WO2023228328A1 - Cemented carbide and cutting tool using same - Google Patents

Cemented carbide and cutting tool using same Download PDF

Info

Publication number
WO2023228328A1
WO2023228328A1 PCT/JP2022/021423 JP2022021423W WO2023228328A1 WO 2023228328 A1 WO2023228328 A1 WO 2023228328A1 JP 2022021423 W JP2022021423 W JP 2022021423W WO 2023228328 A1 WO2023228328 A1 WO 2023228328A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
cemented carbide
less
content
particles
Prior art date
Application number
PCT/JP2022/021423
Other languages
French (fr)
Japanese (ja)
Inventor
宣夫 宮坂
隆洋 山川
和弘 広瀬
克哉 内野
剛志 山本
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to PCT/JP2022/021423 priority Critical patent/WO2023228328A1/en
Priority to JP2022576875A priority patent/JP7401048B1/en
Priority to EP22943731.4A priority patent/EP4372115A1/en
Priority to CN202280060161.2A priority patent/CN117916397A/en
Priority to TW112102618A priority patent/TW202346614A/en
Publication of WO2023228328A1 publication Critical patent/WO2023228328A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Definitions

  • the present disclosure relates to a cemented carbide and a cutting tool using the same.
  • the cemented carbide of the present disclosure is A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component,
  • the total content of the first phase and the second phase of the cemented carbide is 97% by volume or more,
  • the average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 ⁇ m or less,
  • the cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less,
  • the vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less,
  • the cemented carbide has a maximum vanadium content of 15 atomic % or less in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase.
  • a cutting tool of the present disclosure includes a cutting edge made of the above-mentioned cemented carbide.
  • FIG. 1 is a diagram for explaining a method for measuring the vanadium content in the WC/second phase interface region.
  • FIG. 2 is a diagram showing an example of a cutting tool (small diameter drill) of this embodiment.
  • FIG. 3 is a diagram for explaining the width of wear scars measured in Examples.
  • the present disclosure provides a cemented carbide that can provide a cutting tool with a long tool life even when used as a material for a cutting tool used particularly for micromachining of printed circuit boards, and a cutting tool equipped with the same.
  • the purpose is to provide
  • the cemented carbide of the present disclosure is A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component,
  • the total content of the first phase and the second phase of the cemented carbide is 97% by volume or more,
  • the average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 ⁇ m or less,
  • the cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less,
  • the vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less,
  • the cemented carbide has a maximum vanadium content of 15 atomic % or less in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase.
  • cemented carbide of the present disclosure it is possible to provide a cutting tool with a long tool life, especially when used for micromachining of printed circuit boards.
  • the cemented carbide includes a third phase consisting of third phase particles containing 10 atomic % or more of vanadium,
  • the content of the third phase of the cemented carbide is more than 0% by volume and not more than 1% by volume,
  • the maximum value of the equivalent circle diameter of the third phase particles is preferably 0.5 ⁇ m or less.
  • the maximum value of the chromium content in the interface region is preferably 20 atomic % or less.
  • the decrease in the interface strength between the WC particles and the Co particles due to the presence of chromium in the interface region is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the cutting tool of the present disclosure is a cutting tool including a cutting edge made of the cemented carbide according to any one of (1) to (3) above.
  • the cutting tool of the present disclosure can have a long tool life, especially when used for micromachining of printed circuit boards.
  • the notation in the format "A to B” means the upper and lower limits of the range (i.e., from A to B), and if there is no unit described in A and a unit is described only in B, then The unit and the unit of B are the same.
  • any one numerical value stated in the lower limit and any one numerical value stated in the upper limit is also disclosed.
  • the upper limit is a2 or less, b2 or less, c2 or less, a1 or more and a2 or less, a1 or more and b2 or less, a1 or more and c2 or less, b1 or more and a2 or less, b1 or more and b2 or less, b1 or more and c2 or less, c1 or more and a2 or less, c1 or more and a2 or less, c1 or more and b2 or less, and c1 or more and c2 or less, and c1 or more and c2 or less are disclosed.
  • atomic ratio when a compound or the like is expressed by a chemical formula, unless the atomic ratio is specifically limited, it includes all conventionally known atomic ratios, and should not necessarily be limited to only those in the stoichiometric range.
  • the cemented carbide of one embodiment of the present disclosure (hereinafter also referred to as "this embodiment") is A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component, The total content of the first phase and the second phase of the cemented carbide is 97% by volume or more, The average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 ⁇ m or less, The cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less, The vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less, The cemented carbide has a maximum vanadium content of 15 atomic % or less in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase.
  • cemented carbide of this embodiment it is possible to provide a cutting tool with a long tool life, especially when used for micromachining of printed circuit boards. Although the reason for this is not clear, it is presumed to be as described in (i) to (v) below.
  • the cemented carbide of this embodiment includes a first phase consisting of a plurality of tungsten carbide particles (hereinafter also referred to as "WC particles") and a second phase containing cobalt as a main component.
  • the total content of the first phase and second phase of the cemented carbide is 97% by volume or more. According to this, the cemented carbide has high hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the average value of the equivalent circle diameter of the WC particles is 0.8 ⁇ m or less. According to this, the cemented carbide has high hardness, and a cutting tool using the cemented carbide can have excellent wear resistance. Further, the cemented carbide has excellent strength, and a cutting tool using the cemented carbide can have excellent breakage resistance.
  • the cobalt content of the cemented carbide of this embodiment is 3% by mass or more and 10% by mass or less. According to this, cemented carbide has high hardness and strength. A cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the vanadium content of the cemented carbide of this embodiment is 0.01% by mass or more and 0.30% by mass or less. According to this, the generation of coarse WC particles is suppressed, and the structure of the cemented carbide is made dense. Therefore, the cemented carbide has excellent hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is 15 atomic % or less. According to this, the formation of a vanadium-concentrated layer in which vanadium is present in a concentrated manner is suppressed in the interface region. Therefore, a decrease in the interfacial strength between the WC particles and the second phase due to the vanadium concentrated layer is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the cemented carbide of this embodiment includes a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component.
  • the total content of the first phase and second phase of the cemented carbide is 97% by volume or more. According to this, the cemented carbide has high hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the lower limit of the total content of the first phase and second phase of the cemented carbide is 97 volume % or more, preferably 98 volume % or more, and more preferably 99 volume % or more.
  • the upper limit of the total content of the first phase and second phase of the cemented carbide is preferably 100% by volume or less.
  • the total content of the first phase and second phase of the cemented carbide is preferably 97 volume% or more and 100 volume% or less, more preferably 98 volume% or more and 100 volume% or less, and even more preferably 99 volume% or more and 100 volume% or less.
  • the cemented carbide consists of a first phase and a second phase.
  • the lower limit of the content of the first phase of the cemented carbide is preferably 82 volume % or more, more preferably 85 volume % or more, and even more preferably 87 volume % or more.
  • the upper limit of the content of the first phase of the cemented carbide is less than 100 vol%, and from the viewpoint of improving breakage resistance, it is preferably 95 vol% or less, more preferably 94 vol% or less, and even more preferably 93 vol% or less. It is preferably 90% by volume or less, and even more preferably 90% by volume or less.
  • the content of the first phase of the cemented carbide is preferably 82 volume% or more and 95 volume% or less, more preferably 85 volume% or more and 93 volume% or less, and even more preferably 87 volume% or more and 90 volume% or less.
  • the lower limit of the content of the second phase of the cemented carbide is preferably 5% by volume or more, more preferably 7% by volume or more, and even more preferably 9% by volume or more.
  • the upper limit of the second phase content of the cemented carbide is preferably 18 vol% or less, more preferably 16 vol% or less, and even more preferably 14 vol% or less.
  • the content of the second phase of the cemented carbide is preferably 5 volume% or more and 18 volume% or less, more preferably 7 volume% or more and 16 volume% or less, and even more preferably 9 volume% or more and 14 volume% or less.
  • the cemented carbide of this embodiment can include a third phase consisting of third phase particles containing 10 atomic % or more of vanadium.
  • the content of the third phase of the cemented carbide is preferably more than 0% by volume and not more than 1% by volume. According to this, the decrease in breakage resistance of the cemented carbide due to the presence of the third phase is suppressed.
  • the lower limit of the content of the third phase of the cemented carbide is more than 0% by volume.
  • the upper limit of the third phase content of the cemented carbide is preferably 1% by volume or less, more preferably 0.8% by volume or less, and even more preferably 0.7% by volume or less.
  • the content of the third phase of the cemented carbide is preferably more than 0 volume% and 1 volume% or less, more preferably more than 0 volume% and 0.8 volume% or less, and 0 volume%. More preferably, it is more than 0.7% by volume.
  • the cemented carbide of this embodiment can contain unavoidable impurities in addition to the first phase, second phase, and third phase as long as the effects of the present disclosure are exhibited.
  • the unavoidable impurities include iron, molybdenum, and sulfur.
  • the content of the unavoidable impurities in the cemented carbide is preferably less than 0.1% by mass.
  • the content of the inevitable impurities in the cemented carbide is measured by ICP emission spectroscopy (measurement device: Shimadzu Corporation "ICPS-8100" (trademark)).
  • the content of each of the first phase, second phase, and third phase of the cemented carbide is measured according to the following procedures (A1) to (D1).
  • a thin sample with a thickness of 50 nm or less is cut from cemented carbide using an ion slicer or the like, and the surface of the thin sample is mirror-finished.
  • mirror finishing methods include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
  • the mirror-finished surface of the thin sample was subjected to EDX (Energy Dispersive X-ray Spectroscopy) with a transmission electron microscope (TEM). Tungsten (W) , cobalt (Co), chromium (Cr), and vanadium (V) to obtain a mapping image of each element.
  • the measurement conditions are an observation magnification of 100,000 times and an acceleration voltage of 200 kV.
  • the number of pixels for element mapping is 125 ⁇ 125.
  • Five visual fields of the elemental mapping images are prepared. The photographing regions of the elemental mapping images of the five fields of view are different from each other.
  • the imaging area can be set arbitrarily.
  • the region containing 70 atomic percent or more of tungsten is the region where the first phase exists, based on the total number of atoms of tungsten (W), cobalt (Co), chromium (Cr), and vanadium (V). Applicable.
  • a region containing 70 atomic % or more of cobalt with respect to the total number of atoms of tungsten, cobalt, chromium, and vanadium corresponds to the region where the second phase exists.
  • the region containing vanadium at 10 atomic % or more with respect to the total number of atoms of tungsten, cobalt, chromium, and vanadium corresponds to the region where the third phase exists.
  • the vanadium concentrated layer existing in the interface area between the tungsten carbide particles and the second phase and the vanadium concentrated layer existing in the interface area between the second phases have a concentration of several atoms (for example, about 1 to 5 atoms). ), it is not detected at 100,000x magnification because it is layered with a certain thickness.
  • (D1) Calculate the average value of the area % of the first phase obtained in 5 visual fields.
  • the average value corresponds to the content (volume %) of the first phase of the cemented carbide.
  • the average value of the area % of the second phase obtained in 5 fields of view is calculated. This average value corresponds to the content rate (volume %) of the second phase of the cemented carbide.
  • the average value of the area % of the third phase obtained in 5 fields of view is calculated.
  • the average value corresponds to the content rate (volume %) of the third phase of the cemented carbide.
  • the first phase consists of tungsten carbide particles.
  • tungsten carbide particles include not only "pure WC particles (including WC containing no impurity elements and WC whose content of impurity elements is below the detection limit)" but also “pure WC particles (including WC containing no impurity elements and WC whose content of impurity elements is less than the detection limit)". It also includes "WC particles in which impurity elements are intentionally or unavoidably contained, as long as they do not damage the particles.”
  • the content of impurities in the first phase (if there are two or more elements constituting the impurities, their total concentration) is less than 0.1% by mass.
  • the content of impurity elements in the first phase is measured by ICP emission spectrometry.
  • the average equivalent circle diameter of the tungsten carbide particles (hereinafter also referred to as "average particle diameter of WC particles") is 0.8 ⁇ m or less.
  • the cemented carbide has high hardness, and a cutting tool using the cemented carbide can have excellent wear resistance. Further, the cemented carbide has excellent strength, and a cutting tool using the cemented carbide can have excellent breakage resistance.
  • the average value of the equivalent circle diameter of tungsten carbide particles means the arithmetic mean of the number-based equivalent circle diameter of WC particles measured on a cross section of the cemented carbide.
  • the lower limit of the average particle size of the WC particles is preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 0.4 ⁇ m or more.
  • the upper limit of the average particle diameter of the WC particles is 0.8 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.6 ⁇ m or less, and even more preferably 0.4 ⁇ m or less. preferable.
  • the average particle diameter of the WC particles is preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less, more preferably 0.2 ⁇ m or more and 0.6 ⁇ m or less, and even more preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less.
  • the average value of the equivalent circle diameter of tungsten carbide particles is measured by the following procedures (A2) to (D2).
  • FIB device focused ion beam device
  • CP device cross section polisher device
  • (C2) The three backscattered electron images obtained in (B2) above were imported into a computer using image analysis software (ImageJ, version 1.51j8: https://imagej.nih.gov/ij/) and binarized. Perform processing.
  • the binarization process is executed under conditions preset in the image analysis software by pressing the "Make Binary" display on the computer screen after capturing the image.
  • the first phase and the second phase can be distinguished by color shading. For example, in an image after binarization processing, the first phase is shown as a black area, and the second phase is shown as a white area. Note that when the cemented carbide includes a third phase, the third phase is shown in the same color tone (white) as the second phase in the image after the binarization process.
  • the circle-equivalent diameter (Heywood diameter: Measure the area circle equivalent diameter).
  • the arithmetic mean value based on the number of circle-equivalent diameters of all tungsten carbide particles in the three measurement fields of view is calculated.
  • the arithmetic mean value corresponds to the average value of the equivalent circle diameter of the WC particles.
  • the second phase contains cobalt as a main component.
  • the second phase is a binding phase that binds the tungsten carbide particles of the first phase.
  • a second phase containing cobalt as a main component means that in the second phase, the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt is 70% by mass or more.
  • the lower limit of the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt can be 70% by mass or more, 80% by mass or more, or 90% by mass or more.
  • the upper limit of the percentage can be less than 100% by mass.
  • the percentage can be 70% by mass or more and less than 100% by mass, 80% by mass or more and less than 100% by mass, or 90% by mass or more and less than 100% by mass.
  • the second phase of the cemented carbide of the present disclosure as long as the percentage of cobalt with respect to the total of tungsten, chromium, vanadium, and cobalt is 70% by mass or more, the second phase functions as a binder phase, and the effects of the present disclosure are achieved. It has been confirmed that there is no damage to the
  • the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt in the second phase can be measured by ICP emission spectrometry (equipment used: "ICPS-8100" (trademark) manufactured by Shimadzu Corporation).
  • the second phase can include chromium (Cr), tungsten (W), vanadium (V), iron (Fe), nickel (Ni), carbon (C), etc.
  • the second phase can consist of cobalt and at least one member selected from the group consisting of chromium, tungsten, vanadium, iron, nickel, and carbon.
  • the second phase can include cobalt, at least one member selected from the group consisting of chromium, tungsten, vanadium, iron, nickel, and carbon, and impurities.
  • the impurities include manganese (Mn), magnesium (Mg), calcium (Ca), molybdenum (Mo), sulfur (S), titanium (Ti), and aluminum (Al). If the second phase includes vanadium, it is assumed that the vanadium content of the second phase does not exceed 5 at.%. That is, the vanadium content of the second phase can be 5 at % or less.
  • the cemented carbide of the present embodiment includes a third phase consisting of third phase particles containing 10 atomic % or more of vanadium, and the content of the third phase of the hard alloy is more than 0 vol. % and 1 vol. % or less.
  • the maximum value of the equivalent circle diameter of the third phase particles is preferably 0.5 ⁇ m or less. According to this, since there are no coarse third phase particles having an equivalent circle diameter of more than 0.5 ⁇ m, which can become a starting point for breakage, the breakage resistance of a cutting tool using the cemented carbide is improved.
  • the third phase consists of third phase particles containing 10 atomic % or more of vanadium.
  • the third phase is presumed to be a fine precipitated phase of vanadium (V) derived from vanadium carbide (VC) added as a grain growth inhibitor in the manufacturing process of cemented carbide.
  • VC vanadium carbide
  • a vanadium enriched layer having a certain thickness on the order of several atoms does not correspond to the third phase.
  • third phase particles containing 10 atomic % or more of vanadium means that in the third phase particles, the percentage of vanadium with respect to the total of tungsten, chromium, vanadium, and cobalt is 10 atomic % or more. .
  • the third phase particles can include tungsten, cobalt, chromium, carbon, etc.
  • the third phase particles can be made of vanadium and at least one selected from the group consisting of tungsten, cobalt, chromium, and carbon.
  • the third phase particles can include vanadium, at least one member selected from the group consisting of tungsten, cobalt, chromium, and carbon, and impurities. Examples of the impurities include iron, nickel, manganese, niobium, magnesium, calcium, molybdenum, sulfur, titanium, and aluminum.
  • the lower limit of the percentage of vanadium relative to the total of tungsten, chromium, vanadium, and cobalt is 10 atomic % or more, and can be 20 atomic % or more, or 30 atomic % or more.
  • the upper limit of the percentage can be 100 atomic % or less.
  • the percentage can be 10 atomic % or more and 100 atomic % or less, 20 atomic % or more and 100 atomic % or less, or 30 atomic % or more and 100 atomic % or less.
  • the method for measuring the percentage of vanadium relative to the total of tungsten, chromium, vanadium, and cobalt in the third phase particles is as follows.
  • an elemental mapping analysis was performed using the same procedure as (A1) to (B1) of the method for measuring the content of each of the first, second, and third phases of cemented carbide, and elemental mapping images of five fields of view were obtained. get.
  • each elemental mapping image a region containing 10 atomic % or more of vanadium is specified based on the total number of atoms of tungsten, cobalt, chromium, and vanadium. This region corresponds to third phase particles.
  • the identified third phase particles were magnified to an observation magnification of 2,000,000 times, and EDX point analysis was performed to calculate the percentage of the number of vanadium atoms (hereinafter referred to as "the percentage of the number of vanadium atoms relative to the total number of atoms of tungsten, cobalt, chromium, and vanadium" in the third phase particles).
  • Measure the vanadium content also referred to as “vanadium content of three-phase particles”
  • the measurements are carried out on five third phase particles.
  • the average value of the vanadium content of the five third phase particles is calculated.
  • the average value corresponds to the percentage of vanadium relative to the sum of tungsten, chromium, vanadium, and cobalt in the third phase particles in the present disclosure.
  • the maximum value of the equivalent circle diameter of the third phase particles (hereinafter also referred to as "maximum value of the third phase particles”) is preferably 0.5 ⁇ m or less.
  • the upper limit of the maximum value of the third phase particles is preferably 0.5 ⁇ m or less, preferably 0.4 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.2 ⁇ m or less, More preferably, it is 0.1 ⁇ m or less.
  • the lower limit of the maximum value of the equivalent circle diameter of the third phase particles is not particularly limited, and can be set to exceed 0 ⁇ m.
  • the maximum value of the equivalent circle diameter of the third phase is preferably more than 0 ⁇ m and not more than 0.5 ⁇ m, preferably more than 0 ⁇ m and not more than 0.4 ⁇ m, preferably more than 0 ⁇ m and not more than 0.3 ⁇ m, more preferably more than 0 ⁇ m and not more than 0.2 ⁇ m, and 0 ⁇ m More preferably, it is more than 0.1 ⁇ m or less.
  • the maximum value of the equivalent circle diameter of the third phase particles is measured by the following steps (A3) to (B3).
  • the cobalt content of the cemented carbide of this embodiment is 3% by mass or more and 10% by mass or less. According to this, cemented carbide has high hardness and strength. A cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the lower limit of the cobalt content of the cemented carbide is 3% by mass or more, preferably 4% by mass or more.
  • the upper limit of the cobalt content of the cemented carbide is 10% by mass or less, preferably 9% by mass or less, and more preferably 8% by mass or less.
  • the cobalt content of the cemented carbide is preferably 4% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less, and even more preferably 3% by mass or more and 8% by mass or less.
  • the cobalt content in the cemented carbide is measured by ICP emission spectrometry.
  • the vanadium content of the cemented carbide of this embodiment is 0.01% by mass or more and 0.30% by mass or less. According to this, the generation of coarse WC particles is suppressed, and the structure of the cemented carbide is made dense. Therefore, the cemented carbide has excellent hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • the lower limit of the vanadium content of the cemented carbide is 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.10% by mass or more.
  • the upper limit of the vanadium content of the cemented carbide is 0.30% by mass or less, preferably 0.20% by mass or less, from the viewpoint of suppressing a decrease in interfacial strength.
  • the vanadium content of the cemented carbide is preferably 0.01% by mass or more and 0.20% by mass or less, and more preferably 0.10% by mass or more and 0.20% by mass or less.
  • the vanadium content of the cemented carbide is measured by ICP emission spectrometry.
  • the cemented carbide of this embodiment can contain chromium (Cr).
  • the chromium content of the cemented carbide of this embodiment is preferably 0.2% by mass or more and 0.8% by mass or less. Chromium has the effect of inhibiting grain growth of tungsten carbide particles.
  • the chromium content of the cemented carbide is within the above range, it is possible to effectively prevent the fine tungsten carbide particles of the raw material from remaining as they are in the obtained cemented carbide, and to effectively prevent the generation of coarse grains. can be suppressed to improve tool life.
  • the lower limit of the chromium content of the cemented carbide is preferably 0.2% by mass or more, more preferably 0.3% by mass or more.
  • the upper limit of the chromium content of the cemented carbide is preferably 0.8% by mass or less, more preferably 0.5% by mass or less.
  • the chromium content of the cemented carbide is preferably 0.2% by mass or more and 0.8% by mass or less, and more preferably 0.3% by mass or more and 0.5% by mass or less.
  • the chromium content of the cemented carbide is measured by ICP emission spectroscopy.
  • the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase (hereinafter also referred to as "WC/second phase interface region")
  • the value is 15 atomic % or less.
  • WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • conventional cemented carbide has a large amount of vanadium concentrated layer at the interface, which tends to reduce the interface strength.
  • a vanadium enriched layer exists in the WC/second phase interface region, the (0001) crystal plane of the WC particle and other WC particles adjacent to the (0001) crystal plane of the WC particle
  • a vanadium-concentrated layer also exists in the interface region with the WC/WC interface region (hereinafter also referred to as "WC/WC interface region").
  • the maximum vanadium content in the WC/second phase interface region is 15 atomic % or less
  • the maximum vanadium content in the WC/WC interface region is also 15 atomic % or less. This has been confirmed.
  • the maximum value of the vanadium content in the WC/second phase interface region is 15 atomic % or less
  • the maximum value of the vanadium content in the WC/WC interface region is also 15 atomic % or less, and the WC/WC interface region
  • the formation of a vanadium-enriched layer is suppressed. Therefore, a decrease in the interfacial strength between WC particles due to the vanadium concentrated layer is also suppressed.
  • the upper limit of the maximum vanadium content in the WC/second phase interface region is preferably 15 atom % or less, preferably 14 atom % or less, more preferably 13 atom % or less, even more preferably 12 atom % or less, and 11 atom %. The following are even more preferred.
  • the lower limit of the maximum vanadium content in the WC/second phase interface region is not particularly limited, but may be, for example, 1 atomic % or more or 2 atomic % or more.
  • the maximum value of vanadium content in the WC/second phase interface region is preferably 1 atom % or more and 15 atom % or less, more preferably 1 atom % or more and 12 atom % or less, and even more preferably 2 atom % or more and 15 atom % or less. , 2 atomic % or more and 12 atomic % or less is even more preferable.
  • the maximum value of vanadium content in the WC/second phase interface region is measured by the following steps (A4) to (D4).
  • (A4) Cut a thin sample with a thickness of 50 nm or less from cemented carbide using an ion slicer or the like.
  • the surface of the thin sample is mirror-finished. Examples of mirror finishing methods include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
  • FIB device focused ion beam device
  • CP device cross section polisher device
  • FIG. 1 schematically shows a transmission electron microscope (TEM) image of the thin sample.
  • the measurement region R for line analysis is a rectangular region indicated by the symbol R.
  • FIG. 1 schematically shows a transmission electron microscope (TEM) image of the thin sample.
  • TEM transmission electron microscope
  • the interface between the (0001) crystal plane of the WC particle 1 and the second phase 2 adjacent to the (0001) crystal plane of the WC particle 1 is approximately straight, and , select a portion where the length of the substantially straight portion is 25 nm or more.
  • Line analysis is performed in the direction perpendicular to the substantially straight line portion (direction of arrow B in FIG. 1).
  • the distance of the line analysis is 20 nm from the substantially straight line portion to the WC particle side and the second phase side, respectively.
  • the width of the line analysis is 25 nm, and the step interval is 0.4 nm. Note that, as shown in FIG. 1, the measurement region R of the line analysis is set so that the third phase particles 3 are not included.
  • the maximum percentage of vanadium (atomic %) is calculated when the total number of atoms of W, Cr, V, and Co is 100 atomic %. This maximum value is defined as the maximum value of the vanadium content in the interface region between the (0001) crystal plane of the WC particles and the second phase.
  • the maximum percentage of vanadium with respect to the total of tungsten, chromium, vanadium and cobalt is 15 atomic % or less. It has been confirmed that as long as there is a reduction in interfacial strength, the effects of the present disclosure are not impaired.
  • the maximum value of the chromium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 20 atomic % or less. According to this, the formation of a chromium-enriched layer in which chromium is concentrated in the interface region is suppressed. Therefore, a decrease in the interfacial strength between the WC particles and the second phase due to the chromium-enriched layer is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
  • a chromium enriched layer when a chromium enriched layer exists in the WC/second phase interface region, the (0001) crystal plane of the WC particle and the other WC adjacent to the (0001) crystal plane of the WC particle A chromium-enriched layer may also exist in the interface region with particles (WC/WC interface region).
  • the maximum value of the chromium content in the WC/second phase interface region is 20 at% or less
  • the maximum value of the chromium content in the WC/WC interface region is also 20 at% or less. This has been confirmed.
  • the maximum value of the chromium content in the WC/second phase interface region is 20 atom % or less
  • the maximum value of the chromium content in the WC/WC interface region is also 20 atom % or less, and the WC/WC interface region
  • the formation of a chromium-enriched layer in which chromium is present is suppressed. Therefore, a decrease in the interfacial strength between WC particles due to the chromium-concentrated layer is also suppressed.
  • the upper limit of the maximum value of the chromium content in the WC/second phase interface region is preferably 20 atom % or less, preferably 18 atom % or less, more preferably 16 atom % or less, even more preferably 15 atom % or less, and 14 atom %. The following are even more preferred.
  • the lower limit of the maximum chromium content in the WC/second phase interface region is not particularly limited, but may be, for example, 1 atomic % or more or 2 atomic % or more.
  • the maximum value of the chromium content in the WC/second phase interface region is preferably 1 atomic % or more and 20 atomic % or less, more preferably 1 atomic % or more and 15 atomic % or less, and even more preferably 2 atomic % or more and 20 atomic % or less. , more preferably 2 at % or more and 15 at % or less.
  • the maximum value of the chromium content in the WC/second phase interface region is determined by the number of atoms of W, Cr, V, and Co in the methods (A4) to (D4) for measuring the vanadium content in the WC/second phase interface region. Calculate the percentage (atomic %) of chromium when the total number of atoms of W, Cr, V, and Co is 100 atomic % instead of the percentage (atomic %) of vanadium when the total number of atoms is 100 atomic %. It can be obtained by
  • the maximum percentage of chromium with respect to the total of tungsten, chromium, vanadium and cobalt is 20 atomic % or less. It has been confirmed that as long as there is a reduction in interfacial strength, the effects of the present disclosure are not impaired.
  • the cemented carbide of this embodiment typically undergoes a raw material powder preparation process, a mixing process, a molding process, a sintering process (including a preliminary sintering process and a main sintering process), a repeated heat treatment process, and a cooling process. It can be manufactured by performing the steps in the above order. Each step will be explained below.
  • the preparation step is a step of preparing all the raw material powders of the materials constituting the cemented carbide.
  • the raw material powders include tungsten carbide powder (hereinafter also referred to as "WC powder”) which is the raw material for the first phase, cobalt powder (hereinafter also referred to as “Co powder”) which is the raw material for the second phase, and a grain growth inhibitor.
  • WC powder tungsten carbide powder
  • Co powder cobalt powder
  • a grain growth inhibitor examples include vanadium carbide powder (hereinafter also referred to as "VC powder”).
  • Cr 3 C 2 powder chromium carbide powder
  • Commercially available tungsten carbide powder, cobalt powder, vanadium carbide powder, and chromium carbide powder can be used.
  • the average particle size of the tungsten carbide powder can be 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • the WC powder preferably has a ratio d20/d80 of its 20% cumulative volume particle diameter d20 to its 80% cumulative volume particle diameter d80 of 0.2 or more and 1 or less.
  • Such WC powder has a uniform particle size and has a small content of fine WC particles. Therefore, when a cemented carbide is produced using the WC powder, the generation of coarse WC particles due to dissolution and reprecipitation is suppressed in the sintering process.
  • the above-mentioned "20% cumulative volume particle diameter d20" means the cumulative 20% particle diameter from the small diameter side in the volume-based cumulative particle size distribution of crystal grains.
  • the above-mentioned "80% cumulative volume particle diameter d80" means the cumulative 80% particle diameter from the small diameter side in the volume-based cumulative particle size distribution of crystal grains.
  • the average particle size of the cobalt powder can be 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the average particle size of the vanadium carbide powder can be 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the VC powder can be sufficiently diffused into the mixed powder in the subsequent preliminary sintering step.
  • the average particle size of the chromium carbide powder can be 1.0 ⁇ m or more and 2.0 ⁇ m or less.
  • the average particle size of the above-mentioned raw material powder means the average particle size measured by the FSSS (Fisher Sub-Sieve Sizer) method.
  • the average particle size is measured using a "Sub-Sieve Sizer Model 95" (trademark) manufactured by Fisher Scientific.
  • the particle size distribution of the above-mentioned WC powder is measured using a particle size distribution measuring device manufactured by Microtrac (trade name: MT3300EX).
  • the mixing step is a step of mixing the raw material powders prepared in the preparation step. Through the mixing step, a mixed powder in which each raw material powder is mixed is obtained.
  • the content of each raw material powder in the mixed powder is appropriately adjusted in consideration of the content of each component such as the first phase, second phase, and third phase of the cemented carbide.
  • the content of tungsten carbide powder in the mixed powder can be, for example, 88.85% by mass or more and 99.83% by mass or less.
  • the content of cobalt powder in the mixed powder can be, for example, 3% by mass or more and 10% by mass or less.
  • the content of vanadium carbide powder in the mixed powder can be, for example, 0.01% by mass or more and 0.37% by mass or less.
  • the content of the chromium carbide powder in the mixed powder can be, for example, 0.20% by mass or more and 0.92% by mass or less.
  • a ball mill is used for mixing.
  • the mixing time can be 15 hours or more and 36 hours or less. According to this, pulverization of the raw material powder can be suppressed, and the VC powder can be sufficiently dispersed in the mixed powder while maintaining the particle size of the raw material powder.
  • the mixed powder may be granulated if necessary.
  • the mixed powder By granulating the mixed powder, it is easy to fill the mixed powder into a die or mold during the forming process described later.
  • a known granulation method can be applied to the granulation, and for example, a commercially available granulation machine such as a spray dryer can be used.
  • the molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a molded body.
  • the molding method and molding conditions in the molding step are not particularly limited as long as they may be general methods and conditions.
  • Examples of the predetermined shape include a cutting tool shape (for example, the shape of a small diameter drill).
  • the sintering process includes a preliminary sintering process and a main sintering process.
  • the compact is held at a sintering temperature of 800 to 1000° C. for 2 hours.
  • the atmosphere is vacuum.
  • a sintering temperature of 800 to 1000° C. is a temperature range in which WC grain growth does not occur.
  • the VC in the mixed powder can be diffused throughout the cobalt.
  • VC exhibits a uniform grain growth suppressing effect throughout the cemented carbide, and the generation of coarse WC particles is suppressed.
  • the main sintering process is performed.
  • the compact after the preliminary sintering step is held at a sintering temperature of 1350 to 1450° C. for 1 to 2 hours in an argon (Ar) atmosphere to obtain a cemented carbide.
  • a sintering temperature of 1350 to 1450° C. for 1 to 2 hours in an argon (Ar) atmosphere to obtain a cemented carbide.
  • Ar argon
  • vanadium By performing the preliminary sintering step and the main sintering step, vanadium can be sufficiently dissolved in cobalt.
  • the cemented carbide obtained in the sintering process is rapidly cooled. It is rapidly cooled from the temperature in the main sintering step to 1100° C. at which VC precipitates as a solid phase at a cooling rate of ⁇ 60° C./min or higher, and held at 1100° C. for 30 minutes. Such rapid cooling suppresses the movement of vanadium dissolved in cobalt, which tends to occur during cooling.
  • the vanadium content in the interface region between WC particles and the second phase (WC/second phase interface region) or the interface region between WC particles (WC/WC interface region) are uniformly formed.
  • a large region corresponding to a "vanadium concentrated layer” and/or a fine VC precipitate phase (hereinafter also referred to as "VC fine precipitate phase") are uniformly formed.
  • the process of rapidly cooling the cemented carbide to 1100°C at a cooling rate of -60°C/min or higher and holding it at 1100°C for 30 minutes will also be referred to as a "quenching process".
  • the cemented carbide is heated to 1250°C and held at 1250°C for 10 to 20 minutes.
  • the holding time By setting the holding time at 1250° C. to 20 minutes or less, vanadium in the vanadium concentrated layer having a large surface area can be preferentially dissolved in cobalt.
  • solid solution of vanadium in the VC fine precipitated phase into cobalt is suppressed, and at least a part of the VC fine precipitated phase can remain in the alloy.
  • the process of heating the cemented carbide to 1250°C and holding it at 1250°C for 10 to 20 minutes will also be referred to as a "heat treatment process.”
  • the cemented carbide is rapidly cooled to 1100°C at a cooling rate of -60°C/min or higher, and held at 1100°C for 30 minutes (corresponding to the rapid cooling process).
  • This suppresses the movement of vanadium dissolved in cobalt in the heat treatment step. Therefore, a vanadium concentrated layer and/or a VC fine precipitated phase are uniformly formed in the cemented carbide.
  • the above quenching step and heat treatment step are alternately repeated two or more times.
  • the maximum value of the vanadium concentration in the WC/second phase interface region and the vanadium concentrated layer present in the WC/WC interface region is finally reduced. That is, the vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles of the cemented carbide and the second phase, and the vanadium content in the (0001) crystal plane of the WC particle and the (0001) of the WC particle.
  • the vanadium content in the interface region with the WC grains adjacent to the crystal plane is reduced.
  • the cemented carbide contains VC particles, the VC particles are fine and uniformly dispersed in the cemented carbide.
  • the cooling conditions are not particularly limited and may be general conditions.
  • a cemented carbide According to the above method for manufacturing a cemented carbide, abnormal grain growth of WC particles is suppressed, so a cemented carbide that does not contain coarse WC particles and has a reduced vanadium content in the interface region can be obtained. It will be done.
  • the cemented carbide has excellent wear resistance and breakage resistance.
  • the cutting tool of this embodiment includes a cutting edge made of the cemented carbide of Embodiment 1.
  • the cutting edge means a part involved in cutting, and in cemented carbide, the distance between the cutting edge ridgeline and the perpendicular line of the tangent to the cutting edge ridgeline from the cutting edge ridgeline to the cemented carbide side is 2 mm. It means an area surrounded by a certain virtual surface.
  • the cutting tool examples include a cutting tool, a drill, an end mill, an indexable cutting tip for milling, an indexable cutting tip for turning, a metal saw, a gear cutting tool, a reamer, or a tap.
  • the cutting tool 10 of this embodiment can exhibit excellent effects when used as a small-diameter drill for processing printed circuit boards.
  • the cutting edge 11 of the cutting tool 10 shown in FIG. 2 is made of the cemented carbide of the first embodiment.
  • the cemented carbide of this embodiment may constitute the entirety of these tools, or may constitute a part thereof.
  • "constituting a part” refers to a mode in which the cemented carbide of this embodiment is brazed to a predetermined position of an arbitrary base material to form a cutting edge part.
  • the cutting tool according to this embodiment may further include a hard film that covers at least a portion of the surface of the base material made of cemented carbide.
  • a hard film for example, diamond-like carbon or diamond can be used.
  • the total content of the first phase and second phase of the cemented carbide of the present disclosure is preferably 97% by volume or more and 100% by volume or less.
  • the content of the first phase of the cemented carbide of the present disclosure is preferably 82 volume % or more and 95 volume % or less.
  • the content of the second phase in the cemented carbide of the present disclosure is preferably 5% by volume or more and 18% by volume or less.
  • the content of the third phase in the cemented carbide of the present disclosure is preferably more than 0 volume % and 0.8 volume % or less.
  • the average value of the equivalent circle diameter of the tungsten carbide particles is preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less. In the cemented carbide of the present disclosure, the average value of the equivalent circle diameter of the tungsten carbide particles is preferably 0.2 ⁇ m or more and 0.6 ⁇ m or less.
  • the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt is preferably 70% by mass or more.
  • the cobalt content of the cemented carbide of the present disclosure is preferably 4% by mass or more and 10% by mass or less.
  • the small Alto content of the cemented carbide of the present disclosure is preferably 3% by mass or more and 9% by mass or less.
  • the chromium content of the cemented carbide of the present disclosure is preferably 0.2% by mass or more and 0.8% by mass or less.
  • the chromium content of the cemented carbide of the present disclosure is preferably 0.3% by mass or more and 0.5% by mass or less.
  • the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 15 atomic % or less.
  • the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 12 atomic % or less.
  • the maximum value of the chromium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 20 atomic % or less.
  • the maximum value of the chromium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 15 atomic % or less.
  • cemented carbide alloys of Samples 1 to 12 and Samples 1-1 to 1-10 were produced by changing the blending ratio of raw material powders and manufacturing conditions. A small-diameter drill with a cutting edge made of the cemented carbide was manufactured and evaluated.
  • ⁇ Preparation of sample> A powder having the composition shown in the "mixed powder" column of Table 1 was prepared as a raw material powder.
  • the average particle size of the WC powder is 0.4 ⁇ m, and d20/d80 is 0.3 or more.
  • the average particle size of the Co powder is 1 ⁇ m
  • the average particle size of the VC powder is 0.3 ⁇ m
  • the average particle size of the Cr 3 C 2 powder is 1 ⁇ m.
  • WC powder, Co powder, Cr 3 C 2 powder and VC powder are commercially available products.
  • the compact after the preliminary sintering step was held in an Ar atmosphere at the temperature listed in the "temperature” column of "main sintering" in Table 1 for 1 hour to obtain a cemented carbide.
  • the cemented carbide was rapidly cooled to 1100°C at a cooling rate of -60°C/min or higher, and held at 1100°C for 30 minutes.
  • the cemented carbide was heated to 1250°C and held at 1250°C for 20 minutes.
  • FIG. 3 is a view from the tip side of the small diameter drill produced in this example.
  • the width of the wear mark means the width L1 of the wear mark W at a location at a distance of 0.08 mm from the drill center C, as shown in FIG.
  • the results are shown in the "Cutting test wear resistance ( ⁇ m)" column of Table 2. In this example, when the width of the wear mark is 22 ⁇ m or less, the wear resistance is determined to be good, and when the width of the wear mark is 20 ⁇ m or less, the wear resistance is determined to be better.
  • the drilling conditions were a rotation speed of 100 krpm and a feed rate of 3.6 m/min.
  • a maximum of 5000 holes were drilled and the number of holes punched until breakage was measured.
  • the results are shown in the "Breakage resistance of cutting test (times)" column of Table 2.
  • a result of 5000 times means that no breakage occurred after 5000 holes were punched. In this example, if the number of holes to be punched before breakage is 3000 times or more, it is determined that the breakage resistance is good, and if the number of holes to be drilled is 5000 times, it is determined that the breakage resistance is better.
  • the cemented carbide and cutting tools of Samples 1-1 to 1-10 correspond to comparative examples. It was confirmed that these samples had insufficient wear resistance and/or breakage resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

This cemented carbide comprises: a first phase comprising tungsten carbide particles; and a second phase including cobalt as a main component. The total content of the first phase and the second phase in the cemented carbide is 97 vol% or more, the average value of the circle-equivalent diameters of the tungsten carbide particles is 0.8 μm or less, the cobalt content of the cemented carbide is 3-10 mass%, the vanadium content of the cemented carbide is 0.01-0.30 mass%, and the maximum value of the vanadium content in an interface region between the second phase and the (0001) crystal planes of the tungsten carbide particles is 15 at% or less.

Description

超硬合金及びそれを用いた切削工具Cemented carbide and cutting tools using it
 本開示は、超硬合金及びそれを用いた切削工具に関する。 The present disclosure relates to a cemented carbide and a cutting tool using the same.
 プリント回路基板の穴あけでは、φ1mm以下の小径の穴あけが主流である。このため、小径ドリル等の工具に用いられる超硬合金としては、硬質相が平均粒径1μm以下の炭化タングステン粒子からなる、いわゆる微粒超硬合金が用いられている(例えば、特許文献1~特許文献3)。 When drilling holes in printed circuit boards, the mainstream is to drill holes with a small diameter of φ1 mm or less. For this reason, so-called fine-grained cemented carbide, in which the hard phase consists of tungsten carbide particles with an average particle size of 1 μm or less, is used as the cemented carbide used in tools such as small-diameter drills (for example, Patent Document 1 to Patent Document 1) Reference 3).
特開2007-92090号公報Japanese Patent Application Publication No. 2007-92090 特開2012-52237号公報Japanese Patent Application Publication No. 2012-52237 特開2012-117100号公報Japanese Patent Application Publication No. 2012-117100
 本開示の超硬合金は、
 炭化タングステン粒子からなる第1相と、コバルトを主成分として含む第2相と、を備える超硬合金であって、
 前記超硬合金の前記第1相及び前記第2相の合計含有率は、97体積%以上であり、
 前記炭化タングステン粒子の円相当径の平均値は、0.8μm以下であり、
 前記超硬合金のコバルト含有率は、3質量%以上10質量%以下であり、
 前記超硬合金のバナジウム含有率は、0.01質量%以上0.30質量%以下であり、
 前記炭化タングステン粒子の(0001)の結晶面と、前記第2相との界面領域におけるバナジウム含有率の最大値は、15原子%以下である、超硬合金である。
The cemented carbide of the present disclosure is
A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component,
The total content of the first phase and the second phase of the cemented carbide is 97% by volume or more,
The average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 μm or less,
The cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less,
The vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less,
The cemented carbide has a maximum vanadium content of 15 atomic % or less in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase.
 本開示の切削工具は、上記の超硬合金からなる刃先を備える、切削工具である。 A cutting tool of the present disclosure includes a cutting edge made of the above-mentioned cemented carbide.
図1は、WC/第2相界面領域におけるバナジウム含有率の測定方法を説明するための図である。FIG. 1 is a diagram for explaining a method for measuring the vanadium content in the WC/second phase interface region. 図2は、本実施形態の切削工具(小径ドリル)の一例を示す図である。FIG. 2 is a diagram showing an example of a cutting tool (small diameter drill) of this embodiment. 図3は、実施例で測定される摩耗痕の幅を説明するための図である。FIG. 3 is a diagram for explaining the width of wear scars measured in Examples.
 [本開示が解決しようとする課題]
 近年、5G(第5世代移動通信システム)の拡大に伴い、情報の高容量化が進んでいる。このため、プリント回路基板には更なる耐熱性が求められている。プリント回路基板の耐熱性の向上のため、プリント回路基板を構成する樹脂やガラスフィラーの耐熱性を向上させる技術が開発されている。一方、これによりプリント回路基板の難削化が進んでいる。このため、プリント回路基板の微細加工において、切削工具の摩耗や折損が生じやすい傾向にある。
[Problems that this disclosure seeks to solve]
In recent years, with the expansion of 5G (fifth generation mobile communication system), the capacity of information is increasing. For this reason, printed circuit boards are required to have even higher heat resistance. In order to improve the heat resistance of printed circuit boards, techniques have been developed to improve the heat resistance of resins and glass fillers that constitute printed circuit boards. On the other hand, this has made it increasingly difficult to cut printed circuit boards. For this reason, in micromachining of printed circuit boards, cutting tools tend to wear out or break easily.
 そこで、本開示は、特にプリント回路基板の微細加工に用いられる切削工具の材料として用いられた場合においても、長い工具寿命を有する切削工具を提供することのできる超硬合金及びそれを備える切削工具を提供することを目的とする。 Therefore, the present disclosure provides a cemented carbide that can provide a cutting tool with a long tool life even when used as a material for a cutting tool used particularly for micromachining of printed circuit boards, and a cutting tool equipped with the same. The purpose is to provide
 [本開示の効果]
 本開示の超硬合金によれば、特にプリント回路基板の微細加工に用いた場合においても、長い工具寿命を有する切削工具を提供することが可能となる。
[Effects of this disclosure]
According to the cemented carbide of the present disclosure, it is possible to provide a cutting tool that has a long tool life, especially when used for micromachining of printed circuit boards.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の超硬合金は、
 炭化タングステン粒子からなる第1相と、コバルトを主成分として含む第2相と、を備える超硬合金であって、
 前記超硬合金の前記第1相及び前記第2相の合計含有率は、97体積%以上であり、
 前記炭化タングステン粒子の円相当径の平均値は、0.8μm以下であり、
 前記超硬合金のコバルト含有率は、3質量%以上10質量%以下であり、
 前記超硬合金のバナジウム含有率は、0.01質量%以上0.30質量%以下であり、
 前記炭化タングステン粒子の(0001)の結晶面と、前記第2相との界面領域におけるバナジウム含有率の最大値は、15原子%以下である、超硬合金である。
[Description of embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
(1) The cemented carbide of the present disclosure is
A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component,
The total content of the first phase and the second phase of the cemented carbide is 97% by volume or more,
The average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 μm or less,
The cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less,
The vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less,
The cemented carbide has a maximum vanadium content of 15 atomic % or less in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase.
 本開示の超硬合金によれば、特にプリント回路基板の微細加工に用いた場合においても、長い工具寿命を有する切削工具を提供することが可能となる。 According to the cemented carbide of the present disclosure, it is possible to provide a cutting tool with a long tool life, especially when used for micromachining of printed circuit boards.
 (2)上記(1)において、前記超硬合金は、バナジウムを10原子%以上含む第3相粒子からなる第3相を備え、
 前記超硬合金の前記第3相の含有率は、0体積%超1体積%以下であり、
 前記第3相粒子の円相当径の最大値は、0.5μm以下であることが好ましい。
(2) In (1) above, the cemented carbide includes a third phase consisting of third phase particles containing 10 atomic % or more of vanadium,
The content of the third phase of the cemented carbide is more than 0% by volume and not more than 1% by volume,
The maximum value of the equivalent circle diameter of the third phase particles is preferably 0.5 μm or less.
 これによると、折損の起点となり得る、円相当径が0.5μm超の粗大な第3相粒子が存在しないため、該超硬合金を用いた切削工具の耐折損性が向上する。 According to this, since there are no coarse third phase particles with an equivalent circle diameter of more than 0.5 μm, which can become a starting point for breakage, the breakage resistance of a cutting tool using the cemented carbide is improved.
 (3)上記(1)又は(2)において、前記界面領域におけるクロム含有率の最大値は、20原子%以下であることが好ましい。 (3) In (1) or (2) above, the maximum value of the chromium content in the interface region is preferably 20 atomic % or less.
 これによると、界面領域にクロムが存在することに起因する、WC粒子とCo粒子との界面強度の低下が抑制される。よって、該超硬合金では、界面強度の低下に伴うWC粒子の脱落が生じ難く、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。 According to this, the decrease in the interface strength between the WC particles and the Co particles due to the presence of chromium in the interface region is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 (4)本開示の切削工具は、上記(1)から(3)のいずれかの超硬合金からなる刃先を備える、切削工具である。 (4) The cutting tool of the present disclosure is a cutting tool including a cutting edge made of the cemented carbide according to any one of (1) to (3) above.
 本開示の切削工具は、特にプリント回路基板の微細加工に用いた場合においても、長い工具寿命を有することができる。 The cutting tool of the present disclosure can have a long tool life, especially when used for micromachining of printed circuit boards.
 [本開示の実施形態の詳細]
 本開示の超硬合金及び切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
[Details of embodiments of the present disclosure]
Specific examples of the cemented carbide and cutting tool of the present disclosure will be described below with reference to the drawings. In the drawings of this disclosure, the same reference numerals indicate the same or corresponding parts. Further, dimensional relationships such as length, width, thickness, depth, etc. have been appropriately changed for clarity and simplification of the drawings, and do not necessarily represent actual dimensional relationships.
 本開示において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。 In the present disclosure, the notation in the format "A to B" means the upper and lower limits of the range (i.e., from A to B), and if there is no unit described in A and a unit is described only in B, then The unit and the unit of B are the same.
 本開示において、数値範囲下限及び上限として、それぞれ1つ以上の数値が記載されている場合は、下限に記載されている任意の1つの数値と、上限に記載されている任意の1つの数値との組み合わせも開示されているものとする。例えば、下限として、a1以上、b1以上、c1以上が記載され、上限としてa2以下、b2以下、c2以下が記載されている場合は、a1以上a2以下、a1以上b2以下、a1以上c2以下、b1以上a2以下、b1以上b2以下、b1以上c2以下、c1以上a2以下、c1以上b2以下、c1以上c2以下が開示されているものとする。 In this disclosure, if one or more numerical values are stated as the lower limit and upper limit of the numerical range, any one numerical value stated in the lower limit and any one numerical value stated in the upper limit. It is assumed that combinations of the above are also disclosed. For example, if the lower limit is a1 or more, b1 or more, c1 or more, and the upper limit is a2 or less, b2 or less, c2 or less, a1 or more and a2 or less, a1 or more and b2 or less, a1 or more and c2 or less, b1 or more and a2 or less, b1 or more and b2 or less, b1 or more and c2 or less, c1 or more and a2 or less, c1 or more and b2 or less, and c1 or more and c2 or less are disclosed.
 本開示において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。 In the present disclosure, when a compound or the like is expressed by a chemical formula, unless the atomic ratio is specifically limited, it includes all conventionally known atomic ratios, and should not necessarily be limited to only those in the stoichiometric range.
 本開示中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本開示中では数字の前に負の符号を付している。 In the crystallographic description in the present disclosure, individual orientations are indicated by [], collective orientations are indicated by <>, individual planes are indicated by (), and collective planes are indicated by {}, respectively. Also, the fact that the crystallographic index is negative is usually expressed by adding a "-" (bar) above the number, but in this disclosure, a negative sign is added in front of the number. .
 [実施形態1:超硬合金]
 本開示の一実施形態(以下、「本実施形態」とも記す。)の超硬合金は、
 炭化タングステン粒子からなる第1相と、コバルトを主成分として含む第2相と、を備える超硬合金であって、
 該超硬合金の該第1相及び該第2相の合計含有率は、97体積%以上であり、
 該炭化タングステン粒子の円相当径の平均値は、0.8μm以下であり、
 該超硬合金のコバルト含有率は、3質量%以上10質量%以下であり、
 該超硬合金のバナジウム含有率は、0.01質量%以上0.30質量%以下であり、
 該炭化タングステン粒子の(0001)の結晶面と、該第2相との界面領域におけるバナジウム含有率の最大値は、15原子%以下である、超硬合金である。
[Embodiment 1: Cemented carbide]
The cemented carbide of one embodiment of the present disclosure (hereinafter also referred to as "this embodiment") is
A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component,
The total content of the first phase and the second phase of the cemented carbide is 97% by volume or more,
The average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 μm or less,
The cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less,
The vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less,
The cemented carbide has a maximum vanadium content of 15 atomic % or less in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase.
 本実施形態の超硬合金によれば、特にプリント回路基板の微細加工に用いた場合においても、長い工具寿命を有する切削工具を提供することが可能となる。この理由は明らかではないが、以下の(i)~(v)の通りと推察される。 According to the cemented carbide of this embodiment, it is possible to provide a cutting tool with a long tool life, especially when used for micromachining of printed circuit boards. Although the reason for this is not clear, it is presumed to be as described in (i) to (v) below.
 (i)本実施形態の超硬合金は、複数の炭化タングステン粒子(以下、「WC粒子」とも記す。)からなる第1相と、コバルトを主成分として含む第2相と、を備え、該超硬合金の第1相及び第2相の合計含有率は、97体積%以上である。これによると、超硬合金は高い硬度及び強度を有し、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。 (i) The cemented carbide of this embodiment includes a first phase consisting of a plurality of tungsten carbide particles (hereinafter also referred to as "WC particles") and a second phase containing cobalt as a main component. The total content of the first phase and second phase of the cemented carbide is 97% by volume or more. According to this, the cemented carbide has high hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 (ii)本実施形態の超硬合金において、WC粒子の円相当径の平均値は、0.8μm以下である。これによると、超硬合金は高い硬度を有し、該超硬合金を用いた切削工具は、優れた耐摩耗性を有することができる。また、該超硬合金は優れた強度を有し、該超硬合金を用いた切削工具は、優れた耐折損性を有することができる。 (ii) In the cemented carbide of this embodiment, the average value of the equivalent circle diameter of the WC particles is 0.8 μm or less. According to this, the cemented carbide has high hardness, and a cutting tool using the cemented carbide can have excellent wear resistance. Further, the cemented carbide has excellent strength, and a cutting tool using the cemented carbide can have excellent breakage resistance.
 (iii)本実施形態の超硬合金のコバルト含有率は、3質量%以上10質量%以下である。これによると、超硬合金は高い硬度及び強度を有する。該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。 (iii) The cobalt content of the cemented carbide of this embodiment is 3% by mass or more and 10% by mass or less. According to this, cemented carbide has high hardness and strength. A cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 (iv)本実施形態の超硬合金のバナジウム含有率は、0.01質量%以上0.30質量%以下である。これによると、粗大なWC粒子の発生が抑制され、超硬合金の組織が緻密化される。よって、該超硬合金は優れた硬度及び強度を有し、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。 (iv) The vanadium content of the cemented carbide of this embodiment is 0.01% by mass or more and 0.30% by mass or less. According to this, the generation of coarse WC particles is suppressed, and the structure of the cemented carbide is made dense. Therefore, the cemented carbide has excellent hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 (v)本実施形態の超硬合金において、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率の最大値は、15原子%以下である。これによると、該界面領域において、バナジウムが濃化して存在するバナジウム濃化層の形成が抑制されている。このため、バナジウム濃化層に起因するWC粒子と第2相との界面強度の低下が抑制される。よって、該超硬合金では、界面強度の低下に伴うWC粒子の脱落が生じ難く、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。 (v) In the cemented carbide of the present embodiment, the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is 15 atomic % or less. According to this, the formation of a vanadium-concentrated layer in which vanadium is present in a concentrated manner is suppressed in the interface region. Therefore, a decrease in the interfacial strength between the WC particles and the second phase due to the vanadium concentrated layer is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 <超硬合金の組成>
 ≪第1相、第2相及び第3相の含有率≫
 本実施形態の超硬合金は、炭化タングステン粒子からなる第1相と、コバルトを主成分として含む第2相と、を備える。該超硬合金の第1相及び第2相の合計含有率は、97体積%以上である。これによると、超硬合金は高い硬度及び強度を有し、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。
<Composition of cemented carbide>
≪Content rate of 1st phase, 2nd phase and 3rd phase≫
The cemented carbide of this embodiment includes a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component. The total content of the first phase and second phase of the cemented carbide is 97% by volume or more. According to this, the cemented carbide has high hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 超硬合金の第1相及び第2相の合計含有率の下限は、97体積%以上であり、98体積%以上が好ましく、99体積%以上がより好ましい。超硬合金の第1相及び第2相の合計含有率の上限は、100体積%以下が好ましい。超硬合金の第1相及び第2相の合計含有率は、97体積%以上100体積%以下が好ましく、98体積%以上100体積%以下がより好ましく、99体積%以上100体積%以下が更に好ましい。超硬合金は、第1相と第2相とからなることが好ましい。 The lower limit of the total content of the first phase and second phase of the cemented carbide is 97 volume % or more, preferably 98 volume % or more, and more preferably 99 volume % or more. The upper limit of the total content of the first phase and second phase of the cemented carbide is preferably 100% by volume or less. The total content of the first phase and second phase of the cemented carbide is preferably 97 volume% or more and 100 volume% or less, more preferably 98 volume% or more and 100 volume% or less, and even more preferably 99 volume% or more and 100 volume% or less. preferable. Preferably, the cemented carbide consists of a first phase and a second phase.
 超硬合金の第1相の含有率の下限は、硬度向上の観点から、82体積%以上が好ましく、85体積%以上がより好ましく、87体積%以上が更に好ましい。超硬合金の第1相の含有率の上限は、100体積%未満であり、耐折損性向上の観点から、95体積%以下が好ましく、94体積%以下がより好ましく、93体積%以下が更に好ましく、90体積%以下がより更に好ましい。超硬合金の第1相の含有率は、82体積%以上95体積%以下が好ましく、85体積%以上93体積%以下がより好ましく、87体積%以上90体積%以下が更に好ましい。 From the viewpoint of improving hardness, the lower limit of the content of the first phase of the cemented carbide is preferably 82 volume % or more, more preferably 85 volume % or more, and even more preferably 87 volume % or more. The upper limit of the content of the first phase of the cemented carbide is less than 100 vol%, and from the viewpoint of improving breakage resistance, it is preferably 95 vol% or less, more preferably 94 vol% or less, and even more preferably 93 vol% or less. It is preferably 90% by volume or less, and even more preferably 90% by volume or less. The content of the first phase of the cemented carbide is preferably 82 volume% or more and 95 volume% or less, more preferably 85 volume% or more and 93 volume% or less, and even more preferably 87 volume% or more and 90 volume% or less.
 超硬合金の第2相の含有率の下限は、耐折損性向上の観点から、5体積%以上が好ましく、7体積%以上がより好ましく、9体積%以上が更に好ましい。超硬合金の第2相の含有率の上限は、硬度向上の観点から、18体積%以下が好ましく、16体積%以下がより好ましく、14体積%以下が更に好ましい。超硬合金の第2相の含有率は、5体積%以上18体積%以下が好ましく、7体積%以上16体積%以下がより好ましく、9体積%以上14体積%以下が更に好ましい。 From the viewpoint of improving breakage resistance, the lower limit of the content of the second phase of the cemented carbide is preferably 5% by volume or more, more preferably 7% by volume or more, and even more preferably 9% by volume or more. From the viewpoint of improving hardness, the upper limit of the second phase content of the cemented carbide is preferably 18 vol% or less, more preferably 16 vol% or less, and even more preferably 14 vol% or less. The content of the second phase of the cemented carbide is preferably 5 volume% or more and 18 volume% or less, more preferably 7 volume% or more and 16 volume% or less, and even more preferably 9 volume% or more and 14 volume% or less.
 本実施形態の超硬合金は、第1相及び第2相に加えて、バナジウムを10原子%以上含む第3相粒子からなる第3相を備えることができる。 In addition to the first phase and the second phase, the cemented carbide of this embodiment can include a third phase consisting of third phase particles containing 10 atomic % or more of vanadium.
 超硬合金が第3相を含む場合、超硬合金の第3相の含有率は、0体積%超1体積%以下が好ましい。これによると、第3相の存在に起因する超硬合金の耐折損性の低下が抑制される。超硬合金の第3相の含有率の下限は、0体積%超である。超硬合金の第3相の含有率の上限は、1体積%以下が好ましく、0.8体積以下がより好ましく、0.7体積%以下が更に好ましい。超硬合金が第3相を含む場合、超硬合金の第3相の含有率は、0体積%超1体積%以下が好ましく、0体積%超0.8体積%以下がより好ましく、0体積%超0.7体積%以下が更に好ましい。 When the cemented carbide includes a third phase, the content of the third phase of the cemented carbide is preferably more than 0% by volume and not more than 1% by volume. According to this, the decrease in breakage resistance of the cemented carbide due to the presence of the third phase is suppressed. The lower limit of the content of the third phase of the cemented carbide is more than 0% by volume. The upper limit of the third phase content of the cemented carbide is preferably 1% by volume or less, more preferably 0.8% by volume or less, and even more preferably 0.7% by volume or less. When the cemented carbide includes a third phase, the content of the third phase of the cemented carbide is preferably more than 0 volume% and 1 volume% or less, more preferably more than 0 volume% and 0.8 volume% or less, and 0 volume%. More preferably, it is more than 0.7% by volume.
 本実施形態の超硬合金は、本開示の効果を示す限り、第1相、第2相及び第3相に加えて、不可避不純物を含むことができる。該不可避不純物としては、例えば、鉄、モリブデン、硫黄が挙げられる。超硬合金の該不可避不純物の含有率は、0.1質量%未満が好ましい。超硬合金の該不可避不純物の含有率は、ICP発光分析(Inductively Coupled Plasma)Emission Spectroscopy(測定装置:島津製作所「ICPS-8100」(商標))により測定される。 The cemented carbide of this embodiment can contain unavoidable impurities in addition to the first phase, second phase, and third phase as long as the effects of the present disclosure are exhibited. Examples of the unavoidable impurities include iron, molybdenum, and sulfur. The content of the unavoidable impurities in the cemented carbide is preferably less than 0.1% by mass. The content of the inevitable impurities in the cemented carbide is measured by ICP emission spectroscopy (measurement device: Shimadzu Corporation "ICPS-8100" (trademark)).
 超硬合金の第1相、第2相及び第3相のそれぞれの含有率は、下記(A1)~(D1)の手順で測定される。 The content of each of the first phase, second phase, and third phase of the cemented carbide is measured according to the following procedures (A1) to (D1).
 (A1)超硬合金からイオンスライサーなどを用いて、厚さ50nm以下の薄片サンプルを切り出し、該薄片サンプルの表面を鏡面加工する。鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。 (A1) A thin sample with a thickness of 50 nm or less is cut from cemented carbide using an ion slicer or the like, and the surface of the thin sample is mirror-finished. Examples of mirror finishing methods include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
 (B1)上記薄片サンプルの鏡面加工面に対して、透過型電子顕微鏡(TEM:Transmission Electron Microscopy)付帯のEDX(エネルギー分散型X線分光法:Energy Dispersive X-ray Spectroscopy)により、タングステン(W)、コバルト(Co)、クロム(Cr)、及び、バナジウム(V)の元素マッピングを行い、各元素のマッピング像を得る。測定条件は、観察倍率10万倍、加速電圧200kVとする。元素マッピングの画素数は125×125とする。該元素マッピング像を5視野準備する。5視野の元素マッピング像の撮影領域は、それぞれ異なる。撮影領域は任意に設定することができる。 (B1) The mirror-finished surface of the thin sample was subjected to EDX (Energy Dispersive X-ray Spectroscopy) with a transmission electron microscope (TEM). Tungsten (W) , cobalt (Co), chromium (Cr), and vanadium (V) to obtain a mapping image of each element. The measurement conditions are an observation magnification of 100,000 times and an acceleration voltage of 200 kV. The number of pixels for element mapping is 125×125. Five visual fields of the elemental mapping images are prepared. The photographing regions of the elemental mapping images of the five fields of view are different from each other. The imaging area can be set arbitrarily.
 上記元素マッピング像において、タングステン(W)、コバルト(Co)、クロム(Cr)及びバナジウム(V)の原子数の合計に対して、タングステンを70原子%以上含む領域が第1相の存在領域に該当する。上記元素マッピング像において、タングステン、コバルト、クロム及びバナジウムの原子数の合計に対して、コバルトを70原子%以上含む領域が第2相の存在領域に該当する。上記元素マッピング像において、タングステン、コバルト、クロム及びバナジウムの原子数の合計に対して、バナジウムを10原子%以上含む領域が第3相の存在領域に該当する。なお、炭化タングステン粒子と第2相との界面領域に存在するバナジウムの濃化層、及び、第2相同士の界面領域に存在するバナジウムの濃化層は数原子(例えば、1~5原子程度)レベルの一定の厚みを持った層状であるため、観察倍率10万倍では検出されない。 In the above elemental mapping image, the region containing 70 atomic percent or more of tungsten is the region where the first phase exists, based on the total number of atoms of tungsten (W), cobalt (Co), chromium (Cr), and vanadium (V). Applicable. In the above elemental mapping image, a region containing 70 atomic % or more of cobalt with respect to the total number of atoms of tungsten, cobalt, chromium, and vanadium corresponds to the region where the second phase exists. In the above elemental mapping image, the region containing vanadium at 10 atomic % or more with respect to the total number of atoms of tungsten, cobalt, chromium, and vanadium corresponds to the region where the third phase exists. Note that the vanadium concentrated layer existing in the interface area between the tungsten carbide particles and the second phase and the vanadium concentrated layer existing in the interface area between the second phases have a concentration of several atoms (for example, about 1 to 5 atoms). ), it is not detected at 100,000x magnification because it is layered with a certain thickness.
 (C1)上記(B1)で得られた各元素の5視野の元素マッピング像について、画像解析ソフトウェア(ImageJ、version 1.51j8:https://imagej.nih.gov/ij/)を用いて、視野の全体を分母として第1相、第2相及び第3相のそれぞれの面積%を測定する。 (C1) Regarding the elemental mapping images of 5 fields of view of each element obtained in (B1) above, using image analysis software (ImageJ, version 1.51j8: https://imagej.nih.gov/ij/), The area percentage of each of the first phase, second phase, and third phase is measured using the entire visual field as the denominator.
 (D1)5視野で得られた第1相の面積%の平均値を算出する。該平均値が超硬合金の第1相の含有率(体積%)に該当する。5視野で得られた第2相の面積%の平均値を算出する。該平均値が超硬合金の第2相の含有率(体積%)に該当する。5視野で得られた第3相の面積%の平均値を算出する。該平均値が超硬合金の第3相の含有率(体積%)に該当する。 (D1) Calculate the average value of the area % of the first phase obtained in 5 visual fields. The average value corresponds to the content (volume %) of the first phase of the cemented carbide. The average value of the area % of the second phase obtained in 5 fields of view is calculated. This average value corresponds to the content rate (volume %) of the second phase of the cemented carbide. The average value of the area % of the third phase obtained in 5 fields of view is calculated. The average value corresponds to the content rate (volume %) of the third phase of the cemented carbide.
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を測定領域の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。 As far as the applicant has measured, as long as the measurement is performed on the same sample, even if the above measurement is performed multiple times by changing the selected measurement area, there is little variation in the measurement results, and the measurement field of view can be set arbitrarily. However, it was confirmed that this was not arbitrary.
 <第1相>
 ≪第1相の組成≫
 第1相は、炭化タングステン粒子からなる。ここで、炭化タングステン粒子には、「純粋なWC粒子(不純物元素が一切含有されないWC、不純物元素の含有量が検出限界未満であるWCも含む。)」だけではなく、「本開示の効果を損なわない限りにおいて、その内部に不純物元素が意図的あるいは不可避的に含有されるWC粒子」も含まれる。第1相の不純物の含有率(不純物を構成する元素が2種類以上の場合は、それらの合計濃度。)は、0.1質量%未満である。第1相の不純物元素の含有率は、ICP発光分析により測定される。
<Phase 1>
≪Composition of the first phase≫
The first phase consists of tungsten carbide particles. Here, tungsten carbide particles include not only "pure WC particles (including WC containing no impurity elements and WC whose content of impurity elements is below the detection limit)" but also "pure WC particles (including WC containing no impurity elements and WC whose content of impurity elements is less than the detection limit)". It also includes "WC particles in which impurity elements are intentionally or unavoidably contained, as long as they do not damage the particles." The content of impurities in the first phase (if there are two or more elements constituting the impurities, their total concentration) is less than 0.1% by mass. The content of impurity elements in the first phase is measured by ICP emission spectrometry.
 ≪炭化タングステン粒子の円相当径の平均値≫
 本実施形態において、炭化タングステン粒子の円相当径の平均値(以下、「WC粒子の平均粒径」とも記す。)は、0.8μm以下である。これによると、超硬合金は高い硬度を有し、該超硬合金を用いた切削工具は、優れた耐摩耗性を有することができる。また、該超硬合金は優れた強度を有し、該超硬合金を用いた切削工具は、優れた耐折損性を有することができる。本開示において、炭化タングステン粒子の円相当径の平均値とは、超硬合金の断面で測定されるWC粒子の円相当径の個数基準の算術平均を意味する。
≪Average equivalent circle diameter of tungsten carbide particles≫
In the present embodiment, the average equivalent circle diameter of the tungsten carbide particles (hereinafter also referred to as "average particle diameter of WC particles") is 0.8 μm or less. According to this, the cemented carbide has high hardness, and a cutting tool using the cemented carbide can have excellent wear resistance. Further, the cemented carbide has excellent strength, and a cutting tool using the cemented carbide can have excellent breakage resistance. In the present disclosure, the average value of the equivalent circle diameter of tungsten carbide particles means the arithmetic mean of the number-based equivalent circle diameter of WC particles measured on a cross section of the cemented carbide.
 WC粒子の平均粒径の下限は、耐摩耗性向上の観点から、0.2μm以上が好ましく、0.3μm以上がより好ましく、0.4μm以上が更に好ましい。WC粒子の平均粒径の上限は、耐摩耗性及び耐折損性向上の観点から、0.8μm以下であり、0.5μm以下が好ましく、0.6μm以下がより好ましく、0.4μm以下が更に好ましい。WC粒子の平均粒径は、0.2μm以上0.8μm以下が好ましく、0.2μm以上0.6μm以下がより好ましく、0.2μm以上0.5μm以下が更に好ましい。 From the viewpoint of improving wear resistance, the lower limit of the average particle size of the WC particles is preferably 0.2 μm or more, more preferably 0.3 μm or more, and even more preferably 0.4 μm or more. From the viewpoint of improving wear resistance and breakage resistance, the upper limit of the average particle diameter of the WC particles is 0.8 μm or less, preferably 0.5 μm or less, more preferably 0.6 μm or less, and even more preferably 0.4 μm or less. preferable. The average particle diameter of the WC particles is preferably 0.2 μm or more and 0.8 μm or less, more preferably 0.2 μm or more and 0.6 μm or less, and even more preferably 0.2 μm or more and 0.5 μm or less.
 炭化タングステン粒子の円相当径の平均値は、下記(A2)~(D2)の手順で測定される。
 (A2)超硬合金の任意の断面を鏡面加工する。鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。
The average value of the equivalent circle diameter of tungsten carbide particles is measured by the following procedures (A2) to (D2).
(A2) Mirror-finishing an arbitrary cross section of the cemented carbide. Examples of mirror finishing methods include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
 (B2)超硬合金の加工面を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「S-3400N」)で撮影する。撮影画像を3枚準備する。3枚の撮影画像のそれぞれの撮影領域は異なる。撮影領域は任意に設定することができる。条件は、観察倍率10000倍、加速電圧10kV、反射電子像とする。 (B2) Photograph the machined surface of the cemented carbide using a scanning electron microscope (“S-3400N” manufactured by Hitachi High-Technologies Corporation). Prepare three images. The photographing areas of the three photographed images are different. The imaging area can be set arbitrarily. The conditions are: observation magnification of 10,000 times, acceleration voltage of 10 kV, and backscattered electron image.
 (C2)上記(B2)で得られた3枚の反射電子像を画像解析ソフトウェア(ImageJ、version 1.51j8:https://imagej.nih.gov/ij/)でコンピュータに取り込み、二値化処理を行う。二値化処理は、画像を取り込んだのちに、コンピュータ画面上の「Make Binary」の表示を押すことにより、上記画像解析ソフトウェアに予め設定された条件で実行される。二値化処理後の画像において、第1相と第2相とは、色の濃淡で識別できる。例えば、二値化処理後の画像において、第1相は黒色領域で示され、第2相は白色領域で示される。なお、超硬合金が第3相を含む場合は、二値化処理後の画像において、第3相は第2相と同一の色調(白色)で示される。 (C2) The three backscattered electron images obtained in (B2) above were imported into a computer using image analysis software (ImageJ, version 1.51j8: https://imagej.nih.gov/ij/) and binarized. Perform processing. The binarization process is executed under conditions preset in the image analysis software by pressing the "Make Binary" display on the computer screen after capturing the image. In the image after the binarization process, the first phase and the second phase can be distinguished by color shading. For example, in an image after binarization processing, the first phase is shown as a black area, and the second phase is shown as a white area. Note that when the cemented carbide includes a third phase, the third phase is shown in the same color tone (white) as the second phase in the image after the binarization process.
 (D2)得られた3枚の撮影画像に対して上記画像解析ソフトウェアを用いて、3枚の撮影画像中の全ての炭化タングステン粒子(黒色領域)のそれぞれについて、円相当径(Heywood径:等面積円相当径)を測定する。3つの測定視野中の全ての炭化タングステン粒子の円相当径の個数基準の算術平均値を算出する。本開示において、該算術平均値が、WC粒子の円相当径の平均値に該当する。 (D2) Using the above-mentioned image analysis software on the three obtained images, the circle-equivalent diameter (Heywood diameter: Measure the area circle equivalent diameter). The arithmetic mean value based on the number of circle-equivalent diameters of all tungsten carbide particles in the three measurement fields of view is calculated. In the present disclosure, the arithmetic mean value corresponds to the average value of the equivalent circle diameter of the WC particles.
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。 As far as the applicant has measured, as long as the measurement is performed on the same sample, even if the above measurement is performed multiple times by changing the selected measurement area, there is little variation in the measurement results, and the measurement field of view can be set arbitrarily. However, it was confirmed that it was not arbitrary.
 <第2相>
 第2相は、コバルトを主成分として含む。第2相は、第1相の炭化タングステン粒子同士を結合させる結合相である。
<Phase 2>
The second phase contains cobalt as a main component. The second phase is a binding phase that binds the tungsten carbide particles of the first phase.
 本開示において、「コバルトを主成分として含む第2相」とは、第2相において、タングステン、クロム、バナジウム及びコバルトの合計に対するコバルトの百分率が70質量%以上であることを意味する。第2相において、タングステン、クロム、バナジウム及びコバルトの合計に対するコバルトの百分率の下限は、70質量%以上、80質量%以上、又は、90質量%以上とすることができる。該百分率の上限は、100質量%未満とすることができる。該百分率は、70質量%以上100質量%未満、80質量%以上100質量%未満、又は、90質量%以上100質量%未満とすることができる。 In the present disclosure, "a second phase containing cobalt as a main component" means that in the second phase, the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt is 70% by mass or more. In the second phase, the lower limit of the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt can be 70% by mass or more, 80% by mass or more, or 90% by mass or more. The upper limit of the percentage can be less than 100% by mass. The percentage can be 70% by mass or more and less than 100% by mass, 80% by mass or more and less than 100% by mass, or 90% by mass or more and less than 100% by mass.
 本開示の超硬合金の第2相において、タングステン、クロム、バナジウム及びコバルトの合計に対するコバルトの百分率が70質量%以上である限り、第2相は結合相としての機能を奏し、本開示の効果が損なわれないことが確認されている。 In the second phase of the cemented carbide of the present disclosure, as long as the percentage of cobalt with respect to the total of tungsten, chromium, vanadium, and cobalt is 70% by mass or more, the second phase functions as a binder phase, and the effects of the present disclosure are achieved. It has been confirmed that there is no damage to the
 第2相における、タングステン、クロム、バナジウム及びコバルトの合計に対するコバルトの百分率は、ICP発光分光分析法(使用機器:島津製作所製「ICPS-8100」(商標))により測定することができる。 The percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt in the second phase can be measured by ICP emission spectrometry (equipment used: "ICPS-8100" (trademark) manufactured by Shimadzu Corporation).
 第2相は、コバルトに加えて、クロム(Cr)、タングステン(W)、バナジウム(V)、鉄(Fe)、ニッケル(Ni)、炭素(C)等を含むことができる。第2相は、コバルトと、クロム、タングステン、バナジウム、鉄、ニッケル及び炭素からなる群より選ばれる少なくとも1種と、からなることができる。第2相は、コバルトと、クロム、タングステン、バナジウム、鉄、ニッケル及び炭素からなる群より選ばれる少なくとも1種と、不純物と、からなることができる。該不純物としては、例えば、マンガン(Mn)、マグネシウム(Mg)、カルシウム(Ca)、モリブデン(Mo)、硫黄(S)、チタン(Ti)、アルミニウム(Al)などが挙げられる。第2相がバナジウムを含む場合、第2相のバナジウム含有率は5原子%を超えることはないと想定される。すなわち、第2相のバナジウム含有率は5原子%以下とすることができる。 In addition to cobalt, the second phase can include chromium (Cr), tungsten (W), vanadium (V), iron (Fe), nickel (Ni), carbon (C), etc. The second phase can consist of cobalt and at least one member selected from the group consisting of chromium, tungsten, vanadium, iron, nickel, and carbon. The second phase can include cobalt, at least one member selected from the group consisting of chromium, tungsten, vanadium, iron, nickel, and carbon, and impurities. Examples of the impurities include manganese (Mn), magnesium (Mg), calcium (Ca), molybdenum (Mo), sulfur (S), titanium (Ti), and aluminum (Al). If the second phase includes vanadium, it is assumed that the vanadium content of the second phase does not exceed 5 at.%. That is, the vanadium content of the second phase can be 5 at % or less.
 <第3相>
 ≪第3相の組成≫
 本実施形態の超硬合金は、バナジウムを10原子%以上含む第3相粒子からなる第3相を備え、該硬合金の該第3相の含有率は、0体積%超1体積%以下であり、該第3相粒子の円相当径の最大値は、0.5μm以下であることが好ましい。これによると、折損の起点となり得る、円相当径が0.5μm超の粗大な第3相粒子が存在しないため、該超硬合金を用いた切削工具の耐折損性が向上する。
<Phase 3>
≪Composition of third phase≫
The cemented carbide of the present embodiment includes a third phase consisting of third phase particles containing 10 atomic % or more of vanadium, and the content of the third phase of the hard alloy is more than 0 vol. % and 1 vol. % or less. The maximum value of the equivalent circle diameter of the third phase particles is preferably 0.5 μm or less. According to this, since there are no coarse third phase particles having an equivalent circle diameter of more than 0.5 μm, which can become a starting point for breakage, the breakage resistance of a cutting tool using the cemented carbide is improved.
 第3相は、バナジウムを10原子%以上含む第3相粒子からなる。第3相は、超硬合金の製造工程において、粒成長抑制剤として添加される炭化バナジウム(VC)に由来するバナジウム(V)の微細析出相と推察される。本開示において、数原子レベルの一定の厚みを持ったバナジウム濃化層は、第3相に該当しない。 The third phase consists of third phase particles containing 10 atomic % or more of vanadium. The third phase is presumed to be a fine precipitated phase of vanadium (V) derived from vanadium carbide (VC) added as a grain growth inhibitor in the manufacturing process of cemented carbide. In the present disclosure, a vanadium enriched layer having a certain thickness on the order of several atoms does not correspond to the third phase.
 本開示において、「バナジウムを10原子%以上含む第3相粒子」とは、第3相粒子において、タングステン、クロム、バナジウム及びコバルトの合計に対するバナジウムの百分率が10原子%以上であることを意味する。 In the present disclosure, "third phase particles containing 10 atomic % or more of vanadium" means that in the third phase particles, the percentage of vanadium with respect to the total of tungsten, chromium, vanadium, and cobalt is 10 atomic % or more. .
 第3相粒子は、バナジウムに加えて、タングステン、コバルト、クロム、炭素等を含むことができる。第3相粒子は、バナジウムと、タングステン、コバルト、クロム、及び、炭素からなる群より選ばれる少なくとも1種と、からなることができる。第3相粒子は、バナジウムと、タングステン、コバルト、クロム、及び、炭素からなる群より選ばれる少なくとも1種と、不純物と、からなることができる。該不純物としては、例えば、鉄、ニッケル、マンガン、ニオブ、マグネシウム、カルシウム、モリブデン、硫黄、チタン、アルミニウム等が挙げられる。 In addition to vanadium, the third phase particles can include tungsten, cobalt, chromium, carbon, etc. The third phase particles can be made of vanadium and at least one selected from the group consisting of tungsten, cobalt, chromium, and carbon. The third phase particles can include vanadium, at least one member selected from the group consisting of tungsten, cobalt, chromium, and carbon, and impurities. Examples of the impurities include iron, nickel, manganese, niobium, magnesium, calcium, molybdenum, sulfur, titanium, and aluminum.
 第3相粒子において、タングステン、クロム、バナジウム及びコバルトの合計に対するバナジウムの百分率の下限は10原子%以上であり、20原子%以上、又は、30原子%以上とすることができる。該百分率の上限は、100原子%以下とすることができる。該百分率は、10原子%以上100原子%以下、20原子%以上100原子%以下、又は、30原子%以上100原子%以下とすることができる。 In the third phase particles, the lower limit of the percentage of vanadium relative to the total of tungsten, chromium, vanadium, and cobalt is 10 atomic % or more, and can be 20 atomic % or more, or 30 atomic % or more. The upper limit of the percentage can be 100 atomic % or less. The percentage can be 10 atomic % or more and 100 atomic % or less, 20 atomic % or more and 100 atomic % or less, or 30 atomic % or more and 100 atomic % or less.
 第3相粒子における、タングステン、クロム、バナジウム及びコバルトの合計に対するバナジウムの百分率の測定方法は以下の通りである。 The method for measuring the percentage of vanadium relative to the total of tungsten, chromium, vanadium, and cobalt in the third phase particles is as follows.
 まず、超硬合金の第1相、第2相及び第3相のそれぞれの含有率の測定方法の(A1)~(B1)と同一の手順で元素マッピング分析を行い、5視野の元素マッピング像を得る。各元素マッピング像において、タングステン、コバルト、クロム及びバナジウムの原子数の合計に対して、バナジウムを10原子%以上含む領域を特定する。該領域が第3相粒子に相当する。 First, an elemental mapping analysis was performed using the same procedure as (A1) to (B1) of the method for measuring the content of each of the first, second, and third phases of cemented carbide, and elemental mapping images of five fields of view were obtained. get. In each elemental mapping image, a region containing 10 atomic % or more of vanadium is specified based on the total number of atoms of tungsten, cobalt, chromium, and vanadium. This region corresponds to third phase particles.
 特定された第3相粒子を観察倍率200万倍に拡大し、EDX点分析で第3相粒子におけるタングステン、コバルト、クロム及びバナジウムの原子数の合計に対するバナジウムの原子数の百分率(以下、「第3相粒子のバナジウム含有率」とも記す。)を測定する。該測定を5つの第3相粒子に対して行う。5つの第3相粒子のバナジウム含有率の平均値を算出する。該平均値が、本開示における、第3相粒子における、タングステン、クロム、バナジウム及びコバルトの合計に対するバナジウムの百分率に該当する。 The identified third phase particles were magnified to an observation magnification of 2,000,000 times, and EDX point analysis was performed to calculate the percentage of the number of vanadium atoms (hereinafter referred to as "the percentage of the number of vanadium atoms relative to the total number of atoms of tungsten, cobalt, chromium, and vanadium" in the third phase particles). Measure the vanadium content (also referred to as "vanadium content of three-phase particles"). The measurements are carried out on five third phase particles. The average value of the vanadium content of the five third phase particles is calculated. The average value corresponds to the percentage of vanadium relative to the sum of tungsten, chromium, vanadium, and cobalt in the third phase particles in the present disclosure.
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。 As far as the applicant has measured, as long as the measurement is performed on the same sample, even if the above measurement is performed multiple times by changing the selected measurement area, there is little variation in the measurement results, and the measurement field of view can be set arbitrarily. However, it was confirmed that it was not arbitrary.
 ≪第3相粒子の円相当径の最大値≫
 本実施形態において、第3相粒子の円相当径の最大値(以下、「第3相粒子の最大値」とも記す。)は0.5μm以下であることが好ましい。
≪Maximum value of equivalent circle diameter of third phase particles≫
In the present embodiment, the maximum value of the equivalent circle diameter of the third phase particles (hereinafter also referred to as "maximum value of the third phase particles") is preferably 0.5 μm or less.
 超硬合金が第3相を備える場合、第3相粒子の最大値の上限は0.5μm以下が好ましく、0.4μm以下が好ましく、0.3μm以下が好ましく、0.2μm以下がより好ましく、0.1μm以下が更に好ましい。第3相粒子の円相当径の最大値の下限は特に限定されず、0μm超とすることができる。第3相の円相当径の最大値は、0μm超0.5μm以下が好ましく、0μm超0.4μm以下が好ましく、0μm超0.3μm以下が好ましく、0μm超0.2μm以下がより好ましく、0μm超0.1μm以下が更に好ましい。 When the cemented carbide includes a third phase, the upper limit of the maximum value of the third phase particles is preferably 0.5 μm or less, preferably 0.4 μm or less, preferably 0.3 μm or less, more preferably 0.2 μm or less, More preferably, it is 0.1 μm or less. The lower limit of the maximum value of the equivalent circle diameter of the third phase particles is not particularly limited, and can be set to exceed 0 μm. The maximum value of the equivalent circle diameter of the third phase is preferably more than 0 μm and not more than 0.5 μm, preferably more than 0 μm and not more than 0.4 μm, preferably more than 0 μm and not more than 0.3 μm, more preferably more than 0 μm and not more than 0.2 μm, and 0 μm More preferably, it is more than 0.1 μm or less.
 第3相粒子の円相当径の最大値は、下記(A3)~(B3)の手順で測定される。 The maximum value of the equivalent circle diameter of the third phase particles is measured by the following steps (A3) to (B3).
 (A3)上記の超硬合金の第1相、第2相及び第3相のそれぞれの含有率の測定方法の(A1)~(C1)と同一の手順で、5視野の元素マッピング像について、上記画像解析ソフトウェア(ImageJ)を用いて分析し、第3相を特定する。 (A3) Using the same procedure as (A1) to (C1) of the method for measuring the content of each of the first phase, second phase, and third phase of the cemented carbide described above, for the elemental mapping image of 5 fields of view, Analyze using the above image analysis software (ImageJ) to identify the third phase.
 (B3)上記画像解析ソフトウェアを用いて、5つの測定領域中の全ての第3相粒子のそれぞれについて、円相当径(Heywood径:等面積円相当径)を測定する。5つの測定視野中の全ての第3相粒子の円相当径の最大値が、本開示における第3相粒子の円相当径の最大値に該当する。 (B3) Using the above image analysis software, measure the equivalent circle diameter (Heywood diameter: equal area circle equivalent diameter) for each of all third phase particles in the five measurement regions. The maximum value of the equivalent circle diameter of all the third phase particles in the five measurement fields corresponds to the maximum value of the equivalent circle diameter of the third phase particles in the present disclosure.
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。 As far as the applicant has measured, as long as the measurement is performed on the same sample, even if the above measurement is performed multiple times by changing the selected measurement area, there is little variation in the measurement results, and the measurement field of view can be set arbitrarily. However, it was confirmed that it was not arbitrary.
 ≪コバルト含有率≫
 本実施形態の超硬合金のコバルト含有率は、3質量%以上10質量%以下である。これによると、超硬合金は高い硬度及び強度を有する。該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。
≪Cobalt content rate≫
The cobalt content of the cemented carbide of this embodiment is 3% by mass or more and 10% by mass or less. According to this, cemented carbide has high hardness and strength. A cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 超硬合金のコバルト含有率の下限は、耐折損性向上の観点から、3質量%以上であり、4質量%以上が好ましい。超硬合金のコバルト含有率の上限は、硬度向上の観点から、10質量%以下であり、9質量%以下が好ましく、8質量%以下がより好ましい。超硬合金のコバルト含有率は、4質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましく、3質量%以上8質量%以下が更に好ましい。 From the viewpoint of improving breakage resistance, the lower limit of the cobalt content of the cemented carbide is 3% by mass or more, preferably 4% by mass or more. From the viewpoint of improving hardness, the upper limit of the cobalt content of the cemented carbide is 10% by mass or less, preferably 9% by mass or less, and more preferably 8% by mass or less. The cobalt content of the cemented carbide is preferably 4% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less, and even more preferably 3% by mass or more and 8% by mass or less.
 超硬合金中のコバルト含有量は、ICP発光分光分析法により測定される。 The cobalt content in the cemented carbide is measured by ICP emission spectrometry.
 ≪バナジウム含有率≫
 本実施形態の超硬合金のバナジウム含有率は0.01質量%以上0.30質量%以下である。これによると、粗大なWC粒子の発生が抑制され、超硬合金の組織が緻密化される。よって、該超硬合金は優れた硬度及び強度を有し、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。
≪Vanadium content≫
The vanadium content of the cemented carbide of this embodiment is 0.01% by mass or more and 0.30% by mass or less. According to this, the generation of coarse WC particles is suppressed, and the structure of the cemented carbide is made dense. Therefore, the cemented carbide has excellent hardness and strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 超硬合金のバナジウム含有率の下限は、粗大なWC粒子の発生抑制の観点から、0.01質量%以上であり、0.05質量%以上が好ましく、0.10質量%以上がより好ましい。超硬合金のバナジウム含有率の上限は、界面強度低下の抑制の観点から、0.30質量%以下であり、0.20質量%以下が好ましい。超硬合金のバナジウム含有率は、0.01質量%以上0.20質量%以下が好ましく、0.10質量%以上0.20質量%以下が更に好ましい。 From the viewpoint of suppressing the generation of coarse WC particles, the lower limit of the vanadium content of the cemented carbide is 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.10% by mass or more. The upper limit of the vanadium content of the cemented carbide is 0.30% by mass or less, preferably 0.20% by mass or less, from the viewpoint of suppressing a decrease in interfacial strength. The vanadium content of the cemented carbide is preferably 0.01% by mass or more and 0.20% by mass or less, and more preferably 0.10% by mass or more and 0.20% by mass or less.
 超硬合金のバナジウムの含有率は、ICP発光分光分析法により測定される。 The vanadium content of the cemented carbide is measured by ICP emission spectrometry.
 ≪クロム含有率≫
 本実施形態の超硬合金はクロム(Cr)を含むことができる。本実施形態の超硬合金のクロム含有率は、0.2質量%以上0.8質量%以下であることが好ましい。クロムは炭化タングステン粒子の粒成長抑制作用を有する。超硬合金のクロム含有率が前記の範囲の場合、得られた超硬合金中に、原料の微粒炭化タングステン粒子がそのまま残存することを効果的に抑制でき、かつ、粗大粒の発生を効果的に抑制でき、工具寿命が向上する。
≪Chromium content≫
The cemented carbide of this embodiment can contain chromium (Cr). The chromium content of the cemented carbide of this embodiment is preferably 0.2% by mass or more and 0.8% by mass or less. Chromium has the effect of inhibiting grain growth of tungsten carbide particles. When the chromium content of the cemented carbide is within the above range, it is possible to effectively prevent the fine tungsten carbide particles of the raw material from remaining as they are in the obtained cemented carbide, and to effectively prevent the generation of coarse grains. can be suppressed to improve tool life.
 超硬合金のクロム含有率の下限は、0.2質量%以上が好ましく、0.3質量%以上がより好ましい。超硬合金のクロム含有率の上限は、0.8質量%以下が好ましく、0.5質量%以下がより好ましい。超硬合金のクロム含有率は、0.2質量%以上0.8質量%以下が好ましく、0.3質量%以上0.5質量%以下が更に好ましい。 The lower limit of the chromium content of the cemented carbide is preferably 0.2% by mass or more, more preferably 0.3% by mass or more. The upper limit of the chromium content of the cemented carbide is preferably 0.8% by mass or less, more preferably 0.5% by mass or less. The chromium content of the cemented carbide is preferably 0.2% by mass or more and 0.8% by mass or less, and more preferably 0.3% by mass or more and 0.5% by mass or less.
 超硬合金のクロム含有率は、ICP発光分光分析法により測定される。 The chromium content of the cemented carbide is measured by ICP emission spectroscopy.
 <界面領域におけるバナジウム含有率>
 本実施形態の超硬合金において、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域(以下、「WC/第2相界面領域」とも記す。)におけるバナジウム含有率の最大値は、15原子%以下である。これによると、該界面領域において、バナジウムが濃化して存在するバナジウム濃化層の形成が抑制されている。このため、バナジウム濃化層に起因するWC粒子と第2相との界面強度の低下が抑制される。よって、該超硬合金では、界面強度の低下に伴うWC粒子の脱落が生じ難く、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。なお、従来の超硬合金は、上記界面におけるバナジウム濃化層の量が多く、界面強度が低下する傾向があった。
<Vanadium content in the interface region>
In the cemented carbide of this embodiment, the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase (hereinafter also referred to as "WC/second phase interface region") The value is 15 atomic % or less. According to this, the formation of a vanadium-concentrated layer in which vanadium is present in a concentrated manner is suppressed in the interface region. Therefore, a decrease in the interfacial strength between the WC particles and the second phase due to the vanadium concentrated layer is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance. In addition, conventional cemented carbide has a large amount of vanadium concentrated layer at the interface, which tends to reduce the interface strength.
 超硬合金において、WC/第2相界面領域にバナジウム濃化層が存在する場合、WC粒子の(0001)の結晶面と、該WC粒子の(0001)の結晶面に隣接する他のWC粒子との界面領域(以下、「WC/WC界面領域」とも記す。)にもバナジウム濃化層が存在する可能性がある。本実施形態の超硬合金において、WC/第2相界面領域におけるバナジウム含有率の最大値が15原子%以下の場合、WC/WC界面領域におけるバナジウム含有率の最大値も15原子%以下であることが確認されている。よって、WC/第2相界面領域におけるバナジウム含有率の最大値が15原子%以下であれば、WC/WC界面領域におけるバナジウム含有率の最大値も15原子%以下であり、WC/WC界面領域においてバナジウム濃化層の形成が抑制されている。このため、バナジウム濃化層に起因するWC粒子同士の界面強度の低下も抑制される。 In a cemented carbide, when a vanadium enriched layer exists in the WC/second phase interface region, the (0001) crystal plane of the WC particle and other WC particles adjacent to the (0001) crystal plane of the WC particle There is a possibility that a vanadium-concentrated layer also exists in the interface region with the WC/WC interface region (hereinafter also referred to as "WC/WC interface region"). In the cemented carbide of the present embodiment, when the maximum vanadium content in the WC/second phase interface region is 15 atomic % or less, the maximum vanadium content in the WC/WC interface region is also 15 atomic % or less. This has been confirmed. Therefore, if the maximum value of the vanadium content in the WC/second phase interface region is 15 atomic % or less, the maximum value of the vanadium content in the WC/WC interface region is also 15 atomic % or less, and the WC/WC interface region The formation of a vanadium-enriched layer is suppressed. Therefore, a decrease in the interfacial strength between WC particles due to the vanadium concentrated layer is also suppressed.
 WC/第2相界面領域におけるバナジウム含有率の最大値の上限は15原子%以下が好ましく、14原子%以下が好ましく、13原子%以下がより好ましく、12原子%以下が更に好ましく、11原子%以下がより更に好ましい。WC/第2相界面領域におけるバナジウム含有率の最大値の下限は特に限定されないが、例えば1原子%以上、又は、2原子%以上とすることができる。WC/第2相界面領域におけるバナジウム含有率の最大値は、1原子%以上15原子%以下が好ましく、1原子%以上12原子%以下がより好ましく、2原子%以上15原子%以下が更に好ましく、2原子%以上12原子%以下がより更に好ましい。 The upper limit of the maximum vanadium content in the WC/second phase interface region is preferably 15 atom % or less, preferably 14 atom % or less, more preferably 13 atom % or less, even more preferably 12 atom % or less, and 11 atom %. The following are even more preferred. The lower limit of the maximum vanadium content in the WC/second phase interface region is not particularly limited, but may be, for example, 1 atomic % or more or 2 atomic % or more. The maximum value of vanadium content in the WC/second phase interface region is preferably 1 atom % or more and 15 atom % or less, more preferably 1 atom % or more and 12 atom % or less, and even more preferably 2 atom % or more and 15 atom % or less. , 2 atomic % or more and 12 atomic % or less is even more preferable.
 WC/第2相界面領域におけるバナジウム含有率の最大値は、下記(A4)~(D4)の手順で測定される。 The maximum value of vanadium content in the WC/second phase interface region is measured by the following steps (A4) to (D4).
 (A4)超硬合金からイオンスライサーなどを用いて、厚さ50nm以下の薄片サンプルを切り出す。該薄片サンプルの表面を鏡面加工する。鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。 (A4) Cut a thin sample with a thickness of 50 nm or less from cemented carbide using an ion slicer or the like. The surface of the thin sample is mirror-finished. Examples of mirror finishing methods include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
 (B4)上記薄片サンプルの鏡面加工面を透過型電子顕微鏡(TEM)で観察し、WC粒子の電子回折像を得る。観察倍率は200万倍とする。 (B4) Observe the mirror-finished surface of the thin sample with a transmission electron microscope (TEM) to obtain an electron diffraction image of the WC particles. The observation magnification is 2 million times.
 (C4)電子回折像において、WC粒子の(0001)の結晶面を同定する。(0001)の結晶面が同定された該WC粒子の[11-20]又は[10-10]の方位から観察した場合の、該WC粒子の(0001)の結晶面と、該WC粒子に隣接する第2相との界面領域に対して、TEM付帯のEDX(エネルギー分散型X線分光法:Energy Dispersive X-ray Spectroscopy)によりライン分析を行う。ライン分析では、タングステン(W)、コバルト(Co)、クロム(Cr)及びバナジウム(V)のそれぞれについて、原子数の百分率(原子%)を測定する。該原子数の百分率は、W、Co、Cr及びVの原子数の合計を100原子%とした場合の各元素の原子数の百分率を意味する。 (C4) In the electron diffraction image, the (0001) crystal plane of the WC particle is identified. When observed from the [11-20] or [10-10] orientation of the WC grain where the (0001) crystal face has been identified, the (0001) crystal face of the WC grain and the adjacent to the WC grain. Line analysis is performed on the interface region with the second phase using EDX (Energy Dispersive X-ray Spectroscopy) accompanied by TEM. In the line analysis, the percentage (atomic %) of the number of atoms is measured for each of tungsten (W), cobalt (Co), chromium (Cr), and vanadium (V). The percentage of the number of atoms means the percentage of the number of atoms of each element when the total number of atoms of W, Co, Cr, and V is 100 atomic %.
 ライン分析の具体的な手順について、図1を用いて説明する。図1は、上記薄片サンプルの透過型電子顕微鏡(TEM)像を模式的に示す。図1では、ライン分析の測定領域Rは、符号Rで示される矩形の領域である。 The specific procedure for line analysis will be explained using FIG. 1. FIG. 1 schematically shows a transmission electron microscope (TEM) image of the thin sample. In FIG. 1, the measurement region R for line analysis is a rectangular region indicated by the symbol R. In FIG.
 図1に示されるように、WC粒子1の(0001)の結晶面と、該WC粒子1の(0001)の結晶面に隣接する第2相2との界面のうち、略直線であり、かつ、該略直線部分の長さが25nm以上の部分を選択する。ライン分析は略直線部分に対し垂直方向(図1の矢印B方向)に行う。ライン分析の距離は該略直線部分を中心にWC粒子側及び第2相側にそれぞれ20nmとする。ライン分析の幅は25nm、ステップ間隔は0.4nmである。なお、図1に示されるように、ライン分析の測定領域Rは、第3相粒子3が含まれないように設定される。 As shown in FIG. 1, the interface between the (0001) crystal plane of the WC particle 1 and the second phase 2 adjacent to the (0001) crystal plane of the WC particle 1 is approximately straight, and , select a portion where the length of the substantially straight portion is 25 nm or more. Line analysis is performed in the direction perpendicular to the substantially straight line portion (direction of arrow B in FIG. 1). The distance of the line analysis is 20 nm from the substantially straight line portion to the WC particle side and the second phase side, respectively. The width of the line analysis is 25 nm, and the step interval is 0.4 nm. Note that, as shown in FIG. 1, the measurement region R of the line analysis is set so that the third phase particles 3 are not included.
 ライン分析結果に基づき、W、Cr、V及びCoの原子数の合計を100原子%とした場合のバナジウムの百分率(原子%)の最大値を算出する。該最大値を、WC粒子の(0001)の結晶面と、第2相との界面領域のバナジウム含有率の最大値とする。 Based on the line analysis results, the maximum percentage of vanadium (atomic %) is calculated when the total number of atoms of W, Cr, V, and Co is 100 atomic %. This maximum value is defined as the maximum value of the vanadium content in the interface region between the (0001) crystal plane of the WC particles and the second phase.
 (D4)上記(C4)の測定を、5つの異なるWC粒子の(0001)の結晶面と、第2相との界面領域において行う。5つの界面領域のバナジウム含有率の平均値を算出する。該平均値が、本開示の超硬合金における炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率の最大値に該当する。従って、超硬合金において、上記5つの界面領域のバナジウム含有率の平均値が15原子%以下の場合、該超硬合金は、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率の最大値が15原子%以下である。 (D4) The measurement in (C4) above is performed in the interface region between the (0001) crystal plane of five different WC particles and the second phase. The average vanadium content of the five interface regions is calculated. This average value corresponds to the maximum value of the vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase in the cemented carbide of the present disclosure. Therefore, in a cemented carbide, if the average value of the vanadium content in the five interface regions is 15 atomic % or less, the cemented carbide has a structure in which the (0001) crystal plane of the tungsten carbide particles and the second phase The maximum value of vanadium content in the interface region is 15 atomic % or less.
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を測定領域の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。 As far as the applicant has measured, as long as the measurement is performed on the same sample, even if the above measurement is performed multiple times by changing the selected measurement area, there is little variation in the measurement results, and the measurement field of view can be set arbitrarily. However, it was confirmed that this was not arbitrary.
 本開示の超硬合金の炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域において、タングステン、クロム、バナジウム及びコバルトの合計に対するバナジウムの百分率の最大値が15原子%以下である限り、界面強度の低下が抑制され、本開示の効果が損なわれないことが確認されている。 In the interface region between the (0001) crystal plane of the tungsten carbide particles of the cemented carbide of the present disclosure and the second phase, the maximum percentage of vanadium with respect to the total of tungsten, chromium, vanadium and cobalt is 15 atomic % or less. It has been confirmed that as long as there is a reduction in interfacial strength, the effects of the present disclosure are not impaired.
 <界面領域におけるクロム含有率>
 本実施形態の超硬合金において、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるクロム含有率の最大値は、20原子%以下であることが好ましい。これによると、該界面領域において、クロムが濃化して存在するクロム濃化層の形成が抑制されている。このため、クロム濃化層に起因するWC粒子と第2相との界面強度の低下が抑制される。よって、該超硬合金では、界面強度の低下に伴うWC粒子の脱落が生じ難く、該超硬合金を用いた切削工具は、優れた耐摩耗性及び耐折損性を有することができる。
<Chromium content in the interface area>
In the cemented carbide of this embodiment, the maximum value of the chromium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 20 atomic % or less. According to this, the formation of a chromium-enriched layer in which chromium is concentrated in the interface region is suppressed. Therefore, a decrease in the interfacial strength between the WC particles and the second phase due to the chromium-enriched layer is suppressed. Therefore, in the cemented carbide, WC particles are unlikely to fall off due to a decrease in interfacial strength, and a cutting tool using the cemented carbide can have excellent wear resistance and breakage resistance.
 超硬合金において、WC/第2相界面領域にクロムの濃化層が存在する場合、WC粒子の(0001)の結晶面と、該WC粒子の(0001)の結晶面に隣接する他のWC粒子との界面領域(WC/WC界面領域)にもクロムの濃化層が存在する可能性がある。本実施形態の超硬合金において、WC/第2相界面領域におけるクロム含有率の最大値が20原子%以下の場合、WC/WC界面領域におけるクロム含有率の最大値も20原子%以下であることが確認されている。よって、WC/第2相界面領域におけるクロム含有率の最大値が20原子%以下であれば、WC/WC界面領域におけるクロム含有率の最大値も20原子%以下であり、WC/WC界面領域において、クロムが濃化して存在するクロム濃化層の形成が抑制されている。このため、クロム濃化層に起因するWC粒子同士の界面強度の低下も抑制される。 In a cemented carbide, when a chromium enriched layer exists in the WC/second phase interface region, the (0001) crystal plane of the WC particle and the other WC adjacent to the (0001) crystal plane of the WC particle A chromium-enriched layer may also exist in the interface region with particles (WC/WC interface region). In the cemented carbide of this embodiment, when the maximum value of the chromium content in the WC/second phase interface region is 20 at% or less, the maximum value of the chromium content in the WC/WC interface region is also 20 at% or less. This has been confirmed. Therefore, if the maximum value of the chromium content in the WC/second phase interface region is 20 atom % or less, the maximum value of the chromium content in the WC/WC interface region is also 20 atom % or less, and the WC/WC interface region In this case, the formation of a chromium-enriched layer in which chromium is present is suppressed. Therefore, a decrease in the interfacial strength between WC particles due to the chromium-concentrated layer is also suppressed.
 WC/第2相界面領域におけるクロム含有率の最大値の上限は20原子%以下が好ましく、18原子%以下が好ましく、16原子%以下がより好ましく、15原子%以下が更に好ましく、14原子%以下がより更に好ましい。WC/第2相界面領域におけるクロム含有率の最大値の下限は特に限定されないが、例えば1原子%以上、又は、2原子%以上とすることができる。WC/第2相界面領域におけるクロム含有率の最大値は、1原子%以上20原子%以下が好ましく、1原子%以上15原子%以下がより好ましく、2原子%以上20原子%以下が更に好ましく、2原子%以上15原子%以下がより更に好ましい。 The upper limit of the maximum value of the chromium content in the WC/second phase interface region is preferably 20 atom % or less, preferably 18 atom % or less, more preferably 16 atom % or less, even more preferably 15 atom % or less, and 14 atom %. The following are even more preferred. The lower limit of the maximum chromium content in the WC/second phase interface region is not particularly limited, but may be, for example, 1 atomic % or more or 2 atomic % or more. The maximum value of the chromium content in the WC/second phase interface region is preferably 1 atomic % or more and 20 atomic % or less, more preferably 1 atomic % or more and 15 atomic % or less, and even more preferably 2 atomic % or more and 20 atomic % or less. , more preferably 2 at % or more and 15 at % or less.
 WC/第2相界面領域におけるクロム含有率の最大値は、上記WC/第2相界面領域におけるバナジウム含有率の測定方法(A4)~(D4)において、W、Cr、V及びCoの原子数の合計を100原子%とした場合のバナジウムの百分率(原子%)に代えて、W、Cr、V及びCoの原子数の合計を100原子%とした場合のクロムの百分率(原子%)を算出することにより得られる。 The maximum value of the chromium content in the WC/second phase interface region is determined by the number of atoms of W, Cr, V, and Co in the methods (A4) to (D4) for measuring the vanadium content in the WC/second phase interface region. Calculate the percentage (atomic %) of chromium when the total number of atoms of W, Cr, V, and Co is 100 atomic % instead of the percentage (atomic %) of vanadium when the total number of atoms is 100 atomic %. It can be obtained by
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を測定領域の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。 As far as the applicant has measured, as long as the measurement is performed on the same sample, even if the above measurement is performed multiple times by changing the selected measurement area, there is little variation in the measurement results, and the measurement field of view can be set arbitrarily. However, it was confirmed that this was not arbitrary.
 本開示の超硬合金の炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域において、タングステン、クロム、バナジウム及びコバルトの合計に対するクロムの百分率の最大値が20原子%以下である限り、界面強度の低下が抑制され、本開示の効果が損なわれないことが確認されている。 In the interface region between the (0001) crystal plane of the tungsten carbide particles of the cemented carbide of the present disclosure and the second phase, the maximum percentage of chromium with respect to the total of tungsten, chromium, vanadium and cobalt is 20 atomic % or less. It has been confirmed that as long as there is a reduction in interfacial strength, the effects of the present disclosure are not impaired.
 <超硬合金の製造方法>
 超硬合金の炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率を低減するためには、粒成長抑制剤として添加されるバナジウムの量を少なくすることが考えられる。しかし、バナジウムの添加量を少なくすると、粒成長抑制効果が不足して、WC粒子が異常粒成長する。これは、超硬合金の強度低下の要因となる。本発明者らは、鋭意検討の結果、粗大なWC粒子の発生を抑えるため、バナジウムを十分な量で添加しつつ、上記界面領域でのバナジウム含有率を低減させることのできる超硬合金の製造方法を新たに見出した。本実施形態の超硬合金の製造方法の詳細について、以下に説明する。
<Method for manufacturing cemented carbide>
In order to reduce the vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles of the cemented carbide and the second phase, it is necessary to reduce the amount of vanadium added as a grain growth inhibitor. Conceivable. However, when the amount of vanadium added is reduced, the effect of suppressing grain growth is insufficient and WC grains grow abnormally. This causes a decrease in the strength of the cemented carbide. As a result of extensive studies, the present inventors have discovered that, in order to suppress the generation of coarse WC particles, a sufficient amount of vanadium can be added, while at the same time reducing the vanadium content in the interface region. I found a new method. The details of the method for manufacturing cemented carbide of this embodiment will be described below.
 本実施形態の超硬合金は、代表的には、原料粉末の準備工程、混合工程、成形工程、焼結工程(予備焼結工程及び本焼結工程を含む)、繰り返し熱処理工程、冷却工程を前記の順で行うことにより製造することができる。以下、各工程について説明する。 The cemented carbide of this embodiment typically undergoes a raw material powder preparation process, a mixing process, a molding process, a sintering process (including a preliminary sintering process and a main sintering process), a repeated heat treatment process, and a cooling process. It can be manufactured by performing the steps in the above order. Each step will be explained below.
 ≪準備工程≫
 準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。原料粉末としては、第1相の原料である炭化タングステン粉末(以下「WC粉末」とも記す。)、第2相の原料であるコバルト粉末(以下「Co粉末」とも記す。)、粒成長抑制剤である炭化バナジウム粉末(以下「VC粉末」とも記す。)が挙げられる。また、必要に応じて、粒成長抑制剤である炭化クロム粉末(以下「Cr粉末」とも記す。)を準備することができる。炭化タングステン粉末、コバルト粉末、炭化バナジウム粉末及び炭化クロム粉末は、市販のものを用いることができる。
≪Preparation process≫
The preparation step is a step of preparing all the raw material powders of the materials constituting the cemented carbide. The raw material powders include tungsten carbide powder (hereinafter also referred to as "WC powder") which is the raw material for the first phase, cobalt powder (hereinafter also referred to as "Co powder") which is the raw material for the second phase, and a grain growth inhibitor. Examples include vanadium carbide powder (hereinafter also referred to as "VC powder"). Further, if necessary, chromium carbide powder (hereinafter also referred to as "Cr 3 C 2 powder"), which is a grain growth inhibitor, can be prepared. Commercially available tungsten carbide powder, cobalt powder, vanadium carbide powder, and chromium carbide powder can be used.
 炭化タングステン粉末の平均粒径は、0.2μm以上1.0μm以下とすることができる。WC粉末は、その20%累積体積粒子径d20と、その80%累積体積粒子径d80との比d20/d80が0.2以上1以下であることが好ましい。このようなWC粉末は粒径が均質であり、微粒WC粒子の含有量が少ない。このため、該WC粉末を用いて超硬合金を作製すると、焼結工程において、溶解再析出による粗大WC粒子の発生が抑制される。上記「20%累積体積粒子径d20」とは、結晶粒の体積基準の累積粒度分布における、小径側からの累積20%粒子径を意味する。上記「80%累積体積粒子径d80」とは、結晶粒の体積基準の累積粒度分布における、小径側からの累積80%粒子径を意味する。 The average particle size of the tungsten carbide powder can be 0.2 μm or more and 1.0 μm or less. The WC powder preferably has a ratio d20/d80 of its 20% cumulative volume particle diameter d20 to its 80% cumulative volume particle diameter d80 of 0.2 or more and 1 or less. Such WC powder has a uniform particle size and has a small content of fine WC particles. Therefore, when a cemented carbide is produced using the WC powder, the generation of coarse WC particles due to dissolution and reprecipitation is suppressed in the sintering process. The above-mentioned "20% cumulative volume particle diameter d20" means the cumulative 20% particle diameter from the small diameter side in the volume-based cumulative particle size distribution of crystal grains. The above-mentioned "80% cumulative volume particle diameter d80" means the cumulative 80% particle diameter from the small diameter side in the volume-based cumulative particle size distribution of crystal grains.
 コバルト粉末の平均粒径は、0.5μm以上1.5μm以下とすることができる。炭化バナジウム粉末の平均粒径は、0.1μm以上0.5μm以下とすることができる。微細なVC粉末を用いることで、後の予備焼結工程において、VC粉末を混合粉末中に十分に拡散させることができる。炭化クロム粉末の平均粒径は、1.0μm以上2.0μm以下とすることができる。 The average particle size of the cobalt powder can be 0.5 μm or more and 1.5 μm or less. The average particle size of the vanadium carbide powder can be 0.1 μm or more and 0.5 μm or less. By using fine VC powder, the VC powder can be sufficiently diffused into the mixed powder in the subsequent preliminary sintering step. The average particle size of the chromium carbide powder can be 1.0 μm or more and 2.0 μm or less.
 本開示において、上記の原料粉末の平均粒径とは、FSSS(Fisher Sub-Sieve Sizer)法により測定される平均粒径を意味する。該平均粒径は、Fisher Scientific社製の「Sub-Sieve Sizer モデル95」(商標)を用いて測定される。上記WC粉末の粒径の分布は、マイクロトラック社製の粒度分布測定装置(商品名:MT3300EX)を用いて測定される。 In the present disclosure, the average particle size of the above-mentioned raw material powder means the average particle size measured by the FSSS (Fisher Sub-Sieve Sizer) method. The average particle size is measured using a "Sub-Sieve Sizer Model 95" (trademark) manufactured by Fisher Scientific. The particle size distribution of the above-mentioned WC powder is measured using a particle size distribution measuring device manufactured by Microtrac (trade name: MT3300EX).
 ≪混合工程≫
 混合工程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。混合粉末の各原料粉末の含有率は、超硬合金の第1相、第2相及び第3相などの各成分の含有率を考慮して、適宜調整される。
≪Mixing process≫
The mixing step is a step of mixing the raw material powders prepared in the preparation step. Through the mixing step, a mixed powder in which each raw material powder is mixed is obtained. The content of each raw material powder in the mixed powder is appropriately adjusted in consideration of the content of each component such as the first phase, second phase, and third phase of the cemented carbide.
 混合粉末の炭化タングステン粉末の含有率は、例えば、88.85質量%以上99.83質量%以下とすることができる。 The content of tungsten carbide powder in the mixed powder can be, for example, 88.85% by mass or more and 99.83% by mass or less.
 混合粉末のコバルト粉末の含有率は、例えば、3質量%以上10質量%以下とすることができる。 The content of cobalt powder in the mixed powder can be, for example, 3% by mass or more and 10% by mass or less.
 混合粉末の炭化バナジウム粉末の含有率は、例えば、0.01質量%以上0.37質量%以下とすることができる。 The content of vanadium carbide powder in the mixed powder can be, for example, 0.01% by mass or more and 0.37% by mass or less.
 混合粉末の炭化クロム粉末の含有率は、例えば、0.20質量%以上0.92質量%以下とすることができる。 The content of the chromium carbide powder in the mixed powder can be, for example, 0.20% by mass or more and 0.92% by mass or less.
 混合には、ボールミルを用いる。混合時間は15時間以上36時間以下とすることができる。これによると、原料粉末の粉砕を抑制でき、原料粉末の粒径を維持しながら、十分にVC粉末を混合粉末中に分散させることができる。 A ball mill is used for mixing. The mixing time can be 15 hours or more and 36 hours or less. According to this, pulverization of the raw material powder can be suppressed, and the VC powder can be sufficiently dispersed in the mixed powder while maintaining the particle size of the raw material powder.
 混合工程の後、必要に応じて混合粉末を造粒してもよい。混合粉末を造粒することで、後述する成形工程の際にダイ又は金型へ混合粉末を充填し易い。造粒には、公知の造粒方法が適用でき、例えば、スプレードライヤー等の市販の造粒機を用いることができる。 After the mixing step, the mixed powder may be granulated if necessary. By granulating the mixed powder, it is easy to fill the mixed powder into a die or mold during the forming process described later. A known granulation method can be applied to the granulation, and for example, a commercially available granulation machine such as a spray dryer can be used.
 ≪成形工程≫
 成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法及び成形条件は、一般的な方法及び条件を採用すればよく、特に問わない。所定の形状としては、例えば、切削工具形状(例えば、小径ドリルの形状)とすることが挙げられる。
≪Molding process≫
The molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a molded body. The molding method and molding conditions in the molding step are not particularly limited as long as they may be general methods and conditions. Examples of the predetermined shape include a cutting tool shape (for example, the shape of a small diameter drill).
 ≪焼結工程≫
 焼結工程は、予備焼結工程及び本焼結工程を含む。予備焼結工程では、成形体を焼結温度800~1000℃で2時間保持する。雰囲気は真空とする。焼結温度800~1000℃は、WCの粒成長が生じない温度領域である。WCの粒成長が生じない温度領域で2時間保持することにより、混合粉末中のVCをコバルト全体に拡散させることができる。これにより、本焼結工程において、VCは、超硬合金全体で均一な粒成長抑制効果を発揮し、粗大WC粒子の発生が抑制される。
≪Sintering process≫
The sintering process includes a preliminary sintering process and a main sintering process. In the preliminary sintering step, the compact is held at a sintering temperature of 800 to 1000° C. for 2 hours. The atmosphere is vacuum. A sintering temperature of 800 to 1000° C. is a temperature range in which WC grain growth does not occur. By maintaining the temperature in a temperature range where WC grain growth does not occur for 2 hours, the VC in the mixed powder can be diffused throughout the cobalt. Thereby, in the main sintering process, VC exhibits a uniform grain growth suppressing effect throughout the cemented carbide, and the generation of coarse WC particles is suppressed.
 続いて、本焼結工程が行われる。本焼結工程では、予備焼結工程後の成形体を、アルゴン(Ar)雰囲気下、焼結温度1350~1450℃で1~2時間保持して超硬合金を得る。これによると、粗大WC粒子の発生が抑制される。また、得られた超硬合金中の微粒WC粒子の含有量を低減することができる。 Next, the main sintering process is performed. In the main sintering step, the compact after the preliminary sintering step is held at a sintering temperature of 1350 to 1450° C. for 1 to 2 hours in an argon (Ar) atmosphere to obtain a cemented carbide. According to this, generation of coarse WC particles is suppressed. Moreover, the content of fine WC particles in the obtained cemented carbide can be reduced.
 予備焼結工程及び本焼結工程を行うことにより、コバルト中にバナジウムを十分に固溶させることができる。 By performing the preliminary sintering step and the main sintering step, vanadium can be sufficiently dissolved in cobalt.
 ≪繰り返し熱処理工程≫
 続いて、焼結工程で得られた超硬合金を急冷する。本焼結工程での温度からVCが固相として析出する1100℃まで、冷却速度-60℃/分以上で急冷し、1100℃で30分間保持する。このような急冷により、冷却時に生じやすいコバルト中に固溶させたバナジウムの移動が抑制される。よって、超硬合金中に、WC粒子と第2相との界面領域(WC/第2相界面領域)、又は、WC粒子同士間の界面領域(WC/WC界面領域)中のバナジウム含有率の大きい領域(「バナジウム濃化層」に相当)、及び/又は、VCの微細析出相(以下、「VC微細析出相」とも記す。)が均一に形成される。以下、超硬合金を1100℃まで、冷却速度-60℃/分以上で急冷し、1100℃で30分間保持する工程を、「急冷工程」とも記す。
≪Repeated heat treatment process≫
Subsequently, the cemented carbide obtained in the sintering process is rapidly cooled. It is rapidly cooled from the temperature in the main sintering step to 1100° C. at which VC precipitates as a solid phase at a cooling rate of −60° C./min or higher, and held at 1100° C. for 30 minutes. Such rapid cooling suppresses the movement of vanadium dissolved in cobalt, which tends to occur during cooling. Therefore, in the cemented carbide, the vanadium content in the interface region between WC particles and the second phase (WC/second phase interface region) or the interface region between WC particles (WC/WC interface region) A large region (corresponding to a "vanadium concentrated layer") and/or a fine VC precipitate phase (hereinafter also referred to as "VC fine precipitate phase") are uniformly formed. Hereinafter, the process of rapidly cooling the cemented carbide to 1100°C at a cooling rate of -60°C/min or higher and holding it at 1100°C for 30 minutes will also be referred to as a "quenching process".
 続いて、超硬合金を1250℃まで加熱し、1250℃で10~20分間保持する。1250℃での保持時間を20分以下とすることにより、表面積の大きいバナジウム濃化層中のバナジウムをコバルト中に優先的に固溶させることができる。一方、VC微細析出相中のバナジウムのコバルト中への固溶は抑制され、VC微細析出相の少なくとも一部を合金中に残留させることができる。以下、超硬合金を1250℃まで加熱し、1250℃で10~20分間保持する工程を「熱処理工程」とも記す。 Subsequently, the cemented carbide is heated to 1250°C and held at 1250°C for 10 to 20 minutes. By setting the holding time at 1250° C. to 20 minutes or less, vanadium in the vanadium concentrated layer having a large surface area can be preferentially dissolved in cobalt. On the other hand, solid solution of vanadium in the VC fine precipitated phase into cobalt is suppressed, and at least a part of the VC fine precipitated phase can remain in the alloy. Hereinafter, the process of heating the cemented carbide to 1250°C and holding it at 1250°C for 10 to 20 minutes will also be referred to as a "heat treatment process."
 続いて、超硬合金を1100℃まで、冷却速度-60℃/min以上で急冷し、1100℃で30分間保持する(急冷工程に該当)。これにより、上記熱処理工程においてコバルト中に固溶させたバナジウムの移動が抑制される。よって、超硬合金中に、バナジウム濃化層、及び/又は、VC微細析出相が均一に形成される。 Subsequently, the cemented carbide is rapidly cooled to 1100°C at a cooling rate of -60°C/min or higher, and held at 1100°C for 30 minutes (corresponding to the rapid cooling process). This suppresses the movement of vanadium dissolved in cobalt in the heat treatment step. Therefore, a vanadium concentrated layer and/or a VC fine precipitated phase are uniformly formed in the cemented carbide.
 上記の急冷工程及び熱処理工程を交互にそれぞれ2回以上繰り返す。これにより、最終的にWC/第2相界面領域、及び、WC/WC界面領域に存在するバナジウム濃化層におけるバナジウム濃度の最大値が小さくなる。すなわち、超硬合金の炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率、及び、WC粒子の(0001)の結晶面と該WC粒子の(0001)の結晶面に隣接するWC粒子との界面領域におけるバナジウム含有率が低減される。更に、該超硬合金は、VC粒子を含む場合であっても、該VC粒子は微細であり、超硬合金中に均一に分散されている。 The above quenching step and heat treatment step are alternately repeated two or more times. As a result, the maximum value of the vanadium concentration in the WC/second phase interface region and the vanadium concentrated layer present in the WC/WC interface region is finally reduced. That is, the vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles of the cemented carbide and the second phase, and the vanadium content in the (0001) crystal plane of the WC particle and the (0001) of the WC particle. The vanadium content in the interface region with the WC grains adjacent to the crystal plane is reduced. Furthermore, even when the cemented carbide contains VC particles, the VC particles are fine and uniformly dispersed in the cemented carbide.
 ≪冷却工程≫
 続いて、繰り返し熱処理工程後の超硬合金を冷却する。冷却条件は一般的な条件を採用すればよく、特に問わない。
≪Cooling process≫
Subsequently, the cemented carbide after the repeated heat treatment process is cooled. The cooling conditions are not particularly limited and may be general conditions.
 上記の超硬合金の製造方法によれば、WC粒子の異常粒成長が抑制されるため、粗大なWC粒子を含まず、かつ、界面領域でのバナジウム含有率が低減された超硬合金が得られる。該超硬合金は、優れた耐摩耗性と耐折損性を有する。 According to the above method for manufacturing a cemented carbide, abnormal grain growth of WC particles is suppressed, so a cemented carbide that does not contain coarse WC particles and has a reduced vanadium content in the interface region can be obtained. It will be done. The cemented carbide has excellent wear resistance and breakage resistance.
 [実施形態2:切削工具]
 本実施形態の切削工具は、実施形態1の超硬合金からなる刃先を含む。本開示において、刃先とは、切削に関与する部分を意味し、超硬合金において、その刃先稜線と、該刃先稜線から超硬合金側へ、該刃先稜線の接線の垂線に沿う距離が2mmである仮想の面と、に囲まれる領域を意味する。
[Embodiment 2: Cutting tool]
The cutting tool of this embodiment includes a cutting edge made of the cemented carbide of Embodiment 1. In the present disclosure, the cutting edge means a part involved in cutting, and in cemented carbide, the distance between the cutting edge ridgeline and the perpendicular line of the tangent to the cutting edge ridgeline from the cutting edge ridgeline to the cemented carbide side is 2 mm. It means an area surrounded by a certain virtual surface.
 切削工具としては、例えば、切削バイト、ドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切り工具、リーマ又はタップ等を例示できる。特に、図2に示されるように、本実施形態の切削工具10は、プリント回路基板加工用の小径ドリルの場合に、優れた効果を発揮することができる。図2に示される切削工具10の刃先11は、実施形態1の超硬合金からなる。 Examples of the cutting tool include a cutting tool, a drill, an end mill, an indexable cutting tip for milling, an indexable cutting tip for turning, a metal saw, a gear cutting tool, a reamer, or a tap. In particular, as shown in FIG. 2, the cutting tool 10 of this embodiment can exhibit excellent effects when used as a small-diameter drill for processing printed circuit boards. The cutting edge 11 of the cutting tool 10 shown in FIG. 2 is made of the cemented carbide of the first embodiment.
 本実施形態の超硬合金は、これらの工具の全体を構成していてもよいし、一部を構成するものであってもよい。ここで「一部を構成する」とは、任意の基材の所定位置に本実施形態の超硬合金をロウ付けして刃先部とする態様等を示している。 The cemented carbide of this embodiment may constitute the entirety of these tools, or may constitute a part thereof. Here, "constituting a part" refers to a mode in which the cemented carbide of this embodiment is brazed to a predetermined position of an arbitrary base material to form a cutting edge part.
 ≪硬質膜≫
 本実施形態に係る切削工具は、超硬合金からなる基材の表面の少なくとも一部を被覆する硬質膜を更に備えてもよい。硬質膜としては、例えば、ダイヤモンドライクカーボンやダイヤモンドを用いることができる。
≪Hard membrane≫
The cutting tool according to this embodiment may further include a hard film that covers at least a portion of the surface of the base material made of cemented carbide. As the hard film, for example, diamond-like carbon or diamond can be used.
 [付記1]
 本開示の超硬合金の第1相及び第2相の合計含有率は、97体積%以上100体積%以下が好ましい。
 本開示の超硬合金の第1相の含有率は、82体積%以上95体積%以下が好ましい。
 本開示の超硬合金の第2相の含有率は、5体積%以上18体積%以下が好ましい。
 本開示の超硬合金の第3相の含有率は、0体積%超0.8体積%以下が好ましい。
[Additional note 1]
The total content of the first phase and second phase of the cemented carbide of the present disclosure is preferably 97% by volume or more and 100% by volume or less.
The content of the first phase of the cemented carbide of the present disclosure is preferably 82 volume % or more and 95 volume % or less.
The content of the second phase in the cemented carbide of the present disclosure is preferably 5% by volume or more and 18% by volume or less.
The content of the third phase in the cemented carbide of the present disclosure is preferably more than 0 volume % and 0.8 volume % or less.
 [付記2]
 本開示の超硬合金において、炭化タングステン粒子の円相当径の平均値は、0.2μm以上0.8μm以下が好ましい。
 本開示の超硬合金において、炭化タングステン粒子の円相当径の平均値は、0.2μm以上0.6μm以下が好ましい。
[Additional note 2]
In the cemented carbide of the present disclosure, the average value of the equivalent circle diameter of the tungsten carbide particles is preferably 0.2 μm or more and 0.8 μm or less.
In the cemented carbide of the present disclosure, the average value of the equivalent circle diameter of the tungsten carbide particles is preferably 0.2 μm or more and 0.6 μm or less.
 [付記3]
 本開示の超硬合金の第2相において、タングステン、クロム、バナジウム及びコバルトの合計に対するコバルトの百分率が70質量%以上であることが好ましい。
[Additional note 3]
In the second phase of the cemented carbide of the present disclosure, the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt is preferably 70% by mass or more.
 [付記4]
 本開示の超硬合金のコバルト含有率は、4質量%以上10質量%以下が好ましい。
 本開示の超硬合金の小アルト含有率は、3質量%以上9質量%以下が好ましい。
[Additional note 4]
The cobalt content of the cemented carbide of the present disclosure is preferably 4% by mass or more and 10% by mass or less.
The small Alto content of the cemented carbide of the present disclosure is preferably 3% by mass or more and 9% by mass or less.
 [付記5]
 本開示の超硬合金のクロム含有率は、0.2質量%以上0.8質量%以下が好ましい。
 本開示の超硬合金のクロム含有率は、0.3質量%以上0.5質量%以下が好ましい。
[Additional note 5]
The chromium content of the cemented carbide of the present disclosure is preferably 0.2% by mass or more and 0.8% by mass or less.
The chromium content of the cemented carbide of the present disclosure is preferably 0.3% by mass or more and 0.5% by mass or less.
 [付記6]
 本開示の超硬合金において、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率の最大値は、1原子%以上15原子%以下が好ましい。
 本開示の超硬合金において、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率の最大値は、1原子%以上12原子%以下が好ましい。
[Additional note 6]
In the cemented carbide of the present disclosure, the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 15 atomic % or less.
In the cemented carbide of the present disclosure, the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 12 atomic % or less.
 [付記7]
 炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるクロム含有率の最大値は、1原子%以上20原子%以下が好ましい。
 炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるクロム含有率の最大値は、1原子%以上15原子%以下が好ましい。
[Additional note 7]
The maximum value of the chromium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 20 atomic % or less.
The maximum value of the chromium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is preferably 1 atomic % or more and 15 atomic % or less.
 本実施形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施形態が限定されるものではない。 This embodiment will be described in more detail with reference to Examples. However, this embodiment is not limited to these Examples.
 本実施例では、原料粉末の配合比、並びに、製造条件を変更して試料1~試料12及び試料1-1~試料1-10の超硬合金を作製した。該超硬合金からなる刃先を備える小径ドリルを作製し、その評価を行った。 In this example, cemented carbide alloys of Samples 1 to 12 and Samples 1-1 to 1-10 were produced by changing the blending ratio of raw material powders and manufacturing conditions. A small-diameter drill with a cutting edge made of the cemented carbide was manufactured and evaluated.
 <試料の作製>
 ≪準備工程≫
 原料粉末として、表1の「混合粉末」欄に示す組成の粉末を準備した。WC粉末の平均粒径は0.4μmであり、d20/d80は0.3以上である。Co粉末の平均粒径は1μmであり、VC粉末の平均粒径は0.3μmであり、Cr粉末の平均粒径は1μmである。WC粉末、Co粉末、Cr粉末及びVC粉末は市販品である。
<Preparation of sample>
≪Preparation process≫
A powder having the composition shown in the "mixed powder" column of Table 1 was prepared as a raw material powder. The average particle size of the WC powder is 0.4 μm, and d20/d80 is 0.3 or more. The average particle size of the Co powder is 1 μm, the average particle size of the VC powder is 0.3 μm, and the average particle size of the Cr 3 C 2 powder is 1 μm. WC powder, Co powder, Cr 3 C 2 powder and VC powder are commercially available products.
 ≪混合工程≫
 各原料粉末を表1の「混合粉末」の「質量%」に示される配合量で混合し、混合粉末を作製した。表1の「混合粉末」欄の「質量%」とは、原料粉末の合計質量に対する、各原料粉末の割合を示す。混合はボールミルで15時間行った。得られた混合粉末をスプレードライヤーを用いて乾燥させて造粒粉末とした。
≪Mixing process≫
Each raw material powder was mixed in the amount shown in "mass%" of "mixed powder" in Table 1 to produce a mixed powder. "Mass %" in the "Mixed powder" column of Table 1 indicates the ratio of each raw material powder to the total mass of the raw material powders. Mixing was carried out in a ball mill for 15 hours. The obtained mixed powder was dried using a spray dryer to obtain a granulated powder.
 ≪成形工程≫
 得られた造粒粉末をプレス成形して、φ3.4mmの丸棒形状の成形体を作製した。
≪Molding process≫
The obtained granulated powder was press-molded to produce a round bar-shaped compact with a diameter of 3.4 mm.
 ≪焼結工程≫
 続いて、成形体に対して予備焼結工程を行った。成形体を焼結炉に入れ、真空中で、表1の「予備焼結」の「温度」欄に記載の温度で2時間保持した。表1の「予備焼結」欄の「無」との記載は、予備焼結工程を行わなかったことを示す。
≪Sintering process≫
Subsequently, the compact was subjected to a preliminary sintering step. The compact was placed in a sintering furnace and held in vacuum for 2 hours at the temperature listed in the "temperature" column of "preliminary sintering" in Table 1. The description "None" in the "Preliminary Sintering" column of Table 1 indicates that the preliminary sintering step was not performed.
 続いて、本焼結工程を行った。予備焼結工程後の成形体を、Ar雰囲気下、表1の「本焼結」の「温度」欄に記載の温度で1時間保持して超硬合金を得た。 Next, the main sintering process was performed. The compact after the preliminary sintering step was held in an Ar atmosphere at the temperature listed in the "temperature" column of "main sintering" in Table 1 for 1 hour to obtain a cemented carbide.
 ≪繰り返し熱処理工程≫
 続いて、焼結工程で得られた超硬合金に対して、急冷工程及び熱処理工程を交互にそれぞれ2回行った。すなわち、急冷工程、熱処理工程、急冷工程、熱処理工程を前記の順で行った。
≪Repeated heat treatment process≫
Subsequently, the cemented carbide obtained in the sintering process was alternately subjected to a quenching process and a heat treatment process twice. That is, the quenching step, the heat treatment step, the quenching step, and the heat treatment step were performed in the above order.
 急冷工程では、超硬合金を1100℃まで、冷却速度-60℃/min以上で急冷し、1100℃で30分間保持した。熱処理工程では、超硬合金を1250℃まで加熱し、1250℃で20分間保持した。 In the quenching step, the cemented carbide was rapidly cooled to 1100°C at a cooling rate of -60°C/min or higher, and held at 1100°C for 30 minutes. In the heat treatment step, the cemented carbide was heated to 1250°C and held at 1250°C for 20 minutes.
 表1の「繰り返し熱処理」欄の「無」との記載は、繰り返し熱処理工程を行わなかったことを示す。 The description "None" in the "Repeated heat treatment" column of Table 1 indicates that the repeated heat treatment step was not performed.
 ≪冷却工程≫
 続いて、繰り返し熱処理工程後の超硬合金を、アルゴン(Ar)ガス雰囲気中、徐冷して、各試料の超硬合金を得た。
≪Cooling process≫
Subsequently, the cemented carbide after the repeated heat treatment process was slowly cooled in an argon (Ar) gas atmosphere to obtain each sample of cemented carbide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <超硬合金の評価>
 各試料の超硬合金について、超硬合金の第1相、第2相及び第3相の含有率(表2において「第1相(体積%)」、「第2相(体積%)」、「第3相(体積%)」欄に示される。)、超硬合金のコバルト含有率(表2において「Co(質量%)」欄に示される。)、超硬合金のバナジウム含有率(表2において「V(質量%)」欄に示される。)、第2相におけるタングステン、クロム、バナジウム及びコバルトの合計に対するコバルトの百分率(表2において「Co/第2相(質量%)」欄に示される。)、WC粒子の円相当径の平均値(表2において「WC粒子平均粒径(μm)」欄に示される。)、第3相粒子の円相当径の最大値(表2において「第3相最大粒径(μm)」欄に示される。)、炭化タングステン粒子の(0001)の結晶面と、第2相との界面領域におけるバナジウム含有率の最大値(表2において「WC/第2相界面領域」の「V最大(原子%)」欄に示される。)、該界面領域におけるクロム含有率の最大値(表2において「界面領域」の「Cr最大(原子%)」欄に示される。)を測定した。各項目の測定方法は、実施形態1に示される通りである。結果を表2に示す。
<Evaluation of cemented carbide>
Regarding the cemented carbide of each sample, the content of the first phase, second phase, and third phase of the cemented carbide (in Table 2, "first phase (volume %)", "second phase (volume %)", ), the cobalt content of the cemented carbide (shown in the "Co (mass%)" column in Table 2), the vanadium content of the cemented carbide (shown in the "Co (mass%)" column in Table 2), 2, the percentage of cobalt relative to the total of tungsten, chromium, vanadium, and cobalt in the second phase (indicated in the "Co/Second Phase (mass %)" column in Table 2), ), the average value of the equivalent circle diameter of the WC particles (shown in the "WC particle average particle diameter (μm)" column in Table 2), the maximum value of the equivalent circle diameter of the third phase particles (in Table 2 ), the maximum value of the vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase (indicated in the "WC /Second phase interface region" in the "V maximum (atomic %)" column), the maximum value of the chromium content in the interface region (in Table 2, "Cr maximum (atomic %)" in "interface region") ) was measured. The measurement method for each item is as shown in Embodiment 1. The results are shown in Table 2.
 <切削試験>
 各試料の丸棒を加工し、刃径φ0.2mmの小径ドリル(プリント回路基板加工用回転工具)を作製した。現在、刃部のみをステンレスシャンクに圧入してドリルを成形することが主流であるが、評価のためにφ3.4mmの丸棒の先端を刃付け加工することでドリルの作製を行った。該ドリルを用いて市販の車載用プリント回線基板の穴開け加工を行った。
<Cutting test>
The round bars of each sample were processed to produce small-diameter drills (rotary tools for processing printed circuit boards) with a blade diameter of φ0.2 mm. Currently, it is common practice to form a drill by press-fitting only the blade portion into a stainless steel shank, but for evaluation purposes, a drill was fabricated by cutting the tip of a φ3.4 mm round bar. The drill was used to drill holes in a commercially available in-vehicle printed circuit board.
 耐摩耗性の評価試験では、穴開け加工の条件は、回転数160krpm、送り速度2.7m/minとした。10000個の穴あけを行った後のドリルについて、摩耗痕の幅(μm)を測定した。本実施例における摩耗痕の幅について図3を用いて説明する。図3は、本実施例で作製された小径ドリルの先端側から見た図である。上記摩耗痕の幅とは、図3に示されるように、ドリル中心Cからの距離が0.08mmの箇所における摩耗痕Wの幅L1を意味する。結果を表2の「切削試験の耐摩耗性(μm)」欄に示す。本実施例では、摩耗痕の幅が22μm以下の場合、耐摩耗性が良好であり、摩耗痕の幅が20μm以下の場合、耐摩耗性がより良好であると判断される。 In the wear resistance evaluation test, the drilling conditions were a rotation speed of 160 krpm and a feed rate of 2.7 m/min. After drilling 10,000 holes, the width (μm) of the wear scar was measured for the drill. The width of the wear scar in this example will be explained using FIG. 3. FIG. 3 is a view from the tip side of the small diameter drill produced in this example. The width of the wear mark means the width L1 of the wear mark W at a location at a distance of 0.08 mm from the drill center C, as shown in FIG. The results are shown in the "Cutting test wear resistance (μm)" column of Table 2. In this example, when the width of the wear mark is 22 μm or less, the wear resistance is determined to be good, and when the width of the wear mark is 20 μm or less, the wear resistance is determined to be better.
 耐折損性の評価試験では、穴開け加工の条件は、回転数100krpm、送り速度3.6m/minとした。最大5000個の穴あけを行い、折損するまでの穴開けの回数を測定した。結果を表2の「切削試験の耐折損性(回)」欄に示す。結果が5000回とは、5000回の穴開け時点で、折損が生じなかったことを意味する。本実施例では、折損するまでの穴開け回数が3000回以上の場合、耐折損性が良好であり、穴開け回数が5000回の場合、耐折損性がより良好であると判断される。 In the breakage resistance evaluation test, the drilling conditions were a rotation speed of 100 krpm and a feed rate of 3.6 m/min. A maximum of 5000 holes were drilled and the number of holes punched until breakage was measured. The results are shown in the "Breakage resistance of cutting test (times)" column of Table 2. A result of 5000 times means that no breakage occurred after 5000 holes were punched. In this example, if the number of holes to be punched before breakage is 3000 times or more, it is determined that the breakage resistance is good, and if the number of holes to be drilled is 5000 times, it is determined that the breakage resistance is better.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <考察>
 試料1~試料12の超硬合金及び切削工具は実施例に該当する。これらの試料は、優れた耐摩耗性及び耐折損性を有することが確認された。
<Consideration>
The cemented carbide and cutting tools of Samples 1 to 12 correspond to Examples. It was confirmed that these samples had excellent wear resistance and breakage resistance.
 試料1-1~試料1-10の超硬合金及び切削工具は比較例に該当する。これらの試料は、耐摩耗性及び/又は耐折損性が不十分であることが確認された。 The cemented carbide and cutting tools of Samples 1-1 to 1-10 correspond to comparative examples. It was confirmed that these samples had insufficient wear resistance and/or breakage resistance.
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
Although the embodiments and examples of the present disclosure have been described above, it is planned from the beginning that the configurations of the above-described embodiments and examples may be combined as appropriate or variously modified.
The embodiments and examples disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the claims rather than the embodiments and examples described above, and it is intended that equivalent meanings to the claims and all changes within the scope are included.
1 炭化タングステン粒子、2 第2相、3 第3相粒子、R 測定領域、10 切削工具、11 刃先、C ドリル中心、W 摩耗痕。 1 Tungsten carbide particles, 2 Second phase, 3 Third phase particles, R Measurement area, 10 Cutting tool, 11 Cutting edge, C Drill center, W Wear marks.

