信号S1经反相器Ix反相的次数为偶数。也就是说,反相器In输出的第n级放大信号与第一信号S1的相位相同,也即第二信号S2的相位与第一信号S1的相位相同。由于第一信号S1与第三信号S3的相位相同,第四信号S4与第三信号S3的相位相同,因此,第二信号S2与第四信号S4的相位相同。
示例性地,如图5所示,第一信号S1与第三信号S3的相位相反时,第二接收电路102包括的反相器的数量n为奇数,则第一信号S1经反相器Ix反相的次数为奇数。也就是说,反相器In输出的第n级放大信号与第一信号S1的相位相反,也即第二信号S2的相位与第一信号S1的相位相反,由于第一信号S1与第三信号S3的相位相反,第四信号S4与第三信号S3的相位相同,因此,第二信号S2与第四信号S4的相位相同。
在一些实施例中,第一信号S1的频率范围为1kHz~20kHz。本公开实施例的信号识别系统可用于识别具有特定频率的信号,该特定频率可以是频率 范围为1kHz~20kHz的信号,下述就本公开的信号识别系统如何识别出特定频率的信号且不会识别出非该特定频率的信号进行举例说明。
示例性地,以信号识别系统用于识别的特定频率为12kHz为例,第一信号S1与第三信号S3的频率均为12kHz,只有当频率为12kHz的第一信号S1与频率为12kHz的第三信号S3均发出时,由于电磁感应原理,第二电感器Ht感应到频率为12kHz的第三信号S3后产生电流,该电流可以驱动发光二极管OLED发光,并向发光二极管OLED的阳极输出第四信号S4,第四信号的频率也为12kHz。同时,第一电感器Hx感应到频率为12kHz的第三信号S3后产生电流,该电流由二极管Lx整流后驱动反相器Ix。频率为12kHz的第一信号S1经反相器Ix的逐级放大,输出第二信号S2,第二信号S2的频率也为12kHz,通过设置第一电感器和第二电感器Ht的感值,可以使得第二信号S2的幅值与第四信号S4的幅值相同,若第二信号S2与第四信号S4相位一致,则第二信号S2与第四信号S4完全相同,因此发光二极管OLED的阴阳极没有电压差,则发光二极管OLED将熄灭。当发光二极管OLED熄灭时,可以确定本公开实施例的信号识别系统识别到了具有特定频率的信号,即频率为12kHz的信号。
示例性地,以信号识别系统用于识别的特定频率为12kHz为例,若信号识别系统的识别范围内存在一个频率为18kHz的第一干扰信号,第二电感Ht可能会响应于该第一干扰信号,并产生对应于该第一干扰信号的第四信号S4。但是由于第一天线A1无法接收到该第一干扰信号,因此不会产生对应于该第一干扰信号的第二信号S2,由于此时第二信号S2与第四信号S4不相同,发光二极管OLED不会熄灭,也就是说,本公开实施例的信号识别系统能够区分出该第一干扰信号不包括特定频率为12kHZ的信号。
示例性地,以信号识别系统用于识别的特定频率为12kHz为例,在本公开实施例的信号识别系统的识别范围内存在一个第二干扰信号,该第二干扰信号由第二载波对频率为18kHz的信号进行调制得到的第二干扰信号,由于第一天线A1的频率与第一载波相同,而且在不知道第一载波的频率的情况下,很难反向研究出第一载波的频率,因此第二载波的频率很难调整为与第一载波的频率相同或大致相同。示例性地,当第一载波的频率为200MHz,第二载波的频率为150MHz,二者的频率不匹配,则第一信号S1的体现为直流,那么第二信号S2的体现也为直流。因此,即使第二电感Ht可能会响应于该第二干扰信号,并产生对应于该第二干扰信号的第四信号S4,由于此时第二信号S2与第四信号S4不相同,发光二极管OLED不会熄灭,也就是说,本 公开实施例的信号识别系统能够区分出该第二干扰信号不包括特定频率为12kHZ的信号。
在上述任一实施例中,是由第一发射电路201将第一信号调制到高频的第一载波上后,生成第一电磁波,并通过第二天线A0发射该高频的第一电磁波。也就是说,本公开实施例是采用高频载波将低频信号发射出去,由于高频载波本身对于接收天线的设计较为敏感,因此不易被仿造,能够很大程度地避免接收端被伪造。电感器H0与第一电感之间的电磁感应,可以产生电流驱动反相器,使得反相器无需外接电源。电感器H0与第二电感Ht之间的电磁感应,可以产生电流流向发光二极管OLED。如此,本公开实施例的信号识别系统可以精准识别特定频率的信号,且无需外接电源,可以实现柔性系统。
本公开一些实施例还提供一种信号接收装置,该信号接收装置可以为上述任一实施例所述的信号接收装置100,关于信号接收装置100的结构和功能在此不再赘述。
本公开一些实施例还提供一种信号识别方法,应用于上述实施例中任一实施例的信号识别系统,如图6所示,该方法包括:
步骤601,第一接收电路101接收来自第一发射电路201的第一电磁波S0,并根据第一电磁波S0得到第一信号S1,第一发射电路201被配置为将第一信号S1调制至第一载波上,以生成第一电磁波S0。
步骤602,第二接收电路102将第一接收电路101输出的第一信号S1的幅值放大,得到第二信号S2。
步骤603,第三接收电路103接收来自第二发射电路202的第三信号S3,并输出第四信号S4;其中,在第二信号S2与第四信号S4相同时,发光器件104处于熄灭状态;在第二信号S2与第四信号S4不同时,发光器件104处于发光状态。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种信号接收装置,包括:
    第一接收电路,被配置为接第一电磁波,并根据所述第一电磁波得到第一信号,所述第一电磁波为将所述第一信号调制至第一载波上生成的电磁波;
    第二接收电路,耦接至所述第一接收电路,且被配置为将所述第一接收电路输出的所述第一信号的幅值放大,得到第二信号;
    第三接收电路,被配置为接收第三信号,并输出第四信号;和,
    发光器件,耦接至所述第二接收电路和所述第三接收电路之间,且被配置为在所述第二信号与所述第四信号相同时处于熄灭状态,在所述第二信号与所述第四信号不同时处于发光状态。
  2. 根据权利要求1所述的信号接收装置,其中,所述第二接收电路,还被配置为接收第三信号。
  3. 根据权利要求1或2所述的信号接收装置,其中,所述第二接收电路包括多级子接收电路,所述多级子接收电路串联连接,每个所述子接收电路包括:
    放大装置,耦接至所述第一接收电路,且被配置为将所述第一接收电路输出的所述第一信号的幅值放大;
    第一电感器,耦接至所述放大装置,且被配置为接收所述第三信号,并向所述放大装置供电;
    整流装置,耦接至所述放大装置和所述第一电感器之间,且被配置为对所述第一电感器产生的感应电流进行整流。
  4. 根据权利要求3所述的信号接收装置,其中,串联连接的所述多级子接收电路中的所述第一电感器的电感值逐级增加。
  5. 根据权利要求3或4所述的信号接收装置,其中,放大装置为放大器或反相器。
  6. 根据权利要求5所述的信号接收装置,其中,所述第一信号与所述第三信号的频率相同,所述第一信号与所述第三信号的相位相同或相反。
  7. 根据权利要求6所述的信号识别系统,其中,所述第一信号与所述第三信号的相位相同时,所述第二接收电路包括的反相器的数量为偶数;所述第一信号与所述第三信号的相位相反时,所述第二接收电路包括的反相器的数量为奇数。
  8. 根据权利要求3~7中任一项所述的信号接收装置,其中,所述第三接收电路包括第二电感器,所述第二电感器的电感值大于所述第一电感器的电感值。
  9. 根据权利要求8所述的信号接收装置,其中,所述多级子接收电路中最后一级子接收电路中的所述第一电感的电感值与所述第二电感器的电感值相同。
  10. 一种信号识别系统,包括信号发射装置与权利要求1~9中任一项所述的信号接收装置,其中,所述信号发射装置包括所述第一发射电路和所述第二发射电路;
    所述第一发射电路被配置为将所述第一信号调制至所述第一载波上,以生成所述第一电磁波;
    所述第二发射电路被配置为发出所述第三信号。
  11. 根据权利要求10所述的信号识别系统,其中,所述第一信号的频率范围为1kHz~20kHz。
  12. 根据权利要求10或11所述的信号识别系统,其中,所述第一接收电路包括第一天线,所述第一发射电路包括第二天线,所述第一天线和所述第二天线的频率相同或相近。
  13. 根据权利要求12所述的信号识别系统,其中,所述第一天线和所述第二天线的中心频率大于或等于100MHz。
  14. 一种信号识别方法,应用于如权利要求10-13中任一项所述的信号识别系统,所述方法包括:
    所述第一接收电路接收来自所述第一发射电路的第一电磁波,并根据所述第一电磁波得到第一信号,所述第一发射电路被配置为将所述第一信号调制至第一载波上,以生成所述第一电磁波;
    所述第二接收电路将所述第一接收电路输出的所述第一信号的幅值放大,得到第二信号;
    所述第三接收电路接收来自所述第二发射电路的第三信号,并输出第四信号;其中,在所述第二信号与所述第四信号相同时,所述发光器件处于熄灭状态;在所述第二信号与所述第四信号不同时,所述发光器件处于发光状态。
PCT/CN2022/096431 2022-05-31 2022-05-31 信号接收装置、信号识别系统及方法 WO2023230905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096431 WO2023230905A1 (zh) 2022-05-31 2022-05-31 信号接收装置、信号识别系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096431 WO2023230905A1 (zh) 2022-05-31 2022-05-31 信号接收装置、信号识别系统及方法

