WO2023228436A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2023228436A1
WO2023228436A1 PCT/JP2022/040389 JP2022040389W WO2023228436A1 WO 2023228436 A1 WO2023228436 A1 WO 2023228436A1 JP 2022040389 W JP2022040389 W JP 2022040389W WO 2023228436 A1 WO2023228436 A1 WO 2023228436A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
sensor
power converter
power
voltage
Prior art date
Application number
PCT/JP2022/040389
Other languages
English (en)
French (fr)
Inventor
郁也 大野
伸浩 木原
慎介 井手之上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023228436A1 publication Critical patent/WO2023228436A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

Definitions

  • This application relates to a power conversion device.
  • Hybrid vehicles have been put into practical use in which an internal combustion engine drives a generator to generate electricity, and the generated electricity drives an electric motor to power the drive wheels.
  • a hybrid vehicle has a battery, and when the internal combustion engine is stopped, power is supplied from the battery to power the drive wheels of the vehicle. When the internal combustion engine is operating, the battery is charged by electric power from a generator driven by the internal combustion engine. Further, even when the internal combustion engine is in operation, when necessary, the electric motor can be driven more powerfully by adding electric power supplied from the battery to the electric power generated by the generator.
  • An AC motor represented by a three-phase brushless motor is often used as a drive motor for a hybrid vehicle.
  • the current generated by the generator is converted to direct current, used as a direct current power source, and used to charge the battery.
  • an alternating current is generated from this direct current power source by a direct current alternating current converter (power converter) to drive an alternating current motor.
  • a direct current alternating current converter power converter
  • the primary current of the electric motor is vector-controlled by a DC-AC converter so as to generate a target drive output.
  • the output of the internal combustion engine is controlled so as to generate the electric power necessary for the output of the DC/AC converter.
  • a technique has been proposed in which the output current of the generator and the supply current from the battery are measured by a current sensor to accurately control the supply current (for example, Patent Document 1).
  • a current sensor that measures the output current of a DC-AC converter that supplies power to the electric motor that drives the drive wheels.
  • a current sensor that measures the output current of a generator, a current sensor that measures the current supplied from a battery, and a current sensor that measures the output current of a DC/AC converter that drives a motor are important sensors. If all of these sensors use a common power source to operate, if the sensor power source is lost, all current sensors become unusable, making current control difficult. As a result, it becomes difficult for the hybrid vehicle to travel. No countermeasures for this problem are described in Patent Document 1.
  • Limp Home is a function that allows you to reach your home even when driving at low speeds.
  • the present application was made in order to solve the above-mentioned problems in power conversion devices, and provides a power converter that minimizes the number of sensor power supplies while ensuring a limp home function in response to failures in the sensor power supplies of various current sensors.
  • the purpose is to obtain a conversion device.
  • the power conversion device disclosed in this application includes: a first power converter that converts an alternating current generated by a first rotating electrical machine coupled to an output shaft of an internal combustion engine into a direct current, and outputs the direct current from a direct current terminal; a second power converter connected to the DC terminal, converting the DC current into an AC current, and supplying the AC current to a second rotating electric machine coupled to the drive wheel; a DC power converter connected between the battery and the DC terminal to change the voltage; a first current sensor that measures the current flowing between the first power converter and the first rotating electrical machine; a second current sensor that measures the current flowing between the second power converter and the second rotating electrical machine; A current sensor for a DC power converter that measures the current flowing between a battery and a DC power converter; a first sensor power supply that supplies power to the first current sensor and the current sensor for the DC power converter; The sensor includes a second sensor power supply that supplies power to the second current sensor.
  • a current sensor of a first power converter that converts an alternating current generated by a first rotating electrical machine driven by an internal combustion engine into a direct current, and a direct current power that boosts the battery voltage.
  • a first sensor power source that supplies power to a current sensor that measures the current of the converter; and a power source that supplies power to the current sensor of the second power converter that supplies alternating current to a second rotating electrical machine coupled to the drive wheel. Since the second sensor power supply is provided, it is possible to obtain a power conversion device that minimizes the number of sensor power supplies while ensuring a limp home function in response to a failure of the sensor power supply. This makes it possible to reduce the number of sensor power sources in the power conversion device, thereby making it possible to reduce the size, weight, and cost of the power conversion device.
  • FIG. 1 is a configuration diagram of a power conversion device according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram of a control device of a power conversion device according to a first embodiment
  • FIG. FIG. 2 is a circuit diagram of a first power converter of the power conversion device according to Embodiment 1.
  • FIG. FIG. 2 is a circuit diagram of a second power converter of the power conversion device according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing power supply when the sensor power supply of the power converter according to the first embodiment is normal;
  • FIG. 3 is a first diagram illustrating power supply when the first sensor power supply fails in the power converter according to the first embodiment.
  • FIG. 7 is a second diagram showing power supply when the first sensor power supply fails in the power conversion device according to the first embodiment.
  • FIG. 3 is a diagram showing power supply when a second sensor power supply failure occurs in the power conversion device according to the first embodiment.
  • FIG. 7 is a diagram illustrating power supply when a second sensor power supply
  • FIG. 1 is a configuration diagram of a power conversion device 10 according to the first embodiment.
  • the power conversion device 10 connects a battery 2 of the vehicle 1 , a first rotating electrical machine 8 a dynamically coupled to the output shaft of the internal combustion engine 6 , and a second rotating electrical machine 8 b dynamically coupled to the drive wheels 17 .
  • the mechanical connection may be a direct connection of the main shaft, a connection via a reduction gear and a clutch, or a connection via a rotation transmission mechanism using a belt.
  • the internal combustion engine 6 is shown as ENG
  • the first rotating electric machine 8a is shown as M1
  • the second rotating electric machine 8b is shown as M2.
  • the first rotating electrical machine 8a and the second rotating electrical machine 8b may be three-phase AC rotating electrical machines including a U-phase winding, a V-phase winding, and a W-phase winding.
  • the first rotating electrical machine 8a and the second rotating electrical machine 8b may be capable of rotationally driving a load and regenerating the rotational energy of the load as electrical energy.
  • an electric motor with a rotor equipped with a permanent magnet an electric motor with a rotor equipped with an electromagnet, a brush type electric motor, a brushless electric motor, etc. can be used.
  • the power converter 10 includes a first power converter 13a, a second power converter 13b, a DC power converter 12, a control device 14, a sensor power supply 15, a first current sensor 4, a second current sensor 5, A current sensor 3 for a DC power converter is provided.
  • the first rotating electrical machine 8a is driven by the output of the internal combustion engine 6 mounted on the vehicle 1 to generate electricity, and the alternating current generated by the first power converter 13a is converted to direct current, and the positive DC terminal 23a, It is output from the negative side DC terminal 23b.
  • the second power converter 13b supplied with DC current from the positive DC terminal 23a and the negative DC terminal 23b converts the DC current into AC current, rotates the second rotating electric machine 8b, and drives the drive wheel 17. do.
  • the DC power converter 12 changes the voltage of the battery 2 mounted on the vehicle 1 and transmits and receives DC current to and from the positive DC terminal 23a and the negative DC terminal 23b. If necessary, current is supplied from the battery 2 to the positive DC terminal 23a and the negative DC terminal 23b, and when charging the battery 2, current is received from the positive DC terminal 23a and the negative DC terminal 23b.
  • the current passing through the first power converter 13a, the second power converter 13b, and the DC power converter 12 is detected by the first current sensor 4, the second current sensor 5, and the current sensor 3 for DC power converter. be done.
  • the first current sensor 4 and the DC power converter current sensor 3 are supplied with power from the first sensor power supply 15a via the first sensor power supply line 9a.
  • the second current sensor 5 is supplied with power from the second sensor power supply 15b via the second sensor power supply line 9b.
  • the first sensor power supply 15a and the second sensor power supply 15b are built into the sensor power supply 15. However, the first sensor power source 15a and the second sensor power source 15b may be installed independently at different locations.
  • the control device 14 receives the detection signal of the first current sensor 4 from the input terminal I1, the detection signal of the second current sensor 5 from the input terminal I2, and the detection signal of the DC power converter current sensor 3 from the input terminal IC. input.
  • the control device 14 controls the second power converter 13b from the control terminal C2. Thereby, the control device 14 can control the amount of current that drives the second rotating electric machine 8b according to the driving force required by the vehicle 1.
  • the control device 14 controls the first power converter 13a from the control terminal C1. Thereby, the control device 14 can control the amount of current generated and supplied by the first rotating electric machine 8a according to the power required by the vehicle 1.
  • the control device 14 can adjust the output of the internal combustion engine 6 based on a signal from the control terminal CE.
  • the control device 14 can control the current generated by the first rotating electric machine 8a by adjusting the output of the internal combustion engine 6 and controlling the rotation speed of the internal combustion engine 6.
  • the DC power converter 12 boosts the voltage of the battery 2 to the voltages of the positive DC terminal 23a and the negative DC terminal 23b.
  • the supply current from the battery 2 or the charging current to the battery 2 is transmitted to the input terminal IC of the control device 14 as a signal of the DC power converter current sensor 3.
  • FIG. 2 is a hardware configuration diagram of the control device 14 according to the first embodiment.
  • Each function of the control device 14 is realized by a processing circuit included in the control device 14.
  • the control device 14 includes, as a processing circuit, an arithmetic processing device 90 (also referred to as a processor) such as a CPU (Central Processing Unit), and a storage device that exchanges data with the arithmetic processing device 90.
  • the arithmetic processing unit 90 includes an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, and various signal processing circuits. You can. Furthermore, a plurality of arithmetic processing units 90 of the same type or different types may be provided, and each process may be shared and executed.
  • ASIC Application Specific Integrated Circuit
  • IC Integrated Circuit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the control device 14 includes, as a storage device 91, a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing device 90, and a ROM (Read Only Memory), etc.
  • the storage device 91 may be built into the arithmetic processing device 90.
  • the input circuit 92 is connected to input signals, sensors, and switches, and includes an A/D converter and the like that inputs the signals of these input signals, sensors, and switches to the arithmetic processing device 90 . Specifically, signals from the first current sensor 4, the second current sensor 5, the DC power converter current sensor 3, etc. are input.
  • the output circuit 93 is connected to electrical loads such as gate drive circuits that drive switching elements on and off, and includes a drive circuit that outputs control signals from the arithmetic processing device 90 to these electrical loads. Specifically, output signals for driving the switching elements of the first power converter 13a, the second power converter 13b, and the DC power converter 12 are output.
  • Each function of the control device 14 is such that the arithmetic processing device 90 executes software (program) stored in a storage device 91 such as a ROM, and controls the control device 14 such as the storage device 91, the input circuit 92, and the output circuit 93. This is achieved by cooperating with other hardware. Note that setting data such as threshold values and determination values used by the control device 14 are stored in a storage device 91 such as a ROM as part of software (program). Each function of the control device 14 may be configured by a software module, or may be configured by a combination of software and hardware.
  • the DC power converter 12 in FIG. 1 has a function as a voltage converter that converts the voltage of the battery 2 and the voltage between the positive DC terminal 23a and the negative DC terminal 23b.
  • the DC power converter 12 is also called a DC-DC converter.
  • the DC power converter 12 includes a reactor 7, a positive switching element 16b, a negative switching element 16a, and a DC power converter current sensor 3 that detects reactor current.
  • the DC power converter 12 is connected to a low voltage side smoothing capacitor 21 that smoothes the low voltage side voltage, and a high voltage side smoothing capacitor 22 that smooths the high voltage side voltage. Then, the control device 14 controls the positive side switching element 16b and the negative side switching element 16a.
  • the positive side switching element 16b and the negative side switching element 16a are connected in series with each other and constitute a switching circuit in the DC power converter 12.
  • the negative side switching element 16a may be configured by connecting a plurality of switching elements in parallel.
  • the positive side switching element 16b may also be configured by connecting a plurality of switching elements in parallel.
  • the switching of the positive side switching element 16b and the negative side switching element 16a is controlled by gate signals from control terminals G1 and G2 of the control device 14.
  • the positive side switching element 16b and the negative side switching element 16a are each configured by, for example, an IGBT (Insulated Gate Bipolar Transistor) in which a freewheeling diode is connected in antiparallel.
  • IGBT Insulated Gate Bipolar Transistor
  • FET Field Effect Transistor
  • a normal bipolar transistor having reversely connected diodes may be used as the switching element.
  • the DC power converter 12 boosts the voltage of the DC power output by the battery 2 and supplies it to the first power converter 13a and the second power converter 13b.
  • the alternating current generated by the first rotating electric machine 8a may be converted into direct current by the first power converter 13a, and the voltage at this time may be stepped down by the direct current power converter 12 to charge the battery 2.
  • the DC power converter 12 functions as a step-up converter or a step-down converter.
  • FIG. 3 is a circuit diagram of the first power converter 13a of the power converter 10 according to the first embodiment.
  • the first power converter 13a functions as an AC-DC converter that converts the three-phase AC current output from the first rotating electric machine 8a into DC current.
  • the first power converter 13a includes U-phase, V-phase, and W-phase positive switching elements 16d, 16f, and 16h connected to a positive DC terminal 23a, and U-phase switching elements 16d, 16f, and 16h connected to a negative DC terminal 23b, It has V-phase and W-phase negative switching elements 16c, 16e, and 16g.
  • These switching elements like the positive side switching element 16b and the negative side switching element 16a of the DC power converter 12, are constituted by IGBTs and the like, and include free wheel diodes connected in antiparallel.
  • the positive switching element for each phase is called the upper arm, and the negative switching element for each phase is called the lower arm.
  • the upper arm and lower arm of each phase are connected in series, and the U phase, V phase, and W phase are connected from each connection point. Transfers three-phase alternating current.
  • connection points of each phase are respectively connected to the windings of the first rotating electrical machine 8a, and the passing current of each phase is detected by the first current sensor 4a, 4b, 4c for each phase.
  • the detected current of the first current sensor 4 is inputted from the input terminal I1 of the control device 14.
  • the input terminal I1 is a general term for the three input terminals into which the detected values of the U-phase first current sensor 4a, the V-phase first current sensor 4b, and the V-phase first current sensor 4c are input. It shows.
  • Each switching element of the first power converter 13a is controlled by control terminals C11 to C16 of the control device 14.
  • the control terminals C11 to C16 are collectively referred to as the control terminal C1.
  • the control device 14 controls each switching element and the internal combustion engine 6 so that the output current of the first power converter 13a reaches a target value while monitoring the measured value of the first current sensor 4 that measures the output current. Control output. That is, the first current sensor 4 is provided so that the control device 14 can perform feedback control on the output of the first power converter 13a.
  • the three-phase alternating current supplied to the first power converter 13a is rectified by a switching element and converted into a direct current, which is then supplied to the positive side DC terminal 23a and the negative side DC terminal 23b.
  • the first rotating electrical machine 8a may function as a generator and supply current, or may be supplied with current and function as a motor.
  • the first power converter 13a may function as an AC/DC converter or as a DC/AC converter. When the internal combustion engine is stopped, the first power converter 13a converts the DC current whose voltage has been converted by the DC power converter 12 from the battery 2 into AC current to drive the first rotating electric machine 8a, and the internal combustion engine 6 start.
  • FIG. 4 is a circuit diagram of the second power converter 13b of the power converter 10 according to the first embodiment.
  • the second power converter 13b functions as a DC-AC converter that converts the DC current supplied from the positive DC terminal 23a and the negative DC terminal 23b into three-phase AC current that drives the second rotating electric machine 8b. do.
  • the second power converter 13b includes U-phase, V-phase, and W-phase positive switching elements 16j, 16l, and 16n connected to the positive DC terminal 23a, and U-phase switching elements 16j, 16l, and 16n connected to the negative DC terminal 23b, It has V-phase and W-phase negative switching elements 16i, 16k, and 16m.
  • These switching elements are composed of IGBTs, etc., like the positive side switching elements 16b, 16d, 16f, 16h and negative side switching elements 16a, 16c, 16e, 16g of the DC power converter 12 and the first power converter 13a. and a freewheeling diode connected in antiparallel.
  • the positive switching element for each phase is called the upper arm, and the negative switching element for each phase is called the lower arm.
  • the upper arm and lower arm of each phase are connected in series, and the U phase, V phase, and W phase are connected from each connection point. Transfers three-phase alternating current.
  • connection points of each phase are respectively connected to the windings of the second rotating electrical machine 8b, and the passing current of each phase is detected by second current sensors 5a, 5b, and 5c for each phase.
  • the detected current of the second current sensor 5 is input from the input terminal I2 of the control device, but in reality, the second current sensor 5a of the U phase and the second current sensor of the V phase are input.
  • the three terminals to which the detected values of the second current sensor 5b and V phase are input are collectively referred to as input terminal I2.
  • Each switching element of the second power converter 13b is controlled by control terminals C21 to C26 of the control device 14.
  • the control terminals C21 to C26 are collectively referred to as a control terminal C2.
  • the control device 14 controls each switching element so that the output current of the second power converter 13b reaches a target value while monitoring the measured value of the second current sensor 5 that measures the output current. That is, the second current sensor 5 is provided so that the control device 14 can perform feedback control on the output of the second power converter 13b.
  • the DC current supplied to the second power converter 13b is duty-controlled by a switching element and converted into a three-phase AC current, which is then supplied to the U-phase, V-phase, and W-phase coils of the second rotating electric machine 8b. Ru.
  • the second rotating electric machine 8b may function as an electric motor and be driven by being supplied with current, or may function as a generator and supply current.
  • the second power converter 13b may function as a DC/AC converter or as an AC/DC converter. When the vehicle 1 decelerates, the second rotating electric machine 8b is driven by the drive wheels 17 and functions as a generator, and the second power converter 13b converts the regenerated power into AC/DC to charge the battery 2.
  • the first current sensor 4 , the second current sensor 5 , and the DC power converter current sensor 3 receive sensor power from the sensor power supply 15 .
  • In-vehicle equipment is required to be smaller, lighter, and lower in cost. For this reason, it is desirable to share and minimize the sensor power supply as well as the installation of the power supply and the wiring to the sensor.
  • the power conversion device 10 includes three current sensors: a first current sensor 4, a second current sensor 5, and a DC power converter current sensor 3. There is. There are two power supplies for operating these sensors, a first sensor power supply 15a and a second sensor power supply 15b, and the wiring for supplying the power is a first sensor power line 9a and a second sensor power line. 9b, we are working to improve failure tolerance while reducing size, weight, and cost. Note that the elements of the plurality of sensors that measure the current may be the same, or different sensor elements may be used.
  • FIG. 5 is a diagram showing power supply when the sensor power supply of the power converter according to the first embodiment is normal.
  • the transmission of power given to the first rotating electric machine 8a driven by the internal combustion engine 6 is indicated by a white arrow.
  • the alternating current generated by the first rotating electrical machine 8a is converted into direct current by the first power converter 13a.
  • the converted DC current is converted to AC current by the second power converter 13b, and drives the second rotating electric machine 8b.
  • This series of current flows is indicated by arrows. Transmission of power given to the drive wheels 17 driven by the second rotating electric machine 8b is indicated by white arrows.
  • the current detected by the first current sensor 4 is shown as I1
  • the current detected by the second current sensor 5 is shown as I2
  • the current detected by the DC power converter current sensor 3 is shown as IC. There is.
  • the battery 2 exchanges DC current with the DC power converter 12, and the DC power converter 12 exchanges DC current with the first power converter 13a and the second power converter 13b.
  • a group of transducers that are feedback-controlled using a current sensor operated by a first sensor power supply 15a is shown in the area 20a.
  • a feedback controlled transducer using a current sensor operated by a second sensor power supply 15b is shown in area 20b.
  • FIG. 6 is a first diagram showing power supply when the first sensor power supply 15a of the power converter 10 according to the first embodiment fails.
  • the first current sensor 4 and the DC power converter current sensor 3 lose the power supply for sensor operation and cannot detect current.
  • control device 14 cannot perform current feedback control on the first power converter 13a and the DC power converter 12. This means that the first power converter 13a cannot be driven normally, and the DC power converter 12 cannot perform voltage step-up or step-down operations.
  • the control device 14 connects the DC terminal to the battery 2 by continuously turning on the positive side switching element 16b and continuously turning off the negative side switching element 16a using the gate signals output from the control terminals G1 and G2. Can be directly connected.
  • the drive state of the DC power converter at this time is called direct drive.
  • Direct-coupling drive allows current to be supplied from the battery 2 to the second power converter 13b.
  • the flow of current at that time is indicated by an arrow.
  • the second sensor power supply 15b when the second sensor power supply 15b is normal, the output current of the second power converter 13b can be detected by the second current sensor. Therefore, the second rotating electric machine 8b can be controlled by current feedback.
