JP2012052237A - Cemented carbide, method for production thereof, and rotating tool using the cemented carbide - Google Patents

Cemented carbide, method for production thereof, and rotating tool using the cemented carbide Download PDF

Info

Publication number
JP2012052237A
JP2012052237A JP2011222968A JP2011222968A JP2012052237A JP 2012052237 A JP2012052237 A JP 2012052237A JP 2011222968 A JP2011222968 A JP 2011222968A JP 2011222968 A JP2011222968 A JP 2011222968A JP 2012052237 A JP2012052237 A JP 2012052237A
Authority
JP
Japan
Prior art keywords
mass
cemented carbide
carbide
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222968A
Other languages
Japanese (ja)
Other versions
JP5289532B2 (en
Inventor
Shigeru Matsushita
滋 松下
Nobuo Yoshida
暢生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011222968A priority Critical patent/JP5289532B2/en
Publication of JP2012052237A publication Critical patent/JP2012052237A/en
Application granted granted Critical
Publication of JP5289532B2 publication Critical patent/JP5289532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cemented carbide having high transverse strength with less variation, and to provide such a rotating tool with the use of the cemented carbide as to have excellent breakage resistance even when used for small diameter drilling or high-feed cutting.SOLUTION: The cemented carbide 1 has a structure such that the tungsten carbide particles 2 with an average particle size of 0.1-0.4 μm are combined by a binding phase 3 consisting mainly of 3-13 mass% cobalt. According to observation by a transmission electron microscope, the number of tungsten carbide particles 4 with the particle size of 0.05 μm or smaller is 10% or less based on the total number of the tungsten carbide particles 2, and the cemented carbide has coercivity of 34,000 to 56,000 A/m and a saturation magnetization rate of 1.35-1.65 μTmin terns of 1 mass% of cobalt. The filtrate prepared by pulverizing the cemented carbide, dissolving a pulverized powder passed through a screen of #20 mesh in a dilute hydrochloric acid (HCl:HO=1:1) of 50°C for 24 h and filtering, contains tungsten in an amount of 8-24 mass%, chrome in 3-6 mass% and vanadium in 0.6-1.5 mass% based on the total metal contents in the filtrate.

Description

本発明は超硬合金およびその製造方法、並びにそれを用いた回転工具に関する。   The present invention relates to a cemented carbide, a method for producing the same, and a rotary tool using the same.

従来より、プリント基板加工用ドリルの素材としては、特許文献1に記載されるようなCr(クロム)やV(バナジウム)等の粒成長抑制剤を添加した炭化タングステン粒子の粒径が1μmより小さい、いわゆる超微粒超硬合金が主として用いられ、高硬度、高強度であることを活かして、耐欠損性および耐摩耗性に優れ、かつ孔位置精度の高いドリルが公用されている。   Conventionally, as a material for a printed circuit board drill, the particle size of tungsten carbide particles to which a grain growth inhibitor such as Cr (chromium) or V (vanadium) is added as described in Patent Document 1 is smaller than 1 μm. A so-called ultrafine cemented carbide is mainly used, and a drill having excellent fracture resistance and wear resistance and high hole position accuracy is used by taking advantage of high hardness and high strength.

また、特許文献2では炭化タングステン粒子の平均粒径を0.1μm以下にさらに小さくするとともにコバルト量を15質量%以上含有せしめることにより高硬度で抗折強度の高い靭性に優れた超硬合金を作製できることが記載されており、さらに、特許文献3では、粒径が2μm以上に粒成長した炭化タングステン粒子(巨炭)と1μmを超えるような結合相プールの発生を抑制することによって抗折強度のバラツキを低減して低い抗磁力の試料が発生することを抑制できることが記載されており、さらに特許文献4では、高温炭化反応により製造したサブミクロンの炭化タングステン粒子と、凝集がなくかつ粒度分布の狭いコバルト粉末とを用いて粒成長抑制剤の添加量を1質量%以下に低減し、炭素含有量が低い超硬合金が作製できることが記載されている。   Further, in Patent Document 2, a cemented carbide excellent in toughness having high hardness and high bending strength is obtained by further reducing the average particle size of tungsten carbide particles to 0.1 μm or less and containing cobalt in an amount of 15% by mass or more. In addition, Patent Document 3 describes the bending strength by suppressing the generation of tungsten carbide particles (gigantic coal) having a particle diameter of 2 μm or more and a binder phase pool exceeding 1 μm. Patent Document 4 describes that submicron tungsten carbide particles produced by a high-temperature carbonization reaction and a particle size distribution without aggregation are described. The amount of grain growth inhibitor added can be reduced to 1% by mass or less using a narrow cobalt powder, and a cemented carbide with a low carbon content can be produced. There has been described.

一方、上記プリント基板加工用のドリルについては、最近、プリント基板の高密度化に伴って加工される孔径が微細化する傾向にあり、ドリル径も小径化することが要求されている。   On the other hand, with respect to the drill for processing a printed circuit board, the diameter of the hole to be processed tends to be fined recently as the density of the printed circuit board is increased, and the drill diameter is also required to be reduced.

特開昭61−12847号公報Japanese Patent Laid-Open No. 61-12847 特開平7−157837号公報Japanese Patent Laid-Open No. 7-157837 特開2001−335876号公報JP 2001-335876 A 特開2001−515962号公報Japanese Patent Application Laid-Open No. 2001-515962

しかしながら、上記特許文献1および特許文献2に記載されたように炭化タングステン粒子の粒径を微粒化した超硬合金では、合金の抗折強度が高くなる傾向にあるものの、炭化タングステン粉末、コバルト粉末および他の添加物粉末等の原料粉末が凝集することによって、合金中に粒成長した炭化タングステン粒子(巨炭)の存在や結合相プールが発生しやすく、製品間で抗折強度のバラツキが大きくなり、ドリル径が小径化するにしたがってドリルの強度が低下し、ドリル先端の刃先が摩耗する前にドリルの根元から折損するものが発生してしまうことから、結果的に安定して孔開けできる加工数が減じてしまい工具寿命を延命することができず工具コストの削減にはつながらないという問題があった。   However, as described in Patent Document 1 and Patent Document 2 described above, cemented carbide in which the particle size of tungsten carbide particles is atomized tends to increase the bending strength of the alloy, but tungsten carbide powder, cobalt powder As a result of agglomeration of raw material powders such as additive powders and other additives, the presence of tungsten carbide particles (giant coal) grown in the alloy and a binder phase pool are likely to occur, resulting in large variations in bending strength among products. As the drill diameter becomes smaller, the strength of the drill decreases, and there is something that breaks from the base of the drill before the tip of the drill wears out, resulting in stable drilling. There is a problem in that the number of machining operations is reduced and the tool life cannot be extended, leading to a reduction in tool cost.

また、特許文献3に記載されるように、巨炭と結合相プールの発生を制御するだけで抗折強度のバラツキは小さくできるものの、ドリル径の更なる小径化に対応するためには抗折強度の絶対値をさらに向上させる必要があった。   In addition, as described in Patent Document 3, although the variation in bending strength can be reduced simply by controlling the generation of giant coal and a binder phase pool, in order to cope with further reduction in the drill diameter, the bending strength is reduced. It was necessary to further improve the absolute value of the strength.

さらに、特許文献4に記載された超硬合金においても、η相の形成に近い炭素含有量を
精密に制御すること、およびこれを検査・判定することができず、実際には試料間での特性ばらつきが大きいものであった。
Furthermore, even in the cemented carbide described in Patent Document 4, the carbon content close to the formation of the η phase cannot be precisely controlled, and this cannot be inspected / determined. The characteristic variation was large.

したがって、本発明の目的は、小径ドリル等に用いる場合においても安定して耐折損性に優れるような高くかつバラツキの少ない抗折強度を備えた超硬合金を提供すること、かつこれを用いて、小径の孔あけ加工や高送り切削に対しても優れた耐折損性を有する回転工具を提供することにある。   Accordingly, an object of the present invention is to provide a cemented carbide having a high bending strength that is stable and excellent in breakage resistance even when used for a small diameter drill or the like, and that uses this. Another object of the present invention is to provide a rotary tool having excellent breakage resistance even for small-diameter drilling and high-feed cutting.

本発明者は、上記課題に対し、炭化タングステン原料粉末、コバルト原料粉末、他添加物原料粉末の性状を制御するとともに、超硬合金の混合・粉砕条件、焼成条件および炭素分の添加方法を制御することによって、超硬合金中に極微粒な炭化タングステン粒子を含まない、微粒で、かつ均粒な炭化タングステン粒子を有する組織からなり、かつ炭素含有量が精密に制御された超硬合金とすることができ、これによって、硬度、抗折強度に優れるとともに安定した耐折損性を具備する信頼性の高い性能を有する超硬合金を作製することができることを知見した。   The present inventor controls the properties of the tungsten carbide raw material powder, cobalt raw material powder, and other additive raw material powders as well as the mixing / pulverizing conditions, firing conditions, and carbon content addition method of the cemented carbide, in response to the above problems. By doing so, a cemented carbide that does not contain ultrafine tungsten carbide particles in the cemented carbide, has a structure having fine and uniform tungsten carbide particles, and has a precisely controlled carbon content. It has been found that this makes it possible to produce a cemented carbide having excellent performance in hardness and bending strength and having a reliable performance with stable fracture resistance.

すなわち、本発明の超硬合金は、平均粒径が0.5μm以下の炭化タングステン粒子間を5〜15質量%のコバルトを主体とする結合相にて結合するとともに、該超硬合金において、この超硬合金の組織中に存在する粒径0.05μm以下の炭化タングステン粒子の数が炭化タングステン粒子全体の数に対して10%以下の割合であるとともに、抗磁力34,000〜56,000A/m、コバルト1質量%当りの換算で飽和磁化率1.35〜1.65μTm/kgで、前記超硬合金を粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを8〜24質量%、クロムを3〜6質量%、バナジウムを0.6〜1.5質量%の割合で含有することを特徴とするものである。 That is, the cemented carbide of the present invention bonds tungsten carbide particles having an average particle size of 0.5 μm or less with a binder phase mainly composed of 5 to 15% by mass of cobalt. The number of tungsten carbide particles having a particle size of 0.05 μm or less present in the structure of the cemented carbide is 10% or less with respect to the total number of tungsten carbide particles, and a coercive force of 34,000 to 56,000 A / m, the cemented carbide was pulverized at a saturation magnetic susceptibility of 1.35 to 1.65 μTm 3 / kg in terms of 1% by mass of cobalt, and the pulverized powder passed through # 20 mesh was diluted with dilute hydrochloric acid (HCl: H In the filtrate which was dissolved in 2 O = 1: 1) for 24 hours and filtered, tungsten was 8 to 24% by mass, chromium was 3 to 6% by mass and vanadium was 0% with respect to the total amount of metals in the filtrate. .6 to 1.5% by mass It contains by the ratio.

ここで、前記超硬合金の組織中に存在する粒径0.5μm以上の炭化タングステン粒子の数が炭化タングステン粒子全体の数に対して10%以下の割合であることによって、より抗折強度のバラツキを抑制して安定した性能の超硬合金とすることができる。   Here, the number of tungsten carbide particles having a particle diameter of 0.5 μm or more present in the structure of the cemented carbide is 10% or less with respect to the total number of tungsten carbide particles. It is possible to obtain a cemented carbide with stable performance by suppressing variation.

また、前記超硬合金中に、バナジウムを炭化物換算による総量で0.2〜3質量%、クロムを炭化物換算による総量で0.2〜3質量%の割合で含有することによって、炭化タングステン粒子の全体的な粒径制御、結合相の強化を図って抗磁力の向上および耐折損性の向上を図ることができる。   Further, in the cemented carbide, vanadium is contained in a total amount of 0.2 to 3% by mass in terms of carbide, and chromium is contained in a proportion of 0.2 to 3% by mass in terms of carbide. It is possible to improve the coercive force and breakage resistance by controlling the overall particle size and strengthening the binder phase.

さらに、前記ろ液中に、ろ液中の総金属量に対してクロムを3〜6質量%、バナジウムを0.6〜1.5質量%の割合で含有することによって、結合相の強化を図り超硬合金の全体的な抗折強度を向上させることができる。   Furthermore, in the said filtrate, strengthening of a binder phase is carried out by containing chromium in the ratio of 3-6 mass% and vanadium in the ratio of 0.6-1.5 mass% with respect to the total amount of metals in a filtrate. It is possible to improve the overall bending strength of the illustrated cemented carbide.

また、本発明の超硬合金の製造方法は、平均粒径0.05〜0.4μmの炭化タングステン(WC)粉末を80〜90質量%、平均粒径0.3〜1.0μmの炭化バナジウム(VC)粉末を0.2〜0.6質量%、平均粒径0.3〜2.0μmの炭化クロム(Cr)粉末を0.2〜0.8質量%、平均粒径0.2〜0.6μmの金属コバルト(Co)を3〜13質量%、との割合で調合し、有機溶媒および炭素粉末をスラリーの固形分比率が60〜80質量%となるように添加し、粉砕メディアとして平均粒径0.1〜0.4μmの炭化タングステン粒子を主体とする超硬合金製の平均直径2〜4mmの粉砕ボールを用いて10〜20時間アトライタ粉砕して混合粉末を得た後、前記混合粉末を成形し、0.1〜5Paの真空中、1320〜1380℃の温度で0.2〜2時間真空焼成した後、アルゴンガスを5MPa以上導入して前記真空焼成温度よりも5〜50℃低い温度で0
.5〜2時間熱間静水圧プレス焼成を施し、5〜10℃/分の冷却速度で1000℃以下の温度まで冷却することを特徴とするものである。
In addition, the method for producing a cemented carbide according to the present invention includes a tungsten carbide (WC) powder having an average particle size of 0.05 to 0.4 μm and a vanadium carbide having an average particle size of 0.3 to 1.0 μm. (VC) 0.2-0.6% by mass of powder, 0.2-0.8% by mass of chromium carbide (Cr 3 C 2 ) powder having an average particle size of 0.3-2.0 μm, 0% of average particle size 2 to 0.6 μm of metallic cobalt (Co) in a ratio of 3 to 13% by mass, and an organic solvent and carbon powder are added so that the solid content ratio of the slurry is 60 to 80% by mass, A mixed powder was obtained by attritor pulverization for 10 to 20 hours using pulverized balls having an average diameter of 2 to 4 mm made of cemented carbide mainly composed of tungsten carbide particles having an average particle diameter of 0.1 to 0.4 μm as pulverization media. After that, the mixed powder was molded, and the vacuum was 0.1 to 5 Pa. 0-1380 After 0.2 to 2 hours under vacuum fired at a temperature of ° C., argon gas was introduced over 5 MPa 5 to 50 ° C. lower temperature than the vacuum baking temperature 0
. It is characterized by performing hot isostatic pressing for 5 to 2 hours and cooling to a temperature of 1000 ° C. or less at a cooling rate of 5 to 10 ° C./min.

さらに、上記記載の超硬合金からなる回転工具は耐欠損性、耐摩耗性に優れるとともに、小径化しても耐折損性が高く、微細で高精度な孔を長寿命に加工できるものである。   Furthermore, the rotary tool made of the above-described cemented carbide has excellent fracture resistance and wear resistance, and has high breakage resistance even when the diameter is reduced, and can process fine and highly accurate holes with a long life.

上記本発明の超硬合金によれば、炭化タングステン原料粉末、コバルト原料粉末、他の添加物原料粉末の性状を制御するとともに、超硬合金の混合・粉砕条件、焼成条件を制御することによって、超硬合金中に極微粒な炭化タングステン粒子を含まない、微粒で、かつ均粒な炭化タングステン粒子を有する組織からなり、かつ炭素含有量が精密に制御された超硬合金とすることができ、これによって、硬度、抗折強度に優れるとともに安定した耐折損性を具備する信頼性の高い性能を有する超硬合金を作製することができる。   According to the cemented carbide of the present invention, by controlling the properties of tungsten carbide raw material powder, cobalt raw material powder, other additive raw material powder, by controlling the mixing and grinding conditions of the cemented carbide, firing conditions, The cemented carbide does not contain very fine tungsten carbide particles, consists of fine and uniform tungsten carbide particles, and can be a cemented carbide with a precisely controlled carbon content, This makes it possible to produce a cemented carbide having excellent performance in hardness and bending strength, and having a reliable performance with stable breakage resistance.

また、本発明の回転工具によれば、極微粒な炭化タングステン粒子を含まない微粒で均粒な炭化タングステン粒子を有する組織の超硬合金からなることから、プリント基板孔開け用のマイクロドリル等においても、安定した耐折損性、耐摩耗性を有して長寿命の孔開けが可能な優れた性能および信頼性を発揮する。   Further, according to the rotary tool of the present invention, since it is made of a cemented carbide alloy having fine and uniform tungsten carbide particles that do not contain extremely fine tungsten carbide particles, in a micro drill for drilling printed circuit boards, etc. In addition, it has stable breakage resistance and wear resistance, and exhibits excellent performance and reliability enabling long-life drilling.

本発明の超硬合金について内部断面の組織の一例を示す図面代用透過電子顕微鏡写真である。It is a transmission-substituting electron micrograph for drawing which shows an example of the structure of an internal cross section about the cemented carbide of the present invention.

本発明の超硬合金について、その内部の透過型電子顕微鏡写真である図1を基に説明する。   The cemented carbide of the present invention will be described with reference to FIG. 1 which is a transmission electron micrograph inside the cemented carbide.

図1によれば、超硬合金1は、平均粒径0.1〜0.4μm、特に0.2〜0.3μmの炭化タングステン粒子2を5〜15質量%のコバルトを主体とする、すなわちコバルトを50質量%以上の割合で含有する結合相3とから構成されている。   According to FIG. 1, the cemented carbide 1 is mainly composed of 5 to 15% by weight of cobalt carbide particles 2 having an average particle size of 0.1 to 0.4 μm, in particular 0.2 to 0.3 μm. And a binder phase 3 containing 50% by mass or more of cobalt.

本発明によれば、上記超硬合金においては、結合相3としては炭化タングステン粒子2とのなじみ、濡れ性のよいコバルトを用い、その含有量を5〜15質量%であることがドリルとして必要な硬度および強度を満足するために必要であるが、小径化、孔位置精度の向上のためにドリルの変形を起こさない点では、結合相3をなすコバルトの含有量は特に6〜10質量%、さらには6〜8質量%であることが望ましい。   According to the present invention, in the cemented carbide, the binder phase 3 is familiar with the tungsten carbide particles 2 and uses cobalt having good wettability, and its content is required to be 5 to 15% by mass as a drill. Is necessary for satisfying the required hardness and strength, but the content of cobalt constituting the binder phase 3 is particularly 6 to 10% by mass in terms of reducing the diameter and improving the position accuracy of the drill in order to prevent deformation of the drill. Furthermore, it is desirable that it is 6-8 mass%.

ここで、本発明における上記炭化タングステン粒子の平均粒径は、図1のような超硬合金1の内部断面の透過型電子顕微鏡写真において、各炭化タングステン粒子2の占める面積を測定して平均値を算出し、炭化タングステン粒子2が球状(写真では円)と仮定したときの直径に換算した値を指すが、本発明によれば、炭化タングステン粒子2の平均粒径が0.1μmより小さいと炭化タングステン粒子2間を結合する結合相3の含有比率を13質量%以上にしないと合金の靭性が低下したり組織中に凝集部が発生しやすくなってしまい、逆に炭化タングステン粒子2の平均粒径が0.4μmより大きくなると超硬合金1の全体的な硬度および抗折強度が低下して工具の耐摩耗性およびドリルの耐折損性が低下する。   Here, the average particle diameter of the tungsten carbide particles in the present invention is an average value obtained by measuring the area occupied by each tungsten carbide particle 2 in a transmission electron micrograph of the internal cross section of the cemented carbide 1 as shown in FIG. Is a value converted into a diameter when the tungsten carbide particles 2 are assumed to be spherical (circles in the photograph). According to the present invention, the average particle size of the tungsten carbide particles 2 is smaller than 0.1 μm. If the content ratio of the binder phase 3 for bonding between the tungsten carbide particles 2 is not set to 13% by mass or more, the toughness of the alloy is reduced or aggregates are easily generated in the structure. When the particle diameter is larger than 0.4 μm, the overall hardness and bending strength of the cemented carbide 1 are lowered, and the wear resistance of the tool and the breakage resistance of the drill are lowered.

また、本発明によれば、超硬合金1の組織中に存在する粒径0.05μm以下の炭化タングステン粒子4の数が炭化タングステン粒子全体の数に対して10%以下、特に5%以下の割合であることが大きな特徴であり、これによって、合金に切削時の衝撃がかかった
際に粒径0.05μm以下の極微粒の炭化タングステン粒子4が存在することによって応力が極微粒の炭化タングステン粒子に集中して場合によっては折損に至ってしまうことを防止することができることから、全体的な抗折強度(抗折強度の平均値)を高めることができるとともに抗折強度のバラツキを低減することができる。つまり、粒径0.05μm以下の炭化タングステン粒子4の数が炭化タングステン粒子2全体の数に対して10%を超える割合で存在すると抗折強度の平均値が低下するか、または抗折強度のバラツキが大きくなる恐れがある。
Further, according to the present invention, the number of tungsten carbide particles 4 having a particle size of 0.05 μm or less present in the structure of the cemented carbide 1 is 10% or less, particularly 5% or less with respect to the total number of tungsten carbide particles. The ratio is a great feature, and when the impact is applied to the alloy during cutting, the tungsten carbide particles 4 having a particle size of 0.05 μm or less are present, so that the tungsten carbide has a very fine stress. Concentration on particles can prevent breakage in some cases, so that overall bending strength (average value of bending strength) can be increased and variation in bending strength can be reduced. Can do. That is, if the number of tungsten carbide particles 4 having a particle size of 0.05 μm or less is present in a ratio exceeding 10% with respect to the total number of tungsten carbide particles 2, the average value of the bending strength is reduced, or the bending strength is reduced. There is a risk of variations.

超硬合金1の特性は、炭化タングステン粒子2の形状や組成(炭素量)、結合相3の分布(厚みや結合相プールの存在)や組成(炭素、タングステンおよび他の金属の固溶量)、他の析出相の状態等によって変動するものであるが、本発明によれば、合金組織の均一性に加えて、合金中に含有される炭素量によって敏感に特性が変動し、炭素含有量ができるだけ低くかつη相が析出しない比率にあるとき硬度および強度が最大となること、またその炭素含有量のばらつきによって硬度および強度のばらつきが生じることに着目し、その組織および炭素量のばらつきの抑制方法について検討した。   The characteristics of the cemented carbide 1 are the shape and composition of the tungsten carbide particles 2 (carbon content), the distribution of the binder phase 3 (thickness and presence of the binder phase pool) and the composition (the solid solution amount of carbon, tungsten and other metals). However, according to the present invention, in addition to the homogeneity of the alloy structure, the characteristics sensitively vary depending on the amount of carbon contained in the alloy, and the carbon content Paying attention to the fact that the hardness and strength are maximized when the η phase is as low as possible and the η phase is not precipitated, and that the variation in hardness and strength is caused by the variation in the carbon content. The suppression method was examined.

その結果、極微粒な炭化タングステン粒子の存在を制御すること、また、炭素を均一に添加して合金中の炭素量のばらつきを抑制すること、さらに、合金中の炭素量の含有量は、炭化タングステン粒子2以外の部分、すなわち所定条件の塩酸によって溶出する部分に含まれるタングステンの固溶量と相関関係にあることを知見した。   As a result, it is possible to control the presence of extremely fine tungsten carbide particles, to suppress the variation in the carbon content in the alloy by uniformly adding carbon, and the carbon content in the alloy It has been found that there is a correlation with the solid solution amount of tungsten contained in a part other than the tungsten particles 2, that is, a part eluted with hydrochloric acid under a predetermined condition.

したがって、本発明によれば、抗磁力34,000〜56,000A/m、コバルト1質量%当りの換算で飽和磁化率1.35〜1.65μTm/kgに制御するとともに、前記超硬合金を粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを8〜24質量%、クロムを3〜6質量%、バナジウムを0.6〜1.5質量%の割合で含有するように制御することによって、合金1中に含有される炭素量を含む合金の性状および特性の管理を行うことができ、安定した性能の超硬合金および回転工具を製造することができる。 Therefore, according to the present invention, the coercive force of 34,000 to 56,000 A / m and the saturation magnetic susceptibility of 1.35 to 1.65 μTm 3 / kg in terms of 1% by mass of cobalt are controlled. And the ground powder through # 20 mesh was dissolved in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours and filtered to obtain the total amount of metal in the filtrate. On the other hand, the amount of carbon contained in Alloy 1 is controlled by containing 8 to 24 mass% of tungsten, 3 to 6 mass% of chromium, and 0.6 to 1.5 mass% of vanadium. It is possible to manage the properties and characteristics of the alloy containing, and to manufacture a cemented carbide and a rotary tool with stable performance.

また、本発明によれば、上記ろ液中のタングステン含有量を上記範囲に制御することにより、合金中の炭化タングステン粒子以外の部分についての塑性変形、耐衝撃性が低減され、結果として切刃の耐摩耗性および耐欠損性が向上するとの効果をも併せ持つ。   Further, according to the present invention, by controlling the tungsten content in the filtrate within the above range, the plastic deformation and impact resistance of the portion other than the tungsten carbide particles in the alloy are reduced. It also has the effect of improving wear resistance and fracture resistance.

さらに、本発明によれば、前記超硬合金の透過型電子顕微鏡観察において、組織中に存在する粒径0.5μm以上の炭化タングステン粒子5(図1には存在せず(図示せず)。)の数が炭化タングステン粒子2全体の数に対して10%以下、特に5%以下の割合であることが抗折強度のバラツキを抑制し、工具の耐欠損性、ドリルの耐折損性を高める点で望ましい。   Further, according to the present invention, in the transmission electron microscope observation of the cemented carbide, tungsten carbide particles 5 having a particle size of 0.5 μm or more present in the structure (not shown in FIG. 1 (not shown)). ) Is 10% or less, particularly 5% or less of the total number of tungsten carbide particles 2, which suppresses variations in bending strength and improves the fracture resistance of the tool and the fracture resistance of the drill. Desirable in terms.

また、本発明によれば、前記超硬合金中に、バナジウムを炭化物換算による総量で0.2〜3質量%、クロムを炭化物換算による総量で0.2〜3質量%の割合で含有することによって、炭化タングステン粒子2の全体的な粒径(平均粒径)を効果的に制御することができるとともに、結合相3の強化を図って全体的な抗折強度の向上および耐欠損性、耐折損性の向上を図ることができる。   According to the present invention, the cemented carbide contains vanadium in a proportion of 0.2 to 3% by mass in terms of carbide and chromium in a proportion of 0.2 to 3% by mass in terms of carbide. Thus, the overall particle size (average particle size) of the tungsten carbide particles 2 can be effectively controlled, and the binder phase 3 is strengthened to improve the overall bending strength and to improve the fracture resistance and resistance. The breakability can be improved.

さらに、本発明によれば、超硬合金1を粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを8〜24質量%、特に10〜20質量%、さらに12〜18質量%の割合で含有することによって、結合相3の強化を図り超硬合金1の全体
的な抗折強度を向上させることができる。
Further, according to the present invention, the cemented carbide 1 is pulverized, and the pulverized powder passing through # 20 mesh is dissolved in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours and filtered. In the liquid, the binder phase 3 is strengthened by containing tungsten in an amount of 8 to 24% by mass, particularly 10 to 20% by mass, and further 12 to 18% by mass with respect to the total amount of metals in the filtrate. The overall bending strength of the cemented carbide 1 can be improved.

さらには、合金組成中には炭化タングステン粒子間に、炭化タングステン粒子2の平均粒径よりも小さい粒径のVWC相が析出・分散していてもよく、このVWC相の析出・分散によって炭化タングステン粒子の炭素量を最適化することができる。   Further, in the alloy composition, a VWC phase having a particle size smaller than the average particle size of the tungsten carbide particles 2 may be precipitated and dispersed between the tungsten carbide particles, and the tungsten carbide is precipitated and dispersed by the precipitation and dispersion of the VWC phase. The carbon content of the particles can be optimized.

また、上記記載の超硬合金1からなる回転工具は耐欠損性、耐摩耗性に優れるとともに、小径化しても耐折損性が高く、微細で高精度な孔を長寿命に加工できるものである。   Further, the rotary tool made of the above-described cemented carbide 1 has excellent fracture resistance and wear resistance, and has high breakage resistance even when the diameter is reduced, and can process fine and highly accurate holes with a long life. .

(製造方法)
上述した超硬合金1を製造するには、まず、例えば平均粒径0.05〜0.4μmの炭化タングステン(WC)粉末を80〜90質量%、平均粒径0.3〜1.0μmの炭化バナジウム(VC)粉末を0.2〜0.6質量%、平均粒径0.3〜2.0μmの炭化クロム(Cr)粉末を0.2〜0.8質量%、平均粒径0.2〜0.6μmの金属コバルト(Co)を3〜13質量%を混合する。
(Production method)
In order to manufacture the cemented carbide 1 described above, first, for example, a tungsten carbide (WC) powder having an average particle size of 0.05 to 0.4 μm is 80 to 90% by mass and an average particle size is 0.3 to 1.0 μm. 0.2-0.6% by mass of vanadium carbide (VC) powder, 0.2-0.8% by mass of chromium carbide (Cr 3 C 2 ) powder having an average particle size of 0.3-2.0 μm, average particle 3 to 13% by mass of metallic cobalt (Co) having a diameter of 0.2 to 0.6 μm is mixed.

ここで、本発明によれば、上記原料粉末のうち、炭化タングステン粉末、炭化クロム粉末、炭化バナジウム粉末、金属コバルト粉末の平均粒径を上記範囲に制御することが重要であり、上記原料粉末の平均粒径が上記範囲から逸脱すると上記焼成温度で焼結体を緻密化させることができず後述する焼成温度が1380℃を超えることによって上述した超硬合金の組織を達成することができない。   Here, according to the present invention, among the raw material powders, it is important to control the average particle size of the tungsten carbide powder, the chromium carbide powder, the vanadium carbide powder, and the metallic cobalt powder within the above range. When the average particle size deviates from the above range, the sintered body cannot be densified at the firing temperature, and the above-described cemented carbide structure cannot be achieved when the firing temperature described later exceeds 1380 ° C.

次に、上記混合に際して、メタノール等の有機溶媒および炭素粉末をスラリーの固形分比率が60〜80質量%となるように添加するとともに、適切な分散剤を添加し、粉砕メディアとして平均粒径0.1〜0.4μmの炭化タングステン粒子を主体とする超硬合金製の平均直径2〜4mmの粉砕ボールを用いて10〜20時間アトライタ粉砕することにより混合粉末の均一化を図った後、混合粉末に有機バインダを添加して成形用の混合粉末を得る。   Next, at the time of the above mixing, an organic solvent such as methanol and carbon powder are added so that the solid content ratio of the slurry is 60 to 80% by mass, an appropriate dispersant is added, and an average particle size of 0 as a grinding medium is added. After homogenizing the mixed powder by grinding attritor for 10 to 20 hours using grinding balls made of cemented carbide mainly composed of tungsten carbide particles of 1 to 0.4 μm and having an average diameter of 2 to 4 mm, mixing An organic binder is added to the powder to obtain a mixed powder for molding.

本発明によれば、上記原料組成とともに、上記混合に際して、スラリーの状態(固形分比率)、炭素粉末を粉末状としてではなく予めスラリー状として添加することおよび粉砕メディア・混合条件を制御することが重要であり、これによって過粉砕や粒子の凝集等が生じることなく、超硬合金1の組織を上述した所定の粒径の均粒な炭化タングステン粒子を有する組織とすることができる。   According to the present invention, together with the raw material composition, during the mixing, it is possible to control the state of the slurry (solid content ratio), adding the carbon powder in advance as a slurry rather than as a powder, and controlling the grinding media and mixing conditions This is important, and the structure of the cemented carbide 1 can be made to have the above-described uniform grain size tungsten carbide particles without causing excessive pulverization or particle aggregation.

次に、上記混合粉末を用いて、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定形状に成形した後、0.1〜5Paの真空中、1320〜1380℃の温度で0.2〜2時間真空焼成した後、アルゴンガスを5MPa以上導入して前記真空焼成温度よりも5〜50℃低い温度で0.5〜2時間熱間静水圧プレス焼成を施し、5〜10℃/分の冷却速度で1000℃以下の温度まで冷却することにより本発明の超硬合金を作製することができる。   Next, the mixture powder is molded into a predetermined shape by a known molding method such as press molding, casting molding, extrusion molding, cold isostatic pressing, and then in a vacuum of 0.1 to 5 Pa, 1320 After vacuum baking at a temperature of ˜1380 ° C. for 0.2 to 2 hours, argon gas is introduced at 5 MPa or more, and hot isostatic pressing is performed at a temperature 5 to 50 ° C. lower than the vacuum baking temperature for 0.5 to 2 hours. The cemented carbide of the present invention can be manufactured by cooling to a temperature of 1000 ° C. or lower at a cooling rate of 5 to 10 ° C./min.

ここで、上記焼成条件のうち、焼成温度が1320℃より低いと合金を緻密化させることができず強度低下を招き、また粒径が0.05μm以下の極微粒な炭化タングステン粒子の数が10%以上存在してしまい、逆に焼成温度が1380℃を超えると、炭化タングステン粒子が粒成長して硬度、強度が低下する。また、熱間静水圧プレス焼成の温度と真空焼成温度との差が5℃より小さいと粒径が0.05μm以下の極微粒な炭化タングステン粒子の数が10%以上、または粒径が0.5μm以上の粗粒な炭化タングステン粒子の数が10%以上存在してしまい、逆にこの温度差が50℃より大きいと合金中に粒径が0.05μm以下の極微粒な炭化タングステン粒子の数が10%以上発生するとともに、ボ
イドが発生しやすく強度低下の原因となる。
Here, among the above firing conditions, if the firing temperature is lower than 1320 ° C., the alloy cannot be densified, resulting in a decrease in strength, and the number of extremely fine tungsten carbide particles having a particle size of 0.05 μm or less is 10 If the firing temperature exceeds 1380 ° C., tungsten carbide particles grow and the hardness and strength decrease. When the difference between the hot isostatic press firing temperature and the vacuum firing temperature is less than 5 ° C., the number of ultrafine tungsten carbide particles having a particle size of 0.05 μm or less is 10% or more, or the particle size is 0.00. If the number of coarse tungsten carbide particles of 5 μm or more is 10% or more, conversely, if this temperature difference is larger than 50 ° C., the number of extremely fine tungsten carbide particles having a particle size of 0.05 μm or less in the alloy. Is generated more than 10%, and voids are easily generated, causing a decrease in strength.

また、上述した本発明の超硬合金は、高硬度、高強度、耐変形性に優れるとともに、信頼性の高い機械的特性を有することから、金型、耐摩耗部材、高温構造材料等に適応可能であり、中でも切削工具、さらにはプリント基板加工用ドリルとして好適に使用可能である。   In addition, the above-described cemented carbide of the present invention has high hardness, high strength, and excellent deformation resistance, and has high reliability mechanical properties, so it is suitable for molds, wear-resistant members, high-temperature structural materials, etc. In particular, it can be suitably used as a cutting tool, and further as a drill for processing printed circuit boards.

さらに、本発明の切削工具は、上述した超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、炭酸窒化物、特に(Ti)C(ただし、M:Al、Zr、Cr、Siの群から選ばれる少なくとも1種、0<a≦1、0≦b<1、a+b=1、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)、ダイヤモンド、cBNおよびAl2O3の群から選ばれる少なくとも1種の被覆層を単層または複数層形成したものであってもよい。 Furthermore, the cutting tool of the present invention has a carbide, nitride, carbonitride, carbonitride, especially (Ti a M b ) of the periodic table Nos. 4a, 5a, and 6a metals on the surface of the cemented carbide described above. C x N y O z (however, at least one selected from the group of M: Al, Zr, Cr, Si, 0 <a ≦ 1, 0 ≦ b <1, a + b = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1), at least one coating layer selected from the group of diamond, cBN, and Al 2 O 3 may be formed as a single layer or a plurality of layers.

なお、超硬合金に前記被覆層を形成するには、所望により超硬合金の表面を研磨、洗浄した後、従来公知のPVD法やCVD法等の薄膜形成法を用いて成膜すればよい。また、被覆層の厚みは0.1〜20μmであることが望ましい。   In order to form the coating layer on the cemented carbide, the surface of the cemented carbide is polished and washed as desired, and then formed using a conventionally known thin film forming method such as PVD or CVD. . The thickness of the coating layer is preferably 0.1 to 20 μm.

また、上記超硬合金を用いてプリント基板加工用ドリルを作製するには、上述した原料および成形用混合粉末を用いて棒状成形体を作製し、上述した焼成方法に従って焼成した後、焼結体に加工を施して所望のドリル形状に加工することによって作製できる。
さらに、ドリルの少なくとも一部に上述したコーティング膜を成膜してもよい。
Moreover, in order to produce a printed circuit board processing drill using the above-mentioned cemented carbide, a rod-like molded body is produced using the above-mentioned raw material and the mixed powder for molding, fired in accordance with the above-described firing method, and then sintered. It can produce by processing to a desired drill shape.
Further, the above-described coating film may be formed on at least a part of the drill.

表1に示す平均粒径の炭化タングステン(WC)粉末、金属コバルト(Co)粉末、炭化バナジウム(VC)粉末および炭化クロム(Cr)粉末を表1に示す比率(質量%、表中wt%と表記。)で添加し、表1に示す炭素粉末を溶かしたメタノールをスラリーの固形分比率が表1の割合となるように添加し、粉砕メディアとして、炭化タングステン粒子の平均粒径が0.3μmの超微粒子超硬合金からなる直径3mmのボールを加えて、表1に示す時間アトライタ粉砕・混合し、乾燥した後、プレス成形により丸棒形状に成形し、焼成温度より500℃以上低い温度から10℃/分の速度で昇温して、表1に示す条件で真空焼成および熱間静水圧プレス焼成(Sinter HIP)して超硬合金を作製した。 The ratio (mass%, in the table) of tungsten carbide (WC) powder, metal cobalt (Co) powder, vanadium carbide (VC) powder and chromium carbide (Cr 3 C 2 ) powder having the average particle size shown in Table 1 is shown in Table 1. In addition, methanol in which the carbon powder shown in Table 1 is dissolved is added so that the solid content ratio of the slurry is the ratio shown in Table 1, and the average particle diameter of tungsten carbide particles is used as a grinding medium. Add a 3mm diameter ball of 0.3μm ultra-fine cemented carbide, grind and mix attritor for the time shown in Table 1, dry, and then press-mold into a round bar shape, 500 ℃ above the firing temperature The temperature was raised from a low temperature at a rate of 10 ° C./min, and vacuum firing and hot isostatic press firing (Sinter HIP) were performed under the conditions shown in Table 1 to produce a cemented carbide.

なお、表1中、ΔT(℃)は真空焼成と熱間静水圧プレス焼成との温度差を示し、冷却速度は熱間静水圧プレス焼成後1000℃以下に冷却するまでの冷却速度を示した。また、炭素原料の添加方法として、(a)メタノールに炭素粉末を予め溶かした溶液状として添
加、または(b)炭素粉末として他の原料粉末とともに調合のいずれかとし表1に記載した
In Table 1, ΔT (° C.) indicates the temperature difference between vacuum firing and hot isostatic press firing, and the cooling rate indicates the cooling rate until cooling to 1000 ° C. or less after hot isostatic press firing. . Further, as a method for adding the carbon raw material, Table 1 shows either (a) addition as a solution in which carbon powder is preliminarily dissolved in methanol, or (b) preparation with other raw material powder as carbon powder.

得られた超硬合金の任意断面5箇所について、透過型電子顕微鏡により図1に示すような100,000倍の反射電子像を観察し、1μm×1.5μmの任意領域について、炭化タングステン粒子の粒径を測定し、平均粒径、粒径が0.05μm以下の炭化タングステン粒子の数および0.5μm以上の炭化タングステン粒子の数を測定し存在比率を算出した。さらに、上記超硬合金について、抗磁力および飽和磁化率を測定し、コバルト1質量%当りの飽和磁化率に換算した。結果を表2に示す。   With respect to five arbitrary cross sections of the obtained cemented carbide, a reflection electron image at a magnification of 100,000 as shown in FIG. 1 was observed with a transmission electron microscope, and tungsten carbide particles were observed in an arbitrary region of 1 μm × 1.5 μm. The particle size was measured, and the abundance ratio was calculated by measuring the average particle size, the number of tungsten carbide particles having a particle size of 0.05 μm or less, and the number of tungsten carbide particles having a particle size of 0.5 μm or more. Furthermore, the coercive force and the saturation magnetic susceptibility of the cemented carbide were measured and converted to the saturation magnetic susceptibility per 1% by mass of cobalt. The results are shown in Table 2.

また、上記超硬合金を粉砕し#20メッシュを通した粉砕粉末1gに塩酸(HCl:HO=1:1)溶液を加え、スターラーにて攪拌し24時間50℃で加熱溶解した溶液をろ過した。この溶液に希塩酸(HCl:HO=1:1)溶液を加えて50ml定容とし、このろ液について、ICP法によってろ液中のタングステンを含む各金属の含有量および含有比率を測定した。結果は表2に示した。 In addition, a hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to 1 g of pulverized powder obtained by pulverizing the above cemented carbide and passing through a # 20 mesh, and a solution obtained by stirring and stirring for 24 hours at 50 ° C. Filtered. Dilute hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to this solution to make a constant volume of 50 ml, and the content and content ratio of each metal containing tungsten in the filtrate were measured by ICP method for this filtrate. . The results are shown in Table 2.

さらに、前記超硬合金について、2枚刃形状のドリル形状に加工し、下記条件によってプリント基板の孔あけ加工テストを行い、試料が折損するまでの加工孔数を測定した。なお、試料数は各5本とし加工孔数が最低となったものを表2に示した。
<条件>
被削材 :FR4・6層板、1.6mm厚、3枚重ね
ドリル形状:φ0.15mmアンダーカットタイプ
回転数:120kr.p.m.
送り速度:2.4m/min.
Further, the cemented carbide was processed into a two-edged drill shape, a printed circuit board drilling test was performed under the following conditions, and the number of processed holes until the sample broke was measured. In addition, Table 2 shows the number of samples and the number of processed holes being the minimum.
<Conditions>
Work material: FR4 / 6-layer plate, 1.6 mm thick, 3-ply drill shape: φ0.15 mm undercut type Rotation speed: 120 kr. p. m.
Feeding speed: 2.4 m / min.

表1、2の結果より、金属コバルト粉末、炭化クロム粉末および炭化バナジウム粉末原料の平均粒径が所定の範囲から外れる試料No.5、スラリー中の固形分比率および粉砕時間が所定の範囲から外れる試料No.6、真空焼成温度が1380℃を超える試料No.7、真空焼成温度と同じ温度で熱間静水圧プレス焼成を行った試料No.8、および真空焼成温度と熱間静水圧プレス焼成温度との温度差(ΔT)が50℃を超える試料No.9では、いずれも0.05μmの微粒の存在比率が10%を超え、ろ液中のタングステン含有量も所定の範囲を超え、抗折強度の平均値が低く、バラツキが大きいものであった。   From the results shown in Tables 1 and 2, the sample Nos. 1 and 2 in which the average particle sizes of the metallic cobalt powder, chromium carbide powder, and vanadium carbide powder raw material deviate from the predetermined range. 5. Sample No. 5 in which the solid content ratio and pulverization time in the slurry deviate from the predetermined range. 6. Sample No. with vacuum firing temperature exceeding 1380 ° C. 7. Sample No. 1 subjected to hot isostatic press firing at the same temperature as the vacuum firing temperature. 8 and Sample No. 8 in which the temperature difference (ΔT) between the vacuum firing temperature and the hot isostatic press firing temperature exceeds 50 ° C. In No. 9, the abundance ratio of fine particles of 0.05 μm exceeded 10%, the tungsten content in the filtrate exceeded the predetermined range, the average value of the bending strength was low, and the variation was large.

これに対して、本発明に従い、原料粉末の性状(特に平均粒径)、原料混合粉末の混合、粉砕条件、焼成条件を所定の範囲に制御した試料No.1〜4では、いずれも炭化タングステン粒子の平均粒径が0.1〜0.4μmの範囲内にあり、0.05μm以下の微粒、および0.5μm以上の粗粒の割合がともに10%以下と低く、均粒な組織となり、かつろ液中のタングステン含有量が8〜24質量%の範囲内となった。そして、これらの試料では磁気特性および機械特性のばらつきが小さく極小径である直径が0.15mmφのドリルについての孔開け試験にて最低加工孔数4000孔以上の優れた耐折損性を示すものであった。   On the other hand, in accordance with the present invention, the sample powder No. 1 in which the properties of the raw material powder (particularly the average particle size), the mixing of the raw material mixed powder, the pulverization conditions, and the firing conditions were controlled within a predetermined range. 1-4, the average particle size of tungsten carbide particles is in the range of 0.1 to 0.4 μm, and the proportion of fine particles of 0.05 μm or less and coarse particles of 0.5 μm or more are both 10% or less. And a uniform structure, and the tungsten content in the filtrate was in the range of 8 to 24% by mass. These samples show excellent breakage resistance with a minimum number of processed holes of 4000 or more in a drilling test on a drill having a small diameter of 0.15 mmφ with small variations in magnetic properties and mechanical properties. there were.

1 硬質合金
2 固溶体相
3 WC相
4 結合相
6 脱β領域
7 内部
8 高硬度領域
DESCRIPTION OF SYMBOLS 1 Hard alloy 2 Solid solution phase 3 WC phase 4 Bonded phase 6 De-β region 7 Inside 8 High hardness region

Claims (5)

平均粒径が0.1〜0.4μmの炭化タングステン粒子間を5〜15質量%のコバルトを主体とする結合相にて結合した超硬合金において、この超硬合金の組織中に存在する粒径0.05μm以下の炭化タングステン粒子の数が炭化タングステン粒子全体の数に対して10%以下の割合であるとともに、抗磁力34,000〜56,000A/m、コバルト1質量%当りの換算で飽和磁化率1.35〜1.65μTm/kgで、かつ前記超硬合金を粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを8〜24質量%、クロムを3〜6質量%、バナジウムを0.6〜1.5質量%の割合で含有することを特徴とする超硬合金。 In a cemented carbide in which tungsten carbide particles having an average particle size of 0.1 to 0.4 μm are bonded with a binder phase mainly composed of 5 to 15% by mass of cobalt, grains existing in the structure of the cemented carbide The number of tungsten carbide particles having a diameter of 0.05 μm or less is a ratio of 10% or less with respect to the total number of tungsten carbide particles, and the coercive force is 34,000 to 56,000 A / m, in terms of 1% by mass of cobalt. The cemented carbide was pulverized with a saturation magnetic susceptibility of 1.35 to 1.65 μTm 3 / kg, and the pulverized powder that passed through # 20 mesh was diluted in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. In the filtrate dissolved and filtered for 24 hours, tungsten is 8 to 24% by mass, chromium is 3 to 6% by mass, and vanadium is 0.6 to 1.5% by mass with respect to the total amount of metal in the filtrate. Carbide characterized by containing in proportion alloy. 前記超硬合金の組織中に存在する粒径0.5μm以上の炭化タングステン粒子の数が炭化タングステン粒子全体の数に対して10%以下の割合であることを特徴とする請求項1記載の超硬合金。   The super-hard alloy according to claim 1, wherein the number of tungsten carbide particles having a particle size of 0.5 µm or more present in the structure of the cemented carbide is 10% or less with respect to the total number of tungsten carbide particles. Hard alloy. バナジウムを炭化物換算による総量で0.2〜3質量%、クロムを炭化物換算による総量で0.2〜3質量%の割合で含有することを特徴とする請求項1または2記載の超硬合金。   3. The cemented carbide according to claim 1, wherein vanadium is contained in a proportion of 0.2 to 3% by mass in terms of carbide, and chromium is contained in a proportion of 0.2 to 3% by mass in terms of carbide. 平均粒径0.05〜0.4μmの炭化タングステン(WC)粉末を80〜90質量%、平均粒径0.3〜1.0μmの炭化バナジウム(VC)粉末を0.2〜0.6質量%、平均粒径0.3〜2.0μmの炭化クロム(Cr)粉末を0.2〜0.8質量%、平均粒径0.2〜0.6μmの金属コバルト(Co)を3〜13質量%、との割合で調合し、有機溶媒および炭素粉末をスラリーの固形分比率が60〜80質量%となるように添加し、粉砕メディアとして平均粒径0.1〜0.4μmの炭化タングステン粒子を主体とする超硬合金製の平均直径2〜4mmの粉砕ボールを用いて10〜20時間アトライタ粉砕して混合粉末を得た後、前記混合粉末を成形し、0.1〜5Paの真空中、1320〜1380℃の温度で0.2〜2時間真空焼成した後、アルゴンガスを5MPa以上導入して前記真空焼成温度よりも5〜50℃低い温度で0.5〜2時間熱間静水圧プレス焼成を施し、5〜10℃/分の冷却速度で1000℃以下の温度まで冷却することを特徴とする超硬合金の製造方法。 80-90% by mass of tungsten carbide (WC) powder having an average particle size of 0.05-0.4 μm, and 0.2-0.6% by mass of vanadium carbide (VC) powder having an average particle size of 0.3-1.0 μm. %, 0.2 to 0.8 mass% of chromium carbide (Cr 3 C 2 ) powder having an average particle size of 0.3 to 2.0 μm, and metallic cobalt (Co) having an average particle size of 0.2 to 0.6 μm. 3 to 13% by mass, and an organic solvent and carbon powder are added so that the solid content ratio of the slurry is 60 to 80% by mass, and the average particle size is 0.1 to 0.4 μm as the grinding media. After a mixed powder was obtained by pulverizing for at least 10 to 20 hours using a pulverized ball made of a cemented carbide mainly composed of tungsten carbide particles of 10 to 20 hours, the mixed powder was molded, and 0.1 to 0.2 to 2 hours at a temperature of 1320 to 1380 ° C. in a 5 Pa vacuum After vacuum firing, argon gas is introduced at 5 MPa or more, hot isostatic pressing is performed at a temperature 5 to 50 ° C. lower than the vacuum firing temperature for 0.5 to 2 hours, and a cooling rate of 5 to 10 ° C./min. And cooling to a temperature of 1000 ° C. or less. 請求項1乃至3のいずれか記載の超硬合金からなる回転工具。   A rotary tool comprising the cemented carbide according to any one of claims 1 to 3.
JP2011222968A 2011-10-07 2011-10-07 Cemented carbide and rotary tool using the same Expired - Fee Related JP5289532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222968A JP5289532B2 (en) 2011-10-07 2011-10-07 Cemented carbide and rotary tool using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222968A JP5289532B2 (en) 2011-10-07 2011-10-07 Cemented carbide and rotary tool using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003370455A Division JP4889198B2 (en) 2003-10-30 2003-10-30 Cemented carbide, method for producing the same, and rotary tool using the same

Publications (2)

Publication Number Publication Date
JP2012052237A true JP2012052237A (en) 2012-03-15
JP5289532B2 JP5289532B2 (en) 2013-09-11

Family

ID=45905866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222968A Expired - Fee Related JP5289532B2 (en) 2011-10-07 2011-10-07 Cemented carbide and rotary tool using the same

Country Status (1)

Country Link
JP (1) JP5289532B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940683A (en) * 2019-11-18 2020-03-31 中国科学院金属研究所 Method for realizing in-situ compression observation by combination of Vickers hardness tester and transmission electron microscope
CN114481115A (en) * 2022-02-08 2022-05-13 重庆文理学院 Hard alloy composite coating and preparation method thereof
CN115053004A (en) * 2021-10-15 2022-09-13 住友电工硬质合金株式会社 Cemented carbide and cutting tool using the same
CN115768913A (en) * 2021-04-28 2023-03-07 住友电工硬质合金株式会社 Hard alloy and mold for ultra-high pressure generating device using same
WO2023188012A1 (en) * 2022-03-29 2023-10-05 住友電工ハードメタル株式会社 Cemented carbide
WO2023228328A1 (en) 2022-05-25 2023-11-30 住友電工ハードメタル株式会社 Cemented carbide and cutting tool using same
EP2955241B1 (en) * 2014-06-12 2024-01-24 Maschinenfabrik Gustav Eirich GmbH & Co. KG Method for manufacturing a cemented carbide or cermet body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335876A (en) * 2000-05-31 2001-12-04 Hitachi Tool Engineering Ltd Tough fine-particulate cemented carbide
JP4889198B2 (en) * 2003-10-30 2012-03-07 京セラ株式会社 Cemented carbide, method for producing the same, and rotary tool using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335876A (en) * 2000-05-31 2001-12-04 Hitachi Tool Engineering Ltd Tough fine-particulate cemented carbide
JP4889198B2 (en) * 2003-10-30 2012-03-07 京セラ株式会社 Cemented carbide, method for producing the same, and rotary tool using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955241B1 (en) * 2014-06-12 2024-01-24 Maschinenfabrik Gustav Eirich GmbH & Co. KG Method for manufacturing a cemented carbide or cermet body
CN110940683A (en) * 2019-11-18 2020-03-31 中国科学院金属研究所 Method for realizing in-situ compression observation by combination of Vickers hardness tester and transmission electron microscope
CN115768913A (en) * 2021-04-28 2023-03-07 住友电工硬质合金株式会社 Hard alloy and mold for ultra-high pressure generating device using same
CN115053004A (en) * 2021-10-15 2022-09-13 住友电工硬质合金株式会社 Cemented carbide and cutting tool using the same
WO2023062818A1 (en) 2021-10-15 2023-04-20 住友電工ハードメタル株式会社 Cemented carbide and cutting tool using same
CN114481115A (en) * 2022-02-08 2022-05-13 重庆文理学院 Hard alloy composite coating and preparation method thereof
CN114481115B (en) * 2022-02-08 2023-11-21 重庆文理学院 Hard alloy composite coating and preparation method thereof
WO2023188012A1 (en) * 2022-03-29 2023-10-05 住友電工ハードメタル株式会社 Cemented carbide
JP7367905B1 (en) 2022-03-29 2023-10-24 住友電工ハードメタル株式会社 cemented carbide
WO2023228328A1 (en) 2022-05-25 2023-11-30 住友電工ハードメタル株式会社 Cemented carbide and cutting tool using same

Also Published As

Publication number Publication date
JP5289532B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5289532B2 (en) Cemented carbide and rotary tool using the same
JP5810469B2 (en) Cemented carbide and method for producing cemented carbide
JP2006299396A (en) Solid-solution powder and its producing method; ceramic using the solid-solution powder and its producing method; cermet powder including the solid-solution powder and its producing method; and cermet using the cermet powder and its producing method
JP2000336437A (en) MANUFACTURE OF WC-Co-BASE CEMENTED CARBINE WITH FINE WC
Dong et al. Ti (C, N)-based cermets with fine grains and uniformly dispersed binders: Effect of the Ni–Co based binders
JPWO2017191744A1 (en) Cemented carbide and cutting tools
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
Bose A PERSPECTIVE ON THE EARLIEST COMMERCIAL PM METAL-CERAMIC COMPOSITE: CEMENTED TUNGSTEN CARBIDE.
US20140178139A1 (en) Method of manufacturing super hard alloy containing carbon nanotubes, super hard alloy manufactured using same, and cutting tool comprising super hard alloy
CN109070216A (en) Carbide with toughness enhancing structure
CN106636834A (en) Method for inhibiting cemented carbide grain growth and ultra-fine grain cemented carbide preparation process
CN108570589A (en) A kind of sintered carbide tool material and preparation method thereof
Nie et al. Development of manufacturing technology on WC–Co hardmetals
JP4889198B2 (en) Cemented carbide, method for producing the same, and rotary tool using the same
JP4331958B2 (en) Cemented carbide manufacturing method
JP2004076049A (en) Hard metal of ultra-fine particles
CN112719274B (en) High-entropy alloy composite powder and preparation method and application thereof
KR100935037B1 (en) High toughness cermet and method of manufacturing the same
CN113234951A (en) Nanoscale superfine homogeneous hard alloy and preparation method thereof
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
CN116949334A (en) Binding phase-free hard alloy and preparation method and application thereof
Ji et al. Fabrication, microstructure and mechanical properties of self-diffusion gradient cermet composite tool materials
JP4351453B2 (en) Cemented carbide and drill using the same
JP4351451B2 (en) Cemented carbide and method for manufacturing the same, and rotary tool using the cemented carbide
KR102611118B1 (en) The hard metal and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees