WO2023227939A1 - 電池モジュール - Google Patents

電池モジュール Download PDF

Info

Publication number
WO2023227939A1
WO2023227939A1 PCT/IB2023/000279 IB2023000279W WO2023227939A1 WO 2023227939 A1 WO2023227939 A1 WO 2023227939A1 IB 2023000279 W IB2023000279 W IB 2023000279W WO 2023227939 A1 WO2023227939 A1 WO 2023227939A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
sensor
cell
positive
negative
Prior art date
Application number
PCT/IB2023/000279
Other languages
English (en)
French (fr)
Inventor
政信 酒井
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Publication of WO2023227939A1 publication Critical patent/WO2023227939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a battery module.
  • JP2021-18133A discloses a configuration in which a sensor unit that monitors the state of the battery cells is attached to a stacked cell in which a plurality of battery cells are stacked.
  • An object of the present invention is to provide a battery module in which a sensor section can be attached to a laminated cell while avoiding complicated wiring connection work and wiring removal work, and further avoiding short circuit prevention measures.
  • a battery module includes a stacked cell in which a plurality of battery cells are stacked, a bus bar connected to the battery cells, and a sensor section including a sensor circuit electrically connected to the bus bar and measuring the state of the battery cells.
  • the bus bar is arranged in an accommodation space formed on one side of the stacked cell, and the sensor part accommodates the sensor circuit and is formed to follow the shape of the bus bar, so that it comes into contact with the bus bar in the accommodation space.
  • a sensor case housed in the sensor case and a fitting part that is electrically connected to the sensor circuit, is located at a position facing the bus bar in the sensor case when the sensor case is housed in the housing space, and can be fitted to the bus bar. and, including. Then, by fitting the fitting portion to the bus bar, the sensor case is fixed to the bus bar, and the sensor circuit is electrically connected to the bus bar via the fitting portion.
  • FIG. 1 is a perspective view of laminated cells that constitute the battery module of this embodiment.
  • FIG. 2 is a diagram showing a region where a sensor section and the like can be attached in a housing space formed in a stacked cell.
  • FIG. 3 is an exploded perspective view of the battery module of this embodiment.
  • FIG. 4A is a perspective view of a sensor section that constitutes the battery module of this embodiment.
  • FIG. 4B is a cross-sectional view of the sensor section that constitutes the battery module of this embodiment.
  • FIG. 5 is a cross-sectional view showing the connection state of the sensor section.
  • FIG. 6 is a detailed view of a portion of FIG. FIG.
  • FIG. 7 is a circuit diagram of a sensor section, a battery cell, a positive bus bar, a negative bus bar, and an intermediate bus bar.
  • FIG. 8 is a perspective view of a first modification of the battery module of this embodiment.
  • FIG. 9A is a plan view of the sensor power supply section of the first modification.
  • FIG. 9B is a cross-sectional view of the sensor power supply section of the first modification before being sandwiched between the positive bus bar and the negative bus bar.
  • FIG. 9C is a cross-sectional view after the sensor power supply unit of the first modification is sandwiched between the positive bus bar and the negative bus bar.
  • FIG. 9D is a cross-sectional view of the sensor power supply section of the first modification example when it is fixed with a clip.
  • FIG. 10 is a circuit diagram of the sensor section, battery cell, positive bus bar, negative bus bar, intermediate bus bar, and sensor power supply section of the first modification.
  • FIG. 11 is a diagram showing an example of a jumper wire extending from the sensor section.
  • FIG. 12 is a diagram showing an example of a clip attached to a sensor case.
  • FIG. 13 shows a second modification of the battery module of this embodiment, and is a circuit diagram of a sensor section, a battery cell, a positive bus bar, a negative bus bar, and an intermediate bus bar.
  • FIG. 1 is a perspective view of a laminated cell 1 that constitutes the battery module of this embodiment.
  • the stacked cell 1 is a stack of a plurality of (for example, four) battery cells 11 (S1, S2, S3, S4).
  • the battery cell 11 includes a power storage unit 111 made of, for example, a lithium ion battery, and fastening parts 112 arranged at both ends of two long sides (or short sides) of the power storage unit 111. Then, the stacked cell 1 is formed by stacking the battery cells 11 and caulking the fastening portions 112, for example.
  • Thin plate portions 12 are disposed at positions sandwiched between two fastening portions 112 in the battery cells 11 at both ends in the thickness direction of the laminated cell 1 .
  • the area surrounded by the fastening part 112 and the thin plate part 12 becomes an accommodation space 14 in which a positive bus bar 2, a negative bus bar 3, an intermediate bus bar 4, a sensor part 5 (FIG. 3), etc., which will be described later, are accommodated.
  • the battery cell 11 has a positive electrode cell tab 113 extending from the positive electrode of the power storage unit 111 and arranged in the accommodation space 14, and a negative electrode cell tab 114 extending from the negative electrode of the power storage unit 111 and arranged in the accommodation space 14.
  • the positive bus bar 2 has a positive external terminal P that connects to the outside, and in order of electrical proximity from the positive external terminal P, the positive cell tab 113 (P1) of the bottom battery cell 11 (S1) shown in FIG. It is connected to the positive electrode cell tab 113 (P2) of the second battery cell 11 (S2) from the bottom (FIG. 7). Further, the positive electrode bus bar 2 is supported by the positive electrode cell tab 113 (P1) and the positive electrode cell tab 113 (P2).
  • the negative bus bar 3 has a negative external terminal N that connects to the outside, and the negative cell tab 114 (N3) of the second battery cell 11 (S3) from the top shown in FIG. , is connected to the negative electrode cell tab 114 (N4) (not shown in FIG. 1, see FIG. 3) of the uppermost battery cell 11 (S4) (FIG. 7). Moreover, the negative electrode bus bar 3 is supported by the negative electrode cell tab 114 (N3) and the negative electrode cell tab 114 (N4).
  • the intermediate bus bar 4 has an intermediate external terminal M that connects to the outside, and in order of electrical proximity to the intermediate external terminal M, the negative electrode cell tab 114 (N1) of the battery cell 11 (S1), the negative electrode of the battery cell 11 (S2), etc. It is connected to the cell tab 114 (N2), the positive electrode cell tab 113 (P3) of the battery cell 11 (S3), and the positive electrode cell tab 113 (P4) of the battery cell 11 (S4) (FIG. 7). Further, the intermediate bus bar 4 is supported by a negative cell tab 114 (N1), a negative cell tab 114 (N2), a positive cell tab 113 (P3), and a positive cell tab 113 (P4).
  • the positive electrode of the battery cell 11 (S1) and the positive electrode of the battery cell 11 (S2) are connected in parallel by the positive electrode bus bar 2, and the positive electrode of the battery cell 11 (S1) and the positive electrode of the battery cell 11 (S2) are connected in parallel.
  • the negative electrode of the battery cell 11 (S3) and the negative electrode of the battery cell 11 (S4) are connected in parallel by the negative electrode bus bar 3, and the negative electrode of the battery cell 11 (S3) and the negative electrode of the battery cell 11 (S4) are connected to the stacked cell 1. becomes the negative electrode ( Figure 7).
  • the negative electrode of battery cell 11 (S1), the negative electrode of battery cell 11 (S2), the positive electrode of battery cell 11 (S3), and the positive electrode of battery cell 11 (S4) are connected in parallel to intermediate bus bar 4 (FIG. 7 ).
  • the positive bus bar 2, the negative bus bar 3, and the intermediate bus bar 4 are bent in a step-like manner within the accommodation space 14 so as to connect to each cell tab but not to contact other bus bars.
  • a stopper 141 is arranged in the accommodation space 14 in proximity to the busbar, and is configured to preferentially bring the busbar into contact with the stopper 141 when the busbar vibrates relative to the laminated cell 1 due to vibration from the outside. Prevent busbars from contacting other busbars.
  • FIG. 2 is a diagram showing a region in the accommodation space 14 formed in the laminated cell 1 to which the sensor section 5 and the like can be attached.
  • the accommodation space 14 includes a plurality of divided spaces (a first divided space 142, a second divided space 143, a third divided space) partitioned by a positive bus bar 2, a negative bus bar 3, and an intermediate bus bar 4.
  • a divided space 144) (portion surrounded by thick lines) is formed.
  • the sensor section 5 described later is arranged in the first divided space 142, but it can also be arranged in the second divided space 143 and the third divided space 144.
  • the sensor section 5 (sensor circuit 52 described later) is divided into a plurality of sections, and the sensor section 5 is divided into the same number of sections as the sensor section 5.
  • a sensor case (sensor case 51 described later) is prepared, and a divided sensor circuit (sensor circuit 52 described later) is housed in each divided sensor case (sensor case 51) and arranged in the accommodation space 14, respectively.
  • FIG. 3 is an exploded perspective view of the battery module of this embodiment.
  • the battery module of this embodiment includes the above-described laminated cell 1, sensor section 5, sub-circuit section 6, and terminal cover 7 (cover).
  • the sensor section 5 and the sub-circuit section 6 are arranged in the housing space 14, and the terminal cover 7 covers the side surface of the laminated cell 1 so as to cover the housing space 14 (sensor section 5, sub-circuit section 6). It is embedded in.
  • the sensor section 5 is disposed in a first divided space 142 (FIG. 2) formed, for example, between the thin plate section 12 and the intermediate bus bar 4 in the housing space 14.
  • the sensor case 51 has an outer shape that follows the step shape of the bus bar 4. In FIG. 3, the number of stages on the surface of the sensor case 51 facing the intermediate bus bar 4 can be arbitrarily set depending on the number of sensor circuits 52 connected to the cell tabs.
  • the sensor case 51 may have any shape as long as it can be fitted into at least the step-shaped first divided space partitioned by the intermediate bus bar 4 .
  • a sensor circuit 52 (FIG. 4B) that detects, for example, the state (output voltage, internal resistance) of the battery cell 11 is arranged inside the sensor case 51.
  • a conductive first clip 53 is arranged at a position facing each stage of the intermediate bus bar 4 (where the cell tabs are arranged) of the sensor case 51.
  • the first clip 53 is a leaf spring-like contact made of, for example, phosphor bronze, and has appropriate elasticity and electrical conduction resistance.
  • the first clip 53 is electrically connected to the sensor circuit 52 (FIG. 4B). Further, by sandwiching the intermediate bus bar 4 (and the cell tab) between the first clip 53 and the sensor case 51 and applying the pressing force of the first clip 53 to the intermediate bus bar 4, the sensor case 51 can be moved to the intermediate bus bar 4 ( The sensor circuit 52 and the intermediate bus bar 4 (cell tab) are electrically connected to each other via the first clip 53.
  • the outer shape of the sensor case 51 is designed to be slightly larger than the first divided space 142 formed between the thin plate part 12 and the intermediate bus bar 4, and the sensor case 51 is pushed into the first divided space 142. It may be arranged in the first divided space 142 in a manner similar to the above. As a result, the sensor case 51 is fixed in the first divided space 142 by the pressing force of the first clip 53 and the pressing force of the sensor case 51 against the intermediate bus bar 4, so the burden on the first clip 53 is reduced accordingly. (The same applies to the sub-circuit unit 6 described later).
  • a first connection terminal 521 is arranged on the surface of the sensor case 51 facing the terminal cover 7.
  • the first connection terminal 521 is used, for example, as a power input terminal for supplying power to the sensor circuit 52, a terminal for bidirectional communication with the sub-circuit unit 6, and the like.
  • the first connection terminal 521 is arranged so as to protrude from the sensor case 51 toward the terminal cover 7 side, and the second wiring 73 arranged on the inner wall of the terminal cover 7 when the terminal cover 7 is fitted into the laminated cell 1 comes into contact with.
  • the first connection terminal 521 has a structure similar to that of the first clip 53, for example, and is deformed by receiving a pressing force from the terminal cover 7, and the restoring force generated by the deformation is transferred to the terminal cover 7 (the first clip 53).
  • a configuration in which the voltage can be applied to the wiring 72) is preferable. Thereby, electrical connection between the first connection terminal 521 and the first wiring 72 can be ensured.
  • the sub-circuit section 6 is arranged in a second divided space 143 (FIG. 2) formed between the positive bus bar 2 and the negative bus bar 3 in the accommodation space 14, and has a shape that follows the shape of the second divided space 143. It has an external circuit case 61 (corresponding to a holder 61a described later).
  • a subcircuit 62 (FIG. 7) arranged in the circuit case 61 includes a sensor power supply circuit 62a (FIGS. 9A, 9B, 9C, and 9D) that supplies power to the sensor unit 5, and a subcircuit 62 (FIG. It is used to assist the sensor circuit 52, such as a BLE (Bluetooth (registered trademark) low energy) type sensor communication circuit that bidirectionally communicates information and the like with the outside.
  • BLE Bluetooth (registered trademark) low energy) type sensor communication circuit that bidirectionally communicates information and the like with the outside.
  • a second clip 63 is arranged at a position of the circuit case 61 facing the positive bus bar 2, and a third clip 64 is arranged at a position of the circuit case 61 facing the negative bus bar 3.
  • the second clip 63 and the third clip 64 have a similar structure to the first clip 53.
  • the second clip 63 is electrically connected to the subcircuit 62 (FIGS. 7, 9A, 9B, 9C, and 9D).
  • the circuit case 61 is fixed to the positive bus bar 2 by sandwiching the positive bus bar 2 between the second clip 63 and the circuit case 61 and applying the pressing force of the second clip 63 to the circuit case 61 and the positive bus bar 2.
  • the sub-circuit 62 is electrically connected to the positive bus bar 2 via the second clip 63.
  • the third clip 64 is electrically connected to the subcircuit 62 (FIGS. 7, 9A, 9B, 9C, and 9D).
  • the circuit case 61 is fixed to the negative bus bar 3 by sandwiching the negative bus bar 3 between the third clip 64 and the circuit case 61 and applying the pressing force of the third clip 64 to the circuit case 61 and the negative bus bar 3.
  • the sub-circuit 62 is electrically connected to the negative bus bar 3 via the third clip 64.
  • a second connection terminal 622 is arranged on the surface of the circuit case 61 facing the terminal cover 7.
  • the second connection terminal 622 is used, for example, as a power output terminal for supplying power to the sensor circuit 52, a terminal for bidirectional communication with the sensor circuit 52, and the like.
  • the second connection terminal 622 has the same structure as the first connection terminal 521 and is arranged so as to protrude from the circuit case 61 toward the terminal cover 7. When the terminal cover 7 is fitted into the laminated cell 1, the second connection terminal 622 It comes into contact with the first wiring 72 arranged on the inner wall of the cover 7.
  • the terminal cover 7 is a member having an inner wall that contacts the outer walls of the two thin plate parts 12 of the laminated cell 1. Note that, as will be described later, the terminal cover 7 is made of, for example, an electrically insulating material that has a magnetic effect like the sensor case 51, and its surface is covered with an insulating layer (not shown) such as resin.
  • the terminal cover 7 By inserting the terminal cover 7 through the opening of the accommodation space 14, the terminal cover 7 is attached to the laminated cell 1 so as to cover the accommodation space 14.
  • the terminal cover 7 is provided with insertion holes 71 into which the positive external terminal P, the negative external terminal N, and the intermediate external terminal M are inserted.
  • each external terminal is inserted into the insertion hole 71. will be placed in
  • a first wiring 72 and a second wiring 73 are arranged on an insulating layer (not shown) on the inner wall of the terminal cover 7.
  • an insulating layer not shown
  • Third wirings 131 extending in the direction toward the second connection terminals 622 of No. 6 are arranged.
  • the first wiring 72, the second wiring 73, and the third wiring 131 are all formed of, for example, Cu (copper) tape.
  • the first wiring 72 is arranged so that one end thereof faces the first connection terminal 521 and the other end faces the third wiring 131. ing.
  • the second wiring 73 is arranged so that one end thereof faces the second connection terminal 622 and the other end faces the third wiring 131 . ing.
  • the terminal cover 7 when the terminal cover 7 is attached to the laminated cell 1, one end of the first wiring 72 contacts the second connection terminal 622, and the other end contacts the third wiring 131. Further, one end of the second wiring 73 contacts the first connection terminal 521, and the other end is connected to the third wiring 131. Thereby, the first connection terminal 521 and the second connection terminal 622 are electrically connected to each other via the first wiring 72, the second wiring 73, and the third wiring 131.
  • the third wiring 131 is omitted, and as shown in FIGS. 4A and 4B (terminal cover 7 shown in the area surrounded by the rectangular broken line), the first wiring 72 and the second wiring
  • the fourth wiring 74 may be arranged in such a manner that the wiring 73 and the fourth wiring 74 are connected to each other.
