WO2023184659A1 - 通过硬线控制整流器模式的无线充电系统控制电路及方法 - Google Patents

通过硬线控制整流器模式的无线充电系统控制电路及方法 Download PDF

Info

Publication number
WO2023184659A1
WO2023184659A1 PCT/CN2022/092585 CN2022092585W WO2023184659A1 WO 2023184659 A1 WO2023184659 A1 WO 2023184659A1 CN 2022092585 W CN2022092585 W CN 2022092585W WO 2023184659 A1 WO2023184659 A1 WO 2023184659A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
bridge
rectification mode
wireless charging
control circuit
Prior art date
Application number
PCT/CN2022/092585
Other languages
English (en)
French (fr)
Inventor
魏巍
郭植童
李暾
Original Assignee
成都市易冲半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都市易冲半导体有限公司 filed Critical 成都市易冲半导体有限公司
Publication of WO2023184659A1 publication Critical patent/WO2023184659A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to the technical field of wireless charging, and specifically, to a wireless charging system control circuit and method for controlling a rectifier mode through hard wires.
  • the principle of the wireless charging system is shown in Figure 1. It can be seen that the energy at the transmitter and receiver of the wireless charging system is transmitted by coils. The two coils are approximately loosely coupled transformers. The voltage at the receiver depends on the transmitter voltage and coupling coefficient. As well as the size and inductance of the transmitter and receiver coils, the receiver needs to charge the battery, so the output voltage of the receiver must be above 4V before it can be charged. If the input voltage is low, the rectifier at the receiver needs to work in voltage doubling mode. In order to generate sufficient output voltage, if the input voltage is high, the rectifier at the receiving end needs to work in full-bridge rectification mode to prevent overvoltage from causing large losses or damaging the chip.
  • the range of inductance of wireless charging system coils is very wide, ranging from a few microhenry ( ⁇ H) to dozens of microhenry ( ⁇ H).
  • ⁇ H microhenry
  • ⁇ H microhenry
  • the input voltage of the coupling is very different, so the working mode of the wireless charging rectifier needs to adapt to the change of the input voltage, and work in the half-bridge rectification mode (voltage doubler rectification mode) or the full-bridge rectification mode.
  • the present invention aims to provide a wireless charging system control circuit and method that controls the rectifier mode through hard wires, so as to be suitable for the application of wireless charging systems with different inductances, low inductance or low voltage systems, working in the voltage doubler rectification mode, high inductance For systems with high power or high voltage, they work in the full-bridge rectification mode.
  • This method can also automatically adjust the rectifier operating mode according to the voltage of the rectifier.
  • the invention provides a wireless charging system control circuit that controls the rectifier mode through hard wires, including:
  • the rectification mode control signal generating circuit is connected to the rectifier at the receiving end of the wireless charging system through the rectifier bridge drive circuit.
  • the rectification mode control signal generating circuit includes:
  • the internal power supply is generated by the output voltage Vrect of the receiving end of the wireless charging system
  • One end of the pull-up resistor R1 is connected to the internal power supply, and the other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand.
  • the rectification mode control signal generating circuit includes:
  • One end of the pull-down resistor R2 is connected to ground, and the other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand.
  • the rectification mode control signal generating circuit includes:
  • the input of the positive input terminal of the comparator one is the output voltage Vrect of the wireless charging system receiving terminal, the input of the negative input terminal is the first threshold vrect_th1, and the output terminal is connected to the rectifier bridge drive circuit;
  • the input of the negative input terminal of the comparator 2 is the output voltage Vrect of the receiving terminal of the wireless charging system, the input of the positive input terminal is the second threshold vrect_th2, and the output terminal is connected to the rectifier bridge drive circuit;
  • the first threshold vrect_th1 is greater than the second threshold vrect_th2; the first threshold vrect_th1 represents the judgment threshold for entering the full-bridge rectification mode from the half-bridge rectification mode, and the second threshold vrect_th2 represents the judgment threshold for entering the half-bridge rectification mode from the full-bridge rectification mode.
  • the present invention also provides a wireless charging system receiving end, which includes the above-mentioned wireless charging system control circuit.
  • the present invention also provides a wireless charging system, which includes a transmitting end and a receiving end as described above.
  • the present invention also provides a wireless charging system control method that controls the rectifier mode through hard wires, including the following steps:
  • Step S100 the rectification mode control signal generating circuit detects the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; according to the level state of the chip pin control circuit, it outputs the corresponding half signal to the rectifier bridge drive circuit.
  • the level state of the input signal pin of the chip pin control circuit is set to:
  • the rectifier defaults to the full-bridge rectification mode; if the input signal pin of the chip pin control circuit is at a low level, the rectifier defaults to the half-bridge rectification mode;
  • the rectifier defaults to the full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to the half-bridge rectification mode;
  • Step S200 the rectifier bridge driving circuit drives the rectifier into the half-bridge rectification mode or the full-bridge rectification mode according to the half-bridge control signal or the full-bridge control signal.
  • the rectification mode control signal generating circuit uses an internal power supply and a pull-up resistor R1 to detect the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; the internal power supply is provided by The output voltage Vrect at the receiving end of the wireless charging system is generated; one end of the pull-up resistor R1 is connected to the internal power supply, and the other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1;
  • the rectification mode control signal generation circuit outputs the corresponding half-bridge to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1.
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to full-bridge rectification mode. If the input signal pin of the chip pin control circuit is low level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1;
  • the rectification mode control signal generation circuit outputs the corresponding full-bridge signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1. control signal.
