WO2023228581A1 - 接続端子、ステータ組立体及び電動機 - Google Patents

接続端子、ステータ組立体及び電動機 Download PDF

Info

Publication number
WO2023228581A1
WO2023228581A1 PCT/JP2023/013764 JP2023013764W WO2023228581A1 WO 2023228581 A1 WO2023228581 A1 WO 2023228581A1 JP 2023013764 W JP2023013764 W JP 2023013764W WO 2023228581 A1 WO2023228581 A1 WO 2023228581A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
pin
stator
connection terminal
circuit board
Prior art date
Application number
PCT/JP2023/013764
Other languages
English (en)
French (fr)
Inventor
明 山口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023228581A1 publication Critical patent/WO2023228581A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits

Definitions

  • connection terminal used in an electric motor
  • stator assembly including the connection terminal
  • electric motor including the stator assembly
  • Electric motors are used in various electrical equipment such as household equipment or industrial equipment.
  • electric motors commutator motors that use brushes and brushless motors that do not use brushes are known.
  • a brushless motor includes, for example, a rotor, a stator, and a circuit board (see, for example, Patent Document 1).
  • the rotor has magnets.
  • the stator has a stator core and a winding wound around the stator core via an insulator. Circuit components for generating current to be supplied to the windings of the stator are mounted on the circuit board.
  • the stator and circuit board are combined as a stator assembly.
  • the windings of the stator and the circuit board are electrically connected.
  • a technique is known in which a connection pin is fixed to an insulator of a stator, and the connection pin is used to electrically connect a winding of the stator to a circuit board. Specifically, the ends of the windings are tied around the connection pins and soldered, the connection pins are inserted into through holes of the circuit board, and the connection pins and the circuit board are soldered. Thereby, the connection pin and the circuit board can be electrically and mechanically connected. Furthermore, the stator windings and the circuit board can be electrically connected via the connection pins, and the stator and the circuit board can be combined.
  • the conventional method of inserting a plurality of connection pins into through holes of a circuit board and then soldering the connection pins to the circuit board may cause the following problems. That is, when using a stator with a specification having a large number of connection pins, such as when the number of slots is large, the number of places where the connection pins and the circuit board are soldered increases. As a result, productivity is reduced when manufacturing a stator assembly by combining the stator and circuit board.
  • the stator when the stator core is divided into a plurality of core blocks, the stator is constituted by a plurality of intermediate assemblies arranged in a cylindrical shape. Each intermediate assembly includes a core block, a winding wound around the core block through an insulator, and a pair of connection pins held by the insulator.
  • the number of slots will be the same as the number of core blocks.
  • a pair of connection pins are provided corresponding to the core block.
  • the stator is provided with twice the number of connection pins as the number of slots.
  • connection terminal capable of electrically and mechanically connecting a connection pin and a circuit board without soldering
  • stator assembly including the connection terminal
  • electric motor including the stator assembly
  • connection terminal connected to a circuit board used for an electric motor, the connection terminal being press-fitted into a through hole formed in the circuit board.
  • a connecting pin electrically and mechanically connected to the circuit board, the connecting pin having a slit extending along the press-fitting direction of the connecting pin.
  • the width of the slit at the tip side portion of the connection pin may be wider than the width of the slit at the root side portion of the connection pin opposite to the tip side.
  • the width of the slit at the portion that contacts the through hole when the connecting terminal is inserted into the through hole is narrower than the width of the slit at the tip side portion of the connecting pin, and
  • the width of the slit may be narrower than the width of the slit in the root portion side opposite to the tip portion side.
  • connection terminal may be made of a copper alloy.
  • connection terminal may be subjected to a conductive surface treatment.
  • One aspect of the stator assembly according to the present disclosure includes the connection terminal of the above aspect, a winding to which the connection terminal is connected, and a stator core around which the winding is wound.
  • One aspect of the electric motor according to the present disclosure includes the stator assembly of the above aspect and a rotor located opposite to the stator assembly.
  • connection pin and the circuit board can be electrically and mechanically connected without soldering.
  • FIG. 1 is a sectional view of an electric motor according to an embodiment taken along a plane passing through a rotation axis.
  • FIG. 2 is a sectional view of the electric motor according to the embodiment taken along a plane perpendicular to the rotation axis.
  • FIG. 3 is an exploded perspective view of the electric motor according to the embodiment, viewed diagonally from above.
  • FIG. 4 is an exploded perspective view of the electric motor according to the embodiment as viewed diagonally from below.
  • FIG. 5 is a perspective view of the stator assembly according to the embodiment.
  • FIG. 6 is a cross-sectional view of the stator assembly according to the embodiment.
  • FIG. 7 is a perspective view of an intermediate assembly in a stator according to an embodiment.
  • FIG. 8 is an exploded perspective view of the intermediate assembly in the stator according to the embodiment.
  • FIG. 9 is a perspective view of the connection terminal according to the embodiment when viewed from the front side.
  • FIG. 10 is a perspective view of the connection terminal according to the embodiment when viewed from the back side.
  • FIG. 11A is a front view of the connection terminal according to the embodiment.
  • FIG. 11B is an enlarged side view of the main part of the connection terminal according to the embodiment.
  • FIG. 12 is an enlarged perspective view showing a part of the connection terminal according to the embodiment.
  • FIG. 13A is a diagram for explaining a step of preparing an intermediate assembly in the method of manufacturing a stator assembly according to the embodiment.
  • FIG. 13A is a diagram for explaining a step of preparing an intermediate assembly in the method of manufacturing a stator assembly according to the embodiment.
  • FIG. 13B is a diagram for explaining a step of preparing a stator and a circuit board in the method of manufacturing a stator assembly according to the embodiment.
  • FIG. 13C is a diagram for explaining the process of connecting the stator and the circuit board in the method for manufacturing a stator assembly according to the embodiment.
  • FIG. 13D is a diagram illustrating a step of cutting the connection portion of the connection terminal in the method of manufacturing the stator assembly according to the embodiment.
  • FIG. 14 is a diagram showing how the connection terminal according to the embodiment is press-fitted into the through hole of the circuit board.
  • FIG. 15 is an enlarged sectional view of the first connection pin in the connection terminal according to Modification 1.
  • FIG. 16 is an enlarged sectional view of the first connecting pin in the connecting terminal according to Modification 2.
  • FIG. FIG. 17 is an enlarged sectional view of the first connection pin in the connection terminal according to Modification 3.
  • FIG. 1 is a cross-sectional view of the electric motor 1 according to the embodiment taken along a plane passing through the rotating shaft 31.
  • FIG. 2 is a cross-sectional view of the electric motor 1 according to the embodiment taken along a plane perpendicular to the rotating shaft 31.
  • FIG. FIG. 2 shows a cross section taken along line II-II in FIG.
  • FIG. 3 is an exploded perspective view of the electric motor 1 according to the embodiment, viewed diagonally from above.
  • FIG. 4 is an exploded perspective view of the electric motor 1 according to the embodiment, viewed diagonally from below. In FIGS. 3 and 4, the winding 12 is omitted.
  • FIG. 5 is a perspective view of the stator assembly 2 according to the embodiment.
  • FIG. 6 is a sectional view of the stator assembly 2 according to the embodiment.
  • the electric motor 1 includes a stator 10, a circuit board 20, and a rotor 30 having a rotating shaft 31. As shown in FIG. 5, stator 10 and circuit board 20 are combined as stator assembly 2. As shown in FIG.
  • the electric motor 1 further includes a first bearing 41, a second bearing 42, a first bracket 51, and a second bracket 52.
  • the electric motor 1 is a brushless motor.
  • the electric motor 1 can be used, for example, as a blower motor or a drive motor that is small and requires high output.
  • the size of the electric motor 1 is, for example, a diameter of 50 mm or less.
  • the electric motor 1 is an inner rotor type motor in which a rotor 30 is disposed inside a stator 10. That is, the stator 10 is arranged so as to surround the rotor 30. Therefore, the rotor 30 rotates around the axis C of the rotating shaft 31 inside the stator 10.
  • a stator (stator) 10 is disposed facing the rotor 30 with a small air gap therebetween. Specifically, the stator 10 is arranged so as to surround the rotor core 32 of the rotor 30.
  • the stator 10 generates magnetic force that acts on the rotor 30.
  • the stator 10 has a configuration in which a plurality of N poles and S poles are alternately and repeatedly present along the rotation direction so as to generate magnetic flux in the air gap surface between the rotor core 32 and the rotor 30. ing.
  • the stator 10 and the rotor 30 constitute a magnetic circuit.
  • the stator 10 constitutes an armature.
  • the stator 10 includes a stator core 11 (stator core) and a winding 12 arranged on the stator core 11.
  • the winding 12 is a winding coil wound around the stator core 11.
  • the stator core 11 has a plurality of teeth 11a that protrude toward the rotor 30. Specifically, the plurality of teeth 11a extend radially in a direction (radial direction) orthogonal to the axis C of the rotating shaft 31. The plurality of teeth 11a are arranged at equal intervals in the circumferential direction while forming slots 11b between two adjacent teeth 11a. Stator core 11 has nine teeth 11a. In other words, the number of slots in the stator 10 is nine.
  • Winding 12 is arranged in the slot 11b of the stator core 11.
  • Winding 12 is a stator coil that is an armature winding of stator 10 .
  • the winding 12 is a concentrated winding coil wound around each tooth 11a.
  • the winding 12 is a three-phase winding so that the rotor 30 can be rotated as a three-phase synchronous motor.
  • the winding 12 is composed of unit coils for each of three phases, U-phase, V-phase, and W-phase, which are electrically different in phase by 120 degrees from each other. That is, the winding 12 wound around each tooth 11a is energized and driven by three-phase alternating current that is energized in units of U phase, V phase, and W phase. Thereby, the main magnetic flux of the stator 10 is generated in each tooth 11a.
  • each tooth 11a is a magnetic pole tooth.
  • Each tooth 11a is an electromagnet that generates magnetic force when current flows through the winding 12.
  • the stator core 11 is divided into a plurality of core blocks 110 (divided cores). That is, the stator core 11 of the stator 10 is composed of a plurality of core blocks 110.
  • the plurality of core blocks 110 are arranged in an annular shape as a whole. Specifically, nine core blocks 110 are arranged in an annular shape. Two adjacent core blocks 110 are connected to each other. That is, the stator core 11 is configured by connecting a plurality of core blocks in an annular shape. A winding 12 is wound around each of the plurality of core blocks 110. Since stator 10 has nine core blocks 110, nine windings 12 are used.
  • an intermediate assembly 100 is composed of one core block 110 and one winding 12. Therefore, the stator 10 is made up of nine intermediate assemblies 100.
  • Intermediate assembly 100 is an intermediate part used when manufacturing stator assembly 2. The detailed configuration of the intermediate assembly 100 will be described later.
  • the circuit board 20 is, for example, a printed circuit board (PCB) on which wiring made of a conductive material such as copper is formed in a predetermined pattern.
  • PCB printed circuit board
  • a resin material such as a glass epoxy substrate, a metal material such as an aluminum alloy substrate, or the like can be used.
  • a plurality of electronic components (not shown) for generating a current to be supplied to the winding 12 of the stator 10 are mounted on the circuit board 20.
  • the plurality of electronic components constitute a circuit that generates three-phase alternating current of U phase, V phase, and W phase.
  • the circuit board 20 is provided with a through hole 21.
  • the connection terminal 120 of the intermediate assembly 100 corresponding to the core block 110 is connected to the through hole 21.
  • the connection terminal 120 is a connection terminal to which the winding 12 of the stator 10 is connected.
  • a connecting terminal 120 to which the winding 12 is connected is inserted into the through hole 21 .
  • the connection terminal 120 and the circuit board 20 are connected.
  • the first connecting pin 121 and the second connecting pin 122 of the connecting terminal 120 are inserted into the through hole 21.
  • the circuit board 20 is a wiring board to which the windings 12 are connected via the connection terminals 120.
  • the circuit board 20 is provided with a plurality of through holes 21 . Specifically, at least twice the number of through holes 21 as the number of intermediate assemblies 100 (that is, the number of core blocks 110) are provided.
  • the inner circumferential surface of each through hole 21 is coated with a conductive film that is electrically connected to wiring formed on the main surface of the circuit board 20 .
  • the conductive film is, for example, copper plating. The detailed configuration of the connection terminal 120 will be described later.
  • the rotor (rotor) 30 is rotated by the magnetic force generated by the stator 10.
  • the rotor 30 has a structure in which a plurality of north poles and south poles are alternately and repeatedly present along the rotation direction. Thereby, the rotor 30 generates a magnetic force that acts on the stator 10.
  • the direction of the magnetic flux generated by the rotor 30 is a direction perpendicular to the direction in which the axis C included in the rotating shaft 31 extends (axial direction). That is, the direction of the magnetic flux generated by the rotor 30 is the radial direction.
  • the rotor 30 includes a rotating shaft 31, a rotor core 32, and a permanent magnet 33.
  • the rotor 30 is an interior permanent magnet (IPM) rotor in which a permanent magnet 33 is embedded in a rotor core 32. Therefore, electric motor 1 is an IPM motor.
  • the rotating shaft 31 is an elongated shaft.
  • the rotating shaft 31 is, for example, a metal rod.
  • the rotating shaft 31 is fixed to a rotor core 32. Specifically, the rotating shaft 31 is inserted into a through hole provided at the center of the rotor core 32 and fixed to the rotor core 32 so as to extend on both sides of the rotor core 32 in the direction in which the axis C extends. There is.
  • the rotor core 32 is a laminate in which a plurality of steel plates are laminated in the direction in which the axis C of the rotating shaft 31 extends (axial direction).
  • Each of the plurality of steel plates is, for example, a punched electromagnetic steel plate formed into a predetermined shape.
  • the plurality of steel plates are fixed to each other, for example, by caulking.
  • the permanent magnet 33 is inserted into a magnet insertion hole 32a provided in the rotor core 32.
  • Six magnet insertion holes 32a are provided in the rotor core 32 at equal intervals in the circumferential direction. Therefore, the rotor 30 has six permanent magnets 33 arranged at equal intervals in the circumferential direction. That is, the number of poles of the electric motor 1 is six.
  • Permanent magnet 33 is a sintered magnet. However, the permanent magnet 33 may be a bonded magnet.
  • the rotating shaft 31 of the rotor 30 is provided with a first bearing 41 and a second bearing 42 that rotatably hold the rotating shaft 31.
  • the first bearing 41 and the second bearing 42 are bearings that rotatably hold the rotating shaft 31.
  • the first bearing 41 supports a portion of the rotating shaft 31 that protrudes from one side of the rotor core 32 .
  • the second bearing 42 supports a portion of the rotating shaft 31 that protrudes from the other side of the rotor core 32.
  • the first bearing 41 and the second bearing 42 are, for example, ball bearings. However, it is not limited to this.
  • the first bracket 51 holds the first bearing 41. Specifically, the first bearing 41 is fixed to a recess provided in the first bracket 51.
  • the second bracket 52 holds the second bearing 42. Specifically, the second bearing 42 is fixed to a recess provided in the second bracket 52.
  • the first bracket 51 and the second bracket 52 are made of metal or resin material.
  • the first bracket 51 and the second bracket 52 constitute the outer shell of the electric motor 1.
  • the first bracket 51 is a bottomed cylindrical frame (housing) having an opening.
  • the second bracket 52 is a bottom plate that closes the opening of the first bracket 51.
  • the first bracket 51 is a metal frame made of metal.
  • the second bracket 52 is a resin plate made of resin.