  • the sensor circuit 52 in the sensor section 5 and the sub-circuit 62 (FIGS. 7, 9A, 9B, 9C, and 9D) in the sub-circuit section 6 are capable of bidirectional wireless communication, and the sensor circuit 52 If a small battery is built-in and no external power supply is required, the first connection terminal 521, second connection terminal 622, first wiring 72, second wiring 73, third wiring 131, and 4 wiring 74 can be omitted.
  • FIG. 4A is a perspective view of the sensor section 5 that constitutes the battery module of this embodiment.
  • FIG. 4B is a cross-sectional view of the sensor section 5 that constitutes the battery module of this embodiment.
  • FIG. 4A shows a state in which the sensor section 5 is attached to the intermediate bus bar 4.
  • the intermediate bus bar 4 has a four-step staircase shape, and a cell tab extending from the battery cell 11 is arranged at each step.
  • the cell tabs arranged on the intermediate bus bar 4 are, for example, in order from the top of FIG. ) and the negative electrode cell tab 114 (N1) of the battery cell 11 (S1).
  • the sensor case 51 (same as the circuit case 61 described above) is formed of an electrically insulating material that has a magnetic effect, and can shield the inside of the case from static electricity.
  • the sensor case 51 is made of a metal material with high magnetic permeability such as an iron plate or a steel plate by sheet metal or press processing, or made of resin mixed with magnetic powder by die casting or hot pressing. Then, a resin or the like is applied to the inner wall of the sensor case 51 to form an insulating layer. Furthermore, the sensor case 51 may be formed of resin, and the outer wall thereof may be coated with magnetic paint.
  • Examples of electrical insulating materials with magnetic action include high-performance soft magnetic powders (DAPM3, DAPMS7, DAPMSA10, DAPMSC, etc.) manufactured by Daido Steel Co., Ltd., and metallic glass magnetic powder (SAP-2D) manufactured by Shinto Kogyo Co., Ltd. and metal soft magnetic powder (FSC2K), metal soft magnetic materials (metal flat powder, metal injection molding material, magnetic sheet) manufactured by Mate Co., Ltd. can be applied.
  • high-performance soft magnetic powders DAPM3, DAPMS7, DAPMSA10, DAPMSC, etc.
  • SAP-2D metallic glass magnetic powder
  • FSC2K metal soft magnetic powder
  • metal soft magnetic materials metal flat powder, metal injection molding material, magnetic sheet manufactured by Mate Co., Ltd. can be applied.
  • a sensor circuit 52 and an extraction electrode 522 drawn out from the sensor circuit 52 are arranged within the sensor case 51.
  • the extraction electrode 522 is created by pasting copper foil (having an insulating layer on the sensor case 51 side) to the sensor case 51.
  • the sensor case 51 is provided with an insertion hole 511 through which one arm of the first clip 53 is inserted.
  • the first clip 53 can be separated from the sensor case 51 in the initial state. Then, with the two arms of the first clip 53 slightly opened, one arm is inserted into the insertion hole 511, and the other arm of the first clip 53 is brought into contact with the cell tab. As a result, the first clip 53 simultaneously sandwiches the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114), intermediate bus bar 4, sensor case 51, and extraction electrode 522 by the elastic force in the direction of closing the arm.
  • the sensor case 51 is fixed to the intermediate bus bar 4 by the first clip 53. Furthermore, the extraction electrode 522 of the sensor circuit 52 is electrically connected to the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114) via the first clip 53.
  • the first clip 53 can be directly joined to the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114) by, for example, ultrasonic welding. This makes it possible to prevent the sensor circuit 52 from detecting the resistance component of the bus bar.
  • the sensor circuit 52 can be set in any shape, for example, it is also preferable to connect two rigid substrates 52a and 52b with a flexible substrate 53c and arrange them in an L shape as shown in FIG. 4B. Further, the extraction electrode 522 may also be placed on a flexible substrate connected to the substrate 52a or 52b, and the substrate may be placed at a position facing the insertion hole 511.
  • jumper wires 54 extend from the side surface of the sensor case 51 and are connected to the sensor circuit 52, and a fourth clip 542 (first clip) is attached to the tip of the jumper wire 54. 53) is attached.
  • the fourth clip 542 is located at, for example, the positive electrode bus bar 2 at a position where the positive electrode cell tab 113 (P1) of the battery cell 11 (S1) is arranged, and the positive electrode bus bar 2 at a position where the positive electrode cell tab 113 (P2) of the battery cell 11 (S2) is arranged.
  • the sensor circuit 52 is electrically connected to each cell tab (positive electrode cell tab 113, negative electrode cell tab 114) via the jumper wire 54 (fourth clip 542).
  • FIG. 5 is a cross-sectional view showing the connection state of the sensor section 5.
  • FIG. 6 is a detailed view of a portion of FIG.
  • each external terminal negative external terminal N in the figure
  • connection terminal 521 arranged on the sensor case 51 contacts the second wiring 73, and the second wiring 73 contacts the third wiring 131. Note that at this time, although not shown, the second connection terminal 622 arranged on the circuit case 61 comes into contact with the first wiring 72.
  • one of the arms of the first clip 53 is inserted into the insertion hole 511 formed in the sensor case 51, and includes the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114), the intermediate bus bar 4, the sensor case 51, and the drawer.
  • An electrode 522 is sandwiched at the same time.
  • the first clip 53 may come into contact with the bus bar. If it comes into contact with the bus bar, the charging/discharging current will also flow to the first clip 53, and an excessive current will flow to the first clip 53, which is not designed to carry a large current, causing heat generation and damage to the first clip 53. The possibility remains.
  • the detection signal input to the sensor circuit 52 will include a resistance component of the bus bar, leading to a sensor error.
  • an insulating layer 531 is disposed on the inner wall of the portion of the first clip 53 exposed from the sensor case 51, excluding the contact position with the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114).
  • the insulating layer 531 can be realized by attaching an electrically insulating tape made of polyimide or the like, or by coating with a resin. Thereby, electrical insulation between the first clip 53 and the bus bar can be ensured.
  • the inner wall of the insertion hole 511 is also covered with an insulating layer. This also ensures electrical insulation between the sensor case 51 and the first clip 53.
  • the first clip 53 may be joined to the extraction electrode 522 in advance by soldering or the like.
  • an ultrasonic vibrating horn (not shown) to the contact position (arrow in FIG. 6) with the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114) of the first clip 53 from the first clip 53 side.
  • the first clip 53, the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114), and intermediate bus bar 4 are melted together. Thereby, the first clip 53 can be connected to the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114), and the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114) can be connected to the intermediate bus bar 4.
  • the state of the battery cell 11 can be increased without detecting the resistance component of the bus bar. Can be detected accurately.
  • the above connection form can be applied to the sub-circuit section 6 as well.
  • FIG. 7 is a circuit diagram of the sensor section 5, the battery cell 11, the positive bus bar 2, the negative bus bar 3, and the intermediate bus bar 4. As shown in FIG. 7, battery cell 11 (S1) and battery cell 11 (S2) are connected in parallel between positive electrode bus bar 2 and intermediate bus bar 4.
  • the positive electrode side (positive electrode cell tab 113) of the battery cell 11 (S1) has a contact (P1) closest to the positive electrode external terminal P on the positive electrode bus bar 2
  • the negative electrode side (negative electrode cell tab 114) has a contact point (P1) closest to the positive electrode external terminal P on the intermediate bus bar 4. It has the contact point (N1) closest to M.
  • the positive electrode side (positive electrode cell tab 113) of the battery cell 11 (S2) has the contact point (P2) furthest from the positive electrode external terminal P on the positive electrode bus bar 2
  • the negative electrode side (negative electrode cell tab 114) has the contact point (P2) furthest from the positive electrode external terminal P on the intermediate bus bar 4. It has the second closest contact point (N2) to M.
  • the battery cell 11 (S3) and the battery cell 11 (S3) are connected in parallel between the intermediate bus bar 4 and the negative bus bar 3.
  • the positive electrode side (positive electrode cell tab 113) of the battery cell 11 (S3) has a contact point (P3) third closest to the intermediate external terminal M in the intermediate bus bar 4, and the negative electrode side (negative electrode cell tab 114) has a negative electrode in the negative electrode bus bar 3. It has a contact point (N3) closest to the external terminal N.
  • the positive electrode side (positive electrode cell tab 113) of the battery cell 11 (S4) has the contact point (P4) furthest from the intermediate external terminal M on the intermediate bus bar 4, and the negative electrode side (negative electrode cell tab 114) has the negative electrode external terminal on the negative electrode bus bar 3. It has the contact furthest from N (N4).
  • the sensor circuit 52 is connected to a contact (N1), a contact (N2), a contact (P3), and a contact (P4) by a first clip 53 attached to the sensor case 51, respectively.
  • the sensor circuit 52 is connected to the contact (P1), the contact (P2), the contact (N3), and the contact (N4) by jumper wires 54 (fourth clips 542), respectively.
  • the sensor circuit 52 detects the state of the battery cell 11 (S1) from the contact (P1) and the contact (N1), and detects the state of the battery cell 11 (S2) from the contact (P2) and the contact (N2). , the state of the battery cell 11 (S3) can be detected from the contact (P3) and the contact (N3), and the state of the battery cell 11 (S4) can be detected from the contact (P4) and the contact (N4).
  • FIG. 8 is a perspective view of a first modification of the battery module of this embodiment.
  • FIG. 9A is a plan view of the sensor power supply section 6a of the first modification.
  • FIG. 9B is a cross-sectional view before the sensor power supply unit 6a of the first modification is sandwiched between the positive bus bar 2 and the negative bus bar 3.
  • FIG. 9C is a sectional view after the sensor power supply unit 6a of the first modification is sandwiched between the positive bus bar 2 and the negative bus bar 3.
  • FIG. 9D is a cross-sectional view of the sensor power supply section 6a of the first modification example when it is fixed with clips (second clip 63, third clip 64).
  • FIG. 10 is a circuit diagram of the sensor section 5, battery cell 11, positive bus bar 2, negative bus bar 3, intermediate bus bar 4, and sensor power supply section 6a of the first modification. Note that in FIG. 8, illustration of the sensor section 5 and the terminal cover 7 is omitted.
  • the sensor power supply unit 6a can be used to eliminate this. .
  • the sensor power supply unit 6a includes an insulating holder 61a sandwiched between the positive busbar 2 and the negative busbar 3, a sensor power supply circuit 62a (FIG. 9A) attached to the holder 61a, and an electrical connection to the positive side of the sensor power supply circuit 62a.
  • a first extraction electrode 623 (FIG. 9A) electrically connected to the negative electrode side of the sensor power supply circuit 62a
  • a second extraction electrode 624 (FIG. 9A) electrically connected to the negative electrode side of the sensor power supply circuit 62a
  • an output side connected to the sensor power supply circuit 62a It includes a second connection terminal 622 connected to, a second clip 63, and a third clip 64.
  • the side of the holder 61a that contacts the negative electrode bus bar 3 is L-shaped in plan view, but as shown in FIG. When viewed from above, it has a U-shaped shape.
  • the sensor power supply circuit 62a is a portion extending in the thickness direction of the holder 61a, for example, and is arranged on the back surface of the opposing surface of the terminal cover 7 (FIG. 3). It is efficient that the sensor power supply circuit 62a is connected to a positive terminal and a negative terminal and inputs two series voltages (2.5-4.2V ⁇ 2). Therefore, by mounting the sensor power supply circuit 62a at a position where it can be connected to the positive bus bar 2 and the negative bus bar 3 at the shortest distance, the sensor power supply circuit 62a can be connected to the second clip 63 and the third clip in the form of leaf springs, which are connection means (substitute for wiring). The length of 64 can be shortened, which is advantageous in terms of rigidity during fitting and material cost savings.
  • the sensor is placed in this upper space (second divided space 143 (FIGS. 2 and 9B)). Mounting the power supply circuit 62a is preferable because the lengths of the second clip 63 and the third clip 64 can be shortened.
  • connection point between the second clip 63 and the third clip 64 may be a busbar or a cell tab.
  • the holder 61a may be fixed with an elastic sheet, double-sided tape, modified silicone adhesive, etc., for example. This is an effective fixing method to ensure vibration resistance when mounted on a vehicle.
  • connection mode between the second connection terminal 622 and the first connection terminal 521 is the same as that shown in FIG. 3, but as shown in FIG.
  • the connection terminal 622 may be omitted and the power output terminal (OUT) of the sensor power supply circuit 62a and the power input terminal (IN) of the sensor circuit 52 may be directly connected using the jumper wire 65.
  • the first extraction electrode 623 is arranged on the back surface of the surface of the holder 61a that is in contact with the positive electrode bus bar 2.
  • the second extraction electrode 624 is disposed on the back surface of the contact surface of the negative electrode bus bar 3 of the holder 61a, in a portion where the width is narrow in the horizontal direction in FIG. 9A.
  • An insertion hole 66 is arranged on the first extraction electrode 623 side of the portion extending in the thickness direction of the holder 61a, and the first extraction electrode 623 is arranged at a position facing the insertion hole 66.
  • the procedure for attaching the sensor power supply unit 6a is to sandwich the holder 61a between the positive bus bar 2 and the negative bus bar 3, as shown in FIGS. 9B and 9C. Then, as shown in FIGS. 9C and 9D, one arm of the second clip 63 is inserted into the insertion hole 66 to contact the first extraction electrode 623, and the other arm of the second clip 63 is connected to the positive bus bar. 2, the positive electrode bus bar 2, the holder 61a (positive electrode bus bar 2 side), and the first extraction electrode 623 are simultaneously held by the second clip 63. Similarly, as shown in FIGS.
  • one arm of the third clip 64 is brought into contact with the second extraction electrode 624 and the other arm of the third clip 64 is brought into contact with the negative bus bar 3.
  • the negative bus bar 3, the holder 61a (on the negative bus bar 3 side), and the second extraction electrode 624 are simultaneously held between the third clip 64.
  • the holder 61a (positive bus bar 2 side) is fixed to the positive bus bar 2, and the first extraction electrode 623 is electrically connected to the positive bus bar 2 (contact (P2)) via the second clip 63.
  • the holder 61a (negative bus bar 3 side) is fixed to the negative bus bar 3, and the second extraction electrode 624 is electrically connected to the negative bus bar 3 (contact (N4)) via the third clip 64. ( Figure 10).
  • the third clip 64 It may interfere with the inner wall of the accommodation space 14, making it difficult to pinch the container.
  • a tab (not shown) extending from the second extraction electrode 624 is arranged on the negative electrode bus bar 3, and the tab (not shown) and the negative electrode bus bar 3 (cell tab) are sandwiched between the third clip 64. Just do it.
  • the space between the tab (not shown) and the inner wall of the accommodation space 14 becomes wider by the amount that the thickness of the holder 61a is reduced, so that the third clip 64 can easily hold the tab (not shown).
  • FIG. 11 is a diagram showing an example of the jumper wire 54 extending from the sensor section 5.
  • FIG. 12 is a diagram showing an example of a clip (first clip 53) attached to the sensor case 51.
  • the jumper wire 54 includes a flexibly deformable covered wiring 541 and a fourth clip 542 placed at the tip of the covered wiring 541.
  • the fourth clip 542 is connected to a conductive wire (copper wire) within the covered wiring 541. Further, the fourth clip 542 is set so that the width between the two arms is slightly smaller than the sum of the thickness of the bus bar and the thickness of the cell tab, and the width between the two arms is set to be slightly smaller than the sum of the thickness of the bus bar and the cell tab. It can be inserted.
  • the first clip 53 has a structure in which arms 533 and 534 extend from both ends of the base 532 in the width direction.
  • the pair of arms 533, 534 are set in such a shape that the distance between them becomes narrower as they move away from the base 532, and the distance becomes wider from the middle.
  • the part where the distance from the arm 534 is the narrowest is the part that applies the most pressing force to the cell tabs (positive electrode cell tab 113, negative electrode cell tab 114) (FIG. 6).
  • a flat portion 535 is formed at the center of the arm 534 that contacts the extraction electrode 522 (FIGS. 5 and 6) so as to stand approximately perpendicular to the base portion 532. Therefore, when the first clip 53 is attached to the sensor case 51, the flat portion 535 comes into surface contact with the extraction electrode 522, so that the contact resistance between the extraction electrode 522 (FIGS. 5 and 6) and the first clip 53 can be reduced. .
  • FIG. 12 shows a second modified example of the battery module of this embodiment, and is a circuit diagram of the sensor section 5, the battery cell 11, the positive bus bar 2, the negative bus bar 3, and the intermediate bus bar 4.