  • the rectification mode control signal generating circuit uses a pull-down resistor R2 to detect the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; one end of the pull-down resistor R2 is grounded, The other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to full-bridge rectification mode. If the input signal pin of the chip pin control circuit is low level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2.
  • the present invention also provides a wireless charging system control method that controls the rectifier mode through hard wires, including:
  • the rectification mode control signal generating circuit adopts comparator one and comparator two; the positive input terminal of the comparator one inputs the output voltage Vrect of the receiving end of the wireless charging system, and the negative input terminal inputs the first threshold vrect_th1; the negative input terminal of the comparator one inputs the output voltage Vrect of the receiving end of the wireless charging system.
  • the input terminal inputs the output voltage Vrect of the receiving end of the wireless charging system, and the positive input terminal inputs the second threshold vrect_th2; where the first threshold vrect_th1 is greater than the second threshold vrect_th2; the first threshold vrect_th1 represents the judgment of entering the full-bridge rectification mode from the half-bridge rectification mode.
  • Threshold, the second threshold vrect_th2 represents the judgment threshold for entering the half-bridge rectification mode from the full-bridge rectification mode;
  • the output terminal of comparator 2 When vrect ⁇ vrect_th2, the output terminal of comparator 2 outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit, driving the rectifier into the half-bridge rectification mode.
  • the invention is suitable for the application of wireless charging systems with different inductances.
  • Low inductance or low voltage systems work in the voltage doubler rectification mode; high inductance or high voltage systems work in the full-bridge rectification mode.
  • the rectifier working mode can be automatically adjusted according to the rectifier voltage.
  • Figure 1 is a block diagram of the wireless charging system.
  • Figure 2 is a structural diagram of the wireless charging system control circuit of the present invention that controls the rectifier mode through hard wires.
  • Figure 3 is a structural diagram of a rectification mode control signal generation circuit using a pull-up resistor according to the present invention.
  • Figure 4 is a structural diagram of the rectification mode control signal generation circuit using a pull-down resistor according to the present invention.
  • Figure 5 is a structural diagram of a rectification mode control signal generation circuit using a comparator according to the present invention.
  • FIG. 6 is a flow chart of a wireless charging system control method through hard-wired control of the rectifier mode according to Embodiment 2 of the present invention.
  • the receiving end of the wireless charging system includes a rectifier, a rectifier drive circuit, a chip pin control circuit, etc.
  • the rectifier is connected to a resonant circuit.
  • the rectifier drive circuit is used to drive the rectifier to operate in a half-bridge rectification mode (voltage doubler rectification mode) or a full-bridge rectification mode; in the half-bridge rectification mode, the output voltage of the receiving end of the wireless charging system is approximately equal to twice the input voltage, which can
  • the AC1 low-side tube is normally open, or the AC2 low-side tube is normally open, both of which can realize the voltage doubling function;
  • the input signal terminal of the chip pin control circuit is used to input the signal Rect_mode_control to control the default rectification mode of the rectifier.
  • Different input voltages Ping can control the default startup rectification mode of the rectifier.
  • This embodiment proposes a wireless charging system control circuit that controls the rectifier mode through hard wires, including:
  • the rectification mode control signal generating circuit is connected to the rectifier at the receiving end of the wireless charging system through the rectifier bridge drive circuit.
  • the rectification mode control signal generating circuit is used to detect the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; according to the level state of the chip pin control circuit, output the corresponding signal to the rectifier bridge drive circuit.
  • the half-bridge control signal or the full-bridge control signal causes the rectifier bridge drive circuit to drive the rectifier into the half-bridge rectification mode or the full-bridge rectification mode according to the half-bridge control signal or the full-bridge control signal.
  • the rectification mode control signal generating circuit can adopt the following three implementation schemes:
  • the rectification mode control signal generating circuit includes:
  • the internal power supply is generated by the output voltage Vrect of the receiving end of the wireless charging system
  • One end of the pull-up resistor R1 is connected to the internal power supply, and the other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand.
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1;
  • the rectification mode control signal generation circuit outputs the corresponding half-bridge to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1.
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to full-bridge rectification mode. If the input signal pin of the chip pin control circuit is low level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1;
  • the rectification mode control signal generation circuit outputs the corresponding full-bridge signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1. control signal.
  • the rectification mode control signal generating circuit includes:
  • One end of the pull-down resistor R2 is connected to ground, and the other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand.
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to full-bridge rectification mode. If the input signal pin of the chip pin control circuit is low level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the pull-down resistor R2;
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2.
  • the rectification mode control signal generating circuit includes:
  • the input of the positive input terminal of the comparator one is the output voltage Vrect of the wireless charging system receiving terminal, the input of the negative input terminal is the first threshold vrect_th1, and the output terminal is connected to the rectifier bridge drive circuit;
  • the input of the negative input terminal of the comparator 2 is the output voltage Vrect of the receiving terminal of the wireless charging system, the input of the positive input terminal is the second threshold vrect_th2, and the output terminal is connected to the rectifier bridge drive circuit;
  • the first threshold vrect_th1 is greater than the second threshold vrect_th2; the first threshold vrect_th1 represents the judgment threshold for entering the full-bridge rectification mode from the half-bridge rectification mode, and the second threshold vrect_th2 represents the judgment threshold for entering the half-bridge rectification mode from the full-bridge rectification mode. It should be noted that the first threshold vrect_th1 and the second threshold vrect_th2 may select different voltages according to different wireless charging systems.
