CN109609221B - 一种兰炭炉尾气精脱硫及等温甲烷化工艺 - Google Patents

一种兰炭炉尾气精脱硫及等温甲烷化工艺 Download PDF

Info

Publication number
CN109609221B
CN109609221B CN201811569599.5A CN201811569599A CN109609221B CN 109609221 B CN109609221 B CN 109609221B CN 201811569599 A CN201811569599 A CN 201811569599A CN 109609221 B CN109609221 B CN 109609221B
Authority
CN
China
Prior art keywords
gas
reactor
methanation
fine desulfurization
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811569599.5A
Other languages
English (en)
Other versions
CN109609221A (zh
Inventor
闫兵海
宫万福
吕建宁
侯宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wison Engineering Ltd
Original Assignee
Wison Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wison Engineering Ltd filed Critical Wison Engineering Ltd
Priority to CN201811569599.5A priority Critical patent/CN109609221B/zh
Publication of CN109609221A publication Critical patent/CN109609221A/zh
Application granted granted Critical
Publication of CN109609221B publication Critical patent/CN109609221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/105Removal of contaminants of nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

本发明涉及一种兰炭炉尾气精脱硫及等温甲烷化工艺,包括预净化原料气与水蒸汽混合进入耐硫变换反应器组内发生水汽变换反应,耐硫变换反应器产品气进入分离罐进行气液分离,顶部气体进入精脱硫反应器组内发生精脱硫反应,精脱硫反应器产品气与控温蒸汽混合后进入两级等温甲烷化反应器发生甲烷化反应得到SNG粗产品气,SNG粗产品气脱除CO2,N2,得到SNG产品气。本发明通过耐硫变换反应器,使原料气中的有机硫反应变为无机硫,再通过精脱硫反应器,使得变换气中的含硫组分得到有效的脱除;避免了在甲烷化反应前单独设置加氢精脱硫单元,同时采用后脱CO2气体的两级等温甲烷化过程,具有流程短,投资省,无循环,易操控等优点。