  • the second modification has a configuration for easily measuring the apparent internal resistance between the positive external terminal P and the intermediate external terminal M (or between the intermediate external terminal M and the negative external terminal N).
  • the resistance between the positive external terminal P and the contact (P1) in the positive bus bar 2 is Rb
  • the resistance from the contact (P1) to the contact (P2) in the positive bus bar 2 is Rb12
  • the intermediate external terminal in the intermediate bus bar 4 is Rb is the resistance between M and the contact (N1)
  • Rb12 is the resistance from the contact (N1) to the contact (N2) in the intermediate bus bar 4
  • Rc1 is the internal resistance of the battery cell 11 (S1)
  • Rc1 is the internal resistance of the battery cell 11 (S2).
  • the apparent internal resistance Rpm between the positive external terminal P and the intermediate external terminal M is expressed by the following equation (1).
  • the busbars positive busbar 2, negative busbar 3, intermediate busbar 4
  • the sensor unit 5 includes a sensor circuit 52 that is connected to the The sensor unit 5 accommodates the sensor circuit 52 and is formed following the shape of the busbars (positive busbar 2, negative busbar 3, intermediate busbar 4).
  • a fitting part (a fitting part () which is arranged in a position facing the busbars (positive electrode busbar 2, negative electrode busbar 3, intermediate busbar 4) and can be fitted to the busbars (positive electrode busbar 2, negative electrode busbar 3, intermediate busbar 4) is provided.
  • the sensor case 51 By fitting the fitting part (first clip 53) to the busbar (positive electrode busbar 2, negative electrode busbar 3, intermediate busbar 4), the sensor case 51
  • the sensor circuit 52 is electrically connected to the busbars (positive busbar 2, negative busbar 3, intermediate busbar 4) via the fitting part (first clip 53). connected to.
  • the sensor case 51 and the fitting part (first clip 53) serving as a terminal electrically connected to the sensor circuit 52 are integrated, and the fitting part (first clip 53) is connected to the bus bar (
  • the battery module can be constructed without increasing the external size of the battery module and while simultaneously reducing wiring materials and work man-hours.
  • the sensor section 5 can be mounted without increasing the thickness of the battery module.
  • the wiring length can be minimized or omitted, it becomes easier to take measures to prevent short circuits during assembly.
  • the above-mentioned contents can have similar effects in secondary use or dismantling work in the recycling process. As a result of the above, a total cost reduction effect can be obtained over the entire product usage from battery manufacturing to disposal.
  • the battery cell 11 has a structure in which a predetermined surface pressure is applied. This is due to the structure that reduces interelectrode resistance and limits volumetric expansion due to deterioration. Therefore, the space (gap) in the stacking direction of the battery cells 11 is kept to the minimum necessary.
  • the sensor circuit 52 to be mounted on the exterior surface of the battery cell 11 is required to be made small and thin, which limits the degree of freedom in selecting parts and manufacturing methods and reduces manufacturing costs. Becomes expensive.
  • the mounting area for the busbars (positive busbar 2, negative busbar 3, intermediate busbar 4) will have a space equal to at least the thickness of the laminated cell 1, and since it is sufficient to accommodate the busbars in that space, there is greater freedom in design and selection of components used. It is possible to reduce costs by increasing the
  • EIS Electrochemical Impedance Spectroscopy
  • internal resistance measurement internal resistance measurement
  • the bus bars (positive bus bar 2, negative bus bar 3, intermediate bus bar 4) are also designed to connect the battery cells 11 over the shortest distance to reduce power loss. Therefore, in this embodiment, a connector (first clip 53) having a contact point near the connection point between the busbars (positive busbar 2, negative busbar 3, intermediate busbar 4) and the cell tab is attached to the sensor case 51 (sensor circuit 52). By installing them in an integrated manner, it is possible to achieve precision measurement similar to the case where the signal connection of the sensor circuit 52 is individually connected to the cell tab. As a result, while maintaining measurement accuracy, fixing/connecting the sensor circuit 52 can be completed in one step, and also eliminates the need for adhesive/adhesive for fixing the wiring of the sensor circuit 52, reducing costs and preserving the environment. , it is also effective in saving resources.
  • the sensor circuit 52 is not energized until the sensor case 51 is attached to the busbars (positive busbar 2, negative busbar 3, intermediate busbar 4). Further, by removing the sensor case 51, the power supply to the sensor circuit 52 is cut off. Therefore, a short circuit between the positive and negative electrodes of the battery cell 11 via the sensor circuit 52 (external short circuit of the battery cell 11) can be prevented when the sensor case 51 is attached or detached.
  • the sensor circuit 52 can function continuously from the time it is newly manufactured until the cell reaches the end of its life, it is possible to control charging and discharging (suppression of deterioration) based on the history of the battery cell 11, and as a result, the capacity of the battery cell 11 can be improved. It becomes possible to reduce the overall cost by using up the amount.
  • the sensor circuit 52 includes a plurality of divided sensor circuits (sensor circuits 52), and the sensor case 51 includes a plurality of divided sensor cases (sensor cases 51) each accommodating the divided sensor circuits 52.
  • the divided sensor case (sensor case 51) is arranged in the housing space 14.
  • the sensor section 5 (sensor circuit 52) can be divided into a plurality of sections, and the sensor section 5 can be divided into a plurality of sections.
  • the same number of divided sensor cases (sensor cases 51) as 5 are prepared, and divided sensor circuits (sensor circuits 52) are accommodated in each divided sensor case (sensor case 51) and arranged in the accommodation space 14, respectively.
  • a plurality of divided sensor cases (sensor cases 51) are small in size, they can be arranged in the housing space 14, so they can be arranged so as not to interfere with the bus bar, and the degree of freedom in designing the battery module can be increased.
  • the busbars include a positive busbar 2, a negative busbar 3, and an intermediate busbar 4, and the battery cell 11 includes the positive busbar 2 and the intermediate busbar 4.
  • a first battery cell (battery cell 11 (S1), battery cell 11 (S2)) that electrically connects between the intermediate bus bar 4 and the negative bus bar 3; battery cells (battery cell 11 (S3), battery cell 11 (S4)), the sensor case 51 is formed following the shape of the intermediate bus bar 4, and the fitting part (first clip 53) is , the connection position of the intermediate bus bar 4 with the first battery cell (battery cell 11 (S1), battery cell 11 (S2)) and the second connection position of the intermediate bus bar 4 when the sensor case 51 is housed in the housing space 14.
  • a plurality of them are arranged so as to face each other at connection positions with battery cells (battery cell 11 (S1), battery cell 11 (S2)).
  • the battery module can be easily constructed by arranging the sensor case 51 in the space partitioned by the inner wall of the intermediate bus bar 4 and the housing space 14, where the battery module has a large structural surplus space.
  • the intermediate bus bar 4 includes first battery cells (battery cell 11 (S1), battery cell 11 (S2)) and second battery cells (battery cell 11 (S3), battery cell 11 (S4)). Since the contact points (N1, N2, P3, P4) are grouped together, the length of the leaf spring-shaped contact electrode, which is the connection means (instead of wiring) between the sensor circuit 52 and the cell tab, can be shortened (when mated) advantageous in terms of rigidity and material cost savings).
  • vibration-resistant design is also advantageous (the strength necessary for fixing the sensor circuit 52 and the degree of freedom in designing the support points can be obtained).
  • the lower surface of the sensor case 51 may be in contact with the thin plate portion 12 or the stopper 141, and may be fixed using, for example, an elastic sheet, double-sided tape, modified silicone adhesive, or the like. This is an effective fixing method to ensure vibration resistance when mounted on a vehicle.
  • the fitting portion (first clip 53) has a clip shape that simultaneously sandwiches the sensor case 51 and the busbars (positive busbar 2, negative busbar 3, and intermediate busbar 4).
  • this embodiment can be realized easily and at low cost.
  • resistance components unrelated to the internal state (internal resistance) of the battery cell 11 such as busbars (positive busbar 2, negative busbar 3, intermediate busbar 4), are excluded from sensing targets. This makes it possible to precisely detect (monitor) the internal state of the battery cell 11.
  • the sensor case 51 is made of an electrically insulating material that has magnetic properties.
  • the inside of the sensor case 51 is electrostatically shielded from the outside, so that electromagnetic induction noise to the sensor circuit 52 can be reduced even if the sensor circuit 52 is placed near the bus bar.
  • the positive bus bar 2 includes a positive external terminal P that connects to the outside
  • the negative bus bar 3 includes a negative external terminal N that connects to the outside.
  • a plurality of battery cells 11 (S2)) are connected in parallel between the positive bus bar 2 and the intermediate bus bar 4, and a plurality of second battery cells (battery cell 11 (S3), battery cell 11 (S4)) are connected to the intermediate bus bar 2.
  • the fitting portion (first clip 53) is connected to the first battery cell ( The connection between the first battery cell (battery cell 11 (S1)) electrically connected to the position closest to the positive external terminal P among the battery cells 11 (S1) and battery cells 11 (S2)) and the intermediate bus bar 4
  • the connection position (contact (N1)) is connected to the position electrically closest to the negative external terminal N among the second battery cells (battery cell 11 (S3), battery cell 11 (S4)) in the sensor case 51.
  • the second battery cell (battery cell 11 (S3)) and the connection position (contact (P3)) with the intermediate bus bar 4 are arranged to face each other.
  • the battery cell 11 includes a power storage unit 111 and tab cells (positive electrode cell tab 113, negative electrode cell tab 114) that extend from the power storage unit 111 and are connected to bus bars (positive electrode bus bar 2, negative electrode bus bar 3, intermediate bus bar 4). ), the fitting part (first clip 53) is configured to sandwich the tab cell (positive electrode cell tab 113, negative electrode cell tab 114) together with the busbar (positive electrode busbar 2, negative electrode busbar 3, intermediate busbar 4). bus bar 2, negative electrode bus bar 3, intermediate bus bar 4).
  • the fitting part (first clip 53) does not come into contact with the busbars (positive busbar 2, negative busbar 3, intermediate busbar 4), so the sensor circuit 52 does not sense the resistance component of the busbar, and the battery The state of the cell 11 can be detected with high precision.
  • the housing space 14 further includes a power supply section (sensor power supply section 6a) including a power supply circuit (sensor power supply circuit 62a) that supplies power to the storage space 14, and a busbar (positive busbar 2, negative busbar 3, intermediate busbar 4).
  • a plurality of divided spaces are formed, and the sensor part 5 is accommodated in the first divided space 142 formed by the intermediate bus bar 4 among the divided spaces, and is placed on the surface facing the cover (terminal cover 7) of the sensor case 51.
  • a power supply input terminal (first connection terminal 521) electrically connected to the sensor circuit 52 is arranged, and the power supply section (sensor power supply section 6a) has a power supply circuit (sensor power supply circuit 62a) attached thereto and a divided space.
  • the holder 61a accommodated in the second divided space 143 formed between the positive bus bar 2 and the negative bus bar 3 is electrically connected to the input side (plus side) of the power supply circuit (sensor power supply circuit 62a).
  • a second fitting portion (a second clip) is disposed at a position facing the positive electrode bus bar 2 of the holder 61a and is capable of fitting into the positive electrode bus bar 2.
  • a third fitting part (third clip 64) which is arranged at a position where the negative electrode bus bar 3 can be fitted and which is electrically connected to the output side of the power supply circuit (sensor power supply circuit 62a) and a holder 61a.
  • a power output terminal (second connection terminal 622) disposed at a position facing the cover (terminal cover 7), and a second fitting portion (second clip 63) is fitted to the positive bus bar 2.
  • the holder 61a is fixed to the positive bus bar 2, and the power circuit (sensor power circuit 62a) is electrically connected to the positive bus bar 2 via the second fitting part (second clip 63).
  • the third fitting part (third clip 64) By fitting the third fitting part (third clip 64) to the negative bus bar 3, the holder 61a is fixed to the negative bus bar 3, and the power supply circuit (sensor power supply circuit 62a) is connected to the third fitting part (the third clip 64).
  • the wiring (fourth wiring 74) connects to the power output terminal ( The second connecting terminal 622) and the power input terminal (first connecting terminal 521) are contacted simultaneously, and the power output terminal (second connecting terminal 622) is connected to the power input terminal via the wiring (fourth wiring 74). (first connection terminal 521).
  • a cover (terminal cover 7) is fitted into the laminated cell 1 so as to cover the housing space 14, and a first wiring 72 and a second wiring 73 are arranged on the inner wall of the cover (terminal cover 7).
  • a third wiring 131 arranged on the outer wall that contacts the cover (terminal cover 7) of the housing space 14, and a power supply unit (sensor A plurality of divided spaces are formed in the housing space 14 by busbars (positive busbar 2, negative busbar 3, intermediate busbar 4), and the sensor unit 5 is configured to connect the intermediate busbar 4 of the divided spaces.
  • a power input terminal (first connection terminal 521) electrically connected to the sensor circuit 52 is housed in the first divided space 142 formed by ) is arranged, and the power supply unit (sensor power supply unit 6a) is attached to the power supply circuit (sensor power supply circuit 62a) and is located in a second divided space 143 formed between the positive bus bar 2 and the negative bus bar 3 in the divided space.
  • the holder 61a accommodated in A second fitting part (second clip 63) that is arranged in a position facing the bus bar 2 and can be fitted to the positive bus bar 2 and an input side (minus side) of the power supply circuit (sensor power supply circuit 62a) are connected to each other.
  • a third fitting portion (a third fitting portion) which is disposed at a position facing the negative bus bar 3 of the holder 61a when the holder 61a is accommodated in the second divided space 143, and is capable of fitting into the negative bus bar 3.
  • a third clip 64) and a power output terminal (second By fitting the second fitting part (second clip 63) to the positive bus bar 2, the holder 61a is fixed to the positive bus bar 2, and the power supply circuit (sensor power supply The circuit 62a) is electrically connected to the positive bus bar 2 via the second fitting part (second clip 63), and the third fitting part (third clip 64) is fitted to the negative bus bar 3.
  • the holder 61a is fixed to the negative bus bar 3, and the power supply circuit (sensor power supply circuit 62a) is electrically connected to the negative bus bar 3 via the third fitting part (third clip 64).
  • the cover (terminal cover 7) By fitting the cover (terminal cover 7) into the laminated cell 1, the first wiring 72 contacts the power output terminal (second connection terminal 622) and the third wiring 131 at the same time, and the second wiring 73
  • the power output terminal (second connection terminal 622) connects to the first wiring 72, the second wiring 73, and the third wiring 131. It is electrically connected to the power input terminal (first connection terminal 521) via the wiring 131 of No. 3.
  • the power supply circuit (sensor power supply circuit 62a) is not energized until the power supply unit (sensor power supply unit 6a) is attached to the positive bus bar 2 and the negative bus bar 3. Further, by removing the power supply section (sensor power supply section 6a) from the positive bus bar 2 or the negative bus bar 3, the power supply to the power supply circuit (sensor power supply circuit 62a) is interrupted. Therefore, a short circuit between the positive and negative electrodes of the battery cell 11 (external short circuit of the battery cell 11) via the power supply circuit (sensor power supply circuit 62a) can be prevented when the power supply circuit (sensor power supply circuit 62a) is attached or detached.
  • the sensor circuit 52 is not energized until the cover (terminal cover 7) is attached to the laminated cell 1. Further, by removing the cover (terminal cover 7) from the laminated cell 1, power to the sensor circuit 52 is cut off. Therefore, a short circuit between the positive and negative electrodes of the battery cell 11 (an external short circuit of the battery cell 11 ) can be prevented when the cover (terminal cover 7) is attached or detached.
  • the laminated cell 1 has a pair of fastening parts 112 that fasten the plurality of battery cells 11 together, and the fastening parts 112 are arranged at both ends of at least one side of the laminated cell 1, and the housing space is 14 is arranged between the pair of fastening parts 112.
  • the accommodation space 14 is arranged in the existing space inside the outer shape of the laminated cell 1, so the sensor section 5 and the like arranged in the accommodation space 14 can be protected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