  • the rotating shaft 31 of the rotor 30 passes through the first bracket 51. A portion of the rotating shaft 31 protrudes from the first bracket 51 to the outside. Although not shown, a load such as a rotating fan is attached to a portion of the rotating shaft 31 that protrudes from the first bracket 51 to the outside. That is, the portion of the rotating shaft 31 that protrudes from the first bracket 51 is an output shaft.
  • stator 10 stator core 11
  • magnetic flux directed from the stator 10 to the rotor 30 is generated.
  • magnetic flux is generated from each of the teeth 11a of the stator core 11 of the stator 10 toward the rotor core 32 of the rotor 30.
  • a magnetic flux passing through the stator 10 is generated by the permanent magnet 33 embedded in the rotor core 32.
  • the magnetic force generated by the interaction between the magnetic flux generated by the stator 10 and the magnetic flux generated from the permanent magnets 33 of the rotor 30 becomes a torque that rotates the rotor 30. This causes the rotor 30 to rotate.
  • FIG. 7 is a perspective view of the intermediate assembly 100 in the stator 10 according to the embodiment.
  • FIG. 8 is an exploded perspective view of the intermediate assembly 100 in the stator 10 according to the embodiment. In FIGS. 7 and 8, the winding 12 is omitted.
  • the stator 10 is constructed by arranging a plurality of intermediate assemblies 100 in a cylindrical shape. Specifically, the plurality of intermediate assemblies 100 are arranged in a cylindrical shape.
  • the stator core 11 in the stator 10 is composed of a plurality of core blocks 110. As shown in FIG. 2, the plurality of core blocks 110 are connected to form an annular shape as a whole.
  • a core block 110 is provided for each intermediate assembly 100.
  • a winding 12 in the stator 10 is also provided for each intermediate assembly 100.
  • Connection terminals 120 are provided corresponding to each of the plurality of core blocks 110. That is, a connection terminal 120 is provided for each intermediate assembly 100.
  • each of the plurality of intermediate assemblies 100 includes one core block 110, one winding 12 (not shown in FIGS. 7 and 8), and one connection terminal. 120. Additionally, each intermediate assembly 100 includes an insulator 130.
  • the insulator 130 includes a first insulator 131 and a second insulator 132, which are a pair of insulators. Specifically, the insulator 130 is separated into a first insulator 131 and a second insulator 132, which are separate bodies.
  • the core block 110 has teeth portions 111 and yoke portions 112. Teeth portion 111 is teeth 11a of stator core 11 shown in FIG.
  • the teeth portion 111 is formed inside the yoke portion 112. Teeth portion 111 extends from yoke portion 112 toward the center of stator core 11 . Specifically, the teeth portion 111 extends from the yoke portion 112 toward the rotating shaft 31. That is, the teeth portion 111 extends so as to protrude inward in the radial direction of the stator 10.
  • the tooth portion 111 has an extending portion that extends from the tip portion on the inner peripheral side of the tooth portion 111 to both sides in the circumferential direction. Each of the pair of extending portions is formed to protrude along the circumferential direction from the tip portion on the inner peripheral side of the tooth portion 111 . As shown in FIG. 2, in two adjacent core blocks 110, there is a gap ( slot opening).
  • a slot 11b for arranging the winding 12 is formed between two adjacent teeth portions 111. That is, in each intermediate assembly 100, the slot 11b is a space area on the side of the tooth portion 111.
  • the winding 12 is wound around the teeth 111. Specifically, the winding 12 is wound around the teeth 111 via an insulator 130.
  • the yoke portion 112 is a back yoke formed on the outside of the teeth portion 111.
  • Yoke portion 112 extends along the circumferential direction of stator core 11 .
  • the yoke portion 112 extends along the circumferential direction (rotation direction of the rotating shaft 31) centered on the axis C of the rotating shaft 31.
  • two adjacent yoke portions 112 are connected with their circumferential end surfaces abutting each other.
  • the nine yoke parts 112 are arranged along the circumferential direction of a circle centered on the axis C of the rotating shaft 31.
  • the nine yoke parts 112 are connected to form an annular shape as a whole.
  • the core block 110 is constructed by laminating multiple steel plates. Specifically, the core block 110 is a laminate in which a plurality of punched electromagnetic steel sheets are laminated along the direction in which the axis C of the rotating shaft 31 extends. Each of the plurality of electromagnetic steel plates is fixed to each other, for example, by caulking.
  • connection terminals 120 are provided corresponding to each of the plurality of core blocks 110. As shown in FIG. 7, the connection terminal 120 is held by an insulator 130 fixed to the core block 110. The connection terminal 120 is fixed to the first insulator 131 of the first insulator 131 and the second insulator 132. Specifically, the connection terminal 120 is fixed to the first insulator 131 by partially embedding the connection terminal 120 in the insulator 130. The connection terminal 120 is fixed to the first insulator 131 so as to protrude toward one side of the cylindrical axis direction of the stator 10 (the axial direction of the rotating shaft 31). The connection terminal 120 and the first insulator 131 can be integrally formed, for example, by insert molding.
  • connection terminal 120 is a metal terminal made of a metal material.
  • the connection terminal 120 is made of a copper alloy.
  • the connection terminal 120 is made of brass. Expressed in another way, the connection terminal 120 is constituted by a metal plate.
  • the connection terminal 120 has a first connection pin 121 and a second connection pin 122 as a pair of connection pins.
  • the first connecting pin 121 and the second connecting pin 122 are not in contact with each other and are separated.
  • the first connecting pin 121 and the second connecting pin 122 are made of metal plates.
  • the first connecting pin 121 and the second connecting pin 122 have a symmetrical shape.
  • the winding 12 is connected to the connection terminal 120 in each intermediate assembly 100. Specifically, one end of the winding 12 is connected to the first connection pin 121 . The other end of the winding 12 is connected to the second connection pin 122 . As an example, the first end of the winding 12 is connected to the first connection pin 121 as one end of the winding 12 . The other end of the winding 12 is connected to the second connection pin 122 .
  • the first connection pin 121 has a first body portion 121a extending in one direction and a first connection portion 121b to which one end of the winding 12 is connected.
  • the first connection portion 121b protrudes from the outer side of the first body portion 121a and is bent inward to face the first body portion 121a.
  • one end of the winding 12 is tied to the first connection part 121b, and the first connection part 121b and the winding 12 are connected by, for example, fusing. Connect by.
  • the method of connecting the first connection portion 121b and the winding 12 is not limited to fusing, and may be soldering.
  • the second connection pin 122 has a second main body portion 122a extending in one direction and a second connection portion 122b to which the other end of the winding 12 is connected.
  • the second connection portion 122b protrudes from the outer side of the second main body portion 122a and is bent inward to face the second main body portion 122a.
  • one end of the winding 12 is tied to the second connection part 122b, and the second connection part 122b and the winding 12 are connected by, for example, a fuse. connection by ging.
  • the method of connecting the second wire connection portion 122b and the winding 12 is not limited to fusing, and may be soldering.
  • connection terminal 120 is connected to the circuit board 20. Specifically, the first connecting pin 121 and the second connecting pin 122 of the connecting terminal 120 are inserted into the through hole 21 of the circuit board 20. More specifically, the first body portion 121 a of the first connecting pin 121 and the second body portion 122 a of the second connecting pin 122 are inserted into the through hole 21 .
  • the first connecting pin 121 and the second connecting pin 122 are press-fitted into the through hole 21 of the circuit board 20. Specifically, the first body portion 121a of the first connection pin 121 and the second body portion 122a of the second connection pin 122 are press-fitted into the through hole 21 of the circuit board 20. That is, the first main body part 121a of the first connecting pin 121 and the second main body part 122a of the second connecting pin 122 are pushed into the through hole 21 and fitted into the through hole 21. Thereby, the first connection pin 121 and the second connection pin 122 are fixed to the circuit board 20.
  • the first connecting pin 121 and the second connecting pin 122 are mechanically connected to the circuit board 20 by being press-fitted into the through hole 21 of the circuit board 20.
  • the first connection pin 121 and the second connection pin 122 are electrically connected to the wiring of the circuit board 20 via a conductive film formed on the inner peripheral surface of the through hole 21 . Thereby, the first connection pin 121 and the second connection pin 122 can be electrically and mechanically connected to the circuit board 20 without soldering.
  • a first protrusion 121c whose tip end surface is a broken surface is formed on a part of the end surface of the first connecting pin 121 on the second connecting pin 122 side. Specifically, the first protrusion 121c is formed on the side end surface of the thick portion of the first body portion 121a of the first connection pin 121.
  • a second protrusion 122c whose tip end surface is a broken surface is formed on a part of the end surface of the second connection pin 122 on the first connection pin 121 side. Specifically, the second protrusion 122c is formed on the side end surface of the thick portion of the second body portion 122a of the second connection pin 122. The first protrusion 121c and the second protrusion 122c are formed at positions facing each other.
  • the first protrusion 121c of the first connecting pin 121 and the second protrusion 122c of the second connecting pin 122 cut the connecting portion that connects the first connecting pin 121 and the second connecting pin 122. Formed when removed.
  • the first protrusion 121c and the second protrusion 122c are cutting marks.
  • the fractured surface of the first protrusion 121c and the fractured surface of the second protrusion 122c are cut surfaces formed when the connecting portion is cut. Therefore, the surface roughness of the fractured surface of the first projection 121c and the surface roughness of the fractured surface of the second projection 122c are rougher than the surface roughness of the metal plate forming the connection terminal 120.
  • the first connecting pin 121 has a direction in which the first connecting pin 121 is press-fitted into the through hole 21 of the circuit board 20 (the press-fitting direction of the first connecting pin 121).
  • An extending first slit 121d is formed.
  • the first slit 121d is formed in the first body portion 121a of the first connection pin 121. Further, the first slit 121d is formed at the center of the first connecting pin 121 in the width direction.
  • the first slit 121d is formed in a straight line with a substantially constant width.
  • a second slit 122d is formed in the second connecting pin 122 and extends along the direction in which the second connecting pin 122 is press-fitted into the through hole 21 of the circuit board 20 (the press-fitting direction of the second connecting pin 122). has been done.
  • the second slit 122d is formed in the second body portion 122a of the second connection pin 122.
  • the second slit 122d is formed at the center of the second connection pin 122 in the width direction.
  • the second slit 122d is formed in a straight line with a substantially constant width.
  • the first connecting pin 121 and the second connecting pin 122 are press-fitted into the through hole 21. Therefore, the portion of the first connection pin 121 in which the first slit 121d is formed is a contact portion that comes into contact with the inner surface of the through hole 21.
  • the portion of the second connection pin 122 in which the second slit 122d is formed is a contact portion that comes into contact with the inner surface of the through hole 21.
  • the insulator 130 has a frame-shaped frame portion around which the winding 12 is wound. Specifically, the frame portion of the insulator 130 is formed so as to surround at least the body portion of the teeth portion 111 (teeth 11a).
  • the insulator 130 is, for example, a resin molded product made of an insulating resin material.
  • the insulator 130 is fixed to the core block 110. Specifically, the first insulator 131 is fixed to one end of the core block 110. The second insulator 132 is fixed to the other end of the core block 110. The first insulator 131 and the second insulator 132 are arranged to sandwich the teeth portion 111 of the core block 110 from the cylindrical axis direction of the stator 10 .
  • stator 10 is configured as shown in FIG. 5.
  • a stator 10 composed of a plurality of intermediate assemblies 100 is connected to a circuit board 20.
  • a stator assembly 2 is constructed in which the stator 10, which is composed of a plurality of intermediate assemblies 100, and the circuit board 20 are combined.
  • each connection terminal 120 of the plurality of intermediate assemblies 100 constituting the stator 10 is connected to the circuit board 20.
  • the connecting terminal 120 instead of using the connecting terminal 120 in which the first connecting pin 121 and the second connecting pin 122 are separated, the first connecting pin 121 and the second connecting pin 122 are connected as described below.
  • a connection terminal 120A is used.
  • FIG. 9 is a perspective view of the connection terminal 120A according to the embodiment when viewed from the front side.
  • FIG. 10 is a perspective view of the connection terminal 120A according to the embodiment when viewed from the back side.
  • FIG. 11A is a front view of the connection terminal 120A according to the embodiment.
  • FIG. 11B is an enlarged side view of a main part of the connection terminal 120A according to the embodiment.
  • FIG. 12 is an enlarged perspective view showing a part of the connection terminal 120A according to the embodiment.
  • connection terminal 120A like the connection terminal 120 described above, has a first connection pin 121 to which one end of the winding 12 is connected, and a first connection pin 121 to which the other end of the winding 12 is connected. It has a second connection pin 122.
  • the connecting terminal 120A further includes a connecting portion 123 that connects the first connecting pin 121 and the second connecting pin 122, and an extending portion 124.
  • the connecting terminal 120A has a configuration in which a connecting portion 123 and an extending portion 124 are added to the connecting terminal 120 described above.
  • the connecting terminal 120A is a connecting terminal in which the first connecting pin 121 and the second connecting pin 122 are separated. It will be 120.
  • the connection terminal 120A is an intermediate component used in the manufacturing process.
  • the connecting terminal 120A configured in this way can be manufactured using a metal plate.
  • the connection terminal 120A shown in FIGS. 9 and 10 can be manufactured by press working or the like on a flat metal plate having a constant thickness and a predetermined shape.
  • the thickness of the flat metal plate constituting the connection terminal 120A is, for example, 0.5 mm. However, it is not limited to this.
  • the surface of the connection terminal 120A is preferably subjected to a conductive surface treatment.
  • the surface of the metal plate constituting the connection terminal 120A may be subjected to a plating process such as gold plating or tin plating as surface treatment.
  • the extending portion 124 is located between the first connecting pin 121 and the second connecting pin 122 when the connecting terminal 120A is viewed from the front.
  • the extending portion 124 extends linearly from the connecting portion 123 in the longitudinal direction of the first connecting pin 121 (which is also the longitudinal direction of the second connecting pin 122).
  • the distal end of the extending portion 124 protrudes beyond the distal end of the first connecting pin 121 and the distal end of the second connecting pin 122.
  • the connection terminal 120A when the connection terminal 120A is viewed from the side, the first connection pin 121, the second connection pin 122, and the extension portion 124 are located at positions shifted in the front-rear direction.
  • the extending portion 124 does not exist in a plane that includes the direction in which the first connecting pins 121 and the second connecting pins 122 are arranged.
  • the extending portion 124, the first connecting pin 121, and the second connecting pin 122 are formed at different levels.
  • the extending portion 124 protrudes from the connecting portion 123 toward the side opposite to the tip end of the first connecting pin 121 , then makes a U-turn and extends toward the tip end side of the first connecting pin 121 .
  • the extension part 124 protrudes downward from the lower end of the connection part 123, bends 180 degrees in a U-shape, and extends upward. Extending.
  • a cut portion 123a having a width less than the thickness of the metal plate constituting the connection terminal 120A is provided at the connection portion of the connection portion 123 between the first connection pin 121 and the second connection pin 122. That is, the width of the extending portion 124 in the extending direction is narrowed at the connection portion of the connecting portion 123 with the first connecting pin 121 and the second connecting pin 122. Specifically, when the thickness of the metal plate constituting the connection terminal 120A is t and the width of the cut portion 123a is W, W ⁇ t. In this embodiment, the entire connecting portion 123 is a cutting portion 123a.
