WO2023226992A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2023226992A1
WO2023226992A1 PCT/CN2023/095859 CN2023095859W WO2023226992A1 WO 2023226992 A1 WO2023226992 A1 WO 2023226992A1 CN 2023095859 W CN2023095859 W CN 2023095859W WO 2023226992 A1 WO2023226992 A1 WO 2023226992A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
code rate
network device
modulation mode
Prior art date
Application number
PCT/CN2023/095859
Other languages
English (en)
French (fr)
Inventor
董蕾
唐浩
张立清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023226992A1 publication Critical patent/WO2023226992A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the field of communications, and more specifically, to a communication method and device.
  • AI artificial intelligence
  • 6G sixth generation
  • uplink control information can be transmitted separately on the physical layer uplink control channel (PUCCH) or the physical layer uplink shared channel (physical Uplink shared channel, PUSCH) transmission, can also be multiplexed with data for transmission on PUSCH.
  • PUCCH physical layer uplink control channel
  • PUSCH physical Uplink shared channel
  • CR code rate
  • 6G technology in order to further improve the spectrum efficiency of the system, the AI model and perception network of 6G will generate a large amount of artificial intelligence information and/or perception information.
  • the range of the number of bits of artificial intelligence information and/or perception information is compared with the current In some technologies, the range of data and/or UCI bits transmitted by terminal equipment to network equipment is larger.
  • the maximum number of bits of artificial intelligence information and/or sensing information in 6G may far exceed that supported by NR technology or existing solutions. Number of bits; and, due to the characteristics of artificial intelligence information and/or sensory information, a larger amount of data may correspond to lower reliability and higher spectral efficiency. Therefore, NR technology or existing solutions cannot match the transmission requirements of artificial intelligence information and/or perception information in 6G technology.
  • This application provides a communication method and device that can flexibly adjust the reliability or spectrum efficiency of information transmission.
  • a communication method is provided.
  • the method can be executed by a terminal device or a chip or chip system on the terminal device side.
  • the method includes: the terminal device determines first information; the terminal device sends the first information to a network device.
  • One information and second information, the second information is used to determine at least one of the modulation mode or the code rate of the first information. It should be understood that the first information is modulated.
  • the terminal device determines the first information, it can be understood that the terminal device modulates the target information to obtain the first information.
  • the terminal device sends the first information and the second information to the network device, and the second information is used by the network device to determine the modulation mode and/or code rate of the first information.
  • the lower the code rate the more reliable the information transmission is. High, the lower the spectrum efficiency; the higher the code rate, the lower the reliability of information transmission, and the higher the spectrum efficiency; the lower the modulation order, the higher the reliability of information transmission, and the lower the spectrum efficiency; the higher the modulation order, The lower the reliability of information transmission, the higher the spectral efficiency.
  • the terminal device can determine the modulation method and/or code rate of the first information by itself, and flexibly adjust the reliability and/or frequency offset efficiency of information transmission.
  • the first information includes artificial intelligence information and/or perception information.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the Corresponds to at least one of the code rate or the size of the transport block of the first information.
  • the network device can determine the modulation mode of the first information and/or the code rate of the first information corresponding to the first index according to the first index; the network device can then determine the modulation mode of the first information and/or the code rate of the first information according to the first index.
  • the code rate of the information can decode the first information and reduce signaling overhead.
  • the method further includes: the terminal device receiving first configuration information from the network device, the first configuration information including the first index and the first A first mapping relationship of at least one of the type of information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information.
  • the first mapping relationship may also be predefined.
  • Both the terminal device and the network device store the first mapping relationship.
  • the terminal device only sends the first index to the network device, and the network device can determine the modulation mode and/or the first information based on the first index and the first mapping relationship.
  • the code rate of the first information, thereby decoding the first information can reduce signaling overhead.
  • the modulation mode of the first information and/or the code rate of the first information is the quality of service of the terminal device according to the first information or the relationship between the terminal device and At least one item of channel state information for transmitting information between the network devices is determined.
  • the service quality of the first information may include one or more of priority, reliability, and delay. For example, when the first information is high-priority information, the terminal device can use a lower code rate for transmission to improve transmission reliability; when the first information is low-priority information, the terminal device can use a higher code rate. The code rate is transmitted to improve the spectral efficiency of transmission.
  • the channel state information for transmitting information between the terminal device and the network device may include channel quality information (CQI), precoding matrix indicator (precoding matrix indicator, PMI), channel state information reference signal resource indicator (CSI- RS resource indicator (CRI), synchronization/physical layer broadcast channel resource block indicator (SS/PBCH resource block indicator, SSBRI), layer indicator (layer indicator (LI), rank indicator (rank indicator, RI), layer 1 reference signal reception
  • CQI channel quality information
  • precoding matrix indicator precoding matrix indicator
  • PMI channel state information reference signal resource indicator
  • CRI channel state information reference signal resource indicator
  • SS/PBCH resource block indicator SSBRI
  • layer indicator layer indicator
  • rank indicator rank indicator
  • layer 1 reference signal reception One or more of the power (layer 1-reference signal received power, L1-RSRP).
  • the CQI index is large, it means that the current channel state is relatively good and can support higher code rates and modulation orders.
  • the modulation mode and/or code rate of the first information can match the transmission requirements of the first information, thereby improving the reliability or spectrum efficiency of information transmission.
  • the first index has a first value with at least one of the type of the first information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information. Mapping relations.
  • the modulation mode of the first information and/or the code rate of the first information may be the quality of service of the terminal device according to the first information or the channel state information of the information transmitted between the terminal device and the network device. At least one thing is certain.
  • the first index The parameter may also be that the terminal device transmits information according to the type of the first information, the size of the transmission block of the first information, the service quality of the first information or the transmission of information between the terminal device and the network device. At least one item in the channel state information is determined.
  • the second information includes a type of the first information, a transport block size of the first information, a modulation mode of the first information, and a code rate of the first information. at least one of them.
  • the network device can directly determine the modulation mode of the first information and/or the code rate of the first information based on the second information, so that the first information can be decoded.
  • the method further includes: the terminal device receiving second configuration information from the network device, the second configuration information instructing the terminal device to send the first information.
  • Resources include at least one of time domain resources, frequency domain resources, code domain resources and air domain resources; the terminal device sends the first information and the second information to the network device, including: the terminal device On the resource, the first information and the second information are sent to the network device.
  • transmitting the first information through dedicated resources can reduce interference to existing uplink control information transmission, thereby improving the reliability of information transmission.
  • the terminal device sending the first information and the second information to the network device includes: the terminal device sending the third information and the fourth information to the network device, so
  • the third information includes N pieces of the first information, the N pieces of the first information correspond to M 1 modulation modes and/or M 2 code rates, and the fourth information is used to determine the third information
  • the modulation mode and/or code rate where M 1 is less than or equal to N, M 2 is less than or equal to N, and M 1 , M 2 and N are positive integers.
  • the terminal device sends the N pieces of first information to the network device together, which can save the cost of transmission resources and improve resource utilization and spectrum efficiency of information transmission.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode. Multiplexing N pieces of first information together for transmission can improve resource utilization and spectrum efficiency of information transmission.
  • a communication method is provided.
  • the method can be executed by a network device or a chip or chip system on the network device side.
  • the method includes: the network device receives first information and second information sent by a terminal device, and the first The second information is used to determine at least one of the modulation mode or the code rate of the first information; the network device decodes the first information according to the second information.
  • the network device receives the first information and the second information sent by the terminal device.
  • the second information is used to determine the modulation mode and/or code rate of the first information.
  • the first information is the target modulation mode adopted by the terminal device. and/or after modulating the target code rate, the network device decodes the first information according to the second information.
  • the modulation method and/or code rate of the first information is determined by the terminal device itself. The lower the code rate, the higher the reliability of information transmission and the lower the spectrum efficiency; the higher the code rate, the lower the reliability of information transmission.
  • this solution can flexibly adjust the reliability and/or frequency offset efficiency of information transmission.
  • the first information includes artificial intelligence information and/or perception information.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the Corresponds to at least one of the code rate or the size of the transport block of the first information.
  • the network device can determine the modulation mode of the first information and/or the code rate of the first information corresponding to the first index according to the first index; the network device can then determine the modulation mode of the first information and/or the code rate of the first information according to the first index.
  • the code rate of the information can decode the first information.
  • the method further includes: the network device sending first configuration information to the terminal device, where the first configuration information includes the index of the first information and the A first mapping relationship of at least one of the type of the first information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information.
  • the first mapping relationship may also be predefined.
  • Both the terminal device and the network device store the first mapping relationship. The terminal device only sends the first index to the network device, and the network device can determine the modulation mode and/or the first information based on the first index and the first mapping relationship. The code rate of the first information, thereby decoding the first information.
  • the modulation mode of the first information and/or the code rate of the first information is the quality of service of the terminal device according to the first information or the relationship between the terminal device and At least one item of channel state information for transmitting information between the network devices is determined.
  • the service quality of the first information may include one or more of priority, reliability, and delay. For example, when the first information is high-priority information, the terminal device can use a lower code rate for transmission to improve transmission reliability; when the first information is low-priority information, the terminal device can use a higher code rate. The code rate is transmitted to improve the spectral efficiency of transmission.
  • the channel state information for transmitting information between the terminal device and the network device may include one or more of CQI, PMI, CRI, SSBRI, LI, RI or L1-RSRP.
  • CQI index when the CQI index is large, it means that the current channel state is relatively good and can support higher code rates and modulation orders.
  • CQI index when the CQI index is small, it means that the current channel state is relatively poor and can only support lower code rates and modulation orders. code rate and modulation order.
  • the attenuation of L1-RSRP is large, it means that the current channel state is relatively poor and can only support lower code rates and modulation orders.
  • L1-RSRP when the attenuation of L1-RSRP is small, it means that the current channel state is relatively good. , which can support higher code rates and modulation orders.
  • the modulation mode and/or code rate of the first information can match the transmission requirements of the first information, thereby improving the reliability or spectrum efficiency of information transmission.
  • the first index has a first value with at least one of the type of the first information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information. Mapping relations.
  • the modulation mode of the first information and/or the code rate of the first information may be the quality of service of the terminal device according to the first information or the channel state information of the information transmitted between the terminal device and the network device. At least one thing is certain.
  • the first index may also be determined by the terminal device according to the type of the first information, the size of the transmission block of the first information, the service quality of the first information, or the relationship between the terminal device and the terminal device. At least one item of channel state information for transmitting information between the network devices is determined.
  • the second information includes the type of the first information, the transport block size of the first information, the modulation mode of the first information, and the code rate of the first information. at least one of them.
  • the network device can directly determine the modulation mode of the first information and/or the code rate of the first information based on the second information, so that the first information can be decoded.
  • the method further includes: the network device sending second configuration information to the terminal device, the second configuration information instructing the terminal device to send the first information.
  • Resources include at least one of time domain resources, frequency domain resources, code domain resources and air domain resources; the network device receives the first information and the second information sent by the terminal device, including: the network device On the resource, the first information and the second information sent by the terminal device are received.
  • transmitting the first information through dedicated resources can reduce interference to existing uplink control information transmission, thereby improving the reliability of information transmission.
  • the network device receiving the first information and the second information sent by the terminal device includes: the network device receiving the third information and the fourth information sent by the terminal device, so
  • the third information includes N pieces of the first information, the N pieces of the first information correspond to M 1 modulation modes and/or M 2 code rates, and the fourth information is used to determine the third information
  • the modulation mode and/or code rate where M 1 is less than or equal to N, M 2 is less than or equal to N, and M 1 , M 2 and N are positive integers.
  • the terminal device sends the N pieces of first information to the network device together, which can save the cost of transmission resources and improve resource utilization and spectrum efficiency of information transmission.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode. Multiplexing N pieces of first information together for transmission can improve resource utilization and spectrum efficiency of information transmission.
  • a communication device which can be applied to the terminal device described in the first aspect.
  • the communication device can be a terminal device, or a device (for example, a chip, or a chip system) in the terminal device. , or circuit), or a device that can be used with terminal equipment or network equipment.
  • the communication device may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions described in the first aspect.
  • the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the device includes: a processing module, used to determine the first information; a transceiver module, used to send the first information and second information to the network device, and the second information is used to determine the At least one of the modulation mode or code rate of the first information.
  • the first information includes artificial intelligence information and/or perception information.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the Corresponds to at least one of the code rate or the size of the transport block of the first information.
  • the transceiver module is further configured to receive first configuration information from the network device, where the first configuration information includes the first index and the first information.
  • first configuration information includes the first index and the first information.
  • the modulation mode of the first information and/or the code rate of the first information is determined by the processing module according to the service quality of the first information or the relationship between the device and the Determined by at least one item of channel state information for transmitting information between the network devices.
  • the second information includes the type of the first information, the transport block size of the first information, the modulation mode of the first information, and the code rate of the first information. at least one of them.
  • the transceiver module is further configured to receive second configuration information from the network device, where the second configuration information indicates the resources for the transceiver module to send the first information
  • the resources include at least one of time domain resources, frequency domain resources, code domain resources and air domain resources; the transceiver module is specifically configured to send the first information and information to the network device on the resources. the second information.
  • the transceiver module is specifically configured to send third information and fourth information to the network device, where the third information includes N pieces of the first information, and the N The pieces of the first information correspond to M 1 modulation modes and/or M 2 code rates, and the fourth information is used to determine the modulation mode and/or code rate of the third information, where M 1 is less than or equal to N, M 2 is less than or equal to N, M 1 , M 2 and N are positive integers.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode.
  • the fourth aspect provides a communication device, which can be applied to the network device described in the second aspect.
  • the communication device can be a network device or a device in the network device (for example, a chip, or a chip system , or circuit), or a device that can be used with terminal equipment or network equipment.
  • the communication device may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions described in the second aspect.
  • the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the device includes: a transceiver module, configured to receive first information and second information sent by a terminal device, where the second information is used to determine the modulation mode or code rate of the first information.
  • a processing module configured to decode the first information according to the second information.
  • the first information includes artificial intelligence information and/or perception information.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the Corresponds to at least one of the code rate or the size of the transport block of the first information.
  • the transceiver module is further configured to send first configuration information to the terminal device, where the first configuration information includes the index of the first information and the first A first mapping relationship of at least one of the type of information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information.
  • the modulation mode of the first information and/or the code rate of the first information is the quality of service of the terminal device according to the first information or the relationship between the terminal device and At least one item of channel state information for transmitting information between the network devices is determined.
  • the second information includes the type of the first information, the transport block size of the first information, the modulation mode of the first information, and the code rate of the first information. at least one of them.
  • the transceiver module is further configured to send second configuration information to the terminal device, where the second configuration information indicates the resources for the terminal device to send the first information
  • the resources include at least one of time domain resources, frequency domain resources, code domain resources and air domain resources; the transceiver module is specifically configured to receive the first information sent by the terminal device on the resources. and the second information.
  • the transceiver module is specifically configured to receive third information and fourth information sent by the terminal device, where the third information includes N pieces of the first information, and the N pieces of the first information correspond to M 1 modulation modes and/or M 2 code rates, and the fourth information is used to determine the modulation mode and/or code rate of the third information, where M 1 is less than or Equal to N, M 2 is less than or equal to N, M 1 , M 2 and N are positive integers.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode.
  • the present application provides a communication device, which includes a processor configured to implement the first aspect and any of the possibilities in the first aspect through logic circuits or by executing instructions or computer programs. Ways to implement it.
  • the device further includes a transceiver for sending and receiving signals. For example, first information and second information are sent.
  • the processor is coupled to a memory, and the memory stores the above instructions or computer program.
  • the device further includes a memory for storing the above instructions.
  • the memory and the processor are integrated together; alternatively, the memory and the processor are provided separately.
  • the present application provides a communication device, which includes a processor configured to communicate Methods such as the second aspect and any of the possible implementation methods of the second aspect are implemented through logic circuits or by executing instructions or computer programs.
  • the device further includes a transceiver for sending and receiving signals. For example, first information and second information are received.
  • the processor is coupled to a memory, and the memory stores the above instructions or computer program.
  • the device further includes a memory for storing the above instructions.
  • the memory and the processor are integrated together; alternatively, the memory and the processor are provided separately.
  • a communication device including: an input-output interface and a logic circuit, the input-output interface being used to receive or output information; the logic circuit being used to perform the above-mentioned first aspect or any possibility of the first aspect. The implementation method described.
  • a communication device including: an input/output interface and a logic circuit, the input/output interface is used to receive or output information; the logic circuit is used to perform the above second aspect or any possibility of the second aspect. The implementation method described.
  • a ninth aspect provides a communication system, including: a terminal device of the method described in the first or second aspect and other communication devices that communicate with the terminal device, a network device, and other communications devices that communicate with the network device. equipment.
  • a computer-readable storage medium stores a computer program; when the computer program is run on a computer or processor, any one of the above-mentioned first aspect and the first aspect Methods in possible implementations are executed.
  • a computer-readable storage medium stores a computer program; when the computer program is run on a computer or processor, any of the above-mentioned second aspect and the second aspect are realized.
  • the method in one possible implementation is executed.
  • a twelfth aspect provides a computer program product containing instructions, including a computer program.
  • the computer program When the computer program is executed, the method in the above first aspect and any possible implementation manner of the first aspect is implemented.
  • a computer program product containing instructions including a computer program.
  • the computer program When the computer program is executed, the method in the above second aspect and any possible implementation manner of the second aspect is implemented.
  • Figures 1 to 5 are schematic diagrams of constellation diagrams with different modulation orders.
  • Figure 6 is a schematic diagram of semi-static transmission of uplink control information.
  • FIG. 7 is a schematic diagram of the network architecture applied to the communication method proposed in the embodiment of the present application.
  • FIG. 8 is a schematic flow interaction diagram of a communication method proposed by an embodiment of the present application.
  • Figure 9 is a schematic diagram of resources occupied by the first information and resources occupied by the second information.
  • Figure 10 is a schematic diagram of a network device indicating second configuration information or activating the second configuration information through DCI.
  • Figure 11 is a schematic diagram showing one-to-one correspondence between N pieces of second information and N pieces of first information.
  • Figure 12 is a schematic diagram in which one first information corresponds to N pieces of second information.
  • Figure 13 is a schematic diagram of two types of first information being transmitted in a frequency division multiplexing mode.
  • FIG. 14 is a schematic diagram showing that resources for sending the second information and resources for sending the first information are shared.
  • FIG. 15 is a schematic diagram showing that the resources for sending the second information and the resources for sending the first information are independent.
  • Figure 16 is a schematic diagram of two types of first information being transmitted in a time division multiplexing mode.
  • Figure 17 is another schematic diagram of two types of first information being transmitted in a time division multiplexing mode.
  • Figure 18 is a schematic diagram of two types of first information being transmitted according to predefined modes.
  • Figure 19 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 20 is a schematic block diagram of another communication device according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Embodiments of the present application can be applied to various communication systems, such as wireless local area network (WLAN), narrowband-internet of things (NB-IoT), and long term evolution systems (long term evolution, LTE), satellite communications, fifth generation (5th generation, 5G) systems, 6G systems and other communication systems evolved after 5G, etc.
  • WLAN wireless local area network
  • NB-IoT narrowband-internet of things
  • LTE long term evolution systems
  • 5G fifth generation
  • 6G systems 6G systems and other communication systems evolved after 5G, etc.
  • the communication system applicable to this application includes one or more sending ends and one or more receiving ends.
  • the signal transmission between the sending end and the receiving end can be transmitted through radio waves, or through transmission media such as visible light, laser, infrared, and optical fiber.
  • one of the sending end and the receiving end may be a terminal device, and the other may be a network device.
  • both the sending end and the receiving end can be terminal devices.
  • the terminal device involved in the embodiment of the present application may be a device with wireless transceiver function, which may specifically refer to a subscriber unit (subscriber unit), user equipment (UE), access terminal, cellular phone (cellular phone). ), user station, mobile station (MS), customer-premises equipment (CPE), remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem (modulator demodulator, modem), a laptop computer (laptop computer) ), machine type communication (MTC) equipment, and wireless terminals in self-driving (self driving), etc.
  • PDA personal digital assistant
  • MTC machine type communication
  • the terminal device may also be a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or a handheld device with wireless communication capabilities.
  • Equipment vehicle-mounted equipment, wearable devices, computing equipment or other processing equipment connected to wireless modems, communication equipment carried on high-altitude aircraft, drones, robots, smart point of sale (POS) machines, device-to-device Terminals in communication (device-to-device, D2D), terminals in vehicle to everything (V2X), virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ), wireless terminals in smart cities, wireless terminals in smart homes, or terminal equipment in future communication networks, etc.
  • POS point of sale
  • POS point of sale
  • device-to-device Terminals in communication device-to-device, D2D
  • the user equipment includes vehicle user equipment.
  • IOT Internet of things
  • devices that did not have communication functions before, such as but not limited to household appliances, vehicles, tools and equipment, and service equipment.
  • Equipment and service facilities begin to obtain wireless communication functions by configuring wireless communication units, so that they can access the wireless communication network and accept remote control.
  • Such equipment has wireless communication functions because it is equipped with a wireless communication unit, and therefore also belongs to the category of wireless communication equipment. There are no restrictions on this application.
  • the device used to implement the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to implement the function, such as a chip system.
  • the device can be installed in a terminal device or used in conjunction with the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device is a device with a wireless transceiver function and is used to communicate with the terminal device. It may also be a device that connects the terminal device to a wireless network.
  • the network device can be a node in the wireless access network, also called a base station, or a radio access network (RAN) node (or device).
  • RAN radio access network
  • the network equipment can be the evolved Node B (eNB or eNodeB) in LTE; or the next generation node B (next generation node B, gNB) in the 5G network or the future evolved public land mobile network (public land mobile network, PLMN) base stations, broadband network service gateways (broadband network gateway, BNG), aggregation switches or non-3rd generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • eNB evolved Node B
  • gNB next generation node B
  • PLMN public land mobile network
  • BNG broadband network gateway
  • aggregation switches or non-3rd generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • the network equipment in the embodiments of this application may include various forms of base stations, such as: relay stations, access points, equipment that implements base station functions in communication systems evolved after 5G, mobile switching centers, home base stations (home evolved NodeB or home Node B (HNB), baseband unit (BBU), device that performs base station functions in device to device (D2D), access point in wireless fidelity (WIFI) system (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (TRP), etc., vehicle-to-everything (V2X) ), equipment that performs base station functions in machine-to-machine (M2M) communication, etc., and can also include centralized units (centralized units) in cloud radio access network (cloud radio access network, C-RAN) systems, Network equipment in CU) and distributed unit (DU, non-terrestrial network, NTN) communication systems, which can be deployed on high-altitude platforms or satellites.
  • base stations such as: relay stations,
  • gNB or transmission point in NR can also be gNB or transmission point in NR , one or a group (including multiple) antenna panels of a base station in NR, or it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (building baseband unit, BBU) or a distributed unit (distributed unit, DU), etc., or the network device can also be a vehicle-mounted device, a wearable device, a network device in a 6G network, a network device in a future evolved PLMN network, etc., or a network device deployed on a satellite. According to the embodiments of this application There is no limit to this.
  • BBU building baseband unit
  • DU distributed unit
  • the network device can also be a vehicle-mounted device, a wearable device, a network device in a 6G network, a network device in a future evolved PLMN network, etc., or a network device deployed on a satellite.
  • base stations can be divided into macro base stations for providing macro cells (macro cells), micro base stations for providing micro cells (pico cells), and micro base stations for providing micro cells (pico cells).
  • macro cells macro cells
  • pico cells micro cells
  • micro base stations for providing micro cells
  • pico cells micro cells
  • a femto base station that provides femto cells.
  • future base stations may also use other names.
  • the BBU can be integrated into the same device as a radio frequency unit (RFU), which is connected to the antenna array through cables (such as but not limited to feeders).
  • the BBU can also be set up separately from the RFU.
  • the two are connected through optical fiber and communicate through, for example, but not limited to, the common public radio interface (CPRI) protocol.
  • the RFU is often called a remote radio unit (RRU), which is connected to the antenna array through cables.
  • the RRU can also be integrated with the antenna array.
  • the active antenna unit (active antenna unit, AAU) product adopts this structure.
  • the BBU can be further broken down into parts.
  • the BBU can be divided into It is further subdivided into CU and DU.
  • CU is responsible for processing non-real-time protocols and services
  • DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can be separated from the BBU or DU and integrated into the AAU.
  • Network equipment can communicate and interact with core network equipment and provide communication services to terminal equipment.
  • the core network equipment is, for example, equipment in the 5G network core network (core network, CN).
  • core network As a bearer network, the core network provides an interface to the data network, provides terminals with communication connections, authentication, management, policy control, and carries data services.
  • the device used to implement the function of the network device may be a network device; it may also be a device that can support the network device to implement the function, such as a chip system.
  • the device can be installed in a network device or used in conjunction with a network device.
  • wireless communication systems have experienced evolution and research from the first generation of analog communications to 5G NR and the developing 6G technology research.
  • high throughput and large connections have always been the core challenges of wireless communication networks.
  • the 5G communication system proposes enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC) and massive machine type communications (mMTC) and other applications as technical targets.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • mMTC massive machine type communications
  • 6G wireless communication system will inevitably evolve towards greater throughput, lower latency, higher reliability, greater number of connections, and higher spectrum utilization.
  • AI technology has set off a new round of technological revolution in human society.
  • Research on existing technologies shows that AI has important application potential in many aspects such as complex unknown environment modeling and learning, channel prediction, intelligent signal generation and processing, network status tracking and intelligent scheduling, network optimization deployment, etc., and is expected to promote future communications.
  • the evolution of paradigms and changes in network architecture are of great significance and value to 6G technology research.
  • Perception network in a narrow sense refers to a system with the capabilities of target positioning, target imaging, target detection, target recognition, etc. Target positioning includes ranging, speed measurement and angle measurement.
  • a broad sense network refers to a system that can sense the attributes and status of all services, networks, users/terminals, and environmental objects.
  • PUCCH of format 0 ⁇ 1 occupies a physical resource block (PRB) in the frequency domain.
  • PRB physical resource block
  • the corresponding number of bits is less than or equal to 2 and supports multiple UEs. Multiplexing. Among them, format 0 occupies 1 to 2 symbols in the time domain, and format 1 occupies 4 to 14 symbols in the time domain.
  • the number of bits corresponding to format 2 to 4 is greater than 2, where format 4 corresponds to a medium number of bits, and format 3 corresponds to a larger number of bits.
  • the constellation diagram is a constellation diagram formed by a quadrature amplitude modulation (quadrature amplitude modulation, QAM) codebook. Under the condition that the average energy is limited, the distance between constellation points can be maximized to reduce misjudgments, and at the same time provide a theoretical basis for demodulation and decoding on the receiving side.
  • the traditional constellation modulation method modulates the bit stream according to the modulation rules of the uniform constellation.
  • Figure 1 is a schematic diagram of the binary phase shift keying (BPSK) constellation diagram.
  • BPSK maps 1 bit to a symbol, and the modulation order is 1;
  • Figure 2 is a quadrature phase shift keying (quadrature) phase shift keying (QPSK) constellation diagram.
  • QPSK maps 2 bits into one symbol, and the modulation order is 2;
  • Figure 3-5 is a schematic diagram of a quadrature amplitude modulation (QAM) constellation:
  • Figure 3 is 16QAM Schematic diagram of the constellation diagram, 16QAM maps 4 bits into one symbol, and the modulation order is 4;
  • Figure 4 is a schematic diagram of the 64QAM constellation diagram, 64QAM maps 6 bits into one symbol, and the modulation order is 6;
  • Figure 5 is 256QAM Schematic diagram of the constellation diagram. 256QAM maps 8 bits into one symbol, and the modulation order is 8.
  • the code rate (code rate, CR) is determined by the number of bits of the original information before encoding, the resource elements (RE) occupied by the transmission, and the modulation order.
  • the number of bits of the original information before encoding is the transmission block size. .
  • CR number of bits of the original information before encoding/(modulation order*number of REs*number of layers).
  • 1 is the number of layers
  • 2 is the modulation order of QPSK
  • 12 is the number of subcarriers included in a PRB.
  • the modulation order and code rate can be determined according to the modulation and coding scheme (MCS) table.
  • MCS modulation and coding scheme
  • Table 2 it is an MCS table, in which q is arbitrary or unfixed, and may be 2, 3 or 4.
  • q is arbitrary or unfixed, and may be 2, 3 or 4.
  • the code rate is 251/1024.
  • reserved indicates reserved bits.
  • the modulation method when UCI is transmitted alone on the PUCCH, the modulation method uses Pi/2-BPSK, BPSK or QPSK. At the same time, in order to ensure the reliability of transmitting UCI, a relatively low code rate is used. Generally speaking, the modulation order and code rate used are fixed.
  • the modulation method of the UCI is the same as the modulation method of the multiplexed data
  • the network device indicates the MCS index in the downlink control information (DCI).
  • the compensation factor ⁇ offset is used to control the code rate, so that the code rate after UCI and data are multiplexed is slightly lower than the code rate when the data is transmitted alone.
  • a relatively low code rate is also used.
  • the modulation order and/or code rate of UCI are not updated as the channel status changes.
  • Figure 6 a schematic diagram of semi-persistent (SP) transmission of uplink control information is provided.
  • SP semi-persistent
  • CSI channel state information
  • the network device sends DCI to the terminal device, and the DCI is used to schedule the terminal device to send SP-CSI on the PUSCH; the terminal device receives the DCI from the network device and sends SP-CSI to the network device according to the DCI.
  • 6G AI model and perception network a large amount of artificial intelligence information and/or perception information will be generated in the 6G AI model and perception network, including:
  • AI model accuracy AI model loss value
  • gradients block error rate (BLER), bit error rate, BER), mean square error, mean absolute error, mean bias error), cross entropy loss, throughput, latency;
  • Auxiliary information for AI model training or update correlation of AI models in network equipment and terminal equipment, gradients of AI model parameters;
  • Sensing data Doppler shift, fading rate/level crossing rate (LCR), average fading duration (AFD), number of multipaths, fading rate, multipath duration Delay of multipath, average delay, delay spread, UE location, UE speed, temperature, humidity, weather information, environmental information, etc.
  • LCR fading rate/level crossing rate
  • ABD average fading duration
  • number of multipaths fading rate
  • multipath duration Delay of multipath, average delay, delay spread, UE location, UE speed, temperature, humidity, weather information, environmental information, etc.
  • the range of the number of bits of the above artificial intelligence information and/or perception information is larger than the range of the number of bits of data and/or UCI transmitted by the UE to the network device in some of the above implementations.