Claims (4)

  1.  炭化タングステン粒子からなる第1相と、コバルトを主成分として含む第2相と、を備える超硬合金であって、
     前記超硬合金の前記第1相及び前記第2相の合計含有率は、97体積%以上であり、
     前記炭化タングステン粒子の円相当径の平均値は、0.8μm以下であり、
     前記超硬合金のコバルト含有率は、3質量%以上10質量%以下であり、
     前記超硬合金のバナジウム含有率は、0.01質量%以上0.30質量%以下であり、
     前記炭化タングステン粒子の(0001)の結晶面と、前記第2相との界面領域におけるバナジウム含有率の最大値は、15原子%以下である、超硬合金。
    A cemented carbide comprising a first phase consisting of tungsten carbide particles and a second phase containing cobalt as a main component,
    The total content of the first phase and the second phase of the cemented carbide is 97% by volume or more,
    The average value of the equivalent circle diameter of the tungsten carbide particles is 0.8 μm or less,
    The cobalt content of the cemented carbide is 3% by mass or more and 10% by mass or less,
    The vanadium content of the cemented carbide is 0.01% by mass or more and 0.30% by mass or less,
    A cemented carbide, wherein the maximum vanadium content in the interface region between the (0001) crystal plane of the tungsten carbide particles and the second phase is 15 atomic % or less.
  2.  前記超硬合金は、バナジウムを10原子%以上含む第3相粒子からなる第3相を備え、
     前記超硬合金の前記第3相の含有率は、0体積%超1体積%以下であり、
     前記第3相粒子の円相当径の最大値は、0.5μm以下である、請求項1に記載の超硬合金。
    The cemented carbide includes a third phase consisting of third phase particles containing 10 atomic % or more of vanadium,
    The content of the third phase of the cemented carbide is more than 0% by volume and not more than 1% by volume,
    The cemented carbide according to claim 1, wherein the third phase particles have a maximum equivalent circle diameter of 0.5 μm or less.
  3.  前記界面領域におけるクロム含有率の最大値は、20原子%以下である、請求項1又は請求項2に記載の超硬合金。 The cemented carbide according to claim 1 or 2, wherein the maximum value of the chromium content in the interface region is 20 atomic % or less.
  4.  請求項1から請求項3のいずれか1項に記載の超硬合金からなる刃先を備える、切削工具。 A cutting tool comprising a cutting edge made of the cemented carbide according to any one of claims 1 to 3.
PCT/JP2022/021423 2022-05-25 2022-05-25 Cemented carbide and cutting tool using same WO2023228328A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2022/021423 WO2023228328A1 (en) 2022-05-25 2022-05-25 Cemented carbide and cutting tool using same
JP2022576875A JP7401048B1 (en) 2022-05-25 2022-05-25 Cemented carbide and cutting tools using it
EP22943731.4A EP4372115A1 (en) 2022-05-25 2022-05-25 Cemented carbide and cutting tool using same
CN202280060161.2A CN117916397A (en) 2022-05-25 2022-05-25 Cemented carbide and cutting tool using same
TW112102618A TW202346614A (en) 2022-05-25 2023-01-19 Cemented carbide and cutting tool using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021423 WO2023228328A1 (en) 2022-05-25 2022-05-25 Cemented carbide and cutting tool using same

Publications (1)

Publication Number Publication Date
WO2023228328A1 true WO2023228328A1 (en) 2023-11-30

Family

ID=88918722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021423 WO2023228328A1 (en) 2022-05-25 2022-05-25 Cemented carbide and cutting tool using same

Country Status (5)

Country Link
EP (1) EP4372115A1 (en)
JP (1) JP7401048B1 (en)
CN (1) CN117916397A (en)
TW (1) TW202346614A (en)
WO (1) WO2023228328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501800B1 (en) 2023-02-07 2024-06-18 住友電気工業株式会社 Carbide alloy and cutting tool using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239411A (en) * 2000-02-28 2001-09-04 Mitsubishi Materials Corp Miniature drill made of micro powder organization pressurized/sintered body giving good breakage resistance and abrasion resistance in rapid drilling
JP2004162080A (en) * 2002-11-08 2004-06-10 Hitachi Tool Engineering Ltd Tough microparticulate cemented carbide
JP2006131974A (en) * 2004-11-08 2006-05-25 Sumitomo Electric Ind Ltd Cemented carbide
JP2006255825A (en) * 2005-03-16 2006-09-28 Hitachi Tool Engineering Ltd Wc-based cemented carbide member
JP2007092090A (en) 2005-09-27 2007-04-12 Hitachi Tool Engineering Ltd Wc-based cemented carbide member
JP2008038242A (en) * 2006-08-08 2008-02-21 Fuji Dies Kk Ultrafine particle cemented carbide
JP2011208268A (en) * 2010-03-30 2011-10-20 Hitachi Tool Engineering Ltd Ultrafine particle cemented carbide
JP2012052237A (en) 2011-10-07 2012-03-15 Kyocera Corp Cemented carbide, method for production thereof, and rotating tool using the cemented carbide
JP2012117100A (en) 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Cemented carbide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239411A (en) * 2000-02-28 2001-09-04 Mitsubishi Materials Corp Miniature drill made of micro powder organization pressurized/sintered body giving good breakage resistance and abrasion resistance in rapid drilling
JP2004162080A (en) * 2002-11-08 2004-06-10 Hitachi Tool Engineering Ltd Tough microparticulate cemented carbide
JP2006131974A (en) * 2004-11-08 2006-05-25 Sumitomo Electric Ind Ltd Cemented carbide
JP2006255825A (en) * 2005-03-16 2006-09-28 Hitachi Tool Engineering Ltd Wc-based cemented carbide member
JP2007092090A (en) 2005-09-27 2007-04-12 Hitachi Tool Engineering Ltd Wc-based cemented carbide member
JP2008038242A (en) * 2006-08-08 2008-02-21 Fuji Dies Kk Ultrafine particle cemented carbide
JP2011208268A (en) * 2010-03-30 2011-10-20 Hitachi Tool Engineering Ltd Ultrafine particle cemented carbide
JP2012117100A (en) 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Cemented carbide
JP2012052237A (en) 2011-10-07 2012-03-15 Kyocera Corp Cemented carbide, method for production thereof, and rotating tool using the cemented carbide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAKAMI, Masaru. TERADA, Osamu. HAYASHI, Koji. Effect of Sintering Cooling Rate on V Segregation Amount at WC/Co Interface in VC-doped WC-Co Fine-Grained Hardmetal. 粉体および粉末冶金, vol. 51. no. 8. 2004, pp. 576-585, https://doi.org/10.2497/jjspm.51.576 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501800B1 (en) 2023-02-07 2024-06-18 住友電気工業株式会社 Carbide alloy and cutting tool using same

Also Published As

Publication number Publication date
JP7401048B1 (en) 2023-12-19
JPWO2023228328A1 (en) 2023-11-30
CN117916397A (en) 2024-04-19
EP4372115A1 (en) 2024-05-22
TW202346614A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US20100098506A1 (en) Cemented carbide, cutting tool, and cutting device
JP7401048B1 (en) Cemented carbide and cutting tools using it
JP6607470B2 (en) Sintered body and cutting tool including the same
TWI748676B (en) Cemented carbide and cutting tools equipped with it
JP7215806B1 (en) Cemented carbide and cutting tools using it
JP6957828B1 (en) Cemented carbide and cutting tools equipped with it
JP7367905B1 (en) cemented carbide
JP7501800B1 (en) Carbide alloy and cutting tool using same
WO2023175721A1 (en) Cemented carbide
WO2023139726A1 (en) Cemented carbide and tool including same
WO2023175720A1 (en) Cemented carbide
JP7283636B1 (en) Cemented carbide and tools containing it
WO2022209336A1 (en) Cemented carbide and cutting tool
JP7452762B1 (en) Cemented carbide and tools containing it
JP7501798B1 (en) Carbide alloy and cutting tool using same
JP2022158173A (en) Cemented carbide and cutting tool
JP2023134939A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP2023134938A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP2023134937A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022576875

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022943731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022943731

Country of ref document: EP

Effective date: 20240216

WWE Wipo information: entry into national phase

Ref document number: 202280060161.2

Country of ref document: CN