  • FIG. 7 is a second diagram showing power supply when the first sensor power supply fails in the power conversion device according to the first embodiment.
  • the first power converter 13a cannot be driven normally and stops driving. However, even when driving is stopped, the first power converter 13a can function as a three-phase full-wave rectifier circuit due to the freewheeling diodes connected in antiparallel to each switching element.
  • the rotation speed of the internal combustion engine 6 can be increased by a command from the control device 14.
  • the induced voltage generated by the first rotating electric machine 8a can be controlled to be higher than the voltage of the battery 2.
  • the current generated by the first rotating electrical machine 8a driven by the internal combustion engine 6 can be supplied to the second power converter 13b and the battery 2 through three-phase full-wave rectification. The flow of current at this time is shown by arrows in FIG.
  • the voltage of the battery 2 can be set to 14.7V, for example, and the rotational speed of the internal combustion engine 6 at which the induced voltage of the first rotating electric machine 8a exceeds this voltage can be measured and defined in advance.
  • the control device 14 may control the internal combustion engine 6 so that the rotational speed is equal to or higher than this rotational speed.
  • a battery voltage sensor for detecting the voltage of the battery 2 can also be provided.
  • the control device 14 may control the internal combustion engine 6 so that the rotational speed generates an induced voltage that exceeds the detected value of the battery voltage sensor.
  • a first rotating electrical machine voltage sensor that detects the output voltage of the first rotating electrical machine 8a may be provided to detect the induced voltage generated by the first rotating electrical machine 8a.
  • the control device 14 detects an abnormality in the first sensor power source 15a, the control device 14 controls the rotation of the internal combustion engine so that the induced voltage detected by the first rotating electric machine voltage sensor becomes larger than the battery voltage detected by the battery voltage sensor. Adjust the number. Thereby, it becomes more reliable to supply the current generated by the first rotating electric machine 8a driven by the internal combustion engine 6 to the second power converter 13b and the battery 2 through three-phase full-wave rectification.
  • the second power converter 13b can be driven normally. Since the second current sensor 5 operates by receiving sensor power from the second sensor power supply 15b, the control device 14 can feedback-control the second power converter 13b.
  • the second power converter 13b is driven by the current from the battery 2 supplied by direct-coupling the DC power converter 12 and the current by the three-phase full-wave supply by the first power converter 13a. It is possible to drive the rotating electrical machine 8b with high precision.
  • the vehicle 1 can control the second rotating electric machine 8b.
  • Direct connection control of the DC power converter 12 reduces the voltage at the DC terminal, and the drive current of the second rotating electrical machine 8b by the second power converter 13b is limited.
  • the vehicle 1 it is possible for the vehicle 1 to travel by driving the drive wheels 17, and the limp home function can be ensured.
  • FIG. 8 is a diagram showing the power supply when the second sensor power supply 15b of the power converter 10 according to the first embodiment fails.
  • the second current sensor 5 loses the power supply for sensor operation and becomes unable to detect current.
  • the control device 14 cannot perform current feedback control on the second power converter 13b.
  • the control device 14 controls the switching element of the second power converter 13b to a pulse width predetermined in accordance with the necessary drive current of the second rotating electric machine 8b using PWM (Pulse) control. Width Modulation) control, the second rotating electric machine 8b can be driven in anticipation.
  • PWM Pulse
  • Width Modulation Width Modulation
  • FIG. 9 is a diagram showing power supply when the second sensor power supply 15b of the power converter 10a according to the second embodiment fails.
  • the configuration of the power conversion device 10a according to the second embodiment differs from the configuration of the power conversion device 10 according to the first embodiment in that a third power converter 13c is added.
  • the control device 14a controls the switching elements of the third power converter 13c in addition to the first power converter 13a and the DC power converter 12 (the control device 14a is not shown).
  • a vehicle 1a equipped with the power conversion device 10a according to the second embodiment includes a third rotating electric machine 8c.
  • the third rotating electric machine 8c is indicated as M3.
  • the third rotating electric machine 8c is used as a rear electric motor for driving the rear wheels 17a.
  • the drive wheel 17 may be the object driven by the third rotating electric machine 8c.
  • the third rotating electric machine 8c is supplied with current and driven by the third power converter 13c.
  • the power conversion device 10a according to the second embodiment is the same as the power conversion device 10 according to the first embodiment.
  • the third power converter 13c can be driven normally.
  • the electric power of the battery 2 is converted into a voltage by the DC power converter 12 and the current is supplied to the DC terminal, and the electric power generated by the first rotating electric machine 8a is converted to a voltage and the current is supplied to the DC terminal by the first power converter. It can be supplied to the power converter 13c. Therefore, the control device 14a controls the third power converter 13c to supply current to the third rotating electrical machine 8c, and it becomes possible to drive the rear wheels 17a and travel.
  • the second power converter 13b stops driving.
  • the second rotating electric machine 8b is dragged by the drive wheels 17 and rotates.
  • the second rotating electric machine 8b is rotated and a back electromotive force is generated.
  • the second rotating electric machine 8b functions as a generator, and a direct current is generated by the rectification effect of a freewheeling diode connected in antiparallel to the switching element of the second power converter 13b whose drive is stopped. This current interferes with the control of the third power converter 13c.
  • the rotational speed of the drive wheels 17 increases, the induced voltage of the second rotating electrical machine 8b increases. Therefore, in order to suppress the induced voltage of the second rotating electric machine 8b, the running speed during limp home cannot be increased above a predetermined speed.
  • the disturbance caused by the induced voltage of the second rotating electric machine 8b can be suppressed by causing the control device 14a to operate the DC power converter 12 to boost the voltage.
  • a reasonable boost voltage higher than the normal boost voltage of the DC power converter 12 can be predetermined.
  • the control device 14a operates the DC power converter 12 to boost the voltage to a predetermined boost voltage.
  • the voltage may be increased to the rated maximum voltage of the DC power converter 12.
  • a third current sensor is provided to detect the output current of the third power converter 13c to perform highly accurate current feedback control.
  • the sensor power supply for the third current sensor can be supplied from the first sensor power supply 15a.
  • the third power converter 13c can be accurately controlled by current feedback from the control device 14a. can.
  • the current detected by the third current sensor is shown as I3.
  • the control device 14a stops driving the first power converter 13a, and directly connects the DC power converter 12. Control. In this case, it can be handled in the same manner as in Embodiment 1, and the limp home function can be ensured, so the explanation will be omitted.
  • the power converter 10a minimizes the number of sensor power supplies while ensuring an enhanced limp home function in response to a sensor power supply failure. Obtainable. Thereby, the number of sensor power supplies of the power conversion device 10a can be reduced, and the size, weight, and cost can be reduced.
  • a first power converter that converts an alternating current generated by a first rotating electrical machine coupled to an output shaft of an internal combustion engine into a direct current, and outputs the direct current from a direct current terminal; a second power converter connected to the DC terminal, converting DC current into AC current, and supplying AC current to a second rotating electric machine coupled to the drive wheel; a DC power converter connected between the battery and the DC terminal to change the voltage; a first current sensor that measures a current flowing between the first power converter and the first rotating electrical machine; a second current sensor that measures a current flowing between the second power converter and the second rotating electrical machine; a current sensor for a DC power converter that measures a current flowing between the battery and the DC power converter; a first sensor power supply that supplies power to the first current sensor and the DC power converter current sensor, and A power conversion device including a second sensor power supply that supplies power to the second current sensor.
  • (Additional note 2) comprising a control device that controls the DC power converter,
  • the DC power converter includes a positive switching element, a negative switching element, and a reactor
  • the power conversion device according to supplementary note 1 wherein the control device directly drives the DC power converter when detecting an abnormality in the first sensor power source.
  • the power conversion device according to supplementary note 2 wherein the control device turns on the positive switching element and turns off the negative switching element when detecting an abnormality in the first sensor power supply.
  • a battery voltage sensor that detects the voltage of the battery, and comprising a first rotating electrical machine voltage sensor that detects the output voltage of the first rotating electrical machine
  • the control device controls the internal combustion engine so that the induced voltage detected by the first rotating electrical machine voltage sensor becomes larger than the battery voltage detected by the battery voltage sensor.
  • the power conversion device according to Supplementary note 2 or 3, which adjusts the rotation speed of.
  • the control device controls the first power converter based on the current value detected by the first current sensor when the first sensor power source and the second sensor power source are normal;
  • the second power converter is controlled based on the current value detected by the second current sensor, and the DC power converter is controlled based on the current value detected by the current sensor for DC power converter.
  • Supplementary Note 2 wherein the second power converter is controlled without using the current value detected by the second current sensor when an abnormality of the second sensor power source is detected. 5.
  • the power conversion device according to any one of 4 to 4.
  • a third power converter connected to the DC terminal converts DC current into AC current and supplies AC current to a third rotating electric machine coupled to the drive wheel,
  • the control device detects an abnormality in the second sensor power source, it stops driving the second power converter, and controls the first power converter, the third power converter, and the DC power converter.
  • the power converter device according to any one of Supplementary Notes 2 to 5, which controls a power converter.
  • (Appendix 7) comprising a third current sensor that measures the current flowing between the third power converter and the third rotating electric machine, The power conversion device according to appendix 6, wherein the third current sensor receives power from the first sensor power source.
  • the first power converter converts direct current applied from the direct current terminal into alternating current when starting the internal combustion engine to drive the first rotating electric machine,
  • the power converter according to any one of Supplementary Notes 1 to 9, wherein the second power converter converts an alternating current generated by the second rotating electric machine into a direct current and outputs it to the direct current terminal during power regeneration.
  • Device converts an alternating current generated by the second rotating electric machine into a direct current and outputs it to the direct current terminal during power regeneration.
  • 2 battery 3 current sensor for DC power converter, 4 first current sensor, 5 second current sensor, 6 internal combustion engine, 8a first rotating electrical machine, 8b second rotating electrical machine, 8c third rotating electrical machine, 10, 10a power converter, 12 DC power converter, 13a first power converter, 13b second power converter, 13c third power converter, 14, 14a control device, 15a first sensor power supply, 15b second sensor power supply, 16a negative switching element, 16b positive switching element, 17 drive wheel, 17a rear wheel,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