  • FIGS. 13A to 13D are diagrams for explaining a method of manufacturing the stator assembly 2 according to the embodiment.
  • FIG. 13A shows the process of preparing intermediate assembly 100A.
  • FIG. 13B shows the process of preparing the stator 10 and the circuit board 20.
  • FIG. 13C shows the process of connecting the stator 10 and the circuit board 20.
  • FIG. 13D shows a step of cutting the connecting portion 123 of the connecting terminal 120A. Note that the winding 12 is omitted in FIGS. 13A to 13D.
  • an intermediate assembly 100A is prepared. Specifically, an intermediate assembly 100A including a core block 110, a connecting terminal 120A, and an insulator 130 is prepared.
  • the intermediate assembly 100A is provided with a winding 12. At this time, one end of the winding 12 is connected to the first connection pin 121 of the connection terminal 120A. The other end of the winding 12 is connected to the second connection pin 122 in the connection terminal 120A.
  • one end of the winding 12 is tied around the first connection portion 121b of the first connection pin 121 to connect the first connection portion 121b and the winding 12.
  • the other end of the winding 12 is tied around the second connection portion 122b of the second connection pin 122 to connect the second connection portion 122b and the winding 12.
  • the first connecting pin 121 and the second connecting pin 122 are connected by the connecting part 123. Therefore, it is possible to effectively prevent the first connecting pin 121 and the second connecting pin 122 from falling diagonally due to stress or thermal stress when connecting the first connecting pin 121 and the second connecting pin 122 to the winding 12. Can be suppressed.
  • the first connection pin 121 and the second connection pin 122 and the winding 12 are connected by fusing. Thereby, stress or thermal stress can be alleviated compared to the case where the first connection pin 121 and the second connection pin 122 and the winding 12 are connected by soldering. Therefore, it is possible to further prevent the first connecting pin 121 and the second connecting pin 122 from falling diagonally.
  • the first connection pin 121 and the second connection pin 122 and the winding 12 may be connected by soldering instead of fusing. Even when the first connecting pin 121 and the second connecting pin 122 and the winding 12 are assembled by soldering, the first connecting pin 121 and the second connecting pin 122 are connected at the connecting part 123. This prevents the first connecting pin 121 and the second connecting pin 122 from falling diagonally due to stress or thermal stress when the first connecting pin 121 and the second connecting pin 122 are soldered to the winding 12. be able to.
  • stator 10 and circuit board 20 are prepared. Specifically, a stator 10 having a connection terminal 120A, a stator core 11, and a winding 12 (not shown), and a circuit board 20 are prepared.
  • the stator core 11 is composed of a plurality of core blocks 110.
  • the connection terminal 120A is provided corresponding to each of the plurality of core blocks 110. Therefore, the stator 10 is prepared using an intermediate assembly 100A composed of one core block 110, one connection terminal 120A, and one winding 12.
  • the plurality of intermediate assemblies 100A are arranged in a cylindrical shape. Specifically, the plurality of intermediate assemblies 100A are arranged in an annular shape such that the longitudinal direction of each intermediate assembly 100A is parallel to the cylindrical axis direction of the stator 10. At this time, the plurality of intermediate assemblies 100A are arranged so that the connection terminals 120A of each intermediate assembly 100A are aligned in one direction. That is, the connection terminal 120A in each of the plurality of intermediate assemblies 100A protrudes toward one side of the cylinder axis of the stator 10. Thereby, the stator 10 composed of a plurality of intermediate assemblies 100A arranged in a cylindrical shape can be prepared.
  • the stator 10 made up of a plurality of intermediate assemblies 100A and the circuit board 20 are connected. Specifically, the stator 10 is connected to the circuit board 20 by connecting the connection terminal 120A to the circuit board 20. At this time, the connection terminals 120A of all intermediate assemblies 100A in the stator 10 are connected to the circuit board 20 at the same time.
  • the first connecting pin 121 and the second connecting pin 122 of the connecting terminal 120A are inserted into the through hole 21 of the circuit board 20 at the same time. More specifically, as shown by the solid arrow in FIG. 13B, the first body portion 121a of the first connecting pin 121 is inserted into one of the two adjacent through holes 21 in each intermediate assembly 100A. The second body portion 122a of the second connecting pin 122 is inserted into the other of the two adjacent through holes 21.
  • FIG. 14 is a diagram showing how the connection terminal 120A according to the embodiment is press-fitted into the through hole 21 of the circuit board 20.
  • the first connecting pin 121 and the second connecting pin 122 are press-fitted into the through hole 21 .
  • the first body portion 121a of the first connecting pin 121 and the second body portion 122a of the second connecting pin 122 are lightly press-fitted into the through hole 21. That is, the first main body part 121a of the first connecting pin 121 and the second main body part 122a of the second connecting pin 122 are pushed into the through hole 21 and tightly fitted into the through hole 21.
  • a first slit 121d is formed in the first connection pin 121.
  • the stress that the first connecting pin 121 receives from the inner surface of the through hole 21 is absorbed by the first slit 121d.
  • a second slit 122d is formed in the second connection pin 122.
  • the first connecting pin 121 and the second connecting pin 122 can be fixed to the circuit board 20.
  • the connection terminal 120A is fixed to the circuit board 20.
  • all the connection terminals 120A are fixed to the circuit board 20 at the same time. Therefore, the intermediate assembly 100A is fixed to the circuit board 20.
  • the inner peripheral surface of the through hole 21 of the circuit board 20 is covered with a conductive film electrically connected to the wiring formed on the main surface of the circuit board 20.
  • the first connecting pin 121 and the second connecting pin 122 of the connecting terminal 120A are connected to the circuit board 20.
  • the first connecting pin 121 and the second connecting pin 122 can be electrically and mechanically connected. That is, the first connection pin 121 and the second connection pin 122 can be electrically and mechanically connected to the circuit board 20 without soldering.
  • the winding 12 is connected to the first connection pin 121 and the second connection pin 122. Therefore, by press-fitting the first connecting pin 121 and the second connecting pin 122 into the through hole 21, the wiring of the circuit board 20 and the winding 12 are connected via the first connecting pin 121 and the second connecting pin 122. Can be electrically connected.
  • the first connecting pin 121 and the second connecting pin 122 are connected by the connecting part 123, and the first connecting pin 121 and the second connecting pin 122 are prevented from falling down. Therefore, when inserting the first connecting pin 121 and the second connecting pin 122 into the circuit board 20, the first connecting pin 121 and the second connecting pin 122 can be inserted into the through hole without interfering with the through hole 21 of the circuit board 20. 21 can be inserted smoothly. Thereby, the quality of the stator assembly 2 can be ensured. Furthermore, it is possible to reduce costs by improving productivity.
  • a notch 22 is formed at the end of the circuit board 20.
  • the cutout portion 22 is formed to correspond to the extension portion 124 of the connection terminal 120A.
  • the extension portion 124 of the connection terminal 120A is inserted into the cutout portion 22, as shown by the dashed arrow in FIG. 13B. That is, when connecting the connection terminal 120A to the circuit board 20, the first connection pin 121 and the second connection pin 122 are inserted into the through hole 21 of the circuit board 20. Further, the extending portion 124 is inserted into the notch portion 22 .
  • connection terminal 120A can be easily connected to the circuit board 20.
  • the connecting portion 123 of the connecting terminal 120A is cut. Thereby, the first connection pin 121 and the second connection pin 122 are separated.
  • the connecting portion 123 is cut by the extending portion 124.
  • the tip of the extension portion 124 is pulled toward the user and rotated.
  • the extending portion 124 rotates using the connecting portion 123 as a fulcrum. Therefore, according to this principle, the connecting portion 123 can be twisted and cut.
  • the connecting portion 123 and the extending portion 124 are removed together from the connecting terminal 120A. That is, the connecting portion 123 and the extending portion 124 are removed from the first connecting pin 121 and the second connecting pin 122.
  • the connecting portion 123 can be easily cut. Moreover, the tip of the extending portion 124 protrudes beyond the tip of the first connecting pin 121 and the tip of the second connecting pin 122. Thereby, the tip of the extension portion 124 can be easily pinched. Therefore, the workability when cutting the connecting portion 123 can be improved.
  • the first connecting pin 121, the second connecting pin 122, and the extending portion 124 are located at positions shifted from each other in the front-rear direction.
  • the extending portion 124 can be pulled forward and rotated easily. This further improves the workability when cutting the connecting portion 123.
  • the extending portion 124 protrudes from the connecting portion 123 to the side opposite to the tip end of the first connecting pin 121, then makes a U-turn, and 1 extending toward the distal end side of the connecting pin 121.
  • a cut portion 123a having a width less than the thickness of the metal plate constituting the connection terminal 120A is provided at the connection portion of the connection portion 123 between the first connection pin 121 and the second connection pin 122. ing.
  • the strength of the cut portion 123a can be reduced. Therefore, the connecting portion 123 can be cut more easily at the cutting portion 123a.
  • the connecting portion 123 is cut off from the first connecting pin 121 and the second connecting pin 122, so that a first protrusion is formed on the end surface of the first connecting pin 121 on the second connecting pin 122 side. 121c is formed. Further, a second protrusion 122c is formed on the end surface of the second connection pin 122 on the first connection pin 121 side.
  • a stator assembly 2 in which the stator 10 composed of a plurality of intermediate assemblies 100A and the circuit board 20 are combined can be manufactured.
  • connection terminal 120A includes the first connection pin 121 that is press-fitted into the through hole 21 formed in the circuit board 20 to be electrically and mechanically connected to the circuit board 20.
  • the first connecting pin 121 has a first slit 121d extending along the press-fitting direction of the first connecting pin 121.
  • the first connecting pin 121 when the first connecting pin 121 is press-fitted into the through-hole 21 of the circuit board 20, the first connecting pin 121 can be fitted into the through-hole 21 while absorbing stress with the first slit 121d. Thereby, the first connection pin 121 and the circuit board 20 can be electrically and mechanically connected without soldering. That is, even if the first connecting pins 121 and the circuit board 20 are not soldered, it is possible to prevent the first connecting pins 121 from coming off the circuit board 20. Further, soldering between the first connection pin 121 and the circuit board 20 is not necessary. Therefore, productivity can be improved. Moreover, it is possible to reduce costs.
  • connection terminal 120A includes not only the first connection pin 121 but also a second connection pin 122 connected to the first connection pin 121.
  • connection terminal 120A when connecting the connection terminal 120A to the circuit board 20, not only the first connection pin 121 can be press-fitted into the through-hole 21, but also the second connection pin 122 can be press-fitted into the through-hole 21. That is, by simply connecting the connection terminal 120A to the circuit board 20, the first connection pin 121 and the second connection pin 122 can be connected to the circuit board 20 at the same time. Thereby, productivity can be further improved.
  • connection terminal 12A is made of a copper alloy.
  • connection terminal 120A has appropriate elasticity. Thereby, by press-fitting the first connecting pin 121 and the second connecting pin 122 into the through hole 21 of the circuit board 20, the first connecting pin 121 and the second connecting pin 122 can be elastically held in the circuit board 20. can. Therefore, the first connection pin 121 and the second connection pin 122 can be firmly fixed to the circuit board 20.
  • connection terminal 120A is subjected to a conductive surface treatment.
  • the stator assembly 2 of this embodiment includes the connection terminal 120A, the winding 12 to which the connection terminal 120A is connected, and the stator core 11 around which the winding 12 is wound.
  • the electric motor 1 of this embodiment includes a stator assembly 2 and a rotor located opposite the stator assembly 2.
  • the width of the first slit 121d formed in the first connecting pin 121 of the connecting terminal 120A is approximately constant. However, it is not limited to this.
  • FIG. 15 is an enlarged cross-sectional view of the first connection pin 121B in the connection terminal 120B according to Modification 1.
  • the width of the first slit 121d at the tip side of the first connection pin 121B is the same as the width of the first slit 121d on the side opposite to the tip side of the first connection pin 121B.
  • the width may be wider than the width of the first slit 121d at the base side portion. In other words, the width of the first slit 121d may increase from the root side of the first connecting pin 121B toward the tip side of the first connecting pin 121B.
  • the stress when press-fitting the first connecting pin 121B into the through-hole 21 can be absorbed by the first slit without reducing the holding force of the first connecting pin 121B press-fitted into the through-hole 21 to the circuit board 20. 121d, the first connecting pin 121B can be smoothly fitted into the through hole 21.
  • the configuration of FIG. 15 may be applied to the second connection pin 122.
  • the width of the first slit 121d at the portion that contacts the through hole 21 when the connection terminal 120C is inserted into the through hole 21 is the width of the first slit 121d at the tip of the first connection pin 121C.
  • the first slit 121d may be narrower than the width of the first slit 121d at the bottom side portion, and may be narrower than the first slit 121d at the root side portion of the first connecting pin 121C on the side opposite to the tip side.
  • FIG. 16 is an enlarged cross-sectional view of a first connecting pin 121C in a connecting terminal 120C according to Modification 2.
  • the width at the center of the first slit 121d may be narrower than the width at the tip and root sides of the first slit 121d.
  • the configuration of FIG. 16 may be applied to the second connection pin 122.
  • FIG. 17 is an enlarged cross-sectional view of a first connecting pin 121D in a connecting terminal 120D according to Modification 3.
  • both side surfaces of the first connection pin 121D may have an arc shape that is convex toward the outside. With this configuration, the holding force of the first connection pin 121D press-fitted into the through hole 21 to the circuit board 20 can be improved.
  • the configuration of FIG. 17 may be applied to the second connection pin 122.
  • connection terminal 120A has a first connection pin 121 and a second connection pin 122.
  • the connection terminal 120A may have only one of the first connection pin 121 and the second connection pin 122. In this case, the connection terminal 120A becomes the first connection pin 121 itself or the second connection pin 122 itself.
  • connection terminal 120A is applied to the circuit board 20 in the stator assembly 2.
  • the connection terminal 120A can be widely applied to circuit boards used in the electric motor 1.
  • the connection terminal 120A may be applied to a circuit board of an encoder included in a motor.
  • the rotor 30 is an IPM rotor.
  • the rotor 30 may be a surface permanent magnetic rotor (SPM (Surface Permanent Magnetic) rotor) in which a plurality of permanent magnets are provided on the outer surface of a rotor core.
  • SPM Surface Permanent Magnetic
  • the rotor 30 is a laminate in which a plurality of steel plates are laminated. However, it is not limited to this.
  • the rotor 30 may be made of bulk material.
  • the electric motor 1 has 6 poles and 12 slots. However, it is not limited to this. In other words, the number of slots in the stator 10 is not limited to twelve.
  • the number of magnetic poles of the rotor 30 is not limited to six (that is, the number of permanent magnets 33 is six). Any number of slots in the stator 10 and any number of magnetic poles in the rotor 30 can be used.
  • the technology of the present disclosure can be widely used in electric motors, electrical equipment equipped with electric motors, and the like.
  • Second bracket 100 100A Intermediate assembly 110 Core block 111 Teeth portion 112 Yoke portion 120, 120A, 120B, 120C, 120D Connection terminal 121, 121B, 121C, 121D First connection pin 121a First body portion 121b First connection part 121c First projection 121d First slit 122 Second connection pin 122a Second main body part 122b Second connection part 122c Second projection 122d Second slit 123 Connection part 123a Cutting part 124 Extension part 130 Insulator 131 First Insulator 132 Second insulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