  • the artificial intelligence information and/or perception information in 6G The maximum number of bits may far exceed the number of bits supported by NR technology or existing solutions; and, due to the characteristics of artificial intelligence information and/or sensory information, a larger amount of data may correspond to lower reliability and higher Spectral efficiency. Therefore, NR technology or existing solutions cannot match the transmission requirements of artificial intelligence information and/or perception information in 6G technology.
  • embodiments of the present application propose a communication method that can improve the reliability or spectrum efficiency of information transmission.
  • the modulation method and/or code rate adopted in the embodiment of the present application may be called a customized modulation method and/or code rate.
  • FIG. 7 a schematic diagram of the network architecture applied to the communication method proposed in the embodiment of the present application is shown.
  • the embodiments of the present application can be applied to networks in which network devices and terminal devices communicate directly, and network devices communicate directly with network devices.
  • the network devices may communicate with each other through a backhaul link, which may be a wired backhaul link, such as an optical fiber or a copper cable, or a wireless backhaul link, such as a microwave.
  • the terminal device can communicate with the corresponding network device through a wireless link.
  • Network equipment is used to provide wireless access services to terminal devices.
  • each network device corresponds to a service coverage area, which can also be called a cell, as shown in each elliptical area in Figure 7.
  • Terminal devices entering this area can communicate with the network device through wireless signals to receive Wireless access services provided by network equipment.
  • a terminal device in the overlapping area can receive wireless signals from multiple network devices, so multiple network devices can provide services to the terminal device at the same time.
  • FIG. 8 a schematic flow interaction diagram of a communication method 800 proposed by the embodiment of the present application is shown.
  • the terminal device determines the first information.
  • the first information includes artificial intelligence information and/or perception information. That is to say, the first information may include artificial intelligence information, the first information may also include perception information, and the first information may also include artificial intelligence information and perception information.
  • This first information may also include other information generated in the AI model and perception network.
  • the first information may also be information generated in other communication scenarios, which is not specifically limited in the embodiments of the present application.
  • the first information may be called uplink AI sensing information (UASI).
  • UASI uplink AI sensing information
  • the terminal device sends the first information and the second information to the network device.
  • the second information is used to determine at least one of the modulation mode or the code rate of the first information.
  • the modulation mode of the first information can be reflected by the modulation order of the first information.
  • the modulation order of the first information can be understood as how many bits of the first information before encoding are mapped into one symbol.
  • the code rate of the first information is determined by the number of bits of the first information before encoding, the RE occupied by the transmission and the modulation order of the first information.
  • the number of bits of the first information before encoding can be understood as the transmission of the first information. block size.
  • the code rate of the first information, the modulation mode of the first information and the size of the transport block of the first information can be expressed by the following formula (1):
  • CR of the first information number of bits of the first information before encoding/(modulation order of the first information *number of REs*number of layers) (1) Among them, the number of REs and the number of layers occupied by the transmission of the first information Known to the terminal device. After the number of bits of the first information before encoding and the modulation order of the first information are determined, the code rate of the first information can be determined according to the above formula (1). After the number of bits of the first information before encoding and the code rate of the first information are determined, the modulation order of the first information can be determined according to the above formula (1).
  • the second information is used by the network device to determine at least one of the modulation mode or the code rate of the first information. That is to say, the second information is used by the network device to decode the received first information.
  • the first information received by the network device is encoded information.
  • the terminal device sends the first information
  • the first information before encoding needs to undergo a series of processing, such as encoding, rate matching, scrambling, modulation, layer mapping, precoding and other operations, where the modulation method of the first information and /or the code rate is determined by the terminal device, and the terminal device performs rate matching, modulation and other steps according to the modulation method and/or code rate determined by itself.
  • the terminal device may use frequency division multiplexing (FDM), time division multiplexing (TDM) or other predefined modes to send the first information and the second information to the network device.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • the network device receives the first information and the second information sent by the terminal device.
  • the second information is used to determine at least one of the modulation mode or the code rate of the first information.
  • the network device decodes the first information according to the second information.
  • the network device determines the modulation mode and code rate of the first information according to the second information, and decodes the first information according to the modulation mode and code rate.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information. At least one correspondence of .
  • the number of REs and layers occupied by the transmission of the first information are known to the terminal device. According to the above formula (1), when the size of the transmission block of the first information is fixed and the modulation mode of the first information is determined, it can The code rate of the first information is determined according to the modulation mode of the first information; when the size of the transport block of the first information is fixed and the code rate of the first information is determined, the code rate of the first information can also be determined based on the code rate of the first information. How information is modulated.
  • the type of the first information may be the name of the first information content, such as parameters related to AI performance in the artificial intelligence information, auxiliary information related to AI model training or updating in the artificial intelligence information, or the speed, direction and frequency of the terminal device.
  • Perceptual information such as Le offset.
  • the AI or perception models rely on environmental information.
  • the type of first information that the terminal device needs to feed back to the network device also changes.
  • the first information may include long-term first information and short-term first information. Some long-term first information may not change in a longer period, so the terminal device Frequent feedback to the network device is not required, and short-term first information with time-varying characteristics is greatly affected by the environment, and the type of first information that the terminal device needs to feed back may also be uncertain. Therefore, the terminal device needs to determine the type of the first information, and can flexibly determine the size and modulation method of the transport block of the first information according to the type of the first information. format and/or code rate.
  • the modulation mode of the first information and/or the code rate of the first information is determined by the terminal device according to the type of the first information, the size of the transmission block of the first information, the service quality of the first information, or the terminal device and the network device. Determined by at least one item of channel state information for transmitting information between.
  • the modulation mode of the first information and/or the code rate of the first information are determined by the terminal device according to the type of the first information.
  • the first information that currently needs to be fed back is environmental map information within a large area. This type of first information does not have very strict requirements on transmission reliability. However, since the transmission block corresponding to the environmental map includes a large number of bits, Higher spectral efficiency is required; therefore, the terminal device can modulate the first information using a higher modulation order and a higher code rate.
  • the first information that currently needs to be fed back is parameter information that has a key impact on processes such as channel estimation, such as the speed of the terminal equipment and Doppler spread. This type of first information has a significant impact on transmission reliability. Very strict requirements; therefore, the terminal device can use a lower modulation order and a lower code rate to modulate the first information.
  • the modulation mode and/or code rate of the first information is determined by the terminal device based on at least one of the service quality of the first information or the channel state information of the information transmitted between the terminal device and the network device.
  • the service quality of the first information includes priority, reliability, delay, etc.
  • the service quality of the first information has a corresponding relationship with the type of the first information.
  • the service quality of the first information is also determined accordingly. For example, when the first information is high-priority information, the terminal device can use a lower code rate for transmission to improve transmission reliability; when the first information is low-priority information, the terminal device can use a higher code rate.
  • the code rate is transmitted to improve the spectral efficiency of transmission.
  • the channel state information used to transmit information between terminal equipment and network equipment includes one or more of channel quality information CQI, PMI, CRI, SSBRI, LI, RI or L1-RSRP.
  • CQI index when the CQI index is large, it means that the current channel state is relatively good and can support higher code rates and modulation orders.
  • CQI index when the CQI index is small, it means that the current channel state is relatively poor and can only support lower code rates. Code rate and modulation order.
  • the attenuation of L1-RSRP is large, it means that the current channel state is relatively poor and can only support lower code rates and modulation orders.
  • the attenuation of L1-RSRP when the attenuation of L1-RSRP is small, it means that the current channel state is relatively good. , which can support higher code rates and modulation orders.
  • the type of the first information sent by the terminal device to the network device and/or the size of the transmission block of the first information may be determined by the terminal device based on the channel state information of the information transmitted between the terminal device and the network device.
  • the CQI index when the CQI index is larger, it means that the current channel status is better and can support the transmission of larger transport blocks, or the type of first information with larger transport blocks can be supported; when the CQI index is smaller, it means The current channel status is relatively poor and can only support the transmission of smaller transport blocks, or can only support the type of first information with smaller transport blocks.
  • the attenuation of L1-RSRP when the attenuation of L1-RSRP is large, it means that the current channel status is relatively poor and can only transmit larger transport blocks, or can support the type of first information with larger transport blocks; when the L1-RSRP When the attenuation is small, it means that the current channel status is relatively good and can support the transmission of smaller transport blocks, or can only support the type of first information with smaller transport blocks.
  • the first index is determined by the terminal device according to at least one of the type of the first information, the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information. For example, after the terminal device determines the modulation mode of the first information and/or the code rate of the first information, the terminal device may determine the first index corresponding to the first information based on the modulation mode of the first information and/or the code rate of the first information.
  • the network device can determine the type of the first information, the size of the transport block of the first information, the modulation mode of the first information, the code rate of the first information, etc. according to the first index, thereby decoding the first information.
  • both the terminal device and the network device store the first index, the type of the first information, and the modulation of the first information.
  • the first mapping relationship may be configured by the network device and sent to the terminal device.
  • the network device sends first configuration information to the terminal device.
  • the first configuration information includes the first index and the type of the first information, the modulation mode of the first information, the code rate of the first information, or the code rate of the first information.
  • examples of the type, modulation order, code rate and transport block size corresponding to different indexes are provided, where different modulation orders correspond to different modulation methods.
  • the table of parameters corresponding to different indexes may have other forms, including one or more rows of type, modulation order, code rate or transport block size. I won’t list them one by one here.
  • the first mapping relationship is a mapping relationship between the index and the modulation mode and/or code rate. That is to say, the first mapping relationship includes a mapping relationship between the first index and the modulation mode and/or code rate of the first information.
  • the network device can directly determine the modulation mode and/or code rate of the first information according to the first index and the first mapping relationship, thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between the index and the size and modulation mode of the transport block. That is to say, the first mapping relationship includes a mapping relationship between the first index and the size of the transport block of the first information and the modulation mode of the first information.
  • the network device can determine the size of the transmission block of the first information and the modulation mode of the first information based on the first index and the first mapping relationship, and can determine the code rate of the first information based on the above formula (1). , thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between the index and the size and code rate of the transport block. That is to say, the first mapping relationship includes a mapping relationship between the first index and the size of the transport block of the first information and the code rate of the first information.
  • the network device can determine the size of the transmission block of the first information and the code rate of the first information based on the first index and the first mapping relationship, and can determine the modulation mode of the first information based on the above formula (1). , thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between the index and the size, modulation mode and code rate of the transport block. That is to say, the first mapping relationship includes a mapping relationship between the first index and the size of the transport block of the first information, the modulation mode and the code rate of the first information.
  • the network device can determine the size, code rate, and modulation mode of the transmission block of the first information based on the first index and the first mapping relationship, thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between index, type and modulation mode. That is to say, the first mapping relationship includes a mapping relationship between the first index, the type of the first information, and the modulation mode of the first information.
  • the network device may determine the type and modulation mode of the first information based on the first index and the first mapping relationship. optional, class There is a second mapping relationship between the type or modulation mode and the size of the transport block.
  • the second mapping relationship may be predefined or preconfigured. The network device determines the second mapping relationship according to the second mapping relationship and the type or modulation mode of the first information.
  • the size of the transmission block of a piece of information is determined according to the above formula (1) to determine the code rate of the first piece of information, thereby decoding the first piece of information.
  • there is a third mapping relationship between the type or modulation mode and the code rate may be predefined or preconfigured.
  • the third mapping relationship of the network device and the type or modulation mode of the first information are determined.
  • the code rate of the first information thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between index, type and code rate. That is to say, the first mapping relationship includes a mapping relationship between the first index, the type of the first information, and the code rate of the first information.
  • the network device may determine the type and code rate of the first information based on the first index and the first mapping relationship.
  • the fourth mapping relationship may be predefined or preconfigured.
  • the network device determines the type or code rate according to the fourth mapping relationship and the first information. , determine the modulation mode of the first information, thereby decoding the first information.
  • the fifth mapping relationship may be predefined or preconfigured.
  • the network device determines the mapping relationship according to the fifth mapping relationship and the type or first information.
  • the code rate determines the size of the transmission block of the first information, and then determines the modulation mode of the first information according to the above formula (1), thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between index and type, modulation mode and code rate. That is to say, the first mapping relationship includes a mapping relationship between the first index and the type of the first information, the modulation mode and the code rate of the first information.
  • the network device can directly determine the type, code rate and modulation mode of the first information according to the first index and the first mapping relationship, thereby decoding the first information.
  • the first mapping relationship is a mapping relationship between the index and the size of the transport block. That is to say, the first mapping relationship includes a mapping relationship between the first index and the size of the transport block of the first information.
  • the network device can determine the size of the transport block of the first information based on the first index and the first mapping relationship, and then determine the modulation method and/or code rate of the first information based on the size of the transport block of the first information, The first information is thereby decoded.
  • the sixth mapping relationship may be predefined or preconfigured. The network device performs the mapping according to the sixth mapping relationship and the first information.
  • the size of the transport block can be used to determine the modulation mode and/or code rate of the first information, and decode the first information.
  • the first mapping relationship is a mapping relationship between index and type. That is to say, the first mapping relationship includes a mapping relationship between the first index and the type of the first information.
  • the network device may determine the type of the first information based on the first index and the first mapping relationship, and then determine the modulation mode and/or code rate of the first information based on the type of the first information, thereby processing the first information Decode.
  • the seventh mapping relationship may be predefined or preconfigured, and the network device may determine according to the seventh mapping relationship and the type of the first information. the modulation mode and/or code rate of the first information, and decoding the first information.
  • the first index may also be called the first value.
  • the index only includes four types, the specific values of the fields corresponding to different indexes are as shown in Table 4 or Table 5.
  • the second information includes at least one of the type of the first information, the size of the transport block of the first information, the modulation mode of the first information, and the code rate of the first information.
  • the network device may determine at least one of the type of the first information, the size of the transport block, the modulation mode and the code rate according to the second information, so as to decode the first information.
  • the second information includes the modulation method and/or code rate of the first information.
  • the network device can directly determine the modulation mode and/or code rate of the first information based on the second information, thereby decoding the first information.
  • the second information includes the modulation mode of the first information and the transport block size of the first information.
  • the network device may determine the code rate of the first information based on the modulation mode of the first information and the size of the transmission block of the first information, thereby decoding the first information.
  • the second information includes the code rate of the first information and the transport block size of the first information.
  • the network device may determine the modulation mode of the first information based on the code rate of the first information and the size of the transport block of the first information, thereby decoding the first information.
  • the second information includes the transport block size of the first information, the modulation mode and/or the code rate of the first information.
  • the second information includes the type of the first information, the modulation method and/or the code rate of the first information.
  • the second information includes the type of the first information, the transport block size of the first information, the modulation mode and the code rate of the first information.
  • the second information includes the size of the transport block of the first information.
  • the network device may determine the modulation mode and/or code rate of the first information based on the size of the transport block of the first information, thereby decoding the first information.
  • the sixth mapping relationship may be predefined or preconfigured. The network device performs the mapping according to the sixth mapping relationship and the first information.
  • the size of the transport block can be used to determine the modulation mode and/or code rate of the first information, and decode the first information.
  • the second information includes the type of the first information.
  • the network device may determine the modulation mode and/or code rate of the first information according to the type of the first information, thereby decoding the first information.
  • the seventh mapping relationship may be predefined or preconfigured, and the network device may determine according to the seventh mapping relationship and the type of the first information. the modulation mode and/or code rate of the first information, and decoding the first information.