  • the output voltage Vrect at the receiving end of the wireless charging system is compared with the first threshold vrect_th1 and the second threshold vrect_th2 respectively through comparator one and comparator two:
  • the output end of comparator one When vrect>vrect_th1, the output end of comparator one outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit, driving the rectifier into the full-bridge rectification mode; and this method can also be used for the start-up overvoltage protection of the wireless charging system , when the input voltage is too high and is greater than vrect_th1, it will automatically exit the half-bridge voltage doubling mode and enter the full-bridge rectification mode to prevent overvoltage chip damage or other abnormal problems caused by too high starting voltage.
  • the output terminal of comparator 2 When vrect ⁇ vrect_th2, the output terminal of comparator 2 outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit, driving the rectifier into the half-bridge rectification mode.
  • this embodiment implements a wireless charging system control method that controls the rectifier mode through hard wires, including the following steps:
  • Step S100 the rectification mode control signal generating circuit detects the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; according to the level state of the chip pin control circuit, it outputs the corresponding half signal to the rectifier bridge drive circuit.
  • the level state of the input signal pin of the chip pin control circuit is set to:
  • the rectifier defaults to the full-bridge rectification mode; if the input signal pin of the chip pin control circuit is at a low level, the rectifier defaults to the half-bridge rectification mode;
  • the rectifier defaults to the full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to the half-bridge rectification mode;
  • Step S200 the rectifier bridge driving circuit drives the rectifier into the half-bridge rectification mode or the full-bridge rectification mode according to the half-bridge control signal or the full-bridge control signal.
  • Step S100 is implemented using the following two solutions:
  • the rectification mode control signal generating circuit uses an internal power supply and a pull-up resistor R1 to detect the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; the internal power supply is generated by the output of the wireless charging system receiving end. The voltage Vrect is generated; one end of the pull-up resistor R1 is connected to the internal power supply, and the other end is used to connect the input signal end of the chip pin control circuit on the one hand, and the rectifier bridge drive circuit on the other hand;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to full-bridge rectification mode; if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1;
  • the rectification mode control signal generation circuit outputs the corresponding half-bridge to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1.
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to full-bridge rectification mode. If the input signal pin of the chip pin control circuit is low level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1;
  • the rectification mode control signal generation circuit outputs the corresponding full-bridge signal to the rectifier bridge drive circuit due to the action of the internal power supply and pull-up resistor R1. control signal.
  • step S100
  • the rectification mode control signal generating circuit uses a pull-down resistor R2 to detect the level state of the input signal pin of the chip pin control circuit at the receiving end of the wireless charging system; one end of the pull-down resistor R2 is grounded, and the other end is used to connect the chip pin.
  • the input signal terminal of the control circuit is connected to the rectifier bridge drive circuit on the other hand;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to full-bridge rectification mode. If the input signal pin of the chip pin control circuit is high level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectifier When set to, if the input signal pin of the chip pin control circuit is high level, the rectifier defaults to full-bridge rectification mode; if the input signal pin of the chip pin control circuit is low level, the rectifier defaults to half-bridge rectification mode. mode; then there are:
  • the rectification mode control signal generating circuit outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2;
  • the rectification mode control signal generating circuit outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit due to the action of the pull-down resistor R2.
  • this embodiment implements a wireless charging system control method that controls the rectifier mode through hard wires, including:
  • the rectification mode control signal generating circuit adopts comparator one and comparator two; the positive input terminal of the comparator one inputs the output voltage Vrect of the receiving end of the wireless charging system, and the negative input terminal inputs the first threshold vrect_th1; the negative input terminal of the comparator one inputs the output voltage Vrect of the receiving end of the wireless charging system.
  • the input terminal inputs the output voltage Vrect of the receiving end of the wireless charging system, and the positive input terminal inputs the second threshold vrect_th2; where the first threshold vrect_th1 is greater than the second threshold vrect_th2; the first threshold vrect_th1 represents the judgment of entering the full-bridge rectification mode from the half-bridge rectification mode.
  • Threshold, the second threshold vrect_th2 represents the judgment threshold for entering the half-bridge rectification mode from the full-bridge rectification mode;
  • the output end of comparator one When vrect>vrect_th1, the output end of comparator one outputs the corresponding full-bridge control signal to the rectifier bridge drive circuit, driving the rectifier into the full-bridge rectification mode; and this method can also be used for the start-up overvoltage protection of the wireless charging system , when the input voltage is too high and is greater than vrect_th1, it will automatically exit the half-bridge voltage doubling mode and enter the full-bridge rectification mode to prevent overvoltage chip damage or other abnormal problems caused by too high starting voltage.
  • the output terminal of comparator 2 When vrect ⁇ vrect_th2, the output terminal of comparator 2 outputs the corresponding half-bridge control signal to the rectifier bridge drive circuit, driving the rectifier into the half-bridge rectification mode.
  • the wireless charging system receiving end includes the wireless charging system control circuit described in Embodiment 1.
  • This embodiment implements a wireless charging system, which includes a transmitting end and a receiving end as described in Embodiment 4.