電動機に用いられる回路基板に接続される接続端子であって、回路基板に形成された貫通孔に圧入されることで、回路基板と電気的及び機械的に接続される第1接続ピンを有し、第1接続ピンは、第1接続ピンの圧入方向に沿って延在する第1スリットを有する。

Description

接続端子、ステータ組立体及び電動機
 本開示は、電動機に用いられる接続端子、接続端子を備えるステータ組立体、及び、ステータ組立体を備える電動機に関する。
 電動機は、家庭用機器又は産業用機器等の様々な電気機器に用いられている。電動機としては、ブラシを用いる整流子モータ及びブラシを用いないブラシレスモータが知られている。
 ブラシレスモータは、例えば、ロータと、ステータと、回路基板とを備える(例えば特許文献1を参照)。ロータは、磁石を有する。ステータは、ステータコアと、インシュレータを介してステータコアに巻かれた巻線を有する。回路基板には、ステータが有する巻線に供給する電流を生成するための回路部品が実装される。
 ステータと回路基板とは、ステータ組立体として組み合わされる。ステータ組立体において、ステータが有する巻線と回路基板とは電気的に接続される。ステータが有するインシュレータに接続ピンを固定しておき、この接続ピンを用いてステータが有する巻線と回路基板とを電気的に接続する技術が知られている。具体的には、接続ピンに巻線の末端を絡げて半田付けし、この接続ピンを回路基板の貫通孔に挿通して接続ピンと回路基板とを半田付けする。これにより、接続ピンと回路基板とを電気的及び機械的に接続することができる。また、接続ピンを介してステータの巻線と回路基板とを電気的に接続するとともに、ステータと回路基板とを組み合わせることができる。
 しかしながら、複数の接続ピンを回路基板の貫通孔に挿入した上で接続ピンと回路基板とを半田付けするという従来の方法では、次の問題を生じることがある。すなわち、スロット数が多い場合等のように、接続ピンの数が多い仕様のステータを用いる場合には、接続ピンと回路基板とを半田付けする箇所が多くなる。この結果、ステータと回路基板とを組み合わせてステータ組立体を製造する際の生産性が低下する。
 特に、ステータコアが複数のコアブロックに分割されたステータを用いると、生産性が大きく低下する。具体的には、ステータコアが複数のコアブロックに分割されている場合、ステータは、円筒状に配置された複数の中間組立体によって構成される。各中間組立体は、コアブロックと、インシュレータを介してコアブロックに巻かれた巻線と、インシュレータに保持された一対の接続ピンとを有する。この場合、コアブロックがティースごとに設けられていると、スロット数は、コアブロックの数と同じになる。このような場合、コアブロックに対応して一対の接続ピンが設けられる。これにより、ステータには、スロット数の2倍の数の接続ピンが設けられる。この結果、ステータ組立体を製造する際に、接続ピンと回路基板とを半田付けする箇所が多くなってしまう。よって、生産性が大きく低下する。
特開2020-88981号公報
 本開示は、このような問題を解決するためになされたものである。本開示は、半田付けすることなく、接続ピンと回路基板とを電気的及び機械的に接続することができる接続端子、接続端子を備えるステータ組立体、及びステータ組立体を備える電動機を提供することを目的とする。
 上記目的を達成するために、本開示に係る接続端子の一態様は、電動機に用いられる回路基板に接続される接続端子であって、前記回路基板に形成された貫通孔に圧入されることで、前記回路基板と電気的及び機械的に接続される接続ピンを有し、前記接続ピンは、前記接続ピンの圧入方向に沿って延在するスリットを有する。
 前記接続ピンの先端部側部分における前記スリットの幅は、前記接続ピンの前記先端部側とは反対側の根元部側部分における前記スリットの幅よりも広くてもよい。
 前記接続端子が前記貫通孔に挿入されたときに前記貫通孔に接触する部分における前記スリットの幅は、前記接続ピンの先端部側部分における前記スリットの幅よりも狭く、かつ、前記接続ピンの前記先端部側とは反対側の根元部側部分における前記スリットの幅よりも狭くてもよい。
 前記接続端子は、銅合金によって構成されていてもよい。
 前記接続端子の表面に、導電性の表面処理が施されていてもよい。
 本開示に係るステータ組立体の一態様は、上記態様の接続端子と、前記接続端子が接続される巻線と、前記巻線が巻き回されるステータコアと、を備える。
 本開示に係る電動機の一態様は、上記態様のステータ組立体と、前記ステータ組立体と向かい合って位置するロータと、を備える。
 本開示によれば、半田付けすることなく、接続ピンと回路基板とを電気的及び機械的に接続することができる。
図1は、回転軸を通る平面で切断したときの実施の形態に係る電動機の断面図である。 図2は、回転軸と直交する平面で切断したときの実施の形態に係る電動機の断面図である。 図3は、実施の形態に係る電動機を斜め上方から見たときの分解斜視図である。 図4は、実施の形態に係る電動機を斜め下方から見たときの分解斜視図である。 図5は、実施の形態に係るステータ組立体の斜視図である。 図6は、実施の形態に係るステータ組立体の断面図である。 図7は、実施の形態に係るステータにおける中間組立体の斜視図である。 図8は、実施の形態に係るステータにおける中間組立体の分解斜視図である。 図9は、実施の形態に係る接続端子を正面側から見たときの斜視図である。 図10は、実施の形態に係る接続端子を背面側から見たときの斜視図である。 図11Aは、実施の形態に係る接続端子の正面図である。 図11Bは、実施の形態に係る接続端子の要部を拡大した側面図である。 図12は、実施の形態に係る接続端子の一部を示す拡大斜視図である。 図13Aは、実施の形態に係るステータ組立体の製造方法において、中間組立体を準備する工程を説明するための図である。 図13Bは、実施の形態に係るステータ組立体の製造方法において、ステータ及び回路基板を準備する工程を説明するための図である。 図13Cは、実施の形態に係るステータ組立体の製造方法において、ステータと回路基板とを接続する工程を説明するための図である。 図13Dは、実施の形態に係るステータ組立体の製造方法において、接続端子の連結部を切断する工程を説明するための図である。 図14は、実施の形態に係る接続端子を回路基板の貫通孔に圧入するときの様子を示す図である。 図15は、変形例1に係る接続端子における第1接続ピンの拡大断面図である。 図16は、変形例2に係る接続端子における第1接続ピンの拡大断面図である。 図17は、変形例3に係る接続端子における第1接続ピンの拡大断面図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に他の図と同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。本明細書において、「上」及び「下」という用語は、必ずしも、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではない。
 (実施の形態)
 まず、実施の形態に係る電動機1の構成について、図1~図6を用いて説明する。図1は、回転軸31を通る平面で切断したときの実施の形態に係る電動機1の断面図である。図2は、回転軸31と直交する平面で切断したときの実施の形態に係る電動機1の断面図である。図2は、図1のII-II線における断面を示している。図3は、実施の形態に係る電動機1を斜め上方から見たときの分解斜視図である。図4は、実施の形態に係る電動機1を斜め下方から見たときの分解斜視図である。図3及び図4において、巻線12は省略している。図5は、実施の形態に係るステータ組立体2の斜視図である。図6は、実施の形態に係るステータ組立体2の断面図である。
 図1~図4に示すように、電動機1は、ステータ10と、回路基板20と、回転軸31を有するロータ30とを備える。図5に示すように、ステータ10と回路基板20とは、ステータ組立体2として組み合わされている。
 図1に示すように、電動機1は、さらに、第1軸受け41と、第2軸受け42と、第1ブラケット51と、第2ブラケット52と、を備える。
 電動機1は、ブラシレスモータである。電動機1は、例えば、小型で高出力が要求される送風機モータ又は駆動モータとして用いることができる。電動機1のサイズは、一例として、直径50mm以下である。
 図1及び図2に示すように、電動機1は、ロータ30がステータ10の内側に配置されたインナーロータ型のモータである。つまり、ステータ10は、ロータ30を囲むように配置されている。したがって、ロータ30は、ステータ10の内側において、回転軸31の軸心Cを回転中心として回転する。
 ステータ(固定子)10は、ロータ30との間に微小なエアギャップを介してロータ30に対向して配置されている。具体的には、ステータ10は、ロータ30のロータコア32を囲むように配置されている。
 ステータ10は、ロータ30に作用する磁力を発生させる。具体的には、ステータ10は、ロータ30が有するロータコア32とのエアギャップ面に磁束を生成するように、回転方向に沿ってN極とS極とが複数交互に繰り返して存在する構成になっている。ステータ10は、ロータ30とともに磁気回路を構成している。
 ステータ10は、電機子を構成している。ステータ10は、ステータコア11(固定子鉄心)と、ステータコア11に配置された巻線12とを有する。巻線12は、ステータコア11に巻き回された巻線コイルである。
 図2に示すように、ステータコア11は、ロータ30に向かって突出する複数のティース11aを有する。具体的には、複数のティース11aは、回転軸31の軸心Cと直交する方向(ラジアル方向)に放射状に延在している。複数のティース11aは、隣り合う2つのティース11aの間にスロット11bを形成しながら周方向に等間隔に配置されている。ステータコア11は、9つのティース11aを有する。つまり、ステータ10のスロット数は9である。
 巻線12は、ステータコア11のスロット11bに配置されている。巻線12は、ステータ10の電機子巻線であるステータコイルである。一例として、巻線12は、各ティース11aに巻回された集中巻コイルである。
 巻線12は、3相同期モータとしてロータ30を回転できるように3相巻線となっている。具体的には、巻線12は、互いに電気的に120度位相が異なる、U相、V相及びW相の3相それぞれの単位コイルによって構成されている。つまり、各ティース11aに巻き回された巻線12は、U相、V相及びW相の相単位でそれぞれに通電される3相の交流によって、通電駆動される。これにより、各ティース11aにステータ10の主磁束が生成される。つまり、各ティース11aは、磁極ティースである。各ティース11aは、巻線12に電流が流れることで磁力を発生させる電磁石である。
 ステータコア11は、複数のコアブロック110(分割コア)に分割されている。つまり、ステータ10のステータコア11は、複数のコアブロック110で構成されている。
 複数のコアブロック110は、全体として円環状に配列されている。具体的には、9個のコアブロック110が円環状をなすように配置されている。隣接する2つのコアブロック110同士が連結されている。つまり、ステータコア11は、複数のコアブロックが円環状に連結されることで構成されている。複数のコアブロック110の各々には、巻線12が巻き回されている。ステータ10が9個のコアブロック110を有するので、9個の巻線12が用いられている。
 図2に示すように、一つのコアブロック110と一つの巻線12とによって中間組立体100が構成されている。したがって、ステータ10は、9個の中間組立体100によって構成されている。中間組立体100は、ステータ組立体2を製造する際に用いられる中間部品である。中間組立体100の詳細な構成については後述する。
 回路基板20は、例えば、銅等の導電材料からなる配線が所定のパターンで形成されたプリント配線基板(Printed Circuit Board(PCB))である。回路基板20のベース基材としては、ガラスエポキシ基板等の樹脂基材又はアルミニウム合金基板等の金属基材等を用いることができる。回路基板20には、ステータ10が有する巻線12に供給する電流を生成するための複数の電子部品(不図示)が実装されている。複数の電子部品は、U相、V相及びW相の3相の交流を生成する回路を構成している。
 図1、図3及び図4に示すように、回路基板20には、貫通孔21が設けられている。貫通孔21には、図1に示すように、コアブロック110に対応する中間組立体100が有する接続端子120が接続される。接続端子120は、ステータ10の巻線12が結線された結線端子である。貫通孔21には、巻線12が結線された接続端子120が挿入される。これにより、接続端子120と回路基板20とが接続される。具体的には、図5及び図6に示すように、接続端子120における第1接続ピン121及び第2接続ピン122が貫通孔21に挿入される。このように、回路基板20は、接続端子120を介して巻線12が結線される結線基板である。回路基板20には、複数の貫通孔21が設けられている。具体的には、少なくとも中間組立体100の数(つまりコアブロック110の数)の2倍の貫通孔21が設けられている。各貫通孔21の内周面には、回路基板20の主面に形成された配線と電気的に接続された導電膜が被覆されている。導電膜は、例えば銅メッキである。接続端子120の詳細な構成については後述する。