内燃機関と結合された第一の回転電機(8a)が発生した交流電流を直流電流に変換する第一の電力変換器(13a)、直流電流を交流電流に変換し、駆動輪(17)と結合された第二の回転電機(8b)に交流電流を供給する第二の電力変換器(13b)、バッテリ(2)の電圧を変更する直流電力変換器(12)、第一の電力変換器(13a)と第一の回転電機(8a)との間の電流を計測する第一の電流センサ(4)、第二の電力変換器(13b)と第二の回転電機(8b)との間の電流を計測する第二の電流センサ(5)、バッテリ(2)と直流電力変換器(12)との間の電流を計測する直流電力変換器用電流センサ(3)、第一の電流センサ(4)と直流電力変換器用電流センサ(3)に電源を供給する第一のセンサ電源(15a)、および、第二の電流センサ(5)に電源を供給する第二のセンサ電源(15b)を備えた、電力変換装置(10)。

Description

電力変換装置
 本願は、電力変換装置に関する。
 内燃機関によって発電機を駆動して発電し、発電した電力によって電動機を駆動して駆動輪に動力を与えるハイブリッド車が実用化されている。ハイブリッド車はバッテリを有し、内燃機関の停止時はバッテリから電力を供給して車両の駆動輪に動力を与える。内燃機関の運転時には、内燃機関によって駆動された発電機の電力によってバッテリを充電する。また、内燃機関の運転中であっても必要時には発電機による発電電力とともに、バッテリから供給する電力を加えて電動機をより強力に駆動することができる。
 ハイブリッド車の駆動用電動機としては、三相ブラシレスモータに代表される交流電動機が用いられる場合が多い。発電機によって発電した電流は直流電流に変換して直流電源とし、バッテリの充電に供する。そして、この直流電源から直流交流変換器(電力変換器)によって交流電流を生成し交流電動機を駆動する。
 このようなハイブリッド車について、目標とする駆動出力を発生するように電動機の一次電流を直流交流変換器によってベクトル制御する。そして、直流交流変換器の出力に必要な電力を発生させるように内燃機関の出力を制御する。このとき、発電機の出力電流と、バッテリからの供給電流を電流センサによって計測して正確に供給電流を制御する技術が提案されている(例えば特許文献1)。
特開平5-146008号公報
 ハイブリッド車の駆動出力をより精度良く制御するためには、駆動輪を駆動する電動機に電力を供給する直流交流変換器の出力電流を計測する電流センサを用いることができる。発電機の出力電流を計測する電流センサ、バッテリからの供給電流を計測する電流センサとともに電動機を駆動する直流交流変換器の出力電流を計測する電流センサは重要なセンサである。これらのセンサが動作するための電源をすべて共通とした場合、センサ電源が失われるとすべての電流センサが使用不能となり、電流制御が困難となる。この結果、ハイブリッド車の走行が困難となってしまう。この問題に対する対応策について、特許文献1には記載されていない。
 車両においては一部の部品が故障した場合に、性能が制限された状態であっても緊急避難のための走行を可能とすることが求められる。このような機能をリンプホームと称する。リンプホームは低速走行であっても自宅にたどり着けるという趣旨の機能である。
 各種の電流センサのセンサ電源について、すべて独立したセンサ電源を確保すれば、いずれかのセンサ電源が故障した場合であっても、その他のセンサ電源によって他のセンサの利用を継続することができる。しかし、すべてのセンサ電源を独立に設けた場合、センサ電源の増加、センサ電源の供給配線の増加によって、電力変換装置の大型化、重量増加、コスト上昇を招くこととなる。車両に搭載する機器は、軽量化、小型化、低コスト化が求められている。したがって、故障耐性向上と軽量化、小型化、低コスト化推進との最適なバランスが求められる。
 本願は、電力変換装置における前述の課題を解決するためになされたものであり、各種電流センサのセンサ電源の故障に対応してリンプホーム機能を確保しつつ、センサ電源の数を最小化した電力変換装置を得ることを目的とする。
 本願に開示される電力変換装置は、
 内燃機関の出力軸と結合された第一の回転電機が発生した交流電流を直流電流に変換して直流端子から出力する第一の電力変換器、
 直流端子に接続され直流電流を交流電流に変換し、駆動輪と結合された第二の回転電機に交流電流を供給する第二の電力変換器、
 バッテリと直流端子との間に接続され電圧を変更する直流電力変換器、
 第一の電力変換器と第一の回転電機との間に流れる電流を計測する第一の電流センサ、
 第二の電力変換器と第二の回転電機との間に流れる電流を計測する第二の電流センサ、
 バッテリと直流電力変換器との間に流れる電流を計測する直流電力変換器用電流センサ、
 第一の電流センサと直流電力変換器用電流センサに電源を供給する第一のセンサ電源、および、
 第二の電流センサに電源を供給する第二のセンサ電源、を備えたものである。
 本願に係る電力変換装置によれば、内燃機関に駆動された第一の回転電機が発生した交流電流を直流電流に変換する第一の電力変換器の電流センサと、バッテリ電圧を昇圧する直流電力変換器の電流を計測する電流センサとに電源を供給する第一のセンサ電源と、駆動輪と結合された第二の回転電機に交流電流を供給する第二の電力変換器の電流センサに電源を供給する第二のセンサ電源を設けたので、センサ電源の故障に対応してリンプホーム機能を確保しつつ、センサ電源の数を最小化した電力変換装置を得ることができる。これによって、電力変換装置のセンサ電源の数を削減して小型化、軽量化、低コスト化を進めることができる。
実施の形態1に係る電力変換装置の構成図である。 実施の形態1に係る電力変換装置の制御装置のハードウェア構成図である。 実施の形態1に係る電力変換装置の第一の電力変換器の回路図である。 実施の形態1に係る電力変換装置の第二の電力変換器の回路図である。 実施の形態1に係る電力変換装置のセンサ電源正常時の電力供給を示す図である。 実施の形態1に係る電力変換装置の第一のセンサ電源故障時の電力供給を示す第一の図である。 実施の形態1に係る電力変換装置の第一のセンサ電源故障時の電力供給を示す第二の図である。 実施の形態1に係る電力変換装置の第二のセンサ電源故障時の電力供給を示す図である。 実施の形態2に係る電力変換装置の第二のセンサ電源故障時の電力供給を示す図である。
 以下、本願に係る電力変換装置の実施の形態について、図面を参照して説明する。
1.実施の形態1
<電力変換装置の構成>
 図1は、実施の形態1に係る電力変換装置10の構成図である。電力変換装置10は、車両1のバッテリ2、内燃機関6の出力軸と力学的に結合された第一の回転電機8a、駆動輪17と力学的に結合された第二の回転電機8bと電気的に接続されている。ここで、力学的結合は、主軸の直接結合、減速装置およびクラッチを介した結合、ベルトによる回転伝達機構を介した結合であってもよい。図1では、内燃機関6はENG、第一の回転電機8aはM1、第二の回転電機8bはM2として示されている。
 第一の回転電機8a、第二の回転電機8bは、U相巻線、V相巻線、W相巻線を備えた三相交流回転電機であってもよい。第一の回転電機8a、第二の回転電機8bは、負荷を回転駆動するとともに、負荷の回転エネルギーを電気エネルギーとして回生可能であってもよい。第一の回転電機8a、第二の回転電機8bには、ロータに永久磁石を備えた電動機、ロータに電磁石を備えた電動機、ブラシ式電動機、ブラシレス電動機などを用いることができる。
 電力変換装置10は、第一の電力変換器13a、第二の電力変換器13b、直流電力変換器12、制御装置14、センサ電源15、第一の電流センサ4、第二の電流センサ5、直流電力変換器用電流センサ3を備えている。車両1に搭載された内燃機関6の出力によって第一の回転電機8aが駆動されて発電し、第一の電力変換器13aによって発電された交流電流が直流に変換されて正極側直流端子23a、負極側直流端子23bから出力される。
 正極側直流端子23a、負極側直流端子23bから直流電流を供給された第二の電力変換器13bは直流電流を交流電流に変換して第二の回転電機8bを回転させて駆動輪17を駆動する。直流電力変換器12は、車両1に搭載されたバッテリ2の電圧を変更して、正極側直流端子23a、負極側直流端子23bと直流電流を送受する。必要に応じて、バッテリ2から正極側直流端子23a、負極側直流端子23bに電流を供給し、バッテリ2を充電する場合は正極側直流端子23a、負極側直流端子23bから電流を受け取る。
 第一の電力変換器13a、第二の電力変換器13b、直流電力変換器12を通過する電流は、第一の電流センサ4、第二の電流センサ5、直流電力変換器用電流センサ3によって検出される。第一の電流センサ4および直流電力変換器用電流センサ3は、第一のセンサ電源15aから第一のセンサ電源線9aを介して電源を供給される。第二の電流センサ5は、第二のセンサ電源15bから第二のセンサ電源線9bを介して電源を供給される。図1では、第一のセンサ電源15aと第二のセンサ電源15bは、センサ電源15に内蔵されている。しかし第一のセンサ電源15aと第二のセンサ電源15bは、異なる場所に独立して設置してもよい。