Description

一种兰炭炉尾气精脱硫及等温甲烷化工艺
技术领域
本发明涉及合成天然气技术领域,更具体地涉及一种兰炭炉尾气精脱硫 及等温甲烷化工艺。
背景技术
兰炭又称半焦,是以侏罗纪不粘结煤和弱黏结性煤为原料,采用中低温 干馏工艺生产得到的一种具有固定碳含量高的固体物质。兰炭生产过程中产 生的兰炭尾气中不仅含一氧化碳、氢气、甲烷等有用的气体成分,也含有硫 化氢、二氧化硫、氢氰酸、有机硫等对环境造成污染的有害气体。目前,很 多兰炭厂对生产的兰炭尾气采取放空或直接燃烧利用,造成了较严重的环境 污染,也加大了当地节能减排的压力。
因此,将兰炭炉尾气进行净化处理和深加工再利用,是兰炭厂走集约化、 效益型生产的一个重大举措,不但能给企业带来经济效益,也解决兰炭尾气 所造成的污染问题,完全符合国家的资源综合利用和节能减排政策。与传统 的半焦厂荒煤气“点天灯”排放相比,具有节约能源、减少温室气体排放、 保护环境的优点。
近年来,随着我国国民经济的快速发展以及对能源需求的日益增长,特 别是对清洁能源天然气的需求,呈现出迅猛增长的趋势。结合兰炭产业发展 现状,以及对兰炭尾气利用效率低下等实际情况,提出以兰炭炉尾气制合成 天然气(SNG),不但可以实现兰炭炉尾气的资源化利用,节能减排,而且以 制备的合成天然气作为清洁能源,在使用过程中还可以实现二次节能减排。 因此,探索兰炭炉尾气的综合利用,以兰炭炉尾气制合成天然气(SNG),具 有很强的现实意义和巨大的潜在应用市场。
为了防止原料气中含有的硫化物造成甲烷化催化剂中毒,现有甲烷化技 术一般在进甲烷化单元前,单独设有加氢精脱硫单元,用于脱除原料气中的 有机硫和无机硫。甲烷化前单独设置加氢精脱硫单元,存在的问题和不足包 括:反应温度高,设备多,流程长,投资和能耗高;而且有提前发生甲烷化 反应的风险,加氢催化剂烧结损坏的风险高。
现有正在开发或已工业化的甲烷化技术,一般多采用多级绝热甲烷化技 术,即反应原料气经过绝热的一级和/或二级主甲烷化反应后放出的反应热量, 被粗产品气带出,再进入废锅,与废锅内的锅炉水发生热量交换,反应热被 锅炉水吸收后,用于副产中/高压蒸汽,并使得粗产品气降温后,再依次进入 后续的几级绝热甲烷化反应器内进行甲烷化反应,最终得到甲烷化产品气。 现有绝热甲烷化反应工艺存在主甲烷化反应器温度高,设备数量多,工艺流 程长的问题。
发明内容
为了解决上述现有技术存在的需单独设置加氢精脱硫单元和采用绝热甲 烷化工艺带来的流程长风险高等问题,本发明旨在提供一种兰炭炉尾气精脱 硫及等温甲烷化工艺。
本发明所述的兰炭炉尾气精脱硫及等温甲烷化工艺,包括以下步骤:S1, 预净化原料气经原料气预热器预热后与水蒸汽混合作为耐硫变换反应器进料 进入耐硫变换反应器组内发生水汽变换反应,其中,预净化原料气中的有机 硫分别与水蒸汽及氢气发生水解和氢解的化学反应生成硫化氢,出口得到耐 硫变换反应器产品气;耐硫变换反应器产品气依次经原料气预热器和冷却器 冷却降温后进入1#分离罐进行气液分离,顶部气体经精脱硫反应器进料预热 器预热后作为精脱硫反应器进料进入精脱硫反应器组内发生精脱硫反应,使 精脱硫反应器进料中的无机硫和有机硫分别在精脱硫反应器组中的脱无机硫 催化剂床层和脱有机硫催化剂床层发生化学反应得到脱除,出口得到精脱硫 反应器产品气;S2,精脱硫反应器产品气与第一级等温甲烷化反应器控温蒸 汽混合后作为第一级等温甲烷化反应器进料进入第一级等温甲烷化反应器 中,该第一级等温甲烷化反应器具有热侧和冷侧;第一级等温甲烷化反应器 进料进入第一级等温甲烷化反应器的热侧发生甲烷化反应,出口得到第一级 甲烷化产品气;外供的中高压锅炉水经中高压锅炉水预热器预热后变为预热 锅炉水进入第一级等温甲烷化反应器的冷侧,以带走热侧的甲烷化反应热; 第一级甲烷化产品气依次经中高压锅炉水预热器、低压锅炉水预热器和冷却 器冷却后进入2#分离罐进行气液分离,顶部得到2#分离罐顶部气体;S3,所 述2#分离罐顶部气体经第二级甲烷化进料预热器预热后作为第二级等温甲烷 化反应器进料进入第二级等温甲烷化反应器中,该第二级等温甲烷化反应器 具有热侧和冷侧;第二级等温甲烷化反应器进料进入第二级等温甲烷化反应 器的热侧发生甲烷化反应,出口得到第二级甲烷化产品气;外供的低压锅炉 水经低压锅炉水预热器预热后变为预热锅炉水进入第二级等温甲烷化反应器的冷侧,以带走热侧的甲烷化反应热;第二级甲烷化产品气依次经第二级甲 烷化进料预热器和冷却器冷却后进入3#分离罐进行气液分离,顶部得SNG粗 产品气,得到的SNG粗产品气进入脱CO2装置脱除CO2,然后进入脱N2装 置脱除N2,得到SNG产品气。