  • the type of information is configured by the network device and sent to the end device.
  • the terminal device may determine the type of the first information from multiple types of information.
  • Network devices not only configure the type of information, but may also configure the size of the transmission block corresponding to each type of information.
  • the network device sends second configuration information to the terminal device, where the second configuration information indicates the resources for the terminal device to send the first information.
  • the second configuration information may also indicate resources for the terminal device to send the first information and the second information.
  • the resources include at least one of time domain resources, frequency domain resources, code domain resources and air domain resources.
  • the terminal device receives the second configuration information from the network device.
  • the terminal device sends the first information and the second information to the network device at the resource, and correspondingly, the network device receives the first information and the second information sent by the terminal device at the resource. Transmitting the first information through dedicated resources can reduce interference to existing uplink control information transmission, thereby improving the reliability of information transmission.
  • the resources indicated by the second configuration information include time domain resources and frequency domain resources.
  • the channel through which the terminal device sends the first information may be called the physical layer uplink AI and sensing channel (PUASCH).
  • PUASCH physical layer uplink AI and sensing channel
  • Figure 9 a schematic diagram of the resources occupied by the first information and the resources occupied by the second information in PUASCH is shown.
  • the white part indicates the resources occupied by the first information
  • the black and white dot part indicates the resources occupied by the second information
  • the black and white twill part indicates the resources occupied by the reference signal (RS).
  • RS reference signal
  • the resources indicated by the second configuration information may not include resources occupied by reference signals.
  • the second configuration information may be sent by the network device through radio resource control (RRC) signaling, or may be sent by the network device through physical layer signaling.
  • the physical layer signaling may be DCI.
  • the second configuration information may also be pre-configured in the terminal device. This application does not specifically limit this.
  • FIG. 10 a schematic diagram is shown in which the network device indicates the second configuration information or activates the second configuration information through DCI.
  • the network device sends DCI to the terminal device at time t 0.
  • the DCI indicates the second configuration information or activates the second configuration information.
  • the customized modulation method and/or code rate is used to perform the first operation. Transmission of information.
  • the terminal device can also send the first information to the network device on the existing PUCCH or PUSCH.
  • the terminal device sends third information and fourth information to the network device.
  • the third information includes N pieces of first information, and the N pieces of first information correspond to M 1 modulation modes and/or M 2 codes.
  • rate the fourth information is used to determine the modulation mode and/or code rate of the third information, that is to say, the fourth information is used to determine the modulation mode and/or code rate of N pieces of first information.
  • M 1 is less than or equal to N
  • M 2 is less than or equal to N
  • M 1 , M 2 and N are positive integers.
  • the types of the N first information may be different, and the sizes of the transmission blocks of the N first information may also be different.
  • N is equal to 2
  • M 1 is equal to 1
  • M 2 is equal to 2; that is to say, the two first pieces of information have the same modulation method and different code rates.
  • N is equal to 2
  • M 1 is equal to 2
  • M 2 is equal to 2; that is to say, the two first pieces of information have different modulation methods and different code rates.
  • the fourth information includes N pieces of second information, the N pieces of second information respectively indicate the modulation modes and/or code rates of the N pieces of first information, and the N pieces of second information have a one-to-one correspondence with the N pieces of first information. of. As shown in Figure 11, a schematic diagram showing one-to-one correspondence between N pieces of second information and N pieces of first information is shown.
  • the fourth information includes a second information indicating the modulation mode and/or code rate of the N pieces of first information.
  • a schematic diagram is shown in which one second information corresponds to N pieces of first information.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode. It can improve resource utilization and spectrum efficiency of information transmission.
  • the terminal device may use frequency division multiplexing, time division multiplexing or a predefined mode to send the third information and the fourth information to the network device. That is to say, the terminal device can use frequency division multiplexing, time division multiplexing or a predefined mode to send N pieces of first information and fourth information to the network device.
  • the resources for sending the fourth information and the resources for sending the third information may be shared or independent; that is to say, the resources for sending the second information and the resources for sending the first information may be shared or independent. is independent.
  • the resources for transmitting the second information are shared with the resources for transmitting the first information, which means that the resources for transmitting the second information are included in the resources for transmitting the first information; the resources for transmitting the second information are the same as the resources for transmitting the first information.
  • the resource may be independent, indicating that the resource used to transmit the second information is different from the resource used to transmit the first information.
  • the sources of information are separate.
  • FIG. 13 a schematic diagram is shown in which two types of first information are transmitted in a frequency division multiplexing mode.
  • the white part represents the resources occupied by the first information of high priority
  • the black and white dots represent the resources occupied by the first information of low priority
  • the black and white diagonal part represents the resources occupied by the reference signal. It should be understood that the figure in Figure 13 may not be used. Including resources occupied by reference signals.
  • the modulation method of the high-priority first information may be different from the modulation method of the low-priority first information.
  • the code rate of the high-priority first information and the code rate of the low-priority first information may also be different.
  • FIG. 14 a schematic diagram is shown that the resources for sending the second information and the resources for sending the first information are shared.
  • the white part represents the resources occupied by the first information with high priority
  • the black and white dots represent the resources occupied by the first information with low priority
  • the black and white diagonal part represents the resources occupied by the reference signal. It should be understood that the figure in Figure 14 may not be used. Including resources occupied by reference signals.
  • One second information corresponds to one first information
  • the resources for sending the first information include the resources for sending the second information.
  • the resource for sending the second information and the resource for sending the first information are independent.
  • the white part represents the resources occupied by the first information with high priority
  • the black and white dots represent the resources occupied by the first information with low priority
  • the black and white diagonal part represents the resources occupied by the reference signal. It should be understood that the figure in Figure 14 may not be used. Including resources occupied by reference signals.
  • One second information corresponds to N pieces of first information, and the resources for sending the second information are independent of the resources for sending N pieces of first information.
  • FIG. 16 a schematic diagram of two types of first information being transmitted in a time division multiplexing mode is shown. Different types of first information can occupy continuous time domain resources. Among them, the white part represents the resources occupied by the first information with high priority, the black and white dots represent the resources occupied by the first information with low priority, and the black and white diagonal part represents the resources occupied by the reference signal. It should be understood that Figure 16 may not include Resources occupied by reference signals.
  • the modulation method of the high-priority first information may be different from the modulation method of the low-priority first information.
  • the code rate of the high-priority first information and the code rate of the low-priority first information may also be different.
  • FIG. 17 another schematic diagram is shown in which two types of first information are transmitted in a time division multiplexing mode.
  • Different types of first information may occupy discontinuous time domain resources.
  • the white part represents the resources occupied by the first information of high priority
  • the black and white dots represent the resources occupied by the first information of low priority
  • the black and white diagonal part represents the resources occupied by the reference signal.
  • Figure 17 may not include Resources occupied by reference signals.
  • the modulation method of the high-priority first information may be different from the modulation method of the low-priority first information.
  • the code rate of the high-priority first information and the code rate of the low-priority first information may also be different.
  • Different types of first information can also be sent to the network device in predefined modes.
  • the high-priority first information can be multiplexed and transmitted together with the reference signal, and the resources used to transmit the high-priority first information can be placed close to the one used for transmitting the high-priority first information. Resources for transmitting reference signals. Therefore, more accurate channel estimation results can be obtained, thereby ensuring accurate demodulation and decoding of high-priority first information.
  • the resources used for transmitting the low-priority first information are slightly farther away from the resources used for transmitting the reference signals.
  • FIG. 18 a schematic diagram showing two types of first information being transmitted according to predefined modes is shown.
  • the resources occupied by the high-priority first information are close to the resources occupied by the reference signal, and the resources occupied by the low-priority first information are slightly far away from the resources occupied by the reference signal.
  • the white part represents the resources occupied by the high-priority first information
  • the black-and-white dotted part represents the resources occupied by the low-priority first information
  • the black-and-white diagonal part represents the resources occupied by the reference signal. It should be understood that Figure 18 may not include Resources occupied by reference signals.
  • the modulation method of the high-priority first information may be different from the modulation method of the low-priority first information.
  • the code rate of the high-priority first information is different from that of the low-priority first information.
  • the bitrate may also be different.
  • first information Multiple different types are multiplexed and transmitted together, and different types of first information can correspond to different priorities, reliability, modulation methods and code rates.
  • key first information such as AI model update requests, stop requests, and deduction data correspond to higher priority and reliability, so the terminal device can use a lower code rate for transmission.
  • the first information such as training data and sensing data of the AI model corresponds to lower reliability, and this type of first information includes a larger amount of information and a larger number of bits. In order to improve the transmission of this type of first information With high spectrum efficiency, terminal equipment can transmit at a higher code rate.
  • the terminal device sends first information and second information to the network device.
  • the second information is used by the network device to determine the modulation mode and/or code rate of the first information.
  • the first information After the terminal equipment adopts the target modulation method and/or the target code rate modulation, the network equipment decodes the first information according to the second information.
  • the modulation method and/or code rate of the first information is determined by the terminal device itself. The lower the code rate, the higher the reliability of information transmission and the lower the spectrum efficiency; the higher the code rate, the lower the reliability of information transmission.
  • this solution can flexibly adjust the reliability and/or frequency offset efficiency of information transmission.
  • the communication method provided by the embodiment of the present application has been introduced above.
  • the execution subject for executing the above communication method will be introduced below.
  • the embodiment of the present application provides a communication device.
  • a schematic structural diagram of a communication device 1900 according to the embodiment of the present application is provided.
  • the device may be applied or deployed in the terminal device in the method embodiment of the present application.
  • the communication device 1900 includes:
  • Processing module 1910 used to determine first information
  • the transceiver module 1920 is configured to send the first information and the second information to the network device, where the second information is used to determine at least one of the modulation mode or the code rate of the first information.
  • the first information includes artificial intelligence information and/or perception information.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the code rate of the first information or the first Corresponds to at least one of the size of the transport block of information.
  • the transceiver module 1920 is further configured to receive first configuration information from the network device, where the first configuration information includes the first index and the type of the first information, the first A first mapping relationship of at least one of the modulation mode of the information, the code rate of the first information, or the size of the transport block of the first information.
  • the modulation mode of the first information and/or the code rate of the first information are determined by the processing module 1910 according to the service quality of the first information or the transmission between the device and the network device. At least one item in the channel state information of the information is determined.
  • the second information includes at least one of the type of the first information, the transport block size of the first information, the modulation mode of the first information, and the code rate of the first information.
  • the transceiver module 1920 is also configured to receive second configuration information from the network device.
  • the second configuration information indicates the resources for the transceiver module to send the first information, and the resources include time domain. At least one of resources, frequency domain resources, code domain resources and air domain resources; the transceiver module 1920 is specifically configured to send the first information and the second information to the network device on the resources. .
  • the transceiver module 1920 is specifically configured to send third information and fourth information to the network device, where the third information includes N pieces of the first information, and the N pieces of the first information Corresponding to M 1 modulation modes and/or M 2 code rates, the fourth information is used to determine the modulation mode and/or code rate of the third information, where M 1 is less than or equal to N, and M 2 is less than or Equal to N, M 1 , M 2 and N are positive integers.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode.
  • FIG. 20 a schematic structural diagram of a communication device 2000 according to an embodiment of the present application is provided.
  • the device can be applied or deployed in the network equipment in the method embodiment of the present application.
  • the communication device 2000 includes:
  • the transceiver module 2010 is configured to receive the first information and the second information sent by the terminal device, where the second information is used to determine at least one of the modulation mode or the code rate of the first information;
  • the processing module 2020 is configured to decode the first information according to the second information.
  • the first information includes artificial intelligence information and/or perception information.
  • the second information includes a first index
  • the first index is related to the type of the first information, the modulation mode of the first information, the code rate of the first information or the first Corresponds to at least one of the size of the transport block of information.
  • the transceiver module 2010 is further configured to send first configuration information to the terminal device, where the first configuration information includes the index of the first information, the type of the first information, the A first mapping relationship of at least one of the modulation mode of the first information, the code rate of the first information, or the size of the transport block of the first information.
  • the modulation mode of the first information and/or the code rate of the first information is the quality of service of the terminal device according to the first information or the transmission between the terminal device and the network device. At least one item in the channel state information of the information is determined.
  • the second information includes at least one of the type of the first information, the transport block size of the first information, the modulation mode of the first information, and the code rate of the first information.
  • the transceiver module 2010 is further configured to send second configuration information to the terminal device, where the second configuration information indicates the resources for the terminal device to send the first information, and the resources include time domain. resources, frequency domain resources, code domain resources and air domain resources; the transceiver module 2010 is specifically configured to, on the resources, receive the first information and the second information sent by the terminal device. information.
  • the transceiver module 2010 is specifically configured to receive third information and fourth information sent by the terminal device, where the third information includes N pieces of the first information, and the N pieces of the first information
  • the information corresponds to M 1 modulation modes and/or M 2 code rates
  • the fourth information is used to determine the modulation mode and/or code rate of the third information, where M 1 is less than or equal to N, and M 2 is less than Or equal to N, M 1 , M 2 and N are positive integers.
  • the N pieces of first information are sent using frequency division multiplexing, time division multiplexing or a predefined mode.
  • An embodiment of the present application provides a communication device 2100. As shown in FIG. 21, a schematic block diagram of a communication device 2100 according to an embodiment of the present application is provided.
  • the communication device 2100 includes: a processor 2110, which is configured to implement the method in the embodiment of the present application through logic circuits or by executing instructions or computer programs.
  • the device also includes a memory 2120 for storing the above instructions.
  • the memory 2120 and the processor 2110 are integrated together; or, the memory 2120 and the processor 2110 are provided separately.
  • the device 2100 also includes a transceiver 2130 for sending and receiving signals. For example, sending the first information and the second information;
  • the processor 2110 is coupled to a memory 2120, and the memory 2120 stores the above instructions or computer programs to implement the methods in the embodiments of the present application.
  • the communication device can be applied to the terminal equipment or network equipment in the embodiment of the present application.
  • the above-mentioned processor 2110 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmd logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • Embodiments of the present application also provide a communication device.
  • the communication device includes an input-output interface and a logic circuit.
  • the input-output interface is used to receive or output information, for example, to receive first information and second information, or to send First information and second information;
  • the logic circuit is used to perform the method in this embodiment, for example, to determine the first information, or to decode the first information based on the second information.
  • Embodiments of the present application also provide a communication system, including a terminal device in the communication method provided by the embodiment of the present application and other communication devices that communicate with the terminal device, network devices, and other communications devices that communicate with the network device. equipment.
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program for implementing the method in the above method embodiment is stored. When the computer program is run on the computer or processor, the methods in the above method embodiments are executed.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, the method in the above method embodiment is executed.
  • the term "and/or” in this application is only an association relationship describing related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and A and B exist simultaneously. , there are three situations of B alone.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A , B and C, it can mean: A exists alone, B exists alone, C exists alone, A and B exist at the same time, A and C exist at the same time, C and B exist at the same time, A, B and C exist at the same time, these seven kinds Condition.
  • the second information is used to determine at least one of the modulation mode or the code rate of the first information, which can be expressed as, the second information is used to determine at least one of the modulation mode and the code rate of the first information.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信的方法和装置,能够提高信息传输的可靠性或频谱效率。该方法包括:终端设备确定第一信息;该终端设备向网络设备发送该第一信息和第二信息,第二信息用于确定该第一信息的调制方式或码率中的至少一项;网络设备接收终端设备发送的第一信息和第二信息;该网络设备根据该第二信息,对第一信息进行译码。

Description

通信的方法和装置
本申请要求于2022年05月25日提交中华人民共和国知识产权局、申请号为202210576571.4、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信的方法和装置。
背景技术
伴随着人工智能(artificial intelligence,AI)三大驱动力-算力、算法和数据相关技术的不断发展,AI技术已在人类社会中掀起新一轮的技术革命。已有的技术的研究表明,AI在复杂未知环境建模、学习,信道预测,智能信号生成与处理,网络状态跟踪与智能调度,网络优化部署等许多方面具有重要的应用潜力,有望促进未来通信范式的演变和网络架构的变革,对第六代(6th generation,6G)移动通信技术研究具有十分重要的意义和价值。此外,通信网络、感知网络和算力网络的融合也成为6G技术与业务的主导趋势之一。
在新无线(new radio,NR)系统中,上行控制信息(uplink control information,UCI)可以单独在物理层上行链路控制信道(physical uplink control channel,PUCCH)或者物理层上行链路共享信道(physical uplink shared channel,PUSCH)传输,也可以在PUSCH上与数据复用在一起传输。目前,当UCI在PUCCH或PUSCH上传输时,为了保证传输UCI的可靠性,采用相对较低的码率(code rate,CR)。在6G技术中,为了进一步提高系统的频谱效率,6G的AI模型和感知网络中会产生大量的人工智能信息和/或感知信息,人工智能信息和/或感知信息的比特数的范围相比现有技术中终端设备向网络设备传输的数据和/或UCI的比特数的范围更大,6G中人工智能信息和/或感知信息的最大比特数可能会远超NR技术或已有的方案支持的比特数;并且,由于人工智能信息和/或感知信息的特点,较大的数据量可能对应较低的可靠性和更高的频谱效率。因此,NR技术或已有的方案无法匹配6G技术中的人工智能信息和/或感知信息的传输需求。
发明内容
本申请提供了一种通信的方法和装置,能够灵活调整信息传输的可靠性或频谱效率。
第一方面,提供一种通信的方法,该方法能够由终端设备或终端设备侧的芯片或芯片系统执行,该方法包括:终端设备确定第一信息;所述终端设备向网络设备发送所述第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项。应理解,第一信息是调制后的。终端设备确定第一信息,可以理解为,终端设备对目标信息进行调制,获得第一信息。
基于上述技术方案,终端设备向网络设备发送该第一信息和第二信息,第二信息用于网络设备确定该第一信息的调制方式和/或码率。其中,码率越低,信息传输的可靠性越 高,频谱效率越低;码率越高,信息传输的可靠性越低,频谱效率越高;调制阶数越低,信息传输的可靠性越高,频谱效率越低;调制阶数越高,信息传输的可靠性越低,频谱效率越高。终端设备可以自行确定第一信息的调制方式和/或码率,灵活调整信息传输的可靠性和/或频偏效率。
在第一方面的某些实现方式中,所述第一信息包括人工智能信息和/或感知信息。
在第一方面的某些实现方式中,所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。基于上述方案,网络设备可以根据第一索引,确定该第一索引对应的第一信息的调制方式和/或第一信息的码率;网络设备再根据第一信息的调制方式和/或第一信息的码率可以对第一信息进行译码,可以降低信令开销。
在第一方面的某些实现方式中,所述方法还包括:所述终端设备从所述网络设备接收第一配置信息,所述第一配置信息中包括所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。可选的,第一映射关系也可以是预定义的。终端设备和网络设备都保存有该第一映射关系,终端设备仅向网络设备发送第一索引,网络设备便可根据该第一索引和第一映射关系确定出第一信息的调制方式和/或第一信息的码率,从而对第一信息进行译码,可以降低信令开销。
在第一方面的某些实现方式中,所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
其中,第一信息的服务质量可以包括优先级,可靠性,时延中的一项或多项。例如,当第一信息为高优先级的信息时,终端设备可以采用较低的码率传输,以提高传输的可靠性;当第一信息为低优先级的信息时,终端设备可以采用较高的码率传输,以提高传输的频谱效率。
其中,终端设备与网络设备之间传输信息的信道状态信息可以包括信道质量信息(channel quality information,CQI),预编码矩阵指示(precoding matrix indicator,PMI),信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI),同步/物理层广播信道资源块指示(SS/PBCH resource block indicator,SSBRI),层指示(layer indicator,LI),秩指示(rank indicator,RI),层1参考信号接收功率(layer 1-reference signal received power,L1-RSRP)中的一项或多项。例如,当CQI的索引较大时,表示当前的信道状态比较好,可以支持较高的码率和调制阶数,当CQI的索引较小时,表示当前的信道状态比较差,只能支持较低的码率和调制阶数。又例如,当L1-RSRP的衰减较大时,表示当前的信道状态比较差,只能支持较低的码率和调制阶数,当L1-RSRP的衰减较小时,表示当前的信道状态比较好,可以支持较高的码率和调制阶数。
因此,该方案中第一信息的调制方式和/或码率可以匹配该第一信息的传输需求,从而能够提高信息传输的可靠性或频谱效率。
所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项具有第一映射关系。第一信息的调制方式和/或所述第一信息的码率可以是终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。可选的,所述第一索 引也可以是所述终端设备根据所述第一信息的类型、所述第一信息的传输块的大小、所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
在第一方面的某些实现方式中,所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。基于上述方案,网络设备可以根据第二信息,直接确定该第一信息的调制方式和/或第一信息的码率,从而可以对第一信息进行译码。
在第一方面的某些实现方式中,所述方法还包括:所述终端设备从所述网络设备接收第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;所述终端设备向网络设备发送所述第一信息和第二信息,包括:所述终端设备在所述资源上,向所述网络设备发送所述第一信息和所述第二信息。
基于上述方案,通过专有的资源传输第一信息,可以减少对现有上行控制信息传输的干扰,从而提高信息传输的可靠性。
在第一方面的某些实现方式中,所述终端设备向网络设备发送所述第一信息和第二信息,包括:所述终端设备向所述网络设备发送第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。终端设备将N个第一信息一起发送给网络设备,可以节省传输资源的开销,提高资源利用率和信息传输的频谱效率。
在第一方面的某些实现方式中,所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。将N个第一信息复用在一起发送,可以提高资源利用率和信息传输的频谱效率。
第二方面,提供一种通信的方法,该方法能够由网络设备或网络设备侧的芯片或芯片系统执行,该方法包括:网络设备接收终端设备发送的第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项;所述网络设备根据所述第二信息,对所述第一信息进行译码。
基于上述技术方案,网络设备接收终端设备发送的第一信息和第二信息,第二信息用于确定该第一信息的调制方式和/或码率,该第一信息是终端设备采用目标调制方式和/或目标码率调制后的,网络设备根据第二信息对第一信息进行译码。第一信息的调制方式和/或码率是终端设备自行确定的,其中,码率越低,信息传输的可靠性越高,频谱效率越低;码率越高,信息传输的可靠性越低,频谱效率越高;调制阶数越低,信息传输的可靠性越高,频谱效率越低;调制阶数越高,信息传输的可靠性越低,频谱效率越高。因此,该方案可以灵活调整信息传输的可靠性和/或频偏效率。
在第二方面的某些实现方式中,所述第一信息包括人工智能信息和/或感知信息。
在第二方面的某些实现方式中,所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。基于上述方案,网络设备可以根据第一索引,确定该第一索引对应的第一信息的调制方式和/或第一信息的码率;网络设备再根据第一信息的调制方式和/或第一信息的码率可以对第一信息进行译码。
在第二方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息中包括所述第一信息的索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。可选的,第一映射关系也可以是预定义的。终端设备和网络设备都保存有该第一映射关系,终端设备仅向网络设备发送第一索引,网络设备便可根据该第一索引和第一映射关系确定出第一信息的调制方式和/或第一信息的码率,从而对第一信息进行译码。
在第二方面的某些实现方式中,所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
其中,第一信息的服务质量可以包括优先级,可靠性,时延中的一项或多项。例如,当第一信息为高优先级的信息时,终端设备可以采用较低的码率传输,以提高传输的可靠性;当第一信息为低优先级的信息时,终端设备可以采用较高的码率传输,以提高传输的频谱效率。
其中,终端设备与网络设备之间传输信息的信道状态信息可以包括CQI、PMI、CRI、SSBRI、LI、RI或L1-RSRP中的一项或多项。例如,当CQI的索引较大时,表示当前的信道状态比较好,可以支持较高的码率和调制阶数,当CQI的索引较小时,表示当前的信道状态比较差,只能支持较低的码率和调制阶数。又例如,当L1-RSRP的衰减较大时,表示当前的信道状态比较差,只能支持较低的码率和调制阶数,当L1-RSRP的衰减较小时,表示当前的信道状态比较好,可以支持较高的码率和调制阶数。
因此,该方案中第一信息的调制方式和/或码率可以匹配该第一信息的传输需求,从而能够提高信息传输的可靠性或频谱效率。
所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项具有第一映射关系。第一信息的调制方式和/或所述第一信息的码率可以是终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。可选的,所述第一索引也可以是所述终端设备根据所述第一信息的类型、所述第一信息的传输块的大小、所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
在第二方面的某些实现方式中,所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。基于上述方案,网络设备可以根据第二信息,直接确定该第一信息的调制方式和/或第一信息的码率,从而可以对第一信息进行译码。
在第二方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;所述网络设备接收终端设备发送的第一信息和第二信息,包括:所述网络设备在所述资源上,接收所述终端设备发送的所述第一信息和所述第二信息。
基于上述方案,通过专有的资源传输第一信息,可以减少对现有上行控制信息传输的干扰,从而提高信息传输的可靠性。
在第二方面的某些实现方式中,所述网络设备接收终端设备发送的第一信息和第二信息,包括:所述网络设备接收所述终端设备发送的第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。终端设备将N个第一信息一起发送给网络设备,可以节省传输资源的开销,提高资源利用率和信息传输的频谱效率。
在第二方面的某些实现方式中,所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。将N个第一信息复用在一起发送,可以提高资源利用率和信息传输的频谱效率。
第三方面,提供了一种通信装置,该装置可以应用于第一方面所述的终端设备中,该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备或网络设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该装置包括:处理模块,用于确定第一信息;收发模块,用于向网络设备发送所述第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项。
在第三方面的某些实现方式中,所述第一信息包括人工智能信息和/或感知信息。
在第三方面的某些实现方式中,所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
在第三方面的某些实现方式中,所述收发模块还用于,从所述网络设备接收第一配置信息,所述第一配置信息中包括所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
在第三方面的某些实现方式中,所述第一信息的调制方式和/或所述第一信息的码率是所述处理模块根据所述第一信息的服务质量或所述装置与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
在第三方面的某些实现方式中,所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
在第三方面的某些实现方式中,所述收发模块还用于,从所述网络设备接收第二配置信息,所述第二配置信息指示所述收发模块发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;所述收发模块具体用于,在所述资源上,向所述网络设备发送所述第一信息和所述第二信息。
在第三方面的某些实现方式中,所述收发模块具体用于,向所述网络设备发送第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
在第三方面的某些实现方式中,所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
第四方面,提供了一种通信装置,该装置可以应用于第二方面所述的网络设备中,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备或网络设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该装置包括:收发模块,用于接收终端设备发送的第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项;处理模块,用于根据所述第二信息,对所述第一信息进行译码。
在第四方面的某些实现方式中,所述第一信息包括人工智能信息和/或感知信息。
在第四方面的某些实现方式中,所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
在第四方面的某些实现方式中,所述收发模块还用于,向所述终端设备发送第一配置信息,所述第一配置信息中包括所述第一信息的索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
在第四方面的某些实现方式中,所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
在第四方面的某些实现方式中,所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
在第四方面的某些实现方式中,所述收发模块还用于,向所述终端设备发送第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;所述收发模块具体用于,在所述资源上,接收所述终端设备发送的所述第一信息和所述第二信息。
在第四方面的某些实现方式中,所述收发模块具体用于,接收所述终端设备发送的第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
在第四方面的某些实现方式中,所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
第五方面,本申请提供了一种通信装置,所述通信装置包括处理器,该处理器用于通过逻辑电路或通过执行指令或计算机程序以实现如第一方面以及第一方面中任一种可能实现方式的方法。
一种可能的实现中,该装置还包括收发器,用于收发信号。例如,发送第一信息和第二信息。
一种可能的实现中,该处理器与存储器耦合,该存储器存储上述指令或计算机程序。
一种可能的实现中,该装置还包括存储器,用于存储上述指令。可选的,该存储器和处理器集成在一起;或者,该存储器和处理器分开设置。
第六方面,本申请提供了一种通信装置,所述通信装置包括处理器,该处理器用于通 过逻辑电路或通过执行指令或计算机程序以实现如第二方面以及第二方面中任一种可能实现方式的方法。
一种可能的实现中,该装置还包括收发器,用于收发信号。例如,接收第一信息和第二信息。
一种可能的实现中,该处理器与存储器耦合,该存储器存储上述指令或计算机程序。
一种可能的实现中,该装置还包括存储器,用于存储上述指令。可选的,该存储器和处理器集成在一起;或者,该存储器和处理器分开设置。
第七方面,提供了一种通信设备,包括:输入输出接口和逻辑电路,所述输入输出接口,用于接收或输出信息;所述逻辑电路用于执行上述第一方面或第一方面任意可能的实现方式所述的方法。
第八方面,提供了一种通信设备,包括:输入输出接口和逻辑电路,所述输入输出接口,用于接收或输出信息;所述逻辑电路用于执行上述第二方面或第二方面任意可能的实现方式所述的方法。
第九方面,提供了一种通信系统,包括:第一方面或第二方面所述方法的终端设备以及与所述终端设备通信的其他通信设备、网络设备以及与所述网络设备通信的其他通信设备。
第十方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机或处理器上运行时,使得上述第一方面以及第一方面中任一种可能实现方式中的方法被执行。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机或处理器上运行时,使得上述第二方面以及第二方面中任一种可能实现方式中的方法被执行。
第十二方面,提供一种包含指令的计算机程序产品,包括计算机程序,当所述计算机程序被执行时,使得上述第一方面以及第一方面中任一种可能实现方式中的方法被实现。
第十三方面,提供一种包含指令的计算机程序产品,包括计算机程序,当所述计算机程序被执行时,使得上述第二方面以及第二方面中任一种可能实现方式中的方法被实现。
上述第三方面至第十三方面提供的方案,用于实现或配合实现上述第一方面或第二方面提供的方法,因此能够与第一方面或第二方面达到相同或相应的有益效果,此处不再进行赘述。
附图说明
图1至图5是不同调制阶数的星座图示意图。
图6是一种半静态传输上行控制信息的示意图。
图7是本申请实施例提出的通信的方法所应用的网络架构示意图。
图8是本申请实施例提出的一种通信的方法的示意性流程交互图。
图9是一种第一信息占用的资源和第二信息占用的资源的示意图。
图10是网络设备通过DCI指示第二配置信息或激活第二配置信息的示意图。
图11是N个第二信息与N个第一信息一一对应的示意图。
图12是一个第一信息对应N个第二信息的示意图。
图13是两种类型的第一信息按照频分复用的模式传输的示意图。
图14是发送第二信息的资源与发送第一信息的资源是共用的示意图。
图15是发送第二信息的资源与发送第一信息的资源是独立的示意图。
图16是两种类型的第一信息按照时分复用的模式传输的一种示意图。
图17是两种类型的第一信息按照时分复用的模式传输的另一种示意图。
图18是两种类型的第一信息按照预定义的模式传输的示意图。
图19是本申请实施例的一种通信装置的结构示意图。
图20是本申请实施例的另一种通信装置的示意性框图。
图21是本申请实施例的一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、长期演进系统(long term evolution,LTE)、卫星通信、第五代(5th generation,5G)系统、6G系统等5G之后演进的通信系统等。
适用于本申请的通信系统,包括一个或多个发送端,以及一个或多个接收端。其中,发送端和接收端之间的信号传输,可以是通过无线电波来传输,也可以通过可见光、激光、红外以及光纤等传输媒介来传输。
示例性地,发送端和接收端中的一个可以为终端设备,另一个可以为网络设备。示例性地,发送端和接收端都可以为终端设备。
本申请实施例中所涉及到的终端设备可以是一种具有无线收发功能的设备,具体可以指用户单元(subscriber unit)、用户设备(user equipment,UE)、接入终端、蜂窝电话(cellular phone)、用户站、移动台(mobile station,MS)、客户终端设备(customer-premises equipment,CPE)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modulator demodulator,modem)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)设备以及无人驾驶(self driving)中的无线终端等。终端设备还可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备、高空飞机上搭载的通信设备、无人机、机器人、智能销售点(point of sale,POS)机、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等。其中,用户设备包括车辆用户设备。随着物联网(internet of things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设 备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。本申请不作限制。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
示例性地,网络设备是具有无线收发功能的设备,用于与终端设备进行通信,也可以是一种将终端设备接入到无线网络的设备。网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可以是LTE中的演进型基站B(evolved Node B,eNB或eNodeB);或者5G网络中的下一代节点B(next generation node B,gNB)或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:中继站、接入点、5G之后演进的通信系统中实现基站功能的设备、移动交换中心、家庭基站(home evolved NodeB或home Node B,HNB)、基带单元(baseband unit,BBU)、设备到设备(device to device,D2D)中承担基站功能的设备、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU、非陆地通信网络(non-terrestrial network,NTN)通信系统中的网络设备,即可以部署于高空平台或者卫星。还可以为NR中的gNB或传输点,NR中的基站的一个或一组(包括多个)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(building baseband unit,BBU)或分布式单元(distributed unit,DU)等,或者,网络设备还可以为车载设备、可穿戴设备以及6G网络中的网络设备,或者未来演进的PLMN网络中的网络设备等,或者部署在卫星上的网络设备,本申请实施例对此不作限定。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(macro cell)的宏基站、用于提供微蜂窝(pico cell)的微基站和用于提供毫微微蜂窝(femto cell)的毫微微基站。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
网络设备的产品形态十分丰富。例如,在产品实现过程中,BBU可以与射频单元(radio frequency unit,RFU)集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(common public radio interface,CPRI)协议进行通信。在这种情况下,RFU通常称为射频拉远单元(remote radio unit,RRU),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,有源天线单元(active antenna unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU 进一步细分为CU和DU。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
网络设备可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为终端提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。
在过去的几十年中,无线通信系统经历了从第一代模拟通信到5G NR的演变和研究以及正在发展的6G技术研究。其中,高吞吐和大连接一直是无线通信网络的核心挑战。为了应对上述挑战,5G通信系统提出了增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable and low latency communications,URLLC)和大规模机器通信(massive machine typecommunications,mMTC)等应用作为技术目标。而6G无线通信系统必将向更大吞吐、更低时延、更高可靠性、更大连接数以及更高频谱利用率等方向演进。
伴随着AI三大驱动力-算力、算法和数据相关技术的不断发展,AI技术已在人类社会中掀起新一轮的技术革命。已有的技术的研究表明,AI在复杂未知环境建模、学习,信道预测,智能信号生成与处理,网络状态跟踪与智能调度,网络优化部署等许多方面具有重要的应用潜力,有望促进未来通信范式的演变和网络架构的变革,对6G技术研究具有十分重要的意义和价值。
此外,通信网络、感知网络和算力网络的融合也成为6G技术与业务的主导趋势之一。狭义的感知网络是指具有目标定位、目标成像、目标检测、目标识别等能力的系统,其中目标定位包括测距、测速和测角。广义的感知网络是指具有感知一切业务、网络、用户/终端以及环境物体的属性与状态的系统。
为了便于对本申请实施例的理解,下面对与本申请实施例相关的技术进行简单介绍。
PUCCH的具体格式(format)如表1所示,format 0~1的PUCCH在频域上占用一个物理资源块(physical resource block,PRB),对应的比特数小于或等于2,支持多个UE的复用(multiplexing)。其中,format 0在时域上占用1~2个符号,format 1在时域上占用4~14个符号。format 2~4对应的比特数大于2,其中format 4对应中等的比特数,format 3对应较大的比特数。
表1
当UCI在PUCCH或PUSCH上传输时,均采用较为保守的调制方式和码率。调制的 本质是将一定比特数目根据事先确定好的星座图进行映射,调制方式可通过不同的调制阶数体现,调制阶数可以理解为将多少比特映射为一个符号。其中,星座图为正交振幅调制(quadrature amplitude modulation,QAM)码本形成的星座图。在满足平均能量受限的条件下尽可能拉大星座点之间的距离、减少误判,同时为接收侧的解调和译码提供理论基础。传统的星座图调制方式是按照均匀星座图的调制规则对比特流进行调制。如图1至图5所示,出示了不同调制阶数的星座图示意图,横坐标表示I路信号,纵坐标表示Q路信号。其中,图1是二进制相移键控(binary phase shift keying,BPSK)星座图示意图,BPSK是将1个比特映射为一个符号,调制阶数为1;图2是正交相移键控(quadrature phase shift keying,QPSK)星座图示意图,QPSK是将2个比特映射为一个符号,调制阶数为2;图3-5为正交幅度调制(quadrature amplitude modulation,QAM)星座示意图:图3是16QAM星座图示意图,16QAM是将4个比特映射为一个符号,调制阶数为4;图4是64QAM星座图示意图,64QAM是将6个比特映射为一个符号,调制阶数为6;图5是256QAM星座图示意图,256QAM是将8个比特映射为一个符号,调制阶数为8。
码率(code rate,CR)由编码前的原始信息的比特个数、传输占用的资源元素(resource elements,RE)以及调制阶数确定,编码前的原始信息的比特个数即为传输块大小。具体地,CR=编码前的原始信息的比特个数/(调制阶数*RE个数*层数)。例如,format 3在频域上占用16个PRB、在时域上占用12个符号、调制方式为QPSK,层数为一层时,且编码前的原始信息的比特个数为100时,对应的码率=100/(2*12*12*16*1)=100/4608=0.02。其中,1是层数,2是QPSK的调制阶数,12是一个PRB包括的子载波的数量。
在一些实现方式中,调制阶数(modulation order)和码率可以根据调制与编码策略(modulation and coding scheme,MCS)表确定。如表2所示,为一种MCS表,其中q为任意的或不固定的,可能是2、3或4。例如,当MCS索引(index)为3、调制阶数为2时,码率为251/1024。其中,reserved表示保留位。
表2

在一些实现方式中,当UCI单独在PUCCH上传输时,调制方式采用Pi/2-BPSK、BPSK或者QPSK,同时,为了保证传输UCI的可靠性,采用相对较低的码率。一般来讲,采用的调制阶数和码率是固定的。
在一些实现方式中,当UCI与数据复用在PUSCH上传输时,UCI的调制方式和复用数据的调制方式相同,由网络设备在下行控制信息(downlink control information,DCI)中指示MCS索引,并利用补偿因子βoffset控制码率,使得UCI与数据复用后的码率略低于数据单独传输时的码率。
在一些实现方式中,当UCI单独在PUSCH上传输时,为了保证传输UCI的可靠性,也会采用相对较低的码率。除此之外,当UCI半静态在PUSCH上传输时,UCI的调制阶数和/或码率并不随着信道状态的变化更新。如图6所示,出示了一种半静态(semi persistent,SP)传输上行控制信息的示意图。其中,信道状态信息(channel state information,CSI)是一种重要的UCI。网络设备给终端设备发送DCI,该DCI用于调度终端设备在PUSCH上发送SP-CSI;终端设备接收来自网络设备的DCI,并根据该DCI向网络设备发送SP-CSI。
在6G技术中,6G的AI模型和感知网络中会产生大量的人工智能信息和/或感知信息,具体包括:
(1)与AI性能相关的参数:AI模型的准确性,AI模型的损失值(loss value),梯度(gradients),块错误率(block error rate,BLER),比特错误率(bit error rate,BER),均方误差(mean square error),均值绝对误差(mean absolute error),平均偏离误差(mean bias  error),交叉熵损失(cross entropy loss),吞吐(throughput),时延(latency);
(2)AI模型训练或更新的辅助信息:网络设备和终端设备中AI模型的相关性,AI模型的参数的梯度;
(3)感知数据:多普勒偏移,衰落速率/电平通过率(level crossing rate,LCR),评价衰落时长(average fading duration,AFD),多径的数量,衰落的速率,多径时延(delay of multipath),平均时延(average delay),时延扩展(delay spread),UE的位置,UE的速度,温度,湿度,天气信息,环境信息等。
上述人工智能信息和/或感知信息的比特数的范围相比上述一些实现方式中UE向网络设备传输的数据和/或UCI的比特数的范围更大,6G中人工智能信息和/或感知信息的最大比特数可能会远超NR技术或已有的方案支持的比特数;并且,由于人工智能信息和/或感知信息的特点,较大的数据量可能对应较低的可靠性和更高的频谱效率。因此,NR技术或已有的方案无法匹配6G技术中的人工智能信息和/或感知信息的传输需求。
为此,本申请实施例提出了一种通信的方法,能够提高信息传输的可靠性或频谱效率。本申请实施例采用的调制方式和/或码率可以称为定制化的调制方式和/或码率。
如图7所示,出示了本申请实施例提出的通信的方法所应用的网络架构示意图。本申请实施例可以应用于网络设备和终端设备、网络设备和网络设备直接通信的网络。其中,网络设备彼此之间可通过回程(backhaul)链路进行通信,该回程链路可以是有线回程链路,例如光纤或铜缆,该回程链路也可以是无线回程链路,例如微波。终端设备可通过无线链路与对应的网络设备通信。
网络设备用于为终端设备提供无线接入服务。具体来说,每个网络设备都对应一个服务覆盖区域,又可称为蜂窝,如图7中各椭圆区域所示,进入该区域的终端设备可通过无线信号与网络设备通信,以此来接受网络设备提供的无线接入服务。网络设备的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个网络设备的无线信号,因此可以同时由多个网络设备为该终端设备提供服务。
以上介绍了本申请实施例提出的通信的方法所应用的场景,以下将详细介绍本申请实施例提出的一种通信的方法的具体实现过程。
如图8所示,出示了本申请实施例提出的一种通信的方法800的示意性流程交互图。
810,终端设备确定第一信息。可选的,该第一信息包括人工智能信息和/或感知信息。也就是说,该第一信息可以包括人工智能信息,该第一信息也可以包括感知信息,该第一信息也可以包括人工智能信息和感知信息。该第一信息还可以包括在AI模型和感知网络中产生的其他信息。该第一信息也可以是其他通信场景中产生的信息,本申请实施例对此不做具体限定。
示例性地,第一信息可以称为上行链路AI及感知信息(uplink AI sensing information,UASI)。
820,终端设备向网络设备发送第一信息和第二信息,该第二信息用于确定该第一信息的调制方式或码率中的至少一项。
第一信息的调制方式可以通过第一信息的调制阶数体现,第一信息的调制阶数可以理解为将多少比特编码前的第一信息映射为一个符号。
第一信息的码率由编码前的第一信息的比特个数、传输占用的RE以及第一信息的调制阶数确定,编码前的第一信息的比特个数可以理解为第一信息的传输块大小。具体地, 第一信息的码率、第一信息的调制方式和第一信息的传输块的大小,可以通过如下公式(1)表示:
第一信息的CR=编码前的第一信息的比特个数/(第一信息的调制阶数*RE个数*层数)(1)其中,传输第一信息占用的RE个数和层数为终端设备已知的。当编码前的第一信息的比特个数和第一信息的调制阶数确定后,可以根据上述公式(1)确定第一信息的码率。当编码前的第一信息的比特个数和第一信息的码率确定后,可以根据上述公式(1)确定第一信息的调制阶数。
例如,PUCCH format 3在频域上占用16个PRB、在时域上占用12个符号、调制方式为QPSK,层数为一层时,且编码前的第一信息的比特个数为200时,对应的码率=200/(2*12*12*16*1)=200/4608=0.04。其中,1是层数,2是QPSK的调制阶数,12是一个PRB包括的子载波的数量。
具体地,第二信息用于网络设备确定该第一信息的调制方式或码率中的至少一项,也就是说,第二信息用于网络设备对接收到的第一信息进行译码。应理解,网络设备接收到的第一信息是编码后的信息。在终端设备发送第一信息时,需要对编码前的第一信息经过一系列的处理,例如编码、速率匹配、加扰、调制、层映射以及预编码等操作,其中第一信息的调制方式和/或码率是由终端设备确定的,终端设备设备根据自身确定的调制方式和/或码率进行速率匹配、调制等步骤。
示例性地,终端设备可以采用频分复用(frequency division multiplexing,FDM)、时分复用(time division multiplexing,TDM)或预定义的其他模式,向网络设备发送该第一信息和第二信息。
830,网络设备接收终端设备发送的第一信息和第二信息,该第二信息用于确定第一信息的调制方式或码率中的至少一项。
840,网络设备根据第二信息对第一信息进行译码。
具体地,网络设备根据第二信息确定第一信息的调制方式和码率,并根据该调制方式和码率对第一信息进行译码。
在第一种实现方式中,第二信息包括第一索引,该第一索引与第一信息的类型、第一信息的调制方式、第一信息的码率或第一信息的传输块的大小中的至少一项对应。传输第一信息占用的RE个数和层数为终端设备已知的,根据上述公式(1),当第一信息的传输块的大小固定时,第一信息的调制方式确定的情况下,可以根据第一信息的调制方式确定第一信息的码率;当第一信息的传输块的大小固定时,第一信息的码率确定的情况下,也可以根据第一信息的码率确定第一信息的调制方式。
第一信息的类型可以是第一信息内容的名称,例如人工智能信息中与AI性能相关的参数,人工智能信息中与AI模型训练或更新的辅助信息,或者终端设备的速度、方向以及多普勒偏移等感知信息。
AI或感知模型依赖于环境信息,当环境信息变化时,终端设备需要向网络设备反馈的第一信息的类型也随之变化。例如,第一信息可能包括长期(long-term)的第一信息与短期(short-term)的第一信息,某些长期的第一信息可能在较长的周期内不发生变化,因此终端设备不需要频繁向网络设备反馈,而具有时变特性的短期的第一信息受环境影响较大,终端设备需要反馈的第一信息的类型也可能不确定。因此,终端设备需要确定该第一信息的类型,根据该第一信息的类型可以灵活地确定该第一信息的传输块的大小、调制方 式和/或码率。
可选的,第一信息的调制方式和/或第一信息的码率是终端设备根据第一信息的类型、第一信息的传输块的大小、第一信息的服务质量或终端设备与网络设备之间传输信息的信道状态信息中的至少一项确定的。
示例性地,第一信息的调制方式和/或第一信息的码率是终端设备根据第一信息的类型确定的。例如,当前需要反馈的第一信息为大范围面积内的环境地图信息,该类型的第一信息对传输可靠性没有非常严格的要求,但是由于环境地图对应的传输块包括的比特数较大,需要更高的频谱效率;因此,终端设备可以采用较高的调制阶数和较高的码率对该第一信息进行调制。示例性地,当前需要反馈的第一信息为对信道估计等流程有关键影响的参数信息,例如终端设备的速度和多普勒扩展等参数信息,该种类型的第一信息对传输可靠性有非常严格的要求;因此,终端设备可以采用较低的调制阶数和较低的码率对该第一信息进行调制。
示例性地,第一信息的调制方式和/或码率是终端设备根据第一信息的服务质量或终端设备与网络设备之间传输信息的信道状态信息中的至少一项确定的。第一信息的服务质量包括优先级,可靠性,时延等。可选的,第一信息的服务质量与第一信息的类型具有对应关系,第一信息的类型确定后,第一信息的服务质量也随之确定。例如,当第一信息为高优先级的信息时,终端设备可以采用较低的码率传输,以提高传输的可靠性;当第一信息为低优先级的信息时,终端设备可以采用较高的码率传输,以提高传输的频谱效率。
终端设备与网络设备之间传输信息的信道状态信息包括信道质量信息CQI、PMI、CRI、SSBRI、LI、RI或L1-RSRP中的一项或多项。例如当CQI的索引较大时,表示当前的信道状态比较好,可以支持较高的码率和调制阶数,当CQI的索引较小时,表示当前的信道状态比较差,只能支持较低的码率和调制阶数。又例如,当L1-RSRP的衰减较大时,表示当前的信道状态比较差,只能支持较低的码率和调制阶数,当L1-RSRP的衰减较小时,表示当前的信道状态比较好,可以支持较高的码率和调制阶数。
可选的,终端设备向网络设备发送的第一信息的类型和/或第一信息的传输块的大小可以是终端设备根据该终端设备与网络设备之间传输信息的信道状态信息确定的。
例如,当CQI的索引较大时,表示当前的信道状态比较好,可以支持较大传输块的传输,或者可以支持具有较大传输块的第一信息的类型;当CQI的索引较小时,表示当前的信道状态比较差,只能支持较小传输块的传输,或者只能支持具有较小传输块的第一信息的类型。又例如,当L1-RSRP的衰减较大时,表示当前的信道状态比较差,只能较大传输块的传输,或者可以支持具有较大传输块的第一信息的类型;当L1-RSRP的衰减较小时,表示当前的信道状态比较好,可以支持较小传输块的传输,或者只能支持具有较小传输块的第一信息的类型。
可选的,第一索引是终端设备根据第一信息的类型、第一信息的调制方式、第一信息的码率或第一信息的传输块的大小中的至少一项确定的。例如,终端设备确定第一信息的调制方式和/或第一信息的码率后,可以根据第一信息的调制方式和/或第一信息的码率确定该第一信息对应的第一索引。
网络设备可以根据该第一索引确定第一信息的类型、第一信息的传输块的大小、第一信息的调制方式和第一信息的码率等,从而对第一信息进行译码。
应理解,终端设备和网络设备都保存有第一索引与第一信息的类型、第一信息的调制 方式、第一信息的码率或第一信息的传输块的大小中的至少一项的第一映射关系。
第一映射关系可以是网络设备配置并发送给终端设备的。可选的,网络设备向终端设备发送第一配置信息,该第一配置信息中包括第一索引与第一信息的类型、第一信息的调制方式、第一信息的码率或第一信息的传输块的大小中的至少一项的第一映射关系;终端设备从网络设备接收该第一配置信息,从而获得第一映射关系。应理解,第一映射关系也可以是预定义的。
如表3所示,出示了不同索引分别对应的类型(type)、调制阶数(modulation order)、码率和传输块的大小的示例,其中,不同调制阶数对应不同的调制方式。不同索引分别对应的参数的表格可以有其他形式,包括类型、调制阶数、码率或传输块的大小的一行或多行。在此不进行一一列举。
表3
示例性地,第一映射关系为索引与调制方式和/或码率的映射关系。也就是说,第一映射关系包括第一索引与第一信息的调制方式和/或码率的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系直接确定第一信息的调制方式和/或码率,从而对第一信息进行译码。
示例性地,第一映射关系为索引与传输块的大小和调制方式的映射关系。也就是说,第一映射关系包括第一索引与第一信息的传输块的大小和第一信息的调制方式的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系,确定该第一信息的传输块的大小和第一信息的调制方式,并根据上述公式(1)可以确定第一信息的码率,从而对第一信息进行译码。
示例性地,第一映射关系为索引与传输块的大小和码率的映射关系。也就是说,第一映射关系包括第一索引与第一信息的传输块的大小和第一信息的码率的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系,确定该第一信息的传输块的大小和第一信息的码率,并根据上述公式(1)可以确定第一信息的调制方式,从而对第一信息进行译码。
示例性地,第一映射关系为索引与传输块的大小、调制方式和码率的映射关系。也就是说,第一映射关系包括第一索引与第一信息的传输块的大小、第一信息的调制方式和码率的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系,确定该第一信息的传输块的大小、码率和调制方式,从而对第一信息进行译码。
示例性地,第一映射关系为索引与类型和调制方式的映射关系。也就是说,第一映射关系包括第一索引与第一信息的类型、第一信息的调制方式的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系,确定该第一信息的类型和调制方式。可选的,类 型或调制方式与传输块的大小之间有第二映射关系,该第二映射关系可以是预定义或预配置的,网络设备根据第二映射关系以及第一信息的类型或调制方式,确定第一信息的传输块的大小,再根据上述公式(1)确定第一信息的码率,从而对第一信息进行译码。可选的,类型或调制方式与码率之间有第三映射关系,该第三映射关系可以是预定义或预配置的,网络设备第三映射关系以及第一信息的类型或调制方式,确定第一信息的码率,从而对第一信息进行译码。
示例性地,第一映射关系为索引与类型和码率的映射关系。也就是说,第一映射关系包括第一索引与第一信息的类型、第一信息的码率的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系,确定该第一信息的类型和码率。可选的,类型或码率与调制方式之间有第四映射关系,该第四映射关系可以是预定义或预配置的,网络设备根据该第四映射关系以及第一信息的类型或码率,确定第一信息的调制方式,从而对第一信息进行译码。可选的,类型或码率与传输块的大小之间有第五映射关系,该第五映射关系可以是预定义或预配置的,网络设备根据该第五映射关系以及第一信息的类型或码率,确定第一信息的传输块的大小,再根据上述公式(1)确定第一信息的调制方式,从而对第一信息进行译码。
示例性地,第一映射关系为索引与类型、调制方式和码率的映射关系。也就是说,第一映射关系包括第一索引与第一信息的类型、第一信息的调制方式和码率的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系,直接确定该第一信息的类型、码率和调制方式,从而对第一信息进行译码。
示例性地,第一映射关系为索引与传输块的大小的映射关系。也就是说,第一映射关系包括第一索引与第一信息的传输块的大小的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系确定该第一信息的传输块的大小,再根据第一信息的传输块的大小确定第一信息的调制方和/或码率,从而对第一信息进行译码。可选的,传输块的大小与调制方式和/或码率之间有第六映射关系,该第六映射关系可以是预定义或预配置的,网络设备根据该第六映射关系以及第一信息的传输块的大小,可以确定第一信息的调制方式和/或码率,并对第一信息进行译码。
示例性地,第一映射关系为索引与类型的映射关系。也就是说,第一映射关系包括第一索引与第一信息的类型的映射关系。该情况下,网络设备可以根据第一索引和第一映射关系确定该第一信息的类型,再根据该第一信息的类型确定第一信息的调制方式和/或码率,从而对第一信息进行译码。可选的,类型与调制方式和/或码率之间有第七映射关系,该第七映射关系可以是预定义或预配置的,网络设备根据第七映射关系以及第一信息的类型可以确定第一信息的调制方式和/或码率,并对第一信息进行译码。
第一索引也可以称为第一数值。当索引只包括四种时,不同索引对应的字段的具体数值如表4或表5所示。
表4

表5
在第二种实现方式中,第二信息包括第一信息的类型、第一信息的传输块的大小、第一信息的调制方式、第一信息的码率中的至少一种信息。网络设备可以根据该第二信息确定第一信息的类型、传输块的大小、调制方式和码率中的至少一项,从而对第一信息进行译码。
示例性地,第二信息包括第一信息的调制方式和/或码率。该情况下,网络设备可以根据第二信息直接确定第一信息的调制方式和/或码率,从而对第一信息进行译码。
示例性地,第二信息包括第一信息的调制方式和第一信息的传输块大小。该情况下,网络设备可以根据第一信息的调制方式和第一信息的传输块的大小,确定第一信息的码率,从而对第一信息进行译码。
示例性地,第二信息包括第一信息的码率和第一信息的传输块大小。该情况下,网络设备可以根据第一信息的码率和第一信息的传输块的大小,确定第一信息的调制方式,从而对第一信息进行译码。
示例性地,第二信息包括第一信息的传输块大小、第一信息的调制方式和/或码率。
示例性地,第二信息包括第一信息的类型、第一信息的调制方式和/或码率。
示例性地,第二信息包括第一信息的类型、第一信息的传输块大小、第一信息的调制方式和码率。
示例性地,第二信息包括第一信息的传输块的大小。该情况下,网络设备可以根据第一信息的传输块的大小确定第一信息的调制方式和/或码率,从而对第一信息进行译码。可选的,传输块的大小与调制方式和/或码率之间有第六映射关系,该第六映射关系可以是预定义或预配置的,网络设备根据该第六映射关系以及第一信息的传输块的大小,可以确定第一信息的调制方式和/或码率,并对第一信息进行译码。
示例性地,第二信息包括第一信息的类型。该情况下,网络设备可以根据第一信息的类型确定第一信息的调制方式和/或码率,从而对第一信息进行译码。可选的,类型与调制方式和/或码率之间有第七映射关系,该第七映射关系可以是预定义或预配置的,网络设备根据第七映射关系以及第一信息的类型可以确定第一信息的调制方式和/或码率,并对第一信息进行译码。
可选的,信息的类型是网络设备配置并发送给终端设备的。当终端设备确定当前需要反馈的第一信息后,终端设备可以从多种信息的类型中确定该第一信息的类型。网络设备不仅配置信息的类型,还可能配置每种信息的类型对应的传输块的大小。
一种可能的实现中,网络设备向终端设备发送第二配置信息,该第二配置信息指示终端设备发送第一信息的资源。可选的,该第二配置信息也可以指示终端设备发送第一信息和第二信息的资源。该资源包括时域资源、频域资源、码域资源和空域资源中的至少一种。 对应地,终端设备从网络设备接收第二配置信息。
具体地,终端设备在该资源,向网络设备发送第一信息和第二信息,对应地,网络设备在该资源,接收终端设备发送的第一信息和第二信息。通过专有的资源传输第一信息,可以减少对现有上行控制信息传输的干扰,从而提高信息传输的可靠性。
示例性地,第二配置信息指示的资源包括时域资源和频域资源。终端设备发送第一信息的信道可以称为物理层上行AI及感知信道(physical UL AI and sensing channel,PUASCH)。如图9所示,出示了一种PUASCH中第一信息占用的资源和第二信息占用的资源的示意图。其中,白色部分表示第一信息占用的资源,黑白点部分表示第二信息占用的资源,黑白斜纹部分表示参考信号(reference signal,RS)占用的资源。应理解,第二配置信息指示的资源也可以不包括参考信号占用的资源。
应理解,该第二配置信息可以是网络设备通过无线资源控制(radio resource control,RRC)信令发送的,可以是网络设备通过物理层信令发送的,可选的,物理层信令可以为DCI。该第二配置信息也可以是预配置在终端设备中的。本申请对此不做具体限定。如图10所示,出示了网络设备通过DCI指示第二配置信息或激活第二配置信息的示意图。网络设备在t0时刻向终端设备发送DCI,该DCI指示第二配置信息或者激活第二配置信息,在t1、t2和t3时刻采用定制化的调制方式和/或码率进行第一信息的传输。
一种可能的实现中,终端设备也可以在现有的PUCCH或PUSCH,向网络设备发送第一信息。
一种可能的实现中,终端设备向网络设备发送第三信息和第四信息,该第三信息包括N个第一信息,N个第一信息对应M1种调制方式和/或M2种码率,第四信息用于确定第三信息的调制方式和/或码率,也就是说,第四信息用于确定N个第一信息的调制方式和/或码率。其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。N个第一信息的类型可能是不同的,N个第一信息的传输块的大小也可能是不同的。例如,N等于2,M1等于1、M2等于2;也就是说,2个第一信息的调制方式相同、码率不同。又例如,N等于2,M1等于2、M2等于2;也就是说,2个第一信息的调制方式不同、码率也不同。
示例性地,第四信息包括N个第二信息,N个第二信息分别指示N个第一信息的调制方式和/或码率,N个第二信息与N个第一信息是一一对应的。如图11所示,出示了N个第二信息与N个第一信息一一对应的示意图。
示例性地,第四信息包括一个第二信息,该第二信息指示N个第一信息的调制方式和/或码率。如图12所示,出示了一个第二信息对应N个第一信息的示意图。
可选的,N个第一信息是采用频分复用、时分复用或预定义的模式发送的。可以提高资源利用率和信息传输的频谱效率。
可选的,终端设备可以采用频分复用、时分复用或预定义的模式,向网络设备发送第三信息和第四信息。也就是说,终端设备可以采用频分复用、时分复用或预定义的模式,向网络设备发送N个第一信息和第四信息。其中,发送第四信息的资源与发送第三信息的资源可以是共用的、也可以是独立的;也就是说,发送第二信息的资源与发送第一信息的资源可以是共用的、也可以是独立的。发送第二信息的资源与发送第一信息的资源是共用的,表示用于传输第二信息的资源包括在用于传输第一信息的资源里面;发送第二信息的资源与发送第一信息的资源可以是独立的,表示用于传输第二信息的资源与用于传输第一 信息的资源是分开的。
如图13所示,出示了两种类型的第一信息按照频分复用的模式传输的示意图。其中,白色部分表示高优先级的第一信息占用的资源,黑白点部分表示低优先级的第一信息占用的资源,黑白斜纹部分表示参考信号占用的资源;应理解,图13中也可以不包括参考信号占用的资源。高优先级的第一信息的调制方式与低优先级的第一信息的调制方式可能是不同的,高优先级的第一信息的码率与低优先级的第一信息的码率也可能是不同的。
如图14所示,出示了发送第二信息的资源与发送第一信息的资源是共用的示意图。其中,白色部分表高优先级的第一信息占用的资源,黑白点部分表示低优先级的第一信息占用的资源,黑白斜纹部分表示参考信号占用的资源;应理解,图14中也可以不包括参考信号占用的资源。一个第二信息对应一个第一信息,发送第一信息的资源包括发送第二信息的资源。
如图15所示,出示了发送第二信息的资源与发送第一信息的资源是独立的示意图。其中,白色部分表高优先级的第一信息占用的资源,黑白点部分表示低优先级的第一信息占用的资源,黑白斜纹部分表示参考信号占用的资源;应理解,图14中也可以不包括参考信号占用的资源。一个第二信息对应N个第一信息,发送第二信息的资源独立于发送N个第一信息的资源。在下文图16至图18中,发送第二信息的资源与发送第一信息的资源的关系与图14和图15相同,本申请实施例不再赘述。如图16所示,出示了两种类型的第一信息按照时分复用的模式传输的一种示意图。不同类型的第一信息可以占用连续的时域资源。其中,白色部分表高优先级的第一信息占用的资源,黑白点部分表示低优先级的第一信息占用的资源,黑白斜纹部分表示参考信号占用的资源;应理解,图16也可以不包括参考信号占用的资源。高优先级的第一信息的调制方式与低优先级的第一信息的调制方式可能是不同的,高优先级的第一信息的码率与低优先级的第一信息的码率也可能是不同的。
如图17所示,出示了两种类型的第一信息按照时分复用的模式传输的另一种示意图。不同类型的第一信息可以占用不连续的时域资源。其中,白色部分表高优先级的第一信息占用的资源,黑白点部分表示低优先级的第一信息占用的资源,黑白斜纹部分表示参考信号占用的资源;应理解,图17也可以不包括参考信号占用的资源。高优先级的第一信息的调制方式与低优先级的第一信息的调制方式可能是不同的,高优先级的第一信息的码率与低优先级的第一信息的码率也可能是不同的。
不同类型的第一信息也可以采用预定义的模式向网络设备发送。例如,为了保证高优先级的第一信息的传输可靠性,可以将高优先级的第一信息与参考信号复用在一起传输,将用于传输高优先级的第一信息的资源靠近用于传输参考信号的资源。因此,可以获得更准确的信道估计结果,从而保证对高优先级的第一信息的准确解调和译码。而将用于传输低优先级的第一信息的资源稍微远离用于传输参考信号的资源。
如图18所示,出示了两种类型的第一信息按照预定义的模式传输的示意图。高优先级的第一信息占用的资源靠近参考信号占用的资源,低优先级的第一信息占用的资源稍微远离参考信号占用的资源。其中,白色部分表高优先级的第一信息占用的资源,黑白点部分表示低优先级的第一信息占用的资源,黑白斜纹部分表示参考信号占用的资源;应理解,图18也可以不包括参考信号占用的资源。高优先级的第一信息的调制方式与低优先级的第一信息的调制方式可能是不同的,高优先级的第一信息的码率与低优先级的第一信息的 码率也可能是不同的。
多种不同类型的第一信息复用在一起传输,不同类型的第一信息可以对应不同的优先级、可靠性、调制方式和码率。例如,AI模型的更新请求、停止请求、推演数据等关键的第一信息对应较高的优先级和可靠性,因此终端设备可以采用较低的码率进行传输。而AI模型的训练数据和感知数据等第一信息对应较低的可靠性,并且该种类型的第一信息包括的信息量较大、比特数较多,为了提高传输该种类型的第一信息的频谱效率,终端设备可以采用较高的码率进行传输。
在本申请实施例提供的技术方案中,终端设备向网络设备发送第一信息和第二信息,第二信息用于网络设备确定该第一信息的调制方式和/或码率,该第一信息是终端设备采用目标调制方式和/或目标码率调制后的,网络设备根据第二信息对第一信息进行译码。第一信息的调制方式和/或码率是终端设备自行确定的,其中,码率越低,信息传输的可靠性越高,频谱效率越低;码率越高,信息传输的可靠性越低,频谱效率越高;调制阶数越低,信息传输的可靠性越高,频谱效率越低;调制阶数越高,信息传输的可靠性越低,频谱效率越高。因此,该方案可以灵活调整信息传输的可靠性和/或频偏效率。
以上介绍了本申请实施例提供的通信的方法,以下将介绍用于执行上述通信的方法的执行主体。
本申请实施例提出了一种通信装置,如图19所示,出示了本申请实施例的一种通信装置1900的结构示意图。该装置可以应用于或部署于本申请方法实施例中的终端设备中。该通信装置1900包括:
处理模块1910,用于确定第一信息;
收发模块1920,用于向网络设备发送所述第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项。
可选的,所述第一信息包括人工智能信息和/或感知信息。
可选的,所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
可选的,所述收发模块1920还用于,从所述网络设备接收第一配置信息,所述第一配置信息中包括所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
可选的,所述第一信息的调制方式和/或所述第一信息的码率是所述处理模块1910根据所述第一信息的服务质量或所述装置与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
可选的,所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
可选的,所述收发模块1920还用于,从所述网络设备接收第二配置信息,所述第二配置信息指示所述收发模块发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;所述收发模块1920具体用于,在所述资源上,向所述网络设备发送所述第一信息和所述第二信息。
可选的,所述收发模块1920具体用于,向所述网络设备发送第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
可选的,所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
本申请实施例提出了一种通信装置,如图20所示,出示了本申请实施例的一种通信装置2000的结构示意图。该装置可以应用于或部署于本申请方法实施例中的网络设备中。该通信装置2000包括:
收发模块2010,用于接收终端设备发送的第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项;
处理模块2020,用于根据所述第二信息,对所述第一信息进行译码。
可选的,所述第一信息包括人工智能信息和/或感知信息。
可选的,所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
可选的,所述收发模块2010还用于,向所述终端设备发送第一配置信息,所述第一配置信息中包括所述第一信息的索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
可选的,所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
可选的,所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
可选的,所述收发模块2010还用于,向所述终端设备发送第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;所述收发模块2010具体用于,在所述资源上,接收所述终端设备发送的所述第一信息和所述第二信息。
可选的,所述收发模块2010具体用于,接收所述终端设备发送的第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
可选的,所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
本申请实施例提供了一种通信装置2100,如图21所示,出示了本申请实施例的一种通信装置2100的示意性框图。
该通信装置2100包括:处理器2110,该处理器2110用于通过逻辑电路或通过执行指令或计算机程序以实现本申请实施例中的方法。
可选的,该装置还包括存储器2120,用于存储上述指令。可选的,该存储器2120和处理器2110集成在一起;或者,该存储器2120和处理器2110分开设置。
可选的,该装置2100还包括收发器2130,用于收发信号。例如,发送第一信息和第二信息;
可选的,该处理器2110与存储器2120耦合,该存储器2120存储上述指令或计算机程序,以实现本申请实施例中的方法。该通信装置可以应用于本申请实施例中的终端设备或网络设备中。
上述的处理器2110可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供了一种通信设备,该通信设备包括输入输出接口和逻辑电路,该输入输出接口用于接收或输出信息,例如用于接收第一信息和第二信息、或用于发送第一信息和第二信息;该逻辑电路,用于执行上述本实施例中的方法,例如用于确定第一信息、或用于根据第二信息对第一信息进行译码。
本申请实施例还提供了一种通信系统,包括本申请实施例提供的通信的方法中的终端设备以及与所述终端设备通信的其他通信设备、网络设备以及与所述网络设备通信的其他通信设备。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机或处理器上运行时,使得上述方法实施例中的方法被执行。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得上述方法实施例中的方法被执行。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的信息,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本申请中“A或B中至少一项”类似的表述,可以表述为“A和B中至少一项”。本申请中“A、B或C中至少一项”类似的表述,可以表述为“A、B和C中至少一项”。例如,第二信息用于确定第一信息的调制方式或码率中的至少一项,可以表述为,第二信息用于确定第一信息的调制方式和码率中的至少一项。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信的方法,其特征在于,包括:
    终端设备确定第一信息;
    所述终端设备向网络设备发送所述第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一信息包括人工智能信息和/或感知信息。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第一配置信息,所述第一配置信息中包括所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
  5. 根据权利要求3或4所述的方法,其特征在于,
    所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
  6. 根据权利要求1或2所述的方法,其特征在于,
    所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;
    所述终端设备向网络设备发送所述第一信息和第二信息,包括:
    所述终端设备在所述资源上,向所述网络设备发送所述第一信息和所述第二信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备向网络设备发送所述第一信息和第二信息,包括:
    所述终端设备向所述网络设备发送第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
  9. 根据权利要求8所述的方法,其特征在于,
    所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
  10. 一种通信的方法,其特征在于,包括:
    网络设备接收终端设备发送的第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项;
    所述网络设备根据所述第二信息,对所述第一信息进行译码。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一信息包括人工智能信息和/或感知信息。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息中包括所述第一信息的索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
  15. 根据权利要求10或11所述的方法,其特征在于,
    所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;
    所述网络设备接收终端设备发送的第一信息和第二信息,包括:
    所述网络设备在所述资源上,接收所述终端设备发送的所述第一信息和所述第二信息。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述网络设备接收终端设备发送的第一信息和第二信息,包括:
    所述网络设备接收所述终端设备发送的第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
  18. 根据权利要求17所述的方法,其特征在于,
    所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
  19. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一信息;
    收发模块,用于向网络设备发送所述第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项。
  20. 根据权利要求19所述的装置,其特征在于,
    所述第一信息包括人工智能信息和/或感知信息。
  21. 根据权利要求19或20所述的装置,其特征在于,
    所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
  22. 根据权利要求21所述的装置,其特征在于,
    所述收发模块还用于,从所述网络设备接收第一配置信息,所述第一配置信息中包括所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
  23. 根据权利要求21或22所述的装置,其特征在于,
    所述第一信息的调制方式和/或所述第一信息的码率是所述处理模块1910根据所述第一信息的服务质量或所述装置与所述网络设备之间传输信息的信道状态信息中的至少一项确定的。
  24. 根据权利要求19或20所述的装置,其特征在于,
    所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
  25. 根据权利要求19至24中任一项所述的装置,其特征在于,
    所述收发模块还用于,从所述网络设备接收第二配置信息,所述第二配置信息指示所述收发模块发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;
    所述收发模块具体用于,在所述资源上,向所述网络设备发送所述第一信息和所述第二信息。
  26. 根据权利要求19至25中任一项所述的装置,其特征在于,
    所述收发模块具体用于,向所述网络设备发送第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
  27. 根据权利要求26所述的装置,其特征在于,
    所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
  28. 一种通信装置,其特征在于,包括:
    收发模块,用于接收终端设备发送的第一信息和第二信息,所述第二信息用于确定所述第一信息的调制方式或码率中的至少一项;
    处理模块,用于根据所述第二信息,对所述第一信息进行译码。
  29. 根据权利要求28所述的装置,其特征在于,
    所述第一信息包括人工智能信息和/或感知信息。
  30. 根据权利要求28或29所述的装置,其特征在于,
    所述第二信息包括第一索引,所述第一索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项对应。
  31. 根据权利要求30所述的装置,其特征在于,
    所述收发模块还用于,向所述终端设备发送第一配置信息,所述第一配置信息中包括所述第一信息的索引与所述第一信息的类型、所述第一信息的调制方式、所述第一信息的码率或所述第一信息的传输块的大小中的至少一项的第一映射关系。
  32. 根据权利要求30或31所述的装置,其特征在于,
    所述第一信息的调制方式和/或所述第一信息的码率是所述终端设备根据所述第一信息的服务质量或所述终端设备与所述网络设备之间传输信息的信道状态信息中的至少一 项确定的。
  33. 根据权利要求28或29所述的装置,其特征在于,
    所述第二信息包括所述第一信息的类型、第一信息的传输块大小、所述第一信息的调制方式、所述第一信息的码率中的至少一种。
  34. 根据权利要求28至33中任一项所述的装置,其特征在于,
    所述收发模块还用于,向所述终端设备发送第二配置信息,所述第二配置信息指示所述终端设备发送所述第一信息的资源,所述资源包括时域资源、频域资源、码域资源和空域资源中的至少一种;
    所述收发模块具体用于,在所述资源上,接收所述终端设备发送的所述第一信息和所述第二信息。
  35. 根据权利要求28至34中任一项所述的装置,其特征在于,
    所述收发模块具体用于,接收所述终端设备发送的第三信息和第四信息,所述第三信息包括N个所述第一信息,所述N个所述第一信息对应M1种调制方式和/或M2种码率,所述第四信息用于确定所述第三信息的调制方式和/或码率,其中,M1小于或等于N,M2小于或等于N,M1、M2和N为正整数。
  36. 根据权利要求35所述的装置,其特征在于,
    所述N个所述第一信息是采用频分复用、时分复用或预定义的模式发送的。
  37. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信设备执行如权利要求1至18中任一项所述的方法。
  38. 一种通信设备,其特征在于,包括:输入输出接口和逻辑电路;
    所述输入输出接口,用于接收或输出信息;
    所述逻辑电路用于执行权利要求1至18中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机或处理器上运行时,使得权利要求1至18中任一项所述的方法被执行。
  40. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被执行时,使得如权利要求1至18任一项所述的方法被实现。
  41. 一种通信系统,其特征在于,包括:终端设备和网络设备,所述终端设备用于实现权利要求1至9中任一项所述的方法,所述网络设备用于实现权利要求10至18中任一项所述的方法。
PCT/CN2023/095859 2022-05-25 2023-05-23 通信的方法和装置 WO2023226992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210576571.4A CN117176294A (zh) 2022-05-25 2022-05-25 通信的方法和装置
CN202210576571.4 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226992A1 true WO2023226992A1 (zh) 2023-11-30

Family

ID=88918527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095859 WO2023226992A1 (zh) 2022-05-25 2023-05-23 通信的方法和装置

Country Status (2)

Country Link
CN (1) CN117176294A (zh)
WO (1) WO2023226992A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置
WO2019029473A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 传输数据的方法、终端设备和网络设备
WO2020030113A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 传输上行控制信息的方法和通信装置
WO2022028273A1 (zh) * 2020-08-06 2022-02-10 华为技术有限公司 通信的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置
WO2019029473A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 传输数据的方法、终端设备和网络设备
WO2020030113A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 传输上行控制信息的方法和通信装置
WO2022028273A1 (zh) * 2020-08-06 2022-02-10 华为技术有限公司 通信的方法和装置

Also Published As

Publication number Publication date
CN117176294A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US11516751B2 (en) Adjustments of power spectral densities associated with a reference signal sequence in a wireless communication network
US20200084731A1 (en) Power control method and device
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2023226992A1 (zh) 通信的方法和装置
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022077142A1 (zh) 物理上行共享信道发送的方法和通信装置
CN116636185A (zh) 终端及通信方法
WO2024016903A1 (zh) 一种通信方法及装置
CN112423313B (zh) 传输块大小确定方法及装置
CN113852577B (zh) 无线通信方法和通信装置
WO2024100918A1 (ja) 端末、基地局及び通信方法
WO2023274140A1 (zh) 一种传输控制信息的方法和装置
WO2023243614A1 (ja) 端末、基地局及び通信方法
WO2023011381A1 (zh) 数据处理方法及装置
WO2023280189A1 (zh) 一种通信方法以及相关装置
US11996938B2 (en) Encoder selection
US20240088957A1 (en) Beamforming for backscatter radio
WO2024065583A1 (en) Vector quantization methods for ue-driven multi-vendor sequential training
US20240040573A1 (en) Information transmission method, apparatus, and system
US20240049023A1 (en) Channel state feedback with dictionary learning
WO2023070361A1 (en) Ris configuration computation using reinforcement learning
WO2024029157A1 (ja) 端末、基地局、及び、通信方法
US20240172113A1 (en) Transmit power control commands for network power saving modes
US20240112039A1 (en) Client-agnostic learning and zero-shot adaptation for federated domain generalization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811063

Country of ref document: EP

Kind code of ref document: A1