Abstract

本发明提供一种通过硬线控制整流器模式的无线充电系统控制电路及方法,所述无线充电系统控制电路包括:整流模式控制信号发生电路;所述整流模式控制信号发生电路经整流桥驱动电路连接无线充电系统接收端的整流器。本发明适用不同感量无线充电系统的应用,低感量或者低电压系统,工作于倍压整流模式,高感量或者高电压的系统,工作于全桥整流模式。同时可以根据整流器的电压,自动的调整整流器工作模式。

Description

通过硬线控制整流器模式的无线充电系统控制电路及方法
相关申请的交叉引用
本申请要求2022年3月29日提交的中国申请号为2022103169340、名称为“通过硬线控制整流器模式的无线充电系统控制电路及方法”的优先权,本公开参考引用了前述申请的全部内容。
技术领域
本发明涉及无线充电技术领域,具体而言,涉及一种通过硬线控制整流器模式的无线充电系统控制电路及方法。
背景技术
无线充电系统的原理如图1所示,可以看出无线充电系统的发射端与接收端的能量靠线圈来传输,两个线圈近似为松耦合变压器,接收端的电压取决于发射端电压,耦合系数,以及发射端和接收端线圈的尺寸以及感量,接收端需要给电池充电,因此接收端的输出电压要在4V以上才可以充电,如果输入电压较低,就需要接收端的整流器工作于倍压模式,以产生足够的输出电压,如果输入电压较高时,就需要接收端的整流器工作于全桥整流模式,防止过压产生大的损耗或者损坏芯片。
随着无线充电的快速发展,以及产品的多元性,无线充电系统线圈的感量范围很宽,从几微亨(μH)到几十微亨(μH)不等,不同的线圈以及不同的感量,耦合的输入电压差异很大,因此需要无线充电整流器的工作模式适应输入电压的变化,工作于半桥整流模式(倍压整流模式)或者全桥整流模式。
发明内容
本发明旨在提供一种通过硬线控制整流器模式的无线充电系统控制电路及方法,以适用不同感量无线充电系统的应用,低感量或者低电压系统, 工作于倍压整流模式,高感量或者高电压的系统,工作于全桥整流模式,该方法同时可以根据整流器的电压,自动的调整整流器工作模式。
本发明提供的一种通过硬线控制整流器模式的无线充电系统控制电路,包括:
整流模式控制信号发生电路;
所述整流模式控制信号发生电路经整流桥驱动电路连接无线充电系统接收端的整流器。
在一些实施例中,所述整流模式控制信号发生电路包括:
上拉电阻R1和内部电源;
所述内部电源由无线充电系统接收端的输出电压Vrect产生;
所述上拉电阻R1的一端连接内部电源,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路。
在一些实施例中,所述整流模式控制信号发生电路包括:
下拉电阻R2;
所述下拉电阻R2的一端接地,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路。
在一些实施例中,所述整流模式控制信号发生电路包括:
比较器一和比较器二;
所述比较器一的正输入端的输入为无线充电系统接收端的输出电压Vrect,负输入端的输入为第一阈值vrect_th1,输出端连接整流桥驱动电路;
所述比较器二的负输入端的输入为无线充电系统接收端的输出电压Vrect,正输入端的输入为第二阈值vrect_th2,输出端连接整流桥驱动电路;
第一阈值vrect_th1大于第二阈值vrect_th2;第一阈值vrect_th1表示从半桥整流模式进入全桥整流模式的判断阈值,第二阈值vrect_th2表示从全桥整流模式进入半桥整流模式的判断阈值。
本发明还提供一种无线充电系统接收端,所述无线充电系统接收端包 括上述的无线充电系统控制电路。
本发明还提供一种无线充电系统,所述无线充电系统包括发射端以及如上述的接收端。
本发明还提供一种通过硬线控制整流器模式的无线充电系统控制方法包括如下步骤:
步骤S100,整流模式控制信号发生电路检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;根据芯片管脚控制电路的电平状态,向整流桥驱动电路输出相应的半桥控制信号或全桥控制信号;
其中,芯片管脚控制电路的输入信号管脚的电平状态设置为:
若芯片管脚控制电路的输入信号管脚为高电平时,整流器进默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;
或者,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;
步骤S200,整流桥驱动电路根据半桥控制信号或全桥控制信号驱动整流器进入半桥整流模式或全桥整流模式。
在一些实施例中,步骤S100中,整流模式控制信号发生电路采用内部电源和上拉电阻R1检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;所述内部电源由无线充电系统接收端的输出电压Vrect产生;所述上拉电阻R1的一端连接内部电源,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路;
当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉 电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
在一些实施例中,步骤S100中,整流模式控制信号发生电路采用下拉电阻R2检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;所述下拉电阻R2的一端接地,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路;