第一级甲烷化产品气被分成两个支路,第一支路连接中高压蒸汽过热器 进行冷却降温,第二支路连接低压蒸汽过热器进行冷却降温,两支路再次合 并后,再依次连接中高压锅炉水预热器和低压锅炉水预热器。
中高压锅炉水经中高压锅炉水预热器预热后变为预热锅炉水进入汽包, 预热锅炉水沿汽包降液管进入第一级等温甲烷化反应器的冷侧,与热侧的工 艺气进行热交换后变为气液两相,再沿汽包上升管返回汽包,副产的中高压 饱和蒸汽经中高压蒸汽过热器过热后变为中高压过热蒸汽送至界区外。
低压锅炉水经低压锅炉水预热器预热后变为预热锅炉水进入汽包,预热 锅炉水沿汽包降液管进入第二级等温甲烷化反应器的冷侧,与热侧的工艺气 进行热交换后变为气液两相,再沿汽包上升管返回汽包,副产的低压饱和蒸 汽经低压蒸汽过热器过热后变为低压过热蒸汽送至界区外。
第一级等温甲烷化反应器出口设有控温元件以检测第一级等温甲烷化反 应器出口工艺气的温度,并控制第一级等温甲烷化反应器控温蒸汽上的流量 调节阀。
耐硫变换反应器组为独台耐硫变换反应器,或者耐硫变换反应器组为串 联、并联、或串并联连接的多台耐硫变换反应器;精脱硫反应器组为独台精 脱硫反应器,或者精脱硫反应器组为串联、并联、或串并联连接的多台精脱 硫反应器。
耐硫变换反应器和精脱硫反应器为固定床绝热反应器。
沿着气流的输送方向,脱无机硫催化剂床层位于脱有机硫催化剂床层的 上游。
1#分离罐的操作温度为5-60℃,2#分离罐的操作温度为60-180℃。
第二级等温甲烷化反应器的进口温度为180-300℃。
脱CO2装置通过物理吸收、化学吸收、吸附、膜分离中的至少一种来脱 除CO2
脱N2装置通过深冷分离、吸收、吸附、膜分离中的至少一种来脱除N2
根据本发明的兰炭炉尾气精脱硫及等温甲烷化工艺,一方面,通过预净 化原料气与水蒸汽混合在耐硫变换反应器中发生水汽变换反应,调节进入后 续甲烷化工段的工艺气的H2/C比;另一方面,通过在甲烷化反应前设置耐硫 变换反应器可以起到辅助甲烷化反应的作用。相关反应机理如下:
耐硫变换反应器内发生的水汽变换反应,如下:
CO+H2O=CO2+H2 (1)
第一级等温甲烷化反应器内发生的CO2甲烷化反应,如下:
CO2+4H2=CH4+2H2O (2)
对反应(1)和(2)进行加和,得到:
CO+3H2=CH4+H2O (3)
结合反应式(1)~(3),综合考虑耐硫变换反应器内的水汽变换反应和 第一级等温甲烷化反应器内发生的CO2甲烷化反应,可以发现,反应式(1) 和(2)叠加后,即为CO和H2的甲烷化反应。
此外,在耐硫变换反应器内,也会发生有机硫的水解反应和氢解反应, 使有机硫变为无机硫。以有机硫组分COS的水解反应为例,反应机理如下:
COS+H2O=H2S+CO2 (4)
本发明还在耐硫变换反应器出口管路上设有冷却器和气液分离罐,用来 脱除变换产品气中的H2O,然后使变换气再进入精脱硫反应器,通过精脱硫 反应脱除变换气中的无机硫和残余的有机硫,得到的脱硫气体,再经过等温 甲烷化反应器组发生甲烷化反应,得到SNG粗产品气,分别脱除CO2和N2, 得到符合要求的SNG产品气。
总之,本发明具有以下优点:
(1)通过设置耐硫变换反应器,使原料气中的有机硫发生水解反应和氢 解反应,变为无机硫,并在耐硫变换反应后设置气液分离罐脱除变换产品气 中的H2O,使脱H2O后的变换气再进入精脱硫反应器,并在精脱硫反应器内 设置脱无机硫催化剂床层和脱有机硫催化剂床层,使得变换气中的无机硫和 残余的有机硫得到有效的脱除。通过上述方法,可以有效的降低原料气中的 总硫含量,达到净化原料气的目的,可以对后续的甲烷化催化剂起到很好的 保护作用。如此,避免了在甲烷化反应前单独设置加氢精脱硫单元,具有流 程短,投资省等优点。
(2)在甲烷化反应前设置耐硫变换反应器,由于耐硫变换反应器内水汽 变换反应的起始温度较低,耐硫变换反应器的存在,可以辅助提高甲烷化反 应的转化率和反应深度。
(3)采用锅炉水在反应器冷侧不断循环换热,将甲烷化反应放出的大量 反应热迅速移走,保证了甲烷化反应在接近于恒温条件下反应;再者,通过 调节控温蒸汽流量,控制反应器床层热点温度,防止催化剂因高温烧结而失 活,大大延长了催化剂的使用寿命。
(4)脱硫气先不脱除CO2气体,而是直接进入等温甲烷化工段发生甲烷 化反应,利用CO2作为甲烷化反应的移热介质省去了循环气体压缩机,甲烷 化反应后得到的SNG粗产品气,再依次进入脱CO2装置和脱N2装置,得到 合格的SNG产品气。如此,采用后脱CO2气体的两级等温甲烷化过程,具有 流程短,投资省,无循环,易操控等优点。同时避免了在甲烷化流程中使用 高温循环气压缩机,一方面降低了设备投资和过程能耗,另一方面有利于过程控制和安全操作。
附图说明
图1是根据本发明的优选实施例的兰炭炉尾气精脱硫及等温甲烷化工艺 的工艺流程;
图2是根据本发明的实施例3的精脱硫单元的示意图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
实施例1
根据本实施例的兰炭炉尾气精脱硫及等温甲烷化工艺的工艺流程如图1 所示,兰炭炉为内热式干馏,采用富氧助燃,兰炭尾气生产SNG,以两级甲 烷化反应为例,生产规模年产2亿Nm3SNG,具体包括以下步骤:
兰炭炉尾气经过预净化处理,脱除粉尘、重金属、焦油、苯、萘、酚、 氨和大部分硫化物等杂质后,得到的预净化原料气1的流量76653Nm3/h,温 度40℃,压力3.3MPaG,组成(mol%):H2:41.90,CO:21.84,CO2:13.59, CH4:15.60,N2:5.85,C2/C3:1.05,O2:0.17,含硫组分:45ppm,经原料 气预热器2预热后,再与水蒸汽3混合后,作为耐硫变换反应器进料4,进入 耐硫变换反应器101内发生水汽变换反应。其中,预净化原料气1中的有机 硫分别与水蒸汽3及氢气发生化学反应生成硫化氢,出口得到耐硫变换反应 器产品气5;耐硫变换反应器产品气5依次经原料气预热器2和冷却器6冷却 降温至5℃后,进入1#分离罐7进行气液分离,1#分离罐7的操作温度5℃, 1#分离罐底部得到1#分离罐排放液体8;顶部气体经精脱硫反应器进料预热 器9预热后,作为精脱硫反应器进料10,进入精脱硫反应器102内发生精脱 硫反应,使精脱硫反应器进料10中的无机硫和有机硫分别在脱无机硫催化剂 床层11和脱有机硫催化剂床层12发生化学反应,得到脱除;出口得到精脱 硫反应器产品气13。
得到的精脱硫反应器产品气13,与第一级等温甲烷化反应器控温蒸汽14 混合后,作为第一级等温甲烷化反应器进料15,进入第一级等温甲烷化反应 器201发生甲烷化反应;第一级等温甲烷化反应器201出口设有控温元件32, 控温元件32检测第一级等温甲烷化反应器201出口工艺气的温度,并控制所 述第一级等温甲烷化反应器控温蒸汽14上的流量调节阀33。第一级甲烷化产 品气16分为两个支路,分别连接至中高压蒸汽过热器17和低压蒸汽过热器 18进行冷却降温,两支路再次合并后,再依次连接中高压锅炉水预热器19和低压锅炉水预热器20;再经冷却器21冷却降温至180℃后,进入2#分离罐 22进行气液分离,2#分离罐22操作温度180℃,2#分离罐底部得到2#分离罐 排放液体23,顶部得到2#分离罐顶部气体24。其中,第一级等温甲烷化反应 器201具有热侧和冷侧,第一级等温甲烷化反应器进料15进入第一级等温甲 烷化反应器201的热侧,外供的中高压锅炉水34经中高压锅炉水预热器19 预热后变为预热锅炉水进入第一级等温甲烷化反应器201的冷侧,以带走热侧的甲烷化反应热。具体地,中高压锅炉水34经中高压锅炉水预热器19预 热后变为预热锅炉水35进入汽包36,预热锅炉水35沿汽包降液管37进入第 一级等温甲烷化反应器201的冷侧,与热侧的工艺气进行热交换后变为气液 两相,再沿汽包上升管38返回汽包36,副产的中高压饱和蒸汽39经中高压 蒸汽过热器17过热后变为中高压过热蒸汽40送至界区外。