 制御装置14は、第一の電流センサ4の検出信号を入力端子I1から、第二の電流センサ5の検出信号を入力端子I2から、直流電力変換器用電流センサ3の検出信号を入力端子ICから入力する。制御装置14は制御端子C2から、第二の電力変換器13bを制御する。これによって、制御装置14は車両1の必要とされる駆動力に応じて第二の回転電機8bを駆動する電流量を制御することができる。
 制御装置14は制御端子C1から、第一の電力変換器13aを制御する。これによって、制御装置14は、車両1の必要とされる電力に応じて第一の回転電機8aによって発電され供給される電流量を制御することができる。制御装置14は、制御端子CEからの信号によって内燃機関6の出力を調整することができる。制御装置14は、内燃機関6の出力を調整し内燃機関6の回転数を制御することで、第一の回転電機8aによる発電電流を制御することができる。
 直流電力変換器12は、バッテリ2の電圧を正極側直流端子23a、負極側直流端子23bの電圧まで昇圧する。バッテリ2からの供給電流またはバッテリ2への充電電流が、直流電力変換器用電流センサ3の信号として制御装置14の入力端子ICに伝達される。
<制御装置のハードウェア構成>
 図2は、実施の形態1に係る制御装置14のハードウェア構成図である。制御装置14の各機能は、制御装置14が備えた処理回路により実現される。具体的には、制御装置14は、図2に示すように、処理回路として、CPU(Central Processing Unit)などの演算処理装置90(プロセッサとも称する)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、演算処理装置90から外部に信号を出力する出力回路93などのインターフェースを備えている。
 演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路などが備えられてもよい。また、演算処理装置90として、同じ種類のものまたは異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。
 制御装置14には、記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)などが備えられている。記憶装置91は、演算処理装置90に内蔵されていてもよい。入力回路92は、入力信号、センサ、スイッチが接続され、これら入力信号、センサ、スイッチの信号を演算処理装置90に入力するA/D変換器などを備えている。具体的には第一の電流センサ4、第二の電流センサ5、直流電力変換器用電流センサ3の信号などが入力される。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路などの電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路などを備えている。具体的には第一の電力変換器13a、第二の電力変換器13b、直流電力変換器12のスイッチング素子を駆動する出力信号などが出力される。
 制御装置14が備える各機能は、演算処理装置90が、ROMなどの記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93などの制御装置14の他のハードウェアと協働することにより実現される。なお、制御装置14が用いる閾値、判定値などの設定データは、ソフトウェア(プログラム)の一部として、ROMなどの記憶装置91に記憶されている。制御装置14の有する各機能は、それぞれソフトウェアのモジュールで構成されるものであってもよいが、ソフトウェアとハードウェアの組み合わせによって構成されるものであってもよい。
<直流電力変換器>
 図1の直流電力変換器12は、バッテリ2の電圧と正極側直流端子23a、負極側直流端子23bの間の電圧を変換する電圧変換装置としての機能を有する。直流電力変換器12は、DC-DCコンバータとも称される。直流電力変換器12は、リアクトル7、正極側スイッチング素子16b、負極側スイッチング素子16a、およびリアクトル電流を検知する直流電力変換器用電流センサ3を備えている。
 直流電力変換器12は、低圧側電圧を平滑させる低圧側平滑コンデンサ21、および、高圧側電圧を平滑させる高圧側平滑コンデンサ22に接続されている。そして、制御装置14によって正極側スイッチング素子16b、負極側スイッチング素子16aが制御される。
 正極側スイッチング素子16bと、負極側スイッチング素子16aは互いに直列に接続されており、直流電力変換器12におけるスイッチング回路を構成している。負極側スイッチング素子16aは並列に複数のスイッチング素子が接続され構成される場合がある。正極側スイッチング素子16bも並列に複数のスイッチング素子が接続され構成される場合がある。
 正極側スイッチング素子16bと負極側スイッチング素子16aは、制御装置14の制御端子G1、G2からのゲート信号によりスイッチング制御される。正極側スイッチング素子16bと負極側スイッチング素子16aは、例えば、それぞれフリーホイールダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)により構成される。スイッチング素子としては、この他、逆並列接続された寄生ダイオードを有するFET(Field Effect Transistor)を用いることもできる。また、スイッチング素子としては、逆接続されたダイオードを有する通常のバイポーラトランジスタを用いてもよい。
 直流電力変換器12は、バッテリ2が出力する直流電力の電圧を昇圧して第一の電力変換器13a、第二の電力変換器13bに供給する。また、第一の回転電機8aが発電した交流電流を第一の電力変換器13aで直流電流に変換し、この時の電圧を直流電力変換器12で降圧してバッテリ2を充電する場合もある。即ち、直流電力変換器12は、昇圧用変換器もしくは降圧用変換器として機能する。
<第一の電力変換器>
 図3は、実施の形態1に係る電力変換装置10の第一の電力変換器13aの回路図である。第一の電力変換器13aは、第一の回転電機8aの出力する三相交流電流を直流電流に変換する交流直流変換器として機能する。
 第一の電力変換器13aは、正極側直流端子23aに接続されたU相、V相、W相の正極側スイッチング素子16d、16f、16hと、負極側直流端子23bに接続されたU相、V相、W相の負極側スイッチング素子16c、16e、16gを有する。これらのスイッチング素子は、直流電力変換器12の正極側スイッチング素子16b、負極側スイッチング素子16aと同様にIGBTなどにより構成され逆並列接続された還流ダイオードを備える。相ごとの正極側スイッチング素子は上側アーム、負極側スイッチング素子は下側アームと呼ばれ、各相の上側アームと下側アームは直列に接続され、それぞれの接続点からU相、V相、W相の三相交流電流を受け渡しする。
 各相の接続点はそれぞれ、第一の回転電機8aの巻線に接続され、各相の通過電流が相ごとの第一の電流センサ4a、4b、4cによって検出される。図1では、第一の電流センサ4の検出電流は制御装置14の入力端子I1から入力されるとして説明した。実際にはU相の第一の電流センサ4a、V相の第一の電流センサ4b、V相の第一の電流センサ4cの検出値が入力される3つの入力端子の総称を入力端子I1で示している。
 第一の電力変換器13aの各スイッチング素子は、制御装置14の制御端子C11からC16によって制御される。図1では制御端子C11からC16の総称を制御端子C1として示している。制御装置14は、出力電流を計測する第一の電流センサ4の計測値をモニタしながら、第一の電力変換器13aの出力電流が目標値となるように各スイッチング素子、および内燃機関6の出力を制御する。即ち、第一の電流センサ4は、制御装置14が第一の電力変換器13aの出力をフィードバック制御するために備えられている。
 第一の電力変換器13aに供給された三相交流電流は、スイッチング素子によって整流されて直流電流に変換され、正極側直流端子23a、負極側直流端子23bに供給される。第一の回転電機8aは、発電機として機能して電流を供給する場合と、電流を供給されて電動機として機能する場合とがある。第一の電力変換器13aは交流直流変換器として機能する場合と、直流交流変換器として機能する場合がある。内燃機関の停止時に、第一の電力変換器13aはバッテリ2から直流電力変換器12によって電圧が変換された直流電流を交流電流に変換して第一の回転電機8aを駆動し、内燃機関6を始動する。
<第二の電力変換器>
 図4は、実施の形態1に係る電力変換装置10の第二の電力変換器13bの回路図である。第二の電力変換器13bは、正極側直流端子23aと負極側直流端子23bから供給された直流電流を、第二の回転電機8bを駆動する三相交流電流に変換する直流交流変換器として機能する。
 第二の電力変換器13bは、正極側直流端子23aに接続されたU相、V相、W相の正極側スイッチング素子16j、16l、16nと、負極側直流端子23bに接続されたU相、V相、W相の負極側スイッチング素子16i、16k、16mを有する。これらのスイッチング素子は、直流電力変換器12および第一の電力変換器13aの正極側スイッチング素子16b、16d、16f、16h、負極側スイッチング素子16a、16c、16e、16gと同様にIGBTなどにより構成され逆並列接続された還流ダイオードを備える。相ごとの正極側スイッチング素子は上側アーム、負極側スイッチング素子は下側アームと呼ばれ、各相の上側アームと下側アームは直列に接続され、それぞれの接続点からU相、V相、W相の三相交流電流を受け渡しする。