 ロータ(回転子)30は、ステータ10で生成される磁力によって回転する。ロータ30は、回転方向に沿ってN極とS極とが複数交互に繰り返して存在する構成になっている。これにより、ロータ30は、ステータ10に作用する磁力を生成する。ロータ30が生成する磁束の向きは、回転軸31に含まれる軸心Cが延伸する方向(軸心方向)と直交する方向である。つまり、ロータ30が生成する磁束の向きは、ラジアル方向(径方向)である。
 図1及び図2に示すように、ロータ30は、回転軸31と、ロータコア32と、永久磁石33とを有する。ロータ30は、永久磁石33がロータコア32に埋め込まれた永久磁石埋め込み型のロータ(IPM(Interior Permanent Magnet)ロータ)である。したがって、電動機1は、IPMモータである。
 回転軸31は、長尺状のシャフトである。回転軸31は、例えば金属棒である。回転軸31は、ロータコア32に固定されている。具体的には、回転軸31は、軸心Cが延伸する方向において、ロータコア32の両側に延在するように、ロータコア32の中心に設けられた貫通孔に挿入されてロータコア32に固定されている。
 ロータコア32は、複数の鋼板が回転軸31の軸心Cが延伸する方向(軸心方向)に積層された積層体である。複数の鋼板の各々は、例えば、所定形状に形成された打ち抜き電磁鋼板である。複数の鋼板は、例えばかしめによって互いに固定されている。
 永久磁石33は、ロータコア32に設けられた磁石挿入穴32aに挿入されている。ロータコア32に6個の磁石挿入穴32aが周方向に亘って等間隔に設けられている。したがって、ロータ30は、周方向に亘って等間隔に配置された6個の永久磁石33を有する。つまり、電動機1の極数は、6である。永久磁石33は、焼結磁石である。しかし、永久磁石33は、ボンド磁石であってもよい。
 ロータ30の回転軸31には、回転軸31を回転自在に保持する第1軸受け41及び第2軸受け42が設けられている。第1軸受け41及び第2軸受け42は、回転軸31を回転自在に保持するベアリングである。第1軸受け41は、回転軸31におけるロータコア32の一方側から突出した部位を支持している。一方、第2軸受け42は、回転軸31におけるロータコア32の他方側から突出した部位を支持している。第1軸受け41及び第2軸受け42は、一例として、玉軸受けである。しかし、これに限らない。
 第1ブラケット51は、第1軸受け41を保持している。具体的には、第1軸受け41は、第1ブラケット51に設けられた凹部に固定されている。第2ブラケット52は、第2軸受け42を保持している。具体的には、第2軸受け42は、第2ブラケット52に設けられた凹部に固定されている。第1ブラケット51及び第2ブラケット52は、金属材料又は樹脂材料によって構成されている。
 第1ブラケット51及び第2ブラケット52は、電動機1の外郭を構成している。具体的には、第1ブラケット51は、開口部を有する有底円筒形状のフレーム(筐体)である。第2ブラケット52は、第1ブラケット51の開口部を塞ぐボトムプレートである。第1ブラケット51は、金属製の金属フレームである。第2ブラケット52は、樹脂製の樹脂プレートである。
 第1ブラケット51には、ロータ30の回転軸31が貫通している。回転軸31の一部は、第1ブラケット51から外部に突出している。図示しないが、回転軸31のうち第1ブラケット51から外部に突出した部分には、回転ファン等の負荷が取り付けられる。つまり、回転軸31において、第1ブラケット51から突出した部分は、出力軸である。
 このように構成される電動機1では、ステータ10が有する巻線12に通電すると、界磁電流が巻線12に流れて、ステータ10(ステータコア11)に磁束が発生する。これにより、ステータ10からロータ30に向かう磁束が生成される。具体的には、ステータ10のステータコア11のティース11aの各々からロータ30のロータコア32に向かう磁束が生成される。一方、ロータ30では、ロータコア32に埋め込まれた永久磁石33によって、ステータ10を通る磁束が生成される。ステータ10で生成される磁束とロータ30の永久磁石33から生じる磁束との相互作用によって生じた磁気力が、ロータ30を回転させるトルクとなる。これにより、ロータ30が回転する。
 次に、本実施の形態に係るステータ10における中間組立体100の構成について、図1~図6を参照しつつ、図7及び図8を用いて説明する。図7は、実施の形態に係るステータ10における中間組立体100の斜視図である。図8は、実施の形態に係るステータ10における中間組立体100の分解斜視図である。図7及び図8では、巻線12は省略している。
 図2~図5に示すように、ステータ10は、複数の中間組立体100を筒状に配置することで構成されている。具体的には、複数の中間組立体100は、円筒状に配置されている。
 上記のように、ステータ10におけるステータコア11は、複数のコアブロック110によって構成されている。図2に示すように、複数のコアブロック110は、全体として環状となるように連結されている。
 コアブロック110は、中間組立体100ごとに設けられている。ステータ10における巻線12も、中間組立体100ごとに設けられている。複数のコアブロック110の各々に対応して接続端子120が設けられている。つまり、中間組立体100ごとに接続端子120が設けられている。
 したがって、図7及び図8に示すように、複数の中間組立体100の各々は、一つのコアブロック110と、一つの巻線12(図7及び図8では不図示)と、一つの接続端子120とを有する。さらに、各中間組立体100は、インシュレータ130を有する。インシュレータ130は、一対のインシュレータである第1インシュレータ131と第2インシュレータ132とによって構成されている。具体的には、インシュレータ130は、別体である第1インシュレータ131と第2インシュレータ132とに分離されている。
 各中間組立体100において、コアブロック110は、ティース部111と、ヨーク部112とを有する。ティース部111は、図2に示されるステータコア11のティース11aである。
 図2及び図8に示すように、ティース部111は、ヨーク部112の内側に形成されている。ティース部111は、ヨーク部112からステータコア11の中心部に向かって延伸している。具体的には、ティース部111は、ヨーク部112から回転軸31に向かって延伸している。つまり、ティース部111は、ステータ10の径方向内側に突出するように延在している。
 ティース部111は、ティース部111の内周側の先端部から周方向の両側に延伸する延伸部を有する。一対の延伸部の各々は、ティース部111の内周側の先端部から周方向に沿って突出するように形成されている。図2に示すように、隣接する2つのコアブロック110において、一方のコアブロック110におけるティース部111の延伸部と、他方のコアブロック110におけるティース部111の延伸部との間には、隙間(スロットオープニング)が存在している。
 隣り合う2つの中間組立体100において、隣接する2つのティース部111の間には、巻線12を配置するためのスロット11bが形成されている。つまり、各中間組立体100において、スロット11bは、ティース部111の側方の空間領域である。
 図2に示すように、ティース部111には、巻線12が巻回されている。具体的には、巻線12は、インシュレータ130を介してティース部111に巻回されている。
 各中間組立体100において、ヨーク部112は、ティース部111の外側に形成されたバックヨークである。ヨーク部112は、ステータコア11の周方向に沿って延伸している。具体的には、ヨーク部112は、回転軸31の軸心Cを中心とする周方向(回転軸31の回転方向)に沿って延伸している。図2に示すように、隣り合う2つの中間組立体100において、隣接する2つのヨーク部112は、周方向端面同士が互いに当接して連結されている。具体的には、図2に示すように、9個のヨーク部112は、回転軸31の軸心Cを中心とする円の周方向に沿って配置されている。9個のヨーク部112は、全体として円環状をなすように連結されている。
 コアブロック110は、複数の鋼板を積層することによって、構成されている。具体的には、コアブロック110は、複数の打ち抜き電磁鋼板が回転軸31の軸心Cが延伸する方向に沿って積層された積層体である。複数の電磁鋼板の各々は、例えばかしめによって互いに固定されている。
 接続端子120は、複数のコアブロック110の各々に対応して設けられている。図7に示すように、接続端子120は、コアブロック110に固定されたインシュレータ130に保持されている。接続端子120は、第1インシュレータ131及び第2インシュレータ132のうち、第1インシュレータ131に固定されている。具体的には、接続端子120は、接続端子120の一部がインシュレータ130に埋め込まれることで、第1インシュレータ131に固定されている。接続端子120は、ステータ10の筒軸方向(回転軸31の軸心方向)の一方に向かって突出するように、第1インシュレータ131に固定されている。接続端子120と第1インシュレータ131とは、例えばインサート成形によって一体に形成することができる。
 接続端子120は、金属材料によって構成された金属端子である。一例として、接続端子120は、銅合金によって構成されている。例えば、接続端子120は、真鍮製である。別の表現をすると、接続端子120は、金属板によって構成されている。
 接続端子120は、一対の接続ピンとして、第1接続ピン121と第2接続ピン122とを有する。第1接続ピン121と第2接続ピン122とは、接触しておらず、分離されている。第1接続ピン121及び第2接続ピン122は、金属板によって構成されている。第1接続ピン121と第2接続ピン122とは、左右対称形状である。
 図7及び図8では図示されていないが、各中間組立体100において、接続端子120には、巻線12が結線されている。具体的には、第1接続ピン121には、巻線12の一端が結線される。第2接続ピン122には、巻線12の他端が結線される。一例として、第1接続ピン121には、巻線12の一端として巻線12の巻き始めの末端が接続される。第2接続ピン122には、巻線12の他端として巻線12の巻き終わりの末端が接続される。
 第1接続ピン121は、一方向に延在する第1本体部121aと、巻線12の一端が結線される第1結線部121bとを有する。第1結線部121bは、第1本体部121aの外側の側部から突出して、第1本体部121aに対向するように内側に向かって折れ曲がっている。第1結線部121bと巻線12の一端とを結線する場合、例えば、第1結線部121bに巻線12の一端を絡げて、第1結線部121bと巻線12とを、例えばヒュージングにより接続する。第1結線部121bと巻線12との接続方法は、ヒュージングに限るものではなく、半田付けであってもよい。
 第2接続ピン122は、一方向に延在する第2本体部122aと、巻線12の他端が結線される第2結線部122bとを有する。第2結線部122bは、第2本体部122aの外側の側部から突出して、第2本体部122aに対向するように内側に向かって折れ曲がっている。第2結線部122bと巻線12の他端とを結線する場合、例えば、第2結線部122bに巻線12の一端を絡げて、第2結線部122bと巻線12とを、例えばヒュージングにより接続する。第2結線部122bと巻線12との接続方法は、ヒュージングに限るものではなく、半田付けであってもよい。
 図1及び図6に示すように、接続端子120は、回路基板20に接続される。具体的には、接続端子120における第1接続ピン121及び第2接続ピン122が回路基板20の貫通孔21に挿入される。より具体的には、第1接続ピン121の第1本体部121aと第2接続ピン122の第2本体部122aとが貫通孔21に挿入される。
 第1接続ピン121及び第2接続ピン122は、回路基板20の貫通孔21に圧入されている。具体的には、第1接続ピン121における第1本体部121aと、第2接続ピン122における第2本体部122aとが、回路基板20の貫通孔21に圧入されている。つまり、第1接続ピン121における第1本体部121aと、第2接続ピン122における第2本体部122aとは、貫通孔21に押し込まれて貫通孔21に嵌っている。これにより、第1接続ピン121及び第2接続ピン122が、回路基板20に固定されている。
 第1接続ピン121及び第2接続ピン122は、回路基板20の貫通孔21に圧入されることで、回路基板20と機械的に接続される。第1接続ピン121及び第2接続ピン122は、貫通孔21の内周面に形成された導電膜を介して、回路基板20の配線と電気的に接続されている。これにより、半田付けすることなく、第1接続ピン121及び第2接続ピン122と回路基板20とを電気的及び機械的に接続することができる。
 図7及び図8に示すように、第1接続ピン121における第2接続ピン122側の端面の一部には、先端面が破断面である第1突起121cが形成されている。具体的には、第1突起121cは、第1接続ピン121の第1本体部121aの厚み部分の側端面に形成されている。
 第2接続ピン122における第1接続ピン121側の端面の一部には、先端面が破断面である第2突起122cが形成されている。具体的には、第2突起122cは、第2接続ピン122の第2本体部122aの厚み部分の側端面に形成されている。第1突起121cと第2突起122cとは、互いに対向する位置に形成されている。