所述2#分离罐顶部气体24经第二级甲烷化进料预热器25预热至250℃ 后,作为第二级等温甲烷化反应器进料26进入第二级等温甲烷化反应器202 发生进一步的甲烷化反应,出口得到的第二级甲烷化产品气27依次经第二级 甲烷化进料预热器25和冷却器28冷却后,进入3#分离罐29进行气液分离, 底部得到3#分离罐排放液体30,顶部得到SNG粗产品气31。其中,第二级 等温甲烷化反应器202具有热侧和冷侧,第二级等温甲烷化反应器进料26进 入第二级等温甲烷化反应器202的热侧,外供的低压锅炉水41经低压锅炉水 预热器20预热后变为预热锅炉水进入第二级等温甲烷化反应器202的冷侧, 以带走热侧的甲烷化反应热。具体地,低压锅炉水41经低压锅炉水预热器20 预热后变为预热锅炉水42进入汽包43,预热锅炉水43沿汽包降液管44进入 第二级等温甲烷化反应器202的冷侧,与热侧的工艺气进行热交换后变为气 液两相,再沿汽包上升管45返回汽包43,副产的低压饱和蒸汽46经低压蒸 汽过热器18过热后变为低压过热蒸汽47送至界区外。
得到的SNG粗产品气31的流量45499Nm3/h,温度40℃,压力2.80MPaG, 组成(mol%):0.54,CO:0.01,CO2:33.38,CH4:55.92,N2:9.85,H2O: 0.30。得到的SNG粗产品气31,进入脱CO2装置48,脱除CO2后得到脱CO2气体50,再进入脱N2装置51,脱除N2,得到符合要求的SNG产品气53, 其中,脱CO2气体50的组成(mol%)为:H2:0.81,CO:0.02,CH4:84.31,N2:14.86;SNG产品气53的组成(mol%)为:H2:0.95,CO:0.03,CH4: 99.02。
所述的耐硫变换反应器101和精脱硫反应器102为固定床绝热反应器。 在本实施例中,脱CO2装置48通过物理和化学吸收来脱除CO2,吸收剂为 MDEA溶液。
实施例2
根据本实施例的兰炭炉尾气精脱硫及等温甲烷化工艺的工艺流程如图1 所示,兰炭炉为内热式干馏,采用空气助燃,兰炭尾气生产SNG,以两级甲 烷化反应为例,生产规模年产2亿Nm3SNG,具体包括以下步骤:
兰炭炉尾气经过预净化处理,脱除粉尘、重金属、焦油、苯、萘、酚、 氨和大部分硫化物等杂质后,得到的预净化原料气1的流量140423Nm3/h, 温度40℃,压力3.3MPaG,组成(mol%):H2:25.23,CO:14.68,CO2:10.63, CH4:7.13,N2:41.58,C2/C3:0.62,O2:0.13,含硫组分:24ppm,经原料 气预热器2预热后,再与水蒸汽3混合后,作为耐硫变换反应器进料4,进入 耐硫变换反应器101内发生水汽变换反应。其中,预净化原料气1中的有机 硫分别与水蒸汽3及氢气发生化学反应生成硫化氢,出口得到耐硫变换反应 器产品气5;耐硫变换反应器产品气5依次经原料气预热器2和冷却器6冷却 降温至60℃后,进入1#分离罐7进行气液分离,1#分离罐7的操作温度60℃, 1#分离罐底部得到1#分离罐排放液体8;顶部气体经精脱硫反应器进料预热 器9预热后,作为精脱硫反应器进料10,进入精脱硫反应器102内发生精脱 硫反应,使精脱硫反应器进料10中的无机硫和有机硫分别在脱无机硫催化剂 床层11和脱有机硫催化剂床层12发生化学反应,得到脱除;出口得到精脱 硫反应器产品气13。
得到的精脱硫反应器产品气13,与第一级等温甲烷化反应器控温蒸汽14 混合后,作为第一级等温甲烷化反应器进料15,进入第一级等温甲烷化反应 器201发生甲烷化反应;第一级等温甲烷化反应器201出口设有控温元件32, 控温元件32检测第一级等温甲烷化反应器201出口工艺气的温度,并控制所 述第一级等温甲烷化反应器控温蒸汽14上的流量调节阀33。第一级甲烷化产 品气16分为两个支路,分别连接至中高压蒸汽过热器17和低压蒸汽过热器 18进行冷却降温,两支路再次合并后,再依次连接中高压锅炉水预热器19和低压锅炉水预热器20;再经冷却器21冷却降温至150℃后,进入2#分离罐 22进行气液分离,2#分离罐22操作温度150℃,2#分离罐底部得到2#分离罐 排放液体23,顶部得到2#分离罐顶部气体24。其中,第一级等温甲烷化反应 器201具有热侧和冷侧,第一级等温甲烷化反应器进料15进入第一级等温甲 烷化反应器201的热侧,外供的中高压锅炉水34经中高压锅炉水预热器19 预热后变为预热锅炉水进入第一级等温甲烷化反应器201的冷侧,以带走热侧的甲烷化反应热。具体地,中高压锅炉水34经中高压锅炉水预热器19预 热后变为预热锅炉水35进入汽包36,预热锅炉水35沿汽包降液管37进入第 一级等温甲烷化反应器201的冷侧,与热侧的工艺气进行热交换后变为气液 两相,再沿汽包上升管38返回汽包36,副产的中高压饱和蒸汽39经中高压 蒸汽过热器17过热后变为中高压过热蒸汽40送至界区外。
所述2#分离罐顶部气体24经第二级甲烷化进料预热器25预热至300℃ 后,作为第二级等温甲烷化反应器进料26进入第二级等温甲烷化反应器202 发生进一步的甲烷化反应,出口得到的第二级甲烷化产品气27依次经第二级 甲烷化进料预热器25和冷却器28冷却后,进入3#分离罐29进行气液分离, 底部得到3#分离罐排放液体30,顶部得到SNG粗产品气31。其中,第二级 等温甲烷化反应器202具有热侧和冷侧,第二级等温甲烷化反应器进料26进 入第二级等温甲烷化反应器202的热侧,外供的低压锅炉水41经低压锅炉水 预热器20预热后变为预热锅炉水进入第二级等温甲烷化反应器202的冷侧, 以带走热侧的甲烷化反应热。具体地,低压锅炉水41经低压锅炉水预热器20 预热后变为预热锅炉水42进入汽包43,预热锅炉水43沿汽包降液管44进入 第二级等温甲烷化反应器202的冷侧,与热侧的工艺气进行热交换后变为气 液两相,再沿汽包上升管45返回汽包43,副产的低压饱和蒸汽46经低压蒸 汽过热器18过热后变为低压过热蒸汽47送至界区外。
得到的SNG粗产品气31的流量106463Nm3/h,温度40℃,压力 2.80MPaG,组成(mol%):H2:0.51,CO:0.01,CO2:20.57,CH4:23.78, N2:54.84,H2O:0.29。得到的SNG粗产品气31,进入脱CO2装置48,脱 除CO2后得到脱CO2气体50,再进入脱N2装置51,脱除N2,得到符合要求 的SNG产品气53,其中,脱CO2气体50的组成(mol%)为:H2:0.65,CO: 0.02,CH4:30.04,N2:69.29;SNG产品气53的组成(mol%)为:H2:2.12, CO:0.05,CH4:97.83。
所述的耐硫变换反应器101和精脱硫反应器102为固定床绝热反应器。
实施例3
根据本实施例的兰炭炉尾气精脱硫及等温甲烷化工艺的整体工艺流程如 图1所示,兰炭炉为外热式干馏,兰炭尾气生产SNG,以两级甲烷化反应为 例,生产规模年产3亿Nm3SNG,具体包括以下步骤:
(1)预净化原料气1的流量114985Nm3/h,温度40℃,压力3.3MPaG, 组成(mol%):H2:48.87,CO:26.96,CO2:6.54,CH4:12.15,N2:4.51, C2/C3:0.69,O2:0.28,含硫组分:41ppm;
(2)所述的1#分离罐的操作温度为40℃;
(3)所述的2#分离罐的操作温度为60℃;
(4)所述的第二级等温甲烷化反应器的进口温度为180℃;
(5)与图1中的精脱硫单元A不同的是,本实施例的精脱硫单元A’如 图2所示,耐硫变换反应器设置为两台,即101a和101b,耐硫变换反应器可 单独操作,也可采用串联、并联、串并联的方式进行操作;精脱硫反应器同 样设置两台,即102a和102b,两台精脱硫反应器可单独操作,也可采用串联、 并联、串并联的方式进行操作。
经测试,得到的SNG粗产品气31的流量59295Nm3/h,温度40℃,压力 2.80MPaG,组成(mol%):H2:0.10,CO:0.00,CO2:28.53,CH4:62.33, N2:8.74,H2O:0.30。得到的SNG粗产品气31,进入脱CO2装置48,脱除 CO2后得到脱CO2气体50,再进入脱N2装置51,脱除N2,得到符合要求的 SNG产品气53,其中,脱CO2气体50的组成(mol%)为:H2:0.15,CO: 0.00,CH4:87.57,N2:12.28;SNG产品气53的组成(mol%)为:H2:0.17, CO:0.00,CH4:99.83。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围, 本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要 求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利 要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