Publications (1)

Publication Number Publication Date
WO2023230905A1 true WO2023230905A1 (zh) 2023-12-07

Family

ID=89026713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096431 WO2023230905A1 (zh) 2022-05-31 2022-05-31 信号接收装置、信号识别系统及方法

Country Status (1)

Country Link
WO (1) WO2023230905A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201456A1 (en) * 2001-10-29 2004-10-14 Tagsys Australia Pty Ltd. Electronic label interrogation through incidental electromagnetic radiation
CN103543340A (zh) * 2013-10-08 2014-01-29 中国科学院城市环境研究所 简易电磁环境警示器
EP3315894A1 (en) * 2016-10-27 2018-05-02 LACS S.r.l. A detector assembly of electromagnetic beams
CN113030860A (zh) * 2021-05-27 2021-06-25 东智安通(北京)科技有限公司 基于rfid定位标签的定位方法、装置、设备和介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201456A1 (en) * 2001-10-29 2004-10-14 Tagsys Australia Pty Ltd. Electronic label interrogation through incidental electromagnetic radiation
CN103543340A (zh) * 2013-10-08 2014-01-29 中国科学院城市环境研究所 简易电磁环境警示器
EP3315894A1 (en) * 2016-10-27 2018-05-02 LACS S.r.l. A detector assembly of electromagnetic beams
CN113030860A (zh) * 2021-05-27 2021-06-25 东智安通(北京)科技有限公司 基于rfid定位标签的定位方法、装置、设备和介质

Similar Documents

Publication Publication Date Title
US20180301942A1 (en) Reducing corruption of communication in a wireless power transmission system
US9306400B2 (en) Power transmission device and waveform monitor circuit for use in power transmission device
JP6134747B2 (ja) 無線電力受信装置、負荷変調方法及び無線電力送信装置
JP2004222285A (ja) 基地局から送出される高周波電磁界から電力を調達する回路
US20080315925A1 (en) Isolator circuit including a voltage regulator
US20190123594A1 (en) Current shunt monitor
US10778046B2 (en) Power transmitting device and non-contact power feeding system
US20180262049A1 (en) Power transmission device and non-contact power feeding system
US8278963B2 (en) Power detector and method for detecting power
US7817742B2 (en) Power supply apparatus and power supply method
US20230318359A1 (en) Contactless power reception device and reception method
TW201325009A (zh) 送電裝置、受電裝置、非接觸式電力傳送系統、及在非接觸式電力傳送系統的送電電力之控制方法
WO2017016012A1 (zh) 一种保护电路
WO2023230905A1 (zh) 信号接收装置、信号识别系统及方法
US11316374B2 (en) Methods and apparatus for antenna signal limiter for radio frequency identification transponder
US20130082649A1 (en) Wireless charging system
WO2022156153A1 (zh) 一种远距离广播线路检测装置
JP2000090215A (ja) リーダ及びライタ装置並びに非接触icカードシステム
US7847599B2 (en) Start signal detection circuit
JP2015008606A (ja) 復調器およびそれを用いた、制御回路、ワイヤレス送電装置
WO2023184659A1 (zh) 通过硬线控制整流器模式的无线充电系统控制电路及方法
CN113055328B (zh) 一种基于低功耗反向散射放大标签的bpsk调制电路及其方法
US20200059121A1 (en) A wireless charging device and a method for detecting a receiver device
JP6267808B2 (ja) 無線給電システム、給電側装置、および受電側装置
US10615645B2 (en) Power supply device of induction type power supply system and NFC device identification method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944241

Country of ref document: EP

Kind code of ref document: A1