当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控 制信号;
当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
本发明还提供一种通过硬线控制整流器模式的无线充电系统控制方法,包括:
整流模式控制信号发生电路采用比较器一和比较器二;所述比较器一的正输入端输入无线充电系统接收端的输出电压Vrect,负输入端输入第一阈值vrect_th1;所述比较器一的负输入端输入无线充电系统接收端的输出电压Vrect,正输入端输入第二阈值vrect_th2;其中,第一阈值vrect_th1大于第二阈值vrect_th2;第一阈值vrect_th1表示从半桥整流模式进入全桥整流模式的判断阈值,第二阈值vrect_th2表示从全桥整流模式进入半桥整流模式的判断阈值;
当vrect>vrect_th1时,比较器一的输出端向整流桥驱动电路输出相应的全桥控制信号,驱动整流器进入全桥整流模式;
当vrect<vrect_th2时,比较器二的输出端向整流桥驱动电路输出相应的半桥控制信号,驱动整流器进入半桥整流模式。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明适用不同感量无线充电系统的应用,低感量或者低电压系统,工作于倍压整流模式,高感量或者高电压的系统,工作于全桥整流模式。 同时可以根据整流器的电压,自动的调整整流器工作模式。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为无线充电系统结构框图。
图2为本发明通过硬线控制整流器模式的无线充电系统控制电路的结构图。
图3为本发明采用上拉电阻实现整流模式控制信号发生电路的结构图。
图4为本发明采用下拉电阻实现整流模式控制信号发生电路的结构图。
图5为本发明采用比较器实现整流模式控制信号发生电路的结构图。
图6为本发明实施例2的通过硬线控制整流器模式的无线充电系统控制方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图2所示,无线充电系统接收端包括整流器、整流器驱动电路、芯 片管脚控制电路等,整流器中连接有谐振电路。其中,整流器驱动电路用于驱动整流器工作于半桥整流模式(倍压整流模式)或全桥整流模式;其中半桥整流模式时,无线充电系统接收端的输出电压近似等于输入电压的两倍,可以是AC1下管常开,也可以是AC2下管常开,均可以实现倍压功能;芯片管脚控制电路的输入信号端用于输入信号Rect_mode_control,以控制整流器默认的整流模式,不同的输入电平能够控制整流器默认起机的整流模式。
本实施例提出一种通过硬线控制整流器模式的无线充电系统控制电路,包括:
整流模式控制信号发生电路;
所述整流模式控制信号发生电路经整流桥驱动电路连接无线充电系统接收端的整流器。该整流模式控制信号发生电路用于通过检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;根据芯片管脚控制电路的电平状态,向整流桥驱动电路输出相应的半桥控制信号或全桥控制信号;从而使得整流桥驱动电路根据半桥控制信号或全桥控制信号驱动整流器进入半桥整流模式或全桥整流模式。
所述整流模式控制信号发生电路可以采用以下三种实现方案:
方案一如图3所示:
所述整流模式控制信号发生电路包括:
上拉电阻R1和内部电源;
所述内部电源由无线充电系统接收端的输出电压Vrect产生;
所述上拉电阻R1的一端连接内部电源,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路。
方案一的工作原理如下:
当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时, 整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
方案二如图4所示:
所述整流模式控制信号发生电路包括:
下拉电阻R2;
所述下拉电阻R2的一端接地,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路。
方案二的工作原理如下:
当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉 电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
方案三如图5所示:
所述整流模式控制信号发生电路包括:
比较器一和比较器二;
所述比较器一的正输入端的输入为无线充电系统接收端的输出电压Vrect,负输入端的输入为第一阈值vrect_th1,输出端连接整流桥驱动电路;
所述比较器二的负输入端的输入为无线充电系统接收端的输出电压Vrect,正输入端的输入为第二阈值vrect_th2,输出端连接整流桥驱动电路;
第一阈值vrect_th1大于第二阈值vrect_th2;第一阈值vrect_th1表示从半桥整流模式进入全桥整流模式的判断阈值,第二阈值vrect_th2表示从全桥整流模式进入半桥整流模式的判断阈值。需要说明的是,所述第一阈值vrect_th1和第二阈值vrect_th2可以根据不同的无线充电系统可以选择不同的电压。
方案三的工作原理如下:
通过比较器一和比较器二将无线充电系统接收端的输出电压Vrect分别与第一阈值vrect_th1和第二阈值vrect_th2进行比较:
当vrect>vrect_th1时,比较器一的输出端向整流桥驱动电路输出相应的全桥控制信号,驱动整流器进入全桥整流模式;并且,该方法也可以用于无线充电系统的起机过压保护,当输入电压过高,大于vrect_th1时,会自动退出半桥倍压模式,进入全桥整流模式,防止过压芯片损坏,或者起机电压过高导致的其他异常问题。