中間バスバーが積層セルの側面に形成された収容空間に配置された電池モジュールにおいて、センサ部は、収容空間において中間バスバーに接するように収容されるセンサケースと、センサケース内のセンサ回路に電気的に接続されるとともに、センサケースを収容空間に収容したときにセンサケースにおいて中間バスバーと対向する位置に配置され、中間バスバーに嵌合可能な第1のクリップ、を含み、第1のクリップを中間バスバーに嵌合することで、センサケースが中間バスバーに固定されるとともにセンサ回路が第1のクリップを介して中間バスバーに電気的に接続される。

Description

電池モジュール
 本発明は、電池モジュールに関する。
 JP2021−18133Aは、複数の電池セルが積層された積層セルに電池セルの状態を監視するセンサ部が取り付けられた構成を開示している。
 しかし、JP2021−18133Aでは、センサ部と積層セルとを取り付ける際にセンサ部の配線を積層セルの電極に接続する配線接続作業が必要となり、部品点数及び組み立て工程が多くなる。また、リユース/リサイクル時の配線除去作業が煩雑となる。そして、配線接続作業及び配線除去作業では、積層セルの短絡防止策が必要となる。更に、センサ部が車載に最適化されて設計されている場合、電池セルの二次利用に向けて積層セルを分離して再利用する場合に新たな仕様のセンサ部を取り付ける必要があるが、その際に上記の問題が再び発生する。
 本発明は、煩雑な配線接続作業及び配線除去作業を回避し、更に短絡防止対策を回避してセンサ部を積層セルに取り付け可能な電池モジュールを提供することを目的とする。
 本発明による電池モジュールは、複数の電池セルが積層された積層セルと、電池セルに接続されたバスバーと、バスバーに電気的に接続され電池セルの状態を計測するセンサ回路を包含するセンサ部と、を備える電池モジュールである。この電池モジュールにおいて、バスバーは、積層セルの一つの側面に形成された収容空間に配置され、センサ部は、センサ回路を収容するとともにバスバーの形状に倣って形成され、収容空間においてバスバーに接するように収容されるセンサケースと、センサ回路に電気的に接続されるとともに、センサケースを収容空間に収容したときにセンサケースにおいてバスバーと対向する位置に配置され、バスバーに嵌合可能な嵌合部と、を含む。そして、嵌合部をバスバーに嵌合することで、センサケースがバスバーに固定されるとともにセンサ回路が嵌合部を介してバスバーに電気的に接続される。
図1は、本実施形態の電池モジュールを構成する積層セルの斜視図である。 図2は、積層セルに形成された収容空間において、センサ部等が取り付け可能な領域を示す図である。 図3は、本実施形態の電池モジュールの分解斜視図である。 図4Aは、本実施形態の電池モジュールを構成するセンサ部の斜視図である。 図4Bは、本実施形態の電池モジュールを構成するセンサ部の断面図である。 図5は、センサ部の接続状態を示す断面図である。 図6は、図5の部分詳細図である。 図7は、センサ部、電池セル、正極バスバー、負極バスバー、及び中間バスバーの回路図である。 図8は、本実施形態の電池モジュールの第1変形例の斜視図である。 図9Aは、第1変形例のセンサ電源部の平面図である 図9Bは、第1変形例のセンサ電源部を正極バスバーと負極バスバーの間に挟み込む前の断面図である。 図9Cは、第1変形例のセンサ電源部を正極バスバーと負極バスバーの間に挟み込んだあとの断面図である。 図9Dは、第1変形例のセンサ電源部をクリップで固定したときの断面図である。 図10は、第1変形例のセンサ部、電池セル、正極バスバー、負極バスバー、中間バスバー、及びセンサ電源部の回路図である。 図11は、センサ部から延出するジャンパー線の例を示す図である。 図12は、センサケースに取り付けるクリップの例を示す図である。 図13は、本実施形態の電池モジュールの第2変形例であって、センサ部、電池セル、正極バスバー、負極バスバー、及び中間バスバーの回路図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
[積層セル1の構成]
 図1は、本実施形態の電池モジュールを構成する積層セル1の斜視図である。本地形態において、積層セル1は、複数(例えば4個)の電池セル11(S1、S2,S3、S4)が積層されたものである。電池セル11は、例えばリチウムイオン電池等で構成された蓄電部111と、蓄電部111の2つの長辺(又は短辺)の両端部に配置された締結部112とを有する。そして、電池セル11を積層して締結部112を例えばカシメ締めすることで積層セル1が形成される。
 積層セル1において厚み方向の両端となる電池セル11であって2つの締結部112により挟まれた位置には薄板部12が配置されている。そして、締結部112及び薄板部12により囲まれた領域が、後述の正極バスバー2、負極バスバー3、中間バスバー4、センサ部5(図3)等が収容される収容空間14となる。
 電池セル11は、蓄電部111の正極から延出して収容空間14に配置される正極セルタブ113と、蓄電部111の負極から延出して収容空間14に配置される負極セルタブ114とを有する。
 正極バスバー2は、外部と接続する正極外部端子Pを有し、正極外部端子Pから電気的に近い順に、図1に示す一番下の電池セル11(S1)の正極セルタブ113(P1)、下から二番目の電池セル11(S2)の正極セルタブ113(P2)に接続されている(図7)。また正極バスバー2は、正極セルタブ113(P1)及び正極セルタブ113(P2)に支持されている。
 負極バスバー3は、外部と接続する負極外部端子Nを有し、負極外部端子Nから電気的に近い順に、図1に示す上から二番目の電池セル11(S3)の負極セルタブ114(N3)、一番上の電池セル11(S4)の負極セルタブ114(N4)(図1では不図示、図3参照)に接続されている(図7)。また負極バスバー3は、負極セルタブ114(N3)及び負極セルタブ114(N4)に支持されている。
 中間バスバー4は、外部と接続する中間外部端子Mを有し、中間外部端子Mに電気的に近い順に、電池セル11(S1)の負極セルタブ114(N1)、電池セル11(S2)の負極セルタブ114(N2)、電池セル11(S3)の正極セルタブ113(P3)、電池セル11(S4)の正極セルタブ113(P4)に接続されている(図7)。また、中間バスバー4は、負極セルタブ114(N1)、負極セルタブ114(N2)、正極セルタブ113(P3)、正極セルタブ113(P4)に支持されている。
 上記接続形態により、電池セル11(S1)の正極と電池セル11(S2)の正極が正極バスバー2により並列に接続され、電池セル11(S1)の正極及び電池セル11(S2)の正極が積層セル1の正極となる(図7)。また、電池セル11(S3)の負極と電池セル11(S4)の負極が負極バスバー3により並列に接続され、電池セル11(S3)の負極及び電池セル11(S4)の負極が積層セル1の負極となる(図7)。更に、電池セル11(S1)の負極と電池セル11(S2)の負極と電池セル11(S3)の正極と電池セル11(S4)の正極が中間バスバー4に並列に接続される(図7)。
 また、正極バスバー2、負極バスバー3、中間バスバー4は、各セルタブに接続しつつ他のバスバーと接触しないように収容空間14内で階段状に折り曲げられている。
 また、収容空間14内には、バスバーに近接してストッパ141が配置されており、外部からの振動によりバスバーが積層セル1に対して振動する場合にバスバーを優先的にストッパ141に当接させバスバーが他のバスバーに接触することを防止する。
 図2は、積層セル1に形成された収容空間14において、センサ部5等が取り付け可能な領域を示す図である。図2に示すように、収容空間14には、正極バスバー2、負極バスバー3、中間バスバー4により仕切られた複数の分割空間(第1の分割空間142、第2の分割空間143、第3の分割空間144)(太線で囲まれた部分)が形成されている。本実施形態では後述のセンサ部5が第1の分割空間142に配置されるが、第2の分割空間143、第3の分割空間144にも配置可能である。
 例えば収容空間14がバスバー(正極バスバー2、負極バスバー3、中間バスバー4)により細かく分割されている場合、センサ部5(後述のセンサ回路52)を複数に分割し、センサ部5と同数の分割センサケース(後述のセンサケース51)を用意し、各分割センサケース(センサケース51)に分割センサ回路(後述のセンサ回路52)を収容して収容空間14にそれぞれ配置する。これにより、複数であっても寸法の小さい分割センサケース(センサケース51)を収容空間14に配置するので、バスバーに干渉しないように配置でき、電池モジュールの設計の自由度を高めることができる。
[電池モジュールの構成]
 図3は、本実施形態の電池モジュールの分解斜視図である。本実施形態の電池モジュールは、前記の積層セル1、センサ部5、サブ回路部6、端子カバー7(カバー)を備える。本実施形態の電池モジュールは、センサ部5及びサブ回路部6が収容空間14に配置され、端子カバー7が収容空間14(センサ部5、サブ回路部6)を覆うように積層セル1の側面に嵌め込まれたものである。
 センサ部5は、収容空間14において、例えば薄板部12と中間バスバー4との間に形成された第1の分割空間142(図2)に配置され、第1の分割空間142の形状、すなわち中間バスバー4の階段形状に倣った外形のセンサケース51を有する。図3においてセンサケース51の中間バスバー4に対向する面の段数はセンサ回路52のセルタブとの接続個数に応じて任意に設定できる。センサケース51は少なくとも中間バスバー4により仕切られた階段形状の第1の分割空間に嵌め込み可能な形状であればよい。センサケース51内には、例えば電池セル11の状態(出力電圧、内部抵抗)を検知するセンサ回路52(図4B)が配置されている。
 センサケース51の中間バスバー4の各段(セルタブが配置されている)に対向する位置には導電性の第1のクリップ53が配置されている。第1のクリップ53は、板バネ状コンタクトであり、例えばリン青銅を材料とし、適度な弾性力と電気導通抵抗を有する。
 第1のクリップ53は、センサ回路52(図4B)に電気的に接続されている。また、中間バスバー4(及びセルタブ)を第1のクリップ53とセンサケース51との間に挟み、第1のクリップ53の押圧力を中間バスバー4に印加することでセンサケース51が中間バスバー4(セルタブ)に対して固定され、センサ回路52と中間バスバー4(セルタブ)が第1のクリップ53を介して電気的に互いに接続される。
 なお、センサケース51の外形は薄板部12と中間バスバー4との間に形成された第1の分割空間142よりもわずかに大きな寸法で設計し、センサケース51を第1の分割空間142に押し込む態様で第1の分割空間142に配置してもよい。これにより、第1のクリップ53の押圧力とセンサケース51の中間バスバー4に対する押圧力よりセンサケース51を第1の分割空間142に固定するので、その分、第1のクリップ53の負担を軽減できる(後述のサブ回路部6も同様)。
 センサケース51の端子カバー7に対向する面には第1の接続端子521が配置されている。第1の接続端子521は、例えばセンサ回路52に電力を供給する電源入力端子、サブ回路部6と双方向で通信を行うための端子等として用いられる。第1の接続端子521は、センサケース51から端子カバー7側に突出するように配置され、端子カバー7を積層セル1に嵌め込んだ時に端子カバー7の内壁に配置された第2の配線73に当接する。なお、第1の接続端子521は、例えば第1のクリップ53と同様の構造を有し、端子カバー7から押圧力を受けることにより変形し、変形により発生した復元力を端子カバー7(第1の配線72)に印加できる構成が好ましい。これにより、第1の接続端子521と第1の配線72との電気的接続を確保できる。
 サブ回路部6は、収容空間14において、例えば正極バスバー2と負極バスバー3の間に形成された第2の分割空間143(図2)に配置され、第2の分割空間143の形状に倣った外形の回路ケース61(後述のホルダ61aに相当)を有する。
 回路ケース61内には配置されたサブ回路62(図7)は、センサ部5に電力を供給するセンサ電源回路62a(図9A、図9B、図9C、図9D)、センサ回路52で得た情報等について外部と双方向で通信するBLE(Bluetooth(登録商標) Low Energy)方式のセンサ通信回路等、センサ回路52を補助するためのものである。
 回路ケース61の正極バスバー2に対向する位置には第2のクリップ63が配置され、回路ケース61の負極バスバー3に対向する位置には第3のクリップ64が配置されている。第2のクリップ63及び第3のクリップ64は、第1のクリップ53と同様の構造を有する。
 第2のクリップ63は、サブ回路62(図7、図9A、図9B、図9C、図9D)に電気的に接続されている。正極バスバー2を第2のクリップ63と回路ケース61との間に挟み、第2のクリップ63の押圧力を回路ケース61及び正極バスバー2に印加することで回路ケース61が正極バスバー2に固定され、サブ回路62が第2のクリップ63を介して正極バスバー2に電気的に接続される。
 第3のクリップ64は、第2のクリップ63と同様に、サブ回路62(図7、図9A,図9B、図9C。図9D)に電気的に接続されている。負極バスバー3を第3のクリップ64と回路ケース61との間に挟み、第3のクリップ64の押圧力を回路ケース61及び負極バスバー3に印加することで回路ケース61が負極バスバー3に固定され、サブ回路62が第3のクリップ64を介して負極バスバー3に電気的に接続される。
 回路ケース61の端子カバー7に対向する面には第2の接続端子622が配置されている。第2の接続端子622は、例えばセンサ回路52に電力を供給する電源出力端子、センサ回路52と双方向で通信を行うための端子等として用いられる。
 第2の接続端子622は、第1の接続端子521の同様の構造を有するとともに回路ケース61から端子カバー7側に突出するように配置され、端子カバー7を積層セル1に嵌め込んだ時に端子カバー7の内壁に配置された第1の配線72に当接する。
 端子カバー7は、積層セル1の2つの薄板部12の外壁に接触する内壁を有する部材である。なお、端子カバー7は、後述のように例えばセンサケース51と同様に磁性作用を有する電気絶縁材料で形成され、表面が樹脂等の絶縁層(不図示)で覆われたものである。
 収容空間14の開口部から端子カバー7を差し込むことで、端子カバー7が収容空間14を覆うように積層セル1に取り付けられる。
 端子カバー7には、正極外部端子P、負極外部端子N、中間外部端子Mがそれぞれ挿入される挿通孔71が配置され、端子カバー7を積層セル1に取り付けると各外部端子が挿通孔71内に配置される。
 また、端子カバー7の内壁の絶縁層(不図示)上には第1の配線72及び第2の配線73が配置されている。一方、薄板部12の外壁には一対の締結部112を結ぶ方向に延びるとともにその両端の一方において平面視でセンサケース51の第1の接続端子521に向かう方向、当該両端の他方においてサブ回路部6の第2の接続端子622に向かう方向にそれぞれ延びる第3の配線131が配置されている。第1の配線72、第2の配線73、第3の配線131は、いずれも例えばCu(銅)テープで形成されている。
 第1の配線72は、端子カバー7を積層セル1に取り付けたときに、一端が第1の接続端子521に対向する位置に配置され他端が第3の配線131に対向する位置に配置されている。
 第2の配線73は、端子カバー7を積層セル1に取り付けたときに、一端が第2の接続端子622に対向する位置に配置され他端が第3の配線131に対向する位置に配置されている。
 よって、端子カバー7を積層セル1に取り付けると、第1の配線72の一端が第2の接続端子622に接触し他端が第3の配線131に接触する。また第2の配線73の一端が第1の接続端子521に接触し他端が第3の配線131に接続される。これにより、第1の接続端子521と第2の接続端子622が第1の配線72、第2の配線73、第3の配線131を介して電気的に互いに接続される。なお、第3の配線131を省略し、図4A及び図4B(矩形の破線で囲んだ部分に図示した端子カバー7)に示すように、端子カバー7の内壁において第1の配線72と第2の配線73とを互いに接続した態様の第4の配線74を配置してもよい。
 なお、例えばセンサ部5内のセンサ回路52とサブ回路部6内のサブ回路62(図7、図9A、図9B、図9C、図9D)が双方向で無線通信可能であり、センサ回路52に小型のバッテリが内蔵され外部からの電力供給が不要の場合、第1の接続端子521、第2の接続端子622、第1の配線72、第2の配線73、第3の配線131、第4の配線74を省略することができる。
[センサ部]
 図4Aは、本実施形態の電池モジュールを構成するセンサ部5の斜視図である。図4Bは、本実施形態の電池モジュールを構成するセンサ部5の断面図である。図4Aは、センサ部5を中間バスバー4に取り付けた状態を示している。
 図4Aに示すように、中間バスバー4は4段の階段形状であるが、各段には電池セル11から延出したセルタブが配置されている。中間バスバー4に配置されるセルタブは、例えば図4Aの上から順に電池セル11(S4)の正極セルタブ113(P4)、電池セル11(S3)の正極セルタブ113(P3)、電池セル11(S2)の負極セルタブ114(N2)、電池セル11(S1)の負極セルタブ114(N1)となる。
 センサケース51(前記の回路ケース61も同様)は、磁性作用を有する電気絶縁材料により形成されケース内部を静電遮蔽することができる。
 ここで、センサケース51は、鉄板、鋼板などの透磁率の高い金属材を板金又はプレス加工により作成する、又は磁性粉末を混合した樹脂をダイカスト形成やホットプレスにより作成する。そして、センサケース51の内壁に樹脂等を塗布して絶縁層を形成する。更に、センサケース51を樹脂で形成し、その外壁に磁性塗料を塗布してもよい。