1.一种兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,该兰炭炉尾气精脱硫及等温甲烷化工艺包括以下步骤:
S1,含有CO2气体的预净化原料气(1)经原料气预热器(2)预热后与水蒸汽(3)混合作为耐硫变换反应器进料(4)进入耐硫变换反应器组内发生水汽变换反应,其中,预净化原料气(1)中的有机硫分别与水蒸汽(3)及氢气发生水解和氢解的化学反应生成硫化氢和CO2气体,出口得到耐硫变换反应器产品气(5);耐硫变换反应器产品气(5)依次经原料气预热器(2)和冷却器(6)冷却降温后进入1#分离罐(7)进行气液分离,顶部气体经精脱硫反应器进料预热器(9)预热后作为精脱硫反应器进料(10)进入不脱除CO2气体的精脱硫反应器组内发生精脱硫反应,使精脱硫反应器进料(10)中的无机硫和有机硫分别在精脱硫反应器组中的脱无机硫催化剂床层(11)和脱有机硫催化剂床层(12)发生化学反应得到脱除,出口得到精脱硫反应器产品气(13);
S2,精脱硫反应器产品气(13)与第一级等温甲烷化反应器控温蒸汽(14)混合后作为第一级等温甲烷化反应器进料(15)进入第一级等温甲烷化反应器(201)中,该第一级等温甲烷化反应器(201)具有热侧和冷侧;第一级等温甲烷化反应器进料(15)进入第一级等温甲烷化反应器(201)的热侧发生甲烷化反应,出口得到第一级甲烷化产品气(16);外供的中高压锅炉水(34)经中高压锅炉水预热器(19)预热后变为预热锅炉水进入第一级等温甲烷化反应器(201)的冷侧,以带走热侧的甲烷化反应热;第一级甲烷化产品气(16)依次经中高压锅炉水预热器(19)、低压锅炉水预热器(20)和冷却器(21)冷却后进入2#分离罐(22)进行气液分离,顶部得到2#分离罐顶部气体(24);
S3,所述2#分离罐顶部气体(24)经第二级甲烷化进料预热器(25)预热后作为第二级等温甲烷化反应器进料(26)进入第二级等温甲烷化反应器(202)中,该第二级等温甲烷化反应器(202)具有热侧和冷侧;第二级等温甲烷化反应器进料(26)进入第二级等温甲烷化反应器(202)的热侧发生甲烷化反应,出口得到第二级甲烷化产品气(27);外供的低压锅炉水(41)经低压锅炉水预热器(20)预热后变为预热锅炉水进入第二级等温甲烷化反应器(202)的冷侧,以带走热侧的甲烷化反应热;第二级甲烷化产品气(27)依次经第二级甲烷化进料预热器(25)和冷却器(28)冷却后进入3#分离罐(29)进行气液分离,顶部得SNG粗产品气(31),得到的SNG粗产品气(31)进入脱CO2装置(48)脱除CO2,然后进入脱N2装置(51)脱除N2,得到SNG产品气(53),
预净化原料气(1)的组成(mol%)为:H2:41.90,CO:21.84,CO2:13.59,CH4:15.60,N2:5.85,C2/C3:1.05,O2:0.17;
或预净化原料气(1)的组成(mol%)为:H2:25.23,CO:14.68,CO2:10.63,CH4:7.13,N2:41.58,C2/C3:0.62,O2:0.13;
或预净化原料气(1)的组成(mol%)为:H2:48.87,CO:26.96,CO2:6.54,CH4:12.15,N2:4.51,C2/C3:0.69,O2:0.28。
2.根据权利要求1所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,第一级甲烷化产品气(16)被分成两个支路,第一支路连接中高压蒸汽过热器(17)进行冷却降温,第二支路连接低压蒸汽过热器(18)进行冷却降温,两支路再次合并后,再依次连接中高压锅炉水预热器(19)和低压锅炉水预热器(20)。
3.根据权利要求2所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,中高压锅炉水(34)经中高压锅炉水预热器(19)预热后变为预热锅炉水(35)进入汽包(36),预热锅炉水(35)沿汽包降液管(37)进入第一级等温甲烷化反应器(201)的冷侧,与热侧的工艺气进行热交换后变为气液两相,再沿汽包上升管(38)返回汽包(36),副产的中高压饱和蒸汽(39)经中高压蒸汽过热器(17)过热后变为中高压过热蒸汽(40)送至界区外。
4.根据权利要求2所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,低压锅炉水(41)经低压锅炉水预热器(20)预热后变为预热锅炉水(42)进入汽包(43),预热锅炉水(42)沿汽包降液管(44)进入第二级等温甲烷化反应器(202)的冷侧,与热侧的工艺气进行热交换后变为气液两相,再沿汽包上升管(45)返回汽包(43),副产的低压饱和蒸汽(46)经低压蒸汽过热器(18)过热后变为低压过热蒸汽(47)送至界区外。
5.根据权利要求1所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,第一级等温甲烷化反应器(201)出口设有控温元件(32)以检测第一级等温甲烷化反应器(201)出口工艺气的温度,并控制第一级等温甲烷化反应器控温蒸汽(14)上的流量调节阀(33)。
6.根据权利要求1所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,耐硫变换反应器组为独台耐硫变换反应器(101),或者耐硫变换反应器组为串联、并联、或串并联连接的多台耐硫变换反应器(101a,101b);精脱硫反应器组为独台精脱硫反应器(102),或者精脱硫反应器组为串联、并联、或串并联连接的多台精脱硫反应器(102a,102b)。
7.根据权利要求6所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,耐硫变换反应器(101,101a,101b)和精脱硫反应器(102,102a,102b)为固定床绝热反应器。
8.根据权利要求1所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,沿着气流的输送方向,脱无机硫催化剂床层(11)位于脱有机硫催化剂床层(12)的上游。
9.根据权利要求1所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,1#分离罐(7)的操作温度为5-60℃,2#分离罐(22)的操作温度为60-180℃。
10.根据权利要求1所述的兰炭炉尾气精脱硫及等温甲烷化工艺,其特征在于,第二级等温甲烷化反应器(202)的进口温度为180-300℃。
CN201811569599.5A 2018-12-21 2018-12-21 一种兰炭炉尾气精脱硫及等温甲烷化工艺 Active CN109609221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811569599.5A CN109609221B (zh) 2018-12-21 2018-12-21 一种兰炭炉尾气精脱硫及等温甲烷化工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811569599.5A CN109609221B (zh) 2018-12-21 2018-12-21 一种兰炭炉尾气精脱硫及等温甲烷化工艺

