WO2023229491A2 - Procédé de production d'hydrogène - Google Patents

Procédé de production d'hydrogène Download PDF

Info

Publication number
WO2023229491A2
WO2023229491A2 PCT/RU2023/000130 RU2023000130W WO2023229491A2 WO 2023229491 A2 WO2023229491 A2 WO 2023229491A2 RU 2023000130 W RU2023000130 W RU 2023000130W WO 2023229491 A2 WO2023229491 A2 WO 2023229491A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
synthesis gas
purification
stage
Prior art date
Application number
PCT/RU2023/000130
Other languages
English (en)
Russian (ru)
Other versions
WO2023229491A3 (fr
Inventor
Игорь Анатольевич МНУШКИН
Original Assignee
Игорь Анатольевич МНУШКИН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2022111779A external-priority patent/RU2791358C1/ru
Application filed by Игорь Анатольевич МНУШКИН filed Critical Игорь Анатольевич МНУШКИН
Publication of WO2023229491A2 publication Critical patent/WO2023229491A2/fr
Publication of WO2023229491A3 publication Critical patent/WO2023229491A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Definitions

  • the invention relates to a method for producing hydrogen and can be used in the oil refining, petrochemical and gas chemical industries for large-scale hydrogen production.
  • CO+H2O CO2+H2; allowing to obtain four molecules of hydrogen by reacting one molecule of methane with two molecules of water.
  • hydrogen can be obtained from heavier paraffinic hydrocarbons contained in natural gas (ethane, propane, butane, etc.) and in light straight-run oil fractions.
  • a method for producing hydrogen from hydrocarbon raw materials including mixing the raw materials with an oxidizing agent, predominantly oxygen, and partial oxidation of the raw materials in the combustion chamber of a flow-through cooled reactor to produce a vapor-gas mixture containing hydrogen, carbon monoxide and dioxide, water vapor and by-products of the combustion reaction, which is moistened.
  • the task was to develop a highly efficient method for producing hydrogen, providing at the same time an increase in the yield of commercial hydrogen, a decrease energy and material intensity of production, as well as increasing its environmental friendliness.
  • the method of hydrogen production includes increasing the pressure of the feedstock in the form of natural gas using compressor equipment and/or liquefied hydrocarbon gases (hereinafter referred to as LPG) and/or light gasoline and/or hydrocarbon mixtures using pumping equipment, mixing initial raw material and the first hydrogen stream to produce a raw material stream, heating and purification of the raw material stream from impurities of sulfur compounds and unsaturated hydrocarbons in a series-connected catalytic hydrogenation reactor and a system of desulfurization reactors, mixing the purified raw material stream with water steam, heating the resulting mixture and feeding it into the reactor adiabatic preliminary reforming, mixing the resulting reaction mixture with water steam and heating it, followed by feeding it into a steam reforming furnace to produce synthesis gas, cooling and supplying the resulting synthesis gas to the carbon monoxide conversion reactor, cooling and separation of the converted synthesis gas with separation of process condensate, supply of cooled separated synthesis gas for two-stage purification with extraction of carbon dioxide using an aqueous
  • a physical and/or chemical absorbent absorption method can be used to remove sulfur compound impurities from the feed stream. It is also possible to additionally remove unwanted impurities of chlorine compounds and/or heavy metals from the feed stream by means of adsorption on a solid absorbent.
  • nickel-molybdenum or cobalt-molybdenum into the adiabatic pre-reforming reactor catalyst or catalyst based on noble metals or Group VIII metals or oxides of these metals.
  • the generated water vapor is mixed with process streams and is involved in the process of adiabatic pre-reforming and/or steam reforming and/or carbon monoxide conversion and/or is used to generate electrical energy and/or is used as a coolant for heating process streams, including for regeneration absorbent and adsorbent for two-stage purification of synthesis gas, and/or is used as a working gas in an expander unit to drive compressor and pumping equipment, fully ensuring the production of hydrogen as both a reagent and a coolant of the required parameters. It is advisable to load an iron-chromium oxide catalyst into the carbon monoxide conversion reactor, and to maintain the temperature in the reaction zone, cool it using boiler feed water or another refrigerant that compensates for the thermal effect of the reaction.
  • potash purification at the first stage of synthesis gas purification does not allow completely purifying the synthesis gas from carbon dioxide, it is advisable to additionally carry out absorption with an aqueous solution of amine in an additional absorber installed in series or parallel with the potash purification absorber, followed by regeneration of the absorbent.
  • PSA short-cycle adsorption
  • compression of the strip gas by PSA is provided, followed by purification from carbon dioxide using an aqueous solution of potash and/or other chemical and/or physical absorbents and supply to the steam reforming furnace as fuel gas and/or to the fuel network.
  • carbon dioxide recovered from synthesis gas and/or flue gases and/or PSA strip gas it is useful for carbon dioxide recovered from synthesis gas and/or flue gases and/or PSA strip gas to be used as a marketable product and/or disposed of, for example, by injection into waste oil fields to reduce greenhouse gas emissions into the atmosphere.
  • the main natural gas is supplied through pipeline 1 to the feedstock compressor 101 to increase the pressure, after which it is sent through pipeline 2 to be mixed with a small amount of product hydrogen supplied through pipeline 27 from the hydrogen recirculation compressor 116.
  • the mixture of compressed natural gas and hydrogen is first through pipeline 3 is supplied to the heating unit 102 and then sequentially passes through pipeline 4 and pipeline 5 through the catalytic hydrogenation reactor 103 and the desulfurization reactor system 104, where the conversion of sulfur compounds of the feed stream into hydrogen sulfide with its subsequent removal and hydrogenation of unsaturated hydrocarbons occurs.
  • the purified raw material stream is sent for mixing with water vapor supplied through pipeline 12 from the steam generation system 115, and subsequent supply through pipeline 7 to the flue gas heat recovery unit of the steam reforming furnace 106/1.
  • the superheated mixture through pipeline 8 enters the adiabatic preliminary reforming reactor 105 to convert hydrocarbons C2 and higher into methane, after which it passes sequentially through pipeline 11 into the flue gas heat recovery unit of the steam reforming furnace 106/1 and through pipeline 13 into the reactor block of the steam reforming furnace reforming 106/2.
  • the resulting synthesis gas is supplied through pipeline 14 to the cooling unit 107 and then through pipeline 15 to the carbon monoxide conversion reactor 108.
  • the converted synthesis gas is sent through pipeline 16 to the cooling unit 109 and, cooled, is supplied through pipeline 17 for separation condensed water vapor into the PO separator.
  • the separated process condensate follows pipeline 19 to pump 114, which is pumped through pipeline 28 into the water vapor generation system 115.
  • the cooled separated synthesis gas is supplied through pipeline 18 for potash purification from carbon dioxide into absorber 111, where regenerated absorbent is supplied via pipeline 22.
  • the purified stream through pipeline 20 is supplied to the adsorber system 113 to release hydrogen.
  • the saturated absorbent is supplied through pipeline 21 to the regenerator 112, from where the captured carbon dioxide is removed through pipeline 23.
  • the product hydrogen removed through pipeline 24 from the adsorber system 113 is divided: the first part through pipeline 25 is removed for further use, and the second part through pipeline 26 is supplied to the hydrogen recirculation compressor 116 for mixing with compressed natural gas.
  • demineralized water is supplied through pipeline 29 to the steam generation system 115, and after appropriate preparation, boiler feed water is supplied through pipeline 9 to the flue gas heat recovery unit of the steam reforming furnace 106/1, and water steam, part of which is removed through pipeline 10 is involved in the steam reforming process through pipeline 12, while excess water vapor is exported through pipeline 30.
  • the claimed invention solves the problem of developing a highly efficient method for producing hydrogen, which simultaneously ensures an increase in hydrogen yield, a reduction in energy and material consumption of production, and also an increase in its environmental friendliness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne un procédé de production d'hydrogène qui peut être utilisé dans les branches de l'industrie de transformation du pétrole et de l'industrie chimique du pétrole et du gaz pour la production d'hydrogène à tonnage élevé. Ce procédé de production d'hydrogène consiste à augmenter la pression de la matière première de départ consistant en du gaz naturel en utilisant un équipement de compression et/ou des gaz hydrocarbures liquéfiés (GHL) et/ou de l'essence légère et/ou des mélanges hydrocarbures en utilisant un équipement de pompage. On effectue un mélange de la matière première de départ et d'un premier flux d'hydrogène afin de produire un flux de matière première, on chauffe et on purifie le flux de matière première pour éliminer les impuretés de composés de soufre et d'hydrocarbures insaturés dans un réacteur catalytique d'hydrogénation et un système de réacteurs de désulfuration connectés en série. On effectue ensuite un mélange du flux de matière première purifié avec de la vapeur d'eau, on chauffe le mélange obtenu et on l'envoie dans un réacteur de reformage préliminaire adiabatique, on mélange le mélange de réaction obtenu avec de la vapeur d'eau et on le chauffe avant de l'envoyer dans un four de reformage de vapeur afin d'obtenir un gaz de synthèse. Le gaz de synthèse est refroidi puis envoyé dans un réacteur de conversion de monoxyde de carbone. On effectue un refroidissement et une séparation du gaz de synthèse converti afin de séparer le condensé industriel, et on envoie le gaz de synthèse séparé refroidi vers une purification en deux étapes. On extrait le dioxyde de carbone à l'aide d'une solution aqueuse de potasse dans un absorbeur lors de la première étape de purification, après quoi on régénère d'absorbeur et on le sèche. Lors de la seconde étape de purification, on extrait le monoxyde de carbone et autres impuretés dans un système d'adsorbeurs. L'hydrogène obtenu est divisé en deux flux: un premier envoyé en vue du mélange avec la matière première de départ en amont du réacteur d'hydrogénation catalytique, et le second vers les consommateurs via un parc de stockage. L'invention permet d'augmenter la production d'hydrogène, de réduire les coûts énergétique et en matériaux, d'améliorer le caractère écologique, et d'élargir la gamme des matières premières.
PCT/RU2023/000130 2022-04-29 2023-04-27 Procédé de production d'hydrogène WO2023229491A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2022111779 2022-04-29
RU2022111779A RU2791358C1 (ru) 2022-04-29 Способ производства водорода