 磁性作用を有する電気絶縁材料としては、例えば大同特殊鋼株式会社製の高特性軟磁性粉末(DAPM3、DAPMS7、DAPMSA10、DAPMSC等)、新東工業株式会社製の金属ガラス磁性粉末(SAP−2D)及び金属軟磁性粉末(FSC2K)、株式会社メイト製の金属系軟磁性材(金属扁平粉末、金属系射出成型用材料、磁性シート)が適用できる。
 そして、図4Bに示すように、センサケース51内においてセンサ回路52、及びセンサ回路52から引き出された引き出し電極522が配置されている。引き出し電極522は、銅箔(センサケース51側に絶縁層を有する)をセンサケース51に張り付けて作成する。
 図4A,図4Bに示すように、センサケース51には、第1のクリップ53の一方のアームを挿通する挿通孔511が配置されている。
 図4Aに示すように、第1のクリップ53は、初期状態としてセンサケース51から分離させておくことができる。そして、第1のクリップ53の2つのアームをやや開いた状態で、一方のアームを挿通孔511に挿通し、第1のクリップ53の他方のアームをセルタブに接触させる。これにより、第1のクリップ53がアームを閉じる方向の弾性力によりセルタブ(正極セルタブ113、負極セルタブ114)、中間バスバー4、センサケース51、引き出し電極522を同時に挟み込む。
 これにより、センサケース51が第1のクリップ53により中間バスバー4に固定される。また、センサ回路52の引き出し電極522が第1のクリップ53を介してセルタブ(正極セルタブ113、負極セルタブ114)に電気的に接続される。
 なお、第1のクリップ53は例えば超音波溶接によりセルタブ(正極セルタブ113、負極セルタブ114)に直接的に接合することができる。これによりセンサ回路52がバスバーの抵抗成分を検知しないようにできる。
 なお、センサ回路52は、任意の形状に設定できるが、例えば2つのリジットな基板52a,52bをフレキシブルな基板53cで連結させ、図4Bに示すようにL型に配置することも好適である。また、引き出し電極522も基板52a又は52bに接続するフレキシブルな基板上に配置するとともに挿通孔511に対向する位置に当該基板を配置してもよい。
 センサケース51の側面からはセンサ回路52に接続されたジャンパー線54が4本(図4Aでは1本のみ図示)が延出し、ジャンパー線54の先端には第4のクリップ542(第1のクリップ53と同様の構造を適用できる)が取り付けられている。第4のクリップ542は、例えば正極バスバー2において電池セル11(S1)の正極セルタブ113(P1)が配置された位置、正極バスバー2において電池セル11(S2)の正極セルタブ113(P2)が配置された位置、負極バスバー3において電池セル11(S3)の負極セルタブ114(N3)が配置された位置、負極バスバー3において電池セル11(S4)の負極セルタブ114(S4)が配置された位置において各バスバーを挟み込む。これにより、センサ回路52は各セルタブ(正極セルタブ113、負極セルタブ114)にジャンパー線54(第4のクリップ542)を介して電気的に接続される。
[センサ部5の接続状態]
 図5は、センサ部5の接続状態を示す断面図である。図6は、図5の部分詳細図である。図5に示すように、積層セル1に端子カバー7を取り付けると、各外部端子(図では負極外部端子N)は、端子カバー7の挿通孔71内に配置される。
 また、センサケース51に配置された第1の接続端子521は第2の配線73と接触し、第2の配線73は第3の配線131に接触する。なお、このとき、図示は省略するが、回路ケース61に配置された第2の接続端子622は、第1の配線72に接触する。
 第1のクリップ53は、前記のように、アームの一方がセンサケース51に形成された挿通孔511に挿通され、セルタブ(正極セルタブ113、負極セルタブ114)、中間バスバー4、センサケース51、引き出し電極522を同時に挟み込んでいる。このとき、第1のクリップ53がバスバーに接触する可能性がある。バスバーと接触した場合は充放電電流が第1のクリップ53にも流れることになり、大電流が流れる仕様としていない第1のクリップ53に過剰な電流が流れ、第1のクリップ53の発熱や損傷の可能性が残る。又はセンサ回路52に入力されることになる検出信号にバスバーの抵抗成分が含まれることとなり、センサ誤差に繋がる。
 そこで、第1のクリップ53のセンサケース51から露出した部分の内壁であってセルタブ(正極セルタブ113、負極セルタブ114)との接触位置を除く領域に絶縁層531を配置している。絶縁層531は、電気絶縁層はポリイミドなどの電気絶縁テープ貼付や樹脂コーティング等にて実現できる。これにより、第1のクリップ53とバスバーとの電気的絶縁を確保できる。
 また、図示は省略しているが、挿通孔511の内壁も絶縁層で覆われている。これによりセンサケース51と第1のクリップ53との電気的絶縁も確保できる。
 なお、センサ部5を中間バスバー4に取り付ける際に、半田付け等で第1のクリップ53を引き出し電極522に予め接合させてもよい。また、超音波振動するホーン(不図示)を第1のクリップ53のセルタブ(正極セルタブ113、負極セルタブ114)との接触位置(図6の矢印)に第1のクリップ53側から押圧することで第1のクリップ53、セルタブ(正極セルタブ113、負極セルタブ114)、中間バスバー4が互いに溶融する。これにより、第1のクリップ53をセルタブ(正極セルタブ113、負極セルタブ114)に接続し、セルタブ(正極セルタブ113、負極セルタブ114)を中間バスバー4に接続することができる。このように第1のクリップ53を中間バスバー4に接触させずにセルタブ(正極セルタブ113、負極セルタブ114)に直接接続させることで、バスバーの抵抗成分を検知することなく電池セル11の状態を高精度に検知することができる。上記接続形態はサブ回路部6についても同様に適用できる。
[回路図]
 図7は、センサ部5、電池セル11、正極バスバー2、負極バスバー3、及び中間バスバー4の回路図である。図7に示すように、電池セル11(S1)及び電池セル11(S2)は正極バスバー2と中間バスバー4の間で並列に接続される。
 電池セル11(S1)の正極側(正極セルタブ113)は、正極バスバー2において正極外部端子Pに最も近い接点(P1)を有し、負極側(負極セルタブ114)は中間バスバー4において中間外部端子Mに最も近い接点(N1)を有する。
 電池セル11(S2)の正極側(正極セルタブ113)は、正極バスバー2において正極外部端子Pから最も遠い接点(P2)を有し、負極側(負極セルタブ114)は中間バスバー4において中間外部端子Mに二番目に近い接点(N2)を有する。
 電池セル11(S3)及び電池セル11(S3)は中間バスバー4と負極バスバー3の間で並列に接続されている。
 電池セル11(S3)の正極側(正極セルタブ113)は、中間バスバー4において中間外部端子Mに三番目に近い接点(P3)を有し、負極側(負極セルタブ114)は負極バスバー3において負極外部端子Nに最も近い接点(N3)を有する。
 電池セル11(S4)の正極側(正極セルタブ113)は、中間バスバー4において中間外部端子Mから最も遠い接点(P4)を有し、負極側(負極セルタブ114)は負極バスバー3において負極外部端子Nから最も遠い接点(N4)を有する。
 センサ回路52は、センサケース51に取り付けられた第1のクリップ53により、接点(N1)、接点(N2)、接点(P3)、及び接点(P4)にそれぞれ接続される。
 また、センサ回路52は、ジャンパー線54(第4のクリップ542)により、接点(P1)、接点(P2)、接点(N3)、及び接点(N4)にそれぞれ接続される。
 よって、センサ回路52は、接点(P1)及び接点(N1)から電池セル11(S1)の状態を検知し、接点(P2)及び接点(N2)から電池セル11(S2)の状態を検知し、接点(P3)及び接点(N3)から電池セル11(S3)の状態を検知し、接点(P4)及び接点(N4)から電池セル11(S4)の状態を検知することができる。
[第1変形例]
 図8は、本実施形態の電池モジュールの第1変形例の斜視図である。図9Aは、第1変形例のセンサ電源部6aの平面図である。図9Bは、第1変形例のセンサ電源部6aを正極バスバー2と負極バスバー3の間に挟み込む前の断面図である。図9Cは、第1変形例のセンサ電源部6aを正極バスバー2と負極バスバー3の間に挟み込んだあとの断面図である。図9Dは、第1変形例のセンサ電源部6aをクリップ(第2のクリップ63、第3のクリップ64)で固定したときの断面図である。図10は、第1変形例のセンサ部5、電池セル11、正極バスバー2、負極バスバー3、中間バスバー4、及びセンサ電源部6aの回路図である。なお図8では、センサ部5及び端子カバー7の図示を省略している。
 センサ電源部6aは、電池セル11の電圧が充電残量(SOC)によって変化し、センサ回路52における電圧測定(AD変換)値に変動を与える場合に、これを解消するために用いることができる。
 センサ電源部6aは、正極バスバー2と負極バスバー3の間に挟まれる絶縁性のホルダ61aと、ホルダ61aに取り付けられたセンサ電源回路62a(図9A)と、センサ電源回路62aの正極側に電気的に接続された第1の引き出し電極623(図9A)と、センサ電源回路62aの負極側に電気的に接続された第2の引き出し電極624(図9A)と、センサ電源回路62aに出力側に接続された第2の接続端子622と、第2のクリップ63と、第3のクリップ64と、を含む。
 ホルダ61aは、図9Aに示すように平面視では負極バスバー3に接触する側が平面視でL字型の形状となっているが、図9Bに示すように断面方向(積層セル1の厚み方向)から見るとコの字型の形状を有する。
 センサ電源回路62aは、例えばホルダ61aの厚み方向に延びる部分であって端子カバー7(図3)の対向面の裏面に配置されている。センサ電源回路62aは正極端子及び負極端子と接続して2直列の電圧(2.5−4.2V×2)を入力とすることが効率的である。そこで、センサ電源回路62aは正極バスバー2及び負極バスバー3と最短距離で接続できる位置に実装することで、接続手段(配線の代替)である板バネ状の第2のクリップ63及び第3のクリップ64の長さを短くでき、嵌合時の剛性と材料費節約で有利となる。
 図8で示す電池モジュールでは、正極バスバー2の上部空間に、負極バスバー3が接近している仕様であることから、この上部空間(第2の分割空間143(図2、図9B))にセンサ電源回路62aを実装すると第2のクリップ63及び第3のクリップ64の長さを短くできて好適である。
 なお、センサ電源回路62aの接続においてはバスバー抵抗のセンシングへの影響は無視できるため、第2のクリップ63及び第3のクリップ64の接続点はバスバーであってもセルタブであっても良い。
 更にホルダ61aの上面が収容空間14の内壁(薄板部12)又はストッパ141に接する場合、例えば弾性シートや両面テープ、変性シリコン接着剤等にてホルダ61aを固定するようにしても良い。これは車載時の振動耐性を持たせるためにも有効な固定方法となる。
 第2の接続端子622と第1の接続端子521(図3)との接続態様は、図3に示す態様と同様であるが、図10に示すように、第1の接続端子521及び第2の接続端子622を省略してセンサ電源回路62aの電源出力端子(OUT)とセンサ回路52の電源入力端子(IN)とをジャンパー線65で直接接続してもよい。
 第1の引き出し電極623は、ホルダ61aの正極バスバー2との接触面の裏面に配置されている。
 第2の引き出し電極624は、ホルダ61aの負極バスバー3の接触面の裏面であって、図9Aの横方向で幅が狭くなっている部分に配置されている。
 ホルダ61aの厚み方向の延びる部分の第1の引き出し電極623側には挿通孔66が配置され、当該挿通孔66に対向する位置に第1の引き出し電極623が配置される。
 センサ電源部6aの取り付け手順としては、図9B及び図9Cに示すように、ホルダ61aを正極バスバー2と負極バスバー3との間に挟み込む。そして、図9C及び図9Dに示すように、第2のクリップ63の一方のアームを挿通孔66に挿通して第1の引き出し電極623に接触させ第2のクリップ63の他方のアームを正極バスバー2に接触させることで、第2のクリップ63により正極バスバー2、ホルダ61a(正極バスバー2側)、第1の引き出し電極623を同時に挟み込む。同様に、図9C及び図9Dに示すように、第3のクリップ64の一方のアームを第2の引き出し電極624に接触させ第3のクリップ64の他方のアームを負極バスバー3に接触させることで、第3のクリップ64により負極バスバー3、ホルダ61a(負極バスバー3側)、第2の引き出し電極624を同時に挟み込む。
 上記手順により、ホルダ61a(正極バスバー2側)が正極バスバー2に固定され、且つ第1の引き出し電極623が第2のクリップ63を介して正極バスバー2(接点(P2))に電気的に接続される(図10)。また、ホルダ61a(負極バスバー3側)が負極バスバー3に固定され、且つ第2の引き出し電極624が第3のクリップ64を介して負極バスバー3(接点(N4))に電気的に接続される(図10)。
 なお、負極バスバー3と収容空間14の内壁との間隔が狭く、第3のクリップ64により第2の引き出し電極624、ホルダ61a、負極バスバー3(セルタブ)を同時に挟むときに第3のクリップ64が収容空間14の内壁に干渉して挟み込みが困難となる場合がある。その場合は、第2の引き出し電極624から延出したタブ(不図示)を負極バスバー3上に配置し、当該タブ(不図示)と負極バスバー3(セルタブ)を第3のクリップ64で挟むようにすればよい。これにより、ホルダ61aの厚みがなくなった分だけタブ(不図示)と収容空間14の内壁との間が広くなるので、第3のクリップ64による挟み込みを容易に実行できる。
[ジャンパー線、クリップ]
 図11は、センサ部5から延出するジャンパー線54の例を示す図である。図12は、センサケース51に取り付けるクリップ(第1のクリップ53)の例を示す図である。
 図11に示すように、ジャンパー線54は、フレキシブルに変形する被覆配線541と、被覆配線541の先端に配置された第4のクリップ542と、を備える。第4のクリップ542は被覆配線541内の導通線(銅線)に接続されている。また、第4のクリップ542は、2つのアームの間がバスバーの厚みとセルタブの厚みを足しわせた寸法よりもやや小さい幅となるように設定され、2つのアームの間にバスバーとセルタブを同時に挟み込むことができる。
 図12に示すように、第1のクリップ53は、基部532の幅方向の両端からアーム533、534が延出した構造を有する。一対のアーム533,534は基部532から離れるにつれて両者の間隔が狭くなり、その途中から逆に間隔が広くなる形状に設定されている。アーム533において、アーム534との間隔が最も狭くなっている部分が、セルタブ(正極セルタブ113、負極セルタブ114)(図6)に最も押圧力を印加する部分となる。
 また、引き出し電極522(図5、図6)に接触するアーム534の中央部には、基部532に対して略垂直に立つように配置される平面部535が形成されている。よって、第1のクリップ53をセンサケース51に取り付けると平面部535が引き出し電極522と面接触するので引き出し電極522(図5、図6)と第1のクリップ53の間の接触抵抗を低減できる。
[第2変形例]
 図12は、本実施形態の電池モジュールの第2変形例であって、センサ部5、電池セル11、正極バスバー2、負極バスバー3、及び中間バスバー4の回路図である。
 第2変形例は、正極外部端子Pと中間外部端子M(又は中間外部端子Mと負極外部端子N)の間の見かけ上の内部抵抗を簡易に計測するための構成となっている。
 図12おいて、正極バスバー2における正極外部端子Pと接点(P1)までの抵抗をRb、正極バスバー2における接点(P1)から接点(P2)までの抵抗をRb12、中間バスバー4における中間外部端子Mと接点(N1)までの抵抗をRb、中間バスバー4における接点(N1)から接点(N2)までの抵抗をRb12、電池セル11(S1)の内部抵抗をRc1、電池セル11(S2)の内部抵抗をRc2としたとき、正極外部端子Pと中間外部端子Mの間の見かけ上の内部抵抗Rpmは次式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 電池セル11(S1)の内部抵抗Rc1及び電池セル11(S2)の内部抵抗Rc2に対してバスバーの抵抗は十分小さい。このため、Rb12<<Rc2とみなすことができ、式(1)においてRb12=0、及びRc2=Rc1とみなすことができる。よって、式(1)は次式(2)のように簡略化できる。
Figure JPOXMLDOC01-appb-M000002
 したがって、並列接続の電池セル11の内部抵抗は1つのセルに接続して検出するように構成しても実用上は成立する。
 なお、Rc1=Rc=2を前提として、厳密にはバスバー抵抗の違いにより正極外部端子P及び中間外部端子Mにより近い電池セル11(S1)により多くの充放電電流が流れる。よって、電池セル11(S1)及び電池セル11(S2)のうち、より多くの充放電電流が流れる電池セル11(S1)にセンサ回路52を接続することが、電池の劣化度(SOH:State Of Health)を診断する観点で適切となる。
 そこで、電池セル11(S1)の内部抵抗Rc1をセンサ回路52により検出し、内部抵抗Rc1を式(2)に適用することで、電池セル11(S2)との合成抵抗、すなわち正極外部端子Pと中間外部端子Mの間の内部抵抗Rpmを算出できる。
 以上、電池セル11(S1)及び電池セル11(S2)を例に説明したが、電池セル11(S3)及び電池セル11(S4)についても、中間外部端子Mと負極外部端子Nからみた電池セル11(S3)及び電池セル11(S4)の内部抵抗を算出する際にも適用できる。すなわち、電池セル11(S3)の内部抵抗をセンサ回路52により検出し、当該内部抵抗を式(2)に適用することで、電池セル11(S4)との合成抵抗、すなわち中間外部端子Mと負極外部端子Nの間の内部抵抗を算出できる。
[本実施形態の効果]