Publications (2)

Publication Number Publication Date
CN109609221A CN109609221A (zh) 2019-04-12
CN109609221B true CN109609221B (zh) 2021-02-05

Family

ID=66011057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811569599.5A Active CN109609221B (zh) 2018-12-21 2018-12-21 一种兰炭炉尾气精脱硫及等温甲烷化工艺

Country Status (1)

Country Link
CN (1) CN109609221B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776042A (zh) * 2012-07-30 2012-11-14 西南化工研究设计院有限公司 一种兰炭尾气制液化天然气的方法
CN102827657A (zh) * 2012-08-27 2012-12-19 东华工程科技股份有限公司 一种煤制天然气的等温甲烷化工艺方法
CN107164007A (zh) * 2017-05-15 2017-09-15 中石化南京工程有限公司 一种非化学计量比等温合成天然气的方法
CN107418640A (zh) * 2017-09-07 2017-12-01 惠生工程(中国)有限公司 一种有效回收低品位余热的甲烷化工艺
CN108219879A (zh) * 2016-12-14 2018-06-29 中国石化工程建设有限公司 煤制替代天然气的无循环耐硫甲烷化工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776042A (zh) * 2012-07-30 2012-11-14 西南化工研究设计院有限公司 一种兰炭尾气制液化天然气的方法
CN102827657A (zh) * 2012-08-27 2012-12-19 东华工程科技股份有限公司 一种煤制天然气的等温甲烷化工艺方法
CN108219879A (zh) * 2016-12-14 2018-06-29 中国石化工程建设有限公司 煤制替代天然气的无循环耐硫甲烷化工艺
CN107164007A (zh) * 2017-05-15 2017-09-15 中石化南京工程有限公司 一种非化学计量比等温合成天然气的方法
CN107418640A (zh) * 2017-09-07 2017-12-01 惠生工程(中国)有限公司 一种有效回收低品位余热的甲烷化工艺

Also Published As

Publication number Publication date
CN109609221A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
RU2394754C1 (ru) Способ получения водорода из углеводородного сырья
KR101680896B1 (ko) 대체 천연 가스 생성을 위한 방법 및 장치
CN101289620B (zh) 干熄焦联产合成气及其下游产品甲醇一体化工艺
CN101190781B (zh) 小型轻烃水蒸气转化制氢工艺方法
CN102642810B (zh) 一种焦炉气制备费托合成油原料气的组合工艺
CN101239702B (zh) 高温焦炉粗煤气制氢系统装置及工艺
CN102060662B (zh) 一种可回收利用co2的化工动力多联产能源系统及方法
CN100579896C (zh) 鲁奇炉出口煤气加纯氧非催化部分氧化制取合适氢碳比合成气的方法及系统
KR20230171436A (ko) 재생 가능한 에너지를 사용하여 이산화탄소를 정제하고 변환하는 공정
CN102746870B (zh) 一种费托合成工艺
CN204874343U (zh) 一种沼气与焦炉煤气联合生产甲醇装置
US9458014B2 (en) Sytems and method for CO2 capture and H2 separation with three water-gas shift reactions and warm desulfurization
CN109609221B (zh) 一种兰炭炉尾气精脱硫及等温甲烷化工艺
CN106397121A (zh) 一种沼气与焦炉煤气联合生产甲醇装置
CN103204469A (zh) 电石炉尾气全低变工艺
RU2643542C1 (ru) Способ получения водорода из углеводородного сырья
RU2203214C1 (ru) Способ получения метанола
CN109593580B (zh) 一种兰炭炉尾气精脱硫及绝热甲烷化工艺
CN108102751B (zh) 一种合成气单次通过制天然气的节能装置及工艺
KR20210075093A (ko) 스팀 개질 과정에서 탄소 재순환
CN201102901Y (zh) 鲁奇炉出口煤气非催化部分氧化制取合成气或氢气的系统
RU2786069C1 (ru) Способ получения водорода из природного газа
RU2792583C1 (ru) Способ и установка для синтеза метанола
RU2791358C1 (ru) Способ производства водорода
RU2781559C1 (ru) Способ получения водорода методом конверсии свалочного газа

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant