WO2023230899A1 - 液冷板、电池包和汽车 - Google Patents

液冷板、电池包和汽车 Download PDF

Info

Publication number
WO2023230899A1
WO2023230899A1 PCT/CN2022/096418 CN2022096418W WO2023230899A1 WO 2023230899 A1 WO2023230899 A1 WO 2023230899A1 CN 2022096418 W CN2022096418 W CN 2022096418W WO 2023230899 A1 WO2023230899 A1 WO 2023230899A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
liquid cooling
equal
plate
limiting
Prior art date
Application number
PCT/CN2022/096418
Other languages
English (en)
French (fr)
Inventor
李勇君
于林
王玉玲
徐致忠
韦佳蔚
牛亚琪
潘福中
Original Assignee
浙江极氪智能科技有限公司
威睿电动汽车技术(宁波)有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江极氪智能科技有限公司, 威睿电动汽车技术(宁波)有限公司, 浙江吉利控股集团有限公司 filed Critical 浙江极氪智能科技有限公司
Priority to PCT/CN2022/096418 priority Critical patent/WO2023230899A1/zh
Publication of WO2023230899A1 publication Critical patent/WO2023230899A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling

Definitions

  • This application relates to the technical field of liquid cooling plates, and in particular to a liquid cooling plate, a battery pack and an automobile.
  • the power system of electric vehicles mainly uses power batteries as the power source.
  • Most of the power battery types use lithium-ion power batteries. By assembling multiple lithium batteries to form a battery pack, as much electrical energy as possible is stored, so that electric vehicles can achieve high cruising range. High charging speed, high power performance and other indicators. Among them, in order to ensure the safety and high endurance of electric vehicles, effective battery thermal management must be carried out to prevent the lithium battery from being charged or discharged during operation or due to excessive temperature. High power battery short circuit, fire and other accidents occur. In the existing technology, the battery is often thermally managed through liquid cooling, that is, the liquid cooling plate is mainly used to contact the surface of the power battery for heat exchange.
  • the main purpose of this application is to provide a liquid-cooled plate, which is designed to have cooling functions, buffering functions and blocking functions, effectively reducing the number of parts and costs, while improving the space utilization of the battery pack, thereby improving Battery life and safety, and the liquid cooling plates can be arranged on both sides of the battery core, which greatly improves thermal management performance and takes into account the improvement of power performance.
  • the liquid cooling plate proposed in this application is applied to a battery pack.
  • the battery pack includes a plurality of cells and a plurality of liquid cooling plates, and any two liquid cooling plates are sandwiched between them.
  • the battery core and the liquid cooling plate include:
  • the plate body has a first side plate and a second side plate arranged oppositely, and the first side plate and the second side plate are connected to form a liquid flow chamber;
  • a plurality of compression ribs are spaced apart and connected between the first side plate and the second side plate to divide the liquid flow chamber into multiple liquid flow channels for cooling liquid to flow;
  • a limiting structure is provided between two adjacent compression ribs.
  • the limiting structure includes a first limiting rib and a second limiting rib arranged oppositely.
  • the first limiting rib and the second limiting rib The positioning ribs are respectively fixed to the first side plate and the second side plate, so as to limit the first side plate and the first side plate and the second side plate by the mutual proximity of the first limiting rib and the second limiting rib.
  • the limit position at which either one of the second side plates deforms toward the other.
  • the compression ribs are inclined from the first side plate toward the second side plate, the first limiting ribs and the second limiting ribs are arranged in an offset manner, and the first limiting ribs are The inclination direction of the line connecting the center of the rib and the center of the second limiting rib is opposite to the inclination direction of the compression rib.
  • the angle formed by the inclined extension direction of the compression rib and the second side plate is ⁇ , and ⁇ is greater than or equal to 30 degrees and less than or equal to 60 degrees.
  • the first limiting rib and the second limiting rib have a first offset distance H in the longitudinal direction, and the compression rib has a first projected length.
  • the compression rib has a second projected length, and the difference between the first projected length and the second projected length is equal to the first misalignment distance.
  • the first misalignment distance H is greater than or equal to 0.5 mm and less than or equal to 1.5 mm.
  • the compression rib is a straight segment, one end of the straight segment is connected to the first side plate, and the other end is connected to the second side plate.
  • the compression rib includes a first folding section, a second folding section and a transition section bent and connected between the first folding section and the second folding section, and one end of the first folding section is fixed. Connected to the first side panel, one end of the second folding section is fixedly connected to the second side panel.
  • the first folding section is inclined from the first side plate toward the second side plate, and the second folding section is arranged parallel to the first folding section.
  • the transition section includes a connected first arc section and a second arc section, one end of the first arc section is fixedly connected to the first folded section, and one end of the second arc section is connected to the third arc section.
  • the two folded sections are fixedly connected.
  • connection between the first arc segment and the second arc segment is arranged tangentially.
  • the transition section further includes a connecting section, which is located between the first arc section and the second arc section and is connected to one end of the first arc section and the second arc section respectively. Set tangent to one end of the segment.
  • limiting structures there are multiple limiting structures, and multiple limiting structures are provided one by one in the corresponding liquid flow channels;
  • each of the liquid flow channels is provided with a plurality of limiting structures.
  • the plate body is made of aluminum.
  • the longitudinal distance between two adjacent compression ribs is h1, and h1 is greater than or equal to 15 mm and less than or equal to 25 mm.
  • the longitudinal height of the first limiting rib and the second limiting rib is h2, h2 is greater than or equal to 1 mm and less than or equal to 3 mm;
  • the width of the first side plate and the second side plate in the transverse direction is h3, and h3 is greater than or equal to 0.5mm and less than or equal to 1mm;
  • the width of the liquid flow chamber in the transverse direction is h4, h4 is greater than or equal to 2mm and less than or equal to 5mm;
  • the distance between the first limiting rib and the second limiting rib in the transverse direction is h5, and h5 is greater than or equal to 1 mm and less than or equal to 3 mm.
  • the length of the plate body is a, which is greater than or equal to 800mm and less than or equal to 1300mm;
  • the width of the board body is b, where b is greater than or equal to 80mm and less than or equal to 120mm;
  • the thickness of the plate body is c, and c is greater than or equal to 3 mm and less than or equal to 6 mm.
  • This application also proposes a battery pack, which includes a plurality of cells and a liquid-cooling plate as described above, wherein there are multiple liquid-cooling plates, and there is a gap between any two of the liquid-cooling plates. The electric core is clamped.
  • a thermally conductive structural glue is provided between the battery core and the liquid cooling plate.
  • This application also proposes an automobile, which includes the battery pack as described above.
  • the liquid cooling plate of this application has cooling function, buffering function and barrier function, effectively reducing the number of parts and costs while reducing Improve the space utilization of the battery pack, thereby improving endurance, power performance, charging speed and safety; specifically, by setting up multiple compression ribs, on the one hand, the liquid flow cavity in the plate body is divided into multiple channels for cooling liquid
  • the liquid flow channel uses the large heat capacity of the coolant to absorb the heat generated by the battery core and blocks heat transfer, thus inhibiting the occurrence of heat spread and improving the safety of the battery core while reducing battery life.
  • the number of components in the package improves space utilization; on the other hand, the compression ribs are compressed and deformed under the action of the expansion of the battery core, and the first side plate and/or the second side plate will also be stressed and deformed and approach each other. , which can provide buffering and reverse supporting force for the liquid cooling plate to balance the expansion force of the battery core, thereby ensuring the structural stability of the liquid cooling plate while better adapting to the expansion deformation of the battery core and playing a buffering function. It can effectively reduce the number of parts and further improve space utilization. In the process, there is always a large effective contact area between the first side plate and/or the second side plate and the battery core to ensure the cooling of the liquid cooling plate.
  • the effect is to improve the reliability of the liquid cooling plate; in addition, by setting a limit structure, the limit position of the deformation of either one of the first side plate and the second side plate to the other is limited, ensuring that the coolant can be used in extreme situations It can still flow in the liquid flow channel, achieving uniform cooling of the battery core by the liquid cooling plate and improving the reliability of the liquid cooling plate.
  • Figure 1 is a schematic structural diagram of the liquid cooling plate of the present application in one embodiment
  • Figure 2 is a schematic diagram of the positional relationship between two adjacent liquid cooling plates and corresponding cells in Figure 1;
  • Figure 3 is a front view of Figure 2, which shows a schematic structural diagram of the liquid cooling plate in a deformed state when the battery core expands;
  • Figure 4 is a cross-sectional view of the liquid cooling plate before deformation in Figure 2;
  • Figure 5 is a cross-sectional view of the liquid cooling plate in a deformed state in Figure 3;
  • Figure 6 is a comparison of the liquid cooling plates in the two states shown in Figures 4 and 5;
  • Figure 7 is a schematic structural diagram of an embodiment of the compression rib in Figure 4.
  • Figure 8 is a schematic structural diagram of another embodiment of the compression rib in Figure 4.
  • Figure 9 is a schematic structural diagram of another embodiment of the compression rib in Figure 4.
  • Figure 10 is a partial enlarged view of position A in Figure 4.
  • FIG 11 is a schematic structural diagram of the liquid cooling plate in Figure 1.
  • the battery pack of this application includes multiple cells 10 and multiple liquid-cooled plates 20. There is a gap between any two liquid-cooled plates 20.
  • the battery core 10 is clamped.
  • a plurality of liquid cooling plates 20 can be provided in quantity and arranged in a staggered manner to ensure that the two oppositely arranged surfaces of one (one/column) battery core 10 are both affixed with the liquid cooling plates 20 , thus improving the efficiency of the liquid cooling.
  • the thermal management performance of the cold plate 20 on the battery core 10 greatly improves the service life of the battery core 10 .
  • the liquid cooling plate 20 includes a plate body, a plurality of compression ribs 30 and a limiting structure 40.
  • the plate body has a first side plate 21 and a second side plate 22 arranged oppositely. , the first side plate 21 and the second side plate 22 are connected to form a liquid flow chamber 23; a plurality of compression ribs 30 are arranged at intervals and connected between the first side plate 21 and the second side plate 22 to separate the liquid flow chamber.
  • 23 is divided into a plurality of liquid flow channels 23a for the flow of coolant;
  • the limiting structure 40 is provided between two adjacent compression ribs 30, and the limiting structure 40 includes a first limiting rib 41 and a second limiting rib arranged oppositely.
  • the first limiting rib 41 and the second limiting rib 42 are fixed to the first side plate 21 and the second side plate 22 respectively, so that the first limiting rib 41 and the second limiting rib 42 approach each other.
  • the limit position that limits the deformation of either one of the first side plate 21 and the second side plate 22 toward the other is set in this way, while ensuring the use reliability and structural stability of the liquid cooling plate 20, by replacing
  • the original liquid cooling plate, buffer material and insulation material enable the liquid cooling plate 20 of the present application to have cooling function, buffering function and barrier function, effectively reducing the number of parts, reducing costs and improving the space utilization of the battery pack. , so that as many cells as possible can be arranged in the battery pack, thereby improving battery life, power performance, charging speed and safety.
  • multiple liquid cooling plates 20 and multiple battery cores 10 are staggered, that is, the battery cores 10 are sandwiched between two adjacent liquid cooling plates 20 , and the battery cores 10 are sandwiched between two adjacent liquid cooling plates 20 .
  • the flowing coolant uses its large heat capacity characteristics to absorb the heat generated by the battery cores 10, delaying the temperature rise of the battery cores 10, and uses the liquid cooling plate 20 to block the heat transfer between two adjacent battery cells 10, effectively isolating them.
  • the liquid cooling plate 20 is made of materials with good thermal conductivity, such as silver, copper, aluminum, etc.; the liquid cooling plate 20 also covers Multiple battery cores 10, that is, as shown in Figure 1, multiple battery cores 10 are arranged on both sides of the liquid cooling plate 20.