 本実施形態の電池モジュールによれば、複数の電池セル11が積層された積層セル1と、電池セル11に接続されたバスバー(正極バスバー2、負極バスバー3、中間バスバー4)と、バスバーに電気的に接続され前記電池セルの状態を計測するセンサ回路52を包含するセンサ部5と、を備える電池モジュールにおいて、バスバー(正極バスバー2、負極バスバー3、中間バスバー4)は、積層セル1の一つの側面に形成された収容空間14に配置され、センサ部5は、センサ回路52を収容するとともにバスバー(正極バスバー2、負極バスバー3、中間バスバー4)の形状に倣って形成され、収容空間14においてバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に接するように収容されるセンサケース51と、センサ回路52に電気的に接続されるとともに、センサケース51を収容空間14に収容したときにセンサケース51においてバスバー(正極バスバー2、負極バスバー3、中間バスバー4)と対向する位置に配置され、バスバー(正極バスバー2、負極バスバー3、中間バスバー4)に嵌合可能な嵌合部(第1のクリップ53)と、を含み、嵌合部(第1のクリップ53)をバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に嵌合することで、センサケース51がバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に固定されるとともにセンサ回路52が嵌合部(第1のクリップ53)を介してバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に電気的に接続される。
 上記構成により、センサケース51と、センサ回路52に電気的に接続する端子となる嵌合部(第1のクリップ53)と、を一体とし、嵌合部(第1のクリップ53)をバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に直接接続させることで、電池モジュールの外形を大きくすることなく、且つ配線材と作業工数を同時に削減しつつ電池モジュールを構築できる。またバスバー(正極バスバー2、負極バスバー3、中間バスバー4)の構造上、必然的に生じる収容空間14を利用することで電池モジュールの厚み方向を増やさずにセンサ部5を実装できる。更に、配線長が極力短くあるいは省略できることから組立時の短絡防止策が取りやすくなる。また上記の内容は二次利用あるいはリサイクル工程における解体作業においても同様な効果が得られる。以上により電池の製造から廃棄までの製品利用全体に亘る総合コスト低減効果が得られる。
 ところで、電池セル11には所定の面圧が掛かる構造になっている。これは電極間抵抗低減ならびに劣化に伴う体積膨張の制限構造による。このため電池セル11の積層方向の空間(隙間)は必要最小限とされている。
 これに対応して電池セル11の外装表面上に実装するセンサ回路52は小型、薄型に作ることが求められ、これに付随して使用部品、製造法の選択自由度が制限され、製造コストが高価になる。
 一方、バスバー(正極バスバー2、負極バスバー3、中間バスバー4)の実装領域は少なくとも積層セル1の厚み分空間が存在することになり、その空間に収容できれば良いので設計、使用部品の選択自由度が上がることによるコスト低減が可能となる。
 また電池セル11の内部状態を知る手段としてのEIS(Electrochemical Impedance Spectroscopy)計測(内部抵抗計測)には、その測定レンジ(電池セル11の内部抵抗の低さ)に対応した精密な四端子接続が必要になり、そのために従来(特許文献1参照)は電池セル11のセルタブに個別配線していた。
 またバスバー(正極バスバー2、負極バスバー3、中間バスバー4)も電力損失を低減するために最短距離で電池セル11間を接続する設計が採られている。このため本実施形態は、このバスバー(正極バスバー2、負極バスバー3、中間バスバー4)とセルタブの接続点近傍に接点を有するコネクタ(第1のクリップ53)をセンサケース51(センサ回路52)に一体化して取り付けることで、センサ回路52の信号接続をセルタブに個別配線接続した場合と同様な精密計測が実現できる。これにより計測精度を維持しつつ、センサ回路52の固定/結線作業を1工程で済ませ、またセンサ回路52の配線固定のための接着/粘着剤も不要とすることができ、コスト低減、環境保全、省資源にも有効となる。
 なおセンサケース51をバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に取り付けるまではセンサ回路52に通電されない。またセンサケース51を取り外すことでセンサ回路52への通電が遮断される。このためセンサ回路52を介した電池セル11の正負極間の短絡(電池セル11の外部短絡)をセンサケース51の着脱時に防止できる。
 センサ回路52は新造されてからセル寿命に達するまで連続的に機能させることができるため、電池セル11の履歴に基づいた充放電制御(劣化抑制)が可能となり、その結果、電池セル11の能力を使い切ることによる総合的なコストを低減が実現可能となる。
 本実施形態においてセンサ回路52は複数に分割された分割センサ回路(センサ回路52)を含み、センサケース51は分割されたセンサ回路52をそれぞれ収容する複数の分割センサケース(センサケース51)を含み、分割センサケース(センサケース51)は収容空間14に配置されている。
 上記構成により、収容空間14がバスバー(正極バスバー2、負極バスバー3、中間バスバー4)により細かく分割されている場合であっても、センサ部5(センサ回路52)を複数に分割し、センサ部5と同数の分割センサケース(センサケース51)を用意し、各分割センサケース(センサケース51)に分割センサ回路(センサ回路52)を収容して収容空間14にそれぞれ配置する。これにより、複数であっても寸法の小さい分割センサケース(センサケース51)を収容空間14に配置するので、バスバーに干渉しないように配置でき、電池モジュールの設計の自由度を高めることができる。
 本実施形態において、バスバー(正極バスバー2、負極バスバー3、中間バスバー4)は、正極バスバー2と、負極バスバー3と、中間バスバー4と、を含み、電池セル11は、正極バスバー2と中間バスバー4との間を電気的に接続する第1の電池セル(電池セル11(S1)、電池セル11(S2))と、中間バスバー4と負極バスバー3との間を電気的に接続する第2の電池セル(電池セル11(S3)、電池セル11(S4))と、を含み、センサケース51は、中間バスバー4の形状に倣って形成され、嵌合部(第1のクリップ53)は、センサケース51を収容空間14に収容したときに中間バスバー4の第1の電池セル(電池セル11(S1)、電池セル11(S2))との接続位置、及び中間バスバー4の第2の電池セル(電池セル11(S1)、電池セル11(S2))との接続位置にそれぞれ対向するように複数配置されている。
 上記構成により、電池モジュールの構造状の余剰空間が大きい中間バスバー4と収容空間14の内壁に仕切られた空間にセンサケース51を配置することで、容易に電池モジュールを構築できる。ここで、中間バスバー4には第1の電池セル(電池セル11(S1)、電池セル11(S2))、及び第2の電池セル(電池セル11(S3)、電池セル11(S4))との接点(N1、N2、P3、P4)が纏まっているため、センサ回路52とセルタブとの接続手段(配線の代替)である板バネ状のコンタクト電極の長さを短くできる(嵌合時の剛性と材料費節約で有利となる)。また多点(本実施形態では4点)によるセンサ回路52の支持固定により耐振性設計も有利となる(センサ回路52を固定するために必要な強度、支持点の設計の自由度が得られる)。更にセンサケース51の下面は薄板部12又はストッパ141に接し、例えば弾性シートや両面テープ、変性シリコン接着剤等にて固定するようにしても良い。これは車載時の振動耐性を持たせるためにも有効な固定方法となる。
 本実施形態において、嵌合部(第1のクリップ53)は、センサケース51とバスバー(正極バスバー2、負極バスバー3、中間バスバー4)とを同時に挟み込むクリップ形状を有する。
 上記構成により、着脱がし易く、安価に本実施形態を実現できる。また電気的接続点を管理しやすくなるため、バスバー(正極バスバー2、負極バスバー3、中間バスバー4)等、電池セル11の内部状態(内部抵抗)とは無関係な抵抗成分をセンシング対象から除外することで、電池セル11の内部の精密な状態検出(監視)が可能となる。
 本実施形態において、センサケース51は磁性作用を有する電気絶縁材で形成されている。
 上記構成により、センサケース51の内部は外部に対して静電遮蔽されるので、センサ回路52をバスバー近傍に配置してもセンサ回路52に対する電磁誘導ノイズを低減できる。
 本実施形態において、正極バスバー2は、外部と接続する正極外部端子Pを含み、負極バスバー3は、外部と接続する負極外部端子Nを含み、第1の電池セル(電池セル11(S1)、電池セル11(S2))が、正極バスバー2と中間バスバー4との間に並列に複数接続され、第2の電池セル(電池セル11(S3)、電池セル11(S4))が、中間バスバー4と負極バスバー3との間に並列に複数接続され、嵌合部(第1のクリップ53)は、センサケース51を収容空間14に収容したときに、センサケース51において第1の電池セル(電池セル11(S1)、電池セル11(S2))のうち正極外部端子Pに電気的に最も近い位置に接続された第1の電池セル(電池セル11(S1))と中間バスバー4との接続位置(接点(N1))と、センサケース51において第2の電池セル(電池セル11(S3)、電池セル11(S4))のうち負極外部端子Nに電気的に最も近い位置に接続された第2の電池セル(電池セル11(S3))と中間バスバー4との接続位置(接点(P3))と、にそれぞれ対向するように配置されている。
 上記構成により、電池セル11との接続点数を省略しても実用的に有効な電池セル11内部状態を検出できることから更に容易で安価に電池セル11の状態を検知可能となる。
 本実施形態において、電池セル11は、蓄電部111と、蓄電部111から延出するとともにバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に接続されるタブセル(正極セルタブ113、負極セルタブ114)と、を含み、嵌合部(第1のクリップ53)は、バスバー(正極バスバー2、負極バスバー3、中間バスバー4)とともにタブセル(正極セルタブ113、負極セルタブ114)を挟む態様でバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に嵌合する。
 上記構成により、嵌合部(第1のクリップ53)がバスバー(正極バスバー2、負極バスバー3、中間バスバー4)に接触しないので、センサ回路52がバスバーの抵抗成分をセンシングすることがなく、電池セル11の状態を高精度に検出することができる。
 本実施形態において、収容空間14を覆うように積層セル1に嵌め込まれるカバー(端子カバー7)と、カバー(端子カバー7)の内壁に配置された配線(第4の配線74)と、センサ部5に電力を供給する電源回路(センサ電源回路62a)を包含する電源部(センサ電源部6a)と、を更に備え、収容空間14にはバスバー(正極バスバー2、負極バスバー3、中間バスバー4)により複数の分割空間が形成され、センサ部5は、分割空間のうち中間バスバー4により形成された第1の分割空間142に収容され、センサケース51のカバー(端子カバー7)に対向する面には、センサ回路52に電気的に接続する電源入力端子(第1の接続端子521)が配置され、電源部(センサ電源部6a)は、電源回路(センサ電源回路62a)が取り付けられるとともに分割空間のうち正極バスバー2と負極バスバー3の間に形成された第2の分割空間143に収容されるホルダ61aと、電源回路(センサ電源回路62a)の入力側(プラス側)に電気的に接続されるとともに、ホルダ61aを第2の分割空間143に収容したときにホルダ61aの正極バスバー2に対向する位置に配置され、正極バスバー2に嵌合可能な第2の嵌合部(第2のクリップ63)と、電源回路(センサ電源回路62a)の入力側(マイナス側)に電気的に接続されるとともに、ホルダ61aを第2の分割空間143に収容したときにホルダ61aの負極バスバー3に対向する位置に配置され、負極バスバー3に嵌合可能な第3の嵌合部(第3のクリップ64)と、電源回路(センサ電源回路62a)の出力側に電気的に接続されるとともにホルダ61aのカバー(端子カバー7)に対向する位置に配置された電源出力端子(第2の接続端子622)と、を含み、第2の嵌合部(第2のクリップ63)を正極バスバー2に嵌合することで、ホルダ61aが正極バスバー2に固定されるとともに電源回路(センサ電源回路62a)が第2の嵌合部(第2のクリップ63)を介して正極バスバー2に電気的に接続され、第3の嵌合部(第3のクリップ64)を負極バスバー3に嵌合することで、ホルダ61aが負極バスバー3に固定されるとともに電源回路(センサ電源回路62a)が第3の嵌合部(第3のクリップ64)を介して負極バスバー3に電気的に接続され、カバー(端子カバー7)を積層セル1に嵌め込むことで、配線(第4の配線74)が電源出力端子(第2の接続端子622)と電源入力端子(第1の接続端子521)に同時に接触し、電源出力端子(第2の接続端子622)が配線(第4の配線74)を介して電源入力端子(第1の接続端子521)に電気的に接続される。
 また本実施形態において、収容空間14を覆うように積層セル1に嵌め込まれるカバー(端子カバー7)と、カバー(端子カバー7)の内壁に配置された第1の配線72及び第2の配線73と、収容空間14のカバー(端子カバー7)に接触する外壁に配置された第3の配線131と、センサ部5に電力を供給する電源回路(センサ電源回路62a)を包含する電源部(センサ電源部6a)と、を更に備え、収容空間14にはバスバー(正極バスバー2、負極バスバー3、中間バスバー4)により複数の分割空間が形成され、センサ部5は、分割空間のうち中間バスバー4により形成された第1の分割空間142に収容され、センサケース51のカバー(端子カバー7)に対向する面には、センサ回路52に電気的に接続する電源入力端子(第1の接続端子521)が配置され、電源部(センサ電源部6a)は、電源回路(センサ電源回路62a)が取り付けられるとともに分割空間のうち正極バスバー2と負極バスバー3の間に形成された第2の分割空間143に収容されるホルダ61aと、電源回路(センサ電源回路62a)の入力側(プラス側)に電気的に接続されるとともに、ホルダ61aを第2の分割空間143に収容したときにホルダ61aの正極バスバー2に対向する位置に配置され、正極バスバー2に嵌合可能な第2の嵌合部(第2のクリップ63)と、電源回路(センサ電源回路62a)の入力側(マイナス側)に電気的に接続されるとともに、ホルダ61aを第2の分割空間143に収容したときにホルダ61aの負極バスバー3に対向する位置に配置され、負極バスバー3に嵌合可能な第3の嵌合部(第3のクリップ64)と、電源回路(センサ電源回路62a)の出力側に電気的に接続されるとともにホルダ61aのカバー(端子カバー7)に対向する位置に配置された電源出力端子(第2の接続端子622)と、を含み、第2の嵌合部(第2のクリップ63)を正極バスバー2に嵌合することで、ホルダ61aが正極バスバー2に固定されるとともに電源回路(センサ電源回路62a)が第2の嵌合部(第2のクリップ63)を介して正極バスバー2に電気的に接続され、第3の嵌合部(第3のクリップ64)を負極バスバー3に嵌合することで、ホルダ61aが負極バスバー3に固定されるとともに電源回路(センサ電源回路62a)が第3の嵌合部(第3のクリップ64)を介して負極バスバー3に電気的に接続され、カバー(端子カバー7)を積層セル1に嵌め込むことで、第1の配線72が電源出力端子(第2の接続端子622)と第3の配線131に同時に接触し、第2の配線73が電源入力端子(第1の接続端子521)と第3の配線131に同時に接触することで、電源出力端子(第2の接続端子622)が第1の配線72、第2の配線73、及び第3の配線131を介して電源入力端子(第1の接続端子521)に電気的に接続される。
 上記構成により、電源部(センサ電源部6a)を正極バスバー2及び負極バスバー3に取り付けるまでは電源回路(センサ電源回路62a)に通電されない。また、電源部(センサ電源部6a)を正極バスバー2又は負極バスバー3から取り外すことで電源回路(センサ電源回路62a)への通電が遮断される。このため電源回路(センサ電源回路62a)を介した電池セル11の正負極間の短絡(電池セル11の外部短絡)を電源回路(センサ電源回路62a)の着脱時に防止できる。
 また上記構成により、カバー(端子カバー7)を積層セル1に取り付けるまではセンサ回路52に通電されない。またカバー(端子カバー7)を積層セル1から取り外すことでセンサ回路52への通電が遮断される。このため配線(第1の配線72及び第2の配線73、又は第4の配線74)を有するカバー(端子カバー7)を介した電池セル11の正負極間の短絡(電池セル11の外部短絡)をカバー(端子カバー7)の着脱時に防止できる。
 本実施形態において、積層セル1は、複数の電池セル11を一つに締結する一対の締結部112を有するとともに、締結部112は少なくとも積層セル1の一つの側面の両端に配置され、収容空間14は、一対の締結部112の間に配置されている。
 上記構成により、収容空間14が積層セル1の外形の内側となる既存の空間に配置されるので、収容空間14に配置されるセンサ部5等を保護できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。
 本願は、2022年5月25日に日本国特許庁に出願された特願2022−085496に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (9)