 後述するように、第1接続ピン121の第1突起121cと第2接続ピン122の第2突起122cとは、第1接続ピン121と第2接続ピン122とを連結する連結部を切断して除去したときに形成される。つまり、第1突起121c及び第2突起122cは、切断痕である。第1突起121cの破断面及び第2突起122cの破断面は、その連結部を切断したときに形成される切断面となる。したがって、第1突起121cの破断面の表面粗さ及び第2突起122cの破断面の表面粗さは、接続端子120を構成する金属板の表面粗さよりも粗くなっている。
 図7及び図8に示すように、第1接続ピン121には、第1接続ピン121を回路基板20の貫通孔21に圧入するときの方向(第1接続ピン121の圧入方向)に沿って延在する第1スリット121dが形成されている。第1スリット121dは、第1接続ピン121の第1本体部121aに形成されている。また、第1スリット121dは、第1接続ピン121の幅方向の中央部に形成されている。第1スリット121dは、ほぼ一定の幅で直線状に形成されている。
 第2接続ピン122には、第2接続ピン122を回路基板20の貫通孔21に圧入するときの方向(第2接続ピン122の圧入方向)に沿って延在する第2スリット122dが、形成されている。第2スリット122dは、第2接続ピン122の第2本体部122aに形成されている。第2スリット122dは、第2接続ピン122の幅方向の中央部に形成されている。第2スリット122dは、ほぼ一定の幅で直線状に形成されている。
 第1接続ピン121及び第2接続ピン122を貫通孔21に圧入したときに、第1スリット121d及び第2スリット122dは、貫通孔21内に位置している。したがって、第1接続ピン121における第1スリット121dが形成された部分は、貫通孔21の内面に接触する接点部である。第2接続ピン122における第2スリット122dが形成された部分は、貫通孔21の内面に接触する接点部である。
 各中間組立体100において、インシュレータ130は、巻線12が巻回される枠状の枠体部を有する。具体的には、インシュレータ130の枠体部は、少なくともティース部111(ティース11a)の胴体部を囲むように形成されている。インシュレータ130は、例えば、絶縁樹脂材料によって構成された樹脂成形品である。
 インシュレータ130は、コアブロック110に固定されている。具体的には、第1インシュレータ131は、コアブロック110の一方の端部に固定されている。第2インシュレータ132は、コアブロック110の他方の端部に固定されている。第1インシュレータ131及び第2インシュレータ132は、コアブロック110のティース部111をステータ10の筒軸方向から挟むように配置されている。
 このように構成される中間組立体100を複数組み合わせることで、図5に示すように、ステータ10が構成される。複数の中間組立体100で構成されたステータ10は、回路基板20に接続される。これにより、図5に示すように、複数の中間組立体100で構成されたステータ10と回路基板20とが組み合わされたステータ組立体2が構成される。
 このとき、ステータ10と回路基板20とを組み合わせる際、ステータ10を構成する複数の中間組立体100の各接続端子120と回路基板20とを接続することになる。しかし、第1接続ピン121と第2接続ピン122とが分離された接続端子120を用いるのではなく、以下に説明するように、第1接続ピン121と第2接続ピン122とが連結された接続端子120Aを用いている。
 ここで、ステータ組立体2を作製する際に用いられる接続端子120Aの構成について、図9~図12を用いて説明する。図9は、実施の形態に係る接続端子120Aを正面側から見たときの斜視図である。図10は、実施の形態に係る接続端子120Aを背面側から見たときの斜視図である。図11Aは、実施の形態に係る接続端子120Aの正面図である。図11Bは、実施の形態に係る接続端子120Aの要部を拡大した側面図である。図12は、実施の形態に係る接続端子120Aの一部を示す拡大斜視図である。
 図9~図12に示すように、接続端子120Aは、上記の接続端子120と同様に、巻線12の一端が結線される第1接続ピン121と、巻線12の他端が結線される第2接続ピン122とを有する。接続端子120Aは、さらに、第1接続ピン121と第2接続ピン122とを連結する連結部123と、延在部124とを有する。つまり、接続端子120Aは、上記の接続端子120に対して、連結部123及び延在部124が追加された構成になっている。
 詳細は後述するが、ステータ組立体2を製造するときに接続端子120Aの連結部123を切断することで、接続端子120Aは、第1接続ピン121及び第2接続ピン122が分離された接続端子120になる。つまり、接続端子120Aは、製造工程で用いられる中間部品である。
 このように構成される接続端子120Aは、金属板を用いて作製することができる。具体的には、図9及び図10に示される接続端子120Aは、厚さが一定で所定形状の金属平板にプレス加工等を施すことで、作製することができる。接続端子120Aを構成する金属平板の厚さは、例えば0.5mmである。しかし、これに限らない。接続端子120Aの表面には、導電性の表面処理が施されているとよい。例えば、接続端子120Aを構成する金属板の表面に、表面処理として、金メッキ又は錫メッキ等のメッキ処理が施されているとよい。
 延在部124は、図11Aに示すように、接続端子120Aを正面から見たときに、第1接続ピン121と第2接続ピン122との間に位置する。延在部124は、連結部123から第1接続ピン121の長手方向(第2接続ピン122の長手方向でもある)に直線状に延在している。延在部124の先端部は、第1接続ピン121の先端部及び第2接続ピン122の先端部よりも突出している。
 図11Bに示すように、接続端子120Aを側方から見たときに、第1接続ピン121及び第2接続ピン122と延在部124とは、前後方向にずれた位置に存在している。つまり、延在部124は、第1接続ピン121及び第2接続ピン122の並び方向を含む平面には存在していない。延在部124と第1接続ピン121及び第2接続ピン122とは、段違いに形成されている。
 延在部124は、連結部123から、第1接続ピン121の先端部側とは反対側に突出してからUターンして第1接続ピン121の先端部側に向かって延在している。具体的には、図9及び図10に示される接続端子120Aの姿勢において、延在部124は、連結部123の下端から下方に向かって突出し、U字状に180°折れ曲がって上方に向かって延在している。
 連結部123における第1接続ピン121及び第2接続ピン122との接続部分には、接続端子120Aを構成する金属板の板厚未満の幅を有する切断部123aが設けられている。つまり、連結部123における第1接続ピン121及び第2接続ピン122との接続部分において、延在部124の延在方向の幅を狭くしている。具体的には、接続端子120Aを構成する金属板の板厚をtとし、切断部123aの幅をWとすると、W<tである。本実施の形態では、連結部123の全体が切断部123aになっている。
 次に、このように構成される接続端子120Aを用いて、ステータ10と回路基板20が組み合わされたステータ組立体2を製造する方法について、図13A~図13Dを用いて説明する。図13A~図13Dは、実施の形態に係るステータ組立体2の製造方法を説明するための図である。図13Aは、中間組立体100Aを準備する工程を示している。図13Bは、ステータ10及び回路基板20を準備する工程を示している。図13Cは、ステータ10と回路基板20とを接続する工程を示している。図13Dは、接続端子120Aの連結部123を切断する工程を示している。なお、図13A~図13Dにおいて、巻線12は省略している。
 図13Aに示すように、中間組立体100Aを準備する。具体的には、コアブロック110と接続端子120Aとインシュレータ130とで構成された中間組立体100Aを準備する。
 図示されていないが、中間組立体100Aには巻線12が設けられている。このとき、接続端子120Aにおける第1接続ピン121に巻線12の一端を結線する。接続端子120Aにおける第2接続ピン122に巻線12の他端を結線する。
 例えば、第1接続ピン121の第1結線部121bに、巻線12の一端を絡げて、第1結線部121bと巻線12とを結線する。第2接続ピン122の第2結線部122bに、巻線12の他端を絡げて、第2結線部122bと巻線12とを結線する。
 このとき、第1接続ピン121と第2接続ピン122とが連結部123で連結されている。このため、第1接続ピン121及び第2接続ピン122と巻線12とを結線するときの応力又は熱ストレスによって、第1接続ピン121及び第2接続ピン122が斜めに倒れることを効果的に抑制することができる。
 第1接続ピン121及び第2接続ピン122と巻線12とは、ヒュージングによって結線される。これにより、第1接続ピン121及び第2接続ピン122と巻線12とを半田付けで結線する場合と比べて、応力又は熱ストレスを緩和することができる。したがって、第1接続ピン121及び第2接続ピン122が斜めに倒れることを一層抑制できる。
 第1接続ピン121及び第2接続ピン122と巻線12とは、ヒュージングではなく、半田付けによって結線してもよい。第1接続ピン121及び第2接続ピン122と巻線12とを半田付けで結成した場合であっても、第1接続ピン121と第2接続ピン122とが連結部123で連結される。これにより、第1接続ピン121及び第2接続ピン122と巻線12とを半田付けするときの応力又は熱ストレスによって、第1接続ピン121及び第2接続ピン122が斜めに倒れることを抑制することができる。
 次に、図13Bに示すように、ステータ10及び回路基板20を準備する。具体的には、接続端子120A、ステータコア11及び巻線12(不図示)を有するステータ10と、回路基板20とを準備する。
 ステータコア11は、複数のコアブロック110によって構成されている。接続端子120Aは、複数のコアブロック110の各々に対応して設けられている。したがって、ステータ10については、一つのコアブロック110と一つの接続端子120Aと一つの巻線12とで構成された中間組立体100Aを用いて準備する。
 この場合、複数の中間組立体100Aを円筒状に配置する。具体的には、複数の中間組立体100Aを、各中間組立体100Aの長手方向がステータ10の筒軸方向と平行になるような姿勢で、円環状に配列する。このとき、複数の中間組立体100Aは、各中間組立体100Aの接続端子120Aが一方向に揃うように配置される。つまり、複数の中間組立体100Aの各々における接続端子120Aは、ステータ10の筒軸方向の一方に向かって突出している。これにより、円筒状に配置された複数の中間組立体100Aで構成されたステータ10を準備することができる。
 次に、図13Cに示すように、複数の中間組立体100Aで構成されたステータ10と回路基板20とを接続する。具体的には、接続端子120Aを回路基板20に接続することで、ステータ10を回路基板20に接続する。このとき、ステータ10における全ての中間組立体100Aの接続端子120Aを、回路基板20に同時に接続する。
 具体的には、全ての中間組立体100Aにおいて、接続端子120Aにおける第1接続ピン121及び第2接続ピン122を、回路基板20の貫通孔21に同時に挿入する。より具体的には、図13Bの実線矢印に示されるように、各中間組立体100Aにおいて、第1接続ピン121の第1本体部121aを、隣接する2つの貫通孔21の一方に挿入する。第2接続ピン122の第2本体部122aを、隣接する2つの貫通孔21の他方に挿入する。
 図14は、実施の形態に係る接続端子120Aを回路基板20の貫通孔21に圧入するときの様子を示す図である。第1接続ピン121及び第2接続ピン122を貫通孔21に挿入する際、第1接続ピン121及び第2接続ピン122を貫通孔21に圧入する。具体的には、図14に示すように、第1接続ピン121における第1本体部121aと、第2接続ピン122における第2本体部122aとを、貫通孔21に軽圧入する。つまり、第1接続ピン121の第1本体部121aと第2接続ピン122の第2本体部122aとを、貫通孔21に押し込んで、貫通孔21にきつく嵌め込む。
 このとき、図14の(a)に示すように、第1接続ピン121には第1スリット121dが形成されている。これにより、図14の(b)に示すように、第1接続ピン121を貫通孔21に圧入することで、第1接続ピン121が貫通孔21の内面から受ける応力を、第1スリット121dで吸収することができる。第2接続ピン122には第2スリット122dが形成されている。これにより、第2接続ピン122を貫通孔21に圧入することで、第2接続ピン122が貫通孔21の内面から受ける応力を、第2スリット122dで吸収することができる。このように、第1スリット121d及び第2スリット122dは、応力吸収スリットとして機能する。
 第1接続ピン121及び第2接続ピン122を貫通孔21に圧入することで、第1接続ピン121及び第2接続ピン122を、回路基板20に固定することができる。つまり、接続端子120Aが回路基板20に固定される。これにより、全ての接続端子120Aが回路基板20に同時に固定される。したがって、中間組立体100Aが回路基板20に固定される。
 このとき、回路基板20の貫通孔21の内周面には、回路基板20の主面に形成された配線と電気的に接続された導電膜が被覆されている。これにより、第1接続ピン121及び第2接続ピン122を貫通孔21に圧入して貫通孔21の内周面に接触させることで、第1接続ピン121及び第2接続ピン122と回路基板20の配線とを電気的に接続することができる。
 このように、接続端子120Aにおける第1接続ピン121及び第2接続ピン122を回路基板20の貫通孔21に圧入することで、第1接続ピン121及び第2接続ピン122と回路基板20とを、電気的及び機械的に接続することができる。つまり、半田付けすることなく、第1接続ピン121及び第2接続ピン122と回路基板20とを電気的及び機械的に接続することができる。
 第1接続ピン121及び第2接続ピン122には、巻線12が接続されている。このため、第1接続ピン121及び第2接続ピン122を貫通孔21に圧入することで、第1接続ピン121及び第2接続ピン122を介して、回路基板20の配線と巻線12とを電気的に接続することができる。
 このとき、上記のように、第1接続ピン121と第2接続ピン122とが連結部123で連結されていて、第1接続ピン121及び第2接続ピン122が倒れることが抑制されている。このため、第1接続ピン121及び第2接続ピン122を回路基板20に挿入する際、回路基板20の貫通孔21に干渉することなく、第1接続ピン121及び第2接続ピン122を貫通孔21にスムーズに挿入することができる。これにより、ステータ組立体2の品質を確保できる。また、生産性の向上によるコストの削減を図ることができる。
 回路基板20の端部には、切り欠き部22が形成されている。切り欠き部22は、接続端子120Aの延在部124に対応して形成されている。ステータ10(中間組立体100)を回路基板20に接続する際、図13Bの破線矢印に示されるように、接続端子120Aにおける延在部124が、切り欠き部22に挿入される。つまり、接続端子120Aを回路基板20に接続する際、第1接続ピン121及び第2接続ピン122が、回路基板20の貫通孔21に挿入される。また、延在部124が、切り欠き部22に挿入される。
 これにより、延在部124と切り欠き部22とがガイド部として機能する。したがって、接続端子120Aを回路基板20に容易に接続することができる。
 次に、図13Dに示すように、接続端子120Aの連結部123を切断する。これにより、第1接続ピン121と第2接続ピン122とを分離する。ここでは、延在部124によって連結部123を切断している。
 具体的には、図13Cに示される矢印のように、延在部124の先端部を手前に引いて倒すようにして回転させる。これにより、連結部123を支点として延在部124が回転する。よって、この原理により、連結部123をねじって切断することができる。このとき、連結部123及び延在部124は、一体となって、接続端子120Aから除去される。つまり、連結部123及び延在部124は、第1接続ピン121及び第2接続ピン122から取り外される。
 このように、接続端子120Aに延在部124を設けることで、連結部123を容易に切断することができる。しかも、延在部124の先端部が第1接続ピン121の先端部及び第2接続ピン122の先端部よりも突出している。これにより、延在部124の先端部を容易に摘まむことができる。したがって、連結部123を切断するときの作業性を向上させることができる。
 図9及び図10に示すように、第1接続ピン121及び第2接続ピン122と延在部124とが前後方向にずれた位置に存在している。
 この構成により、連結部123を除去する際に、延在部124を手前に引いて、容易に回転させることができる。これにより、連結部123を切断するときの作業性が一層向上する。
 図9及び図10に示すように、本実施の形態において、延在部124は、連結部123から第1接続ピン121の先端部側とは反対側に突出してから、Uターンして、第1接続ピン121の先端部側に向かって延在している。
 この構成により、延在部124を回転させたときに、連結部123に与えるねじり応力を大きくすることができる。したがって、連結部123を容易に切断することができる。
 図11Aに示すように、連結部123における第1接続ピン121及び第2接続ピン122との接続部分に、接続端子120Aを構成する金属板の板厚未満の幅を有する切断部123aが設けられている。
 これにより、切断部123aの強度を小さくできる。したがって、切断部123aにおいて、連結部123をさらに容易に切断することができる。
 このとき、図13Dに示すように、第1接続ピン121及び第2接続ピン122から連結部123が切断されることで、第1接続ピン121における第2接続ピン122側の端面に第1突起121cが形成される。また、第2接続ピン122における第1接続ピン121側の端面に第2突起122cが形成される。
 以上のようにして、図13Dに示すように、複数の中間組立体100Aで構成されたステータ10と回路基板20とが組み合わされたステータ組立体2を作製することができる。
 以上、本実施の形態に係る接続端子120Aは、回路基板20に形成された貫通孔21に圧入されることで、回路基板20と電気的及び機械的に接続される第1接続ピン121を有する。第1接続ピン121は、第1接続ピン121の圧入方向に沿って延在する第1スリット121dを有する。
 この構成により、第1接続ピン121を回路基板20の貫通孔21に圧入する際に、第1スリット121dで応力を吸収しながら、第1接続ピン121を貫通孔21に嵌め込むことができる。これにより、半田付けすることなく、第1接続ピン121と回路基板20とを電気的及び機械的に接続することができる。つまり、第1接続ピン121と回路基板20とを半田付けしなくても、第1接続ピン121が回路基板20から外れることを抑制できる。また、第1接続ピン121と回路基板20との半田付けが不要になる。このため、生産性を向上させることができる。かつ、コストの削減を図ることができる。
 しかも、接続端子120Aは、第1接続ピン121だけではなく、第1接続ピン121に連結された第2接続ピン122も有している。
 これにより、接続端子120Aを回路基板20に接続する際に、第1接続ピン121を貫通孔21に圧入するだけではなく、第2接続ピン122も貫通孔21に圧入することができる。つまり、接続端子120Aを回路基板20に接続するだけで、第1接続ピン121と第2接続ピン122とを同時に回路基板20に接続することができる。これにより、さらに、生産性を向上させることができる。
 また、接続端子12Aは、銅合金によって構成されている。
 この構成により、接続端子120Aが適度な弾性を持つ。これにより、第1接続ピン121及び第2接続ピン122を回路基板20の貫通孔21に圧入することで、第1接続ピン121及び第2接続ピン122を、回路基板20に弾性保持させることができる。したがって、第1接続ピン121及び第2接続ピン122を、回路基板20に堅牢に固定することができる。
 また、接続端子120Aの表面に、導電性の表面処理が施されている。
 この構成により、第1接続ピン121及び第2接続ピン122を回路基板20の貫通孔21に圧入したときに、貫通孔21の内周面に形成された導電膜と接続端子120Aの表面との接触抵抗を低減することができる。したがって、第1接続ピン121及び第2接続ピン122と回路基板20との電気伝導性を向上させることができる。
 以上のように、本実施の形態のステータ組立体2は、接続端子120Aと、接続端子120Aが接続される巻線12と、巻線12が巻き回されるステータコア11と、を備える。
 また、本実施の形態の電動機1は、ステータ組立体2と、ステータ組立体2と向かい合って位置するロータと、を備える。
 (変形例)
 以上、本開示について、実施の形態に基づいて説明した。しかし、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態において、接続端子120Aにおける第1接続ピン121に形成された第1スリット121dの幅は、ほぼ一定である。しかし、これに限らない。
 図15は、変形例1に係る接続端子120Bにおける第1接続ピン121Bの拡大断面図である。具体的には、図15に示される接続端子120Bのように、第1接続ピン121Bの先端部側部分における第1スリット121dの幅が、第1接続ピン121Bの先端部側とは反対側の根元部側部分における第1スリット121dの幅よりも、広くなっていてもよい。言い換えれば、第1スリット121dの幅は、第1接続ピン121Bの根元部側から第1接続ピン121Bの先端部側に向かって、広くなっていてもよい。
 この構成により、貫通孔21に圧入された第1接続ピン121Bの回路基板20への保持力を低下させることなく、第1接続ピン121Bを貫通孔21に圧入する際の応力を、第1スリット121dによって効率的に吸収して、第1接続ピン121Bをスムーズに貫通孔21に嵌め込むことができる。図15の構成は、第2接続ピン122に適用してもよい。
 また、図16に示される接続端子120Cのように、接続端子120Cが貫通孔21に挿入されたときに貫通孔21に接触する部分における第1スリット121dの幅が、第1接続ピン121Cの先端部側部分における第1スリット121dの幅よりも狭く、かつ、第1接続ピン121Cの先端部側とは反対側の根元部側部分における第1スリット121dの幅よりも、狭くなっていてもよい。図16は、変形例2に係る接続端子120Cにおける第1接続ピン121Cの拡大断面図である。言い換えれば、第1スリット121dの中央部分の幅は、第1スリット121dの先端部側及び根元部側の幅よりも狭く、なっていてもよい。
 この構成でも、貫通孔21に圧入された第1接続ピン121Cの回路基板20への保持力を低下させることなく、第1接続ピン121Cを貫通孔21に圧入する際の応力を第1スリット121dによって効率的に吸収して、第1接続ピン121Cをスムーズに貫通孔21に嵌め込むことができる。図16の構成は、第2接続ピン122に適用してもよい。
 上記実施の形態において、第1接続ピン121の両側面及び第2接続ピン122の両側面は、いずれも直線状である。しかし、これに限らない。図17は、変形例3に係る接続端子120Dにおける第1接続ピン121Dの拡大断面図である。図17に示される接続端子120Dのように、例えば、第1接続ピン121Dの両側面は、外側に向かって凸となる円弧状であってもよい。この構成により、貫通孔21に圧入された第1接続ピン121Dの回路基板20への保持力を向上させることができる。図17の構成は、第2接続ピン122に適用してもよい。
 上記実施の形態において、接続端子120Aは、第1接続ピン121及び第2接続ピン122を有している。しかし、これに限らない。例えば、接続端子120Aは、第1接続ピン121及び第2接続ピン122の一方のみを有していてもよい。この場合、接続端子120Aは、第1接続ピン121そのもの又は第2接続ピン122そのものとなる。
 上記実施の形態において、接続端子120Aは、ステータ組立体2における回路基板20に適用した。しかし、これに限らない。接続端子120Aは、電動機1に用いられる回路基板に広く適用することができる。例えば、接続端子120Aは、電動機が有するエンコーダの回路基板に適用してもよい。
 上記実施の形態において、ロータ30は、IPMロータである。しかし、これに限らない。例えば、ロータ30は、複数の永久磁石がロータコアの外表面に設けられた表面磁石型ロータ(SPM(Surface Permanent Magnetic)ロータ)であってもよい。
 上記実施の形態において、ロータ30は、複数の鋼板が積層された積層体である。しかし、これに限らない。例えば、ロータ30は、バルク材で構成したものであってもよい。
 上記実施の形態において、電動機1は、6極12スロットである。しかし、これに限らない。つまり、ステータ10のスロット数は12に限るものではない。ロータ30の磁極数は6(つまり、永久磁石33の数が6個)に限るものではない。ステータ10のスロット数及びロータ30の磁極数は、任意の数を適用できる。
 その他、上記各実施の形態に対して当業者が思い付く各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の技術は、電動機及び電動機を備える電気機器等に広く利用することができる。
 1 電動機
 2 ステータ組立体
 10 ステータ
 11 ステータコア
 11a ティース
 11b スロット
 12 巻線
 20 回路基板
 21 貫通孔
 22 切り欠き部
 30 ロータ
 31 回転軸
 32 ロータコア
 32a 磁石挿入穴
 33 永久磁石
 41 第1軸受け
 42 第2軸受け
 51 第1ブラケット
 52 第2ブラケット
 100、100A 中間組立体
 110 コアブロック
 111 ティース部
 112 ヨーク部
 120、120A、120B、120C、120D 接続端子
 121、121B、121C、121D 第1接続ピン
 121a 第1本体部
 121b 第1結線部
 121c 第1突起
 121d 第1スリット
 122 第2接続ピン
 122a 第2本体部
 122b 第2結線部
 122c 第2突起
 122d 第2スリット
 123 連結部
 123a 切断部
 124 延在部
 130 インシュレータ
 131 第1インシュレータ
 132 第2インシュレータ