  • the peripheral battery cells 10 are a plurality of battery cells 10 surrounding the battery core 10 that has experienced thermal runaway, that is, they are located on both sides of the battery core 10 that has experienced thermal runaway, and adjacent battery cells 10 that are blocked by the liquid cooling plate 20 .
  • a plurality of compression ribs 30 arranged at intervals separate the liquid flow chamber 23 and form a plurality of liquid flow channels 23a.
  • the compression ribs 30 respectively support the first side plate 21 and the second side plate 22, so that the liquid flow chamber 23 can be formed.
  • the flow chamber 23 provides supporting force to facilitate the flow of the coolant in the liquid flow chamber 23 and at the same time improves the reliability and structural stability of the liquid cooling plate 20.
  • the liquid cooling plate 20 and the electric There is always a certain pressing force between the cores 10.
  • the liquid cooling plate 20 When the liquid cooling plate 20 is expanded and squeezed by the battery core 10, it can provide buffering and reverse holding force for the liquid cooling plate 20 to balance the expansion force, thereby ensuring the liquid cooling.
  • each compression rib 30 is compressed and deformed, and the first side When the plate 21 and the second side plate 22 deform, the liquid cooling plate 20 can absorb and offset the expansion force of the battery core 10 and adapt to the expansion deformation of the battery core 10.
  • the first deformation surface formed by the expansion of the battery core 10 60 matches the second deformation surface 61 formed by the deformation of the plate body, which can better adapt to the expansion of the battery core 10 during the life cycle, ensure that under appropriate pressure, the structure of the battery core 10 is not destroyed, and improve the performance of the battery core 10
  • the cycle life is improved, and the structural strength of the battery core 10 is improved.
  • a large effective contact area is always maintained between the liquid cooling plate 20 and the battery core 10, improving the performance of the liquid cooling plate 20.
  • the cooling effect inhibits the occurrence of heat spread and improves the safety of the battery pack.
  • the The limiting structure 40 limits the relatively close limit distance between the first side plate 21 and the second side plate 22 to ensure that the coolant can still flow in each liquid flow channel 23a under extreme circumstances, thereby realizing the liquid cooling plate 20 Uniform cooling of the battery core 10 improves the reliability of the liquid cooling plate 20 .
  • the limiting structure 40 includes a first limiting rib 41 and a second limiting rib 42.
  • the first limiting rib 41 and the second limiting rib 42 are respectively fixed on the opposite sides of the first side plate 21 and the second side plate 22.
  • Surface, in other words, the first limiting rib 41 and the first side plate 21, the second limiting rib 42 and the second side plate 22 can be an integral structure, for example, fixedly connected through integral molding, welding, embedding, etc., The connection strength is improved and the structure is more stable.
  • the first limiting rib 41 and the second limiting rib 42 will come close to each other.
  • the first side The plate 21 and the second side plate 22 stop deforming.
  • the distance between part of the first side plate 21 and the second side plate 22 is the first limiting rib 41 and the second limiting rib 42 in the transverse direction (as shown in the figure).
  • the limiting structure 40 can only be the first limiting structure.
  • the ribs 41 or the second limiting ribs 42; or the limiting structure 40 is a compressible elastic piece.
  • the liquid cooling plate 20 itself has a cooling function, a buffering function and a barrier function, compared with using cushioning materials such as silicone gaskets and insulation materials such as aerogel to achieve the same function, when the liquid cooling plate 20 is applied to a battery pack At the same time, it can make full use of the installation space in the battery pack, reduce the number of parts with other functions, and increase the number of battery cells 10. While increasing the charging speed, improving power performance, and extending the cruising range, it also improves assembly efficiency and reduces overall usage. cost.
  • the liquid cooling plate 20 of this application has cooling function, buffering function and barrier function, effectively reducing the number of parts and costs while reducing , improve the space utilization of the battery pack, thereby improving endurance, power performance, charging speed and safety; specifically, by setting multiple compression ribs 30, on the one hand, the liquid flow chamber 23 in the plate body is divided into multiple supply
  • the liquid flow channel 23a of the coolant utilizes the large heat capacity characteristic of the coolant to absorb the heat generated by the battery core 10 and has the function of blocking heat transfer, thereby inhibiting the occurrence of heat spread and improving the safety of the battery core 10.
  • the compression ribs 30 are compressed and deformed under the action of the expansion of the battery core 10, and the first side plate 21 and/or the second side plate 21 are compressed and deformed.
  • the plates 22 will also be deformed by force and come closer to each other, which can provide buffering and reverse supporting force for the liquid cooling plate 20 to balance the expansion force of the battery core 10, thereby ensuring the structural stability of the liquid cooling plate 20 while ensuring better Adapt to the expansion deformation of the battery core 10 and play a buffering function, which can also effectively reduce the number of parts and further improve space utilization.
  • the first side plate 21 and/or the second side plate 22 are in contact with the battery core 10 There is always a large effective contact area between them, ensuring the cooling effect of the liquid cooling plate 20 and improving the reliability of the liquid cooling plate 20; in addition, by setting the limiting structure 40, the first side plate 21 and the second side plate are limited The extreme position of deformation of any one of 22 toward the other ensures that the coolant can still flow in the liquid flow channel 23a under extreme circumstances, achieving uniform cooling of the battery core 10 by the liquid cooling plate 20 and improving the liquid cooling plate. 20 usability reliability.
  • the compression ribs 30 are inclined from the first side plate 21 toward the second side plate 22 , the first limiting ribs 41 and the second limiting ribs 42 are arranged in an offset manner, and the first limiting ribs 41 and 42 are disposed in an offset manner.
  • the inclination direction of the line connecting the center of the positioning rib 41 and the center of the second limiting rib 42 is opposite to the inclination direction of the compression rib 30. It can be understood that during the use of the battery core 10, the battery core 10 will generate expansion force and expand. deformation, at this time the expansion force squeezes the two adjacent liquid cooling plates 20 and transmits the expansion force to the liquid cooling plates 30 on both sides.
  • the compression ribs 30 are inclined, the first side plate 21 and the second side plate 22 are Under the action of the expansion force, bending deformation is easily generated to absorb the expansion force of the battery core 10 , thereby meeting the structural strength requirements of the liquid cooling plate 20 and the cycle life requirements of the battery core 10 .
  • first side plate 21 and the second side plate 22 are connected by the third side plate and the fourth side plate respectively, and together form the liquid flow chamber 23.
  • the third side plate and the fourth side plate can be curved structures.
  • the inclination directions of the plurality of compression ribs 30 remain consistent, that is, they are all facing the third side plate of the liquid cooling plate 20, or they are all facing the fourth side plate. It is arranged at an inclination.
  • the inclination direction of the line connecting the center of the first limiting rib 41 and the center of the second limiting rib 42 is opposite to the inclination direction of the compression rib 30, so as to prevent the first limiting rib 41 and the second limiting rib 42 from interacting with each other.
  • the distance between the first side plate 21 and the second side plate 22 is too small, which affects the flow of the coolant. This not only satisfies the flow space of the coolant, but also satisfies the thermal management performance of the liquid cooling plate 20 for the battery core 10, thereby greatly extending the service life of the battery core 10.
  • the contact surface between the plate body and the battery core 10 is extruded and deformed, and the first deformation surface 60 and the second deformation surface 61 Both are arc-shaped structures, that is, the first side plate 21 and the second side plate 22 will deform when squeezed.
  • the connection point formed by the compression rib 30 and the first side plate 21 and the second side plate 22 will be formed along the longitudinal direction.
  • the directions (Z direction as shown in the figure) are misaligned with each other, and the first limiting ribs 41 and the second limiting ribs 42 provided on the first side plate 21 and the second side plate 22 are also misaligned with each other along the longitudinal direction.
  • the first limiting ribs 41 and the second limiting ribs 42 are They are vertically offset, and the inclination direction of the line connecting the center of the first limiting rib 41 and the center of the second limiting rib 42 is opposite to the inclination direction of the compression rib 30. In this way, it can be ensured that the first limiting rib 41 and the second limiting rib 42 are vertically offset.
  • FIG. 5 The cross-sectional view shows the final deformation state of the liquid cooling plate 20 under the expansion of the battery core 10.
  • Figure 6 is a comparative diagram of the liquid cooling plate 20 before and after the expansion of the battery core 10. The solid line represents the state before the deformation. Liquid cooling plate 20, the dotted line shows the liquid cooling plate 20 after being in a deformed state.
  • the angle formed by the oblique extension direction of the compression rib 30 and the second side plate 22 is ⁇ , which is an acute angle, and ⁇ is greater than or equal to 30 degrees and less than or equal to 60 degrees. It can be understood that due to the size of the acute angle formed by the oblique extension direction of the compression rib 30 and the second side plate 22, and similarly the size of the acute angle formed by the oblique extension direction of the compression rib 30 and the first side plate 21, determines the size of the acute angle formed by the first side plate 22. The expansion force transmitted by the side plate 21 and the second side plate 22 to the compression ribs 30.
  • the compression force will be too small, that is, less than 30 degrees, when the liquid cooling plate 20 is expanded and squeezed by the battery core 10, the compression force will The ribs 30 are easily compressed, and before the battery core 10 expands, there is not enough initial preload force to maintain a certain pressing force between the liquid cooling plate 29 and the battery core 10, making it impossible to balance the liquid cooling plate 20.
  • the expansion force provides buffering and reverse holding force; if the included angle is too large, that is, greater than 60 degrees, the structural strength of the liquid cooling plate 20 is too high. When the liquid cooling plate 20 is expanded and squeezed by the battery core 10, the liquid cooling plate 20 will compress.
  • the ribs 30 are difficult to be compressed, causing the battery core 10 to be subjected to excessive pressure and restricted from expansion, which greatly increases the risk of structural damage to the battery core 10 and premature degradation of its lifespan.
  • the ⁇ value can specifically be 30 degrees, 45 degrees or 60 degrees, etc.
  • the first limiting rib 41 and the second limiting rib 42 before the battery core 10 expands, the first limiting rib 41 and the second limiting rib 42 have a first misalignment distance H in the longitudinal direction (Z direction).
  • the compression ribs 30 have a first projected length.
  • the compression ribs 30 After the battery core 10 expands, the compression ribs 30 have a second projected length. The difference between the first projected length and the second projected length is equal to the first misalignment distance. In this way, it can be ensured When the first limiting rib 41 and the second limiting rib 42 abut each other, they have a large effective contact area.
  • the opposite surfaces of the first limiting rib 41 and the second limiting rib 42 completely overlap, so that the first limiting rib 41 and the second limiting rib 42 completely overlap.
  • the ribs 41 and the second limiting ribs 42 support each other more reliably, which on the one hand helps to ensure that the liquid flow channel 23a is unobstructed, that is, the cooling liquid can flow smoothly in the liquid flow channel 23a, and on the other hand, it helps to ensure that the liquid cooling plate 20 Structural stability, that is, the first limiting ribs 41 and the second limiting ribs 42 support each other with a large effective contact area. Under the action of the expansion force of the battery core 10, the liquid cooling plate 20 and the compression ribs 30 fit to make the structure more stable and improve the anti-extrusion strength of the board body.
  • the first misalignment distance H is greater than or equal to 0.5mm and less than or equal to 1.5mm, which is convenient for matching with the inclined compression ribs 30, that is, matching with the included angle ⁇ .
  • the first misalignment distance may specifically be 0.5mm, 1mm or 1.5mm, etc.
  • the compression rib 30 is a straight section, one end of the straight section is connected to the first side plate 21, and the other end is connected to the second side plate 22.
  • the second side plate 22 is to absorb the expansion force transmitted by the first side plate 21 and the second side plate 22, so that the board body can adapt to the expansion deformation of the battery core 10, and meet the structural strength requirements of the liquid cooling plate 20 and the battery core. 10 cycle life requirements.
  • the compression rib 30 includes a first folding section 31 , a second folding section 32 and a transition section bent and connected between the first folding section 31 and the second folding section 32 33.