当vrect<vrect_th2时,比较器二的输出端向整流桥驱动电路输出相应的半桥控制信号,驱动整流器进入半桥整流模式。
实施例2
如图6所示,本实施例实现一种通过硬线控制整流器模式的无线充电系统控制方法,包括如下步骤:
步骤S100,整流模式控制信号发生电路检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;根据芯片管脚控制电路的电平状态,向整流桥驱动电路输出相应的半桥控制信号或全桥控制信号;
其中,芯片管脚控制电路的输入信号管脚的电平状态设置为:
若芯片管脚控制电路的输入信号管脚为高电平时,整流器进默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;
或者,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;
步骤S200,整流桥驱动电路根据半桥控制信号或全桥控制信号驱动整流器进入半桥整流模式或全桥整流模式。
步骤S100采用以下两种方案实现:
方案一如图3所示:
步骤S100中,整流模式控制信号发生电路采用内部电源和上拉电阻R1检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;所述内部电源由无线充电系统接收端的输出电压Vrect产生;所述上拉电阻R1的一端连接内部电源,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路;
当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
方案二如图4所示:
步骤S100中,
整流模式控制信号发生电路采用下拉电阻R2检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;所述下拉电阻R2的一端接地,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路;
当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
实施例3
如图5所示,本实施例实现一种通过硬线控制整流器模式的无线充电系统控制方法,包括:
整流模式控制信号发生电路采用比较器一和比较器二;所述比较器一 的正输入端输入无线充电系统接收端的输出电压Vrect,负输入端输入第一阈值vrect_th1;所述比较器一的负输入端输入无线充电系统接收端的输出电压Vrect,正输入端输入第二阈值vrect_th2;其中,第一阈值vrect_th1大于第二阈值vrect_th2;第一阈值vrect_th1表示从半桥整流模式进入全桥整流模式的判断阈值,第二阈值vrect_th2表示从全桥整流模式进入半桥整流模式的判断阈值;
当vrect>vrect_th1时,比较器一的输出端向整流桥驱动电路输出相应的全桥控制信号,驱动整流器进入全桥整流模式;并且,该方法也可以用于无线充电系统的起机过压保护,当输入电压过高,大于vrect_th1时,会自动退出半桥倍压模式,进入全桥整流模式,防止过压芯片损坏,或者起机电压过高导致的其他异常问题。
当vrect<vrect_th2时,比较器二的输出端向整流桥驱动电路输出相应的半桥控制信号,驱动整流器进入半桥整流模式。
实施例4
本实施例实现一种无线充电系统接收端,所述无线充电系统接收端包括如实施例1所述的无线充电系统控制电路。
实施例5
本实施例实现一种无线充电系统,所述无线充电系统包括发射端以及如实施例4所述的接收端。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种通过硬线控制整流器模式的无线充电系统控制电路,其特征在于,包括:
    整流模式控制信号发生电路;
    所述整流模式控制信号发生电路经整流桥驱动电路连接无线充电系统接收端的整流器。
  2. 根据权利要求1所述的通过硬线控制整流器模式的无线充电系统控制电路,其特征在于,所述整流模式控制信号发生电路包括:
    上拉电阻R1和内部电源;
    所述内部电源由无线充电系统接收端的输出电压Vrect产生;
    所述上拉电阻R1的一端连接内部电源,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路。
  3. 根据权利要求1所述的通过硬线控制整流器模式的无线充电系统控制电路,其特征在于,所述整流模式控制信号发生电路包括:
    下拉电阻R2;
    所述下拉电阻R2的一端接地,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路。
  4. 根据权利要求1所述的通过硬线控制整流器模式的无线充电系统控制电路,其特征在于,所述整流模式控制信号发生电路包括:
    比较器一和比较器二;
    所述比较器一的正输入端的输入为无线充电系统接收端的输出电压Vrect,负输入端的输入为第一阈值vrect_th1,输出端连接整流桥驱动电路;
    所述比较器二的负输入端的输入为无线充电系统接收端的输出电压Vrect,正输入端的输入为第二阈值vrect_th2,输出端连接整流桥驱动电路;
    第一阈值vrect_th1大于第二阈值vrect_th2;第一阈值vrect_th1表示从 半桥整流模式进入全桥整流模式的判断阈值,第二阈值vrect_th2表示从全桥整流模式进入半桥整流模式的判断阈值。
  5. 一种无线充电系统接收端,其特征在于,所述无线充电系统接收端包括如权利要求1-4任一项所述的无线充电系统控制电路。
  6. 一种无线充电系统,其特征在于,所述无线充电系统包括发射端以及如权利要求5所述的接收端。
  7. 一种通过硬线控制整流器模式的无线充电系统控制方法,其特征在于,包括如下步骤:
    步骤S100,整流模式控制信号发生电路检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;根据芯片管脚控制电路的电平状态,向整流桥驱动电路输出相应的半桥控制信号或全桥控制信号;
    其中,芯片管脚控制电路的输入信号管脚的电平状态设置为:
    若芯片管脚控制电路的输入信号管脚为高电平时,整流器进默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;
    或者,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;
    步骤S200,整流桥驱动电路根据半桥控制信号或全桥控制信号驱动整流器进入半桥整流模式或全桥整流模式。
  8. 根据权利要求7所述的通过硬线控制整流器模式的无线充电系统控制方法,其特征在于,步骤S100中,整流模式控制信号发生电路采用内部电源和上拉电阻R1检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;所述内部电源由无线充电系统接收端的输出电压Vrect产生;所述上拉电阻R1的一端连接内部电源,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路;
    当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
    若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
    若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
    当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,默认为半桥整流模式;则有:
    若将芯片管脚控制电路的输入信号管脚接地时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
    若将芯片管脚控制电路的输入信号管脚接高电平或外部浮空时,则由内部电源和上拉电阻R1的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
  9. 根据权利要求7所述的通过硬线控制整流器模式的无线充电系统控制方法,其特征在于,步骤S100中,整流模式控制信号发生电路采用下拉电阻R2检测无线充电系统接收端的芯片管脚控制电路的输入信号管脚的电平状态;所述下拉电阻R2的一端接地,另一端一方面用于连接芯片管脚控制电路的输入信号端,另一方面连接整流桥驱动电路;
    当设置为,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为半桥整流模式;则有:
    若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号;
    若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
    当设置为,若芯片管脚控制电路的输入信号管脚为高电平时,整流器默认为全桥整流模式,若芯片管脚控制电路的输入信号管脚为低电平时,整流器默认为半桥整流模式;则有:
    若将芯片管脚控制电路的输入信号管脚接地或外部浮空时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的半桥控制信号;
    若将芯片管脚控制电路的输入信号管脚接高电平时,则由下拉电阻R2的作用,整流模式控制信号发生电路向整流桥驱动电路输出相应的全桥控制信号。
  10. 一种通过硬线控制整流器模式的无线充电系统控制方法,其特征在于,包括:
    整流模式控制信号发生电路采用比较器一和比较器二;所述比较器一的正输入端输入无线充电系统接收端的输出电压Vrect,负输入端输入第一阈值vrect_th1;所述比较器一的负输入端输入无线充电系统接收端的输出电压Vrect,正输入端输入第二阈值vrect_th2;其中,第一阈值vrect_th1大于第二阈值vrect_th2;第一阈值vrect_th1表示从半桥整流模式进入全桥整流模式的判断阈值,第二阈值vrect_th2表示从全桥整流模式进入半桥整流模式的判断阈值;
    当vrect>vrect_th1时,比较器一的输出端向整流桥驱动电路输出相应的全桥控制信号,驱动整流器进入全桥整流模式;
    当vrect<vrect_th2时,比较器二的输出端向整流桥驱动电路输出相应的半桥控制信号,驱动整流器进入半桥整流模式。
PCT/CN2022/092585 2022-03-29 2022-05-13 通过硬线控制整流器模式的无线充电系统控制电路及方法 WO2023184659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210316934.0A CN114421579A (zh) 2022-03-29 2022-03-29 通过硬线控制整流器模式的无线充电系统控制电路及方法
CN202210316934.0 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023184659A1 true WO2023184659A1 (zh) 2023-10-05

Family

ID=81263568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092585 WO2023184659A1 (zh) 2022-03-29 2022-05-13 通过硬线控制整流器模式的无线充电系统控制电路及方法

Country Status (2)

Country Link
CN (1) CN114421579A (zh)
WO (1) WO2023184659A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421579A (zh) * 2022-03-29 2022-04-29 成都市易冲半导体有限公司 通过硬线控制整流器模式的无线充电系统控制电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147199A (zh) * 2017-06-09 2017-09-08 宁波微鹅电子科技有限公司 无线电能接收端和无线充电系统
CN113452156A (zh) * 2021-08-06 2021-09-28 美芯晟科技(北京)有限公司 一种无线充电接收端电路及其芯片
CN113541331A (zh) * 2021-07-21 2021-10-22 成都市易冲半导体有限公司 用于低感量无线充电系统的自适应低压启动电路及方法
CN113991883A (zh) * 2021-11-08 2022-01-28 上海南芯半导体科技股份有限公司 一种小线圈无线充电系统
CN114421579A (zh) * 2022-03-29 2022-04-29 成都市易冲半导体有限公司 通过硬线控制整流器模式的无线充电系统控制电路及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9584041B2 (en) * 2013-08-26 2017-02-28 Google Technology Holdings LLC Method and apparatus for charging devices using a multiple port power supply
US9929585B2 (en) * 2014-09-03 2018-03-27 Kettering University Power transfer system
CN112202350A (zh) * 2020-09-04 2021-01-08 武汉宝久创美科技有限公司 一种供电电压切换装置及其电压切换方法
CN113131628B (zh) * 2021-03-17 2023-09-29 伏达半导体(合肥)股份有限公司 无线电能传输系统、无线电能传输装置及方法
CN112803563B (zh) * 2021-04-12 2021-07-06 成都市易冲半导体有限公司 用于低感量无线充电系统的低压启动电路及无线充电系统
CN113541332A (zh) * 2021-07-21 2021-10-22 成都市易冲半导体有限公司 用于低感量无线充电系统的低压辅助启动电路及工作方法
CN114172375B (zh) * 2022-02-10 2022-04-26 浙江大学杭州国际科创中心 一种直流变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147199A (zh) * 2017-06-09 2017-09-08 宁波微鹅电子科技有限公司 无线电能接收端和无线充电系统
CN113541331A (zh) * 2021-07-21 2021-10-22 成都市易冲半导体有限公司 用于低感量无线充电系统的自适应低压启动电路及方法
CN113452156A (zh) * 2021-08-06 2021-09-28 美芯晟科技(北京)有限公司 一种无线充电接收端电路及其芯片
CN113991883A (zh) * 2021-11-08 2022-01-28 上海南芯半导体科技股份有限公司 一种小线圈无线充电系统
CN114421579A (zh) * 2022-03-29 2022-04-29 成都市易冲半导体有限公司 通过硬线控制整流器模式的无线充电系统控制电路及方法

Also Published As

Publication number Publication date
CN114421579A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
KR102192440B1 (ko) 단말을 위한 충전 시스템, 충전 방법 및 전원 어댑터
US9831712B2 (en) Non-contact charging device and non-contact charging method
WO2021057195A1 (zh) 一种obc电路、obc充电器、新能源汽车及充电桩
CN103779951B (zh) 电动自行车磁耦合谐振式无线充电器
US20230127099A1 (en) Charging and discharging system
US20100327804A1 (en) Chargeable electric device
WO2015110051A1 (zh) 双向dc/dc变换器及其控制方法
WO2023184659A1 (zh) 通过硬线控制整流器模式的无线充电系统控制电路及方法
US11632055B2 (en) ACF converter, voltage conversion method, and electronic device
CN106129968A (zh) 谐振变换器及其过流保护电路和过流保护方法
CN109905042A (zh) 一种电源设备及其电源电路
CN110460019B (zh) 一种桥式变换器短路保护的控制方法及装置
WO2024066493A1 (zh) 一种基于辅助绕组为开关电源控制电路供电的电路
CN114928260A (zh) 一种用于控制变换器的控制电路、变换器及电源设备
US20240039274A1 (en) Self-adaptive Protection Circuit and Method for Double-voltage Startup of Wireless Charging System
JP2000260589A (ja) 高出力高輝度の放電ランプ用電子式安定器
CN103256509B (zh) 一种无外置调光器的分段式led可调光灯及其调光方法
CN210075651U (zh) 一种高兼容性可控硅调光电源电路
JPH08308136A (ja) ニッケルカドミウム/ニッケル水素合金バッテリの−△v検出を用いた急速充電システム
WO2022183446A1 (zh) 一种检测电路, 防反灌系统及充电桩
CN204335122U (zh) 一种屏蔽抗干扰的解码智能安定器
CN104869737B (zh) 一种软开关型dc‑dc变换电路及其车载hid灯镇流器
CN219499022U (zh) 一种机器人无线充电装置
CN115025388B (zh) 基于llc谐振变换的除颤仪高压产生电路和方法
CN210075072U (zh) 一种带有隔离电源和短路保护的三电平驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934484

Country of ref document: EP

Kind code of ref document: A1