Claims (7)

  1.  電動機に用いられる回路基板に接続される接続端子であって、
     前記回路基板に形成された貫通孔に圧入されることで、前記回路基板と電気的及び機械的に接続される接続ピンを有し、
     前記接続ピンは、前記接続ピンの圧入方向に沿って延在するスリットを有する、
     接続端子。
  2.  前記接続ピンの先端部側部分における前記スリットの幅は、前記接続ピンの前記先端部側とは反対側の根元部側部分における前記スリットの幅よりも広い、
     請求項1に記載の接続端子。
  3.  前記接続端子が前記貫通孔に挿入されたときに前記貫通孔に接触する部分における前記スリットの幅は、前記接続ピンの先端部側部分における前記スリットの幅よりも狭く、かつ、前記接続ピンの前記先端部側とは反対側の根元部側部分における前記スリットの幅よりも狭い、
     請求項1に記載の接続端子。
  4.  前記接続端子は、銅合金によって構成されている、
     請求項1~3のいずれか1項に記載の接続端子。
  5.  前記接続端子の表面に、導電性の表面処理が施されている、
     請求項1~3のいずれか1項に記載の接続端子。
  6.  請求項1~3のいずれか1項に記載の接続端子と、
     前記接続端子が接続される巻線と、
     前記巻線が巻き回されるステータコアと、を備える、
     ステータ組立体。
  7.  請求項6に記載のステータ組立体と、
     前記ステータ組立体と向かい合って位置するロータと、を備える、
     電動機。
PCT/JP2023/013764 2022-05-27 2023-04-03 接続端子、ステータ組立体及び電動機 WO2023228581A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087064 2022-05-27
JP2022087064 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228581A1 true WO2023228581A1 (ja) 2023-11-30

Family

ID=88919051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013764 WO2023228581A1 (ja) 2022-05-27 2023-04-03 接続端子、ステータ組立体及び電動機

Country Status (1)

Country Link
WO (1) WO2023228581A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248864A (ja) * 2008-04-09 2009-10-29 Mitsubishi Electric Corp 電動式パワーステアリング装置及びその製造方法
JP2016036243A (ja) * 2014-07-31 2016-03-17 株式会社デンソー 駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248864A (ja) * 2008-04-09 2009-10-29 Mitsubishi Electric Corp 電動式パワーステアリング装置及びその製造方法
JP2016036243A (ja) * 2014-07-31 2016-03-17 株式会社デンソー 駆動装置

Similar Documents

Publication Publication Date Title
JP5519808B2 (ja) ステータおよびこのステータを備える回転電機
US6194806B1 (en) Compact cylindrical radial gap type motor
JP5734794B2 (ja) ステータおよびこのステータを備える回転電機
CN109417317B (zh) 定子单元、定子和包括其的电机
WO2006137125A1 (ja) 回転電動機の電機子、回転電動機及びその製造方法
US20090243424A1 (en) Gap winding motor
US20020113514A1 (en) Dynamo-electric machine
CN113939979B (zh) 线圈和具有该线圈的定子、转子、电动机以及线圈的制造方法
JP5277743B2 (ja) 回転電機
WO2023228581A1 (ja) 接続端子、ステータ組立体及び電動機
WO2023228551A1 (ja) 接続端子、ステータ組立体、電動機及びステータ組立体の製造方法
KR100213571B1 (ko) 일체형 스테이터를 이용한 더블로터/단일스테이터방식의 코어레스형 비엘디씨 모터
JP5708706B2 (ja) 回転電機
JP2011151875A (ja) 同期回転機の固定子
US20020079774A1 (en) Dynamo-electric machine
JP2014033605A (ja) 回転電機
JPH0993859A (ja) 高効率な偏平コアレス振動モータ
JPH10271795A (ja) ステッピングモータ
JP5738084B2 (ja) 整流子、整流子を備えた回転子及び、整流子を備えた回転子の製造方法
WO2018142844A1 (ja) モータ
WO2023228582A1 (ja) 電動機、コアブロック及びステータコア
KR20180054087A (ko) 스테이터 일체형 차량용 팬모터
WO2021131661A1 (ja) 電気機器
WO2023166818A1 (ja) 電機子及び回転電機
WO2023188591A1 (ja) 端子及び電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811460

Country of ref document: EP

Kind code of ref document: A1