  • One end of the first folding section 31 is fixedly connected to the first side plate 21, and one end of the second folding section 32 is fixedly connected to the second side plate 22.
  • Such an arrangement is conducive to dividing the liquid flow chamber 23 to form multiple liquid flow channels.
  • 23a can further accumulate force through the transition section 33, support the first side plate 21 and the second side plate 22, ensure the structural stability of the liquid flow chamber 23, and can be better compressed and deformed. , thereby causing the first side plate 21 and the second side plate 22 to deform and approach each other to adapt to the expansion deformation of the battery core 10 and ensure the cycle life of the battery core 10 and the structural stability and use reliability of the liquid cooling plate 20 .
  • the first folding section 31 and the second folding section 32 can be arranged in parallel and connected by bending through the transition section 33, which can not only increase the length of the compression rib 30, improve the compression deformation resistance of the compression rib 30, but also slow down the compression deformation.
  • the extrusion force that brings the first side plate 21 and the second side plate 22 closer to each other prevents the structure of the first side plate 21 and the second side plate 22 from being damaged and causing the liquid cooling plate 20 to be scrapped.
  • the first folding section 31 is inclined from the first side plate 21 toward the second side plate 22 , and the second folding section 32 is arranged parallel to the first folding section 31 , that is, the first folding section 31 is not
  • the second folding section 32 is perpendicular to the first side plate 21 and is not perpendicular to the second side plate 22 .
  • This arrangement further increases the length of the compression rib 30 , improves the compression deformation resistance of the compression rib 30 , and also improves the hydraulic pressure. Fluid performance when the flow channel 23a is sharply curved.
  • the transition section 33 includes a connected first arc section 33a and a second arc section 33b.
  • One end of the first arc section 33a is fixedly connected to the first folding section 31, and one end of the second arc section 33b Being fixedly connected to the second folding section 32 can improve the structural strength of the compression rib 30 and at the same time improve the deformation capacity of the compression rib 30 to avoid cracks or even breakage of the compression rib 30 due to stress.
  • connection between the first arc section 33a and the second arc section 33b is set to be tangential, so as to ensure that the compression ribs 30 can adapt to the extrusion force of the expansion of the battery core 10 and provide the first
  • the side plate 21 and the second side plate 22 provide supporting force to fit the surface of the battery core 10 to absorb the expansion force of the battery core 10 and adapt to the expansion deformation of the battery core 10 .
  • the transition section also includes a connecting section 33c.
  • the connecting section 33c is located between the first arc section 33a and the second arc section 33b, and is connected to one end of the first arc section 33a and to the second arc section 33b.
  • One end of the second arc section 33b is set tangent, which can improve the structural strength of the compression rib 30 and at the same time improve the deformation capacity of the compression rib 30 to avoid cracks or even breakage of the compression rib 30 due to stress.
  • first arc section 33a, the connecting section 33c, and the second arc section 33b are connected to form a transition section 33, which can ensure that the compression ribs 30 adapt to the extrusion force of the expansion of the battery core 10, and provide space for the first side plate 21 and the On the basis of providing supporting force, the second side plate 22 makes the structure of the transition section 33 smoother.
  • transition section 33 is integrally formed, and the first folding section 31 and the second folding section 32 are also integrally formed, which facilitates improving the structural strength of the compression rib 30 .
  • each liquid flow channel 23 a is provided with a plurality of limiting structures 40 .
  • at least one limiting structure can be provided in a liquid flow channel 23a.
  • only one limiting structure can be provided, or two, three or even four can be provided to ensure the smooth flow of the coolant.
  • the material of the liquid cooling plate 20 should be metal with good thermal conductivity, good structural strength, and easy processing.
  • the material of the liquid cooling plate 20 is preferably Aluminum, that is, the plate body is made of aluminum, and the compression ribs 30 can also be made of aluminum.
  • the longitudinal distance between two adjacent compression ribs 30 is h1, and h1 is greater than or equal to 15 mm and less than or equal to 25 mm.
  • h1 is greater than or equal to 15 mm and less than or equal to 25 mm.
  • the first side plate 21 and the second side plate 22 have moderate deformation under the expansion force of the battery core 10, and can absorb the expansion deformation of the battery core 10 in time, so that the liquid cooling plate 20 can meet the expansion force requirements of the battery core 10;
  • the number of limiting structures 40 between two adjacent compression ribs 30 is reduced, thereby reducing costs.
  • the degree of deformation of the compression ribs 30 is small, and the deformation of the first side plate 21 and the second side plate 22 can be The amount is small, resulting in the inability to provide sufficient initial preload force before the expansion of the battery core 10, and the inability to absorb the expansion deformation of the battery core 10 in time after the expansion of the battery core 10, that is, the expansion force of the battery core 10 cannot be balanced, so that the The liquid cooling plate 20 cannot meet the expansion force requirement of the battery core 10; if h1 is greater than 25mm, the distance between the two adjacent compression ribs 30 is far, resulting in the first side plate 21 and the gap between the two adjacent compression ribs 30.
  • the height of the second side plate 22 in the longitudinal direction is too high, so that under the expansion force of the battery core 10, the first side plate 21 and the second side plate 22 are easily deformed. Therefore, a limiting structure 40 needs to be added to limit the height.
  • the amount of deformation of the first side plate 21 and the second side plate 22 improves the stability of the structure.
  • h1 can be specifically 15mm, 16mm, 17mm, 18mm, 19mm, 20mm, 21mm, 22mm, 23mm, 24mm or 25mm, etc.
  • the height of the first limiting rib 41 and the second limiting rib 42 in the longitudinal direction is h2, and h2 is greater than or equal to 1 mm and less than or equal to 3 mm; the height can be determined according to h1
  • the size of The space 23a is too large, causing the flow volume of the cooling liquid to be too small, or the limiting structure 40 is structurally unstable, and the liquid flow channel 23a is closed under the expansion force of the battery core 10, thus affecting the cooling effect of the liquid cooling plate 20. , reducing the thermal management performance of the liquid cooling plate 20 .
  • the contact surface between the first limiting rib 41 and the second limiting rib 42 is too small.
  • the first limiting rib 41 and the second limiting rib 42 The ribs 42 are extremely easy to deform, causing the first side plate 21 and the second side plate 22 to undergo excessive deformation, closing the liquid flow channel 23a, thus affecting the structural strength of the liquid cooling plate 20 and the smooth flow of the coolant; if h2 is greater than 3 mm , the contact surface between the first limiting rib 41 and the second limiting rib 42 is too large.
  • the limiting structure 40 occupies a larger space, and the space for the cooling liquid to flow in the liquid flow channel 23a is smaller, which easily reduces the flow of the coolant.
  • the flow volume reduces the cooling effect of the liquid cooling plate 20 .
  • h2 can specifically be 1mm, 2mm or 3mm, etc.
  • the width of the first side plate 21 and the second side plate 22 in the transverse direction is h3, and h3 is greater than or equal to 0.5mm and less than or equal to 1mm; this can ensure that the first side plate 21 and the second side plate 22 are deformed under the expansion force of the battery core 10 to balance the expansion force of the battery core 10 and meet the cycle life requirements of the battery core 10 .
  • h3 is less than 0.5mm, the structural strength and extrusion resistance of the board body are low, that is, it is easily deformed under the pressure of the internal coolant, and during processing and movement; during the expansion of the battery core 10 Under the action of force, the first side plate 21 and the second side plate 22 are easily deformed; if h3 is greater than 1 mm, the first side plate 21 and the second side plate 22 are too thick, resulting in the structural strength of the plate body being too high.
  • h3 can specifically be 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm or 1mm, etc.
  • the width of the liquid flow chamber 23 in the transverse direction is h4, and h4 is greater than or equal to 2 mm and less than or equal to 5 mm; that is, the first side plate 21 and the second
  • the distance between the side plates 22 in the Y direction is h4 to ensure that the liquid flow channel 23a formed between the first side plate 21 and the second side plate 22 can meet the refrigerant flow demand.
  • h4 can specifically be 2mm, 3mm, 4mm or 5mm, etc.
  • the distance between the first limiting rib 41 and the second limiting rib 42 in the lateral direction is h5.
  • h5 is greater than or equal to 1 mm and less than or equal to 3 mm.
  • the distance can be determined according to the compression rib. 30.
  • the values of ⁇ and h4 are set to ensure that during the expansion and deformation process of the battery core 10, the first limiting rib 41 and the second limiting rib 42 can approach each other to abut, and have a large effective contact.
  • h5 can specifically be 1mm, 2mm or 3mm, etc.
  • the length of the board body is a, a is greater than or equal to 800mm, and less than or equal to 1300mm; in another embodiment, the width of the board body is b, b is greater than or equal to 80mm, and Less than or equal to 120mm; in another embodiment, the thickness of the plate body is c, and c is greater than or equal to 3mm, and less than or equal to 6mm. It can be understood that the length, width and thickness of the plate body can be based on the specific size of the battery pack. Settings are made to meet the thermal management requirements of the battery pack while minimizing the space occupied by the liquid cooling plate 20, thereby increasing the content of the cells 10 in the battery pack, thereby improving the endurance and charging of the battery pack. While improving speed and power performance, it also improves the safety of the battery pack.
  • the overall structure of the liquid cooling plate 20 is small and cannot cool multiple cells 10 at the same time. It is easy to increase the content of the liquid cooling plate 20 and the flow of cooling liquid. amount, thereby reducing the usability and safety of the battery pack; when a is greater than 1300mm, b is greater than 120mm, and c is greater than 6mm, the overall structure of the liquid cooling plate 20 is larger, and it occupies a larger space in the battery pack. Reduce the battery cell content in the battery pack, reducing the battery pack's endurance, charging speed and power performance.
  • a can be specifically 800mm, 900mm, 1000mm, 1100mm, 1200mm or 1300mm, etc.
  • b can be specifically 80mm, 90mm, 100mm, 1100mm or 120mm, etc.
  • c can be specifically 3mm, 4mm, 5mm or 6mm, etc.
  • This application also proposes a battery pack, which includes a plurality of battery cells 10 and a liquid-cooled plate 20.
  • the specific structure of the liquid-cooled plate 20 refers to the above-mentioned embodiments.
  • This battery pack adopts all the technologies of all the above-mentioned embodiments. The solution, therefore, has at least all the beneficial effects brought by the technical solutions of the above embodiments, and will not be described again one by one.
  • There are multiple liquid cooling plates 20 and the battery core 10 is sandwiched between any two liquid cooling plates 20 .
  • liquid-cooling plates 20 are provided on both sides of the battery core 10, so that the two opposite large surfaces of the battery core 10 are provided with the liquid-cooling plates 20, because the liquid-cooling plates 20 have cooling functions, buffering functions and blocking functions. function, thereby simplifying the overall structure and leaving a larger space in the battery pack to integrate multiple cells 10, which greatly improves the endurance, charging speed and power performance of the battery pack, while also improving assembly efficiency and reducing costs.
  • a thermally conductive structural adhesive is provided between the battery core 10 and the liquid cooling plate 20. Since the thermally conductive structural adhesive has better thermal conductivity and bonding properties, the connection structure between the battery core 10 and the liquid cooling plate 20 can be simplified and the cost can be reduced. , and can transfer the heat, expansion deformation, etc. generated by the battery core 10 to the liquid cooling plate 20, so that the liquid cooling plate 20 absorbs heat, slows down the heating rate of the battery core 10, absorbs and offsets the expansion force of the battery core 10, and adapts to the electric current. expansion deformation of core 10.
  • This application also proposes a car, which includes a battery pack.
  • the specific structure of the battery pack refers to the above-mentioned embodiments. Since this car adopts all the technical solutions of all the above-mentioned embodiments, it at least has the advantages of the technical solutions of the above-mentioned embodiments. All the beneficial effects will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开一种液冷板、电池包和汽车,其中,液冷板包括板本体、多个压缩筋以及限位结构,板本体具有第一侧板和第二侧板,且形成有液流腔;多个压缩筋间隔排布以将液流腔分割出多个液流通道;限位结构包括第一限位筋和第二限位筋,第一限位筋和第二限位筋分别固定于第一侧板和第二侧板,以通过第一限位筋和第二限位筋的相互靠近,来限制第一侧板和第二侧板中的任一者发生向另一者的形变的极限位置。本申请技术方案能够使液冷板具有冷却功能、缓冲功能和阻隔功能,有效减少零部件数量,降低成本的同时,提高电池包的空间利用率,从而提升续航能力及安全性,并且能够使电芯双大面均布置有液冷板,大幅提升热管理性能,及兼顾动力性能的提升。

Description

液冷板、电池包和汽车 技术领域
本申请涉及液冷板技术领域,特别涉及一种液冷板、电池包和汽车。
背景技术
电动汽车的动力系统主要以动力电池作为动力来源,动力电池类型大都采用锂离子动力电池,通过将多个锂电池组装集合形成电池包,尽可能储存较多电能,使电动汽车达到高续航里程、高充电速度、高动力性能等指标,其中,为了确保电动汽车的安全性、高续航能力等,必须进行有效的电池热管理,以避免锂电池在充、放电状态或者运行过程中或者因温度过高而发生动力电池短路、起火等事故,现有技术中,常常通过液体冷却散热方式对电池进行热管理,即主要通过液冷板与动力电池表面接触换热。
而受锂电池机理和制成工艺限制,电池随寿命循环的进行,不可避免会出现电池膨胀,现有技术中,通常在液冷板和电池之间添加硅胶垫圈、泡棉等缓冲材料来平衡电池膨胀产生的膨胀力和膨胀形变,该缓冲方式占用了电池包的大量空间,使电池包的空间利用率降低,并且,在传统电池包中,为了防止发生热失控的电池产生的热量扩散或传递至周边电池,通常增加气凝胶、隔热垫等防火隔热材料进行阻隔,同样会降低电池包的空间利用率,从而降低续航能力、动力性能及充电速度,此外,还增加了制造成本和降低装配效率。
技术解决方案
本申请的主要目的是提供一种液冷板,旨在使液冷板具有冷却功能、缓冲功能和阻隔功能,有效减少零部件数量,降低成本的同时,提高电池包的空间利用率,从而提升续航能力及安全性,并且能够使电芯双大面均布置有液冷板,大幅提升热管理性能,及兼顾动力性能的提升。
为实现上述目的,本申请提出的液冷板,应用于电池包,所述电池包包括多个电芯和多个所述液冷板,任意两个所述液冷板之间均夹持有所述电芯,所述液冷板包括:
板本体,具有相对设置的第一侧板和第二侧板,所述第一侧板和所述第二侧板连接形成有液流腔;
多个压缩筋,间隔排布且连接于所述第一侧板和所述第二侧板之间,以将所述液流腔分割出多个供冷却液流动的液流通道;以及
限位结构,设于相邻两所述压缩筋之间,所述限位结构包括相对设置的第一限位筋和第二限位筋,所述第一限位筋和所述第二限位筋分别固定于所述第一侧板和所述第二侧板,以通过所述第一限位筋和所述第二限位筋的相互靠近,来限制所述第一侧板和所述第二侧板中的任一者发生向另一者的形变的极限位置。
可选地,所述压缩筋由所述第一侧板朝向所述第二侧板倾斜设置,所述第一限位筋和所述第二限位筋错位设置,且所述第一限位筋中心和所述第二限位筋中心的连线的倾斜方向与所述压缩筋的倾斜方向相反。
可选地,所述压缩筋的倾斜延伸方向与所述第二侧板形成的夹角为θ,θ大于或等于30度,且小于或等于60度。
可选地,在所述电芯膨胀前,所述第一限位筋和所述第二限位筋在纵向上具有第一错位距离H,所述压缩筋具有第一投影长度,在所述电芯膨胀后,所述压缩筋具有第二投影长度,所述第一投影长度和所述第二投影长度的差值等于所述第一错位距离。
可选地,所述第一错位距离H大于或等于0.5mm,且小于或等于1.5mm。
可选地,所述压缩筋为直线段,所述直线段一端连接于所述第一侧板,另一端连接于所述第二侧板。
可选地,所述压缩筋包括第一折段、第二折段和折弯连接于所述第一折段和所述第二折段之间的过渡段,所述第一折段一端固定连接于所述第一侧板,所述第二折段一端固定连接于所述第二侧板。
可选地,所述第一折段由所述第一侧板朝向所述第二侧板倾斜设置,所述第二折段与所述第一折段平行设置。
可选地,所述过渡段包括相连接的第一弧段和第二弧段,所述第一弧段一端与所述第一折段固定连接,所述第二弧段一端与所述第二折段固定连接。
可选地,所述第一弧段与所述第二弧段的连接处为相切设置。
可选地,所述过渡段还包括连接段,所述连接段位于所述第一弧段和所述第二弧段之间,且分别与所述第一弧段一端、所述第二弧段一端相切设置。
可选地,所述限位结构设有多个,多个所述限位结构一一设于对应的所述液流通道内;
和/或,各所述液流通道均设有多个所述限位结构。
可选地,所述板本体采用铝材制成。
可选地,相邻两所述压缩筋在纵向上的距离为h1,h1大于或等于15mm,且小于或等于25mm。
和/或,所述第一限位筋和所述第二限位筋在纵向上的高度均为h2,h2大于或等于1mm,且小于或等于3mm;
和/或,所述第一侧板和所述第二侧板在横向上的宽度均为h3,h3大于或等于0.5mm,且小于或等于1mm;
和/或,所述液流腔在横向上的宽度为h4,h4大于或等于2mm,且小于或等于5mm;
和/或,所述第一限位筋和所述第二限位筋在横向上的距离为h5,h5大于或等于1mm,且小于或等于3mm。
可选地,所述板本体的长度为a,a大于或等于800mm,且小于或等于1300mm;
和/或,所述板本体的宽度为b,b大于或等于80mm,且小于或等于120mm;
和/或,所述板本体的厚度为c,c大于或等于3mm,且小于或等于6mm。
本申请还提出一种电池包,该电池包包括多个电芯和如上所述的液冷板,其中,所述液冷板设置有多个,且任意两个所述液冷板之间均夹持有所述电芯。
可选地,所述电芯和所述液冷板之间设有导热结构胶。
本申请还提出一种汽车,该汽车包括如上所述的电池包。
本申请技术方案中,通过替代原有的液冷板、缓冲材料和隔热材料,使本申请的液冷板具有冷却功能、缓冲功能和阻隔功能,有效减少零部件数量,降低成本的同时,提高电池包的空间利用率,从而提升续航能力、动力性能、充电速度及安全性;具体地,通过设置多个压缩筋,一方面将板本体内的液流腔分割出多个供冷却液的液流通道,利用冷却液的大热容特性,吸收电芯所产生的热量,起到阻隔热量传递的功能,从而抑制热蔓延的发生,且在提高电芯的使用安全性的同时,减少电池包内的零部件数量,提高空间利用率;另一方面,压缩筋在电芯膨胀的作用下,受力压缩变形,第一侧板和/或第二侧板同样会受力变形而相互靠近,如此可以为液冷板平衡电芯膨胀力提供缓冲及反向顶持力,从而在保证液冷板的结构稳定性的同时,较好的适应电芯的膨胀形变,起到缓冲功能,同样能够有效减少零部件数量,进一步提高空间利用率,且在此过程中,第一侧板和/或第二侧板与电芯之间始终具有较大的有效接触面积,确保液冷板的冷却效果,提高液冷板的使用可靠性;此外,通过设置限位结构,限制第一侧板和第二侧板中任一者发生向另一者的形变的极限位置,保证冷却液在极端情况下仍能够在液流通道内流动,实现液冷板对电芯的均匀冷却,提高液冷板的使用可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请液冷板在一实施例中的结构示意图;
图2为图1中的相邻两个液冷板与对应的电芯的位置关系示意图;
图3为图2的主视图,其中示意出电芯膨胀时,液冷板处于形变状态的结构示意图;
图4为图2中处于形变状态前的液冷板的剖视图;
图5为图3中处于形变状态后的液冷板的剖视图;
图6为图4和图5中两种状态下的液冷板的对比图;
图7为图4中压缩筋一实施例的结构示意图;
图8为图4中压缩筋另一实施例的结构示意图;
图9为图4中压缩筋又一实施例的结构示意图;
图10为图4中A处的局部放大图;
图11为图1中液冷板的结构示意图。
附图标号说明:
标号 名称 标号 名称
10 电芯 33 过渡段
20 液冷板 33a 第一弧段
21 第一侧板 33b 第二弧段
22 第二侧板 33c 连接段
23 液流腔 40 限位结构
23a 液流通道 41 第一限位筋
30 压缩筋 42 第二限位筋
31 第一折段 60 第一变形面
32 第二折段 61 第二变形面
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种液冷板20,应用于电池包,参照图1至2,本申请的电池包包括多个电芯10和多个液冷板20,任意两个液冷板20之间均夹持有电芯10。进一步地,液冷板20在数量上可设置有多个,并交错排列,以保证一(个/列)电芯10的相对设置的两大面均贴有液冷板20,由此提高液冷板20对电芯10的热管理性能,从而极大地提高电芯10的使用寿命。
参照图1至11,在本申请实施例中,该液冷板20包括板本体、多个压缩筋30以及限位结构40,板本体具有相对设置的第一侧板21和第二侧板22,第一侧板21和第二侧板22连接形成有液流腔23;多个压缩筋30间隔排布且连接于第一侧板21和第二侧板22之间,以将液流腔23分割出多个供冷却液流动的液流通道23a;限位结构40设于相邻两压缩筋30之间,限位结构40包括相对设置的第一限位筋41和第二限位筋42,第一限位筋41和第二限位筋42分别固定于第一侧板21和第二侧板22,以通过第一限位筋41和第二限位筋42的相互靠近,来限制第一侧板21和第二侧板22中的任一者发生向另一者的形变的极限位置,如此设置,在保证液冷板20的使用可靠性和结构稳定性的同时,通过替代原有的液冷板、缓冲材料和隔热材料,使本申请的液冷板20具有冷却功能、缓冲功能和阻隔功能,有效减少零部件数量,降低成本的同时,提高电池包的空间利用率,使电池包内可以尽可能布置较多的电芯10数量,从而提升续航能力、动力性能、充电速度及安全性。
可以理解的,如图1所示,多个液冷板20和多个电芯10交错设置,即相邻两个液冷板20之间夹持有电芯10,相邻两个电芯10之间设有液冷板20,进而有效保证电芯10的使用安全性和使用寿命;具体而言,一方面,液冷板20位于相邻两电芯10之间,通过液流腔23内流动的冷却液,利用其大热容特性,吸收电芯10所产生的热量,延缓电芯10温度的升高,利用液冷板20阻隔相邻两电芯10之间的热传递,有效隔绝热量的传递与扩散,抑制热蔓延的发生,从而提高电芯10的使用安全性;其中,液冷板20采用导热性能较好的材质,如银、铜、铝等;液冷板20同时覆盖多个电芯10,即如图1所示,液冷板20两侧分别排布有多个电芯10,当其中一电芯10发生热失控时,利用其导热性能较好的材质,快速分散热量,同时利用其内部冷却液大热容特性,快速吸收大量热量,从而减弱单位时间内发生热失控的电芯10对周边电芯10的热量传递,使单位时间内单个电芯10吸收的热量远低于其热失控阈值,有效防止热蔓延的发生,保证电池包的使用安全性。周边电芯10为包围发生热失控电芯10的多个电芯10,即位于发生热失控电芯10的两侧,及被液冷板20进行阻隔的临近的电芯10。
另一方面,由间隔排布的多个压缩筋30分隔液流腔23并形成多条液流通道23a,压缩筋30分别顶持第一侧板21和第二侧板22,如此可以为液流腔23提供支撑力,方便冷却液在液流腔23内流动的同时,提高液冷板20的使用可靠性和结构稳定性,以及,通过压缩筋30的设置,使液冷板20和电芯10之间始终维持有一定的压紧力,在液冷板20受到电芯10的膨胀挤压时,能够为液冷板20平衡膨胀力提供缓冲和反向顶持力,从而在保证液冷板20的结构稳定性的同时,板本体和电芯10之间具有较大的有效接触面积,即,在电芯10寿命循环过程中,通过各压缩筋30受力压缩变形,第一侧板21和第二侧板22发生形变,液冷板20能够吸收并抵消电芯10的膨胀力和适应电芯10的膨胀形变,如图3所示,电芯10膨胀形成的第一变形面60与板本体形变形成的第二变形面61相匹配,如此可以较好的适应电芯10寿命循环过程中的膨胀,确保处于适宜压力下,电芯10结构不被破坏,提升电芯10的循环寿命,且提高电芯10的结构强度,同时,保证液冷板20结构强度的同时,促使液冷板20和电芯10之间始终保持有较大有效接触面积,提高液冷板20的冷却效果,进而抑制热蔓延的发生,提高电池包的使用安全性。
在极端情况下,即电芯10过度膨胀,使第一侧板21朝向第二侧板22方向发生过度形变,和/或第二侧板22朝向第一侧板21方向发生过度形变时,通过限位结构40限制第一侧板21和第二侧板22之间的可相对靠近的极限距离,保证冷却液在极端情况下仍能够在各液流通道23a内流动,从而实现液冷板20对电芯10的均匀冷却,提高液冷板20的使用可靠性。
其中,限位结构40包括第一限位筋41和第二限位筋42,第一限位筋41和第二限位筋42分别固定于第一侧板21和第二侧板22相对的表面,换言之,第一限位筋41和第一侧板21、第二限位筋42和第二侧板22可为一体结构,例如通过一体成型、焊接、嵌接等连接方式进行固定连接,使得连接强度得以提升,结构更加稳定。
在电芯10的膨胀作用下,第一限位筋41和第二限位筋42会相互靠近,当第一限位筋41和第二限位筋42相互靠近至抵接时,第一侧板21和第二侧板22停止形变,此时部分第一侧板21和第二侧板22之间的距离为第一限位筋41和第二限位筋42在横向(如图所示的Y方向,该方向为垂直于第一侧板21的方向)上的厚度之和,避免第一侧板21和第二侧板22过度靠近而缩小甚至闭合液流通道23a,保证冷却液顺畅通过,进而确保液冷板20的冷却效果,提高液冷板20对电芯10的热管理性能,当然本申请不限于此,于其他实施例中,限位结构40可只为第一限位筋41或第二限位筋42;亦或者限位结构40为可压缩弹片。
此外,由于液冷板20本身具有冷却功能、缓冲功能和阻隔功能,相比较利用硅胶垫圈等缓冲材料和气凝胶等隔热材料来实现相同的功能而言,当液冷板20应用到电池包时,能够充分利用电池包内的安装空间,减少其他功能的零部件数量,增多电芯10的数量,在提高充电速度、提升动力性能、延长续航里程的同时,提高装配效率,降低整体的使用成本。
本申请技术方案中,通过替代原有的液冷板、缓冲材料和隔热材料,使本申请的液冷板20具有冷却功能、缓冲功能和阻隔功能,有效减少零部件数量,降低成本的同时,提高电池包的空间利用率,从而提升续航能力、动力性能、充电速度及安全性;具体地,通过设置多个压缩筋30,一方面将板本体内的液流腔23分割出多个供冷却液的液流通道23a,利用冷却液的大热容特性,吸收电芯10所产生的热量,起到阻隔热量传递的功能,从而抑制热蔓延的发生,且在提高电芯10的使用安全性的同时,减少电池包内的零部件数量,提高空间利用率;另一方面,压缩筋30在电芯10膨胀的作用下,受力压缩变形,第一侧板21和/或第二侧板22同样会受力变形而相互靠近,如此可以为液冷板20平衡电芯10膨胀力提供缓冲及反向顶持力,从而在保证液冷板20的结构稳定性的同时,较好的适应电芯10的膨胀形变,起到缓冲功能,同样能够有效减少零部件数量,进一步提高空间利用率,且在此过程中,第一侧板21和/或第二侧板22与电芯10之间始终具有较大的有效接触面积,确保液冷板20的冷却效果,提高液冷板20的使用可靠性;此外,通过设置限位结构40,限制第一侧板21和第二侧板22中任一者发生向另一者的形变的极限位置,保证冷却液在极端情况下仍能够在液流通道23a内流动,实现液冷板20对电芯10的均匀冷却,提高液冷板20的使用可靠性。
参照图4至9,在一实施例中,压缩筋30由第一侧板21朝向第二侧板22倾斜设置,第一限位筋41和第二限位筋42错位设置,且第一限位筋41中心和第二限位筋42中心的连线的倾斜方向与压缩筋30的倾斜方向相反,可以理解的,在电芯10的使用过程中,由于电芯10会产生膨胀力而膨胀变形,此时膨胀力挤压相邻两个液冷板20,而将膨胀力传递至两侧的液冷板30,由于压缩筋30倾斜设置,第一侧板21和第二侧板22在膨胀力的作用下容易产生弯曲变形来吸收电芯10的膨胀力,由此在满足液冷板20的结构强度需求的同时,满足电芯10的循环寿命需求。
此外,第一侧板21和第二侧板22分别由第三侧板和第四侧板相连,并共同围合形成液流腔23,第三侧板和第四侧板可为曲面结构,以配合第一侧板21和第二侧板22的形变,其中,多个压缩筋30的倾斜方向保持一致,即均朝向液冷板20的第三侧板,或者,均朝向第四侧板倾斜设置,此时第一限位筋41中心和第二限位筋42中心的连线的倾斜方向与压缩筋30的倾斜方向相反,避免第一限位筋41和第二限位筋42相互远离而无法抵接,导致第一侧板21和第二侧板22之间的距离过小,影响冷却液的流动。由此在满足冷却液的流动空间的同时,满足液冷板20对电芯10的热管理性能,以此使电芯10的使用寿命大幅延长。
具体地,在电芯10产生膨胀变形的过程中,以所示图3和图4为例,板本体与电芯10的接触面受挤压变形,第一变形面60和第二变形面61均为弧形结构,即第一侧板21和第二侧板22受挤压会发生形变,此时压缩筋30与第一侧板21和第二侧板22连接形成的连接点会沿纵向方向(如图所示的Z方向)相互错位,且设于第一侧板21和第二侧板22的第一限位筋41和第二限位筋42也沿纵向方向相互错位,因此,为了保证第一限位筋41和第二限位筋42能够相互抵压,满足冷却液的顺畅流动,在电芯10发生膨胀变形前,第一限位筋41和第二限位筋42在纵向上错位设置,且第一限位筋41中心和第二限位筋42中心的连线的倾斜方向与压缩筋30的倾斜方向相反,如此,可以保证第一限位筋41和第二限位筋42在横向(Y方向)上相互靠近的过程中,纵向(Z方向)上也会相互靠近,且至具有一定有效接触面积进行相互抵接,而停止靠近,即如图5所示的剖视图,其示意出了液冷板20在电芯10的膨胀作用下的最终形变状态,图6为液冷板20在电芯10膨胀作用前后的对比示意图,其中实线为处于形变状态前的液冷板20,虚线为处于形变状态后的液冷板20。
进一步地,如图10所示,压缩筋30的倾斜延伸方向与第二侧板22形成的夹角为θ,该夹角为锐角,且θ大于或等于30度,且小于或等于60度。可以理解的,由于压缩筋30的倾斜延伸方向与第二侧板22形成的锐角的大小,同理压缩筋30的倾斜延伸方向与第一侧板21形成的锐角的大小,决定了经由第一侧板21和第二侧板22传递给压缩筋30的膨胀力大小,具体而言,若夹角过小,即小于30度,当液冷板20受到电芯10的膨胀挤压时,压缩筋30极易被压缩,且在电芯10膨胀前,没有足够的初始预紧力使液冷板29和电芯10两者之间保持有一定的压紧力,无法为液冷板20平衡膨胀力提供缓冲和反向顶持力;若夹角过大,即大于60度,此时液冷板20的结构强度过高,当液冷板20受到电芯10的膨胀挤压时,压缩筋30难以被压缩,导致电芯10受到过大压力,被限制膨胀,极大程度上增大了电芯10的结构遭到破坏及寿命过快衰减的风险。θ值具体可以为30度、45度或60度等。
更进一步地,再次参照图10,在一实施例中,在所述电芯10膨胀前,第一限位筋41和第二限位筋42在纵向(Z方向)上具有第一错位距离H,压缩筋30具有第一投影长度,在电芯10膨胀后,压缩筋30具有第二投影长度,第一投影长度和第二投影长度的差值等于所述第一错位距离,如此,可以保证第一限位筋41和第二限位筋42相互抵接时具有较大的有效接触面积,例如第一限位筋41和第二限位筋42相对的面完全重合,使第一限位筋41和第二限位筋42更加可靠地相互顶持,从而一方面有利于保证液流通道23a畅通,即冷却液能够在液流通道23a顺畅流动,另一方面有利于保证液冷板20的结构稳定性,即第一限位筋41和第二限位筋42以较大的有效接触面积进行相互顶持,在液冷板20在电芯10的膨胀力的作用下,与压缩筋30配合,以使结构更加稳定,提高板本体的抗挤压强度。
其中,第一错位距离H大于或等于0.5mm,且小于或等于1.5mm,便于与倾斜设置的压缩筋30相配合,即与夹角为θ相配合,在电芯10的膨胀力作用下,保证第一限位筋41和第二限位筋42能够相互靠近至抵接,且具有较大的有效接触面积。第一错位距离具体可以为0.5mm、1mm或1.5mm等。
参照图7,在一实施例中,压缩筋30为直线段,直线段一端连接于第一侧板21,另一端连接于第二侧板22,如此,可以分别顶持第一侧板21和第二侧板22,以便吸收由第一侧板21和第二侧板22传递来的膨胀力,从而使板本体适应电芯10的膨胀形变,满足液冷板20的结构强度需求和电芯10的循环寿命需求。
结合参照图4和图8,在一实施例中,压缩筋30包括第一折段31、第二折段32和折弯连接于第一折段31和第二折段32之间的过渡段33,第一折段31一端固定连接于第一侧板21,第二折段32一端固定连接于第二侧板22,如此设置,一方面有利于分隔液流腔23形成多条液流通道23a,另一方面,能够通过过渡段33进行进一步蓄力,在对第一侧板21和第二侧板22进行支撑,保证液流腔23结构稳定性的同时,能够较好的被压缩变形,进而使第一侧板21和第二侧板22发生形变并相互靠近,适应电芯10的膨胀形变,确保电芯10的循环寿命以及液冷板20的结构稳定性和使用可靠性。
其中,第一折段31和第二折段32可以并行设置,并通过过渡段33进行折弯连接,既能够增长压缩筋30的长度,提高压缩筋30的抗压变形能力,同时还能减缓使第一侧板21和第二侧板22相互靠近的挤压力,避免第一侧板21和第二侧板22的结构受到破坏导致液冷板20的报废。
具体地,在一实施例中,第一折段31由第一侧板21朝向第二侧板22倾斜设置,第二折段32与第一折段31平行设置,即第一折段31不与第一侧板21相互垂直,第二折段32不与第二侧板22相互垂直,如此设置,进一步增长压缩筋30的长度,提高压缩筋30的抗压变形能力,同时还能改善液流通道23a发生急剧弯曲时的流体性能。
参照图8,在一实施例中,过渡段33包括相连接的第一弧段33a和第二弧段33b,第一弧段33a一端与第一折段31固定连接,第二弧段33b一端与第二折段32固定连接,如此可以在提高压缩筋30的结构强度的同时,提高压缩筋30的形变能力,避免压缩筋30受力产生裂痕甚至断裂的情况发生。
具体地,均衡考虑其制造成本及性能,第一弧段33a与第二弧段33b的连接处为相切设置,便能保证压缩筋30适应电芯10膨胀的挤压力,并为第一侧板21和第二侧板22提供支撑力,使其与电芯10的表面相互贴合,吸收电芯10的膨胀力和适应电芯10的膨胀形变。
亦或者,参照图9,在一实施例中,过渡段还包括连接段33c,连接段33c位于第一弧段33a与第二弧段33b之间,且分别与第一弧段33a一端、与第二弧段33b一端相切设置,如此可以在提高压缩筋30的结构强度的同时,提高压缩筋30的形变能力,避免压缩筋30受力产生裂痕甚至断裂的情况发生。此外,以第一弧段33a、连接段33c、第二弧段33b三段连接形成过渡段33,在能保证压缩筋30适应电芯10膨胀的挤压力,并为第一侧板21和第二侧板22提供支撑力的基础上,使过渡段33的结构更加平缓。
其中于本申请中过渡段33为一体成型,及与第一折段31和第二折段32也为一体成型,便于提高压缩筋30的结构强度。
参照图4至5,在一实施例中,限位结构40设有多个,多个限位结构40一一设于对应的液流通道23a内,和/或,各液流通道23a均设有多个限位结构40,换言之,一液流通道23a内可以设置有至少一个限位结构,例如只设置有一个,或者可以设置有两个、三个甚至四个,在保证冷却液顺畅流动,满足热管理需求的前提下,其数量可以根据板本体的强度要求,或者相邻两个压缩筋30之间的距离进行选择性设置,从而满足液冷板20的抗挤压强度需求及电芯10的循环寿命需求。
可选地,在一实施例中,液冷板20的材质应为导热性能好、结构强度较好、易于加工的金属,其中综合各材质的制作成本及性能,液冷板20的材质优选为铝,即板本体采用铝材制成,此外压缩筋30也可采用铝材制成。
参照图4,在一实施例中,相邻两压缩筋30在纵向上的距离为h1,h1大于或等于15mm,且小于或等于25mm,一方面,保证于相邻两压缩筋30之间的第一侧板21和第二侧板22在电芯10的膨胀力作用下的形变量适中,能够及时吸收电芯10的膨胀形变,从而使液冷板20满足电芯10的膨胀力需求;另一方面,减少相邻两压缩筋30之间的限位结构40的数量,降低成本。
具体地,若h1小于15mm时,配合限位结构40,在电芯10产生膨胀变形的过程中,压缩筋30的形变程度较小,第一侧板21和第二侧板22能够产生的变形量较小,导致不能在电芯10膨胀前提供足够的初始预紧力,以及在电芯10膨胀后不能及时吸收电芯10的膨胀形变,即无法平衡电芯10的膨胀力,以至于使液冷板20无法满足电芯10的膨胀力需求;若h1大于25mm时,此时相邻两压缩筋30之间距离较远,导致相邻两压缩筋30之间的第一侧板21和第二侧板22在纵向上的高度过高,以至于在电芯10的膨胀力作用下,第一侧板21和第二侧板22极易产生变形,因此需增加限位结构40来限制第一侧板21和第二侧板22的形变量,提高结构的稳定性。h1具体可以15mm、16mm、17mm、18mm、19mm、20mm、21mm、22mm、23mm、24mm或25mm等。
参照图10,在一实施例中,第一限位筋41和第二限位筋42在纵向上的高度均为h2,h2大于或等于1mm,且小于或等于3mm;其高度大小可以根据h1的大小进行设置,一方面,可以保证液冷板20的结构稳定性;另一方面,可以避免第一限位筋41和第二限位筋42相抵接时,限位结构40占据液流通道23a的空间过大,导致冷却液的流动量过小,或者,限位结构40的结构不稳定,在电芯10的膨胀力作用下闭合液流通道23a,从而影响液冷板20的冷却效果,降低液冷板20的热管理性能。
具体地,若h2小于1mm时,第一限位筋41和第二限位筋42相抵接的表面过小,当电芯10的膨胀力过大时,第一限位筋41和第二限位筋42极容易变形,导致第一侧板21和第二侧板22发生过度形变,闭合液流通道23a,从而影响液冷板20的结构强度和冷却液的顺畅流动;若h2大于3mm时,第一限位筋41和第二限位筋42相抵接的表面过大,此时限位结构40所占空间较大,液流通道23a内供冷却液流动空间较小,容易减少冷却液的流动量,降低液冷板20的冷却效果。h2具体可以为1mm、2mm或3mm等。
参照图10,在一实施例中,第一侧板21和第二侧板22在横向上的宽度均为h3,h3大于或等于0.5mm,且小于或等于1mm;如此可以保证第一侧板21和第二侧板22在电芯10的膨胀力作用下产生形变,从而平衡电芯10的膨胀力,满足电芯10的循环寿命需求。
具体地,若h3小于0.5mm时,板本体的结构强度和抗挤压强度较低,即在内部冷却液的压强下,以及加工、移动过程中,极易产生变形;在电芯10的膨胀力作用下,第一侧板21和第二侧板22极易发生形变;若h3大于1mm时,第一侧板21和第二侧板22过厚,导致板本体的结构强度过高,当液冷板20受到电芯10的膨胀挤压时,第一侧板21和第二侧板22难以被挤压变形,导致电芯10受到过大压力,被限制膨胀,从而无法满足电芯10的膨胀力需求,极大程度上增大了电芯10的结构遭到破坏及寿命过快衰减的风险。h3具体可以为0.5mm、0.6mm、0.7mm、0.8mm、0.9mm或1mm等。
参照图10,在一实施例中,在电芯10膨胀前,液流腔23在横向上的宽度为h4,h4大于或等于2mm,且小于或等于5mm;即第一侧板21和第二侧板22在Y方向的距离为h4,以保证第一侧板21和第二侧板22之间形成的液流通道23a可以满足冷媒流量需求。h4具体可以为2mm、3mm、4mm或5mm等。
参照图10,在一实施例中,第一限位筋41和第二限位筋42在横向上的距离为h5,h5大于或等于1mm,且小于或等于3mm,其距离大小可以根据压缩筋30、θ值、h4的大小进行设置,以保证在电芯10的膨胀形变过程中,第一限位筋41和第二限位筋42能够相互靠近至抵接,且具有较大的有效接触面积,同时保证第一侧板21和第二侧板22的形变量,确保第一侧板21和第二侧板22的形变能够吸收并抵消电芯10的膨胀力,以及限制第一侧板21和第二侧板22的形变的极限位置,使冷却液可以在第一侧板21和第二侧板22之间的液流通道23a顺畅流动,满足冷媒流量需求。h5具体可以为1mm、2mm或3mm等。
参照图11,在一实施例中,板本体的长度为a,a大于或等于800mm,且小于或等于1300mm;在另一实施例中,板本体的宽度为b,b大于或等于80mm,且小于或等于120mm;在又一实施例中,板本体的厚度为c,c大于或等于3mm,且小于或等于6mm,可以理解的,板本体的长度、宽度及厚度可以根据电池包的具体尺寸进行设置,以在满足电池包的热管理需求的同时,尽可能减小液冷板20所占空间,以此来增加电池包内电芯10的含量,从而在提升电池包的续航能力、充电速度、动力性能的同时,提高电池包的使用安全性。
具体地,当a小于800mm、b小于80mm、c小于3mm时,液冷板20的整体结构较小,无法同时冷却多个电芯10,极易增加液冷板20的含量及冷却液的流动量,从而降低电池包的可使用性和使用安全性;当a大于1300mm、b大于120mm、c大于6mm时,液冷板20的整体结构较大,其在电池包内所占空间较大,使电池包内的电芯10含量降低,降低电池包的续航能力、充电速度和动力性能。a具体可以为800mm、900mm、1000mm、1100mm、1200mm或1300mm等,b具体可以为80mm、90mm、100mm、1100mm或120mm等,c具体可以为3mm、4mm、5mm或6mm等。
本申请还提出一种电池包,该电池包包括多个电芯10和液冷板20,该液冷板20的具体结构参照上述实施例,由于本电池包采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,液冷板20设置有多个,且任意两个液冷板20之间均夹持有电芯10。
具体地,两个液冷板20设于电芯10的两侧,使电芯10的相对设置的双大面均设有液冷板20,由于液冷板20具有冷却功能、缓冲功能和阻隔功能,因而简化整体结构而使电池包内具有较大空间来集成多颗电芯10,极大程度上提升电池包的续航能力、充电速度和动力性能,同时能够提高装配效率,降低成本。
进一步地,电芯10和液冷板20之间设有导热结构胶,由于导热结构胶具有较佳的导热性能和粘结性能,可简化电芯10和液冷板20的连接结构,降低成本,并且能够将电芯10产生的热量、膨胀的形变等传递至液冷板20,使液冷板20吸收热量,减缓电芯10升温速度,以及吸收并抵消电芯10的膨胀力和适应电芯10的膨胀形变。
本申请还提出一种汽车,该汽车包括电池包,该电池包的具体结构参照上述实施例,由于本汽车采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (18)

  1. 一种液冷板,应用于电池包,所述电池包包括多个电芯和多个所述液冷板,任意两个所述液冷板之间均夹持有所述电芯,其中,所述液冷板包括:
    板本体,具有相对设置的第一侧板和第二侧板,所述第一侧板和所述第二侧板连接形成有液流腔;
    多个压缩筋,间隔排布且连接于所述第一侧板和所述第二侧板之间,以将所述液流腔分割出多个供冷却液流动的液流通道;以及
    限位结构,设于相邻两所述压缩筋之间,所述限位结构包括相对设置的第一限位筋和第二限位筋,所述第一限位筋和所述第二限位筋分别固定于所述第一侧板和所述第二侧板,以通过所述第一限位筋和所述第二限位筋的相互靠近,来限制所述第一侧板和所述第二侧板中的任一者发生向另一者的形变的极限位置。
  2. 如权利要求1所述的液冷板,其中,所述压缩筋由所述第一侧板朝向所述第二侧板倾斜设置,所述第一限位筋和所述第二限位筋错位设置,且所述第一限位筋中心和所述第二限位筋中心的连线的倾斜方向与所述压缩筋的倾斜方向相反。
  3. 如权利要求2所述的液冷板,其中,所述压缩筋的倾斜延伸方向与所述第二侧板形成的夹角为θ,θ大于或等于30度,且小于或等于60度。
  4. 如权利要求2所述的液冷板,其中,在所述电芯膨胀前,所述第一限位筋和所述第二限位筋在纵向上具有第一错位距离H,所述压缩筋具有第一投影长度,在所述电芯膨胀后,所述压缩筋具有第二投影长度,所述第一投影长度和所述第二投影长度的差值等于所述第一错位距离。
  5. 如权利要求4所述的液冷板,其中,所述第一错位距离H大于或等于0.5mm,且小于或等于1.5mm。
  6. 如权利要求2所述的液冷板,其中,所述压缩筋为直线段,所述直线段一端连接于所述第一侧板,另一端连接于所述第二侧板。
  7. 如权利要求2所述的液冷板,其中,所述压缩筋包括第一折段. 第二折段和折弯连接于所述第一折段和所述第二折段之间的过渡段,所述第一折段一端固定连接于所述第一侧板,所述第二折段一端固定连接于所述第二侧板。
  8. 如权利要求7所述的液冷板,其中,所述第一折段由所述第一侧板朝向所述第二侧板倾斜设置,所述第二折段与所述第一折段平行设置。
  9. 如权利要求7所述的液冷板,其中,所述过渡段包括相连接的第一弧段和第二弧段,所述第一弧段一端与所述第一折段固定连接,所述第二弧段一端与所述第二折段固定连接。
  10. 如权利要求9所述的液冷板,其中,所述第一弧段与所述第二弧段的连接处为相切设置。
  11. 如权利要求9所述的液冷板,其中,所述过渡段还包括连接段,所述连接段位于所述第一弧段和所述第二弧段之间,且分别与所述第一弧段一端. 所述第二弧段一端相切设置。
  12. 如权利要求1所述的液冷板,其中,所述限位结构设有多个,多个所述限位结构一一设于对应的所述液流通道内;
    和/或,各所述液流通道均设有多个所述限位结构。
  13. 如权利要求1所述的液冷板,其中,所述板本体采用铝材制成。
  14. 如权利要求1所述的液冷板,其中,相邻两所述压缩筋在纵向上的距离为h1,h1大于或等于15mm,且小于或等于25mm。
    和/或,所述第一限位筋和所述第二限位筋在纵向上的高度均为h2,h2大于或等于1mm,且小于或等于3mm;
    和/或,所述第一侧板和所述第二侧板在横向上的宽度均为h3,h3大于或等于0.5mm,且小于或等于1mm;
    和/或,所述液流腔在横向上的宽度为h4,h4大于或等于2mm,且小于或等于5mm;
    和/或,所述第一限位筋和所述第二限位筋在横向上的距离为h5,h5大于或等于1mm,且小于或等于3mm。
  15. 如权利要求1所述的液冷板,其中,所述板本体的长度为a,a大于或等于800mm,且小于或等于1300mm;
    和/或,所述板本体的宽度为b,b大于或等于80mm,且小于或等于120mm;
    和/或,所述板本体的厚度为c,c大于或等于3mm,且小于或等于6mm。
  16. 一种电池包,其中,包括多个电芯和如权利要求1至15中任意一项所述的液冷板,其中,所述液冷板设置有多个,且任意两个所述液冷板之间均夹持有所述电芯。
  17. 如权利要求16所述的电池包,其中,所述电芯和所述液冷板之间设有导热结构胶。
  18. 一种汽车,其中,包括如权利要求16或17中任意一项所述的电池包。
PCT/CN2022/096418 2022-05-31 2022-05-31 液冷板、电池包和汽车 WO2023230899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096418 WO2023230899A1 (zh) 2022-05-31 2022-05-31 液冷板、电池包和汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096418 WO2023230899A1 (zh) 2022-05-31 2022-05-31 液冷板、电池包和汽车

Publications (1)

Publication Number Publication Date
WO2023230899A1 true WO2023230899A1 (zh) 2023-12-07

Family

ID=89026696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096418 WO2023230899A1 (zh) 2022-05-31 2022-05-31 液冷板、电池包和汽车

Country Status (1)

Country Link
WO (1) WO2023230899A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048867A (ja) * 1998-07-31 2000-02-18 Toyota Motor Corp 組電池
CN1877883A (zh) * 2005-04-26 2006-12-13 三星Sdi株式会社 电池模块
WO2020253684A1 (zh) * 2019-06-18 2020-12-24 宁德时代新能源科技股份有限公司 温控组件及电池包

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048867A (ja) * 1998-07-31 2000-02-18 Toyota Motor Corp 組電池
CN1877883A (zh) * 2005-04-26 2006-12-13 三星Sdi株式会社 电池模块
WO2020253684A1 (zh) * 2019-06-18 2020-12-24 宁德时代新能源科技股份有限公司 温控组件及电池包

Similar Documents

Publication Publication Date Title
CN205609622U (zh) 电池模组
CN217387306U (zh) 液冷板、电池包和汽车
CN116031533A (zh) 冷却板及电池包
CN110364762A (zh) 一种集成液冷式动力电池模组
WO2023230899A1 (zh) 液冷板、电池包和汽车
CN212587583U (zh) 电池模组、电池包及车辆
CN106532083B (zh) 一种含水热管理结构设计的燃料电池连接模块
CN210668620U (zh) 一种新能源汽车动力系统
CN218242036U (zh) 电池组和电池包
CN219321458U (zh) 一种换热板、电池装置
CN218632215U (zh) 电池包、热管理系统及车辆
CN216953657U (zh) 冷却管道装置
CN116780045A (zh) 液冷板、电池包和电池包的装配方法
CN116666812A (zh) 冷却板、电池包和用电设备
WO2020133674A1 (zh) 电池模组以及电池包
CN117199638A (zh) 液冷板、电池包和汽车
WO2021249272A1 (zh) 一种电池包及电动车
CN210837873U (zh) 一种电池液冷板弹性支撑结构
CN218957848U (zh) 缓冲散热板及电池模组
CN220400695U (zh) 热管理构件、电池包以及用电装置
WO2024192976A1 (zh) 电池包及用电设备
CN220400694U (zh) 热管理构件、电池包以及用电装置
CN219677375U (zh) 换热装置及包含其的电池包
CN219873730U (zh) 一种侧面冲压板式液冷板散热装置
CN221009121U (zh) 电池包和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944235

Country of ref document: EP

Kind code of ref document: A1