Publications (2)

Publication Number Publication Date
WO2023229491A2 true WO2023229491A2 (fr) 2023-11-30
WO2023229491A3 WO2023229491A3 (fr) 2024-02-01

Family

ID=88919647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2023/000130 WO2023229491A2 (fr) 2022-04-29 2023-04-27 Procédé de production d'hydrogène

Country Status (1)

Country Link
WO (1) WO2023229491A2 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2088518C1 (ru) * 1994-08-03 1997-08-27 Акционерное общество Первоуральский новотрубный завод "Уралтрубсталь" Способ получения водорода из углеводородного газа
RU2378188C2 (ru) * 2004-05-28 2010-01-10 Хайрадикс, Инк. Способ получения водорода с использованием парового риформинга с частичным окислением
RU2379230C2 (ru) * 2008-04-08 2010-01-20 Борис Тихонович Плаченов Способ получения водорода паро-углекислотной конверсией природного газа
RU2394754C1 (ru) * 2009-03-26 2010-07-20 Дмитрий Львович Астановский Способ получения водорода из углеводородного сырья
CN103958398B (zh) * 2011-09-27 2016-01-06 国际热化学恢复股份有限公司 合成气净化系统和方法
US20210269307A1 (en) * 2018-10-15 2021-09-02 Haldor Topsøe A/S Carbon recycling in steam reforming process

Also Published As

Publication number Publication date
WO2023229491A3 (fr) 2024-02-01

Similar Documents

Publication Publication Date Title
AU2018364702B2 (en) Systems and methods for production and separation of hydrogen and carbon dioxide
RU2394754C1 (ru) Способ получения водорода из углеводородного сырья
CN115943119A (zh) 绿色氢气的氨裂解
US20080272340A1 (en) Method for Producing Syngas with Low Carbon Dioxide Emission
CN115667132A (zh) 用于生产氢气的方法
CN115667131A (zh) 用于制备氢气的方法
KR20240017359A (ko) 이산화탄소 배출량을 낮추면서 증기 개질에 의해 순수 수소를 생산하기 위한 방법 및 플랜트
JP2008290927A (ja) 有機ハイドライドを用いる水素精製法およびその装置
RU2791358C1 (ru) Способ производства водорода
AU2021286875B2 (en) Method for the production of hydrogen
RU2203214C1 (ru) Способ получения метанола
WO2023229491A2 (fr) Procédé de production d'hydrogène
RU2643542C1 (ru) Способ получения водорода из углеводородного сырья
JPH03242302A (ja) 水素及び一酸化炭素の製造方法
KR20240021941A (ko) NOx 제거를 이용한 그린 수소를 위한 암모니아 분해
KR20240021944A (ko) 그린 수소를 위한 암모니아 분해
RU2729790C1 (ru) Газохимическое производство водорода
JP7122042B1 (ja) パージ方法およびシステム
CN211233617U (zh) 一种用于处理气体混合物的装置
RU2786069C1 (ru) Способ получения водорода из природного газа
CN109609221B (zh) 一种兰炭炉尾气精脱硫及等温甲烷化工艺
RU132442U1 (ru) Установка для получения этилена
WO2022253459A1 (fr) Procédé et installation de production d'hydrogène pur par reformage à la vapeur avec réduction des émissions de dioxyde de carbone
JP2024524089A (ja) Nox除去を有するグリーン水素のためのアンモニア分解
WO2024134157A1 (fr) Processus de production d'hydrogène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23812233

Country of ref document: EP

Kind code of ref document: A2