 各相の接続点はそれぞれ、第二の回転電機8bの巻線に接続され、各相の通過電流が相ごとの第二の電流センサ5a、5b、5cによって検出される。図1では、第二の電流センサ5の検出電流は制御装置の入力端子I2から入力されるとして説明したが、実際にはU相の第二の電流センサ5a、V相の第二の電流センサ5b、V相の第二の電流センサ5cの検出値が入力される3つの端子の総称を入力端子I2として示している。
  第二の電力変換器13bの各スイッチング素子は、制御装置14の制御端子C21からC26によって制御される。図1では制御端子C21からC26の総称を制御端子C2として示している。制御装置14は、出力電流を計測する第二の電流センサ5の計測値をモニタしながら、第二の電力変換器13bの出力電流が目標値となるように各スイッチング素子を制御する。即ち、第二の電流センサ5は、制御装置14が第二の電力変換器13bの出力をフィードバック制御するために備えられている。
 第二の電力変換器13bに供給された直流電流は、スイッチング素子によってデューティ制御されて三相交流電流に変換され、第二の回転電機8bのU相、V相、W相のコイルに供給される。第二の回転電機8bは、電動機として機能して電流が供給されて駆動される場合と、発電機として機能して電流を供給する場合とがある。第二の電力変換器13bは直流交流変換器として機能する場合と、交流直流変換器として機能する場合がある。車両1が減速する場合に第二の回転電機8bは駆動輪17に駆動されて発電機として機能し、第二の電力変換器13bは回生電力を交流直流変換してバッテリ2を充電する。
<センサ電源>
 第一の電流センサ4、第二の電流センサ5、直流電力変換器用電流センサ3はセンサ電源15からセンサ電源の供給を受ける。車載機器は小型化、軽量化、低コスト化が求められる。このため、センサ電源についても、電源の設置、センサへの配線について共有化して最小化することが望まれる。
 図1に示すように、実施の形態1に係る電力変換装置10では、第一の電流センサ4、第二の電流センサ5、直流電力変換器用電流センサ3の3個の電流センサが備えられている。これらのセンサの動作用の電源を第一のセンサ電源15a、第二のセンサ電源15bの二台とし、電源を供給するための配線を、第一のセンサ電源線9a、第二のセンサ電源線9bの二本として故障耐性の向上を図りながら、小型化、軽量化、低コスト化を進めている。なお、電流を計測する複数のセンサの素子は同じものでもよいが異なるセンサの素子を用いてもよい。
<センサ電源正常時の電流の流れ>
 図5は、実施の形態1に係る電力変換装置のセンサ電源正常時の電力供給を示す図である。内燃機関6によって駆動される第一の回転電機8aに与えられる動力の伝達が白矢印で示されている。第一の回転電機8aよって発電された交流電流が第一の電力変換器13aで直流電流に変換される。
 そして、変換された直流電流が第二の電力変換器13bによって交流電流に変換され、第二の回転電機8bを駆動する。この一連の電流の流れが矢印で示されている。第二の回転電機8bによって駆動される駆動輪17に与えられる動力の伝達が白矢印で示されている。図5では、第一の電流センサ4によって検出される電流がI1、第二の電流センサ5によって検出される電流がI2、直流電力変換器用電流センサ3によって検出される電流がICとして示されている。
 バッテリ2は直流電流を直流電力変換器12と交換し、直流電力変換器12は第一の電力変換器13a、第二の電力変換器13bと直流電流を交換する。図5には、第一のセンサ電源15aによって動作する電流センサを使用してフィードバック制御される変換器群が範囲20aで示されている。第二のセンサ電源15bによって動作する電流センサを使用してフィードバック制御される変換器が範囲20bで示されている。
<第一のセンサ電源故障時の電流の流れ>
 図6は、実施の形態1に係る電力変換装置10の第一のセンサ電源15a故障時の電力供給を示す第一の図である。第一のセンサ電源15aまたは第一のセンサ電源線9aが失陥すると、第一の電流センサ4と直流電力変換器用電流センサ3はセンサ動作用の電源を失い電流を検出できなくなる。
 この場合、制御装置14が第一の電力変換器13aと直流電力変換器12に対して電流フィードバック制御をすることができなくなる。そして、第一の電力変換器13aは通常通り駆動できず、直流電力変換器12は昇圧動作および降圧動作ができないことを意味する。
 直流電力変換器12は直流電力変換器用電流センサ3を使用できなくなるので昇圧動作、降圧動作が困難となる。この場合、制御装置14は、制御端子G1、G2から出力するゲート信号によって正極側スイッチング素子16bを継続的にオン、負極側スイッチング素子16aを継続してオフすることによって、直流端子をバッテリ2と直結することができる。
 このときの直流電力変換器の駆動状態を直結駆動と称する。直結駆動とすることで、バッテリ2から第二の電力変換器13bへの電流の供給が可能となる。その時の電流の流れが矢印で示されている。この場合、第二のセンサ電源15bが正常の場合は、第二の電力変換器13bの出力電流は第二の電流センサによって検出可能である。よって第二の回転電機8bを電流フィードバック制御することができる。
 図7は、実施の形態1に係る電力変換装置の第一のセンサ電源故障時の電力供給を示す第二の図である。第一の電力変換器13aは通常駆動は不可能であり、駆動を停止する。しかし、第一の電力変換器13aは駆動停止中であっても、各スイッチング素子に逆並列接続された還流ダイオードにより三相全波整流回路として機能することができる。
 このとき、制御装置14からの指令によって、内燃機関6の回転数を上昇させることができる。そうすることによって、第一の回転電機8aの発生する誘起電圧をバッテリ2の電圧より大きくなるように制御することができる。それにより、内燃機関6によって駆動した第一の回転電機8aが発電した電流を三相全波整流により、第二の電力変換器13bおよびバッテリ2へ供給することが可能となる。この時の電流の流れを図7に矢印で示している。
 バッテリ2の電圧は例えば14.7Vとして、第一の回転電機8aの誘起電圧がこの電圧を上回る内燃機関6の回転数をあらかじめ計測して規定しておくことができる。制御装置14はこの回転数以上となるように内燃機関6を制御することとしてもよい。また、バッテリ2の電圧を検出するバッテリ電圧センサを設けることもできる。このバッテリ電圧センサ検出値を上回る誘起電圧を発生する回転数となるように、制御装置14が内燃機関6を制御することとしてもよい。
 さらに、第一の回転電機8aの出力電圧を検出する第一の回転電機電圧センサを設けて、第一の回転電機8aの発生する誘起電圧を検出することとしてもよい。制御装置14は第一のセンサ電源15aの異常を検出した場合に、第一の回転電機電圧センサによって検出した誘起電圧がバッテリ電圧センサによって検出されたバッテリ電圧よりも大きくなるように内燃機関の回転数を調整する。それにより、内燃機関6によって駆動した第一の回転電機8aが発電した電流を三相全波整流により、第二の電力変換器13bおよびバッテリ2へ供給することがより確実となる。
 第一のセンサ電源15a故障時であっても、第二の電力変換器13bは通常駆動が可能である。第二の電流センサ5は第二のセンサ電源15bからセンサ電源の供給を受けて動作するので、制御装置14は、第二の電力変換器13bをフィードバック制御することができる。直流電力変換器12を直結駆動にすることで供給されるバッテリ2からの電流、および第一の電力変換器13aによる三相全波供給による電流によって、第二の電力変換器13bは第二の回転電機8bを精度よく駆動することが可能である。
 このように、第一のセンサ電源15a故障時であっても車両1は第二の回転電機8bを制御可能である。直流電力変換器12の直結制御によって直流端子の電圧は低下し、第二の電力変換器13bによる第二の回転電機8bの駆動電流は制限される。しかし、駆動輪17の駆動による車両1の走行は可能でありリンプホーム機能を確保することができる。さらに、内燃機関6の回転数を上昇させることで、第一の回転電機8aによる発電電流によってバッテリ2を充電することも可能となる。それによって、バッテリ2のその時点での充電量による車両1の走行可能時間、および走行可能距離を延長することが可能となる。
<第二のセンサ電源故障時の電流の流れ>
 図8は、実施の形態1に係る電力変換装置10の第二のセンサ電源15b故障時の電力供給を示す図である。第二のセンサ電源15bまたは第二のセンサ電源線9bが失陥すると、第二の電流センサ5はセンサ動作用の電源を失い電流を検出できなくなる。
 この場合、制御装置14が第二の電力変換器13bに対して電流フィードバック制御をすることができなくなる。しかし、制御装置14は、第二の回転電機8bの必要な駆動電流に対し、第二の電力変換器13bのスイッチング素子を必要な電流に対応してあらかじめ定めておいたパルス幅にPWM(Pulse Width Modulation)制御することで、第二の回転電機8bを見込駆動することができる。これにより、第二の電流センサ5を用いた出力電流の精度の高いフィードバック制御はできないが、リンプホーム機能を確保することができる。
 第一の電力変換器13aの第一の電流センサ4と、直流電力変換器用電流センサ3とに電源を供給する第一のセンサ電源15aと、第二の電力変換器13bの第二の電流センサ5に電源を供給する第二のセンサ電源15bを設けたので、センサ電源の故障に対応してリンプホーム機能を確保しつつ、センサ電源の数を最小化した電力変換装置10を得ることができる。これによって、電力変換装置10のセンサ電源の数を削減して小型化、軽量化、低コスト化を進めることができる。
2.実施の形態2
 図9は、実施の形態2に係る電力変換装置10aの第二のセンサ電源15b故障時の電力供給を示す図である。実施の形態2に係る電力変換装置10aの構成は、実施の形態1に係る電力変換装置10の構成に対し、第三の電力変換器13cを追加した点が異なる。制御装置14aは、第一の電力変換器13a、直流電力変換器12に加えて、第三の電力変換器13cのスイッチング素子を制御する(制御装置14aは不図示)。
 実施の形態2に係る電力変換装置10aを搭載した車両1aは、第三の回転電機8cを備えている。図1では、第三の回転電機8cはM3と示されている。第三の回転電機8cは、後輪17aを駆動する走行用のリア電動機として用いられる。第三の回転電機8cが駆動する対象は駆動輪17であってもよい。第三の回転電機8cは第三の電力変換器13cによって電流が供給されて駆動される。上記以外の点は実施の形態2に係る電力変換装置10aは、実施の形態1に係る電力変換装置10と同様である。
<第二のセンサ電源故障時の電流の流れ>
 第二のセンサ電源15bまたは第二のセンサ電源線9bが失陥すると、第二の電流センサ5はセンサ動作用の電源を失い電流を検出できなくなる。この場合、制御装置14aが第二の電力変換器13bに対して電流フィードバック制御をすることができなくなる。
 この場合であっても、第三の電力変換器13cは通常通り駆動可能である。バッテリ2の電力を直流電力変換器12によって電圧変換して直流端子に供給した電流、および第一の回転電機8aの発電電力を第一の電力変換器によって直流端子に供給した電流を第三の電力変換器13cへ供給することができる。よって、制御装置14aが第三の電力変換器13cを制御して第三の回転電機8cに電流を供給させ、後輪17aを駆動して走行することが可能となる。
 このとき、第二の電力変換器13bは駆動を停止する。第二の回転電機8bは駆動輪17によって引きずられて回転する。第二の回転電機8bが回転させられて逆起電力が発生する。第二の回転電機8bが発電機として機能し、駆動停止中の第二の電力変換器13bのスイッチング素子に逆並列接続された還流ダイオードによる整流作用によって直流電流が発生する。この電流が第三の電力変換器13cの制御に干渉する。駆動輪17の回転速度が上昇するにしたがって、第二の回転電機8bの誘起電圧が上昇する。このため、第二の回転電機8bの誘起電圧を抑制するために、リンプホーム時の走行速度を所定速度以上に上昇させることができない。
 しかし、この場合であっても制御装置14aが直流電力変換器12を昇圧動作させることで、第二の回転電機8bの誘起電圧による外乱を抑制することができる。このために直流電力変換器12の通常の場合の昇圧電圧よりも高い、妥当な昇圧電圧を予め定めておくことができる。そして、制御装置14aが直流電力変換器12を予め定めた昇圧電圧まで昇圧動作させる。または、直流電力変換器12の定格最大電圧まで昇圧することとしてもよい。
 第三の電力変換器13cによる第三の回転電機8cの駆動に際して、第三の電力変換器13cの出力電流を検出する第三の電流センサを設けて、精度の高い電流フィードバック制御を実施してもよい。この場合、第三の電流センサのセンサ電源を第一のセンサ電源15aから供給を受けることとすることができる。このようにすれば、第二のセンサ電源15bまたは第二のセンサ電源線9bが失陥した場合であっても、制御装置14aから第三の電力変換器13cを精度よく電流フィードバック制御することができる。図9では、第三の電流センサによって検出される電流がI3として示されている。
 実施の形態2において、第一のセンサ電源15aまたは第一のセンサ電源線9aが失陥した場合は、制御装置14aによって第一の電力変換器13aを駆動停止し、直流電力変換器12を直結制御する。この場合、実施の形態1と同様に対応でき、リンプホーム機能を確保できるので説明を省略する。
 以上のように、実施の形態2に係る電力変換装置10aによれば、センサ電源の故障に対応して充実したリンプホーム機能を確保しつつ、センサ電源の数を最小化した電力変換装置10aを得ることができる。これによって、電力変換装置10aのセンサ電源の数を削減して小型化、軽量化、低コスト化を進めることができる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 以下、本開示の諸態様を付記としてまとめて記載する。
(付記1)
 内燃機関の出力軸と結合された第一の回転電機が発生した交流電流を直流電流に変換して直流端子から出力する第一の電力変換器、
 前記直流端子に接続され直流電流を交流電流に変換し、駆動輪と結合された第二の回転電機に交流電流を供給する第二の電力変換器、
 バッテリと前記直流端子との間に接続され電圧を変更する直流電力変換器、
 前記第一の電力変換器と前記第一の回転電機との間に流れる電流を計測する第一の電流センサ、
 前記第二の電力変換器と前記第二の回転電機との間に流れる電流を計測する第二の電流センサ、
 前記バッテリと前記直流電力変換器との間に流れる電流を計測する直流電力変換器用電流センサ、
 前記第一の電流センサと前記直流電力変換器用電流センサに電源を供給する第一のセンサ電源、および、
 前記第二の電流センサに電源を供給する第二のセンサ電源を備えた電力変換装置。
(付記2)
 前記直流電力変換器を制御する制御装置を備え、
 前記直流電力変換器は、正極側スイッチング素子と、負極側スイッチング素子と、リアクトルと、を有し、
 前記制御装置は前記第一のセンサ電源の異常を検出した場合に、前記直流電力変換器を直結駆動する付記1に記載の電力変換装置。
(付記3)
 前記制御装置は前記第一のセンサ電源の異常を検出した場合に、前記正極側スイッチング素子をオンし前記負極側スイッチング素子をオフする付記2に記載の電力変換装置。
(付記4)
 前記バッテリの電圧を検出するバッテリ電圧センサ、および、
 前記第一の回転電機の出力電圧を検出する第一の回転電機電圧センサを備え、
 前記制御装置は前記第一のセンサ電源の異常を検出した場合に、前記第一の回転電機電圧センサによって検出した誘起電圧が前記バッテリ電圧センサによって検出されたバッテリ電圧よりも大きくなるように内燃機関の回転数を調整する付記2または3に記載の電力変換装置。
(付記5)
 前記制御装置は前記第一のセンサ電源および前記第二のセンサ電源が正常な場合は、前記第一の電流センサによって検出された電流値に基づいて前記第一の電力変換器を制御し、前記第二の電流センサによって検出された電流値に基づいて前記第二の電力変換器を制御し、前記直流電力変換器用電流センサによって検出された電流値に基づいて前記直流電力変換器を制御するとともに、前記第二のセンサ電源の異常を検出した場合に前記第二の電力変換器を前記第二の電流センサによって検出された電流値を用いずに前記第二の電力変換器を制御する付記2から4のいずれか一項に記載の電力変換装置。
(付記6)
 前記直流端子に接続され直流電流を交流電流に変換し、駆動輪と結合された第三の回転電機に交流電流を供給する第三の電力変換器を備え、
 前記制御装置は前記第二のセンサ電源の異常を検出した場合に前記第二の電力変換器の駆動を停止し、前記第一の電力変換器と、前記第三の電力変換器と、前記直流電力変換器を制御する付記2から5のいずれか一項に記載の電力変換装置。
(付記7)
 前記第三の電力変換器と前記第三の回転電機との間に流れる電流を計測する第三の電流センサを備え、
 前記第三の電流センサは、前記第一のセンサ電源から電源の供給を受ける付記6に記載の電力変換装置。
(付記8)
 前記制御装置は、前記第二のセンサ電源の異常を検出した場合に前記直流電力変換器によって前記直流端子の電圧を、前記第二のセンサ電源が正常な場合の通常電圧よりも高いあらかじめ定められた電圧に昇圧する付記6または7に記載の電力変換装置。
(付記9)
 前記制御装置は、前記第二のセンサ電源の異常を検出した場合に前記直流電力変換器によって前記直流端子の電圧を定格最大電圧に昇圧する付記8に記載の電力変換装置。
(付記10)
 前記第一の電力変換器は、前記内燃機関の始動時には前記直流端子から与えられた直流電流を交流電流に変換して前記第一の回転電機を駆動し、
 前記第二の電力変換器は、電力回生時には前記第二の回転電機が発生した交流電流を直流電流に変換して前記直流端子に出力する付記1から9のいずれか一項に記載の電力変換装置。
2 バッテリ、3 直流電力変換器用電流センサ、4 第一の電流センサ、5 第二の電流センサ、6 内燃機関、8a 第一の回転電機、8b 第二の回転電機、8c 第三の回転電機、10、10a 電力変換装置、12 直流電力変換器、13a 第一の電力変換器、13b 第二の電力変換器、13c 第三の電力変換器、14、14a 制御装置、15a 第一のセンサ電源、15b 第二のセンサ電源、16a 負極側スイッチング素子、16b 正極側スイッチング素子、17 駆動輪、17a 後輪、

Claims (10)

  1.  内燃機関の出力軸と結合された第一の回転電機が発生した交流電流を直流電流に変換して直流端子から出力する第一の電力変換器、
     前記直流端子に接続され直流電流を交流電流に変換し、駆動輪と結合された第二の回転電機に交流電流を供給する第二の電力変換器、
     バッテリと前記直流端子との間に接続され電圧を変更する直流電力変換器、
     前記第一の電力変換器と前記第一の回転電機との間に流れる電流を計測する第一の電流センサ、
     前記第二の電力変換器と前記第二の回転電機との間に流れる電流を計測する第二の電流センサ、
     前記バッテリと前記直流電力変換器との間に流れる電流を計測する直流電力変換器用電流センサ、
     前記第一の電流センサと前記直流電力変換器用電流センサに電源を供給する第一のセンサ電源、および、
     前記第二の電流センサに電源を供給する第二のセンサ電源を備えた電力変換装置。
  2.  前記直流電力変換器を制御する制御装置を備え、
     前記直流電力変換器は、正極側スイッチング素子と、負極側スイッチング素子と、リアクトルと、を有し、
     前記制御装置は、前記第一のセンサ電源の異常を検出した場合に、前記直流電力変換器を直結駆動する請求項1に記載の電力変換装置。
  3.  前記制御装置は、前記第一のセンサ電源の異常を検出した場合に、前記正極側スイッチング素子をオンし前記負極側スイッチング素子をオフする請求項2に記載の電力変換装置。
  4.  前記バッテリの電圧を検出するバッテリ電圧センサ、および、
     前記第一の回転電機の出力電圧を検出する第一の回転電機電圧センサを備え、
     前記制御装置は、前記第一のセンサ電源の異常を検出した場合に、前記第一の回転電機電圧センサによって検出した誘起電圧が前記バッテリ電圧センサによって検出されたバッテリ電圧よりも大きくなるように内燃機関の回転数を調整する請求項2または3に記載の電力変換装置。
  5.  前記制御装置は、前記第一のセンサ電源および前記第二のセンサ電源が正常な場合は、前記第一の電流センサによって検出された電流値に基づいて前記第一の電力変換器を制御し、前記第二の電流センサによって検出された電流値に基づいて前記第二の電力変換器を制御し、前記直流電力変換器用電流センサによって検出された電流値に基づいて前記直流電力変換器を制御し、前記第二のセンサ電源の異常を検出した場合は、前記第二の電力変換器を前記第二の電流センサによって検出された電流値を用いずに前記第二の電力変換器を制御する請求項2から4のいずれか一項に記載の電力変換装置。
  6.  前記直流端子に接続され直流電流を交流電流に変換し、駆動輪と結合された第三の回転電機に交流電流を供給する第三の電力変換器を備え、
     前記制御装置は、前記第二のセンサ電源の異常を検出した場合に前記第二の電力変換器の駆動を停止し、前記第一の電力変換器と、前記第三の電力変換器と、前記直流電力変換器を制御する請求項2から5のいずれか一項に記載の電力変換装置。
  7.  前記第三の電力変換器と前記第三の回転電機との間に流れる電流を計測する第三の電流センサを備え、
     前記第三の電流センサは、前記第一のセンサ電源から電源の供給を受ける請求項6に記載の電力変換装置。
  8.  前記制御装置は、前記第二のセンサ電源の異常を検出した場合に前記直流電力変換器によって前記直流端子の電圧を、前記第二のセンサ電源が正常な場合の通常電圧よりも高いあらかじめ定められた電圧に昇圧する請求項6または7に記載の電力変換装置。
  9.  前記制御装置は、前記第二のセンサ電源の異常を検出した場合に前記直流電力変換器によって前記直流端子の電圧を定格最大電圧に昇圧する請求項8に記載の電力変換装置。
  10.  前記第一の電力変換器は、前記内燃機関の始動時には前記直流端子から与えられた直流電流を交流電流に変換して前記第一の回転電機を駆動し、
     前記第二の電力変換器は、電力回生時には前記第二の回転電機が発生した交流電流を直流電流に変換して前記直流端子に出力する請求項1から9のいずれか一項に記載の電力変換装置。
PCT/JP2022/040389 2022-05-23 2022-10-28 電力変換装置 WO2023228436A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-083547 2022-05-23
JP2022083547A JP2023172011A (ja) 2022-05-23 2022-05-23 電力変換装置

Publications (1)

Publication Number Publication Date
WO2023228436A1 true WO2023228436A1 (ja) 2023-11-30

Family

ID=88918880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040389 WO2023228436A1 (ja) 2022-05-23 2022-10-28 電力変換装置

Country Status (2)

Country Link
JP (1) JP2023172011A (ja)
WO (1) WO2023228436A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244126A (ja) * 2006-03-09 2007-09-20 Toyota Motor Corp 車両の駆動制御装置、車両の駆動制御方法、および車両
JP2016025725A (ja) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 電動車両
JP2017050924A (ja) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 電動車両
JP2019085044A (ja) * 2017-11-09 2019-06-06 トヨタ自動車株式会社 ハイブリッド自動車
JP2019149875A (ja) * 2018-02-27 2019-09-05 本田技研工業株式会社 駆動モータ及び電動車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244126A (ja) * 2006-03-09 2007-09-20 Toyota Motor Corp 車両の駆動制御装置、車両の駆動制御方法、および車両
JP2016025725A (ja) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 電動車両
JP2017050924A (ja) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 電動車両
JP2019085044A (ja) * 2017-11-09 2019-06-06 トヨタ自動車株式会社 ハイブリッド自動車
JP2019149875A (ja) * 2018-02-27 2019-09-05 本田技研工業株式会社 駆動モータ及び電動車両

Also Published As

Publication number Publication date
JP2023172011A (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
US7379313B2 (en) Voltage conversion device
JP5567381B2 (ja) 電力変換装置
JP6169203B1 (ja) 電動機制御装置および電動機制御方法
US8045301B2 (en) Motor drive device
US7816805B2 (en) Power supply system with multiphase motor and multiphase inverter
US20090184681A1 (en) Electrically Powered Vehicle
JP4258692B2 (ja) 自動車用電源装置
JP5664600B2 (ja) 電気自動車
JP2011024369A (ja) 電力変換装置
JP2015073423A (ja) 電動車用電力変換システム
US10797631B2 (en) Power output device
JP6327141B2 (ja) 電動車両
JP6289597B1 (ja) 車両用電源装置および車両用電源装置の制御方法
US20220077684A1 (en) Power storage system
US10951041B2 (en) Motor system
WO2023228436A1 (ja) 電力変換装置
JP6267474B2 (ja) 電動車用電力変換システム
JP2021093779A (ja) 車載充電装置
JP4549124B2 (ja) モータ制御装置
JP2016123141A (ja) 電動機システム
US9712100B2 (en) Electric rotating machine and control method therefor
JP2014093883A (ja) 動力出力装置
JP5755583B2 (ja) 電力制御システム
JP2024082380A (ja) 電源装置
CN114079418A (zh) 交流旋转电机的控制装置及电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943835

Country of ref document: EP

Kind code of ref document: A1