  1.  複数の電池セルが積層された積層セルと、
     前記電池セルに接続されたバスバーと、
     前記バスバーに電気的に接続され前記電池セルの状態を計測するセンサ回路を包含するセンサ部と、を備える電池モジュールにおいて、
     前記バスバーは、前記積層セルの一つの側面に形成された収容空間に配置され、
     前記センサ部は、
     前記センサ回路を収容するとともに前記バスバーの形状に倣って形成され、前記収容空間において前記バスバーに接するように収容されるセンサケースと、
     前記センサ回路に電気的に接続されるとともに、前記センサケースを前記収容空間に収容したときに前記センサケースにおいて前記バスバーと対向する位置に配置され、前記バスバーに嵌合可能な嵌合部と、を含み、
     前記嵌合部を前記バスバーに嵌合することで、前記センサケースが前記バスバーに固定されるとともに前記センサ回路が前記嵌合部を介して前記バスバーに電気的に接続される電池モジュール。
  2.  前記センサ回路は複数に分割された分割センサ回路を含み、前記センサケースは分割された前記センサ回路をそれぞれ収容する複数の分割センサケースを含み、前記センサケースは前記収容空間に配置されている請求項1に記載の電池モジュール。
  3.  前記バスバーは、正極バスバーと、負極バスバーと、中間バスバーと、を含み、
     前記電池セルは、
     前記正極バスバーと前記中間バスバーとの間を電気的に接続する第1の電池セルと、
     前記中間バスバーと前記負極バスバーとの間を電気的に接続する第2の電池セルと、を含み、
     前記センサケースは、前記中間バスバーの形状に倣って形成され、
     前記嵌合部は、
     前記センサケースを前記収容空間に収容したときに前記中間バスバーの前記第1の電池セルとの接続位置、及び前記中間バスバーの前記第2の電池セルとの接続位置にそれぞれ対向するように複数配置されている請求項1に記載の電池モジュール。
  4.  前記嵌合部は、前記センサケースと前記バスバーとを同時に挟み込むクリップ形状を有する請求項1乃至請求項3のいずれか1項に記載の電池モジュール。
  5.  前記センサケースは磁性作用を有する電気絶縁材で形成されている請求項1に記載の電池モジュール。
  6.  前記正極バスバーは、外部と接続する正極外部端子を含み、
     前記負極バスバーは、外部と接続する負極外部端子を含み、
     前記第1の電池セルが、前記正極バスバーと前記中間バスバーとの間に並列に複数接続され、
     前記第2の電池セルが、前記中間バスバーと前記負極バスバーとの間に並列に複数接続され、
     前記嵌合部は、
     前記センサケースを前記収容空間に収容したときに、前記センサケースにおいて前記第1の電池セルのうち前記正極外部端子に電気的に最も近い位置に接続された前記第1の電池セルと前記中間バスバーとの接続位置と、前記センサケースにおいて前記第2の電池セルのうち前記負極外部端子に電気的に最も近い位置に接続された前記第2の電池セルと前記中間バスバーとの接続位置と、にそれぞれ対向するように配置されている請求項3に記載の電池モジュール。
  7.  前記電池セルは、蓄電部と、前記蓄電部から延出するとともに前記バスバーに接続されるタブセルと、を含み、
     前記嵌合部は、前記バスバーとともに前記タブセルを挟む態様で前記バスバーに嵌合する請求項1に記載の電池モジュール。
  8.  前記収容空間を覆うように前記積層セルに嵌め込まれるカバーと、
     前記カバーの内壁に配置された第1の配線及び第2の配線と、
     前記収容空間の前記カバーに接触する外壁に配置された第3の配線と、
     前記センサ部に電力を供給する電源回路を包含する電源部と、を更に備え、
     前記収容空間には前記バスバーにより複数の分割空間が形成され、
     前記センサ部は、前記分割空間のうち前記中間バスバーにより形成された第1の分割空間に収容され、
     前記センサケースの前記カバーに対向する面には、前記センサ回路に電気的に接続する電源入力端子が配置され、
     前記電源部は、
     前記電源回路が取り付けられるとともに前記分割空間のうち前記正極バスバーと前記負極バスバーの間に形成された第2の分割空間に収容されるホルダと、
     前記電源回路の入力側に電気的に接続されるとともに、前記ホルダを前記第2の分割空間に収容したときに前記ホルダの前記正極バスバーに対向する位置に配置され、前記正極バスバーに嵌合可能な第2の嵌合部と、
     前記電源回路の入力側に電気的に接続されるとともに、前記ホルダを前記第2の分割空間に収容したときに前記ホルダの前記負極バスバーに対向する位置に配置され、前記負極バスバーに嵌合可能な第3の嵌合部と、
     前記電源回路の出力側に電気的に接続されるとともに前記ホルダの前記カバーに対向する位置に配置された電源出力端子と、を含み、
     前記第2の嵌合部を前記正極バスバーに嵌合することで、前記ホルダが前記正極バスバーに固定されるとともに前記電源回路が前記第2の嵌合部を介して前記正極バスバーに電気的に接続され、
     前記第3の嵌合部を前記負極バスバーに嵌合することで、前記ホルダが前記負極バスバーに固定されるとともに前記電源回路が前記第3の嵌合部を介して前記負極バスバーに電気的に接続され、
     前記カバーを前記積層セルに嵌め込むことで、前記第1の配線が前記電源出力端子と前記第3の配線に同時に接触し、前記第2の配線が前記電源入力端子と前記第3の配線に同時に接触することで、前記電源出力端子が前記第1の配線、前記第2の配線、及び前記第3の配線を介して前記電源入力端子に電気的に接続される請求項3に記載の電池モジュール。
  9.  前記積層セルは、複数の前記電池セルを一つに締結する一対の締結部を有するとともに、前記締結部は少なくとも前記積層セルの一つの側面の両端に配置され、
     前記収容空間は、一対の前記締結部の間に配置されている請求項1に記載の電池モジュール。
PCT/IB2023/000279 2022-05-25 2023-05-23 電池モジュール WO2023227939A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022085496 2022-05-25
JP2022-085496 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023227939A1 true WO2023227939A1 (ja) 2023-11-30

Family

ID=88918595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/000279 WO2023227939A1 (ja) 2022-05-25 2023-05-23 電池モジュール

Country Status (1)

Country Link
WO (1) WO2023227939A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117626A (ja) * 2006-11-02 2008-05-22 Nissan Motor Co Ltd 双極型二次電池
JP2009231267A (ja) * 2008-02-29 2009-10-08 Nissan Motor Co Ltd 電池モジュールおよび電池モジュールの製造方法
JP2011049080A (ja) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd 組電池および組電池の製造方法
JP2013525945A (ja) * 2010-04-08 2013-06-20 エルジー・ケム・リミテッド バッテリーモジュール用電圧検出アセンブリ及びこれを採用したバッテリーモジュール
WO2014010419A1 (ja) * 2012-07-11 2014-01-16 日産自動車株式会社 組電池
CN113921995A (zh) * 2021-10-13 2022-01-11 孚能科技(赣州)股份有限公司 汇流排结构、串并联模块、电池包、电池系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117626A (ja) * 2006-11-02 2008-05-22 Nissan Motor Co Ltd 双極型二次電池
JP2009231267A (ja) * 2008-02-29 2009-10-08 Nissan Motor Co Ltd 電池モジュールおよび電池モジュールの製造方法
JP2011049080A (ja) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd 組電池および組電池の製造方法
JP2013525945A (ja) * 2010-04-08 2013-06-20 エルジー・ケム・リミテッド バッテリーモジュール用電圧検出アセンブリ及びこれを採用したバッテリーモジュール
WO2014010419A1 (ja) * 2012-07-11 2014-01-16 日産自動車株式会社 組電池
CN113921995A (zh) * 2021-10-13 2022-01-11 孚能科技(赣州)股份有限公司 汇流排结构、串并联模块、电池包、电池系统及方法

Similar Documents

Publication Publication Date Title
JP4800323B2 (ja) 二次電池モジュール用センシングボードアセンブリ
JP7106675B2 (ja) Fpcbに実装されたコネクターを備えるバッテリーモジュール、それを含むバッテリーパック及び自動車
JP5138379B2 (ja) 二次電池モジュールの端子連結部材
US9017836B2 (en) Battery pack
CN103137933B (zh) 电池单元
JP5194584B2 (ja) 配線基板、及び積層型蓄電デバイス
US9349998B2 (en) Battery pack
US20110014512A1 (en) Battery module and manufacturing method of battery module
JP2008520076A5 (ja)
US9196887B2 (en) Assembled battery wiring member and assembled battery module
CN107710448B (zh) 电池组
EP3561907B1 (en) Battery module and manufacturing method therefor
CN103931017A (zh) 电源装置
CN213278323U (zh) 电池组
JP6571621B2 (ja) 電池モジュール
WO2023045677A1 (zh) 电池组、制造方法及用电设备
CN104241578A (zh) 可再充电电池包
CN111403803B (zh) 电池及具有所述电池的电子装置
KR20180091325A (ko) 배터리 셀의 전압을 센싱하는 센싱 모듈 및 이를 구비한 배터리 모듈 조립체
EP4024019A1 (en) Battery module comprising temperature sensor
JP2012104340A (ja) 電池モジュール
WO2023227939A1 (ja) 電池モジュール
JP5832819B2 (ja) 組電池
CN112652863A (zh) 连接电池阵列中的电池单元的方法
JPWO2014034350A1 (ja) 電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811235

Country of ref document: EP

Kind code of ref document: A1