WO2022028273A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2022028273A1
WO2022028273A1 PCT/CN2021/108564 CN2021108564W WO2022028273A1 WO 2022028273 A1 WO2022028273 A1 WO 2022028273A1 CN 2021108564 W CN2021108564 W CN 2021108564W WO 2022028273 A1 WO2022028273 A1 WO 2022028273A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
target
frequency domain
information
value
Prior art date
Application number
PCT/CN2021/108564
Other languages
English (en)
French (fr)
Inventor
刘显达
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022028273A1 publication Critical patent/WO2022028273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and apparatus.
  • the data processing flow generally includes that the network device sends data to the terminal device, the terminal device receives the data, and processes the data. According to the processing result, the terminal device feeds back the data to the network device. corresponding response information.
  • the response information fed back by the terminal device may be, for example, hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information or HARQ-negative acknowledgment (NACK) information.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • NACK HARQ-negative acknowledgment
  • the response information fed back by the terminal equipment may be transmitted in the form of a sequence on the PUCCH.
  • sequence 1 and sequence 2 as an example, on the same physical resource, it may be specified that sequence 1 is used to indicate ACK, and sequence 2 is used to indicate NACK.
  • the network device Based on the signal received on the physical resource, the network device performs correlation detection on sequence 1 and sequence 2 respectively, and determines that the sequence with high correlation is the sequence transmitted by the terminal device, thereby determining whether the terminal device sends NACK or ACK.
  • a larger delay spread may cause a cyclic shift of the transmitted sequence in the time domain, thereby affecting the sequence detection performance, for example, false detection may occur.
  • the present application provides a communication method and device, so as to reduce the probability of error detection, thereby improving transmission reliability.
  • a method of communication is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a chip system or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: the terminal device determines the number of information bits of the uplink control information UCI to be transmitted; the terminal device determines the target transmission resource according to the value of the information bits of the UCI to be transmitted; the terminal device uses the The target transport resource sends the information bits to the network device.
  • the terminal device may determine the number of UCI bits to be transmitted according to a preset rule.
  • the preset rule may be, for example, a HARQ-ACK codebook generation mechanism.
  • the preset rule may be, for example, a CSI feedback bit generation mechanism.
  • the preset rule may be, for example, an SR feedback bit generation mechanism.
  • the preset rule may also be a multiplexing mechanism of multiple UCI bits.
  • the terminal device determines the target transmission resource according to the value of the information bit of the UCI to be transmitted. It can be understood that the terminal device can determine the target transmission resource according to the content of the information bit to be transmitted. Alternatively, it can also be understood that the terminal device determines the target transmission resource according to the information source to be transmitted.
  • the target transmission resource may include, for example, information required for processing information bits, such as cyclic shift values, modulation constellation points required for modulation, OCC, etc.; and may also include resources used for transmitting information bits, such as time domain resources, airspace resources, frequency domain resources, etc.; may also include other information related to transmission, such as the mapping relationship between multiple airspace resources and multiple time-frequency resources.
  • the information bits have different values, and the corresponding transmission resources are not all the same.
  • the first transmission resource is determined as the target transmission resource; when the first bit is 1, the second transmission resource is determined as the target transmission resource.
  • the first transmission resource and the second transmission resource are determined as the target transmission resource; when the first bit is 11, the second transmission resource and the third transmission resource are determined as the target. transfer resources.
  • the information bit takes 0 to correspond to NACK, and the information bit takes 1 to correspond to ACK.
  • each bit corresponds to a data block, for example, a transmission block (Transmission block, TB), or (Code Block Group, CBG).
  • an information bit of 0 corresponds to a positive SR
  • an information bit of 1 corresponds to a negative SR
  • the terminal device can determine the corresponding transmission resource according to the specific content of the information bit to be transmitted (ie, the value of the information bit), and use its corresponding transmission resource to process and transmit the information bit.
  • the value of the information bit may be different depending on whether the feedback is ACK or NACK, or a combination of ACK and NACK, and the value of the corresponding information bit is different. That is to say, different feedback results correspond to different transmission resources, and when different results are fed back, the resources corresponding to the feedback results are used for processing and/or transmission. In this way, the transmission reliability can be improved as much as possible, and in some scenarios, the probability of erroneous detection can also be avoided.
  • the method further includes: the terminal device receives multiple beamforming mode indications; the terminal device obtains a value according to the information bit of the UCI to be transmitted, Determining the target transmission resource includes: the terminal device determining a target beamforming mode indication according to the value of the information bit of the UCI to be transmitted, where the target beamforming mode indication is the multiple beamforming mode indications one or more of.
  • the information bits are jointly carried on the same PUCCH resource, and the PUCCH resource corresponds to the multiple beamforming mode indications.
  • the terminal device determines the target beamforming mode indication according to the value of the information bits of the UCI to be transmitted, including: the terminal device is based on the value of the information bits of the UCI to be transmitted, and indicates from a plurality of candidate beamforming modes.
  • a beamforming mode indication is determined as the target transmission resource.
  • the terminal device may determine the beamforming mode used for transmission according to whether the transmission is ACK or NACK or a combination of ACK and NACK.
  • the transmission of 1-bit HARQ-ACK information is taken as an example. If the terminal device determines to transmit ACK, or the terminal device determines that the value of HARQ-ACK is 1, the terminal device uses the first beamforming method to instruct the transmission of ACK; if the terminal device determines to transmit NACK, or the terminal device determines that HARQ-ACK is transmitted The value of is 0, then the terminal device uses the second beamforming mode to instruct to transmit NACK.
  • the above-mentioned corresponding relationship may be pre-agreed or preset.
  • the terminal device determines to transmit 2-bit ACK or 2-bit NACK, the terminal device uses the first beamforming mode to indicate; if the terminal device determines to transmit 1-bit NACK and 1-bit ACK, the terminal device uses the second beamforming mode to indicate .
  • the above-mentioned corresponding relationship may be pre-agreed or preset.
  • the spatial isolation corresponding to different beamforming methods is relatively large. Therefore, by using different beamforming methods to transmit information bits with different values, the correlation between the two signals can be made very low, which can reduce the The false detection probability of ACK/NACK.
  • the multiple beamforming manner indications have a preset first correspondence with multiple values of the information bits
  • the terminal device according to the The value of the information bits of the UCI to be transmitted, and determining the indication of the target beamforming mode includes: the terminal device determining the target beam according to the value of the information bits of the UCI to be transmitted and the first correspondence Indication of how to give shape.
  • the first correspondence may be predefined by a protocol, or predefined by a network device, or configured by a network device, or predefined by a network device and a terminal device, or may be The network device indicates to the terminal device (for example, the network device indicates to the terminal device when indicating multiple beamforming modes), etc., which is not limited.
  • a corresponding relationship can be understood as an association.
  • the value of the information bit is associated with the beamforming mode indication.
  • the first correspondence may be defined on the basis of a certain information bit value (or defined on the basis of a certain known information bit value). For example, in the case where the number of information bits is a fixed value, the corresponding relationship between the values of different information bits and the beamforming mode indication is defined.
  • the first correspondence may be the correspondence between ACK/NACK and the beamforming method; in another possible form, the first correspondence may be the correspondence between the value of HARQ-ACK and the beamforming method In another possible form, the first corresponding relationship may be the corresponding relationship between the value of ACK/NACK or HARQ-ACK, the value of CS, and the beamforming mode.
  • the number of first correspondences is related to the number of information bits.
  • the number of the first correspondence is 2 K
  • K is the number of information bits of the HARQ-ACK.
  • the terminal device may determine, according to the information bits to be transmitted, based on the preset first correspondence, the target beamforming mode indication for sending the information bits from a plurality of beamforming mode indications. Therefore, not only the probability of occurrence of erroneous detection can be reduced, but also the signaling overhead can be reduced.
  • the beamforming manner indication includes any one of the following manners: a reference signal resource or an index value of a reference signal port, transmission precoding matrix information, transmission Antenna port.
  • the beamforming mode indication may be determined by reference signal resources or index values of reference signal ports.
  • the terminal device receives the beamforming mode indication, which may be replaced by the terminal device receiving the indication of the reference signal resource or the index value of the reference signal port.
  • the beamforming mode indication may be determined by TMPI.
  • the terminal device receives the beamforming mode indication, which may be replaced by the terminal device receiving the TMPI indication.
  • the beamforming mode indication may be determined by the transmit antenna port.
  • the terminal device receives the beamforming mode indication, which may be replaced by the terminal device receiving the indication of the transmitting antenna port.
  • each of the beamforming manner indications respectively corresponds to different uplink power control parameters.
  • the information bits are repeatedly transmitted on multiple transmission units respectively, and the target transmission resource includes a beamforming mode indication corresponding to each of the transmission units.
  • the beamforming mode indication corresponding to each of the transmission units is one or more of the multiple beamforming mode indications.
  • adjacent transmission units correspond to different beamforming manners.
  • the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • a time domain unit may include one or more OFDM symbols, or a time domain unit may include one or more slots, and so on.
  • a frequency domain unit may include one or more RBs, or a time domain unit may include one or more subcarriers, and so on.
  • the transmission unit as a time domain unit as an example.
  • the N time domain units included in one transmission resource may be numbered in chronological order, and N is an integer greater than 1.
  • the time unit occupied by transmission unit 1 includes an odd-numbered time unit in the time domain
  • the time unit occupied by transmission unit 2 includes an even-numbered time unit in the time domain
  • the time unit includes the first N/2 time units in the time domain
  • the time unit occupied by the transmission unit 2 includes the last N/2 time units in the time domain.
  • the target transmission resource includes an indication of the beamforming mode corresponding to each transmission unit, which can mean that the terminal device can determine the beamforming mode adopted by the terminal device in each transmission unit according to the value of the information bit.
  • the target transmission resource includes an indication of the beamforming mode corresponding to each transmission unit, or it can also mean that the terminal device can determine the correspondence between each transmission unit and multiple beamforming modes according to the value of the information bit.
  • the transmission can be repeated in multiple transmission units.
  • a time-domain repeated transmission scheme may be adopted, that is, feedback is repeatedly sent on multiple time-domain resources.
  • the terminal device may transmit the same information bits on multiple time domain units, or transmit the same modulation symbols generated by the same information bits.
  • the receiving end can perform joint processing on the signals received on multiple time domain units to improve reliability.
  • the method further includes: the terminal device receiving multiple beamforming mode indications, where the multiple beamforming mode indications include a first beamforming mode indication and second beamforming mode indication; the multiple transmission units include a first transmission unit and a second transmission unit, and when the information bit takes the value of the first bit, the first transmission unit corresponds to the first transmission unit. a beamforming mode indication and the second transmission unit corresponds to the second beamforming mode indication; when the information bit is the second bit, the first transmission unit corresponds to the second beamforming mode mode indication and the second transmission unit corresponds to the first beamforming mode indication.
  • the mapping sequence of the beamforming mode indication on each transmission unit is: the first transmission unit uses the first beamforming mode to indicate, and the second transmission unit uses the second beamforming mode
  • the mapping sequence of the beamforming mode indication on each transmission unit is: the first transmission unit uses the second beamforming mode to indicate, and the second transmission unit uses the first beamforming mode instruct.
  • different transmission timings are sent in different beamforming methods, which enables multiple stations to receive data at different transmission timings and perform centralized processing.
  • the mapping modes are the multiple mapping modes.
  • the corresponding relationship between the transmission unit and the multiple beamforming mode indications the method further includes: the terminal device, according to the second corresponding relationship and the information bit value of the UCI to be transmitted, determines each A beamforming mode indication corresponding to each of the transmission units.
  • the second correspondence may be pre-defined by a protocol, or pre-specified by a network device, or configured by a network device, or pre-agreed between a network device and a terminal device, or It is instructed by the network device to the terminal device (eg, instructed by the network device to the terminal device when multiple beamforming modes are instructed), etc., which is not limited.
  • a corresponding relationship can be understood as an association.
  • the value of the information bit is associated with the mapping method.
  • the second correspondence may be defined on the basis of certain information bit values. For example, when the number of information bits is a fixed value, the corresponding relationship between the values of different information bits and the mapping manner is defined.
  • the number of second correspondences is related to the number of information bits.
  • the number of the second correspondence is 2 K , where K is the number of information bits of the HARQ-ACK.
  • the number of second correspondences is related to the number of cooperative TRPs, for example, it may be 2.
  • the number of the second correspondence is the same as the number indicated by the beamforming manner.
  • the number of the second correspondence is 2, which is used to carry 1-bit information.
  • the second correspondence may also be understood as multiple beamforming manners indicating the mapping order on multiple transmission occasions.
  • the second correspondence may be the correspondence between ACK/NACK and the mapping method; in another possible form, the second correspondence may be the correspondence between the value of HARQ-ACK and the mapping method; another In a possible form, the second correspondence may be the correspondence between the value of ACK/NACK or HARQ-ACK, the value of CS, and the mapping manner.
  • the mapping sequence of the beamforming mode indication at the transmission occasion may be: the first transmission unit is indicated by the first beamforming mode, and the second transmission unit is indicated by the second beamforming mode;
  • the mapping sequence of the beamforming mode indication at the transmission occasion is as follows: the first transmission unit uses the second beamforming mode to indicate, and the second transmission unit uses the first beamforming mode to indicate. In this way, multiple stations can further identify ACK/NACK information according to the detection energy at different transmission occasions, thereby improving reliability.
  • the mapping sequence of the beamforming mode indication at the transmission opportunity may be: the first beamforming mode is used for the first transmission unit, and the second beamforming mode is used for the second transmission unit.
  • the mapping sequence of the beamforming mode indication at the transmission occasion may be: the first transmission unit adopts the second beamforming mode instruction, and the second transmission unit adopts the second beamforming mode instruction. The first beamforming mode indication.
  • the terminal device can determine the beamforming mode indication used in each transmission unit according to the value of the information bit and the second corresponding relationship.
  • the target transmission resource includes one or more of the following: a target cyclic shift CS value, a target modulation constellation point, a target orthogonal mask OCC, the The plurality of CS values and the plurality of values of the information bits have a preset third correspondence, the plurality of modulation constellation points and the plurality of values of the information bits have a preset fourth correspondence, and the The multiple OCCs and multiple values of the information bits have a preset fifth correspondence; the terminal device determines the target transmission resource according to the information bits of the UCI to be transmitted, including: the terminal device determines the target transmission resource according to the information bits of the UCI to be transmitted.
  • the target modulation constellation point is determined; and/or the terminal device determines the target OCC according to the value of the information bit of the UCI to be transmitted and the fifth corresponding relationship.
  • the target transmission resource includes a first transmission resource and a second transmission resource
  • the first transmission resource is the target CS value or the target modulation constellation point
  • the second transmission resource is the beamforming corresponding to each transmission unit.
  • the mode indicates that the terminal device simultaneously determines the first transmission resource and the second transmission resource according to the information bits to be transmitted.
  • the terminal device can determine the resource used for processing the information bit according to the information bit to be transmitted. For example, the terminal device may determine to use the corresponding CS value to generate the transmission sequence according to the information bits to be transmitted. For another example, the terminal device may use the corresponding modulation constellation point to perform modulation according to the information bits to be transmitted to generate the transmission sequence.
  • sending the information bits to the network device by the terminal device using the target transmission resource includes: the terminal device according to the target CS value and/or The target modulation constellation point generates a first sequence; the terminal device transmits the first sequence on all transmission units.
  • the terminal device after the terminal device generates the transmission sequence using the target CS value, it can send the transmission sequence on multiple transmission units; both transmit the transmit sequence. In this way, the transmission reliability can be improved, and the data transmission performance can be improved.
  • the method further includes: receiving, by the terminal device, an indication of frequency domain resources, where the indication of frequency domain resources is used to indicate multiple frequency domain resources;
  • the terminal device determines the target transmission resource according to the value of the information bits of the UCI to be transmitted, including: the terminal device determines the target frequency domain resource according to the value of the information bit of the UCI to be transmitted, and the target frequency domain resource is one or more of the multiple frequency domain resources.
  • the terminal device may determine the frequency domain resources used for transmission according to whether the transmission is ACK or NACK or a combination of ACK and NACK.
  • the terminal device can determine the target frequency domain resource according to the information bits to be transmitted.
  • the plurality of frequency domain resources and the plurality of values of the information bits have a preset sixth correspondence
  • the terminal device according to the to-be-required Determining the target frequency domain resource by taking the value of the information bits of the transmitted UCI includes: the terminal device determining the target frequency domain resource according to the value of the information bits of the UCI to be transmitted and the sixth corresponding relationship.
  • the sixth corresponding relationship may be predefined by the protocol, or may also be predefined by the network device, or may also be configured by the network device, or may also be predefined by the network device and the terminal device, or may also be It is indicated by the network device to the terminal device (for example, when the network device indicates multiple frequency domain resources to the terminal device), etc., which is not limited.
  • a corresponding relationship can be understood as an association.
  • the values of the information bits are associated with frequency domain resources.
  • the sixth correspondence may be defined on the basis of certain information bit values.
  • the number of information bits is a fixed value
  • the corresponding relationship between the values of different information bits and the frequency domain resources is defined.
  • the sixth correspondence may be the correspondence between ACK/NACK and frequency domain resources; in another possible form, the sixth correspondence may be the correspondence between the value of HARQ-ACK and frequency domain resources; In another possible form, the sixth corresponding relationship may be the corresponding relationship between the value of ACK/NACK or HARQ-ACK, the value of CS, and the frequency domain resource.
  • the terminal device can determine the frequency domain resource for transmitting the information bit to be transmitted according to the value of the information bit to be transmitted and the corresponding relationship between different values and the frequency domain resource.
  • the multiple frequency domain resources are determined by any one of the following: the information of the multiple frequency domain resources indicated by the network device; or, the The information about the partial frequency domain resources indicated by the network device, and the frequency domain resource interval, where the frequency domain resource interval includes the interval between the partial frequency domain resources and other frequency domain resources in the multiple frequency domain resources; or, Information about a frequency domain resource indicated by the network device, and a preset rule.
  • the preset criteria may be indicated by the network device to the terminal device, such as carried in the information of the frequency domain resources indicated by the network device; or may be predefined, such as protocol predefined or network device predefined; Alternatively, it may be configured by the network device for the terminal device; or it may be pre-agreed by the network device and the terminal device; or it may be deduced by the terminal device according to historical communication conditions, which is not limited.
  • the preset criterion may be a deviation, a numerical value, or a condition, and the specific form is not limited.
  • the preset criterion is N1 PRBs
  • N1 PRBs represent an interval of N1 PRBs between adjacent frequency domain resources
  • N1 is an integer greater than 1 or equal to 1.
  • the terminal device can derive the positions of other frequency domain resources according to the position of one frequency domain resource and the N1 PRBs.
  • a method of communication is provided.
  • the method may be performed by a network device, or may also be performed by a chip or a chip system or a circuit configured in the network device, which is not limited in this application.
  • the method may include: the network device determining the number of information bits of the uplink control information UCI to be transmitted; the network device configures multiple transmission resources; the network device receives a signal on the multiple transmission resources; the network device A target transmission resource is determined according to the received signal, and an information bit value of the UCI is determined according to the target transmission resource, and the plurality of transmission resources include the target transmission resource.
  • the network device may attempt to receive signals on multiple transmission resources, and determine the target transmission resource. For example, the network device may determine the target transmission resource according to the quality of the received signal. Further, the network device may determine the information bits transmitted by the terminal device in combination with the preset rules, so as to know the content transmitted by the terminal device.
  • the multiple transmission resources correspond to multiple beamforming mode indications; the network device receives signals on the multiple transmission resources, and the network device receives signals on the multiple transmission resources. Determining the target transmission resource from the received signal includes: the network device uses the multiple beamforming modes to indicate corresponding receive beamforming modes to receive the signal, and determines the target beamforming mode indication, the target beamforming mode The shaping mode indication is one or more of the plurality of beamforming mode indications.
  • the indications of the multiple beamforming manners have a preset first correspondence with multiple values of the information bits.
  • the transmission resource determining the value of the information bit of the UCI includes: the network device determining the value of the information bit of the UCI according to the target beamforming mode indication and the first corresponding relationship.
  • the beamforming manner indication includes any one of the following manners: an index value of a reference signal resource or a reference signal port, transmission precoding matrix information, transmission Antenna port.
  • each of the beamforming manner indications respectively corresponds to different uplink power control parameters.
  • the information bits are repeatedly transmitted on multiple transmission units, respectively, and the target transmission resource includes a beamforming mode indication corresponding to each of the transmission units.
  • the method further includes: the network device sending multiple beamforming mode indications, where the multiple beamforming mode indications include the first beamforming mode indication and second beamforming mode indication; the multiple transmission units include a first transmission unit and a second transmission unit; the network device receives signals on the multiple transmission resources, including: the network device is in the The first transmission unit and the second transmission unit use the receiving beamforming method corresponding to the first beamforming manner and the second beamforming manner to receive signals; when the network device determines that the The first transmission unit corresponds to the indication of the first beamforming mode, and the second transmission unit corresponds to the indication of the second beamforming mode, and the value of the information bit is the first bit; when the network device It is determined that the first transmission unit corresponds to the indication of the second beamforming mode, and the second transmission unit corresponds to the indication of the first beamforming mode, and the value of the information bit is the second bit.
  • the mapping manner is the multiple mapping manners.
  • the correspondence between the transmission unit and the multiple beamforming mode indications; the determining the value of the information bit of the UCI according to the target transmission resource includes: the network device according to the second correspondence and The beamforming mode indication corresponding to each of the transmission units determines the value of the information bit of the UCI.
  • the target transmission resource includes one or more of the following: a target cyclic shift CS value, a target modulation constellation point, a target orthogonal mask OCC, the The plurality of CS values and the plurality of values of the information bits have a preset third correspondence, the plurality of modulation constellation points and the plurality of values of the information bits have a preset fourth correspondence, and the The multiple OCCs and the multiple values of the information bits have a preset fifth correspondence; the network device receives signals on multiple transmission resources, and the network device determines the target transmission according to the received signals resource, and determine the value of the information bit of the UCI according to the target transmission resource, including:
  • the network device receives signals on the plurality of transmission resources according to the plurality of CS values, and determines the value of the information bit of the UCI according to the third correspondence and the target CS value; and/or , the network device receives signals on the plurality of transmission resources according to the plurality of modulation constellation points, and determines the value of the information bit of the UCI according to the fourth correspondence and the target modulation constellation point; And/or, the network device receives signals on the multiple transmission resources according to the multiple OCCs, and determines the value of the information bit of the UCI according to the fifth corresponding relationship and the target OCC.
  • the network device using the plurality of transmission units to receive a signal includes: the network device according to the plurality of CS values and/or the plurality of CS values modulating constellation points to generate a plurality of sequences and receiving signals on the plurality of transmission units according to the plurality of sequences; the network device determining a first sequence from the received signals, the first sequence being based on the target generated from the CS value and/or the target modulation constellation point.
  • the method further includes: the network device sending an indication of frequency domain resources to the terminal device, where the indication of frequency domain resources is used to indicate a plurality of frequency domain resources; the network device receives signals on multiple transmission resources, and the network device determines a target transmission resource according to the received signals, including: the network device uses the multiple frequency domain resources to receive signals, and determining a target frequency domain resource according to the received signal, where the target frequency domain resource is one or more of the plurality of frequency domain resources.
  • the plurality of frequency domain resources and the plurality of values of the information bits have a preset sixth correspondence
  • the network device according to the target The transmission resource determining the value of the information bit of the UCI includes: the network device determining the value of the information bit of the UCI according to the target frequency domain resource and the sixth corresponding relationship.
  • the multiple frequency domain resources are determined by any one of the following: the information of the multiple frequency domain resources indicated by the network device; or, the The information about the partial frequency domain resources indicated by the network device, and the frequency domain resource interval, where the frequency domain resource interval includes the interval between the partial frequency domain resources and other frequency domain resources in the multiple frequency domain resources; or, Information about a frequency domain resource indicated by the network device, and a preset rule.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a chip system or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: a terminal device receiving data sent by a network device; and according to whether the terminal device successfully receives the data, using multiple orthogonal masks OCC to generate multiple pieces of feedback information, where the multiple pieces of feedback information are for all feedback of the data; the terminal device sends the plurality of feedback information to the network device.
  • the terminal device sending the multiple feedback information to the network device includes: The terminal device uses the transmission resource corresponding to each OCC to send the feedback information generated based on each OCC to the network device respectively.
  • the transmission resources include beamforming and/or frequency domain resources.
  • a communication apparatus configured to execute the communication method provided in the first aspect or the third aspect.
  • the communication apparatus may include a module for executing the communication method provided by the first aspect or the third aspect.
  • a communication device configured to execute the communication method provided in the second aspect.
  • the communication apparatus may include a module for executing the communication method provided by the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the communication method of the first aspect or the third aspect or any of the possible implementations of the first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, and may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication apparatus is a chip or a chip system configured in the terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the second aspect and the communication method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, causes the communication device to implement the first aspect or the third aspect, and the first aspect or the third aspect.
  • the communication method in any possible implementation manner of the three aspects.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device enables the communication device to realize the second aspect and any possible realization of the second aspect method of communication.
  • a tenth aspect provides a computer program product comprising instructions, which when executed by a computer cause a communication apparatus to implement the communication method provided by the first aspect or the third aspect.
  • An eleventh aspect provides a computer program product comprising instructions, which when executed by a computer cause a communication apparatus to implement the communication method provided in the second aspect.
  • a twelfth aspect provides a communication system, including the aforementioned network device and terminal device.
  • FIG. 1 shows a schematic diagram of a communication system applicable to the embodiment of the present application.
  • FIG. 2 shows a schematic diagram of yet another communication system applicable to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a constellation point suitable for an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication method provided according to an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of frequency domain resources corresponding to ACK/NACK when 1-bit HARQ-ACK information is applicable to the embodiment of the present application.
  • FIG. 6 shows a schematic diagram of frequency domain resources corresponding to ACK/NACK when 2-bit HARQ-ACK information is applicable to the embodiment of the present application.
  • FIG. 7 shows a schematic diagram of transmitting UCI with multiple transmission occasions applicable to the embodiment of the present application.
  • FIG. 8 shows another schematic diagram of UCI transmission at multiple transmission occasions applicable to the embodiment of the present application.
  • FIG. 9 shows a schematic diagram of OCC corresponding to ACK/NACK when 1-bit HARQ-ACK information is applicable to the embodiment of the present application.
  • FIG. 10 shows a schematic diagram of ACK/NACK corresponding to OCC when 2-bit HARQ-ACK information is applicable to the embodiment of the present application.
  • FIG. 11 shows a schematic diagram when 1-bit HARQ-ACK information is repeatedly transmitted, which is applicable to the embodiment of the present application.
  • FIG. 12 shows another schematic diagram when 1-bit HARQ-ACK information is repeatedly transmitted, which is applicable to the embodiment of the present application.
  • Figure 13 shows a schematic diagram of frequency division multiplexing.
  • FIG. 14 shows a schematic diagram of the same terminal device using different frequency domain resources to send the same UCI.
  • FIG. 15 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 16 is another schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, fifth generation (5th generation, 5G) systems or new radio (new radio, NR), fourth generation (4th generation, 4G) systems, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunication system (universal mobile telecommunication system, UMTS), future mobile communication systems, etc.
  • the technical solutions of the embodiments of the present application can also be applied to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and car networking systems communication in.
  • FIG. 1 and FIG. 2 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1 , and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. 1 . to the terminal device 123.
  • Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device when the network device communicates with the terminal device, the network device can manage one or more cells, and there can be an integer number of terminal devices in one cell.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system, and without loss of generality, the cell is denoted as cell #1.
  • the network device 111 may be a network device in cell #1, or in other words, the network device 111 may serve a terminal device (eg, terminal device 121) in cell #1.
  • a cell can be understood as an area within the coverage range of a wireless signal of a network device.
  • FIG. 2 is a schematic diagram of a wireless communication system 200 suitable for an embodiment of the present application.
  • the wireless communication system 200 may be in a dual connectivity (DC), multi-link, or coordinated multipoint transmission/reception (CoMP) scenario.
  • DC dual connectivity
  • CoMP coordinated multipoint transmission/reception
  • the wireless communication system 200 may include a plurality of network devices, such as the network device 210 and the network device 220 shown in FIG. 2 ; the wireless communication system 200 may also include at least one terminal device, such as the network device 210 shown in FIG. 2 .
  • the terminal device 230 may establish a wireless link with the network device 210 and the network device 220 through the multi-connection technology.
  • the network device 210 may be, for example, a primary base station
  • the network device 220 may be, for example, a secondary base station.
  • the network device 210 is the network device when the terminal device 230 initially accesses, and is responsible for the radio resource control (RRC) communication with the terminal device 230.
  • RRC radio resource control
  • the network device 220 may be added during RRC reconfiguration. , which is used to provide additional radio resources.
  • the wireless communication system 200 when the wireless communication system 200 is in the uplink CoMP scenario, it means that multiple sites can serve one terminal device at the same time, and the uplink signals sent by the terminal device can be simultaneously received by multiple sites and processed in a centralized manner; or the terminal devices are on different network resources. The same information is sent to multiple sites, which are received and processed by multiple sites and then processed uniformly.
  • the embodiment of the present application does not limit the transmission point. For example, it may be the multi-point coordinated transmission between the macro base station and the macro base station, the multi-point coordinated transmission between the micro base station and the micro base station, or the communication between the macro base station and the micro base station. multipoint cooperative transmission, and so on.
  • the embodiments of the present application are applicable to both FDD or TDD systems.
  • FIG. 1 and FIG. 2 are only exemplary descriptions, and the present application is not limited thereto, and the embodiments of the present application may be applied to any communication scenario in which signals or data are transmitted.
  • the embodiments of the present application may be applied to a scenario of a homogeneous network; the embodiments of the present application may also be applied to a scenario of a heterogeneous network.
  • the embodiments of the present application may be applicable to low-frequency scenarios, such as frequency bands below 6G (sub 6G); the embodiments of the present application are also applicable to high-frequency scenarios, such as above 6G.
  • the embodiments of the present application may be applicable to a single transmission and reception point (transmission and reception point, TRP) (single-TRP); the embodiments of the present application are also applicable to a multi-TRP (multi-TRP) scenario, and the embodiments of the present application also Applicable to single-TRP or multi-TRP derived scenarios.
  • TRP transmission and reception point
  • multi-TRP multi-TRP
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access Point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) or remote radio head (RRH) ), etc., can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, also It can be
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • a network device can be used as a scheduling device.
  • the network device may include, but is not limited to, an LTE base station eNB, an NR base station gNB, an operator, etc., and its functions may include, for example, configuring uplink and downlink resources,
  • DCI downlink control information
  • the network device can also be used as a sending device.
  • the network device may include, but is not limited to, TRP and RRH, and its functions may include, for example, sending downlink signals and receiving uplink signals.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • the functions of the terminal device may include, but are not limited to, for example, receiving downlink/sidelink signals, and/or sending uplink/sidelink signals.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit the signal can be called the transmission beam (transmission beam, Tx beam), which can be called the spatial domain transmission filter or the spatial transmission parameter;
  • the beam used to receive the signal can be called For the reception beam (reception beam, Rx beam), it can be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna, and the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • a transmit beam there will be a corresponding receive beam, the receive beam corresponding to the transmit beam, or the receive beam corresponding to the transmit beam, it can be understood that using the receive beam to receive the receive beam using the transmit beam.
  • the quality of the transmitted signal is optimal, or the transmit beam is matched to the corresponding receive beam.
  • a transmit beam can be understood as a beam in the analog domain.
  • the terminal device connects a phase shifter through each transmit antenna on the radio side.
  • directional beams can be generated by multiple antennas, that is, transmit
  • the beam pattern has strong energy in a certain small angle range in polar coordinates, and weak energy in the remaining angle range.
  • the beams may be broad beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology.
  • the beamforming mode indication can also be understood as a beam indication.
  • Antenna ports are referred to as ports for short. It can be understood as a transmitting antenna recognized by the receiving end, or a transmitting antenna that can be distinguished in space.
  • One antenna port may be configured for each virtual antenna, and each virtual antenna may be a weighted combination of multiple physical antennas. According to different signals carried, the antenna ports can be divided into reference signal ports and data ports.
  • the reference signal ports include, but are not limited to, demodulation reference signal (DMRS) ports, zero-power channel state information reference signal trigger (channel state information reference signal, CSI-RS) ports, and the like.
  • time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resources may include one or more time-domain units (or may also be referred to as time units), and in the frequency domain, the time-frequency resources may include frequency-domain units.
  • a time domain unit (also referred to as a time unit) may be one symbol or several symbols, or a mini-slot (mini-slot), or a time slot (slot), or a subframe (subframe), wherein, the duration of a subframe in the time domain may be 1 millisecond (ms), a time slot may consist of 7 or 14 symbols, and a mini-slot may include at least one symbol (such as orthogonal frequency division multiplexing ( Orthogonal frequency division multiplexing (OFDM) symbols) (eg, 2 symbols or 7 symbols or 14 symbols, or any number of symbols less than or equal to 14 symbols).
  • OFDM Orthogonal frequency division multiplexing
  • time-domain unit size is only for the convenience of understanding the solution of the present application, and does not limit the protection scope of the embodiments of the present application. It can be understood that the above-mentioned time-domain unit size may be other values, which is not limited in the present application.
  • a frequency domain unit can be a resource block (RB), or a subcarrier (subcarrier), or a resource block group (RBG), or a predefined subband (subband), or a A precoding resource block group (PRG), or a bandwidth part (BWP), or a resource element (RE) (or resource element) or a carrier, or a serving cell.
  • RB resource block
  • RBG resource block group
  • PRG precoding resource block group
  • BWP bandwidth part
  • RE resource element
  • the transmission unit is mentioned many times, and the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • the transmission unit mentioned in the embodiments of the present application may be replaced It is a time-domain unit, which can also be replaced by a frequency-domain unit, or can be replaced by a time-frequency unit.
  • the transmission unit may also be replaced by a transmission opportunity.
  • the time domain unit may include one or more OFDM symbols, or the time domain unit may include one or more slots, and so on.
  • a frequency domain unit may include one or more RBs, or a time domain unit may include one or more subcarriers, and so on.
  • the HARQ-ACK information may also be referred to as HARQ information.
  • the HARQ-ACK information may represent feedback information for receiving a transmission block (TB) on downlink data (such as a physical downlink share channel (PDSCH)), according to the processing result of the received TB.
  • a transmission block such as a physical downlink share channel (PDSCH)
  • PDSCH physical downlink share channel
  • the feedback information corresponding to the TB is an acknowledgement (ACK) or a negative acknowledgement (negative acknowledgment, NACK).
  • ACK may indicate that the data was successfully received and the data was successfully decoded
  • NACK may indicate that the data was not successfully received, or the data was not successfully decoded.
  • a sending device may perform data retransmission based on the NACK fed back by the receiving device. Further, the feedback information of multiple TBs can also be fed back jointly, that is, a feedback sequence is formed and carried on the same time-frequency resource.
  • the uplink control information (uplink control information, UCI) in the embodiments of the present application is mainly described by taking HARQ-ACK information as an example.
  • UCI can be transmitted through a physical uplink control channel (PUCCH).
  • UCI types include scheduling request (SR), HARQ-ACK, and channel state information (CSI), that is, PUCCH can carry the above information.
  • Information bits of different UCI types can also be fed back jointly, for example, a joint feedback sequence formed by HARQ-ACK bits and CSI bits is carried on the same time-frequency resource.
  • the terminal device receives the data sent by the network device, and after performing the demodulation and decoding operation to process the data, it will send an instruction to inform the network device whether the data is received correctly, and the instruction is the HARQ-ACK message. (including NACK information or ACK information). If the data cannot be received correctly, the terminal device feeds back the NACK information corresponding to the data to the network device, and the network device can retransmit the data after receiving the NACK information to reduce the bit error rate of the data, so that the terminal device can correctly demodulate the data . On the contrary, if the data is received correctly, the terminal device feeds back ACK information to the network device.
  • the terminal device can determine the HARQ-ACK codebook according to the preset rules, that is, determine the data corresponding to each bit of the HARQ-ACK bit sequence, and the network device determines the HARQ-ACK bit sequence after receiving the HARQ-ACK bit sequence. Bits corresponding to each data and corresponding bit values.
  • the terminal equipment uploads HARQ-ACK information through PUCCH.
  • the reliability of PUCCH transmission affects the transmission delay of downlink data. For example, the terminal equipment sends ACK information to the network equipment, but due to the low reliability of PUCCH transmission, the network equipment may not be able to receive the information correctly, or the information may be parsed as NACK information by the network equipment, thus causing unnecessary retransmissions. Affects the delay of subsequent new data transmission.
  • the reliability of PUCCH transmission affects the transmission reliability of downlink data. For example, the terminal device sends NACK information to the network device, but the network device interprets it as ACK, and the network device does not schedule retransmission, resulting in the data transmission error.
  • the feedback information is HARQ information as an example to describe the embodiments of the present application, but this should not constitute any limitation to the present application. This application does not exclude the application of the method provided in this application to other scenarios of feedback information.
  • the HARQ information fed back is carried on the PUCCH as an example to illustrate the embodiments of the present application, but this should not constitute any limitation to the present application.
  • the present application does not exclude scenarios in which HARQ information is carried in other uplink signals or channels.
  • PUCCH format 0 (for example, can be denoted as PF 0) is used to carry the short PUCCH format of 1-bit or 2-bit HARQ-ACK information.
  • the short format means that the PUCCH occupies less time domain resources in the time domain, for example, occupies less orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, for example, a maximum of 2 OFDM symbols. It is generally considered that the short PUCCH format is conducive to low-latency transmission, such as ultra-reliable low-latency communications (URLLC) transmission.
  • the PUCCH in the short PUCCH format may occupy 1 physical resource block (PRB) in the frequency domain, that is, 12 subcarriers.
  • PRB physical resource block
  • a PUCCH resource may correspond to a specific PUCCH format, and correspond to a specific time-frequency resource in network resources, such as occupied RB position, OFDM symbol position, slot position, etc.; and may also include transmission parameters for transmitting UCI, such as, Cyclic shift (Cyclic shift, CS) value, orthogonal mask (Orthogonal Cover Code, OCC), beamforming mode, etc. used to generate the sequence on the PUCCH resource.
  • the network device can configure one or more PUCCH resources for the terminal device through high-layer signaling, such as RRC signaling, and the relevant parameters of each PUCCH resource can be configured independently.
  • the embodiment of the present application mainly uses an OFDM symbol as an example for illustrative description, which is not limited, and any unit that can be used to represent a time domain resource is applicable to the embodiment of the present application.
  • mini-slots mini-slots
  • slots slots
  • subframes subframes
  • the HARQ-ACK information may be transmitted in the form of a sequence on the PUCCH, which is referred to as PUCCH format 0 in this embodiment of the present application.
  • 1-bit information bits 0 and 1 correspond to sequence 1 and sequence 2 respectively.
  • sequence 1 can be specified to indicate ACK
  • sequence 2 to indicate NACK.
  • the network device performs correlation energy detection for sequence 1 and sequence 2 respectively based on the received signal on the physical resource, and determines that the sequence with high energy is the sequence transmitted by the terminal device, thereby determining whether the terminal device sends NACK or ACK.
  • a 12-long low peak to average power ratio (PAPR) sequence can be used to ensure the transmission efficiency of the terminal device and improve the robustness of the PUCCH.
  • the network device instructs the terminal device to use a certain u value in Table 1, that is, configure a as the base sequence.
  • modulation such as quadrature phase shift keying (QPSK) modulation
  • QPSK quadrature phase shift keying
  • v is the group serial number, representing 30 groups, and each group has two root serial numbers, which are determined by v. u and v can be configured for the terminal device by sending configuration information through the network device.
  • j is an imaginary unit
  • exp represents an exponential function with base e
  • M ZC represents the length of the base sequence
  • M ZC is an integer greater than 1.
  • the transmission sequence is further formed according to the ACK/NACK information. That is, the transmission sequences used for transmitting ACK and transmitting NACK are different. For example, different values of cyclic shift (CS) ⁇ are used to generate different sequences, a possible form, The following formula 2 is satisfied.
  • CS cyclic shift
  • the above process can be understood as: determining ⁇ according to whether the HARQ-ACK information to be fed back is NACK or ACK, thereby generating a transmission sequence. Generated It is a frequency domain sequence, which can be sequentially mapped to each subcarrier occupied by the PUCCH. For example, each element in the sequence is sequentially mapped to the subcarriers whose index values are occupied by the PUCCH from low to high according to the index from low to high.
  • Equation 3 For ⁇ , reference can be made to the description in the existing protocol, for example, as shown in Equation 3.
  • the value range of ⁇ l in is the number of subcarriers in an RB (eg 12). is the time slot number in the system frame, or, in other words, the number of the time slot in a radio frame.
  • l represents the position number of the symbol of the PUCCH resource in the time slot, in other words, a PUCCH occupies the number corresponding to the OFDM symbol in a slot, l' represents the position number of the starting symbol of the PUCCH resource in the time slot, or Say, the number of the first OFDM symbol in a slot in PUCCH transmission. Or configured by RRC.
  • c(i) is a random sequence. The value of n cs is different in different time domain positions.
  • m 0 is configurable, and different devices can be configured with different values to achieve the effect of code division multiplexing.
  • the m CS needs to be determined according to the HARQ-ACK feedback information, and then ⁇ is determined. As shown in Table 2 and Table 3, Table 2 shows the correspondence between m CS and ACK and NACK when 1-bit HARQ-ACK information is transmitted, and Table 3 shows when 2-bit HARQ-ACK information is transmitted, Correspondence between m CS and ACK and NACK.
  • the terminal device determines the value of m CS according to the HARQ-ACK information to be transmitted currently, and generates a corresponding sequence, maps it to the frequency domain resource, and sends it to the network device.
  • CS is used to denote m CS .
  • the formed sequences are orthogonal to each other (that is, the cross-correlation is 0), so they can be used in the above-mentioned PUCCH transmission mechanism to avoid erroneous detection.
  • the terminal equipment sends NACK but is detected as ACK.
  • the transmission of ACK is mentioned many times, which all indicate that the transmission is based on the ACK generation sequence, or the transmitted sequence may indicate ACK.
  • the value of m CS is determined, and a corresponding sequence is generated, mapped to frequency domain resources, and sent to the network device.
  • NACK when NACK is transmitted, it all means that the transmission generates a sequence based on NACK, or the transmitted sequence may indicate NACK.
  • the value of m CS is determined, and a corresponding sequence is generated, mapped to frequency domain resources, and sent to the network device.
  • the PUCCH occupies 2 OFDM symbols, and the sequence sent on the second OFDM symbol completely duplicates the sequence sent on the first OFDM symbol, so as to improve transmission reliability.
  • the HARQ-ACK information may be transmitted on the PUCCH in the form of sequence+modulation, which is referred to as PUCCH format 1 in this embodiment of the present application.
  • the terminal device may determine the base sequence based on Table 1, and further determine the modulation constellation point of the base sequence according to the HARQ-ACK information bits to be transmitted.
  • the modulation constellation point of the base sequence For example, binary phase shift keying (BPSK) modulation mode is used to transmit 1 bit of information bit, when NACK is to be transmitted, constellation point 0 is used for modulation of the base sequence; when ACK is to be transmitted, constellation point 1 is used for Modulation of the base sequence.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the constellation point 00 When NACK+NACK is to be transmitted, the constellation point 00 is used for modulation of the base sequence; ACK, the constellation point 01 is used for the modulation of the base sequence; when ACK+NACK is to be transmitted, the constellation point 10 is used for the modulation of the base sequence; when the ACK+ACK is to be transmitted, the constellation point 11 is used for the modulation of the base sequence.
  • the receiving end can obtain the channel information according to the demodulation reference signal (DMRS) of the PUCCH, and obtain the demodulation value according to the received signal, and make the Euclidean distance judgment between the demodulation value and the constellation point.
  • the information bit decision is the information bit sent by the terminal device.
  • the above-mentioned different constellation points correspond to different modulation phases for generating modulation symbols.
  • the X axis is the I channel (or the I channel (I channel))
  • the Y axis is the Q channel (or the Q channel (Q channel))
  • the amplitude of each constellation point is the same, and the phase difference is 90 degrees. It can be understood that between 00 and 11, or between 01 and 10, the Euclidean distance is the largest.
  • multiple receiving nodes (such as TRPs) jointly receive the same PUCCH, and multiple TRPs uniformly process the received signals, which can effectively improve the received signal-to-noise ratio.
  • TRPs multiple receiving nodes
  • coherent detection as an example, a coherent combining reception method can be used.
  • the frequency domain signals received by multiple TRPs are combined into a higher-dimensional matrix, and then through the minimum Equalization algorithms such as mean square error (minimum mean square error, MMSE) or maximum ratio combining (MRC) directly process the signals received on each receiving node in a unified manner, and make judgments on the obtained output results, and then determine ACK/NACK information.
  • mean square error minimum mean square error, MMSE
  • MRC maximum ratio combining
  • coherent detection as another example, incoherent combining can also be used. For example, after each TRP processes the respective received signals, a unified decision is made on the obtained output results, and then the ACK/NACK information is determined.
  • multiple TRPs perform sequential energy detection on the received signals, and make a unified decision on the obtained output results, and then determine the ACK/NACK information.
  • the delay spread between signals received by different receiving nodes may increase (mainly caused by multipath). For example, if the delay extension from the terminal device to TRP1 is 300 nanoseconds (ns), the delay extension from the terminal device to TRP may be further increased by 200ns to 500ns. That is to say, the use of multi-station cooperation to receive uplink signals may lead to deterioration of the delay spread of the received signals. A larger delay spread will cause the effect of cyclic shift of the transmitted sequence in the time domain, thereby affecting the sequence detection performance.
  • the above-mentioned error detection probability is further increased. The reason is that in the case of 2 bits, the CS interval corresponding to different information bits is smaller than that in the case of 1 bit, and in the scenario with a large delay spread, the performance deterioration is more serious.
  • the embodiment of the present application provides a way to determine the corresponding transmission resource according to the value of the information bit to be transmitted, so that the probability of error detection can be reduced and the transmission reliability can be improved.
  • FIG. 4 is a schematic interaction diagram of a communication method 400 provided by an embodiment of the present application.
  • Method 400 may include the following steps.
  • the terminal device determines the number of bits of the information bits of the UCI to be transmitted.
  • information bits may refer to original information bits that have not been encoded or modulated.
  • the number of bits of the information bits is, for example, 1 or 2.
  • the following is for brevity.
  • the number of bits is used to represent the number of bits of the information bits, and the bits or the information bits are used to represent the value of the information bits.
  • the terminal device may first determine the number of UCI bits to be transmitted according to a preset rule.
  • the preset rule is a HARQ-ACK codebook generation mechanism, and the number of UCI bits to be transmitted may include the number of HARQ-ACK bits to be transmitted.
  • the HARQ-ACK codebook is divided into a static codebook and a dynamic codebook as an example.
  • the terminal device can determine the number of PDSCH transmission opportunities that need to be fed back on the same PUCCH resource according to the PDSCH transmission opportunities, and the number can be used to determine the number of HARQ-ACK bits.
  • the terminal device can determine the number of transmission occasions for scheduling the DCI of the PDSCH corresponding to the same feedback time, and the number can be used to determine the number of HARQ-ACK bits.
  • the preset rule is a CSI feedback bit generation mechanism. Specifically, the terminal device determines the number of CSI bits according to the CSI feedback content indicated by the network device and the measurement result obtained by performing CSI measurement according to the CSI-RS.
  • the preset rule may be, for example, an SR feedback bit generation mechanism.
  • the preset rule may also be a multiplexing mechanism of multiple UCI bits. It should be understood that there is no limitation on how to determine the number of UCI bits to be transmitted.
  • the information bit takes 0 to correspond to NACK, and the information bit takes 1 to correspond to ACK.
  • each bit corresponds to a data block, for example, a transmission block (Transmission block, TB), or (Code Block Group, CBG).
  • an information bit of 0 corresponds to a positive SR
  • an information bit of 1 corresponds to a negative SR
  • the terminal device determines the target transmission resource according to the information bits of the UCI to be transmitted.
  • the terminal device may determine the target transmission resource according to the bit value of the information bit of the UCI to be transmitted. Alternatively, it can also be understood that the terminal device may determine the target transmission resource according to the content of the information bits to be transmitted. Alternatively, it can also be understood that the terminal device determines the target transmission resource according to the information source to be transmitted.
  • the terminal device can determine the target transmission resource according to each UCI information bit to be transmitted. For example, when the first bit is 0, the first transmission resource is determined as the target transmission resource; when the first bit is 1, the second transmission resource is determined as the target transmission resource.
  • the network device may preconfigure multiple transmission resources.
  • an association relationship between information bits of multiple UCIs and multiple transmission resources is preset.
  • the terminal device determines the target transmission resource from multiple transmission resources according to the association relationship and the UCI information bits to be transmitted.
  • the terminal device determines the target transmission resource according to the information bits of the UCI to be transmitted. All the bits of the UCI (that is, the values of all the bits) determine the target transmission resource, which is not limited. For example, the terminal device may determine the target transmission resource according to the information bits of the PUCCH.
  • the terminal device determines the target transmission resource according to the information bits of the UCI to be transmitted. It can be understood that the terminal device determines the information related to the transmission according to the information bits to be transmitted. It should be understood that when the terminal device determines the target transmission resource, it can be understood that the terminal device determines the target resource to be used, or it can also be understood that the terminal device directly uses the corresponding target transmission resource for processing, which is not limited. For example, the terminal device can determine the relevant information such as coding and/or modulation according to the information bits to be transmitted. For example, the terminal device can use the determined relevant information such as coding or modulation according to the information bits to be transmitted, and perform corresponding coding or modulation. .
  • the terminal device may determine relevant information of resources required for transmission according to the information bits to be transmitted, etc. For example, the terminal device may map the information bits to be transmitted to corresponding resources for transmission. Taking the beamforming mode as an example, the terminal device determines the beamforming mode, which can be understood as that the terminal device maps the data or information to be transmitted to the corresponding transmitting antenna port. It can also be understood that the terminal device establishes an association relationship between the time-frequency resources and the beamforming manner according to the UCI information bits to be transmitted under the condition of given multiple time-frequency resources and beamforming manners.
  • the terminal device determines the target transmission resources according to the information bits to be transmitted, including at least one or more of the following required for transmitting the corresponding information bits: beamforming mode, frequency domain resources, and beamforming corresponding to each transmission unit.
  • mode such as beamforming mode corresponding to each time unit
  • frequency domain resources corresponding to each transmission unit such as frequency domain resources corresponding to each time unit
  • cyclic shift value such as modulation constellation points required for modulation
  • OCC each The resources corresponding to the information bits, the mapping relationship between multiple spatial resources and multiple time-frequency resources, and so on.
  • the target transmission resource includes an indication of the beamforming mode corresponding to each transmission unit, which can mean that the terminal device can determine the beamforming mode adopted by the terminal device in each transmission unit according to the value of the information bit; It can be represented that the terminal device can determine the corresponding relationship between each transmission unit and multiple beamforming modes according to the value of the information bit.
  • the terminal device determines the target transmission resource from the candidate transmission resources according to the information bits to be transmitted, including at least one or more of the following: determining one beamforming mode indication from the candidate multiple beamforming mode indications as the The target transmission resource; or, determine one frequency domain resource from the candidate multiple frequency domain resources as the target transmission resource; or, the candidate transmission resource is the beamforming mode indication corresponding to each transmission unit in turn (for example, multiple beamforming
  • the method indicates the mapping order on each transmission unit), and a mapping order is determined from the candidate mapping order as the target transmission resource; or, the candidate transmission resource is the frequency domain resource corresponding to each transmission unit in turn (for example, multiple frequency domain resources in For the mapping order on each time domain unit, a mapping order is determined from the candidate mapping order as the target transmission resource; or, a CS value is determined from the candidate CS value as the target transmission resource; or, the sequence corresponding to the modulation UCI is used.
  • One modulation constellation point is determined from the multiple modulation constellation points as the target transmission resource; or, one OCC is determined from the multiple candidate OCCs as the target transmission resource; or, when the number of information bits is greater than 1, the physical resource corresponding to each information bit is used as the target transmission resource. target transfer resources, etc.
  • steps 410 and 420 there is no strict sequence between steps 410 and 420 .
  • the number of bits can be determined first, and then the target transmission resource can be determined according to the value of the information bits to be transmitted; or, the number of bits and the value of the information bits to be transmitted can be determined at the same time, and then the target transmission resource can be determined.
  • steps 410 and 420 may be combined into one step.
  • the terminal device may directly determine the target transmission resource according to the uplink control information to be transmitted.
  • step 410 and step 420 you can still refer to the steps in step 410 and step 420, except that, for example, the terminal device can directly determine the target transmission resource according to the transmission timing of the PDSCH and the preset rules, or the terminal device can directly determine the target transmission resource according to the transmission timing of the PDSCH.
  • the CSI feedback content indicated by the network device, the measurement result obtained by performing the CSI measurement according to the CSI-RS, and the preset rule directly determine the target transmission resource.
  • the terminal device sends the information bit to the network device by using the target transmission resource.
  • the network device may attempt to receive signals on multiple transmission resources, and determine the target transmission resource. For example, the network device may determine the target transmission resource according to the quality of the received signal. Further, the network device may determine the information bits transmitted by the terminal device in combination with a preset rule.
  • the information bits sent by the terminal device to the network device using the target transmission resource can represent the sending sequence to be sent after processing.
  • the base sequence is encoded and modulated, or the transmission sequence to be sent is obtained after processing such as phase transformation.
  • the terminal device may process the information bit and transmit the information bit based on its corresponding transmission resource according to different values of the information bit to be transmitted.
  • the value of the information bit may be different according to whether the feedback is ACK or NACK, or the combination of ACK and NACK, and the value of the corresponding information bit is different. That is to say, different feedback results correspond to different transmission resources, and when different results are fed back, the resources corresponding to the feedback results are used for processing and/or transmission.
  • the following embodiments mainly take the feedback from the terminal device to the network device as an example for illustrative description. Regarding the situation of the network device feeding back to the terminal device, the solutions provided in the embodiments of the present application may also be used.
  • the method 400 may further include: the terminal device receives data sent by the network device. Accordingly, the network device sends data to the terminal device. The terminal device can determine the target transmission resource according to the data transmission situation.
  • the successful data transmission is used to indicate that the network device sends data to the terminal device, and the data is successfully received by the terminal device.
  • the terminal device sets a threshold value for demodulation or decoding, and when the received data meets the threshold value after processing, it is considered to be correctly received.
  • the feedback of the data sent by the terminal device to the network device is an acknowledgment response, for example, ACK information can be fed back.
  • the terminal equipment feedback ACK is used as an example for illustration, which is not limited, and any method that can make the terminal equipment notify the network equipment to successfully receive data falls within the scope of the embodiments of the present application. protected range.
  • the terminal device can also feed back a radio link layer control protocol (Radio Link Control, RLC) confirmation message to the network device.
  • RLC Radio Link Control
  • Data transmission failure is used to indicate that the network device sends data to the terminal device, but the data is not successfully received by the terminal device.
  • the terminal device sets a threshold value for demodulation or decoding, and when the received data does not meet the threshold value after processing, it is considered that the reception fails.
  • the feedback of the data sent by the terminal device to the network device is a negative acknowledgement, for example, NACK information can be fed back.
  • the terminal equipment feedback NACK is used as an example for illustrative description, which is not limited. Any method that can make the terminal equipment notify the network equipment that the data has not been successfully received falls into the embodiments of the present application. scope of protection.
  • the terminal device can also feed back the RLC response to the network device. If data transmission fails, it may be that the network device fails to send data; it may also be that the terminal device fails to receive data, such as incorrect demodulation, etc. The reasons for the failure of data transmission are not limited in this embodiment of the present application.
  • the successful data transmission may indicate that the initial data transmission is successful, or it may indicate that the data is successfully retransmitted, which is not limited.
  • data transmission failure may indicate that the initial data transmission fails, or it may indicate that the data retransmission fails.
  • the terminal device when the terminal device feeds back different results to the network device, such as when feeding back ACK or NACK, it uses different transmission resources, or in other words, the used transmission resources can be separated as much as possible, thereby reducing error detection. For example, if ACK is detected as NACK, and NACK is detected as ACK, the transmission reliability can be improved.
  • the terminal device may generate feedback information according to whether the data is successfully received, and determine the transmission resource according to the feedback information.
  • ACK corresponds to transmission resource 1
  • NACK corresponds to transmission resource 2.
  • the corresponding relationship may be pre-defined, such as pre-defined by a protocol or pre-defined by a network device; or may be pre-agreed, such as pre-agreed by a network device and a terminal device; or may be pre-configured, such as pre-configured by a network device; Or it may be notified by the network device to the terminal device, etc., which is not limited.
  • the terminal device determines that the currently transmitted HARQ-ACK information is ACK, determines the corresponding transmission resource 1 based on the ACK, and uses the transmission resource 1 to transmit the ACK. For another example, if the data transmission fails, the terminal device determines that the currently transmitted HARQ-ACK information is NACK, determines the corresponding transmission resource 2 based on the NACK, and uses the transmission resource 1 to transmit the NACK.
  • the transmission resources include beamforming.
  • the terminal device may determine the target beamforming mode according to the information bits to be transmitted.
  • the terminal device transmits ACK and NACK using different beamforming methods.
  • the terminal device determines the beamforming mode used for transmission according to whether ACK or NACK is transmitted.
  • the beamforming manner may also be referred to as a beamforming pattern.
  • the spatial isolation corresponding to different beamforming is relatively large, so ACK and NACK can be transmitted by using different beamforming, so that the correlation between the signal used to transmit ACK and the signal used to transmit NACK is very low, reducing The false detection probability of ACK/NACK.
  • the uplink power control parameters can be used to adjust the value of the uplink transmit power.
  • the terminal device transmits the PUSCH on the activated uplink partial bandwidth (BWP) b on the component carrier f of the serving cell (serving cell) c, and the transmission timing i is
  • the transmit power of PUSCH can satisfy Equation 4:
  • P PUSCH,b,f,c (i,j,q d ,l) is the uplink transmission power of the PUSCH in the transmission opportunity i, and the unit is dBm.
  • the parameters in are open-loop power control parameters, and f b,f,c (i,l) are closed-loop power control parameters.
  • P CMAX,f,c (i) is the maximum transmit power of the PUSCH on the carrier f of the cell c configured by the terminal device.
  • P O_PUSCH,b,f,c (j) and ⁇ b,f,c are the target (desired) received power. j ⁇ 0,1,...,J-1 ⁇ .
  • PL is the path loss value calculated based on the path loss measurement reference signal q d .
  • the above-mentioned uplink power control parameters may include one or more of P O_PUSCH,b,f,c (j), ⁇ b,f,c , and q d . It should be understood that in this embodiment, only the application of each parameter illustrated in Equation 4 in calculating the transmit power, and the parameters such as the path loss value, open-loop, and closed-loop power control parameters may also be path loss in a general sense. , open-loop and closed-loop power control parameters.
  • the network device delivers multiple beamforming mode indication signaling, or the network device sends multiple beamforming mode indications, and the instruction signaling corresponds to the same PUCCH resource. It can be understood that the information bits are jointly carried on the same PUCCH resource, and the PUCCH resource corresponds to the multiple beamforming mode indications.
  • multiple beamforming mode indications are issued through RRC signaling or MAC CE signaling.
  • the beamforming mode indication and the beamforming mode are sometimes used interchangeably, and those skilled in the art should understand the meaning.
  • the terminal device may instruct to obtain the beamforming mode through the beamforming mode, or may directly obtain the beamforming mode, which is not limited.
  • the following is unified, and the beamforming mode indication is used as an example for illustrative description.
  • the beamforming manner indication mentioned below can also be replaced by a beamforming manner.
  • the names used to represent the same meaning are all applicable to the embodiments of the present application.
  • the multiple beamforming mode indications (or the multiple beamforming modes indicated by the multiple beamforming mode indications) have a corresponding relationship with multiple values of the information bits, and are denoted as the corresponding relationship 1 for the convenience of description.
  • the beamforming mode indication has a corresponding relationship with the information bit, in other words, the beamforming mode indication has a corresponding relationship with the preset information bit, and it can also be understood that the beamforming mode indication is associated with the value of the information bit.
  • the terminal device may use its corresponding beamforming mode indication (or an associated beamforming mode indication) to transmit according to the value of the information bit to be transmitted.
  • One information bit may correspond to one beamforming mode indication, or may correspond to multiple beamforming mode indications.
  • the terminal device may determine one of the multiple beamforming mode indications for sending the ACK/NACK based on the corresponding relationship 1, or may also determine multiple ones for sending the ACK/NACK.
  • the manner of acquiring the multiple beamforming manner indications will be described in detail below.
  • Correspondence 1 may be pre-defined by the protocol, or pre-specified by the network device, or configured by the network device, or pre-agreed by the network device and the terminal device, or may be indicated by the network device to the For the terminal equipment (for example, the network equipment indicates to the terminal equipment when indicating multiple beamforming modes), etc., which are not limited.
  • Correspondence 1 may be defined on the basis of certain information bit values. For example, in the case where the number of information bits is a fixed value, the corresponding relationship between the values of different information bits and the beamforming mode indication is defined.
  • the corresponding relationship 1 can be the corresponding relationship between the values of ACK/NACK or HARQ-ACK and beamforming, such as Table 4, Table 5, Table 6, Table 11, Table 12; another possible form , the corresponding relationship 1 may be the corresponding relationship between the value of ACK/NACK or HARQ-ACK, the value of CS, and the beamforming, as shown in Table 7 to Table 10.
  • Table 4 and Table 7 correspond to the correlation between the information bits and the beamforming mode indication when the number of HARQ-ACK bits to be fed back is 1;
  • Table 5, Table 6, Table 8 to Table 12 correspond to the HARQ-ACK bits to be fed back When the number of bits is 2, the correlation between the information bits and the beamforming mode indication.
  • the beamforming mode indications corresponding to the number of information bits being 1 and the number of information bits being 2 may also have a nesting relationship or an association relationship.
  • the corresponding beamforming mode indication when the first bit is ACK is the same as the corresponding beamforming mode indication when the information bit is ACK when the number of information bits is 1
  • the corresponding beamforming mode indication when the first bit is NACK is the same as the corresponding beamforming mode indication when the information bit is NACK when the number of information bits is 1.
  • the corresponding beamforming mode indication when the second bit is ACK is the same as the corresponding beamforming mode indication when the information bit is ACK when the number of information bits is 1.
  • the corresponding beamforming mode indication when the second bit is NACK is the same as the corresponding beamforming mode indication when the information bit is NACK when the number of information bits is 1.
  • the number of correspondence 1s is related to the number of information bits. For example, the number of correspondence 1 is 2 K , and K is the number of information bits of HARQ-ACK.
  • BPSK modulation may be used; for the case where the number of information bits is 2, QPSK modulation may be used.
  • the corresponding relationship 1 can be shown in Table 4, Table 5, Table 6, Table 11, It exists in the form of Table 12, that is, the corresponding relationship between ACK/NACK and beamforming is predefined; or it can also exist in the form of Table 7, Table 8, Table 9, and Table 10, that is, the value of CS and beamforming are predefined. Correspondence.
  • HARQ-ACK (value) Beamforming mode indication NACK(0) Beamforming mode indication 1 ACK(1) Beamforming mode indication 2
  • HARQ-ACK Value
  • HARQ-ACK Value
  • HARQ-ACK (value) CS value Beamforming mode indication ACK(1) 0 Beamforming mode indication 2 NACK(0) 6 Beamforming mode indication 1
  • HARQ-ACK (value) CS value Beamforming mode indication NACK, NACK(0, 0) 0 Beamforming mode indication 1 NACK, ACK(0, 1) 3 Beamforming mode indication 2 ACK, ACK(1, 1) 6 Beamforming mode indication 1 ACK, NACK (1, 0) 9 Beamforming mode indication 2
  • HARQ-ACK (value) CS value Beamforming mode indication NACK, NACK(0, 0) 0 Beamforming mode indication 1 NACK, ACK(0, 1) 3 Beamforming mode indication 1 ACK, ACK(1, 1) 6 Beamforming mode indication 2 ACK, NACK (1, 0) 9 Beamforming mode indication 2
  • HARQ-ACK (value) CS value Beamforming mode indication NACK, NACK(0, 0) 0 Beamforming mode indication 1 NACK, ACK(0, 1) 3 Beamforming mode indication 2 ACK, ACK(1, 1) 6 Beamforming mode indication 3 ACK, NACK (1, 0) 9 Beamforming mode indication 4
  • HARQ-ACK (value) Beamforming mode indication NACK, NACK(0, 0) Beamforming mode indication 1 NACK, ACK(0, 1) Beamforming mode indication 2 ACK, ACK(1, 1) Beamforming mode indication 2 ACK, NACK (1, 0) Beamforming mode indication 1
  • HARQ-ACK (value) Beamforming mode indication NACK, NACK(0, 0) Beamforming mode indication 1 NACK, ACK(0, 1) Beamforming mode indication 2 ACK, ACK(1, 1) Beamforming mode indication 3 ACK, NACK (1, 0) Beamforming mode indication 4
  • the CS value in the above table can be replaced with a modulation constellation point.
  • Table 13 to Table 15 it can be shown in Table 13 to Table 15 below.
  • HARQ-ACK value modulation constellation point Beamforming mode indication NACK, NACK(0, 0) 00 Beamforming mode indication 1 ACK, ACK(1, 1) 11 Beamforming mode indication 2 NACK, ACK(0, 1) 01 Beamforming mode indication 2 ACK, NACK (1, 0) 10 Beamforming mode indication 1
  • the terminal device determines to transmit 1-bit HARQ-ACK information.
  • the pre-defined or agreed beamforming mode indication 1 corresponds to NACK transmission
  • the beamforming mode indication 2 corresponds to ACK transmission
  • the predefined or agreed beamforming mode indication 1 corresponds to the value of HARQ-ACK.
  • the beamforming mode indication 2 corresponds to the transmission of HARQ-ACK value of 1.
  • the beamforming mode indication 1 can be directed to TRP1
  • the beamforming mode indication 2 can be directed to TRP2. Since the spatial isolation corresponding to the beamforming mode indication 1 and the beamforming mode indication 2 is relatively large, the two-way signal The correlation between them is very low, which can reduce the false detection probability of ACK/NACK.
  • the terminal device determines to transmit 2-bit HARQ-ACK information.
  • the pre-defined or agreed beamforming mode indicates that 1 corresponds to the transmission of 2 bits of ACK or NACK, and the beamforming mode indicates that 2 corresponds to the transmission of 1 bit of ACK and 1 bit of NACK; or, pre-defined or agreed Beamforming mode indication 1 corresponds to transmission with a HARQ-ACK value of (1, 1) or (0, 0), and beamforming mode indication 2 corresponds to a HARQ-ACK value of (1, 0) or (0 , 1) transmission.
  • the terminal device determines the modulation constellation point according to the HARQ-ACK bits to be fed back, so as to modulate the HARQ-ACK. Further, the terminal device may also determine the beamforming mode indication according to the HARQ-ACK bits to be fed back or according to the determined modulation constellation point.
  • the corresponding relationship between the HARQ-ACK bits and the beamforming mode indication can be predefined, such as the corresponding relationships shown in Table 4, Table 5, Table 6, Table 11, and Table 12; or, it can also be defined
  • the corresponding relationship between the CS value and the beamforming mode indication is shown in Table 7, Table 8, Table 9, and Table 10; alternatively, the relationship between the modulation constellation point and the beamforming mode indication can also be defined.
  • Correspondence as shown in Table 13, Table 14, and Table 15.
  • the terminal device can determine the target beamforming mode indication from the multiple beamforming mode indications for sending the information bits according to the information bits to be transmitted and based on the corresponding relationship 1. It should be understood that the acquisition method and form of the corresponding relationship 1 are not strictly limited.
  • the following describes in detail a method for a terminal device to acquire multiple beamforming mode indications.
  • the terminal device can obtain multiple beamforming mode indications in any of the following ways.
  • the network device indicates the reference signal resource or the index value of the reference signal port to the terminal device, and the terminal device determines the beamforming mode indication according to the reference signal resource or the index value of the reference signal port of the reference signal.
  • the beamforming mode indication can be determined by the reference signal resource or the index value of the reference signal port.
  • the network device sends a beamforming mode indication to the terminal device, which may be replaced by the network device indicating the reference signal resource or the reference signal port to the terminal device.
  • the terminal device receives the beamforming mode indication, it may be replaced by the terminal device receiving the indication of the reference signal resource or the index value of the reference signal port.
  • the network device configures spatial filtering indication information for the PUCCH resource, where the spatial filtering indication information is used to indicate index values of multiple reference signals.
  • the terminal device may determine the transmit beam according to the reference signal index value, that is, the transmit beam for transmitting the signal on the PUCCH resource may be deduced according to the indicated reference signal index value.
  • the spatial filtering indication information may be carried in the configuration signaling for configuring the PUCCH resource, or may also be carried in the MAC CE.
  • the reference signals may include, but are not limited to: sounding reference signals (sounding reference signals, SRS), demodulation reference signals (demodulation reference signals, DMRS), channel state information reference signals (channel state information reference signal, CSI-RS) , cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS), synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/ PBCH block).
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB).
  • the type of reference signal is not limited.
  • a possible way for the terminal equipment to derive the transmit beam is to use the transmit or receive beam used to receive the reference signal on the resource corresponding to the reference signal index value as the transmit beam (beamforming method) for transmitting the PUCCH.
  • the network device indicates multiple transmission precoding matrix information (transmission precoding matrix information, TPMI) to the terminal device, and each TPMI is an indication of a beamforming mode.
  • TPMI transmission precoding matrix information
  • the terminal device determines the beamforming mode indication according to the TPMI.
  • the beamforming mode indication can be determined by TMPI.
  • the network device sends a beamforming mode indication to the terminal device, which may be replaced by the network device indicating TMPI to the terminal device.
  • the terminal device receives the beamforming mode indication, which may be replaced by the terminal device receiving the TMPI indication.
  • One representation of TPMI may be in the form of a matrix, where each row of the matrix corresponds to a transmitting antenna, each column corresponds to a transmission layer, and each element indicates the phase value used by the corresponding antenna to transmit signals on the transmission layer corresponding to the element.
  • the terminal equipment adjusts the phase weights of the data mapped on each antenna according to the TPMI instructions to generate directional beams. This information may be carried in the configuration signaling for configuring the PUCCH resource, or may be carried in the MAC CE.
  • the network device indicates multiple transmit antenna ports for the PUCCH resource, and the signal transmitted on each transmit antenna port may be regarded as a beamforming mode indication.
  • the terminal device determines the beamforming mode indication according to the transmitting antenna port.
  • the beamforming mode indication can be determined by the transmitting antenna port.
  • the network device sends the beamforming mode indication to the terminal device, which can be replaced by the network device instructing the terminal device to send the antenna port.
  • the terminal device receives the beamforming mode indication, it may be replaced by the terminal device receiving the indication of the transmitting antenna port.
  • multiple beamforming mode indications may be pre-defined for the terminal device to feed back ACK or NACK usage, or multiple beamforming mode indications may be pre-agreed so that the terminal device feeds back ACK or NACK usage.
  • the terminal device transmits ACK and NACK using different beamforming methods, and the spatial isolation corresponding to different beamforming is relatively large, for example, information bits with different values can be sent to different TRPs.
  • ACK and NACK can be transmitted by using different beamforming, so that the correlation between the signal for transmitting ACK and the signal for transmitting NACK is very low, and the error detection probability of ACK/NACK is reduced.
  • the transmission resources include frequency domain resources.
  • the terminal device may determine the target frequency domain resource according to the information bits to be transmitted.
  • the terminal device transmits ACK and NACK using different frequency domain resources.
  • the terminal device determines the frequency domain resource used for transmission according to whether ACK or NACK is transmitted.
  • the unit of the frequency domain resource reference is made to the terminology explanation above, and details are not repeated here.
  • the determination of the PUCCH resource or the determination of the physical resource of the PUCCH is mentioned many times, which may be understood as determining the PUCCH resource carrying ACK/NACK for transmission.
  • the terminal device receives the frequency domain resource indication, where the frequency domain resource indication can be used to indicate multiple frequency domain resources.
  • the network device may indicate two RBs.
  • each frequency domain resource corresponds to 12 subcarriers in one RB, or the first frequency domain resource corresponds to odd-numbered subcarriers in two RBs, and the second frequency domain resource corresponds to even-numbered subcarriers in two RBs .
  • the description will be given below in conjunction with different bit numbers.
  • the multiple frequency-domain resources indicated by the frequency-domain resources have a corresponding relationship with multiple values of the information bits, and are denoted as the corresponding relationship 2 for the convenience of description.
  • the frequency domain resources have a corresponding relationship with the information bits, in other words, the frequency domain resources have a corresponding relationship with the preset information bits, and it can also be understood that the frequency domain resources are associated with the information bits.
  • the terminal device may use its corresponding frequency domain resources (or associated frequency domain resources) for transmission according to the information bits to be transmitted. Taking ACK/NACK as an example, there may be a correspondence 2 between multiple frequency domain resources and HARQ-ACK information (eg, ACK/NACK).
  • the terminal device may determine, according to the ACK/NACK to be transmitted, based on the corresponding relationship 2, one of the multiple frequency domain resources for sending the ACK/NACK, or may also determine multiple ones for sending the ACK/NACK.
  • Correspondence 2 may be pre-defined by the protocol, or pre-specified by the network device, or configured by the network device, or pre-agreed between the network device and the terminal device, or may be indicated by the network device to the For the terminal device (for example, the network device indicates to the terminal device when indicating multiple frequency domain resources), etc., which is not limited.
  • Correspondence 2 may be defined on the basis of certain information bit values. For example, in the case where the number of information bits is a fixed value, the corresponding relationship between the values of different information bits and the frequency domain resources is defined.
  • the corresponding relationship 2 can be the corresponding relationship between the value of ACK/NACK or HARQ-ACK and the frequency domain resources, which is similar to the corresponding relationship shown in Table 4, Table 5, Table 6, Table 11, and Table 12 , just replace the beamforming mode indication in each table with frequency domain resources; another possible form, corresponding relationship 2 can be the value of ACK/NACK or HARQ-ACK, the value of CS and the value of frequency domain resources The corresponding relationship is similar to the corresponding relationship shown in Table 7 to Table 10.
  • the corresponding relationship 2 can be ACK/NACK or
  • the corresponding relationship between the value of HARQ-ACK, the modulation constellation point and the frequency domain resource is similar to the corresponding relationship shown in Table 13 to Table 15. It is only necessary to replace the beamforming mode indication in each table with the frequency domain resource.
  • the number of correspondence 2 is related to the number of information bits.
  • the number of correspondence 2 is 2 K , where K is the number of information bits of HARQ-ACK.
  • the following takes two cases of 1-bit HARQ-ACK information and 2-bit HARQ-ACK information as examples to introduce several methods for the terminal device to obtain frequency domain resources for transmitting PUCCH.
  • the network device can indicate two PUCCH resources, which are denoted as PUCCH resource 1 and PUCCH resource 2 for the convenience of description.
  • PUCCH resource 1 corresponds to ACK (or PUCCH resource 1 is associated with ACK)
  • PUCCH resource 2 corresponds to NACK (or PUCCH resource 2).
  • Resource 2 is associated with NACK); or, the corresponding HARQ-ACK value of PUCCH resource 1 is 1, and the corresponding HARQ-ACK value of PUCCH resource 2 is 0.
  • the terminal device can determine the frequency domain resource for transmitting the PUCCH according to the instruction of the network device and in combination with the HARQ-ACK information fed back by itself.
  • the PUCCH resource 1 and the PUCCH resource 2 may be located in the same time domain and occupy different PRB positions.
  • the network device can indicate a PUCCH resource, which is denoted as PUCCH resource 3 for the convenience of description.
  • PUCCH resource 3 corresponds to ACK or NACK
  • the terminal device can derive the PUCCH corresponding to NACK or ACK according to the PUCCH resource 3 and preset criteria. resource.
  • the terminal device can derive the PUCCH resource corresponding to the ACK according to the PUCCH resource 3 and the preset criteria (or in other words, derive the corresponding HARQ resource.
  • the terminal device may determine the frequency domain resource for transmitting the PUCCH according to the indication of the network device and the preset criteria and in combination with the HARQ-ACK information fed back by itself.
  • the preset criterion can be indicated by the network device to the terminal device, such as carried in the information indicating the PUCCH resource 3 by the network device; or it can be predefined, such as a protocol predefined or a network device predefined; or it can be a network device
  • the device is configured by the terminal device; or it may be pre-agreed by the network device and the terminal device; or it may be deduced by the terminal device according to the historical communication situation, which is not limited.
  • the preset criterion may be a deviation, a numerical value, or a condition, and the specific form is not limited.
  • the preset criterion is N1 PRBs, where N1 PRBs represent an interval of N1 PRBs between PUCCH resource 4 and PUCCH resource 3 , and N1 is an integer greater than 1 or equal to 1.
  • the terminal device can deduce the location of PUCCH resource 4 according to PUCCH resource 3 and N1 PRBs.
  • the network device may indicate a PUCCH resource, which is denoted as PUCCH resource 5 for convenience of description.
  • the first part of subcarriers in PUCCH resource 5 corresponds to ACK
  • the second part of subcarriers in PUCCH resource 5 corresponds to NACK.
  • the terminal device can determine the frequency domain resource for transmitting the PUCCH according to the indication of the network device and the corresponding relationship between subcarriers and ACK/NACK, and in combination with the HARQ-ACK information fed back by itself.
  • the PUCCH resource 5 may include 2 PRBs.
  • the first part of subcarriers may be odd-numbered subcarriers, and the second part of subcarriers may be even-numbered subcarriers; or, the first part of subcarriers may be even-numbered subcarriers, and the second part of subcarriers may be odd-numbered subcarriers; or the first part of subcarriers may be odd-numbered subcarriers;
  • the carrier may be the first half of the subcarriers, and the second subcarrier may be the second half of the subcarriers; or the first subcarrier may be the first X1 subcarriers, and the second subcarrier may be the remaining subcarriers, and so on.
  • first part of sub-carriers and the second part of sub-carriers may have various forms, as long as the two parts of sub-carriers are different.
  • the following mainly takes the odd-numbered sub-carriers and the even-numbered sub-carriers as examples for exemplary description.
  • RE mapping corresponding to 1-bit HARQ-ACK is shown.
  • Table 16 is only an example, which is not limited.
  • the terminal device first determines the HARQ-ACK bit to be transmitted, and then determines the subcarrier position corresponding to the bit according to the sequence corresponding to the bit.
  • the transmitted data packets include: a0, a1, a2, a3, a4, and a5.
  • NACK if a0 is not successfully received, NACK is fed back, and the frequency domain resource occupied by NACK is A0 (such as the first subcarrier); if a0 is successfully received, ACK is fed back, and the frequency domain occupied by ACK is The resource is B0 (eg, the second subcarrier).
  • NACK if a1 is not successfully received, NACK is fed back, and the frequency domain resource occupied by NACK is A1 (such as the third subcarrier); if a1 is successfully received, ACK is fed back, and the frequency domain occupied by ACK is The resource is B1 (eg, the fourth subcarrier).
  • the network device may indicate four PUCCH resources, which are denoted as PUCCH resource 10 , PUCCH resource 20 , PUCCH resource 30 , and PUCCH resource 40 for convenience of description.
  • PUCCH resource 10 corresponds to the case where both bits are NACK
  • PUCCH resource 20 corresponds to the case where the first bit is NACK and the second bit is ACK
  • PUCCH resource 30 corresponds to the case where both bits are ACK
  • PUCCH resource 40 corresponds to the first bit is the case where the second bit of the ACK is NACK
  • the PUCCH resource 10 corresponds to the case where the HARQ-ACK value is (0, 0)
  • the PUCCH resource 20 corresponds to the case where the HARQ-ACK value is (0, 1)
  • the PUCCH resource 30 corresponds to the case where the HARQ-ACK value is (1, 1)
  • the PUCCH resource 40 corresponds to the case where the HARQ-ACK value is (1, 0).
  • the terminal device can determine the frequency domain resource for
  • the network device may indicate a PUCCH resource, which is denoted as PUCCH resource 50 for convenience of description, and the PUCCH resource 50 corresponds to the case where both bits are NACK.
  • the terminal device may derive and obtain PUCCH resources corresponding to other situations according to the PUCCH resource 50 and the preset criteria.
  • the terminal device may determine the frequency domain resource for transmitting the PUCCH according to the indication of the network device and the preset criteria and in combination with the HARQ-ACK information fed back by itself.
  • the preset criterion can be indicated by the network device to the terminal device, such as it can be carried in the information indicating the PUCCH resource 50 by the network device; or it can be predefined, such as a protocol predefined or a network device predefined; or it can be
  • the network device is configured for the terminal device; or it may be pre-agreed by the network device and the terminal device; or it may be deduced by the terminal device according to the historical communication situation, which is not limited.
  • the preset criterion may be a deviation, a numerical value, or a condition, and the specific form is not limited.
  • the preset criterion is N2 subcarriers
  • N2 subcarriers indicate that the frequency domain resource interval occupied by PUCCH resources corresponding to various situations is N2 subcarriers
  • N2 is an integer greater than 1 or equal to 1.
  • Table 17 shows the RE mapping corresponding to 2-bit HARQ-ACK.
  • Table 17 is only an example, and is not limited thereto.
  • the terminal device first determines the HARQ-ACK bit to be transmitted, and then determines the subcarrier position corresponding to the bit according to the sequence corresponding to the bit.
  • FIG. 6 shows a specific example. As can be seen from FIG. 6 , the terminal device determines to transmit feedback information on corresponding frequency domain resources according to the determined HARQ-ACK bits to be transmitted.
  • the network device may also indicate two PUCCH resources, and the two PUCCH resources correspond to two cases respectively. Based on the two PUCCH resources and the preset criteria, The terminal device derives the PUCCH resources in other cases.
  • the frequency domain resource interval occupied by each PUCCH resource may also be different.
  • the preset criteria may include: N3 subcarriers, N4 subcarriers, and N5 carriers, where N3, N4, and N5 are all integers greater than 1 or equal to 1.
  • N3 subcarriers are the case where the first bit is NACK and the second bit is ACK and the case where both bits are NACK
  • the interval between the frequency domain resources occupied by PUCCH N4 subcarriers are the case where both bits are ACK and 2
  • the interval of the frequency domain resources occupied by PUCCH the N5 subcarriers are the case where the first bit is ACK and the second bit is NACK and the case where both bits are NACK
  • the frequency domain resources occupied by PUCCH are interval.
  • the network device can indicate a PUCCH resource, which is denoted as PUCCH resource 60 for convenience of description.
  • the third part of the subcarriers in the PUCCH resource 60 corresponds to the case where both 2 bits are ACK or NACK, the fourth part of the PUCCH resource 60
  • the molecular carrier corresponds to the case where 1 bit is NACK and 1 bit is ACK.
  • the terminal device can determine the frequency domain resource for transmitting the PUCCH according to the indication and the corresponding relationship of the network device and in combination with the HARQ-ACK information fed back by itself.
  • the third part of subcarriers may be odd-numbered subcarriers, and the fourth part of subcarriers may be even-numbered subcarriers; or, the third part of subcarriers may be even-numbered subcarriers, and the fourth part of subcarriers may be odd-numbered subcarriers; or
  • the third part of subcarriers can be the first half of the subcarriers, the fourth part of the subcarriers can be the second half of the subcarriers; or the third part of the subcarriers can be the first X1 subcarriers, the fourth part of the subcarriers can be the remaining subcarriers, and so on.
  • the third sub-carrier and the fourth sub-carrier may have various forms, as long as the two sub-carriers are different.
  • the following mainly takes the odd-numbered sub-carriers and the even-numbered sub-carriers as examples for exemplary description.
  • both (NACK, NACK) (or (0, 0)) and (ACK, ACK) (or (1, 1)) correspond to even-numbered subcarriers, such as 4n and 4n+, respectively 2;
  • (NACK, ACK) (or (0, 1)) and (ACK, NACK) (or (1, 0)) both correspond to odd-numbered subcarriers, for example, 4n+1 and 4n+3, respectively.
  • the terminal device can determine the frequency domain resources occupied by the PUCCH according to the value of the HARQ-ACK bits and the adopted frequency domain resources. Sequence CS. Therefore, the frequency domain resources for transmitting ACK and the frequency domain resources for transmitting NACK can be different, so that PUCCH transmission still maintains high reliability when the channel delay spread is large, and the occurrence of false detection is reduced.
  • Option 1 and Option 2 can be used alone. For example, if Option 1 is used alone, only increasing the spatial isolation is considered; or if Option 2 is used alone, only increasing the isolation of frequency domain resources is considered, such as considering the actual communication situation or communication environment. Increase spatial isolation or increase frequency domain resource isolation. Alternatively, solution 1 and solution 2 may also be used in combination, that is, considering both increasing the spatial isolation and increasing the frequency-domain resource isolation.
  • the transmission resource includes the correspondence between each transmission unit and the indications of multiple beamforming modes.
  • the terminal device may determine the beamforming mode indication corresponding to each transmission unit according to the information bits to be transmitted, or determine the correspondence between each transmission unit and multiple beamforming mode indications.
  • the beamforming mode indication corresponding to each transmission unit is one or more of the multiple beamforming mode indications.
  • the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit, and the following mainly takes the time domain unit as an example for illustrative description.
  • a time domain unit a frequency domain unit
  • a time-frequency unit mainly takes the time domain unit as an example for illustrative description.
  • a time-domain repeated transmission scheme may be adopted, that is, feedback is repeatedly sent on multiple time-domain resources, that is, the network device may configure the PUCCH transmission to use a time-domain repetition mode.
  • Repeated transmission in the time domain refers to transmitting the same information bits on multiple time domain units, or transmitting the same modulation symbols generated by the same information bits.
  • the receiving end performs joint processing on the signals received on multiple time domain units to improve reliability.
  • Each transmission may, for example, be denoted as a transmission occasion.
  • each group of consecutive OFDM symbols can be called a transmission unit or a transmission opportunity or a PUCCH transmission opportunity, and the same UCI is transmitted on each group of transmission opportunities information bits.
  • PUCCH transmission occasions As shown in FIG. 6 , for one PUCCH resource, PUCCH transmission opportunity 1 and PUCCH transmission opportunity 2 are included.
  • the terminal device may use PUCCH transmission opportunity 1 to transmit the first information bit, and use PUCCH transmission opportunity 2 to transmit the first information bit.
  • the two transmission occasions may be continuous or separated by at least one OFDM symbol.
  • the DMRS is carried on each transmission occasion.
  • the same or different RB positions occupied by two adjacent transmission occasions may be configured by the network device.
  • the transmission sequence used in the multiple transmission occasions is determined according to Equation 3, and all items in Equation 3 are the same.
  • the transmission sequence used in the multiple transmission occasions is determined according to Equation 3, where l' in Equation 3 is different in different transmission occasions, and the rest of the terms in Equation 3 are the same in different transmission occasions.
  • multiple beamforming mode indications are issued through RRC signaling or MAC CE signaling.
  • different modulation and coding modes or sequences or redundancy versions, etc. may be used for transmission at each group of transmission opportunities, such as the first information bit transmitted using PUCCH transmission opportunity 1 and the first information bit transmitted using PUCCH transmission opportunity 2 , you can use different modulation and coding methods or sequences or redundancy versions and so on.
  • different transmission occasions may occupy the same OFDM symbol position in different slots, or may occupy different OFDM symbol positions in the same slot, which is not limited.
  • adjacent transmission units correspond to different beamforming manners.
  • the PUCCH transmission opportunity 1 adopts the beamforming mode to indicate 1
  • the PUCCH transmission opportunity 2 adopts the beamforming mode to indicate 2.
  • the indication of the beamforming mode used for each transmission in the time-domain repeated transmission may be determined according to the information bits. Therefore, multiple stations try to receive signals at each transmission opportunity. For the transmission opportunity 1 corresponding to beam 1 pointing to TRP1, the receiving energy of TRP1 is high and the receiving energy of TRP2 is very low. At transmission opportunity 2, the received energy of TRP1 is low and the received energy of TRP2 is high.
  • multi-station cooperative reception information can be transmitted according to the difference in the received energy of each TRP at different transmission occasions, thereby improving transmission reliability.
  • the mapping mode has a corresponding relationship with the information bits, and it can also be understood that the mapping mode is associated with the information bits.
  • the mapping mode can be expressed as a mapping mode between multiple transmission opportunities and multiple beamforming mode indications, for example, beamforming mode indication 1 is used on PUCCH transmission opportunity 1, and beamforming mode indication 2 is used on PUCCH transmission opportunity 2 .
  • the terminal device can determine the mapping mode from multiple mapping modes according to the information bits to be transmitted and the corresponding relationship 3, and then can use the respective beamforming mode instructions for transmission at each transmission opportunity.
  • the network device also processes the received signal according to the corresponding relationship 3 .
  • the number of correspondences 3 is related to the number of information bits.
  • the number of correspondence 3 is 2 K , where K is the number of information bits of HARQ-ACK.
  • the number of correspondence 3 is related to the number of cooperative TRPs. For example, if there are two TRP cooperative transmissions, the number of correspondence 3 may be 2.
  • the number of correspondences 3 is the same as the number indicated by the beamforming manner. In an example, the number of correspondence 3 is 2, which is used to carry 1-bit information.
  • the corresponding relationship 3 can be understood as multiple beamforming manners indicating the mapping order on multiple transmission occasions.
  • the number indicated by the beamforming manner is less than or equal to the number of transmission opportunities.
  • Correspondence 3 may be pre-defined by the protocol, or pre-specified by the network device, or configured by the network device, or pre-agreed between the network device and the terminal device, or may be indicated by the network device to the For the terminal equipment (for example, the network equipment indicates to the terminal equipment when multiple beamforming modes are indicated), etc., which is not limited.
  • Correspondence 3 may be defined on the basis of certain information bit values. For example, when the number of information bits is a fixed value, the corresponding relationship between the values of different information bits and the mapping manner is defined.
  • the beamforming mode indicates that the mapping sequence at the transmission opportunity may be: PUCCH transmission opportunity 1 using beamforming mode to indicate 1, PUCCH transmission opportunity 2
  • the beamforming mode is used to indicate 1 on the PUCCH transmission opportunity 2.
  • the specific implementation process of the network device may be as follows.
  • the first transmission unit corresponds to the first beamforming mode indication and the second transmission unit corresponds to the second beamforming mode indication; the first transmission unit corresponds to the second beamforming mode indication and the second transmission unit corresponds to the first beamforming mode indication.
  • the network device sends a plurality of beamforming mode indications, and the multiple beamforming mode indications include a first beamforming mode indication and a second beamforming mode indication.
  • the network device sends the PUCCH repeated transmission indication, that is, sends the PUCCH in multiple transmission units, and the multiple transmission units of the PUCCH include a first transmission unit and a second transmission unit.
  • the network device receives signals in the receiving beamforming manner corresponding to the first beamforming manner indication and the second beamforming manner indication on both the first transmission unit and the second transmission unit.
  • the signal received by the network device 1 on the first transmission unit is stronger than the signal received on the second transmission unit, and the signal received by the network device 2 on the first transmission unit is weaker than that received on the second transmission unit , which can help identify the current transmission as ACK; otherwise, when the signal received by network device 1 on the first transmission unit is weaker than the signal received on the second transmission unit, and the signal received by network device 2 on the first transmission unit The signal is stronger than the signal received on the second transmission unit and can help identify the current transmission as a NACK.
  • the corresponding relationship 3 may be the corresponding relationship between the values of ACK/NACK or HARQ-ACK and the mapping mode, as shown in Table 18; another possible form, the corresponding relationship 3 It can be the corresponding relationship between the value of ACK/NACK or HARQ-ACK, the value of CS and the mapping mode, as shown in Table 19.
  • the mapping sequence of the beamforming mode indication at the transmission opportunity may be: PUCCH transmission opportunity 1 using beamforming mode indication 1, PUCCH transmission opportunity 2 using beamforming mode indication 2;
  • the beamforming mode indicates that the mapping sequence at the transmission occasion may be: PUCCH transmission occasion 1 adopts beamforming mode to indicate 2, and PUCCH transmission occasion 2 adopts beamforming Mode indicates 1.
  • the corresponding relationship 3 may be the corresponding relationship between the values of ACK/NACK or HARQ-ACK and the mapping manner, as shown in Table 20 to Table 22.
  • the corresponding relationship 3 can be the corresponding relationship between the value of ACK/NACK or HARQ-ACK, the value of CS, and the mapping method, as shown in Table 23, through this form, the information bits with a CS value interval of 3 can be improved. The degree of discrimination improves the reliability of PUCCH detection.
  • the multiple beamforming manners corresponding to the number of information bits being 1 and the number of information bits being 2 indicate that the mapping manners at different transmission occasions may have a nested relationship.
  • the number of information bits is 2
  • the corresponding beamforming methods indicate the mapping methods at different transmission occasions, and when the number of information bits is 1, the information bit is ACK
  • the corresponding multiple beamforming methods indicate the same mapping methods on different transmission occasions; when the first bit is NACK, the corresponding multiple beamforming methods indicate the mapping methods on different transmission occasions, and the number of information bits is 1
  • the corresponding beamforming modes indicate that the mapping modes on different transmission occasions are the same, as shown in Table 18 and Table 21.
  • the corresponding beamforming methods indicate the mapping methods at different transmission opportunities
  • the information bits are The multiple beamforming modes corresponding to ACK indicate the same mapping modes on different transmission occasions
  • the second bit is NACK
  • the corresponding multiple beamforming modes indicate the mapping modes on different transmission occasions
  • the number of information bits is In the case of 1, when the information bit is NACK, the corresponding multiple beamforming modes indicate that the mapping modes on different transmission occasions are the same, as shown in Table 18 and Table 22.
  • the N time units included in one PUCCH resource may be numbered in chronological order, and N is an integer greater than 1.
  • the time unit occupied by PUCCH transmission opportunity 1 includes an odd-numbered time unit in the time domain
  • the time unit occupied by PUCCH transmission opportunity 2 includes an even-numbered time unit in the time domain
  • PUCCH transmission The time unit occupied by the opportunity 1 includes the first N/2 time units in the time domain
  • the time unit occupied by the PUCCH transmission opportunity 2 includes the last N/2 time units in the time domain.
  • the corresponding relationship 3 may be as shown in Table 24 or Table 25.
  • BPSK modulation may be used; for the case where the number of information bits is 2, QPSK modulation may be used.
  • the CS value in the above table may be replaced by a modulation constellation point.
  • Table 26 to Table 28 below.
  • the beamforming mode indicates that the mapping sequence at the transmission opportunity may be: PUCCH transmission opportunity 1 using beamforming mode to indicate 1, PUCCH transmission opportunity 2
  • one transmission opportunity corresponding to one beamforming mode indication is not strictly limited, for example, one transmission opportunity may also include a larger number of beamforming mode indications.
  • multiple stations can further identify ACK/NACK information according to the detection energy at different transmission occasions to improve reliability.
  • the transmission resources include frequency domain resources corresponding to each transmission unit.
  • the terminal device may determine the frequency domain resources corresponding to each transmission unit according to the information bits to be transmitted.
  • mapping manner #2 (it should be understood that it is marked as mapping manner #2 for distinction here) have a corresponding relationship with multiple values of the information bits, and are denoted as correspondence 4 for convenience of description.
  • the multiple mapping modes #2 have a corresponding relationship with multiple values of the information bits, and it can also be understood that the mapping modes #2 are associated with the values of the information bits.
  • the mapping method #2 can be expressed as a mapping method between multiple transmission opportunities and multiple frequency domain resources. The terminal device can determine the mapping mode #2 according to the value of the information bits to be transmitted, and then can use the respective frequency domain resources for transmission at each transmission opportunity.
  • Table 29 and Table 30 list the possible correspondences of 1-bit HARQ-ACK information
  • Table 31 lists A possible correspondence of the 2-bit HARQ-ACK information is shown.
  • Tables 29 to 31 are only exemplary descriptions, and the modifications belonging to the above-mentioned Tables 29 to 31 are all applicable to the embodiments of the present application.
  • the frequency domain interval between the REs occupied by the first OFDM symbol and the REs occupied by the second OFDM symbol may also be different.
  • the indication of the beamforming mode used for each transmission in the time-domain repeated transmission can be determined according to the information bits, which can not only help to identify the current transmission as ACK or NACK, but also Transmission reliability can be improved.
  • the subcarriers occupied by the PUCCH on different OFDM symbols can be changed.
  • the transmission resource includes the selection of the base sequence.
  • the base sequence used by the terminal device may be a 12-long sequence, or the terminal device may also use a 6-long low-PAPR sequence in the frequency domain as the base sequence, as shown in Table 32.
  • the 6-long low-PAPR sequence in the frequency domain is used as the base sequence, and the frequency domain resources occupied by the transmission of HARQ-ACK are 6REs, which can save the frequency domain resource overhead; the use of 12-long sequences (occupying 12REs) can improve the transmission reliability.
  • the transmission resource includes OCC.
  • the sequence carrying the HACK-ACK information may adopt a 6-long time domain sequence.
  • the time-domain sequence indicates that the base sequence is defined in the time domain, that is, after the base sequence is modulated, it can be transformed to the RE by discrete Fourier transform (discrete fourier transform, DFT) transformation.
  • DFT discrete Fourier transform
  • a plurality of OCCs have a corresponding relationship with a plurality of values of the information bits, and are denoted as the corresponding relationship 5 for the convenience of description.
  • the OCC has a corresponding relationship with the information bits, and it can also be understood that the OCC is associated with the information bits.
  • the terminal device may use its corresponding OCC to perform processing (eg, time domain extension operation) according to the value of the information bit to be transmitted.
  • Correspondence 5 may be pre-defined by the protocol, or may be pre-specified by the network device, or may be configured by the network device, or may be pre-agreed by the network device and the terminal device, or may be indicated by the network device. Terminal equipment, etc., are not limited.
  • Table 33 lists the possible correspondence 5 of 1-bit HARQ-ACK information, that is, the OCC code corresponding to 1-bit HARQ-ACK;
  • Table 34 lists the possible correspondence 5 of 2-bit HARQ-ACK information, that is, 2 bits OCC code corresponding to HARQ-ACK.
  • the 6-long time-domain sequence s may be subjected to a time-domain spreading (spread) operation.
  • a sequence wn ⁇ [s s] is formed by time domain repetition, and block-wise OCC code wn is determined according to HARQ-ACK bits, and then a frequency domain sequence is generated, as shown in FIG. 9 .
  • the frequency domain resources of the PUCCH may be determined in combination with the description in the above scheme 2.
  • the sequence using OCC code [+1 +1] is only mapped to PUCCH resource 2, and the sequence using OCC code [+1 -1] is only mapped to PUCCH resource 1.
  • the sequence using OCC code [+1 +1] is only mapped to PUCCH resource 3, and the sequence using OCC code [+1 -1] is only mapped to PUCCH resource 4.
  • the sequence using OCC code [+1 +1] is only mapped to the second part of subcarriers, and the sequence using OCC code [+1 -1] is only mapped to the first part of subcarriers.
  • the 6-long time-domain sequence s can be subjected to a time-domain spreading (spread) operation.
  • the sequence [s s s s] is formed after 4 repetitions, and the block-wise OCC code w n is determined according to the HARQ-ACK bits, and then the frequency domain sequence is generated, as shown in FIG. 10 .
  • the sequence undergoes a time domain extension operation: w 0 ⁇ [s s s s] to obtain [s s s s s].
  • the sequence using w 0 will be mapped to the sub-carrier numbered 4n
  • the sequence using w 1 will be mapped to the sub-carrier numbered 4n+1
  • the sequence using w 2 will be mapped to the number 4n+
  • the sequence using w 3 will be mapped to the sub-carrier numbered 4n+3.
  • the mapped subcarriers mentioned here are only exemplary, and are not limited thereto.
  • the frequency domain resources of the PUCCH may be determined in combination with the description in the above solution 2.
  • l is the index value of the OFDM symbol occupied by the PUCCH.
  • is the number of subcarriers occupied by PUCCH. is the multiplexing coefficient, which can be understood as the number of comb teeth.
  • Msymb is the number of elements in the base sequence.
  • the network device can configure the PUCCH transmission to use the time-domain repetition mode.
  • the block-wise OCC on the second OFDM symbol is different from the block-wise OCC on the first OFDM symbol.
  • the block-wise OCC on the second OFDM symbol can be determined according to the block-wise OCC on the first OFDM symbol.
  • Table 36 lists possible correspondences of 1-bit HARQ-ACK information
  • Table 37 lists possible correspondences of 2-bit HARQ-ACK information.
  • the frequency domain interval between REs occupied by symbol 1 (symbol 1) and symbol 2 (symbol 2) is both 1.
  • the RE occupied by symbol 1 when the RE occupied by symbol 1 is the first RE, the RE occupied by symbol 2 is the second RE; for a1, when the RE occupied by symbol 1 is the third RE, the RE occupied by symbol 2 is the third RE.
  • the RE is the fourth RE.
  • the frequency domain interval between REs occupied by symbol 1 and symbol 2 is both 2.
  • the RE occupied by symbol 1 is the first RE
  • the RE occupied by symbol 2 is the third RE
  • the RE occupied by symbol 1 is the fifth RE
  • the RE occupied by symbol 2 is the fifth RE.
  • the RE is the seventh RE.
  • HARQ-ACK n 0(0,0) 1(0,1) 2(1,1) 3(1,0) w n (i) of 1 st OFDM symbol [+1 +1 +1 +1] [+1 -j -1 +j] [+1 -1 +1 -1] [+1 +j -1 -j] w n (i) for 2 nd OFDM symbols [+1 -1 +1 -1] [+1 +j -1 -j] [+1 +1 +1 +1] [+1 -j -1 +j]
  • the transmission resources include resources used by each bit of information.
  • the reliability of detection will decrease.
  • the terminal device when it is proposed in this application that when a terminal device transmits 2-bit HARQ-ACK, the terminal device may use the same time domain resource, different frequency domain resource and/or different spatial domain resource to transmit the 2-bit information respectively.
  • the terminal device transmits 2-bit information on the same time domain resource and two different frequency domain resources respectively.
  • the terminal device may determine the frequency domain resource by using any one of the methods 1 to 3 described in the above solution 2.
  • the following description takes 2-bit information as an example.
  • the network device may indicate two PUCCH resources, denoted as PUCCH resource 11 and PUCCH resource 21 for convenience of description, PUCCH resource 11 corresponds to the first information bit, and PUCCH resource 21 corresponds to the second information bit.
  • the terminal device may transmit the first information bit on the PUCCH resource 11 and transmit the second information bit on the PUCCH resource 21 according to the instruction of the network device.
  • the terminal device further selects the corresponding CS or modulation constellation point generation sequence on the corresponding resource according to the information bits to be transmitted.
  • the terminal device transmits (NACK, ACK)
  • NACK is transmitted on PUCCH resource 11
  • NACK is transmitted on PUCCH resource 11.
  • ACK is transmitted on resource 21.
  • the CS value or the modulation constellation point is determined according to the corresponding relationship between the information bit corresponding to the resource and the CS value or the modulation constellation point (as shown in Table 2), and the sequence is generated respectively. Through this scheme, the false detection probability of UCI can be reduced.
  • Transmitting PUCCH on multiple RBs may increase the PAPR of the transmitting end, which affects the transmission efficiency and thus reduces the reliability of PUCCH reception.
  • the increase in the number of RBs occupied by the transmitted signal will reduce the power spectral density and affect the reception performance.
  • the above problem can be solved by further establishing an association relationship between different frequency domain resources and transmitting antenna ports. Specifically, it is assumed that the terminal device has multiple transmit antenna ports, including transmit antenna port 0 and transmit antenna port 1. It is pre-agreed that transmit antenna port 0 corresponds to PUCCH resource 11, and transmit antenna port 1 corresponds to PUCCH resource 21. At this time, transmit antenna port 1 corresponds to PUCCH resource 21.
  • Port 0 actually corresponds to the first information bit
  • port 1 of the transmitting antenna actually corresponds to the second information bit. Therefore, for each transmit antenna port, it only transmits signals on one RB, which avoids the problems of increased PAPR and reduced power spectral density.
  • the transmitting antenna ports may sequentially correspond to the physical antennas of the terminal equipment, or may also sequentially correspond to reference signal ports (eg, SRS ports).
  • reference signal ports eg, SRS ports
  • the network device may indicate a PUCCH resource, which is denoted as PUCCH resource 31 for the convenience of description, and the PUCCH resource 31 corresponds to the first information bit or the second information bit. , and derive the PUCCH resource corresponding to the second information bit or the first information bit.
  • the terminal device can derive the PUCCH resource corresponding to the second information bit according to the PUCCH resource 3 and the preset criteria, for the convenience of description , denoted as PUCCH resource 41 .
  • the terminal device may transmit the first information bit on the PUCCH resource 31 and transmit the second information bit on the PUCCH resource 41 according to the instruction of the network device and the preset criteria.
  • the preset criteria reference may be made to the above description, and details are not repeated here.
  • the network device may indicate a PUCCH resource, which is denoted as PUCCH resource 51 for convenience of description, the first part of the subcarriers in the PUCCH resource 51 corresponds to the first information bit, and the second part of the subcarriers in the PUCCH resource 51 corresponds to the first information bit.
  • the terminal device may determine the frequency domain resource for transmitting the first information bit and the second information bit according to the indication of the network device and the correspondence between the subcarrier and the first information bit/second information bit.
  • the network device may indicate one PUCCH resource, one PUCCH resource occupies two different PRBs, and each PRB corresponds to one HARQ-ACK bit information. That is to say, the same base sequence may be used on the two PRBs, and the CS value is determined according to the two HARQ-ACK bit information respectively.
  • the correspondence between two PRBs and two HARQ-ACKs may be predefined.
  • the corresponding relationship between the PRB number and the two HARQ-ACKs is defined.
  • the number of PRBs may be defined, or the number of PRBs may be defaulted directly according to the order from high to low in the frequency domain, and the order of the HARQ-ACK bits may be determined according to a specific criterion. Alternatively, it can also be directly defaulted, and the PRBs are used in sequence according to the HARQ-ACK bits.
  • the terminal device transmits 2-bit information on two different airspace resources and the same time domain resource.
  • the terminal device may determine the beamforming mode indication by using any of the methods from Mode A to Mode C described in Scheme 1 above. Specifically, reference may be made to the above description, which will not be repeated here.
  • the terminal device may use different antenna ports to send the 2-bit information. Therefore, the power amplifiers corresponding to different antenna ports of the terminal device are used to increase the transmission power of the PUCCH.
  • the 2-bit information is NACK+ACK, that is, the terminal equipment transmits (NACK, ACK), then the terminal equipment can use one antenna port (or some antenna ports) to send NACK, and use another antenna port (or some other antenna ports) to send ACK.
  • a terminal device may transmit sequences on different PRBs using different antenna ports.
  • solution 7 is only an exemplary illustration, and is not limited thereto.
  • the 2-bit HARQ-ACK can be considered separately, that is, it is considered as two 1-bit HARQ-ACKs.
  • each bit corresponds to different PRBs and/or different antenna ports for transmission, so that PUCCH transmission still maintains high reliability when the channel delay spread is large, which can improve transmission reliability.
  • Scheme 8 other information used for coding and/or modulation, etc. included in the transmission resource.
  • the terminal device may use the corresponding CS value to generate the transmission sequence according to the information bits to be transmitted.
  • the network device may receive signals on multiple transmission resources according to multiple CS values, and determine the target CS value, and then may determine the corresponding information bits.
  • a plurality of CS values have a corresponding relationship with a plurality of values of the information bits, and are denoted as the corresponding relationship 7 for the convenience of description.
  • the multiple CS values have a corresponding relationship with the multiple values of the information bits, and it can also be understood that the CS values are associated with the values of the information bits.
  • the terminal device may use its corresponding CS value for processing (eg, generate a transmission sequence) according to the value of the information bit to be transmitted.
  • Correspondence 7 may be pre-defined by the protocol, or may be pre-specified by the network device, or may be configured by the network device, or may be pre-agreed by the network device and the terminal device, or may be indicated by the network device to the Terminal equipment, etc., are not limited.
  • the network device can configure the PUCCH transmission to use time domain repetition.
  • the terminal device can send the transmission sequence on multiple transmission units.
  • the network device may generate multiple sequences according to multiple CS values, and receive signals on multiple transmission units according to the multiple sequences.
  • the CS value determined according to the information bits may be brought into Equation 3 to obtain the sequence value by calculation.
  • the terminal device can use the corresponding modulation constellation points to perform modulation according to the information bits to be transmitted to generate a transmission sequence.
  • the network device can receive signals on multiple transmission resources according to the multiple modulation constellation points, determine the target modulation constellation point, and then determine the corresponding information bits.
  • the multiple modulation constellation points and the multiple values of the information bits have a corresponding relationship, which is denoted as the corresponding relationship 8 for the convenience of description.
  • the multiple modulation constellation points have a corresponding relationship with multiple values of the information bits, and it may also be understood that the modulation constellation points are associated with the values of the information bits.
  • the terminal device may use its corresponding modulation constellation point for processing (eg, modulation) according to the value of the information bit to be transmitted.
  • Correspondence 8 may be pre-defined by the protocol, or may be pre-specified by the network device, or may be configured by the network device, or may be pre-agreed by the network device and the terminal device, or may be indicated by the network device. Terminal equipment, etc., are not limited.
  • the modulation constellation point is determined to be the first modulation constellation point in the case of ACK, and the modulation constellation point is determined to be the second modulation constellation point in the case of NACK.
  • the modulation constellation point is determined as the first modulation constellation point, and when all 2 bits are NACK, the modulation constellation point is determined as the second modulation constellation point, and the first bit is the second bit of NACK.
  • the modulation constellation point is determined as the third modulation constellation point, and when the first bit is ACK and the second bit is NACK, the modulation constellation point is determined as the fourth modulation constellation point.
  • the network device can configure the PUCCH transmission to use time domain repetition.
  • the terminal device uses the target modulation constellation point to generate the transmission sequence, the terminal device can send the transmission sequence on multiple transmission units.
  • the modulation operation can be performed according to the same base sequence, and according to the corresponding relationship 8, the base sequence can be modulated by the corresponding modulation constellation point, and then sent.
  • different constellation points can be used to decipher the signal, and the constellation point used by the terminal device can be determined to determine the transmitted bits.
  • the terminal device can use the corresponding transmission resource for processing according to the value of the information bit to be transmitted. or transmission.
  • the target transmission resource may include a first transmission resource and a second transmission resource, and the first transmission resource is the target CS value or the target modulation constellation point.
  • the second transmission resource is indicated by the beamforming mode corresponding to each transmission unit, and the terminal device can simultaneously determine the first transmission resource and the second transmission resource according to the information bits to be transmitted.
  • solution related to the long PUCCH format and the above-mentioned embodiments may be used in combination, or the solution related to the long PUCCH format may also be used alone.
  • the short PUCCH format can support 1-bit or 2-bit HARQ-ACK information.
  • the short PUCCH format means that the PUCCH occupies less time domain resources in the time domain, such as occupying fewer OFDM symbols, for example, at most 2 OFDM symbols.
  • the content of each of the above embodiments can be regarded as an extension on the short PUCCH format.
  • the long PUCCH format can support more than 2 bits of HARQ-ACK information.
  • the long PUCCH format means that the PUCCH occupies more time domain resources in the time domain, for example, occupies more OFDM symbols (for example, 4-14 OFDM symbols).
  • the long PUCCH format is, for example, PUCCH format 4 (PUCCH format 4).
  • PUCCH format 4 PUCCH format 4
  • the embodiment shown below can be regarded as an extension on the long PUCCH format, such as an extension on the PUCCH format 4.
  • the long PUCCH format supports higher PUCCH transmission reliability, and uses single-carrier waveform (such as discrete fourier transformation-spread-orthogonal frequency division multiplexing, DFT-s-OFDM) information After the bits are coded and modulated in the time domain, they are mapped to frequency domain resources through DFT transformation.
  • DFT-s-OFDM discrete fourier transformation-spread-orthogonal frequency division multiplexing
  • c(i) is a scrambling sequence, eg a PN sequence.
  • n RNTI is a scrambling parameter, for example, it can be configured by high-layer signaling.
  • n ID can be configured by high-level signaling, or can be bound to the cell ID, that is,
  • the modulation scheme may include, for example, ⁇ /2-binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), and the like. It should be understood that the modulation mode is not strictly limited.
  • M symb M bit /2.
  • M symb M bit .
  • the value in PUCCH format 4 can be 12 (1 RB). Characterize the multiplexing factor. for example Indicates that the number of OCCs used for orthogonal multiplexing is 2, Indicates that the number of OCCs used for orthogonal multiplexing is 4.
  • wn can be defined according to Table 38 below.
  • wn can be defined according to Table 38 below.
  • the third step (ie 3) above) is formed Do the following DFT transformation operation (or do similar transformation or calculation to satisfy the following formula), and the formed modulation symbols are mapped to REs.
  • terminal device 1 is mapped to the even-numbered subcarriers through a series of operations
  • terminal device 2 is mapped to the odd-numbered subcarriers through a series of operations
  • terminal device 1 maps to the first part of sub-carriers through a series of operations
  • terminal device 2 maps to the second part of sub-carriers through a series of operations.
  • first part of sub-carriers and the second part of sub-carriers please refer to the above description, but not here. Repeat.
  • the DMRS of the PUCCH still occupies all subcarriers in the frequency domain, and the DMRS of different terminal devices are orthogonal by CS (ie cyclic shift).
  • CS ie cyclic shift
  • different block-wise OCCs can be used to support orthogonal multiplexing transmission between different UEs.
  • different block-wise OCCs may be used to support multiple repeated transmissions of the same UE.
  • the terminal device may send the same UCI on different frequency domain resources.
  • the terminal device may also use different antenna ports and on different frequency domain resources to send the same UCI.
  • Figure 14 shows a specific example. As shown in Figure 14, it is assumed that the UCI information bits (a0, a1, a2, a3, a4, a5, a6, a7) are modulated to form (b0, b1, b2, b3, b4, b5, b6, b7), after time domain repetition, different time domain OCC codes are respectively used and mapped to different subcarriers in frequency domain through DFT transformation.
  • the even and odd subcarriers carry the same information, and the terminal device can use different antenna ports to send information on the even and odd subcarriers. In this way, the transmission reliability of PUCCH format 4 can be improved, and a lower transmission delay can be ensured.
  • the modulation scheme may include, for example, ⁇ /2-BPSK, QPSK, and the like. It should be understood that the modulation mode is not strictly limited.
  • M symb M bit /2.
  • M symb M bit .
  • wn can be defined according to Table 38 described above; or, wn can be defined according to Table 39 described above.
  • the third step (ie, 3) above) forms multiple Do the following DFT transform operations respectively (or do similar transforms or calculate to satisfy the following formula), and the formed modulation symbols are mapped to REs for transmission.
  • a specific block-wise OCC code since a specific block-wise OCC code is used, its UCI is mapped to multiple different comb teeth.
  • the DMRS of the PUCCH still occupies all subcarriers in the frequency domain, the UCIs on different comb teeth correspond to one DMRS port respectively, and the different DMRS ports are orthogonal to CS.
  • the value of CS can be determined according to the above-mentioned definition of m 0 in Table 40, such as satisfying the following formula.
  • the DMRSs of the UCIs on different comb teeth can use m 0 corresponding to different n to form mutually orthogonal DMRS signals (ie, different DMRS ports).
  • the UCI signals on different comb teeth and the corresponding DMRS ports may be sent using different antenna ports respectively.
  • the antenna port may be the physical antenna of the terminal device, or the antenna port may correspond to different SRS ports.
  • different block-wise OCCs can be used to support multiple repeated transmissions of the same terminal device, that is, repeated transmissions of the same UCI are carried on different frequency domain resources, so that the code rate can be reduced and the transmission reliability can be improved.
  • different transmission antenna ports may be used on different frequency domain resources, or different antenna ports may be used for transmission on different comb teeth, thereby increasing the spatial diversity effect.
  • each table listed is only an exemplary description.
  • the process of designing the system only the corresponding relationships represented by some rows in the table may be selected; for another example, the order of each row in the table may also be adjusted.
  • the feedback information is HARQ information as an example for description, but this does not limit the present application, and any information that can be fed back is applicable to the embodiments of the present application.
  • the HARQ information that is fed back is carried on the PUCCH as an example for description, but this does not limit the present application, and any manner in which feedback information can be transmitted is applicable to the embodiments of the present application.
  • the corresponding relationship is mentioned many times, which may represent an association. If the beamforming mode indication has a corresponding relationship with the value of the information bit, it can be represented that the beamforming mode indication is associated with the value of the information bit. For example, when the value of the information bit to be transmitted is a certain value, the beamforming method associated with the value may be used for transmission.
  • the beamforming manner indication is used as an example for illustrative description, which is not limited thereto.
  • the beamforming mode indication may be replaced by the beamforming mode, or may also be replaced by the beamforming mode indicated by the beamforming mode indication.
  • correspondences mentioned may be predefined by protocols, dynamically configured by network devices, or pre-agreed, etc. , which can be described in the embodiments.
  • the terminal device may determine the corresponding transmission resource according to the specific content of the information bit to be transmitted (ie, the value of the information bit), and use the corresponding transmission resource to process and transmit the information bit.
  • the value of the information bit may be different depending on whether the feedback is ACK or NACK, or a combination of ACK and NACK, and the value of the corresponding information bit is different. That is to say, different feedback results correspond to different transmission resources, and when different results are fed back, the resources corresponding to the feedback results are used for processing and/or transmission. In this way, the transmission reliability can be improved as much as possible, and in some scenarios, the probability of erroneous detection can also be avoided.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by taking as an example that each function module is divided corresponding to each function.
  • FIG. 15 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 1500 includes a transceiver unit 1510 and a processing unit 1520 .
  • the transceiver unit 1510 can implement corresponding communication functions, and the processing unit 1510 is used for data processing.
  • Transceiver unit 1510 may also be referred to as a communication interface or a communication unit.
  • the communication apparatus 1500 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 1520 may read the instructions and/or data in the storage unit, so that the communication apparatus implements the foregoing method Example.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 1520 may read the instructions and/or data in the storage unit, so that the communication apparatus implements the foregoing method Example.
  • the communication apparatus 1500 may be used to perform the actions performed by the terminal device in the above method embodiments.
  • the communication apparatus 1500 may be a terminal device or a component that can be configured in the terminal device, and the transceiver unit 1510 is used to perform the above method.
  • the processing unit 1520 is configured to perform the operations related to the processing on the terminal device side in the above method embodiments.
  • the communication apparatus 1500 may be used to perform the actions performed by the network equipment in the above method embodiments.
  • the communication apparatus 1500 may be a network equipment or a component configurable in the network equipment, and the transceiver unit 1510 is used to perform the above
  • the processing unit 1520 is configured to perform the operations related to the processing on the network device side in the above method embodiments.
  • the communication apparatus 1500 is configured to perform the actions performed by the terminal equipment in the embodiments shown in FIG. 4 to FIG. 14 above, and the processing unit 1520 is configured to: determine the number of information bits of the uplink control information UCI to be transmitted ; The processing unit 1520 is further configured to: determine the target transmission resource according to the value of the information bits of the UCI to be transmitted; the transceiver unit 1510 is configured to: use the target transmission resource to send the information bits to the network device.
  • the transceiver unit 1510 is further configured to: receive multiple beamforming mode indications, where the multiple beamforming mode indications include a first beamforming mode indication and a second beamforming mode indication; the multiple transmission units include The first transmission unit and the second transmission unit, when the information bit value is the first bit, the first transmission unit corresponds to the first beamforming mode indication and the second transmission unit corresponds to the second beamforming mode indication; The value is the second bit, the first transmission unit corresponds to the indication of the second beamforming mode and the second transmission unit corresponds to the indication of the first beamforming mode.
  • the target transmission resource includes one or more of the following: a target cyclic shift CS value, a target modulation constellation point, a target orthogonal mask OCC, and the multiple CS values and the multiple values of the information bits have preset values.
  • processing unit 1520 is further configured to: generate the first sequence according to the target CS value and/or the target modulation constellation point; the transceiver unit 1510 is specifically configured to: send the first sequence on multiple transmission units.
  • the multiple frequency domain resources and the multiple values of the information bits have a preset sixth correspondence
  • the processing unit 1520 is specifically configured to: according to the information bit values of the UCI to be transmitted and the sixth correspondence, Determine the target frequency domain resource.
  • the communication apparatus 1500 may implement steps or processes corresponding to those performed by the terminal device in the method 400 according to the embodiment of the present application, and the communication apparatus 1500 may include a unit for performing the method performed by the terminal device in the method 400 in FIG. 4 . . Moreover, each unit in the communication device 1500 and the other operations and/or functions mentioned above are respectively to implement the corresponding flow of the method 400 in FIG. 4 .
  • the transceiver unit 1510 can be used to perform the step 430 in the method 400
  • the processing unit 1520 can be used to perform the steps 410 and 420 in the method 400 .
  • the communication apparatus 1500 is configured to perform the actions performed by the network equipment in the embodiments shown in FIG. 4 to FIG. 14 , and the processing unit 1520 is configured to: determine the number of information bits of the uplink control information UCI to be transmitted
  • the processing unit 1520 is further used for: configuring multiple transmission resources; the transceiver unit 1510 is used for: receiving signals on multiple transmission resources; the processing unit 1520 is also used for: determining the target transmission resources according to the received signals, and transmitting the The resource determines the value of the information bit of the UCI, and the multiple transmission resources include the target transmission resource.
  • the multiple beamforming mode indications and the multiple values of the information bits have a preset first correspondence
  • the transceiver unit 1510 is specifically configured to: determine the target beamforming mode indication and the first correspondence The value of the information bits of the UCI.
  • the information bits are repeatedly transmitted on multiple transmission units, respectively, and the target transmission resource includes a beamforming mode indication corresponding to each transmission unit.
  • the third correspondence of the multiple modulation constellation points and the multiple values of the information bits has a preset fourth correspondence, and the multiple OCCs and the multiple values of the information bits have a preset fifth correspondence;
  • the transceiver unit 1510 is specifically configured to: receive signals on multiple transmission resources according to multiple CS values;
  • the processing unit 1520 is specifically configured to: determine the value of the information bit of the UCI according to the third corresponding relationship and the target CS value; and/or, the transceiver unit 1510 is specifically used for: receiving signals on multiple transmission resources according to multiple modulation constellation points;
  • processing unit 1520 is specifically used for: determining the information bit value of UCI according to the fourth corresponding relationship and the target modulation constellation point; and/or,
  • the transceiver unit 1510 is specifically configured to: receive signals on multiple transmission resources according to the multiple OCCs;
  • the processing unit 1520 is specifically configured to: determine the value of the information bit of the UCI according to the fifth correspondence and the target OCC.
  • the transceiver unit 1510 is further configured to: send an indication of frequency domain resources to the terminal device, where the indication of frequency domain resources is used to indicate multiple frequency domain resources; the transceiver unit 1510 is specifically configured to: use multiple frequency domain resources to receive signal; the processing unit 1520 is specifically configured to: determine a target frequency domain resource according to the received signal, where the target frequency domain resource is one or more of multiple frequency domain resources.
  • the multiple frequency domain resources and the multiple values of the information bits have a preset sixth correspondence
  • the processing unit 1520 is specifically configured to: determine the information bits of the UCI according to the target frequency domain resources and the sixth correspondence value.
  • the multiple frequency domain resources are determined by any one of the following: the indicated information of the multiple frequency domain resources; or, the indicated information of the partial frequency domain resources, and the frequency domain resource interval, where the frequency domain resource interval includes part of the frequency domain resource interval.
  • the communication apparatus 1500 may implement steps or processes corresponding to the network equipment in the method 400 according to the embodiment of the present application, and the communication apparatus 1500 may include a unit for performing the method performed by the network equipment in the method 400 in FIG. 4 . . Moreover, each unit in the communication device 1500 and the other operations and/or functions mentioned above are respectively to implement the corresponding flow of the method 400 in FIG. 4 .
  • the transceiver unit 1510 can be used to execute the step 430 in the method 400 .
  • the processing unit 1520 in the above embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver unit 1510 may be implemented by a transceiver or a transceiver-related circuit.
  • Transceiver unit 1510 may also be referred to as a communication unit or a communication interface.
  • the storage unit may be implemented by at least one memory.
  • an embodiment of the present application further provides a communication apparatus 1600 .
  • the communication device 1600 includes a processor 1610 coupled to a memory 1620 for storing computer programs or instructions and/or data, and the processor 1610 for executing the computer programs or instructions and/or data stored in the memory 1620, The methods in the above method embodiments are caused to be executed.
  • the memory 1620 may be integrated with the processor 1610, or provided separately.
  • the communication apparatus 1600 is configured to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 1610 is configured to implement the processing-related operations performed by the terminal device in the above method embodiments
  • the transceiver 1630 is configured to implement the transceiving-related operations performed by the terminal device in the above method embodiments.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1710 and a processing unit 1720 .
  • the transceiver unit 1710 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 1720 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the processing unit 1720 is configured to perform the processing actions on the terminal device side in FIG. 4 .
  • the processing unit 1720 is used for performing the processing steps in steps 410 and 420 in FIG. 4 ;
  • the transceiving unit 1710 is used for performing the transceiving operation in step 430 in FIG. 4 .
  • FIG. 17 is only an example and not a limitation, and the above-mentioned terminal device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 17 .
  • This embodiment of the present application further provides a communication apparatus 1800, where the communication apparatus 1800 may be a network device or a chip.
  • the communication apparatus 1800 may be used to perform the operations performed by the network device in the foregoing method embodiments.
  • FIG. 18 shows a simplified schematic diagram of the structure of a base station.
  • the base station includes part 1810 and part 1820.
  • the 1810 part is mainly used for transmitting and receiving radio frequency signals and the conversion of radio frequency signals and baseband signals; the 1820 part is mainly used for baseband processing and controlling the base station.
  • the 1810 part may generally be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 1820 part is usually the control center of the base station, which may be generally referred to as a processing unit, and is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the 1820 portion may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and control the base station. If there are multiple boards, each board can be interconnected to enhance the processing capability.
  • one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • the transceiving unit in part 1810 is used to perform the steps related to transceiving performed by the network device in the embodiment shown in FIG. 4 ; the part 1820 is used for performing the steps performed by the network device in the embodiment shown in FIG. 4 processing related steps.
  • FIG. 18 is only an example and not a limitation, and the above-mentioned network device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 18 .
  • the chip When the communication device 1800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • Embodiments of the present application further provide a computer program product including instructions, which, when executed by a computer, cause the computer to implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device and the terminal device in the above embodiments.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program in which the codes of the methods provided by the embodiments of the present application are recorded can be executed to execute the methods according to the embodiments of the present application.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc., which includes one or more available mediums integrated.
  • Useful media may include, but are not limited to, magnetic media or magnetic storage devices (eg, floppy disks, hard disks (eg, removable hard disks), magnetic tapes), optical media (eg, optical disks, compact discs) , CD), digital versatile disc (digital versatile disc, DVD), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc. ), or semiconductor media (such as solid state disk (SSD), etc., U disk, read-only memory (ROM), random access memory (RAM), etc. that can store programs medium of code.
  • SSD solid state disk
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the above-mentioned units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to implement the solution provided in this application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device or the like.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • DSL digital subscriber line
  • wireless eg, infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信的方法和装置。该方法可以包括:终端设备确定待传输的上行控制信息UCI的信息比特的比特位数;然后终端设备根据待传输的UCI的信息比特的比特取值,确定目标传输资源;终端设备使用目标传输资源向网络设备发送该信息比特。通过本申请,信息比特的比特位数已确定的情况下,取值不同的信息比特各自有其对应的传输资源,终端设备可以根据待传输的信息比特的具体内容确定对应的传输资源,从而可以降低错误检测发生的概率,提高传输可靠性。

Description

通信的方法和装置
本申请要求于2020年08月06日提交中国专利局、申请号为202010785815.0、申请名称为“通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信的方法和装置。
背景技术
在数据传输中,以下行传输为例,数据的处理流程一般包括,网络设备向终端设备发送数据,终端设备接收数据,并对数据进行处理,根据处理的结果,终端设备向网络设备反馈该数据对应的应答信息。终端设备反馈的应答信息例如可以为,混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(acknowledgement,ACK)信息或HARQ-否定确认(negative acknowledgment,NACK)信息。
终端设备反馈的应答信息可以在PUCCH上可以以序列的形式传输。以序列1和序列2为例,同一个物理资源上,可以规定序列1用于指示ACK,序列2用于指示NACK。网络设备基于在该物理资源上接收的信号,分别对序列1和序列2做相关检测,判定相关性高的序列为终端设备传输的序列,从而确定终端设备发送的NACK还是ACK。
在有些场景下,比如协作多点(coordination multiple point,CoMP)传输场景,由于不同接收节点到同一终端设备的距离和传输路径存在差异,可能会导致不同接收节点接收的信号之间的时延扩展(delay spread)增加,较大的时延扩展可能会造成发送序列在时域产生循环移位的效果,从而影响序列检测性能,例如可能会发生错误检测。
发明内容
本申请提供一种通信的方法和装置,以期可以降低错误检测发生的概率,进而提高传输可靠性。
第一方面,提供了一种通信的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:终端设备确定待传输的上行控制信息UCI的信息比特位数;所述终端设备根据所述待传输的UCI的信息比特取值,确定目标传输资源;所述终端设备使用所述目标传输资源向网络设备发送所述信息比特。
一种可能的方式,终端设备可以根据预设规则确定待传输的UCI比特数。一示例,对于HARQ-ACK反馈而言,预设规则例如可以为HARQ-ACK码本生成机制。又一示例,对于CSI反馈而言,预设规则例如可以为CSI反馈比特生成机制。又一示例,对于调度请求(Scheduling request,SR)反馈而言,预设规则例如可以为SR反馈比特生成机制。又 一示例,预设规则还可以为多种UCI比特的复用(multiplexing)机制。
示例地,终端设备根据待传输的UCI的信息比特取值确定目标传输资源,可以理解为,终端设备可以根据待传输的信息比特的内容,确定目标传输资源。或者,还可以理解为,终端设备根据待传输的信源确定目标传输资源。
示例地,目标传输资源,例如可以包括处理信息比特所需要的信息,如循环移位值、调制所需要的调制星座点、OCC等等;也可以包括传输信息比特所使用的资源,如时域资源、空域资源、频域资源等等;还可以包括与传输相关的其他信息,比如多个空域资源和多个时频资源的映射关系。
示例地,信息比特取值不同,对应的传输资源不全相同。例如,当第一比特位取0,则将第一传输资源确定为目标传输资源;当第一比特位取1,则将第二传输资源确定为目标传输资源。又如,当第一比特位取01,则将第一传输资源和第二传输资源确定为目标传输资源;当第一比特位取11,则将第二传输资源和第三传输资源确定为目标传输资源。
例如,以HARQ-ACK反馈为例,信息比特取0对应NACK,信息比特取1对应ACK。当信息比特包括多个比特位,每个比特位对应一个数据块,例如,传输块(Transmission block,TB),或者(Code Block Group,CBG)。
又如,以SR反馈为例,信息比特取0对应正向的(positive)SR,信息比特取1对应负向的(negative)SR。
基于上述技术方案,在信息比特的比特位数已确定的情况下,取值不同的信息比特各自有其对应的传输资源,该对应关系可以是预先设定的。终端设备可以根据待传输的信息比特的具体内容(即信息比特的取值)确定对应的传输资源,并使用其相对应的传输资源,来处理该信息比特并传输该信息比特。以HARQ-ACK反馈为例,信息比特的取值例如可以根据反馈的是ACK还是NACK不同或者ACK和NACK的组合,对应的信息比特的取值不同。也就是说,不同的反馈结果对应不同的传输资源,在反馈不同结果时,使用该反馈结果对应的资源来处理和/或传输。通过该方式,可以尽可能地提高传输可靠性,此外,在有些场景下,还可以避免错误检测发生的概率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备接收多个波束赋形方式指示;所述终端设备根据待传输的UCI的信息比特取值,确定目标传输资源,包括:所述终端设备根据所述待传输的UCI的信息比特取值,确定目标波束赋形方式指示,所述目标波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
可选地,所述信息比特共同承载于同一个PUCCH资源上,该PUCCH资源对应所述多个波束赋形方式指示。
可选地,终端设备根据待传输的UCI的信息比特取值,确定目标波束赋形方式指示,包括:终端设备根据待传输的UCI的信息比特取值,从候选的多个波束赋形方式指示中确定一个波束赋形方式指示作为目标传输资源。
示例地,以HARQ-ACK反馈为例。终端设备可以根据传输的是ACK还是NACK或者ACK和NACK的组合,确定传输所使用的波束赋形方式。
一示例,以传输1比特HARQ-ACK信息为例。如果终端设备确定传输ACK,或者,终端设备确定HARQ-ACK的取值为1,则终端设备采用第一波束赋形方式指示传输ACK;如果终端设备确定传输NACK,或者,终端设备确定HARQ-ACK的取值为0,则终端设 备采用第二波束赋形方式指示传输NACK。上述对应关系可以是预先约定或者预先设定的。
又一示例,以传输2比特HARQ-ACK信息为例。如果终端设备确定传输2比特ACK或者传输2比特NACK时,终端设备采用第一波束赋形方式指示;如果终端设备确定传输1比特NACK和1比特ACK,则终端设备采用第二波束赋形方式指示。上述对应关系可以是预先约定或者预先设定的。
基于上述技术方案,不同波束赋形方式对应的空间隔离度较大,因此通过使用不同的波束赋形方式传输取值不同的信息比特,可以使得两路信号之间的相关性很低,可以降低的ACK/NACK的错误检测概率。
结合第一方面,在第一方面的某些实现方式中,所述多个波束赋形方式指示与所述信息比特的多个取值具有预设的第一对应关系,所述终端设备根据所述待传输的UCI的信息比特取值,确定目标波束赋形方式指示,包括:所述终端设备根据所述待传输的UCI的信息比特取值以及所述第一对应关系,确定所述目标波束赋形方式指示。
示例地,第一对应关系可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的(如网络设备在指示多个波束赋形方式指示时指示给终端设备的),等等,对此不作限定。
示例地,对应关系可以理解为关联。例如,信息比特的取值与波束赋形方式指示相关联。
示例地,第一对应关系可以是在一定的信息比特取值的基础上定义的(或者说某已知的信息比特取值的基础上定义的)。例如,在信息比特位数为固定数值的情况下,定义不同信息比特取值与波束赋形方式指示的对应关系。
示例地,以HARQ-ACK反馈为例。一种可能的形式,第一对应关系可以是ACK/NACK与波束赋形方式的对应关系;又一种可能的形式,第一对应关系可以是HARQ-ACK的取值与波束赋形方式的对应关系;又一可能的形式,第一对应关系可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及波束赋形方式的对应关系。
示例地,第一对应关系的数量与信息比特数相关。例如,第一对应关系的数量为2 K,K为HARQ-ACK的信息比特数。
基于上述技术方案,终端设备可以根据待传输的信息比特,基于预设的第一对应关系,从多个波束赋形方式指示中确定目标波束赋形方式指示用于发送信息比特。从而,不仅可以减小错误检测发生的概率,还可以减少信令开销。
结合第一方面,在第一方面的某些实现方式中,所述波束赋形方式指示包括以下方式中的任意一种:参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
一示例,波束赋形方式指示可以通过参考信号资源或者参考信号端口的索引值确定。在该示例下,终端设备接收波束赋形方式指示,可以替换为,终端设备接收参考信号资源或参考信号端口的索引值的指示。
又一示例,波束赋形方式指示可以通过TMPI确定。在该示例下,终端设备接收波束赋形方式指示,可以替换为,终端设备接收TMPI的指示。
又一示例,波束赋形方式指示可以通过发送天线端口确定。在该示例下,终端设备接收波束赋形方式指示,可以替换为,终端设备接收发送天线端口的指示。
结合第一方面,在第一方面的某些实现方式中,每个所述波束赋形方式指示分别对应不同的上行功控参数。
结合第一方面,在第一方面的某些实现方式中,所述信息比特分别在多个传输单元上重复传输,所述目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
可选地,每个所述传输单元对应的波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
可选地,相邻的传输单元对应不同的波束赋形方式。
示例地,传输单元,传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元。时域单元可以包括一个或者多个OFDM符号,或者,时域单元可以包括一个或者多个slot,等等。频域单元可以包括一个或者多个RB,或者,时域单元可以包括一个或者多个子载波,等等。关于时域单元和频域单元的具体形式,参考下文解释。
示例地,以传输单元为时域单元为例。一个传输资源包括的N个时域单元可以按照时间先后顺序编号,N为大于1的整数。以两个传输单元为例,例如,传输单元1占用的时间单元包括时域上奇数编号的时间单元,传输单元2占用的时间单元包括时域上偶数编号的时间单元;或者,传输单元1占用的时间单元包括时域上前N/2个时间单元,传输单元2占用的时间单元包括时域上后N/2个时间单元。
示例地,目标传输资源包括每个传输单元对应的波束赋形方式指示,可以表示,终端设备可以根据信息比特的取值,确定终端设备在各个传输单元所采用的波束赋形方式。或者,目标传输资源包括每个传输单元对应的波束赋形方式指示,也可以表示,终端设备可以根据信息比特的取值,确定各个传输单元和多个波束赋形方式的对应关系。
基于上述技术方案,可以在多个传输单元重复传输。以传输单元为时域单元为例,可以采用时域重复传输的方案,即在多个时域资源上重复发送反馈。例如,终端设备可以在多个时域单元上均传输相同的信息比特,或者,传输由相同的信息比特生成的相同的调制符号。采用该传输方式,可以使得接收端将多个时域单元上接收到的信号做联合处理从而提升可靠性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备接收多个波束赋形方式指示,所述多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;所述多个传输单元包括第一传输单元和第二传输单元,当所述信息比特取值为第一比特,所述第一传输单元对应所述第一波束赋形方式指示且所述第二传输单元对应所述第二波束赋形方式指示;当所述信息比特取值为第二比特,所述第一传输单元对应所述第二波束赋形方式指示且所述第二传输单元对应所述第一波束赋形方式指示。
基于上述技术方案,信息比特的取值不同时,各个传输单元对应的波束赋形方式不同。例如,在取值为第一比特时,波束赋形方式指示在各个传输单元上的映射顺序为:第一传输单元采用第一波束赋形方式指示,第二传输单元采用第二波束赋形方式指示;在取值为第二比特时,波束赋形方式指示在各个传输单元上的映射顺序为:第一传输单元采用第二波束赋形方式指示,第二传输单元采用第一波束赋形方式指示。此外,不同传输时机采用不同的波束赋形方式发送,可以使得多站各自在不同传输时机上接收数据并做集中处理。
结合第一方面,在第一方面的某些实现方式中,多个映射方式与所述信息比特的多个取值之间具有预设的第二对应关系,所述映射方式为所述多个传输单元和所述多个波束赋形方式指示之间的对应关系;所述方法还包括:所述终端设备根据所述第二对应关系和所述待传输的UCI的信息比特取值,确定每个所述传输单元对应的波束赋形方式指示。
可选地,第二对应关系可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的(如网络设备在指示多个波束赋形方式时指示给终端设备的),等等,对此不作限定。
示例地,对应关系可以理解为关联。例如,信息比特的取值与映射方式相关联。
可选地,第二对应关系可以是在一定的信息比特取值的基础上定义的。例如,在信息比特位数为固定数值的情况下,定义不同信息比特取值与映射方式的对应关系。
可选地,第二对应关系的数量与信息比特数相关。例如,第二对应关系的数量为2 K,K为HARQ-ACK的信息比特数。
可选地,第二对应关系的数量与协作TRP数量相关,例如,可以为2。
可选地,第二对应关系的数量与波束赋形方式指示的数量相同。
可选地,第二对应关系的数量为2,用于携带1比特信息。
可选地,第二对应关系还可以理解为多个波束赋形方式指示在多个传输时机上的映射顺序。
一种可能的形式,第二对应关系可以是ACK/NACK与映射方式的对应关系;又一种可能的形式,第二对应关系可以是HARQ-ACK的取值与映射方式的对应关系;又一可能的形式,第二对应关系可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及映射方式的对应关系。
一示例,以传输1比特HARQ-ACK为例。当待传输ACK时,波束赋形方式指示在传输时机的映射顺序可以为:第一传输单元上采用第一波束赋形方式指示,第二传输单元上采用第二波束赋形方式指示;当待传输NACK时,波束赋形方式指示在传输时机的映射顺序为:第一传输单元上采用第二波束赋形方式指示,第二传输单元上采用第一波束赋形方式指示。通过该方式,多站可以根据在不同传输时机上的检测能量进一步识别ACK/NACK信息,从而提升可靠性。
又一示例,以传输2比特HARQ-ACK为例。当待传输NACK+NACK或者ACK+ACK时,波束赋形方式指示在传输时机的映射顺序可以为:第一传输单元上采用第一波束赋形方式指示,第二传输单元上采用第二波束赋形方式指示;当待传输NACK+ACK或者ACK+NACK时,波束赋形方式指示在传输时机的映射顺序可以为:第一传输单元上采用第二波束赋形方式指示,第二传输单元上采用第一波束赋形方式指示。
基于上述技术方案,终端设备可以根据信息比特的取值,以及第二对应关系,确定在各个传输单元采用的波束赋形方式指示。
结合第一方面,在第一方面的某些实现方式中,所述目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,所述多个CS值与所述信息比特的多个取值具有预设的第三对应关系、所述多个调制星座点与所述信息比特的多个取值具有预设的第四对应关系、所述多个OCC与所述信息比特的多个取值具有预设的 第五对应关系;所述终端设备根据待传输的UCI的信息比特,确定目标传输资源,包括:所述终端设备根据所述待传输的UCI的信息比特取值和所述第三对应关系,确定所述目标CS值;和/或,所述终端设备根据所述待传输的UCI的信息比特取值和所述第四对应关系,确定所述目标调制星座点;和/或,所述终端设备根据所述待传输的UCI的信息比特取值和所述第五对应关系,确定所述目标OCC。
可选地,所述目标传输资源包括第一传输资源和第二传输资源,第一传输资源为目标CS值或所述目标调制星座点,第二传输资源为每个传输单元对应的波束赋形方式指示,终端设备根据待传输的信息比特同时确定第一传输资源和第二传输资源。
基于上述技术方案,终端设备可以根据待传输的信息比特,确定处理该信息比特所使用的资源。例如,终端设备可以根据待传输的信息比特,确定使用对应CS值生成发送序列。又如,终端设备可以根据待传输的信息比特,使用对应调制星座点进行调制,生成发送序列。
结合第一方面,在第一方面的某些实现方式中,所述终端设备使用所述目标传输资源向网络设备发送所述信息比特,包括:所述终端设备根据所述目标CS值和/或所述目标调制星座点生成第一序列;所述终端设备在多个传输单元上均发送所述第一序列。
基于上述技术方案,终端设备可以使用目标CS值生成发送序列后,在多个传输单元上均发送该发送序列;或者,终端设备可以使用目标调制星座点生成发送序列后,在多个传输单元上均发送该发送序列。通过该方式,可以提高传输可靠性,提高数据传输性能。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备接收频域资源的指示,所述频域资源的指示用于指示多个频域资源;所述终端设备根据待传输的UCI的信息比特取值,确定目标传输资源,包括:所述终端设备根据所述待传输的UCI的信息比特取值,确定目标频域资源,所述目标频域资源为所述多个频域资源中的一个或多个。
示例地,以HARQ-ACK反馈为例。终端设备可以根据传输的是ACK还是NACK或者ACK和NACK的组合,确定传输所使用的频域资源。
基于上述技术方案,终端设备可以根据待传输的信息比特确定目标频域资源。
结合第一方面,在第一方面的某些实现方式中,所述多个频域资源与所述信息比特的多个取值具有预设的第六对应关系,所述终端设备根据所述待传输的UCI的信息比特取值,确定目标频域资源,包括:所述终端设备根据所述待传输的UCI的信息比特取值以及所述第六对应关系,确定所述目标频域资源。
可选地,第六对应关系可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的(如网络设备在指示多个频域资源时指示给终端设备的),等等,对此不作限定。
示例地,对应关系可以理解为关联。例如,信息比特的取值与频域资源相关联。
可选地,第六对应关系可以是在一定的信息比特取值的基础上定义的。例如,在信息比特位数为固定数值的情况下,定义不同信息比特取值与频域资源的对应关系。
示例地,以HARQ-ACK反馈为例。一种可能的形式,第六对应关系可以是ACK/NACK与频域资源的对应关系;又一种可能的形式,第六对应关系可以是HARQ-ACK的取值与 频域资源的对应关系;又一可能的形式,第六对应关系可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及频域资源的对应关系。
基于上述技术方案,终端设备可以根据待传输的信息比特的取值,以及不同取值与频域资源的对应关系,确定传输该待传输的信息比特的频域资源。
结合第一方面,在第一方面的某些实现方式中,所述多个频域资源通过以下任意一项确定:所述网络设备指示的所述多个频域资源的信息;或者,所述网络设备指示的部分频域资源的信息、以及频域资源间隔,所述频域资源间隔包括所述部分频域资源与所述多个频域资源中其他频域资源之间的间隔;或者,所述网络设备指示的一个频域资源的信息、以及预设规则。
可选地,预设准则,可以是网络设备指示给终端设备的,如携带于网络设备指示的频域资源的信息中;或者也可以是预先定义的,如协议预先定义或网络设备预先定义;或者也可以是网络设备为终端设备配置的;或者也可以是网络设备和终端设备预先约定的;或者也可以是终端设备根据历史通信情况推导的,对此不作限定。
可选地,预设准则,可以是偏差或数值,也可以是条件,具体形式不作限定。
一可能形式,预设准则为N1个PRB,N1个PRB表示相邻频域资源之间间隔N1个PRB,N1为大于1或等于1的整数。在该形式下,终端设备可以根据一频域资源的位置以及N1个PRB,推导出其他频域资源的位置。
第二方面,提供了一种通信的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:网络设备确定待传输的上行控制信息UCI的信息比特位数;所述网络设备配置多个传输资源;所述网络设备在所述多个传输资源上接收信号;所述网络设备根据所述接收到的信号确定目标传输资源,并根据所述目标传输资源确定所述UCI的信息比特取值,所述多个传输资源中包括所述目标传输资源。
基于上述技术方案,网络设备可以在多个传输资源上尝试接收信号,并确定目标传输资源,如网络设备可以根据接收信号质量等,确定目标传输资源。进一步地,网络设备可以结合预设规则确定终端设备传输的信息比特,从而可以获知终端设备传输的内容。
结合第二方面,在第二方面的某些实现方式中,所述多个传输资源对应多个波束赋形方式指示;所述网络设备在多个传输资源上接收信号,所述网络设备根据所述接收到的信号确定目标传输资源,包括:所述网络设备使用所述多个波束赋形方式指示相对应的接收波束赋形方式接收信号,并确定目标波束赋形方式指示,所述目标波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
结合第二方面,在第二方面的某些实现方式中,所述多个波束赋形方式指示与所述信息比特的多个取值具有预设的第一对应关系,所述根据所述目标传输资源确定所述UCI的信息比特取值,包括:所述网络设备根据所述目标波束赋形方式指示以及所述第一对应关系,确定所述UCI的信息比特取值。
结合第二方面,在第二方面的某些实现方式中,所述波束赋形方式指示包括以下方式中的任意一种:参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
结合第二方面,在第二方面的某些实现方式中,每个所述波束赋形方式指示分别对应 不同的上行功控参数。
结合第二方面,在第二方面的某些实现方式中,所述信息比特分别在多个传输单元上重复传输,所述目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备发送多个波束赋形方式指示,所述多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;所述多个传输单元包括第一传输单元和第二传输单元;所述网络设备在所述多个传输资源上接收信号,包括:所述网络设备在所述第一传输单元和所述第二传输单元上采用所述第一波束赋形方式和所述第二波束赋形方式相对应的接收波束赋形方式接收信号;当所述网络设备确定所述第一传输单元对应所述第一波束赋形方式指示、且所述第二传输单元对应所述第二波束赋形方式指示,所述信息比特取值为第一比特;当所述网络设备确定所述第一传输单元对应所述第二波束赋形方式指示、且所述第二传输单元对应所述第一波束赋形方式指示,所述信息比特取值为第二比特。
结合第二方面,在第二方面的某些实现方式中,多个映射方式与所述信息比特的多个取值之间具有预设的第二对应关系,所述映射方式为所述多个传输单元和所述多个波束赋形方式指示之间的对应关系;所述根据所述目标传输资源确定所述UCI的信息比特取值,包括:所述网络设备根据所述第二对应关系和每个所述传输单元对应的波束赋形方式指示,确定所述UCI的信息比特取值。
结合第二方面,在第二方面的某些实现方式中,所述目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,所述多个CS值与所述信息比特的多个取值具有预设的第三对应关系、所述多个调制星座点与所述信息比特的多个取值具有预设的第四对应关系、所述多个OCC与所述信息比特的多个取值具有预设的第五对应关系;所述网络设备在多个传输资源上接收信号,所述网络设备根据所述接收到的信号确定目标传输资源,并根据所述目标传输资源确定所述UCI的信息比特取值,包括:
所述网络设备根据所述多个CS值在所述多个传输资源上接收信号,并根据所述第三对应关系以及所述目标CS值,确定所述UCI的信息比特取值;和/或,所述网络设备根据所述多个调制星座点在所述多个传输资源上接收信号,并根据所述第四对应关系以及所述目标调制星座点,确定所述UCI的信息比特取值;和/或,所述网络设备根据所述多个OCC在所述多个传输资源上接收信号,并根据所述第五对应关系以及所述目标OCC,确定所述UCI的信息比特取值。
结合第二方面,在第二方面的某些实现方式中,所述网络设备使用所述多个传输单元接收信号,包括:所述网络设备根据所述多个CS值和/或所述多个调制星座点生成多个序列,并根据所述多个序列在所述多个传输单元上接收信号;所述网络设备根据所述接收信号确定第一序列,所述第一序列是基于所述目标CS值和/或所述目标调制星座点生成的。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送频域资源的指示,所述频域资源的指示用于指示多个频域资源;所述网络设备在多个传输资源上接收信号,所述网络设备根据所述接收到的信号确定目标传输资源,包括:所述网络设备使用所述多个频域资源接收信号,并根据所述接收到的信号确定目标频域资源,所述目标频域资源为所述多个频域资源中的一个或多个。
结合第二方面,在第二方面的某些实现方式中,所述多个频域资源与所述信息比特的 多个取值具有预设的第六对应关系,所述网络设备根据所述目标传输资源确定所述UCI的信息比特取值,包括:所述网络设备根据所述目标频域资源以及所述第六对应关系,确定所述UCI的信息比特取值。
结合第二方面,在第二方面的某些实现方式中,所述多个频域资源通过以下任意一项确定:所述网络设备指示的所述多个频域资源的信息;或者,所述网络设备指示的部分频域资源的信息、以及频域资源间隔,所述频域资源间隔包括所述部分频域资源与所述多个频域资源中其他频域资源之间的间隔;或者,所述网络设备指示的一个频域资源的信息、以及预设规则。
第三方面,提供了一种通信的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:终端设备接收网络设备发送的数据;所述终端设备根据是否成功接收所述数据,使用多个正交掩码OCC生成多个反馈信息,所述多个反馈信息均为对所述数据的反馈;所述终端设备向所述网络设备发送所述多个反馈信息。
结合第三方面,在第三方面的某些实现方式中,所述多个OCC与多个传输资源之间对应关系,所述终端设备向所述网络设备发送所述多个反馈信息,包括:所述终端设备使用各个OCC对应的传输资源,分别向所述网络设备发送基于各个OCC生成的反馈信息。
结合第三方面,在第三方面的某些实现方式中,所述传输资源包括波束赋形方式和/或频域资源。
第四方面,提供一种通信装置,所述通信装置用于执行上述第一方面或第三方面提供的通信方法。具体地,所述通信装置可以包括用于执行第一方面或第三方面提供的通信方法的模块。
第五方面,提供一种通信装置,所述通信装置用于执行上述第二方面提供的通信方法。具体地,所述通信装置可以包括用于执行第二方面提供的通信方法的模块。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面以第一方面或第三方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的通信方法。 可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面或第三方面,以及第一方面或第三方面的任一可能的实现方式中的通信方法。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面,以及第二方面的任一可能的实现方式中的通信方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面或第三方面提供的通信方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面提供的通信方法。
第十二方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1示出了适用于本申请实施例的一通信系统的示意图。
图2示出了适用于本申请实施例的又一通信系统的示意图。
图3是适用于本申请实施例的星座点的示意图。
图4是根据本申请实施例提供的通信的方法的示意图。
图5示出了适用于本申请实施例的1比特HARQ-ACK信息时ACK/NACK对应频域资源的一示意图。
图6示出了适用于本申请实施例的2比特HARQ-ACK信息时ACK/NACK对应频域资源的一示意图。
图7示出了适用于本申请实施例的多个传输时机传输UCI的一示意图。
图8示出了适用于本申请实施例的多个传输时机传输UCI的又一示意图。
图9示出了适用于本申请实施例的1比特HARQ-ACK信息时ACK/NACK对应OCC的一示意图。
图10示出了适用于本申请实施例的2比特HARQ-ACK信息时ACK/NACK对应OCC的一示意图。
图11示出了适用于本申请实施例的重复传输1比特HARQ-ACK信息时的一示意图。
图12示出了适用于本申请实施例的重复传输1比特HARQ-ACK信息时的又一示意图。
图13示出了频分复用的一示意图。
图14示出了同一终端设备采用在不同的频域资源发送相同的UCI的示意图。
图15是本申请实施例提供的通信装置的示意性框图。
图16是本申请实施例提供的通信装置的另一示意性框图。
图17是本申请实施例提供的终端设备的示意性框图。
图18是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、第四代(4th generation,4G)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、未来的移动通信系统等。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。其中,小区可以理解为网络设备的无线信号覆盖范围内的区域。
图2是适用于本申请实施例的无线通信系统200的一示意图。无线通信系统200可以处于双链接(dual connectivity,DC)、多链接、或多点协作传输(coordinated multipoint transmission/reception,CoMP)的场景中。
如图所示,该无线通信系统200可以包括多个网络设备,例如图2中所示的网络设备210和网络设备220;该无线通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备230。该终端设备230可以通过多连接技术与网络设备210、网络设备220建立无线链路。示例地,网络设备210例如可以为主基站,网络设备220例如可以为辅基站。此情况下,网络设备210为终端设备230初始接入时的网络设备,负责与终端设备230之间的无线资源控制(radio resource control,RRC)通信,网络设备220可以是RRC 重配置时添加的,用于提供额外的无线资源。
示例地,无线通信系统200处于上行CoMP的场景中时,表示多个站点可以同时服务一个终端设备,终端设备发送的上行信号可由多个站点同时接收并集中处理;或者终端设备在不同网络资源上向多个站点分别发送相同的信息,由多站点分别接收并处理后再统一处理。其中,本申请实施例对于传输点不作限定,例如,可以是宏基站与宏基站的多点协同传输,也可以是微基站与微基站的多点协同传输,也可以是宏基站与微基站间的多点协同传输,等等。又如,本申请实施例对FDD或TDD系统均适用。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此,本申请实施例可以应用于传输信号或数据的任何通信场景。例如,本申请实施例可以应用于同构网络的场景;本申请实施例也可以应用于异构网络的场景。又如,本申请实施例可以适用于低频场景,如6G以下频段(sub 6G);本申请实施例也适用于高频场景,如6G以上。又如,本申请实施例可以适用于单发送接收点(transmission and reception point,TRP)(single-TRP);本申请实施例也适用于多TRP(multi-TRP)场景,以及本申请实施例也适用于single-TRP或multi-TRP衍生的场景。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)或者远程射频头(remote radio head,RRH)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
示例地,网络设备可以作为调度设备,在该情况下,网络设备例如可以包含但不限于:LTE基站eNB、NR基站gNB、运营商等等,其功能例如可以包含:进行上下行资源的配 置、在基站调度模式、发送下行控制信息(downlink control information,DCI)。示例地,网络设备还可以作为发送设备,在该情况下,网络设备例如可以包含但不限于:TRP、RRH,其功能例如可以包含:进行下行信号发送和上行信号接收。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。其中,终端设备的功能例如可以包括但不限于:进行下行/侧行信号的接收,和/或,上行/侧行信号的发送。
为便于理解本申请实施例,下面首先对本申请中涉及的术语及背景做简单介绍。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。通常情况下,对于一个发送波束而言,会存在相对应的接收波束,发送波束对应的接收波束,或者说发送波束相对应的接收波束,可以理解为,采用该接收波束接收到采用该发送波束发送的信号的质量是最优的,或者,该发送波束与对应的接收波束是匹配的。
物理上,一个发送波束可以理解为一个模拟域的波束,终端设备通过射频端的每个发送天线连接一个移相器,通过调整每个发送天线的移相器可以由多天线产生定向波束,即发送波束方向图在极坐标中的某一个小角度范围内的能量较强,而在其余角度范围内的能量较弱。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
在本申请中,波束与波束赋形方式是等价的含义。同样,波束赋形方式指示,也可以理解为波束指示。
2、天线端口(antenna port)
天线端口简称端口。可以理解为被接收端所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合。根据所承载的信号的不同,天线端口可以分为参考信号端口和数据端口。 其中,参考信号端口例如包括但不限于,解调参考信号(demodulation reference signal,DMRS)端口、零功率信道状态信息参考信号触发(channel state information reference signal,CSI-RS)端口等。
3、时频资源
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单元(或者,也可以称为时间单位),在频域上,时频资源可以包括频域单元。
其中,一个时域单元(也可称为时间单元)可以是一个符号或者几个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号)(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。列举的上述时域单元大小仅仅是为了方便理解本申请的方案,不对本申请实施例的保护范围造成限定,可以理解的是,上述时域单元大小可以为其它值,本申请不做限定。
一个频域单位可以是一个资源块(resource block,RB),或者一个子载波(subcarrier),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband),或者一个预编码资源块组(precoding resource block group,PRG),或者一个带宽部分(bandwidth part,BWP),或者一个资源元素(resource element,RE)(或资源粒子)或者一个载波,或者一个服务小区。
在本申请实施例中,多次提及传输单元,传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元,例如,本申请实施例中提及的传输单元可以替换为时域单元,也可以替换为频域单元,也可以替换成时频单元。又如,传输单元还可以替换为传输时机。其中,时域单元可以包括一个或者多个OFDM符号,或者,时域单元可以包括一个或者多个slot,等等。频域单元可以包括一个或者多个RB,或者,时域单元可以包括一个或者多个子载波,等等。
4、混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(acknowledgement,ACK)信息
HARQ-ACK信息也可以称为HARQ信息。在当前技术中,HARQ-ACK信息可以表示针对在下行数据(如物理下行共享信道(physical downlink share channel,PDSCH))上接收传输块(Transmission Block,TB)的反馈信息,根据接收TB的处理结果,可以确定该TB对应的反馈信息是确认(ACK)或否定确认(negative acknowledgment,NACK)。其中,ACK可表示数据被成功接收,且数据被成功解码;NACK可表示数据未被成功接收,或数据未被成功解码。发送设备(如进行下行传输的网络设备或进行上行传输的终端设备)可以基于接收设备反馈的NACK进行数据重传。进一步的,多个TB的反馈信息也可以联合反馈,即形成反馈序列承载于同一个时频资源上。
本申请实施例中的上行控制信息(uplink control information,UCI)主要以HARQ-ACK信息为例进行说明。UCI可以通过物理上行控制信道(physical uplink control channel,PUCCH)传输。UCI类型包括调度请求(scheduling request,SR)、HARQ-ACK、信道 状态信息(channel state information,CSI),即PUCCH可以承载上述信息。不同UCI类型的信息比特也可以联合反馈,比如,将HARQ-ACK比特和CSI比特形成联合反馈序列承载于同一个时频资源上。以HARQ-ACK为例,终端设备接收到网络设备下发的数据,做解调译码操作处理该数据之后,会通过发送指令告知网络设备该数据是否正确接收,该指令即为HARQ-ACK信息(包括NACK信息或者ACK信息)。如果该数据无法正确接收,则终端设备向网络设备反馈该数据对应的NACK信息,网络设备收到NACK信息可以重传该数据,以降低数据的误码率,从而使得终端设备可以正确解调数据。反之,如果该数据被正确接收,则终端设备向网络设备反馈ACK信息。当反馈多个数据的HARQ-ACK,终端设备可以根据预设规则确定HARQ-ACK码本,即确定HARQ-ACK比特序列每个比特位对应的数据,网络设备收到HARQ-ACK比特序列后确定每个数据对应的比特位以及相应比特值。
终端设备通过PUCCH上传HARQ-ACK信息。一方面,PUCCH传输可靠性影响了下行数据的传输时延。例如,终端设备向网络设备发送ACK信息,但由于PUCCH传输可靠性低,可能会导致网络设备无法正确接收该信息,或者该信息被网络设备解析为NACK信息,从而引发不必要的重传,从而影响后续新传数据的时延。另一方面,PUCCH传输可靠性影响了下行数据的传输可靠性。例如,终端设备向网络设备发送NACK信息,但网络设备解析为ACK,网络设备不会调度重传导致该数据传输错误。
下文一些实施例中以反馈的信息为HARQ信息为例来说明本申请实施例,但这不应对本申请构成任何限定。本申请并不排除将本申请所提供的方法应用于其它反馈信息的场景中。
下文一些实施例中以反馈的HARQ信息承载于PUCCH上为例来说明本申请实施例,但这不应对本申请构成任何限定。本申请并不排除HARQ信息承载于其他上行信号或信道的场景中。
5、PUCCH
一般地,可以根据不同需求定义不同PUCCH格式(format)。其中,PUCCH format0(例如可以记为PF 0)用于承载1比特或2比特的HARQ-ACK信息的短PUCCH格式。短格式指的是PUCCH在时域上占用较少的时域资源,如占用较少的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,例如最多2个OFDM符号。通常认为短PUCCH格式有利于低时延传输,如极可靠低时延通信(ultra reliable low latency communications,URLLC)传输。短PUCCH格式的PUCCH在频域可以占1个物理资源块(physical resource block,PRB),即12个子载波。
一个PUCCH资源可以对应一个特定的PUCCH格式,且对应网络资源中的特定的时频资源,例如,占用的RB位置、OFDM符号位置、slot位置等;且还可以包括传输UCI的发送参数,例如,在该PUCCH资源上生成序列采用的循环移位(Cyclic shift,CS)值、正交掩码(Orthogonal Cover Code,OCC)、波束赋形方式等。网络设备可以通过高层信令,如RRC信令,为终端设备配置一个或者多个PUCCH资源,每个PUCCH资源的相关参数可以是独立配置的。
应理解,本申请实施例主要以符号为OFDM符号为例进行示例性说明,对此不作限定,任何可以用于表征时域资源的单位都适用于本申请实施例。例如,也可以用迷你时隙 (mini-slot)或者时隙(slot)或者子帧(subframe)等等。
一可能的形式,HARQ-ACK信息在PUCCH上可以以序列的形式传输,在本申请实施例中称为PUCCH格式0。
以传输1比特信息比特为例,1比特信息比特0和1分别对应序列1和序列2,同一个物理资源上,可以规定序列1用于指示ACK,序列2用于指示NACK。网络设备在该物理资源上基于接收到的信号分别针对序列1和序列2做相关性能量检测,判定能量高的序列为终端设备传输的序列,从而确定终端设备发送的NACK还是ACK。通常,可以采用12长低峰均功率比(peak to average power ratio,PAPR)的序列,以保证终端设备的发送效率、提升PUCCH鲁棒性。一示例,如表1所示,定义了12长基序列集合
Figure PCTCN2021108564-appb-000001
中每个元素的值,n=0,…,11。
网络设备指示终端设备采用表1中的某一个u值,即为终端设备配置一个
Figure PCTCN2021108564-appb-000002
作为基序列。
Figure PCTCN2021108564-appb-000003
经过调制后,如经过正交相移键控(quadrature phase shift keying,QPSK)调制,生成
Figure PCTCN2021108564-appb-000004
一种可能的形式,
Figure PCTCN2021108564-appb-000005
满足下式1。
Figure PCTCN2021108564-appb-000006
其中,v=0或1,u=0,1,…,29。u即为组序号,代表30个组,每个组内有两个根序号,由v确定。u和v可以通过网络设备发送配置信息为终端设备配置的。
其中,j为虚数单位,exp表示以e为底的指数函数。M ZC表示基序列的长度,M ZC为大于1的整数。
表1
Figure PCTCN2021108564-appb-000007
之后,生成的
Figure PCTCN2021108564-appb-000008
会根据ACK/NACK信息进一步形成发送序列。也就是说,传输ACK和传输NACK所采用的发送序列不同。例如,循环移位(cyclic shift,CS)α的不同取值用于生成不同的序列,一种可能的形式,
Figure PCTCN2021108564-appb-000009
满足下式2。
Figure PCTCN2021108564-appb-000010
Figure PCTCN2021108564-appb-000011
上述过程可以理解为:根据待反馈的HARQ-ACK信息是NACK还是ACK确定α,从而生成发送序列。生成的
Figure PCTCN2021108564-appb-000012
为频域序列,可以依次映射到PUCCH占用的各个子载波上。例如序列中各个元素按照索引由低到高,依次映射到PUCCH占用的索引值由低到高的子载波上。
关于α可以参考现有协议中的描述,例如如式3所示。
Figure PCTCN2021108564-appb-000013
α l的取值范围
Figure PCTCN2021108564-appb-000014
其中,
Figure PCTCN2021108564-appb-000015
是一个RB中的子载波数量(如12)。
Figure PCTCN2021108564-appb-000016
为系统帧中的时隙号,或者说,时隙在一个无线帧(radio frame)中的编号。l表示PUCCH资源的符号在所在时隙中的位置编号,或者说,一个PUCCH占用一个slot内的OFDM符号对应的编号,l’表示PUCCH资源的起始符号在所在时隙中的位置编号,或者说,PUCCH传输中第一个OFDM符号在一个slot中的编号。
Figure PCTCN2021108564-appb-000017
或者RRC配置的。c(i)为一个随机序列。不同时域位置中n cs取值不同。m 0是可配置的,不同的的设备可以配置不同值从而达到码分复用的效果。m CS需要根据HARQ-ACK反馈信息确定,进而确定α。如表2和表3所示,表2示出了传输1比特(bit)HARQ-ACK信息时,m CS与ACK、NACK的对应关系,表3示出了传输2比特HARQ-ACK信息时,m CS与ACK、NACK的对应关系。
表2
HARQ-ACK 0(NACK) 1(ACK)
m CS 0 6
表3
Figure PCTCN2021108564-appb-000018
以传输1bit HARQ-ACK信息为例。根据表2,m CS=0对应NACK,m CS=6对应ACK。终端设备根据当前要传输的HARQ-ACK信息,确定m CS取值,并生成相应序列映射到频域资源上发送给网络设备。网络设备会进行序列的能量检测。例如,网络设备可以检测 m CS=0对应的能量和m CS=6对应的能量,通过硬判决确定终端设备发送的HARQ-ACK信息完成检测。下文为简洁,用CS表示m CS
同一个基序列
Figure PCTCN2021108564-appb-000019
采用不同循环移位α后,形成的序列彼此正交(即互相关性为0),因此可以被用于上述PUCCH传输机制,避免错误检测,比如终端设备发送NACK却被检测为ACK。理论上,在α取
Figure PCTCN2021108564-appb-000020
时,序列之间的互相关性均为0,即序列经过上述循环移位后与原序列均是正交的。因此CS=0~11中任意两个值都可以用于指示ACK/NACK信息。在实际中,为了提升传输可靠性,通常采用间隔较大的CS指示ACK/NACK信息,比如1bit时,CS=0和CS=6之间间隔最大,用于指示ACK/NACK。
应理解,在本申请实施例中,多次提及传输ACK,其均表示传输基于ACK生成序列,或者说发送的序列可以指示ACK。如基于ACK,确定m CS取值,并生成相应序列映射到频域资源上发送给网络设备。同样地,传输NACK,其均表示传输基于NACK生成序列,或者说发送的序列可以指示NACK。如基于NACK,确定m CS取值,并生成相应序列映射到频域资源上发送给网络设备。
需要说明的是,PUCCH占用2个OFDM符号,第二个OFDM符号上的发送的序列完全复制第一个OFDM符号上发送的序列,用于提升传输可靠性。
又一可能的形式,HARQ-ACK信息在PUCCH上可以以序列+调制的形式传输,在本申请实施例中称为PUCCH格式1。
具体的,终端设备可以基于表1确定基序列,进一步根据待传输的HARQ-ACK信息比特,确定基序列的调制星座点。例如,二进制相移键控(binary phase shift keying,BPSK)调制方式用于传输1比特信息比特,当待传输NACK,星座点0用于基序列的调制;当待传输ACK,星座点1用于基序列的调制。又如,正交相移键控(quadrature phase shift keying,QPSK)调制方式用于传输2比特信息比特,当待传输NACK+NACK,则星座点00用于基序列的调制;当待传输NACK+ACK,则星座点01用于基序列的调制;当待传输ACK+NACK,则星座点10用于基序列的调制;当待传输ACK+ACK,则星座点11用于基序列的调制。接收端可以根据PUCCH的解调参考信号(demodulation reference signal,DMRS)获取信道信息,并根据接收信号获取解调值,将解调值与星座点做欧式距离判决,欧式距离近的星座点对应的信息比特判决为终端设备发送的信息比特。上述不同的星座点会对应不同的调制相位用于生成调制符号。如图3所示,X轴为I路(或者I通道(I channel)),Y轴为Q路(或者Q通道(Q channel)),各个星座点的幅度相同,相位相差90度。可以理解,00和11之间、或者01和10之间,欧式距离最大。
应理解,上述列举的具体的对应关系以及调制解调过程等,均是示例性说明,对此不作严格限定。任何可以使得在传输不同信息比特时采用不同的星座图调制,并且可以接收端可以解调的方式,都适用于本申请实施例。
在有些场景下,为了提升PUCCH的接收可靠性,多个接收节点(如TRP)共同接收同一个PUCCH,多个TRP将各自接收到的信号进行统一处理,从而可以等效提升接收信噪比。对于相干检测而言,一示例,可以采用相干合并的接收方式。例如,多个TRP将各自接收到的信号通过快速傅里叶变换(fast fourier transform,FFT)变换到频域后,将多个TRP接收的频域信号合并成更高维度的矩阵,再通过最小均方误差(minimum mean square error,MMSE)或者最大比合并(maximum ratio combination,MRC)等均衡算法,直接将各个接收节点上接收到的信号做统一处理,对得到的输出结果做判决,进而确定ACK/NACK信息。对于相干检测而言,又一示例,也可以采用非相干合并的方式。例如,各个TRP对各自接收到的信号各自做处理后,对得到的输出结果统一做判决,进而确定ACK/NACK信息。对于非相干检测而言,多个TRP将各自接收到的信号做序列的能量检测,对得到的输出结果统一做判决,进而确定ACK/NACK信息。
由于不同接收节点到同一个终端设备的距离和传输路径存在差异,可能会导致不同接收节点接收的信号之间的时延扩展(delay spread)增加(主要由多径带来)。例如,终端设备到TRP1的时延扩展为300纳秒(ns),则终端设备到TRP的时延扩展可能进一步增加200ns~500ns。也就是说,采用多站协作接收上行信号,可能会导致接收信号的时延扩展恶化。较大的时延扩展会造成发送序列在时域产生循环移位的效果,从而影响序列检测性能。
举例来说,理想情况下,终端设备采用CS=0生成的序列,在网络侧接收时若也采用CS=0生成的序列做能量检测的结果,大概率大于采用CS=6生成的序列做能量检测的结果,从而网络设备可以正确判决CS=0对应终端设备实际传输采用的序列。然而,由于delay spread的存在,会使得网络侧采用CS=0对应的序列的检测能量与采用CS=6生成的序列的检测能量相当,从而将NACK信号错误检测为ACK,严重影响网络性能。此外,在2比特的情况下,上述错误检测概率会进一步增加。原因在于,2比特的情况下,不同信息比特对应的CS间隔相比1比特的情况小,在delay spread较大的场景下,性能恶化更严重。
有鉴于此,本申请实施例提供一种方式,通过根据待传输的信息比特的取值来确定相应的传输资源,从而可以降低错误检测的概率,提高传输可靠性。
下面将结合附图详细说明本申请提供的各个实施例。
图4是本申请实施例提供的一种通信的方法400的示意性交互图。方法400可以包括如下步骤。
410,终端设备确定待传输的UCI的信息比特的比特位数。
在该步骤中,信息比特(information bit)可以是指未经过编码或调制的原始信息比特。
可选地,信息比特的比特位数例如为1或者2。下文为简洁,在下文实施例中,没有特别说明的情况下,比特数用于表示信息比特的比特位数,比特或者信息比特用于表示信息比特的取值。
终端设备可以先根据预设规则确定待传输的UCI比特数。一示例,对于HARQ-ACK反馈而言,预设规则为HARQ-ACK码本生成机制,待传输的UCI比特数可以包括待传输的HARQ-ACK的比特数。具体地,以HARQ-ACK码本分为静态码本和动态码本为例。对于静态码本,例如,终端设备可以根据PDSCH的传输时机,确定需要在同一个PUCCH 资源上反馈的PDSCH的传输时机数量,该数量可以用于确定HARQ-ACK的比特数。对于动态码本,例如,终端设备可以确定对应相同反馈时刻的用于调度PDSCH的DCI的传输时机数量,该数量可以用于确定HARQ-ACK比特数。又一示例,对于CSI反馈而言,预设规则为CSI反馈比特生成机制。具体地,终端设备根据网络设备指示的CSI反馈内容以及根据CSI-RS执行CSI测量得到的测量结果,确定CSI比特数。又一示例,对于调度请求(Scheduling request,SR)反馈而言,预设规则例如可以为SR反馈比特生成机制。又一示例,预设规则还可以为多种UCI比特的复用(multiplexing)机制。应理解,关于如何确定待传输的UCI比特数的方式不作限定。
例如,以HARQ-ACK反馈为例,信息比特取0对应NACK,信息比特取1对应ACK。当信息比特包括多个比特位,每个比特位对应一个数据块,例如,传输块(Transmission block,TB),或者(Code Block Group,CBG)。
又如,以SR反馈为例,信息比特取0对应正向的(positive)SR,信息比特取1对应负向的(negative)SR。
420,终端设备根据待传输的UCI的信息比特,确定目标传输资源。
在步骤420中,终端设备可以根据待传输的UCI的信息比特的比特位取值,确定目标传输资源。或者,也可以理解为,终端设备可以根据待传输的信息比特的内容,确定目标传输资源。或者,还可以理解为,终端设备根据待传输的信源确定目标传输资源。
在给定待传输的UCI比特数的情况下,终端设备可以根据每个待传输的UCI信息比特确定目标传输资源。例如,当第一比特位取0,则将第一传输资源确定为目标传输资源;当第一比特位取1,则将第二传输资源确定为目标传输资源。
可选地,网络设备可以预先配置多个传输资源。
可选地,预设多个UCI的信息比特与多个传输资源之间的关联关系。终端设备根据该关联关系和待传输的UCI信息比特,从多个传输资源中确定目标传输资源。
终端设备根据待传输的UCI的信息比特确定目标传输资源,可以表示,终端设备根据待传输的UCI的部分比特(即部分比特的取值)确定目标传输资源,也可以表示终端设备根据待传输的UCI的全部比特(即全部比特的取值)确定目标传输资源,对此不作限定。例如,终端设备可以根据PUCCH的信息比特确定目标传输资源。
终端设备根据待传输的UCI的信息比特确定目标传输资源,可以理解为,终端设备根据待传输的信息比特,确定与传输相关的信息。应理解,终端设备确定目标传输资源,可以理解为终端设备确定将使用的目标资源,或者也可以理解为终端设备直接使用对应的目标传输资源进行处理,对此不作限定。例如,终端设备可以根据待传输的信息比特确定编码和/或调制等处理的相关信息,如终端设备可以根据待传输的信息比特使用确定的编码或调制等的相关信息,进行相应的编码或调制。又如,终端设备可以根据待传输的信息比特确定传输所需要的资源的相关信息等等,如终端设备可以将待传输的信息比特映射到相应的资源上进行传输。以波束赋形方式为例,终端设备确定波束赋形方式,可以理解为,终端设备将待传输的数据或信息映射到对应的发送天线端口。还可以理解为,终端设备在给定的多个时频资源以及波束赋形方式的情况下,根据待传输的UCI信息比特建立时频资源和波束赋形方式之间的关联关系。
可选地,终端设备根据待传输的信息比特确定目标传输资源,至少包括传输相应信息 比特所需的以下一项或多项:波束赋形方式、频域资源、各个传输单元对应的波束赋形方式(如各个时间单元对应的波束赋形方式)、各个传输单元对应的频域资源(如各个时间单元对应的频域资源)、循环移位值、调制所需要的调制星座点、OCC、各个信息比特对应的资源、多个空域资源和多个时频资源的映射关系等等。一示例,目标传输资源包括每个传输单元对应的波束赋形方式指示,可以表示,终端设备可以根据信息比特的取值,确定终端设备在各个传输单元所采用的波束赋形方式;或者,也可以表示,终端设备可以根据信息比特的取值,确定各个传输单元和多个波束赋形方式的对应关系。
可选地,终端设备根据待传输的信息比特从候选传输资源中确定目标传输资源,至少包括以下一项或多项:从候选的多个波束赋形方式指示中确定一个波束赋形方式指示作为目标传输资源;或者,从候选的多个频域资源中确定一个频域资源作为目标传输资源;或者,候选传输资源为各个传输单元依次对应的波束赋形方式指示(如,多个波束赋形方式指示在各个传输单元上的映射顺序),从候选映射顺序中确定一个映射顺序作为目标传输资源;或者,候选传输资源为各个传输单元依次对应的频域资源(如,多个频域资源在各个时域单元上的映射顺序,从候选映射顺序中确定一个映射顺序作为目标传输资源;或者,从候选的CS值中确定一个CS值作为目标传输资源;或者,从调制UCI对应的序列采用的多个调制星座点中确定一个调制星座点作为目标传输资源;或者,从多个候选OCC中确定一个OCC作为目标传输资源;或者,当信息比特数量大于1时,各个信息比特对应的物理资源作为目标传输资源等等。
关于上文传输资源可能包括的各项内容,下文详细说明。
应理解,步骤410和步骤420之间没有严格的先后顺序。例如可以先确定比特位数,再根据待传输的信息比特的取值,确定目标传输资源;或者,也可以同时确定待传输的信息比特的比特位数和比特取值,进而再确定目标传输资源,对此不作严格限定。一可能的示例,步骤410可以和420合并为一个步骤。例如终端设备可以根据待传输的上行控制信息直接确定出目标传输资源。具体的方式依然可以参考步骤410中的步骤和420中的步骤,只不过例如终端设备可以根据PDSCH的传输时机,根据该传输时机和预设规则直接确定出目标传输资源,或者,终端设备可以根据网络设备指示的CSI反馈内容以及根据CSI-RS执行CSI测量得到的测量结果以及预设规则,直接确定出目标传输资源。
430,终端设备使用目标传输资源向网络设备发送该信息比特。
相应地,网络设备可以在多个传输资源上尝试接收信号,并确定目标传输资源,如网络设备可以根据接收信号质量等,确定目标传输资源。进一步地,网络设备可以结合预设规则确定终端设备传输的信息比特。
在可以理解,终端设备使用目标传输资源向网络设备发送的信息比特,可以表示经过处理后待发送的发送序列。如对基序列做编码和调制,或者做相位变换等处理后得到的待发送的发送序列。
应理解,目标传输资源仅是为便于区分做的命名,其命名不对本申请实施例的保护范围造成限定。下文统一用传输资源表述。
本申请实施例中,终端设备可以根据待传输的信息比特的不同取值,基于其相对应的传输资源,来处理该信息比特并传输该信息比特。信息比特的取值例如可以根据反馈的是ACK还是NACK不同或者ACK和NACK的组合,对应的信息比特的取值不同。也就是 说,不同的反馈结果对应不同的传输资源,在反馈不同结果时,使用该反馈结果对应的资源来处理和/或传输。
下文实施例主要以终端设备向网络设备反馈为例进行示例性说明,关于网络设备向终端设备反馈的情况,也可以使用本申请实施例提供的方案。
例如,在步骤410之前,方法400还可以包括:终端设备接收网络设备发送的数据。相应地,网络设备向终端设备发送数据。终端设备可以根据数据的传输情况,确定目标传输资源。
数据的传输情况一般包括两种:数据成功传输和数据失败传输。
数据成功传输,或者说,数据传输成功,其均用于表示,网络设备向终端设备发送数据,数据被终端设备成功接收。例如,终端设备设置解调或者译码的门限值,当接收到的数据经过处理满足该门限值时认为是正确接收。在该情况下,终端设备向网络设备发送对数据的反馈为确认应答,如可以反馈ACK信息。下文实施例中,在数据传输成功时,以终端设备反馈ACK为例进行示例性说明,对此不作限定,任何可以使得终端设备通知网络设备成功接收数据的方式,都落入本申请实施例的保护范围。例如,终端设备也可以向网络设备反馈无线链路层控制协议(Radio Link Control,RLC)确认消息。应理解,在本申请实施例中,
数据失败传输,或者说,数据传输失败,其均用于表示,网络设备向终端设备发送数据,数据未被终端设备成功接收。例如,终端设备设置解调或者译码的门限值,当接收到的数据经过处理不满足该门限值时认为接收失败。在该情况下,终端设备向网络设备发送对数据的反馈为否定应答,如可以反馈NACK信息。下文实施例中,在数据传输失败时,以终端设备反馈NACK为例进行示例性说明,对此不作限定,任何可以使得终端设备通知网络设备未成功接收数据的方式,都落入本申请实施例的保护范围。例如,终端设备也可以向网络设备反馈RLC应答。数据失败传输,可能是网络设备发送数据失败;也可能是终端设备接收数据失败,如未正确解调等等,本申请实施例对数据失败传输的原因不做限定
应理解,在本申请实施例中,数据传输成功,可以表示数据初传成功,也可以表示数据重传成功,对此不作限定。同样,数据传输失败,可以表示数据初传失败,也可以表示数据重传失败。
在本申请实施例中,终端设备向网络设备反馈不同的结果时,如反馈ACK或反馈NACK时,使用不同的传输资源,或者说,使用的传输资源可以尽可能地分开,从而可以减少错误检测的发送,如ACK检测为NACK,NACK检测为ACK,从而可以提高传输可靠性。
可选地,终端设备可以根据是否成功接收该数据,生成反馈信息,并根据反馈信息,确定传输资源。
以反馈信息为ACK和NACK为例,一种可能的实现方式,ACK对应传输资源1,NACK对应传输资源2。该对应关系可以是预先定义的,如协议预先规定或者网络设备预先定义;或者也可以是预先约定的,如网络设备和终端设备预先约定;或者也可以是预先配置的,如网络设备预先配置;或者也可以是网络设备通知给终端设备的,等等,对此不作限定。
例如,数据传输成功,终端设备确定当前传输的HARQ-ACK信息为ACK,基于ACK,确定对应的传输资源1,并使用传输资源1传输ACK。又如,数据传输失败,终端设备确定当前传输的HARQ-ACK信息为NACK,基于NACK,确定对应的传输资源2,并使用传输资源1传输NACK。
下面,结合传输资源的不同内容,介绍适用于本申请实施例的几种方案。应理解,下文各个方案,可以结合使用,也可以单独使用,对此不作限定。
方案1,传输资源包括波束赋形方式。
在方案1中,终端设备可以根据待传输的信息比特确定目标波束赋形方式。可选地,终端设备使用不同的波束赋形方式传输ACK和NACK。或者,也可以理解,终端设备根据传输的是ACK还是NACK,确定传输所使用的波束赋形方式。
波束赋形方式也可以称为波束赋形图样(pattern)。不同的波束赋形对应的空间隔离度较大,因此可以通过使用不同的波束赋形传输ACK和NACK,使得用于传输ACK的信号和用于传输NACK的信号之间的相关性很低,降低的ACK/NACK的错误检测概率。
可选地,不同的波束赋形方式对应不同的上行功控参数。上行功控参数可以用于调整上行发送功率取值。以PUSCH的发送功率确定机制为例,假设终端设备在服务小区(serving cell)c的载波(component carrier)f上的激活的上行部分带宽(bandwidth part,BWP)b上发送PUSCH,发送时机i中PUSCH的发送功率可以满足式4:
Figure PCTCN2021108564-appb-000021
其中,P PUSCH,b,f,c(i,j,q d,l)为传输时机i中的PUSCH的上行传输功率,单位为dBm。
Figure PCTCN2021108564-appb-000022
中的各个参数为开环功控参数,f b,f,c(i,l)为闭环功控参数。P CMAX,f,c(i)为终端设备配置的小区c的载波f上的PUSCH最大发射功率。P O_PUSCH,b,f,c(j)和α b,f,c为目标(期望)接收功率。j∈{0,1,...,J-1}。PL为基于路损测量参考信号q d计算得到的路损值。上述上行功控参数可以包括P O_PUSCH,b,f,c(j),α b,f,c,q d中的一个或者多个。应理解,在本实施例中仅仅是针对式4为举例说明的各个参数在计算发射功率上的应用,其路径损耗值、开环、闭环功控参数等参数也可以是一般意义上的路径损耗、开环、闭环功控参数。
可选地,网络设备下发多个波束赋形方式的指示信令,或者说网络设备发送多个波束赋形方式指示,该指示信令对应同一个PUCCH资源。可以理解,信息比特共同承载于同一个PUCCH资源上,该PUCCH资源对应该多个波束赋形方式指示。
可选地,多个波束赋形方式指示是通过RRC信令或者MAC CE信令下发的。
应理解,在本申请实施例中,波束赋形方式指示和波束赋形方式有时交替使用,本领域技术人员应理解其含义。具体地,在本申请实施例中,终端设备可以通过波束赋形方式指示获取波束赋形方式,或者也可以直接获取波束赋形方式,对此不作限定。下文为统一, 均用波束赋形方式指示为例进行示例性说明。应理解,下文中提及的波束赋形方式指示也可以替换为波束赋形方式。或者,在未来协议中,用于表示相同含义的命名,均适用于本申请实施例。
多个波束赋形方式指示(或者说多个波束赋形方式指示所指示的多个波束赋形方式)与信息比特的多个取值具有对应关系,为方便描述,记为对应关系1。波束赋形方式指示与信息比特具有对应关系,换句话说,波束赋形方式指示与预设的信息比特具有对应关系,也可以理解为波束赋形方式指示与信息比特的取值相关联。终端设备可以根据待传输的信息比特的取值,使用其对应的波束赋形方式指示(或者说关联的波束赋形方式指示)进行传输。一个信息比特可以对应一个波束赋形方式指示,也可以对应多个波束赋形方式指示。
以ACK/NACK为例,多个波束赋形方式指示与HARQ-ACK信息(如ACK/NACK)之间可以具有对应关系1。终端设备可以根据待传输的ACK/NACK,基于对应关系1,从多个波束赋形方式指示中确定一个用于发送ACK/NACK,或者,也可以确定多个用于发送该ACK/NACK。关于多个波束赋形方式指示的获取方式,下文详细描述。
对应关系1可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的(如网络设备在指示多个波束赋形方式指示时指示给终端设备的),等等,对此不作限定。对应关系1可以是在一定的信息比特取值的基础上定义的。例如,在信息比特位数为固定数值的情况下,定义不同信息比特取值与波束赋形方式指示的对应关系。
关于对应关系1的形式,不作严格限定。一种可能的形式,对应关系1可以是ACK/NACK或者HARQ-ACK的取值与波束赋形的对应关系,如表4、表5、表6、表11、表12;又一可能的形式,对应关系1可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及波束赋形的对应关系,如表7至表10。其中,表4和表7对应待反馈的HARQ-ACK比特数为1时,信息比特与波束赋形方式指示的关联关系;表5、表6、表8至表12对应待反馈的HARQ-ACK比特数为2时,信息比特与波束赋形方式指示的关联关系。
如表5或表8所示,通过如表5或表8的对应关系,间隔为3的两个CS值对应不同的波束赋形方式指示,间隔为6的两个CS值对应相同的波束赋形方式指示,从而降低间隔相近的CS对应的信息比特的误检测率。如表9所示,通过如表9的对应关系,进一步可以降低2比特NACK信息误检为ACK的概率,降低了最差情况发生的概率。如表10所示,通过如表10的对应关系,当存在多于两个隔离度很高的发送波束时,可以进一步降低误检测率。
应理解,在本申请中,列举的各个表格仅是一种示例性的描述。例如,在设计系统过程中,可以仅选取表中的部分行所表示的对应关系;又如,表格中的各行的顺序也可以调整。
可选地,信息比特数量为1和信息比特数量为2对应的波束赋形方式指示也可以具备嵌套关系或者说关联关系。例如,信息比特数量为2的情况下,其中的第一比特为ACK时对应的波束赋形方式指示,与信息比特数量为1的情况下信息比特为ACK时对应的波束赋形方式指示相同;第一比特为NACK时对应的波束赋形方式指示,与信息比特数量为1的情况下信息比特为NACK时对应的波束赋形方式指示相同。如表4和表6所示。 又如,信息比特数量为2的情况下,其中的第二比特为ACK时对应的波束赋形方式指示,与信息比特数量为1的情况下信息比特为ACK时对应的波束赋形方式指示相同;第二比特为NACK时对应的波束赋形方式指示,与信息比特数量为1的情况下信息比特为NACK时对应的波束赋形方式指示相同。如表4和表11所示。可选地,对应关系1的数量与信息比特数相关。例如,对应关系1的数量为2 K,K为HARQ-ACK的信息比特数。
可选地,对于信息比特数为1的情况,可以采用BPSK调制;对于信息比特数为2的情况,可以采用QPSK调制。
以波束赋形方式指示1和波束赋形方式指示2、以及传输1比特HARQ-ACK信息和2比特HARQ-ACK信息为例,对应关系1可以以表4、表5、表6、表11、表12的形式存在,即预先定义ACK/NACK与波束赋形的对应关系;或者也可以以表7、表8、表9、表10的形式存在,即预先定义CS取值与波束赋形的对应关系。
表4
HARQ-ACK(取值) 波束赋形方式指示
NACK(0) 波束赋形方式指示1
ACK(1) 波束赋形方式指示2
表5
HARQ-ACK(取值) 波束赋形方式指示
NACK,NACK(0,0) 波束赋形方式指示1
ACK,ACK(1,1) 波束赋形方式指示1
NACK,ACK(0,1) 波束赋形方式指示2
ACK,NACK(1,0) 波束赋形方式指示2
表6
HARQ-ACK(取值) 波束赋形方式指示
NACK,NACK(0,0) 波束赋形方式指示1
ACK,ACK(1,1) 波束赋形方式指示2
NACK,ACK(0,1) 波束赋形方式指示1
ACK,NACK(1,0) 波束赋形方式指示2
表7
HARQ-ACK(取值) CS取值 波束赋形方式指示
ACK(1) 0 波束赋形方式指示2
NACK(0) 6 波束赋形方式指示1
表8
HARQ-ACK(取值) CS取值 波束赋形方式指示
NACK,NACK(0,0) 0 波束赋形方式指示1
NACK,ACK(0,1) 3 波束赋形方式指示2
ACK,ACK(1,1) 6 波束赋形方式指示1
ACK,NACK(1,0) 9 波束赋形方式指示2
表9
HARQ-ACK(取值) CS取值 波束赋形方式指示
NACK,NACK(0,0) 0 波束赋形方式指示1
NACK,ACK(0,1) 3 波束赋形方式指示1
ACK,ACK(1,1) 6 波束赋形方式指示2
ACK,NACK(1,0) 9 波束赋形方式指示2
表10
HARQ-ACK(取值) CS取值 波束赋形方式指示
NACK,NACK(0,0) 0 波束赋形方式指示1
NACK,ACK(0,1) 3 波束赋形方式指示2
ACK,ACK(1,1) 6 波束赋形方式指示3
ACK,NACK(1,0) 9 波束赋形方式指示4
表11
HARQ-ACK(取值) 波束赋形方式指示
NACK,NACK(0,0) 波束赋形方式指示1
NACK,ACK(0,1) 波束赋形方式指示2
ACK,ACK(1,1) 波束赋形方式指示2
ACK,NACK(1,0) 波束赋形方式指示1
表12
HARQ-ACK(取值) 波束赋形方式指示
NACK,NACK(0,0) 波束赋形方式指示1
NACK,ACK(0,1) 波束赋形方式指示2
ACK,ACK(1,1) 波束赋形方式指示3
ACK,NACK(1,0) 波束赋形方式指示4
可选地,上述表格中的CS取值可以替换为调制星座点。例如,对于1比特情况,CS=0对应星座点0,CS=6对应星座点1;对于2比特情况,CS=0对应星座点00,CS=3对应星座点01,CS=6对应星座点10,CS=9对应星座点11。例如可以如下表13至表15所示。
表13
HARQ-ACK(取值) 调制星座点 波束赋形方式指示
NACK(0) 0 波束赋形方式指示1
ACK(1) 1 波束赋形方式指示2
表14
HARQ-ACK(取值) 调制星座点 波束赋形方式指示
NACK,NACK(0,0) 00 波束赋形方式指示1
ACK,ACK(1,1) 11 波束赋形方式指示1
NACK,ACK(0,1) 01 波束赋形方式指示2
ACK,NACK(1,0) 10 波束赋形方式指示2
表15
HARQ-ACK(取值) 调制星座点 波束赋形方式指示
NACK,NACK(0,0) 00 波束赋形方式指示1
ACK,ACK(1,1) 11 波束赋形方式指示2
NACK,ACK(0,1) 01 波束赋形方式指示2
ACK,NACK(1,0) 10 波束赋形方式指示1
假设终端设备采用基序列(如表1所示的基序列),并确定待传输的信息比特,则可以根据预设的信息比特与CS取值的对应关系确定CS取值,生成序列。例如,1比特情况下,ACK时确定CS=0,NACK时确定CS=6。又如,2比特情况下,2比特全是ACK时确定CS=6,2比特全是NACK时确定CS=0,第一比特为NACK第二比特为ACK时确定CS=3,第一比特为ACK第二比特为NACK时确定CS=9。进一步地,终端设备还可以根据信息比特与波束赋形方式指示的对应关系确定当前传输采用的波束赋形方式指示。
一情况,终端设备确定传输1比特HARQ-ACK信息。以表4为例,预先定义或约定波束赋形方式指示1对应NACK传输,波束赋形方式指示2对应ACK传输;或者,预先定义或约定波束赋形方式指示1对应HARQ-ACK的取值为0的传输,波束赋形方式指示2对应HARQ-ACK的取值为1的传输。或者,以表7为例,预先定义波束赋形方式指示1对应CS=0、且对应NACK传输,波束赋形方式指示2对应CS=6、且对应ACK传输;或者,预先定义或约定波束赋形方式指示1对应CS=0、且对应HARQ-ACK的取值为0的传输,波束赋形方式指示2对应CS=6、且对应HARQ-ACK的取值为1的传输。
如果终端设备确定传输ACK,则终端设备采用波束赋形方式指示2传输ACK,即终端设备采用波束赋形方式指示2传输上述基于CS=0生成的序列;如果终端设备确定传输NACK,则终端设备采用波束赋形方式指示1传输NACK,即终端设备采用波束赋形方式指示1传输上述基于CS=6生成的序列。通过该方式,波束赋形方式指示1可以指向TRP1,波束赋形方式指示2可以指向TRP2,由于波束赋形方式指示1和波束赋形方式指示2对应的空间隔离度较大,因此两路信号之间的相关性很低,可以降低的ACK/NACK的错误检测概率。
应理解,本申请实施例多次提及传输ACK或NACK,其用于指示发送序列,该序列可以隐式地指示ACK或NACK。对此,下文不再解释。
又一情况,终端设备确定传输2比特HARQ-ACK信息。以表5为例,预先定义或约定波束赋形方式指示1对应2比特均为ACK或者NACK的传输,波束赋形方式指示2对应1比特ACK另1比特NACK的传输;或者,预先定义或约定波束赋形方式指示1对应HARQ-ACK的取值为(1,1)或(0,0)的传输,波束赋形方式指示2对应HARQ-ACK的取值为(1,0)或(0,1)的传输。或者,以表8为例,预先定义CS=0和CS=6均对应波束赋形方式指示1,CS=3和CS=9均对应波束赋形方式指示2。
如果终端设备确定传输2比特ACK或者传输2比特NACK时,终端设备采用波束赋 形方式指示1,即终端设备采用波束赋形方式指示1所指示的波束赋形方式传输上述基于CS=0或CS=6生成的序列;如果终端设备确定传输1比特NACK和1比特ACK,则终端设备采用波束赋形方式指示2,即终端设备采用波束赋形方式指示2所指示的波束赋形方式传输上述基于CS=3或CS=9生成的序列。通过该方式,波束赋形方式指示1可以指向TRP1,波束赋形方式指示2可以指向TRP2,由于波束赋形方式指示1和波束赋形方式指示2对应的空间隔离度较大,从而两路信号之间的相关性很低,降低CS间隔较小的两个信息比特的错误检测概率,也就是将CS=0和CS=3对应的两种信息比特通过空间隔离度增加区分度。
上文主要介绍了PUCCH格式0的发送方式。若采用PUCCH格式1,类似的,终端设备根据待反馈的HARQ-ACK比特,确定调制星座点,从而将HARQ-ACK进行调制。进一步的,终端设备还可以根据待反馈的HARQ-ACK比特或者根据确定的调制星座点,确定波束赋形方式指示。在该情况下,可以预先定义HARQ-ACK比特和波束赋形方式指示之间的对应关系,如表4、表5、表6、表11、表12所示的对应关系;或者,也可以定义CS取值和波束赋形方式指示之间的对应关系,如表7、表8、表9、表10所示的对应关系;或者,也可以定义调制星座点和波束赋形方式指示之间的对应关系,如表13、表14、表15所示的对应关系。
上文介绍了终端设备可以根据待传输的信息比特,基于对应关系1,从多个波束赋形方式指示中确定目标波束赋形方式指示用于发送信息比特。应理解,关于对应关系1的获取方式以及形式,不作严格限定。
下面详细介绍终端设备获取多个波束赋形方式指示的方法。
终端设备可以通过以下任一方式,获取多个波束赋形方式指示。
方式A,网络设备向终端设备指示参考信号资源或参考信号端口的索引值,终端设备根据参考信号的参考信号资源或参考信号端口的索引值,确定波束赋形方式指示。
可以理解,在方式A下,波束赋形方式指示可以通过参考信号资源或者参考信号端口的索引值确定。在方式A下,网络设备向终端设备发送波束赋形方式指示,可以替换为网络设备向终端设备指示参考信号资源或参考信号端口。相应地,终端设备接收波束赋形方式指示,可以替换为,终端设备接收参考信号资源或参考信号端口的索引值的指示。
例如,网络设备为PUCCH资源配置空间滤波指示信息,该空间滤波指示信息用于指示多个参考信号的索引值。终端设备可以根据参考信号索引值确定发送波束,即根据指示的参考信号索引值可以推导出在该PUCCH资源上发送信号的发送波束。该空间滤波指示信息可以承载于配置PUCCH资源的配置信令中,或者,也可以承载于MAC CE中。
示例地,参考信号可以包括但不限于:探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。关于参考信号的类型不作限定。
终端设备推导发送波束的一可能方式,将在参考信号索引值对应资源上接收参考信号 所采用的发送或者接收波束作为用于发送PUCCH的发送波束(波束赋形方式)。
方式B,网络设备向终端设备指示多个传输预编码矩阵信息(transmission precoding matrix information,TPMI),每个TPMI是一个波束赋形方式指示。终端设备根据TPMI,确定波束赋形方式指示。
可以理解,在方式B下,波束赋形方式指示可以通过TMPI确定。在方式B下,网络设备向终端设备发送波束赋形方式指示,可以替换为网络设备向终端设备指示TMPI。相应地,终端设备接收波束赋形方式指示,可以替换为,终端设备接收TMPI的指示。
TPMI的一种表示方式可以是矩阵形式,矩阵的每一行对应一个发送天线,每一列对应一个传输层,每一个元素指示相应天线在该元素对应的传输层上传输信号采用的相位值。终端设备根据TPMI指示,调整数据映射在每个天线上的相位权值,产生定向波束。该信息可以承载于配置PUCCH资源的配置信令中,也可以承载于MAC CE中。
方式C,网络设备为PUCCH资源指示多个发送天线端口,每个发送天线端口上传输的信号可以认为是一个波束赋形方式指示。终端设备根据发送天线端口,确定波束赋形方式指示。
可以理解,在方式C下,波束赋形方式指示可以通过发送天线端口确定。在方式C下,网络设备向终端设备发送波束赋形方式指示,可以替换为网络设备向终端设备指示发送天线端口。相应地,终端设备接收波束赋形方式指示,可以替换为,终端设备接收发送天线端口的指示。
上述几种方式仅为示例性说明,任何可以使得终端设备获知多个波束赋形方式指示的方法都落入本申请实施例的保护范围。例如,可以预先定义多个波束赋形方式指示以便终端设备反馈ACK或NACK使用,或者预先约定多个波束赋形方式指示以便终端设备反馈ACK或NACK使用。
基于上述方案1,终端设备使用不同的波束赋形方式传输ACK和NACK,不同的波束赋形对应的空间隔离度较大,如可以使得取值不同的信息比特发向不同的TRP。从而可以通过使用不同的波束赋形传输ACK和NACK,使得用于传输ACK的信号和用于传输NACK的信号之间的相关性很低,降低的ACK/NACK的错误检测概率。
方案2,传输资源包括频域资源。
在方案2中,终端设备可以根据待传输的信息比特确定目标频域资源。可选地,终端设备使用不同的频域资源传输ACK和NACK。或者,也可以理解,终端设备根据传输的是ACK还是NACK,确定传输所使用的频域资源。关于频域资源的单位,参考上文的术语解释,此处不再赘述。
假设终端设备采用基序列(如表1所示的基序列),并根据现有机制确定CS取值,生成序列。例如,1比特情况下,ACK时确定CS=0,NACK时确定CS=6。又如,2比特情况下,2比特全是ACK时确定CS=6,2比特全是NACK时确定CS=0,第一比特为NACK第二比特为ACK时确定CS=3,第一比特为ACK第二比特为NACK时确定CS=9。进一步地,可以根据ACK/NACK确定传输PUCCH的物理资源,即终端设备可以根据ACK/NACK确定传输PUCCH的频域资源。
在本申请实施例中,多次提及确定PUCCH的资源或者确定PUCCH的物理资源,其均可以理解为确定传输携带ACK/NACK的PUCCH资源。
终端设备接收频域资源指示,该频域资源指示可以用于指示多个频域资源。例如,网络设备可以指示两个RB。其中,每个频域资源分别对应一个RB中的12个子载波,或者,第一个频域资源对应两个RB中的奇数子载波,第二个频域资源对应两个RB中的偶数子载波。具体地,下文结合不同比特数进行说明。
频域资源指示的多个频域资源与信息比特的多个取值具有对应关系,为方便描述,记为对应关系2。频域资源与信息比特具有对应关系,换句话说,频域资源与预设的信息比特具有对应关系,也可以理解为频域资源与信息比特相关联。终端设备可以根据待传输的信息比特,使用其对应的频域资源(或者说关联的频域资源)进行传输。以ACK/NACK为例,多个频域资源与HARQ-ACK信息(如ACK/NACK)之间可以具有对应关系2。终端设备可以根据待传输的ACK/NACK,基于对应关系2,从多个频域资源中确定一个用于发送ACK/NACK,或者,也可以确定多个用于发送该ACK/NACK。
对应关系2可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的(如网络设备在指示多个频域资源时指示给终端设备的),等等,对此不作限定。对应关系2可以是在一定的信息比特取值的基础上定义的。例如,在信息比特位数为固定数值的情况下,定义不同信息比特取值与频域资源的对应关系。
关于对应关系2的形式,不作严格限定。一种可能的形式,对应关系2可以是ACK/NACK或者HARQ-ACK的取值与频域资源的对应关系,类似于表4、表5、表6、表11、表12所示的对应关系,只需将各表中波束赋形方式指示替换为频域资源即可;又一可能的形式,对应关系2可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及频域资源的对应关系,类似于表7至表10所示的对应关系,只需将各表中波束赋形方式指示替换为频域资源即可;又一可能的形式,对应关系2可以是ACK/NACK或者HARQ-ACK的取值与调制星座点以及频域资源的对应关系,类似于表13至表15所示的对应关系,只需将各表中波束赋形方式指示替换为频域资源即可。
可选地,对应关系2的数量与信息比特数相关。例如,对应关系2的数量为2 K,K为HARQ-ACK的信息比特数。
下面以1比特HARQ-ACK信息和2比特HARQ-ACK信息这两种情况为例,介绍终端设备获取传输PUCCH的频域资源的几种方法。
情况1,1比特HARQ-ACK信息。
方法1,网络设备可以指示两个PUCCH资源,为方便描述,记为PUCCH资源1和PUCCH资源2,PUCCH资源1对应ACK(或者说PUCCH资源1关联ACK),PUCCH资源2对应NACK(或者说PUCCH资源2关联NACK);或者,PUCCH资源1对应HARQ-ACK取值为1,PUCCH资源2对应HARQ-ACK取值为0。终端设备可以根据网络设备的指示,结合自身反馈的HARQ-ACK信息,确定传输PUCCH的频域资源。
其中,PUCCH资源1和PUCCH资源2可以位于相同的时域上、占用不同的PRB位置。
如果终端设备确定传输ACK,则终端设备使用PUCCH资源1传输ACK,即在PUCCH资源1上映射上述序列(即基于CS=0生成的序列);如果终端设备确定传输NACK,即使用PUCCH资源2传输NACK,即在PUCCH资源2上映射上述序列(即基于CS=6生 成的序列)。
方法2,网络设备可以指示一个PUCCH资源,为方便描述,记为PUCCH资源3,PUCCH资源3对应ACK或NACK,终端设备可以根据该PUCCH资源3以及预设准则,推导获得对应NACK或ACK的PUCCH资源。以PUCCH资源3对应NACK为例,或者说PUCCH资源3对应HARQ-ACK取值为0,终端设备可以根据该PUCCH资源3以及预设准则,推导获得对应ACK的PUCCH资源(或者说推导获得对应HARQ-ACK取值为1的PUCCH资源),为方便描述,记为PUCCH资源4。终端设备可以根据网络设备的指示以及预设准则,结合自身反馈的HARQ-ACK信息,确定传输PUCCH的频域资源。
预设准则,可以是网络设备指示给终端设备的,如携带于网络设备指示PUCCH资源3的信息中;或者也可以是预先定义的,如协议预先定义或网络设备预先定义;或者也可以是网络设备为终端设备配置的;或者也可以是网络设备和终端设备预先约定的;或者也可以是终端设备根据历史通信情况推导的,对此不作限定。
预设准则,可以是偏差或数值,也可以是条件,具体形式不作限定。
一可能形式,预设准则为N1个PRB,N1个PRB表示PUCCH资源4与PUCCH资源3之间间隔N1个PRB,N1为大于1或等于1的整数。在该形式下,终端设备可以根据PUCCH资源3以及N1个PRB,推导出PUCCH资源4的位置。
如果终端设备确定传输NACK,则终端设备使用PUCCH资源3传输NACK,即在PUCCH资源3上映射上述序列(即基于CS=6生成的序列);如果终端设备确定传输ACK,终端设备使用推导的PUCCH资源4(与PUCCH资源3间隔N1个PRB的资源)传输NACK,即在推导的PUCCH资源4上映射上述序列(即基于CS=0生成的序列)。
方法3,网络设备可以指示一个PUCCH资源,为方便描述,记为PUCCH资源5,PUCCH资源5中的第一部分子载波对应ACK,PUCCH资源5中的第二部分子载波对应NACK。终端设备可以根据网络设备的指示以及子载波与ACK/NACK的对应关系,结合自身反馈的HARQ-ACK信息,确定传输PUCCH的频域资源。
其中,PUCCH资源5可以是包括2个PRB。
其中,第一部分子载波可以为奇数子载波,第二部分子载波可以为偶数子载波;或者,第一部分子载波可以为偶数子载波,第二部分子载波可以为奇数子载波;或者第一部分子载波可以为前半个子载波,第二部分子载波可以为后半个子载波;或者第一部分子载波可以为前X1个子载波,第二部分子载波可以为剩余的子载波,等等。应理解,关于第一部分子载波和第二部分子载波可以有多种形式,只要两部分子载波不同即可。下文主要以奇数子载波和偶数子载波为例,进行示例性说明。如表16所示,示出了1比特HARQ-ACK对应的RE映射。
表16
HARQ-ACK(取值) NACK(0) ACK(1)
占用子载波 偶数子载波 奇数子载波
采用序列 CS=0 CS=6
终端设备首先确定要传输的HARQ-ACK比特,再根据表16确定该比特对应的子载波位置和序列。例如,终端设备确定要传输NACK,则确定传输该比特占用的频域资源为 偶数子载波,且采用CS=0生成序列并映射在该频域资源上。又如,终端设备确定要传输ACK,则确定传输该比特占用的频域资源为奇数子载波,且采用CS=6生成序列并映射在该频域资源上。
应理解,表16仅是一种示例,对此不作限定。例如,也可以是CS取值与占用子载波的对应关系,即CS=0对应偶数子载波,CS=6对应奇数子载波。终端设备首先确定要传输的HARQ-ACK比特,再根据确定该比特对应的序列,进而再确定该比特对应的子载波位置。
一具体示例,如图5所示,假设传输的数据包包括:a0、a1、a2、a3、a4、a5。例如,对于数据包a0,如果未成功接收a0,则反馈NACK,且NACK占用的频域资源为A0(如第一个子载波);如果成功接收a0,则反馈ACK,且ACK占用的频域资源为B0(如第二个子载波)。又如,对于数据包a1,如果未成功接收a1,则反馈NACK,且NACK占用的频域资源为A1(如第三个子载波);如果成功接收a1,则反馈ACK,且ACK占用的频域资源为B1(如第四个子载波)。
上文结合1比特HARQ-ACK信息的情况进行了示例性说明,下面结合2比特HARQ-ACK信息的情况进行说明。
情况2,2比特HARQ-ACK信息。
方法1,网络设备可以指示四个PUCCH资源,为方便描述,记为PUCCH资源10、PUCCH资源20、PUCCH资源30、PUCCH资源40。其中,PUCCH资源10对应2比特均为NACK的情况,PUCCH资源20对应第一比特为NACK第二比特为ACK的情况,PUCCH资源30对应2比特均为ACK的情况,PUCCH资源40对应第一比特为ACK第二比特为NACK的情况;或者,PUCCH资源10对应HARQ-ACK取值为(0,0)的情况,PUCCH资源20对应HARQ-ACK取值为(0,1)的情况,PUCCH资源30对应HARQ-ACK取值为(1,1)的情况,PUCCH资源40对应HARQ-ACK取值为(1,0)的情况。终端设备可以根据网络设备的指示,结合自身反馈的HARQ-ACK信息,确定传输PUCCH的频域资源。
如果终端设备确定传输2比特NACK,则终端设备在PUCCH资源10上映射上述序列(即基于CS=0生成的序列);如果终端设备确定传输第一比特为NACK第二比特为ACK,则终端设备在PUCCH资源20上映射上述序列(即基于CS=3生成的序列);如果终端设备确定传输2比特ACK,则终端设备在PUCCH资源30上映射上述序列(即基于CS=6生成的序列);如果终端设备确定传输第一比特为ACK第二比特为NACK,则终端设备在PUCCH资源40上映射上述序列(即基于CS=9生成的序列)。
方法2,网络设备可以指示一个PUCCH资源,为方便描述,记为PUCCH资源50,PUCCH资源50对应2比特均为NACK的情况。终端设备可以根据该PUCCH资源50以及预设准则,推导获得其他情况对应的PUCCH资源。终端设备可以根据网络设备的指示以及预设准则,结合自身反馈的HARQ-ACK信息,确定传输PUCCH的频域资源。
预设准则,可以是网络设备指示给终端设备的,如可以携带于网络设备指示PUCCH资源50的信息中;或者也可以是预先定义的,如协议预先定义或网络设备预先定义;或者也可以是网络设备为终端设备配置的;或者也可以是网络设备和终端设备预先约定的;或者也可以是终端设备根据历史通信情况推导的,对此不作限定。
预设准则,可以是偏差或数值,也可以是条件,具体形式不作限定。
一可能形式,预设准则为N2个子载波,N2个子载波表示各种情况对应的PUCCH资源所占用的频域资源间隔为N2个子载波,N2为大于1或等于1的整数。
假设N2为1,表17示出了示出了2比特HARQ-ACK对应的RE映射。
表17
Figure PCTCN2021108564-appb-000023
应理解,表17仅是一种示例,对此不作限定。例如,也可以是CS取值与占用子载波的对应关系。终端设备首先确定要传输的HARQ-ACK比特,再根据确定该比特对应的序列,进而再确定该比特对应的子载波位置。
图6示出了一具体示例,由图6可知,终端设备根据确定要传输的HARQ-ACK比特,确定在相应的频域资源上传输反馈信息。
应理解,上述形式仅是示例性说明,对此不作限定,例如,网络设备也可以指示两个PUCCH资源,该两个PUCCH资源分别对应两种情况,基于该两个PUCCH资源以及预设准则,终端设备推导获得其他情况下的PUCCH资源。又如,各个PUCCH资源所占用的频域资源间隔也可以不同。示例地,预设准则可以包括:N3个子载波、N4个子载波、N5个载波,N3、N4、N5均为大于1或等于1的整数。其中,N3个子载波为第一比特为NACK第二比特为ACK的情况与2比特均为NACK的情况,PUCCH所占用的频域资源的间隔,N4个子载波为2比特均为ACK的情况与2比特均为NACK的情况,PUCCH所占用的频域资源的间隔,N5个子载波为第一比特为ACK第二比特为NACK的情况与2比特均为NACK的情况,PUCCH所占用的频域资源的间隔。
方法3,网络设备可以指示一个PUCCH资源,为方便描述,记为PUCCH资源60,PUCCH资源60中的第三部分子载波对应2比特均为ACK或NACK的情况,PUCCH资源60中的第四部分子载波对应1比特为NACK 1比特为ACK的情况。终端设备可以根据网络设备的指示以及对应关系,结合自身反馈的HARQ-ACK信息,确定传输PUCCH的频域资源。
其中,第三部分子载波可以为奇数子载波,第四部分子载波可以为偶数子载波;或者,第三部分子载波可以为偶数子载波,第四部分子载波可以为奇数子载波;或者第三部分子载波可以为前半个子载波,第四部分子载波可以为后半个子载波;或者第三部分子载波可以为前X1个子载波,第四部分子载波可以为剩余的子载波,等等。应理解,关于第三部分子载波和第四部分子载波可以有多种形式,只要两部分子载波不同即可。下文主要以奇数子载波和偶数子载波为例,进行示例性说明。
例如,如表17所示,(NACK,NACK)(或者说(0,0))和(ACK,ACK)(或者说(1,1))均对应偶数子载波,例如分别是4n和4n+2;(NACK,ACK)(或者说(0,1))和(ACK,NACK)(或者说(1,0))均对应奇数子载波,例如分别是4n+1和4n+3。
上文结合1比特HARQ-ACK信息和2比特HARQ-ACK信息的情况进行了示例性说明,通过上述任一方法,终端设备可以根据HARQ-ACK比特取值确定PUCCH占用的频域资源以及采用的序列CS。从而可以使得传输ACK的频域资源和传输NACK的频域资源不同,使得PUCCH传输在信道的时延扩展较大时仍旧保持较高的可靠性,减少误检的发生。
方案1和方案2可以单独使用,如单独使用方案1,即仅考虑增大空间隔离度;或者单独使用方案2,即仅考虑增大频域资源隔离度,如根据实际通信情况或通信环境考虑增大空间隔离度或者增大频域资源隔离度。或者,方案1和方案2也可以结合使用,即既考虑增大空间隔离度,也考虑增大频域资源隔离度。
方案3,传输资源包括各个传输单元和多个波束赋形方式指示的对应关系。
在方案3中,终端设备可以根据待传输的信息比特确定各个传输单元所对应的波束赋形方式指示,或者,确定各个传输单元和多个波束赋形方式指示的对应关系。可选地,每个传输单元对应的波束赋形方式指示为该多个波束赋形方式指示中的一个或多个。
如前所述,传输单元,传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元,下文主要以时域单元为例进行示例性说明。关于时域单元的可能形式,参考上文的术语解释,此处不再赘述。
在本申请实施例中,可以采用时域重复传输的方案,即在多个时域资源上重复发送反馈,即网络设备可以配置PUCCH传输采用时域重复的方式。时域重复传输是指,在多个时域单元上均传输相同的信息比特,或者,传输由相同的信息比特生成的相同的调制符号。采用该传输方式,使得接收端将多个时域单元上接收到的信号做联合处理从而提升可靠性。每一次传输可以例如记为一次传输时机。例如,对于一个PUCCH资源,在时域上占用多组连续的OFDM符号,每组连续的OFDM符号可以称为一个传输单元或者说传输时机或者说PUCCH传输时机,每组传输时机上传输相同的UCI信息比特。为统一,下文统一描述为PUCCH传输时机。如图6所示,对于一个PUCCH资源,包括PUCCH传输时机1和PUCCH传输时机2。终端设备可以使用PUCCH传输时机1传输第一信息比特,使用PUCCH传输时机2传输第一信息比特。两个传输时机之间可以是连续的,也可以间隔至少一个OFDM符号。
可选地,每个传输时机上均承载DMRS。
可选地,相邻的两个传输时机占用的RB位置相同或者不同可以是由网络设备配置的。
可选地,多个传输时机所采用传输序列根据式3确定,且式3中的各项均相同。
可选地,多个传输时机所采用传输序列根据式3确定,其中,式3中的l’在不同传输时机中不同,式3中的其余项在不同传输时机中相同。
可选地,多个波束赋形方式指示是通过RRC信令或者MAC CE信令下发的。
应理解,每组传输时机上传输时可以采用不同的调制编码方式或序列或冗余版本等等,如使用PUCCH传输时机1传输的第一信息比特和使用PUCCH传输时机2传输的第一信息比特,可以用不同的调制编码方式或序列或冗余版本等等。其中,不同传输时机可以占用不同slot内的相同OFDM符号位置,也可以占用同一个slot内的不同OFDM符号位置,对此不作限定。
可选地,相邻的传输单元对应不同的波束赋形方式。
使用多站协作接收时,不同传输时机采用不同的波束赋形方式发送,从而使得多站各自在不同传输时机上接收数据并做集中处理。以图7为例,PUCCH传输时机1上采用波束赋形方式指示1,PUCCH传输时机2上采用波束赋形方式指示2。在本申请实施例中,对于PUCCH采用时域重复传输的情况,可以根据信息比特确定时域重复传输上各次传输采用的波束赋形方式指示。从而,多站在各次传输时机上均尝试接收信号,对于指向TRP1的波束1对应的传输时机1上,TRP1的接收能量很高而TRP2的接收能量很低,对于指向TRP2的波束2对应的传输时机2上,TRP1的接收能量很低而TRP2的接收能量很高。通过多站协作接收,可以根据在不同传输时机上各个TRP的接收能量差异的不同传递信息,进而提升传输可靠性。
一种可能的方式,多个映射方式与信息比特的多个取值的对应关系,为方便描述,记为对应关系3。映射方式与信息比特具有对应关系,也可以理解为映射方式与信息比特相关联。映射方式,可以表示为多个传输时机与多个波束赋形方式指示之间的映射方式,如PUCCH传输时机1上采用波束赋形方式指示1,PUCCH传输时机2上采用波束赋形方式指示2。终端设备可以根据待传输的信息比特和对应关系3,从多个映射方式中确定映射方式,进而可以在各个传输时机上使用各自的波束赋形方式指示进行传输。网络设备也会根据该对应关系3对接收信号进行处理。
一可能的设计,对应关系3的数量与信息比特数相关。例如,对应关系3的数量为2 K,K为HARQ-ACK的信息比特数。又一可能的设计,对应关系3的数量与协作TRP数量相关。例如,有两个TRP协作传输,则对应关系3的数量可以为2。又一可能的设计,对应关系3的数量与波束赋形方式指示的数量相同。一示例,对应关系3的数量为2,用于携带1比特信息。
可选地,该对应关系3可以理解为多个波束赋形方式指示在多个传输时机上的映射顺序。
可选地,波束赋形方式指示的数量小于等于传输时机的数量。
对应关系3可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的(如网络设备在指示多个波束赋形方式时指示给终端设备的),等等,对此不作限定。对应关系3可以是在一定的信息比特取值的基础上定义的。例如,在信息比特位数为固定数值的情况下,定义不同信息比特取值与映射方式的对应关系。
一示例,以传输1比特HARQ-ACK为例。当待传输ACK时(如采用表2中CS=6生成序列),波束赋形方式指示在传输时机的映射顺序可以为:PUCCH传输时机1上采用波束赋形方式指示1,PUCCH传输时机2上采用波束赋形方式指示2;当待传输NACK时(如采用表2中CS=0生成序列),波束赋形方式指示在传输时机的映射顺序为:PUCCH传输时机1上采用波束赋形方式指示2,PUCCH传输时机2上采用波束赋形方式指示1。通过该方式,多站可以根据在不同传输时机上的检测能量进一步识别ACK/NACK信息,从而提升可靠性。
具体地,如图8所示,网络设备的具体实现过程可以如下所述。
针对1比特HARQ-ACK,预设2个对应关系3:第一传输单元对应第一波束赋形方式指示且第二传输单元对应第二波束赋形方式指示;第一传输单元对应第二波束赋形方式 指示且第二传输单元对应第一波束赋形方式指示。
网络设备发送多个波束赋形方式指示,多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示。网络设备发送PUCCH重复传输指示,即在多个传输单元发送PUCCH,该PUCCH的多个传输单元包括第一传输单元和第二传输单元。
网络设备在第一传输单元和第二传输单元上均采用第一波束赋形方式指示和第二波束赋形方式指示相对应的接收波束赋形方式接收信号。当确定第一传输单元对应第一波束赋形方式指示且第二传输单元对应第二波束赋形方式指示,确定接收到的信息比特为第一比特;当确定第一传输单元对应第二波束赋形方式指示且第二传输单元对应第一波束赋形方式指示,确定接收到的信息比特为第二比特。具体地,当网络设备1在第一传输单元上接收的信号强于在第二传输单元上接收的信号,且网络设备2在第一传输单元上接收的信号弱于在第二传输单元上接收的信号,可以帮助识别当前传输为ACK;否则,当网络设备1在第一传输单元上接收的信号弱于在第二传输单元上接收的信号,且网络设备2在第一传输单元上接收的信号强于在第二传输单元上接收的信号,可以帮助识别当前传输为NACK。
可选地,在该示例下,一种可能的形式,对应关系3可以是ACK/NACK或者HARQ-ACK的取值与映射方式的对应关系,如表18;又一可能的形式,对应关系3可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及映射方式的对应关系,如表19。
表18
Figure PCTCN2021108564-appb-000024
表19
Figure PCTCN2021108564-appb-000025
又一示例,以传输2比特HARQ-ACK为例。当待传输NACK+NACK或者ACK+ACK时,波束赋形方式指示在传输时机的映射顺序可以为:PUCCH传输时机1上采用波束赋形方式指示1,PUCCH传输时机2上采用波束赋形方式指示2;当待传输NACK+ACK或者ACK+NACK时,波束赋形方式指示在传输时机的映射顺序可以为:PUCCH传输时机1上采用波束赋形方式指示2,PUCCH传输时机2上采用波束赋形方式指示1。
可选地,在该示例下,一可能的形式,对应关系3可以是ACK/NACK或者HARQ-ACK的取值与映射方式的对应关系,如表20至表22。又一可能的形式,对应关系3可以是ACK/NACK或者HARQ-ACK的取值与CS取值以及映射方式的对应关系,如表23,通过该形式可以提升CS取值间隔为3的信息比特的区分度,提升PUCCH检测可靠性。
可选地,信息比特数量为1和信息比特数量为2对应的多个波束赋形方式指示在不同传输时机上的映射方式可以具备嵌套关系。例如,信息比特数量为2的情况下,其中的第一比特为ACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式,与信息比特数量为1的情况下信息比特为ACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式相同;第一比特为NACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式,与信息比特数量为1的情况下信息比特为NACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式相同,如表18和表21所示。又如,信息比特数量为2的情况下,其中的第二比特为ACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式,与信息比特数量为1的情况下信息比特为ACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式相同;第二比特为NACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式,与信息比特数量为1的情况下信息比特为NACK时对应的多个波束赋形方式指示在不同传输时机上的映射方式相同,如表18和表22所示。
表20
Figure PCTCN2021108564-appb-000026
表21
Figure PCTCN2021108564-appb-000027
表22
Figure PCTCN2021108564-appb-000028
表23
Figure PCTCN2021108564-appb-000029
可选地,一个PUCCH资源包括的N个时间单元可以按照时间先后顺序编号,N为大于1的整数。以两个传输时机为例,例如,PUCCH传输时机1占用的时间单元包括时域上奇数编号的时间单元,PUCCH传输时机2占用的时间单元包括时域上偶数编号的时间单元;或者,PUCCH传输时机1占用的时间单元包括时域上前N/2个时间单元,PUCCH传输时机2占用的时间单元包括时域上后N/2个时间单元。可选地,在该示例下,对应关系3可以如表24或表25所示。
表24
Figure PCTCN2021108564-appb-000030
Figure PCTCN2021108564-appb-000031
表25
Figure PCTCN2021108564-appb-000032
可选地,对于信息比特数为1的情况,可以采用BPSK调制;对于信息比特数为2的情况,可以采用QPSK调制。
可选地,上述表格中的CS取值可以替换为调制星座点。例如,对于1比特情况,以表19为例,CS=0对应星座点0,CS=6对应星座点1;对于2比特情况,以表25为例,CS=0对应星座点00,CS=3对应星座点01,CS=6对应星座点10,CS=9对应星座点11。例如,如下表26至表28所示。
表26
Figure PCTCN2021108564-appb-000033
表27
Figure PCTCN2021108564-appb-000034
表28
Figure PCTCN2021108564-appb-000035
应理解,上述示例仅是为便于理解做的示例性说明,其对应关系3还可以有其他形式,对此不作限定。例如,以传输1比特HARQ-ACK为例。当待传输ACK时(如采用表2中CS=6生成序列),波束赋形方式指示在传输时机的映射顺序可以为:PUCCH传输时机1上采用波束赋形方式指示1,PUCCH传输时机2上采用波束赋形方式指示2;当待传输NACK时(如采用表2中CS=0生成序列),波束赋形方式指示在传输时机的映射顺序可以为:PUCCH传输时机1上采用波束赋形方式指示2,PUCCH传输时机2上采用波束赋形方式指示3。或者,当待传输ACK时(如采用表2中CS=6生成序列),波束赋形方式指示在传输时机的映射顺序可以为:PUCCH传输时机1上采用波束赋形方式指示1,PUCCH传输时机2上采用波束赋形方式指示2;当待传输NACK时(如采用表2中CS=0 生成序列),波束赋形方式指示在传输时机的映射顺序为:PUCCH传输时机1上采用波束赋形方式指示3,PUCCH传输时机2上采用波束赋形方式指示4。
还应理解,上述均以一个传输时机对应一个波束赋形方式指示为例进行示例性说明,对此不作严格限定,例如一个传输时机还可能包括更多数量的波束赋形方式指示。
基于上述方案3,多站可以根据在不同传输时机上的检测能量进一步识别ACK/NACK信息提升可靠性。
方案4,传输资源包括各个传输单元对应的频域资源。
在方案4中,终端设备可以根据待传输的信息比特确定各个传输单元所对应的频域资源。
当PUCCH占用2个OFDM符号时,两个OFDM符号上承载的HARQ-ACK比特信息相同(即进行了时域重复传输)。通过定义不同OFDM符号上不同频域资源和HARQ-ACK比特的对应关系,可以使得不同OFDM符号上PUCCH占用的子载波发生变化。一种可能的方式,多个映射方式#2(应理解,此处为区分记为映射方式#2)与信息比特的多个取值具有对应关系,为方便描述,记为对应关系4。多个映射方式#2与信息比特的多个取值具有对应关系,也可以理解为映射方式#2与信息比特的取值相关联。映射方式#2,可以表示为多个传输时机与多个频域资源之间的映射方式。终端设备可以根据待传输的信息比特的取值,确定映射方式#2,进而可以在各个传输时机上使用各自的频域资源进行传输。
以第一个OFDM符号(1 st OFDM符号)和第二个OFDM符号(2 nd OFDM符号)为例,表29和表30列出了1比特HARQ-ACK信息的可能的对应关系,表31列出了2比特HARQ-ACK信息的可能的对应关系。
表29
HARQ-ACK(取值) NACK(0) ACK(1)
1 st OFDM符号 偶数子载波,CS=0 奇数子载波,CS=6
2 nd OFDM符号 奇数子载波,CS=0 偶数子载波,CS=6
表30
HARQ-ACK(取值) NACK(0) ACK(1)
1 st OFDM符号 偶数子载波,CS=0 奇数子载波,CS=6
2 nd OFDM符号 奇数子载波,CS=6 偶数子载波,CS=0
表31
Figure PCTCN2021108564-appb-000036
以1比特HARQ-ACK信息的情况为例。一可能的对应关系如表29所示。在第一个OFDM符号时,传输NACK时,使用偶数子载波且CS=0;传输ACK时,使用奇数子载波且CS=6。在第二个OFDM符号时,传输NACK时,使用奇数子载波且CS=0;传输ACK时,使用偶数子载波且CS=6。又一可能的对应关系如表30所示。第一个OFDM符号和第二个OFDM符号,频域资源位置和CS取值均进行了反转。具体地,如表30所示,在第一个OFDM符号时,传输NACK时,使用偶数子载波且CS=0;传输ACK时,使用奇数子载波且CS=6。在第二个OFDM符号时,传输NACK时,使用奇数子载波且CS=6;传输ACK时,使用偶数子载波且CS=0。
以2比特HARQ-ACK信息的情况为例,一可能的对应关系如表31所示。可以看到,在传输不同HARQ-ACK比特时,第一个OFDM符号占用的RE和第二个OFDM符号占用的RE之间的频域间隔可以相同,如全为2。通过该方式,也可以保证在传输不同信息比特时性能相当。
应理解,上述表29至表31仅为示例性说明,属于上述表29至表31的变形,都适用于本申请实施例。例如,表31中,第一个OFDM符号占用的RE和第二个OFDM符号占用的RE之间的频域间隔也可以不同。
基于上述方案4,对于采用时域重复传输的情况,可以根据信息比特确定时域重复传输上各次传输采用的波束赋形方式指示,从而不仅可以有助于识别当前传输为ACK或NACK,还可以提高传输可靠性。此外,通过定义不同OFDM符号上不同频域资源和HARQ-ACK比特的对应关系,可以使得不同OFDM符号上PUCCH占用的子载波发生变化。进而不仅可以使得传输ACK和NACK的频域资源相隔开,减少错误检测的发生,还可以保证基于ACK和基于NACK生成的序列不同,从而可以便于网络设备基于序列确定传输的是ACK还是NACK。
方案5,传输资源包括基序列的选择。
可选地,在本申请实施例中,终端设备采用的基序列可以为12长序列,或者,终端设备也可以采用6长频域低PAPR序列作为基序列,如表32所示。采用6长频域低PAPR序列作为基序列,传输HARQ-ACK占用的频域资源为6RE,可以节省频域资源开销;采用12长序列(占用12RE),可以提高传输可靠性。
应理解,关于基序列,还可以有其他形式,对此不作限定。
方案6,传输资源包括OCC。
承载HACK-ACK信息的序列,可以采用6长时域序列。其中,时域序列表示基序列定义在时域,即基序列经过调制后可以经过离散傅里叶变换(discrete fourier transform,DFT)变换再映射到RE上。
多个OCC与信息比特的多个取值具有对应关系,为方便描述,记为对应关系5。OCC与信息比特具有对应关系,也可以理解为OCC与信息比特相关联。终端设备可以根据待传输的信息比特的取值,使用其对应的OCC进行处理(如时域扩展操作)。
对应关系5可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的,等等,对此不作限定。
表33列出了1比特HARQ-ACK信息的可能的对应关系5,即1比特HARQ-ACK对 应的OCC码;表34列出了2比特HARQ-ACK信息的可能的对应关系5,即2比特HARQ-ACK对应的OCC码。
以1比特HARQ-ACK信息的情况为例,一可能的对应关系5如表33所示。对于1比特HARQ-ACK的情况,在DFT变换前,6长时域序列s可以先经过时域扩展(spread)操作。例如,通过时域重复形成序列w n×[s s],并根据HARQ-ACK比特确定块(block-wise)OCC码w n,然后生成频域序列,如图9所示。例如当确定传输比特为NACK,则确定w n=[+1 +1],序列s做时域扩展操作:w 0×[s s]=[s s];当确定传输比特为ACK,形成的序列w 1×[s s]=[s -s]。上述序列经过DFT变换后,采用OCC码[+1 +1]的序列仅映射到偶数子载波上,采用OCC码[+1 -1]的序列仅映射到奇数子载波上。此处映射到偶数子载波或映射到奇数子载波仅是示例性说明,对此不作限定,如可以结合上文方案2中的描述确定PUCCH的频域资源。例如,采用OCC码[+1 +1]的序列仅映射到PUCCH资源2上,采用OCC码[+1 -1]的序列仅映射到PUCCH资源1上。又如,采用OCC码[+1 +1]的序列仅映射到PUCCH资源3上,采用OCC码[+1 -1]的序列仅映射到PUCCH资源4上。又如,采用OCC码[+1 +1]的序列仅映射到第二部分子载波上,采用OCC码[+1 -1]的序列仅映射到第一部分子载波上。
表32
Figure PCTCN2021108564-appb-000037
表33
HARQ-ACK n 0(NACK) 1(ACK)
w n [+1 +1] [+1 -1]
表34
HARQ-ACK n 0(0,0) 1(0,1) 2(1,1) 3(1,0)
w n(i) [+1 +1 +1 +1] [+1 -j -1 +j] [+1 -1 +1 -1] [+1 +j-1 -j]
以2比特HARQ-ACK信息的情况为例,一可能的对应关系5如表34所示。对于2比特HARQ-ACK的情况,在DFT变换前,6长时域序列s可以先经过时域扩展(spread)操作。例如,通过4次重复后形成序列[s s s s],并根据HARQ-ACK比特确定block-wise OCC码w n,然后生成频域序列,如图10所示。例如当确定2比特均为NACK,序列经过时域扩展操作:w 0×[s s s s]得到[s s s s]。又如,当确定2比特均为ACK,序列经过时域扩展操作:w 2×[s s s s]=[s -s s -s]。上述序列经过DFT变换后,采用w 0的序列会映射到编号4n的子载波上,采用w 1的序列会映射到编号4n+1的子载波上,采用w 2的序列会映射到编号4n+2的子载波上,采用w 3的序列会映射到编号4n+3的子载波上。同样,此处提到的映射的子载波仅是示例性说明,对此不作限定,如可以结合上文方案2中的描述确定PUCCH的频域资源。
应理解,上述对应关系5仅是一种示例,任何属于上述对应关系的变形,都落入本申请实施例的保护范围。
为便于理解,下面以公式的形式描述上述流程。具体的序列生成方式可以不严格按照下述公式,各个参数确定的过程可以是满足下述公式。
1)确定d(i),d(i)可以是基序列调制获得的:
d(0),...d(M symb-1)
2)根据block-wise OCC做时域扩展,如满足下式:
Figure PCTCN2021108564-appb-000038
其中,l是PUCCH占用的OFDM符号的索引值。
Figure PCTCN2021108564-appb-000039
是PUCCH占用的子载波数量。
Figure PCTCN2021108564-appb-000040
是复用系数,即可以理解为梳齿的数量。M symb是基序列中的元素数量。
3)DFT变换,或者也可以称为传输预编码(transform precoding),计算可以满足下式:
Figure PCTCN2021108564-appb-000041
4)映射到物理资源RE上。
6长时域低PAPR序列示例如表35,
Figure PCTCN2021108564-appb-000042
为基序列,该序列会经过调制,如8PSK调制,可以满足下式:
Figure PCTCN2021108564-appb-000043
然后,进行上述block-wise OCC扩展操作。最后再映射到物理资源RE上。
应理解,上述流程仅是示例性说明,在实际处理中可能还会有其他操作或变形,对此不作限定。
如前所述,网络设备可以配置PUCCH传输采用时域重复的方式,下面简单介绍网络设备配置PUCCH传输采用时域重复的方式时,关于OCC的内容。
当PUCCH占用2个OFDM符号时,第二个OFDM符号上的block-wise OCC与第一OFDM符号上的block-wise OCC不同。一种可能的实现方式,第二个OFDM符号上的block-wise OCC可以根据第一个OFDM符号上的block-wise OCC确定。表36列出了1比特HARQ-ACK信息的可能的对应关系,表37列出了2比特HARQ-ACK信息的可能的对应关系。
以1比特HARQ-ACK信息的情况为例,一可能的对应关系如表36所示。当传输1比特HARQ-ACK时,第一个OFDM符号采用的OCC码和第二个OFDM符号采用的OCC码如表36所示。第一个OFDM符号和第二个OFDM符号下HARQ-ACK比特取值与OCC码的对应关系反转。
一具体示例,如图11所示,符号1(symbol 1)和符号2(symbol 2)占用的RE之间的频域间隔都是1。以反馈NACK为例,对于a0,符号1占用的RE为第一个RE时,符号2占用的RE为第二个RE;对于a1,符号1占用的RE为第三个RE时,符号2占用的RE为第四个RE。
以2比特HARQ-ACK信息的情况为例,一可能的对应关系如表37所示。当传输2比特HARQ-ACK时,第二个OFDM符号采用的OCC码和第一个OFDM符号采用的OCC码如表20所示。可以看到,在传输不同HARQ-ACK比特时,第一个OFDM符号占用的RE和第二个OFDM符号占用的RE之间的频域间隔都是2,从而可以保证在传输不同信息比特时性能相当。
一具体示例,如图12所示,符号1和符号2占用的RE之间的频域间隔都是2。以反馈NACK为例,对于a0,符号1占用的RE为第一个RE时,符号2占用的RE为第三个RE;对于a1,符号1占用的RE为第五个RE时,符号2占用的RE为第七个RE。
基于上述方案6,通过定义不同HARQ-ACK和OCC的对应关系,且不同OCC对应不同频域资源,从而不仅可以使得传输ACK和NACK的频域资源相隔开,减少错误检测的发生,还可以保证基于ACK和基于NACK生成的序列不同,从而可以便于网络设备基于序列确定传输的是ACK还是NACK。
表35
Figure PCTCN2021108564-appb-000044
表36
HARQ-ACK n 0(NACK) 1(ACK)
1 st OFDM符号的w n [+1 +1] [+1 -1]
2 nd OFDM符号的w n [+1 -1] [+1 +1]
表37
HARQ-ACK n 0(0,0) 1(0,1) 2(1,1) 3(1,0)
1 st OFDM符号的w n(i) [+1 +1 +1 +1] [+1 -j -1 +j] [+1 -1 +1 -1] [+1 +j -1 -j]
2 nd OFDM符号的w n(i) [+1 -1 +1 -1] [+1 +j -1 -j] [+1 +1 +1 +1] [+1 -j -1 +j]
方案7,传输资源包括各比特信息所使用的资源。
传输2比特HARQ-ACK的情况下,考虑到不同HARQ-ACK信息对应的CS间隔缩短,这样会导致检测的可靠性下降。例如,当终端设备传输NACK+NACK时,在网络设备侧可能被检测为NACK+ACK,这两个信息对应的CS间隔为3。有鉴于此,当本申请提出,终端设备传输2比特HARQ-ACK时,终端设备可以使用相同时域资源、不同的频域资源和/或不同的空域资源,分别传输该2比特信息。
一情况,终端设备在相同时域资源上、两个不同的频域资源,分别传2比特信息。
终端设备可以通过如上文方案2中所述的方法1至方法3中的任一方法,确定频域资源。下面以2比特信息为例进行说明。
一可能实现方式,网络设备可以指示两个PUCCH资源,为方便描述,记为PUCCH资源11和PUCCH资源21,PUCCH资源11对应第一信息比特,PUCCH资源21对应第二信息比特。终端设备可以根据网络设备的指示,在PUCCH资源11上传输第一信息比特,在PUCCH资源21上传输第二信息比特。终端设备进一步根据待传输的信息比特在相应资源上选择相应的CS或者调制星座点生成序列。例如,第一信息比特为NACK,第二信息比特为ACK,即终端设备传输(NACK,ACK),那么根据各个比特位和多个PUCCH资源的对应关系,在PUCCH资源11上传输NACK,在PUCCH资源21上传输ACK。进一步的,在每个PUCCH资源上,根据该资源对应的信息比特与CS取值或者调制星座点的对应关系(如表2所示),确定CS取值或者调制星座点,并分别生成序列。通过该方案,可以降低UCI的误检测概率。
在多个RB上传输PUCCH可能会导致发送端PAPR增加影响发送效率从而降低PUCCH接收可靠性,并且,发送信号占用的RB数增加会导致功率谱密度降低,影响接收性能。在本申请实施例中,通过进一步建立不同频域资源与发送天线端口之间的关联关系,可以解决上述问题。具体地,假定终端设备具备多个发送天线端口,包括发送天线端口0和发送天线端口1,预先约定,发送天线端口0对应PUCCH资源11,发送天线端口1对应PUCCH资源21,此时,发送天线端口0实际对应了第一信息比特,发送天线端口1实际对应了第二信息比特。从而对于每个发送天线端口而言,其仅在一个RB上发送信号,避免了PAPR增加的问题和功率谱密度降低的问题。
发送天线端口可以依次对应终端设备的物理天线,或者也可以依次对应参考信号端口(如SRS端口)。
又一可能实现方式,网络设备可以指示一个PUCCH资源,为方便描述,记为PUCCH 资源31,PUCCH资源31对应第一信息比特或第二信息比特,终端设备可以根据该PUCCH资源3以及预设准则,推导获得对应第二信息比特或第一信息比特的PUCCH资源。以PUCCH资源31对应第一信息比特为例,或者说PUCCH资源31关联第一信息比特,终端设备可以根据该PUCCH资源3以及预设准则,推导获得对应第二信息比特的PUCCH资源,为方便描述,记为PUCCH资源41。终端设备可以根据网络设备的指示以及预设准则,在PUCCH资源31上传输第一信息比特,在PUCCH资源41上传输第二信息比特。关于预设准则,可以参考上文描述,此处不再赘述。
又一可能实现方式,网络设备可以指示一个PUCCH资源,为方便描述,记为PUCCH资源51,PUCCH资源51中的第一部分子载波对应第一信息比特,PUCCH资源51中的第二部分子载波对应第二信息比特。终端设备可以根据网络设备的指示以及子载波与第一信息比特息/第二信息比特的对应关系,确定传输第一信息比特和第二信息比特的频域资源。
示例地,网络设备可以指示一个PUCCH资源,一个PUCCH资源占用两个不同的PRB,每个PRB对应1个HARQ-ACK比特信息。也就是说,两个PRB上可以采用相同的基序列,且CS取值分别根据两个HARQ-ACK比特信息确定。
例如,可以预先定义2个PRB和两个HARQ-ACK的对应关系。如定义PRB编号和两个HARQ-ACK的对应关系。PRB编号可以是定义的,或者直接根据频域上由高到低的顺序默认PRB的编号,HARQ-ACK比特可以根据特定的准则确定排序。或者,也可以直接默认,根据HARQ-ACK比特,依次使用PRB。
一可能的关系,排序靠前的比特对应编号低的PRB,排序靠后的比特对应编号高的PRB。假设终端设备需要传输NACK(排序靠前)+ACK(排序靠后)比特。那么,终端设备可以在PUCCH的第一个PRB(编号低)上传输基于CS=0生成序列,具体地,终端设备根据表12确定NACK对应的CS=0,根据CS=0生成序列在第一个PRB上发送。并且,终端设备可以在PUCCH的第二个PRB(编号高)上传输基于CS=6生成序列,具体地,终端设备根据表12确定ACK对应的CS=6,根据CS=6生成序列在第二个PRB上发送。
又一情况,终端设备在两个不同的空域资源、相同时域资源上,分别传2比特信息。
终端设备可以通过如上文方案1中所述的方式A至方式C中的任一方法,确定波束赋形方式指示。具体地,可以参考上文描述,此处不再赘述。
以2比特信息为例,终端设备可以采用不同的天线端口发送该2比特信息。从而,利用终端设备不同的天线端口对应的功率放大器提升PUCCH的传输功率。
例如,2比特信息为NACK+ACK,即终端设备传输(NACK,ACK),那么终端设备可以采用一天线端口(或一些天线端口)发送NACK,采用另一天线端口(或另一些天线端口)发送ACK。
上文分别描述了两种情况,各个情况可以单独使用,也可以结合使用。例如,终端设备可以采用不同的天线端口在不同的PRB上发送序列。
应理解,上文关于方案7的描述仅是示例性说明,对此不做限定。例如,终端设备传输2比特HARQ-ACK时,该2比特HARQ-ACK可以分别考虑,即认为是两个1比特HARQ-ACK,各比特信息使用的资源,可以参考上文关于1比特HARQ-ACK情况下的描 述。
基于上述方案7,每个比特分别对应不同的PRB和/或不同天线端口传输,使得PUCCH传输在信道的时延扩展较大时仍保持较高的可靠性,可以提升传输可靠性。
方案8,传输资源包括的用于编码和/或调制等的其它信息。
下面主要以CS和调制星座点为例进行示例性说明,关于与传输相关的其它信息,均可以参考本申请实施例的方案。
1、CS取值。
终端设备可以根据待传输的信息比特,使用对应CS值生成发送序列。
相应地,网络设备可以根据多个CS值在多个传输资源上接收信号,并确定目标CS值,进而可以确定对应的信息比特。
多个CS值与信息比特的多个取值具有对应关系,为方便描述,记为对应关系7。多个CS值与信息比特的多个取值具有对应关系,也可以理解为CS值与信息比特的取值相关联。终端设备可以根据待传输的信息比特的取值,使用其对应的CS值进行处理(如生成发送序列)。
对应关系7可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设备指示给终端设备的,等等,对此不作限定。
一种可能的对应关系7,如上文所述。
例如,1比特情况下,ACK时确定CS=0,NACK时确定CS=6。又如,2比特情况下,2比特全是ACK时确定CS=6,2比特全是NACK时确定CS=0,第一比特为NACK第二比特为ACK时确定CS=3,第一比特为ACK第二比特为NACK时确定CS=9。
应理解,上述对应关系7仅为示例性说明,在未来协议中,当对ACK或NACK对应的CS值发生改变后,其改变后的对应关系7也适用于本申请实施例。
如前所述,网络设备可以配置PUCCH传输采用时域重复的方式,在该情况下,终端设备使用目标CS值生成发送序列后,终端设备可以在多个传输单元上均发送该发送序列。相应地,网络设备可以根据多个CS值生成多个序列,并根据该多个序列在多个传输单元上接收信号。
应理解,本本申请实施例中根据信息比特确定CS取值可以带入到式3中通过计算得到序列值。
2、调制星座点。
终端设备可以根据待传输的信息比特,使用对应调制星座点进行调制,生成发送序列。
相应地,网络设备可以根据多个调制星座点在多个传输资源上接收信号,并确定目标调制星座点,进而可以确定对应的信息比特。
多个调制星座点与信息比特的多个取值具有对应关系,为方便描述,记为对应关系8。多个调制星座点与信息比特的多个取值具有对应关系,也可以理解为调制星座点与信息比特的取值相关联。终端设备可以根据待传输的信息比特的取值,使用其对应的调制星座点进行处理(如进行调制)。
对应关系8可以是协议预先定义的,或者也可以是网络设备预先规定的,或者也可以是网络设备配置的,或者也可以是网络设备和终端设备预先约定的,或者也可以是网络设 备指示给终端设备的,等等,对此不作限定。
例如,1比特情况下,ACK时确定调制星座点为第一调制星座点,NACK时确定调制星座点为第二调制星座点。又如,2比特情况下,2比特全是ACK时确定调制星座点为第一调制星座点,2比特全是NACK时确定调制星座点为第二调制星座点,第一比特为NACK第二比特为ACK时确定调制星座点为第三调制星座点,第一比特为ACK第二比特为NACK时确定调制星座点为第四调制星座点。
如前所述,网络设备可以配置PUCCH传输采用时域重复的方式,在该情况下,终端设备使用目标调制星座点生成发送序列后,终端设备可以在多个传输单元上均发送该发送序列。
对于终端设备,可以根据同一个基序列,做调制操作,根据对应关系8,可以使用对应的调制星座点对基序列调制,然后再进行发送。对于网络设备来说,可以尝试采用不同星座点解信号,确定终端设备采用的星座点,从而确定发送的比特。
上文结合传输资源可能的形式,介绍了几种方案,应理解,关于传输资源的其它可能的形式,都可以参考上文的描述,此处不再赘述。例如,对于某一类传输资源,可以通过预先定义多个该类传输资源与信息比特的不同取值的对应关系,终端设备可以根据待传输的信息比特的取值,使用对应的传输资源进行处理或传输。
应理解,上述各个方案可以独立使用,也可以结合使用。对此不作限定。例如,以方案1和方案8结合使用、或者方案3和方案8结合使用为例,目标传输资源可以包括第一传输资源和第二传输资源,第一传输资源为目标CS值或目标调制星座点,第二传输资源为每个传输单元对应的波束赋形方式指示,终端设备可以根据待传输的信息比特同时确定第一传输资源和第二传输资源。
上文各个方案的内容可以看作是在短PUCCH格式上的扩展。本申请实施例还提供了关于长PUCCH格式的一些改进,下文详细介绍。
关于长PUCCH格式。
需要说明的是,关于长PUCCH格式的方案和上文所述的实施例可以结合使用,或者,关于长PUCCH格式的方案也可以单独使用。
如上文所,短PUCCH格式,可以支持1比特或2比特HARQ-ACK信息。短PUCCH格式指的是PUCCH在时域上占用较少的时域资源,如占用较少的OFDM符号,例如最多2个OFDM符号。上文各个实施例的内容可以看作是在短PUCCH格式上的扩展。
长PUCCH格式,可以支持大于2比特HARQ-ACK信息。长PUCCH格式指的是PUCCH在时域上占用较多的时域资源,如占用较多的OFDM符号(例如4~14OFDM符号)。长PUCCH格式例如为PUCCH格式4(PUCCH format 4)。下文所示的实施例,可以看做是在长PUCCH格式上的扩展,如在PUCCH格式4上的扩展。
长PUCCH格式支持较高的PUCCH传输可靠性,采用单载波波形(如离散傅里叶变换扩展正交频分复用(discrete fourier transformation-spread-orthogonal frequency division multiplexing,DFT-s-OFDM))信息比特在时域做编码调制之后,经过DFT变换映射到频域资源。下面简单说一下该格式的具体流程。应理解,下文所述的公式均是示例性说明,可以是满足以下公式,或者基于以下公式计算,或者,也可以是通过以下公式的变形计算,对此不作限定。
1)信息比特块
Figure PCTCN2021108564-appb-000045
经过加扰形成:
Figure PCTCN2021108564-appb-000046
其中,M bit是信息比特数。c(i)是加扰序列,例如PN序列。加扰序列的初始化为c init=n RNTI·2 15+n ID。n RNTI为加扰参数,如可以是可以高层信令配置的。n ID可以是高层信令配置的,也可以与小区ID绑定,即
Figure PCTCN2021108564-appb-000047
2)
Figure PCTCN2021108564-appb-000048
经过调制,形成d(0),...d(M symb-1)。
调制方式例如可以包括π/2-二进制相移键控(binary phase shift keying,BPSK),正交相移键控(quadrature phase shift keying,QPSK)等。应理解,关于调制方式不作严格限定。
例如,以调制方式为QPSK为例,在QPSK调制下,M symb=M bit/2。又如,以调制方式为π/2-BPSK为例,在π/2-BPSK调制下,M symb=M bit
3)block-wise扩展(用于支持多用户复用),如满足下式。
Figure PCTCN2021108564-appb-000049
关于各个参数的含义,可以参考上文描述。其中,
Figure PCTCN2021108564-appb-000050
在PUCCH format 4下的取值可以为12(1个RB)。
Figure PCTCN2021108564-appb-000051
表征复用系数。比如
Figure PCTCN2021108564-appb-000052
表明用于正交复用的OCC数量为2,
Figure PCTCN2021108564-appb-000053
表明用于正交复用的OCC数量为4。示例地,
Figure PCTCN2021108564-appb-000054
时,可以根据下表38定义w n
Figure PCTCN2021108564-appb-000055
时,可以根据下表38定义w n
表38
n w n
0 [+1 +1]
1 [+1 -1]
表39
n w n
0 [+1 +1 +1 +1]
1 [+1 -j -1 +j]
2 [+1 -1 +1 -1]
3 [+1 +j -1 -j]
4)DFT变换。
将第三步(即上文3))形成的
Figure PCTCN2021108564-appb-000056
做如下DFT变换操作(或做类似变换或计算满足下式),形成的调制符号映射到RE上。
Figure PCTCN2021108564-appb-000057
经过上述3)和4)的操作,对于一个终端设备而言,由于采用了某一个特定的block-wise OCC码,使得其UCI仅会映射到一个梳齿上,其余的梳齿上可以映射其他终端设备的数据,从而达到频分复用的效果。例如图13中,终端设备1可以采用w n=[+1 +1],从而经过上述操作后其数据会映射在偶数子载波上,终端设备2可以采用w n=[+1 -1],从而经过上述操作后其数据会映射在奇数子载波上。应理解,上述终端设备1通过一系列操作映射到偶数子载波、终端设备2通过一系列操作映射到奇数子载波,仅是示例性说明,对此不作限定。例如,终端设备1通过一系列操作映射到第一部分子载波、终端设备2通过一系列操作映射到第二部分子载波,关于第一部分子载波和第二部分子载波参考上文描述,此处不再赘述。
对于一个终端设备而言,该PUCCH的DMRS在频域上仍旧占用所有的子载波,不同终端设备的DMRS靠CS(即cyclic shift)正交。根据表40中对m 0的定义可以确定CS取值,如满足下式。
Figure PCTCN2021108564-appb-000058
关于各个参数的含义参考上文描述。不同终端设备的PUCCH占用相同RB时,可以采用不同的n对应的m 0从而构成相互正交的DMRS信号。
表40
Figure PCTCN2021108564-appb-000059
上文主要介绍了不同的block-wise OCC可以用于支持不同UE之间正交复用传输。在本申请实施例中,不同的block-wise OCC可以用于支持同一UE的多次重复传输。
在本申请实施例中,终端设备可以在不同的频域资源上发送相同的UCI。此外,终端设备还可以采用不同的天线端口、在不同的频域资源上,发送相同的UCI。图14示出了一具体示例,如图14所示,假设UCI信息比特(a0,a1,a2,a3,a4,a5,a6,a7),经过调制后形成(b0,b1,b2,b3,b4,b5,b6,b7),经过时域重复后,分别采用不同时域OCC码并分别经过DFT变换映射到频域上不同子载波上。仍以偶数子载波和奇数子载波为例,此时,偶数子载波和奇数子载波承载相同的信息,并且终端设备可以采用不同的天线端口发送偶数子载波和奇数子载波上的信息。通过该方式,可以提升PUCCH格式4的传输可靠性,并保证较低的传输时延。
为便于理解,下面仍以公式的形式描述上述流程。应理解,下文所述的公式均是示例性说明,可以是满足以下公式,或者基于以下公式计算,或者,也可以是通过以下公式的变形计算,对此不作限定。
1)信息比特块
Figure PCTCN2021108564-appb-000060
经过加扰形成:
Figure PCTCN2021108564-appb-000061
关于各个参数的含义,可以参考上文描述,此处不再赘述。
2)
Figure PCTCN2021108564-appb-000062
经过调制,形成d(0),...d(M symb-1)。
调制方式例如可以包括π/2-BPSK,QPSK等。应理解,关于调制方式不作严格限定。
例如,以调制方式为QPSK为例,在QPSK调制下,M symb=M bit/2。又如,以调制方式为π/2-BPSK为例,在π/2-BPSK调制下,M symb=M bit
3)block-wise扩展,如满足下式。分别取多个n值,例如,
Figure PCTCN2021108564-appb-000063
时,取n=0和n=1。又如,
Figure PCTCN2021108564-appb-000064
时,取n=0和n=2。
Figure PCTCN2021108564-appb-000065
关于各个参数的含义,可以参考上文描述。示例地,
Figure PCTCN2021108564-appb-000066
时,可以根据上文所述的表38定义w n;或者,
Figure PCTCN2021108564-appb-000067
时,可以根据上文所述的表39定义w n
4)DFT变换。
将第三步(即上文3))形成的多个
Figure PCTCN2021108564-appb-000068
分别做如下DFT变换操作(或做类似变换或计算满足下式),形成的调制符号映射到RE上发送。
Figure PCTCN2021108564-appb-000069
经过上述3)和4)的操作,对于一个终端设备而言,由于采用了某一个特定的block-wise OCC码,使得其UCI映射到多个不同的梳齿上。对于一个终端设备而言,该 PUCCH的DMRS在频域上仍旧占用所有的子载波,不同梳齿上的UCI分别对应一个DMRS端口,不同的DMRS端口靠CS正交。根据上文所述的表40中对m 0的定义可以确定CS取值,如满足下式。
Figure PCTCN2021108564-appb-000070
关于各个参数的含义参考上文描述。不同梳齿上的UCI的DMRS可以采用不同的n对应的m 0从而构成相互正交的DMRS信号(也就是不同的DMRS端口)。
进一步的,不同梳齿上的UCI信号以及相应的DMRS端口可以分别采用不同的天线端口发送。天线端口可以是终端设备的物理天线,或者天线端口可以对应不同的SRS端口。
基于上述实施例,不同的block-wise OCC可以用于支持同一终端设备的多次重复传输,即不同频域资源上承载了同一份UCI的重复传输,从而可以降低码率提升传输可靠性。此外,不同频域资源上可以采用不同发送天线端口,或者说不同梳齿上可以采用不同的天线端口发送,从而可以增加空间分集效果。
应理解,在本申请中的各个实施例中的公式仅是示例性说明,其不对本申请实施例的保护范围造成限定。上述各个实施例中的公式主要是结合当前系统中的设计给出的示例,各个参数的定义可以是一般意义上的定义。在计算上述各个涉及的参数的过程中,也可以根据上述公式进行计算,或者基于上述公式的变形进行计算,也可以根据其它方式进行计算以满足公式计算的结果。
还应理解,在上述一些实施例中,列举的各个表格仅是一种示例性的描述。例如,在设计系统过程中,可以仅选取表中的部分行所表示的对应关系;又如,表格中的各行的顺序也可以调整。
还应理解,在上述一些实施例中,以反馈的信息为HARQ信息为例进行描述,但这并不对本申请造成限定,任何可以实现反馈的信息均适用于本申请实施例。
还应理解,在上述一些实施例中,以反馈的HARQ信息承载于PUCCH上为例进行描述,但这并不对本申请造成限定,任何可以传输反馈信息的方式均适用于本申请实施例。
还应理解,在上述一些实施例中,多次提及对应关系,其可以表示关联。如波束赋形方式指示与信息比特的取值具有对应关系,可以表示波束赋形方式指示与信息比特的取值相关联。如待传输的信息比特的取值为某一确定值时,可以使用该值所关联的波束赋形方式进行传输。
还应理解,在上述一些实施例中,以波束赋形方式指示为例进行示例性说明,对此不作限定。例如,波束赋形方式指示可以替换为波束赋形方式,或者也可以替换为波束赋形方式指示所指示的波束赋形方式。
还应理解,在上述一些实施例中,提及对应关系,如对应关系1至对应关系8,均可以是协议预先定义的,也可以是网络设备动态配置的,也可以是预先约定的等等,对此可以实施例中的描述。
基于上述技术方案,在信息比特的比特位数已确定的情况下,取值不同的信息比特各自有其对应的传输资源,该对应关系可以是预先设定的。终端设备可以根据待传输的信息比特的具体内容(即信息比特的取值)确定对应的传输资源,并使用其相对应的传输资源, 来处理该信息比特并传输该信息比特。以HARQ-ACK反馈为例,信息比特的取值例如可以根据反馈的是ACK还是NACK不同或者ACK和NACK的组合,对应的信息比特的取值不同。也就是说,不同的反馈结果对应不同的传输资源,在反馈不同结果时,使用该反馈结果对应的资源来处理和/或传输。通过该方式,可以尽可能地提高传输可靠性,此外,在有些场景下,还可以避免错误检测发生的概率。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图3至图14详细说明了本申请实施例提供的方法。以下,结合图15至图18详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图15是本申请实施例提供的通信装置的示意性框图。该通信装置1500包括收发单元1510和处理单元1520。收发单元1510可以实现相应的通信功能,处理单元1510用于进行数据处理。收发单元1510还可以称为通信接口或通信单元。
可选地,该通信装置1500还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1520可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1500可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置1500可以为终端设备或者可配置于终端设备的部件,收发单元1510用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元1520用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该通信装置1500可以用于执行上文方法实施例中网络设备所执行的动作,这时,该通信装置1500可以为网络设备或者可配置于网络设备的部件,收发单元1510用于 执行上文方法实施例中网络设备侧的收发相关的操作,处理单元1520用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为一种设计,该通信装置1500用于执行上文图4至图14所示实施例中终端设备所执行的动作,处理单元1520用于:确定待传输的上行控制信息UCI的信息比特位数;处理单元1520还用于:根据待传输的UCI的信息比特取值,确定目标传输资源;收发单元1510用于:使用目标传输资源向网络设备发送信息比特。
作为一示例,收发单元1510还用于:接收多个波束赋形方式指示;处理单元1520具体用于:根据待传输的UCI的信息比特取值,确定目标波束赋形方式指示,目标波束赋形方式指示为多个波束赋形方式指示中的一个或多个。
作为又一示例,多个波束赋形方式指示与信息比特的多个取值具有预设的第一对应关系,处理单元1520具体用于:根据待传输的UCI的信息比特取值以及第一对应关系,确定目标波束赋形方式指示。
作为又一示例,波束赋形方式指示包括以下方式中的任意一种:参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
作为又一示例,每个波束赋形方式指示分别对应不同的上行功控参数。
作为又一示例,信息比特分别在多个传输单元上重复传输,目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
作为又一示例,收发单元1510还用于:接收多个波束赋形方式指示,多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;多个传输单元包括第一传输单元和第二传输单元,当信息比特取值为第一比特,第一传输单元对应第一波束赋形方式指示且第二传输单元对应第二波束赋形方式指示;当信息比特取值为第二比特,第一传输单元对应第二波束赋形方式指示且第二传输单元对应第一波束赋形方式指示。
作为又一示例,多个映射方式与信息比特的多个取值之间具有预设的第二对应关系,映射方式为多个传输单元和多个波束赋形方式指示之间的对应关系;处理单元1520具体用于:根据第二对应关系和待传输的UCI的信息比特取值,确定每个传输单元对应的波束赋形方式指示。
作为又一示例,目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,多个CS值与信息比特的多个取值具有预设的第三对应关系、多个调制星座点与信息比特的多个取值具有预设的第四对应关系、多个OCC与信息比特的多个取值具有预设的第五对应关系;处理单元1520具体用于:根据待传输的UCI的信息比特取值和第三对应关系,确定所述目标CS值;和/或,根据待传输的UCI的信息比特取值和第四对应关系,确定目标调制星座点;和/或,根据待传输的UCI的信息比特取值和第五对应关系,确定目标OCC。
作为又一示例,处理单元1520还用于:根据目标CS值和/或目标调制星座点生成第一序列;收发单元1510具体用于:在多个传输单元上均发送第一序列。
作为又一示例,收发单元1510还用于:接收频域资源的指示,频域资源的指示用于指示多个频域资源;处理单元1520具体用于:根据待传输的UCI的信息比特取值,确定目标频域资源,目标频域资源为多个频域资源中的一个或多个。
作为又一示例,多个频域资源与信息比特的多个取值具有预设的第六对应关系,处理 单元1520具体用于:根据待传输的UCI的信息比特取值以及第六对应关系,确定目标频域资源。
作为又一示例,多个频域资源通过以下任意一项确定:网络设备指示的多个频域资源的信息;或者,网络设备指示的部分频域资源的信息、以及频域资源间隔,频域资源间隔包括部分频域资源与多个频域资源中其他频域资源之间的间隔;或者,网络设备指示的一个频域资源的信息、以及预设规则。
该通信装置1500可实现对应于根据本申请实施例的方法400中的终端设备执行的步骤或者流程,该通信装置1500可以包括用于执行图4中的方法400中的终端设备执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400的相应流程。
其中,当该通信装置1500用于执行图4中的方法400时,收发单元1510可用于执行方法400中的步骤430,处理单元1520可用于执行方法400中的步骤410和420。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,通信装置1500用于执行上文图4至图14所示实施例中网络设备所执行的动作,处理单元1520用于:确定待传输的上行控制信息UCI的信息比特位数;处理单元1520还用于:配置多个传输资源;收发单元1510用于:在多个传输资源上接收信号;处理单元1520还用于:根据接收到的信号确定目标传输资源,并根据目标传输资源确定UCI的信息比特取值,多个传输资源中包括目标传输资源。
作为一示例,多个传输资源对应多个波束赋形方式指示;
作为又一示例,收发单元1510具体用于:使用多个波束赋形方式指示相对应的接收波束赋形方式接收信号;处理单元1520具体用于:确定目标波束赋形方式指示,目标波束赋形方式指示为多个波束赋形方式指示中的一个或多个。
作为又一示例,多个波束赋形方式指示与信息比特的多个取值具有预设的第一对应关系,收发单元1510具体用于:根据目标波束赋形方式指示以及第一对应关系,确定UCI的信息比特取值。
作为又一示例,波束赋形方式指示包括以下方式中的任意一种:参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
作为又一示例,每个波束赋形方式指示分别对应不同的上行功控参数。
作为又一示例,信息比特分别在多个传输单元上重复传输,目标传输资源包括每个传输单元对应的波束赋形方式指示。
作为又一示例,收发单元1510还用于:发送多个波束赋形方式指示,多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;多个传输单元包括第一传输单元和第二传输单元,收发单元1510具体用于:在第一传输单元和第二传输单元上采用第一波束赋形方式和第二波束赋形方式相对应的接收波束赋形方式接收信号;当确定第一传输单元对应第一波束赋形方式指示、且第二传输单元对应第二波束赋形方式指示,信息比特取值为第一比特;当确定第一传输单元对应第二波束赋形方式指示、且第二传输单元对应第一波束赋形方式指示,信息比特取值为第二比特。
作为又一示例,多个映射方式与信息比特的多个取值之间具有预设的第二对应关系, 映射方式为多个传输单元和多个波束赋形方式指示之间的对应关系;处理单元1520具体用于:根据第二对应关系和每个传输单元对应的波束赋形方式指示,确定UCI的信息比特取值。
作为又一示例,目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,多个CS值与信息比特的多个取值具有预设的第三对应关系、多个调制星座点与信息比特的多个取值具有预设的第四对应关系、多个OCC与信息比特的多个取值具有预设的第五对应关系;收发单元1510具体用于:根据多个CS值在多个传输资源上接收信号;处理单元1520具体用于:根据第三对应关系以及目标CS值,确定UCI的信息比特取值;和/或,收发单元1510具体用于:根据多个调制星座点在多个传输资源上接收信号;处理单元1520具体用于:根据第四对应关系以及目标调制星座点,确定UCI的信息比特取值;和/或,收发单元1510具体用于:根据多个OCC在多个传输资源上接收信号;处理单元1520具体用于:根据第五对应关系以及目标OCC,确定UCI的信息比特取值。
作为又一示例,处理单元1520还用于:根据多个CS值和/或多个调制星座点生成多个序列;收发单元1510具体用于:根据多个序列在多个传输单元上接收信号;处理单元1520具体用于:根据接收信号确定第一序列,第一序列是基于目标CS值和/或目标调制星座点生成的。
作为又一示例,收发单元1510还用于:向终端设备发送频域资源的指示,频域资源的指示用于指示多个频域资源;收发单元1510具体用于:使用多个频域资源接收信号;处理单元1520具体用于:根据接收信号确定目标频域资源,目标频域资源为多个频域资源中的一个或多个。
作为又一示例,多个频域资源与信息比特的多个取值具有预设的第六对应关系,处理单元1520具体用于:根据目标频域资源以及第六对应关系,确定UCI的信息比特取值。
作为又一示例,多个频域资源通过以下任意一项确定:指示的多个频域资源的信息;或者,指示的部分频域资源的信息、以及频域资源间隔,频域资源间隔包括部分频域资源与多个频域资源中其他频域资源之间的间隔;或者,指示的一个频域资源的信息、以及预设规则。
该通信装置1500可实现对应于根据本申请实施例的方法400中的网络设备执行的步骤或者流程,该通信装置1500可以包括用于执行图4中的方法400中的网络设备执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400的相应流程。
其中,当该通信装置1500用于执行图4中的方法400时,收发单元1510可用于执行方法400中的步骤430。
上文实施例中的处理单元1520可以由至少一个处理器或处理器相关电路实现。收发单元1510可以由收发器或收发器相关电路实现。收发单元1510还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
如图16所示,本申请实施例还提供一种通信装置1600。该通信装置1600包括处理器1610,处理器1610与存储器1620耦合,存储器1620用于存储计算机程序或指令和/或数据,处理器1610用于执行存储器1620存储的计算机程序或指令和/或数据,使得上 文方法实施例中的方法被执行。
可选地,该通信装置1600包括的处理器1610为一个或多个。
可选地,如图16所示,该通信装置1600还可以包括存储器1620。
可选地,该通信装置1600包括的存储器1620可以为一个或多个。
可选地,该存储器1620可以与该处理器1610集成在一起,或者分离设置。
可选地,如图16所示,该通信装置1600还可以包括收发器1630,收发器1630用于信号的接收和/或发送。例如,处理器1610用于控制收发器1630进行信号的接收和/或发送。
作为一种方案,该通信装置1600用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1610用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器1630用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置1600用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1610用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1630用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1700,该通信装置1700可以是终端设备也可以是芯片。该通信装置1700可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1700为终端设备时,图17示出了一种简化的终端设备的结构示意图。如图17所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图17中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图17所示,终端设备包括收发单元1710和处理单元1720。收发单元1710也可以称为收发器、收发机、收发装置等。处理单元1720也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1710中用于实现接收功能的器件视为接收单元,将收发单元1710中用于实现发送功能的器件视为发送单元,即收发单元1710包括接收单元和发送 单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1720用于执行图4中终端设备侧的处理动作。例如,处理单元1720用于执行图4中的步骤410和420中的处理步骤;收发单元1710用于执行图4中的步骤430中的收发操作。
应理解,图17仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图17所示的结构。
当该通信装置1700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1800,该通信装置1800可以是网络设备也可以是芯片。该通信装置1800可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1800为网络设备时,例如为基站。图18示出了一种简化的基站结构示意图。基站包括1810部分以及1820部分。1810部分主要用于射频信号的收发以及射频信号与基带信号的转换;1820部分主要用于基带处理,对基站进行控制等。1810部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1820部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1810部分的收发单元用于执行图4所示实施例中由网络设备执行的收发相关的步骤;1820部分用于执行图4所示实施例中由网络设备执行的处理相关的步骤。
应理解,图18仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图18所示的结构。
当该通信装置1800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (62)

  1. 一种通信的方法,其特征在于,包括:
    终端设备确定待传输的上行控制信息UCI的信息比特位数;
    所述终端设备根据所述待传输的UCI的信息比特取值,确定目标传输资源;
    所述终端设备使用所述目标传输资源向网络设备发送所述信息比特。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收多个波束赋形方式指示;
    所述终端设备根据待传输的UCI的信息比特取值,确定目标传输资源,包括:
    所述终端设备根据所述待传输的UCI的信息比特取值,确定目标波束赋形方式指示,所述目标波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
  3. 根据权利要求2所述的方法,其特征在于,
    所述多个波束赋形方式指示与所述信息比特的多个取值具有预设的第一对应关系,
    所述终端设备根据所述待传输的UCI的信息比特取值,确定目标波束赋形方式指示,包括:
    所述终端设备根据所述待传输的UCI的信息比特取值以及所述第一对应关系,确定所述目标波束赋形方式指示。
  4. 根据权利要求2或3所述的方法,其特征在于,所述波束赋形方式指示包括以下方式中的任意一种:
    参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,每个所述波束赋形方式指示分别对应不同的上行功控参数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述信息比特分别在多个传输单元上重复传输,所述目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收多个波束赋形方式指示,所述多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;
    所述多个传输单元包括第一传输单元和第二传输单元,
    当所述信息比特取值为第一比特,所述第一传输单元对应所述第一波束赋形方式指示且所述第二传输单元对应所述第二波束赋形方式指示;
    当所述信息比特取值为第二比特,所述第一传输单元对应所述第二波束赋形方式指示且所述第二传输单元对应所述第一波束赋形方式指示。
  8. 根据权利要求6或7所述的方法,其特征在于,
    多个映射方式与所述信息比特的多个取值之间具有预设的第二对应关系,所述映射方式为所述多个传输单元和所述多个波束赋形方式指示之间的对应关系;
    所述方法还包括:
    所述终端设备根据所述第二对应关系和所述待传输的UCI的信息比特取值,确定每个所述传输单元对应的波束赋形方式指示。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,
    所述多个CS值与所述信息比特的多个取值具有预设的第三对应关系、所述多个调制星座点与所述信息比特的多个取值具有预设的第四对应关系、所述多个OCC与所述信息比特的多个取值具有预设的第五对应关系;
    所述终端设备根据待传输的UCI的信息比特,确定目标传输资源,包括:
    所述终端设备根据所述待传输的UCI的信息比特取值和所述第三对应关系,确定所述目标CS值;和/或,
    所述终端设备根据所述待传输的UCI的信息比特取值和所述第四对应关系,确定所述目标调制星座点;和/或,
    所述终端设备根据所述待传输的UCI的信息比特取值和所述第五对应关系,确定所述目标OCC。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述终端设备使用所述目标传输资源向网络设备发送所述信息比特,包括:
    所述终端设备根据所述目标CS值和/或所述目标调制星座点生成第一序列;
    所述终端设备在多个传输单元上均发送所述第一序列。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收频域资源的指示,所述频域资源的指示用于指示多个频域资源;
    所述终端设备根据待传输的UCI的信息比特取值,确定目标传输资源,包括:
    所述终端设备根据所述待传输的UCI的信息比特取值,确定目标频域资源,所述目标频域资源为所述多个频域资源中的一个或多个。
  12. 根据权利要求11所述的方法,其特征在于,
    所述多个频域资源与所述信息比特的多个取值具有预设的第六对应关系,
    所述终端设备根据所述待传输的UCI的信息比特取值,确定目标频域资源,包括:
    所述终端设备根据所述待传输的UCI的信息比特取值以及所述第六对应关系,确定所述目标频域资源。
  13. 根据权利要求12所述的方法,其特征在于,所述多个频域资源通过以下任意一项确定:
    所述网络设备指示的所述多个频域资源的信息;或者,
    所述网络设备指示的部分频域资源的信息、以及频域资源间隔,所述频域资源间隔包括所述部分频域资源与所述多个频域资源中其他频域资源之间的间隔;或者,
    所述网络设备指示的一个频域资源的信息、以及预设规则。
  14. 一种通信的方法,其特征在于,包括:
    网络设备确定待传输的上行控制信息UCI的信息比特位数;
    所述网络设备配置多个传输资源;
    所述网络设备在所述多个传输资源上接收信号;
    所述网络设备根据所述接收到的信号确定目标传输资源,并根据所述目标传输资源确定所述UCI的信息比特取值,所述多个传输资源中包括所述目标传输资源。
  15. 根据权利要求14所述的方法,其特征在于,所述多个传输资源对应多个波束赋 形方式指示;
    所述网络设备在多个传输资源上接收信号,所述网络设备根据所述接收到的信号确定目标传输资源,包括:
    所述网络设备使用所述多个波束赋形方式指示相对应的接收波束赋形方式接收信号,并确定目标波束赋形方式指示,所述目标波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
  16. 根据权利要求15所述的方法,其特征在于,
    所述多个波束赋形方式指示与所述信息比特的多个取值具有预设的第一对应关系,
    所述根据所述目标传输资源确定所述UCI的信息比特取值,包括:
    所述网络设备根据所述目标波束赋形方式指示以及所述第一对应关系,确定所述UCI的信息比特取值。
  17. 根据权利要求15或16所述的方法,其特征在于,所述波束赋形方式指示包括以下方式中的任意一种:
    参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,每个所述波束赋形方式指示分别对应不同的上行功控参数。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述信息比特分别在多个传输单元上重复传输,所述目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送多个波束赋形方式指示,所述多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;
    所述多个传输单元包括第一传输单元和第二传输单元;
    所述网络设备在所述多个传输资源上接收信号,包括:
    所述网络设备在所述第一传输单元和所述第二传输单元上采用所述第一波束赋形方式和所述第二波束赋形方式相对应的接收波束赋形方式接收信号;
    当所述网络设备确定所述第一传输单元对应所述第一波束赋形方式指示、且所述第二传输单元对应所述第二波束赋形方式指示,所述信息比特取值为第一比特;
    当所述网络设备确定所述第一传输单元对应所述第二波束赋形方式指示、且所述第二传输单元对应所述第一波束赋形方式指示,所述信息比特取值为第二比特。
  21. 根据权利要求19或20所述的方法,其特征在于,
    多个映射方式与所述信息比特的多个取值之间具有预设的第二对应关系,所述映射方式为所述多个传输单元和所述多个波束赋形方式指示之间的对应关系;
    所述根据所述目标传输资源确定所述UCI的信息比特取值,包括:
    所述网络设备根据所述第二对应关系和每个所述传输单元对应的波束赋形方式指示,确定所述UCI的信息比特取值。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,
    所述多个CS值与所述信息比特的多个取值具有预设的第三对应关系、所述多个调制 星座点与所述信息比特的多个取值具有预设的第四对应关系、所述多个OCC与所述信息比特的多个取值具有预设的第五对应关系;
    所述网络设备在多个传输资源上接收信号,所述网络设备根据所述接收到的信号确定目标传输资源,并根据所述目标传输资源确定所述UCI的信息比特取值,包括:
    所述网络设备根据所述多个CS值在所述多个传输资源上接收信号,并根据所述第三对应关系以及所述目标CS值,确定所述UCI的信息比特取值;和/或,
    所述网络设备根据所述多个调制星座点在所述多个传输资源上接收信号,并根据所述第四对应关系以及所述目标调制星座点,确定所述UCI的信息比特取值;和/或
    所述网络设备根据所述多个OCC在所述多个传输资源上接收信号,并根据所述第五对应关系以及所述目标OCC,确定所述UCI的信息比特取值。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,
    所述网络设备使用所述多个传输单元接收信号,包括:
    所述网络设备根据所述多个CS值和/或所述多个调制星座点生成多个序列,并根据所述多个序列在所述多个传输单元上接收信号;
    所述网络设备根据所述接收信号确定第一序列,所述第一序列是基于所述目标CS值和/或所述目标调制星座点生成的。
  24. 根据权利要求14至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送频域资源的指示,所述频域资源的指示用于指示多个频域资源;
    所述网络设备在多个传输资源上接收信号,所述网络设备根据所述接收到的信号确定目标传输资源,包括:
    所述网络设备使用所述多个频域资源接收信号,并根据所述接收信号确定目标频域资源,所述目标频域资源为所述多个频域资源中的一个或多个。
  25. 根据权利要求24所述的方法,其特征在于,
    所述多个频域资源与所述信息比特的多个取值具有预设的第六对应关系,
    所述网络设备根据所述目标传输资源确定所述UCI的信息比特取值,包括:
    所述网络设备根据所述目标频域资源以及所述第六对应关系,确定所述UCI的信息比特取值。
  26. 根据权利要求24或25所述的方法,其特征在于,所述多个频域资源通过以下任意一项确定:
    所述网络设备指示的所述多个频域资源的信息;或者,
    所述网络设备指示的部分频域资源的信息、以及频域资源间隔,所述频域资源间隔包括所述部分频域资源与所述多个频域资源中其他频域资源之间的间隔;或者,
    所述网络设备指示的一个频域资源的信息、以及预设规则。
  27. 一种通信装置,其特征在于,包括:处理单元和收发单元,
    所述处理单元,用于确定待传输的上行控制信息UCI的信息比特位数;
    所述处理单元,还用于根据所述待传输的UCI的信息比特取值,确定目标传输资源;
    所述收发单元,用于使用所述目标传输资源向网络设备发送所述信息比特。
  28. 根据权利要求27所述的装置,其特征在于,
    所述收发单元,还用于接收多个波束赋形方式指示;
    所述处理单元,具体用于根据所述待传输的UCI的信息比特取值,确定目标波束赋形方式指示,所述目标波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
  29. 根据权利要求28所述的装置,其特征在于,
    所述多个波束赋形方式指示与所述信息比特的多个取值具有预设的第一对应关系,
    所述处理单元,具体用于根据所述待传输的UCI的信息比特取值以及所述第一对应关系,确定所述目标波束赋形方式指示。
  30. 根据权利要求28或29所述的装置,其特征在于,所述波束赋形方式指示包括以下方式中的任意一种:
    参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,每个所述波束赋形方式指示分别对应不同的上行功控参数。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述信息比特分别在多个传输单元上重复传输,所述目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
  33. 根据权利要求32所述的装置,其特征在于,
    所述收发单元,还用于接收多个波束赋形方式指示,所述多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;
    所述多个传输单元包括第一传输单元和第二传输单元,
    当所述信息比特取值为第一比特,所述第一传输单元对应所述第一波束赋形方式指示且所述第二传输单元对应所述第二波束赋形方式指示;
    当所述信息比特取值为第二比特,所述第一传输单元对应所述第二波束赋形方式指示且所述第二传输单元对应所述第一波束赋形方式指示。
  34. 根据权利要求32或33所述的装置,其特征在于,
    多个映射方式与所述信息比特的多个取值之间具有预设的第二对应关系,所述映射方式为所述多个传输单元和所述多个波束赋形方式指示之间的对应关系;
    所述处理单元,还用于根据所述第二对应关系和所述待传输的UCI的信息比特取值,确定每个所述传输单元对应的波束赋形方式指示。
  35. 根据权利要求27至34中任一项所述的装置,其特征在于,所述目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,
    所述多个CS值与所述信息比特的多个取值具有预设的第三对应关系、所述多个调制星座点与所述信息比特的多个取值具有预设的第四对应关系、所述多个OCC与所述信息比特的多个取值具有预设的第五对应关系;
    所述处理单元,具体用于:
    根据所述待传输的UCI的信息比特取值和所述第三对应关系,确定所述目标CS值;和/或,
    根据所述待传输的UCI的信息比特取值和所述第四对应关系,确定所述目标调制星座点;和/或,
    根据所述待传输的UCI的信息比特取值和所述第五对应关系,确定所述目标OCC。
  36. 根据权利要求27至35中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述目标CS值和/或所述目标调制星座点生成第一序列;
    所述收发单元,具体用于在多个传输单元上均发送所述第一序列。
  37. 根据权利要求27至36中任一项所述的装置,其特征在于,
    所述收发单元,还用于接收频域资源的指示,所述频域资源的指示用于指示多个频域资源;
    所述处理单元,具体用于根据所述待传输的UCI的信息比特取值,确定目标频域资源,所述目标频域资源为所述多个频域资源中的一个或多个。
  38. 根据权利要求37所述的装置,其特征在于,
    所述多个频域资源与所述信息比特的多个取值具有预设的第六对应关系,
    所述处理单元,具体用于根据所述待传输的UCI的信息比特取值以及所述第六对应关系,确定所述目标频域资源。
  39. 根据权利要求38所述的装置,其特征在于,所述多个频域资源通过以下任意一项确定:
    所述网络设备指示的所述多个频域资源的信息;或者,
    所述网络设备指示的部分频域资源的信息、以及频域资源间隔,所述频域资源间隔包括所述部分频域资源与所述多个频域资源中其他频域资源之间的间隔;或者,
    所述网络设备指示的一个频域资源的信息、以及预设规则。
  40. 根据权利要求27至39中任一项所述的装置,其特征在于,所述处理单元为处理器,所述收发单元为收发器。
  41. 根据权利要求27至40中任一项所述的装置,其特征在于,所述装置为以下任一项:终端设备、芯片或芯片系统。
  42. 一种通信装置,其特征在于,包括:处理单元和收发单元,
    所述处理单元,用于确定待传输的上行控制信息UCI的信息比特位数;
    所述处理单元,还用于配置多个传输资源;
    所述收发单元,用于在所述多个传输资源上接收信号;
    所述处理单元,还用于根据所述接收到的信号确定目标传输资源,并根据所述目标传输资源确定所述UCI的信息比特取值,所述多个传输资源中包括所述目标传输资源。
  43. 根据权利要求42所述的装置,其特征在于,所述多个传输资源对应多个波束赋形方式指示;
    所述收发单元,具体用于使用所述多个波束赋形方式指示相对应的接收波束赋形方式接收信号;
    所述处理单元,具体用于确定目标波束赋形方式指示,所述目标波束赋形方式指示为所述多个波束赋形方式指示中的一个或多个。
  44. 根据权利要求43所述的装置,其特征在于,
    所述多个波束赋形方式指示与所述信息比特的多个取值具有预设的第一对应关系,
    所述处理单元,具体用于根据所述目标波束赋形方式指示以及所述第一对应关系,确定所述UCI的信息比特取值。
  45. 根据权利要求43或44所述的装置,其特征在于,所述波束赋形方式指示包括以 下方式中的任意一种:
    参考信号资源或者参考信号端口的索引值、传输预编码矩阵信息、发送天线端口。
  46. 根据权利要求42至45中任一项所述的装置,其特征在于,每个所述波束赋形方式指示分别对应不同的上行功控参数。
  47. 根据权利要求42至46中任一项所述的装置,其特征在于,所述信息比特分别在多个传输单元上重复传输,所述目标传输资源包括每个所述传输单元对应的波束赋形方式指示。
  48. 根据权利要求47所述的装置,其特征在于,
    所述收发单元,还用于发送多个波束赋形方式指示,所述多个波束赋形方式指示包括第一波束赋形方式指示和第二波束赋形方式指示;
    所述多个传输单元包括第一传输单元和第二传输单元;
    所述收发单元,具体用于在所述第一传输单元和所述第二传输单元上采用所述第一波束赋形方式和所述第二波束赋形方式相对应的接收波束赋形方式接收信号;
    当确定所述第一传输单元对应所述第一波束赋形方式指示、且所述第二传输单元对应所述第二波束赋形方式指示,所述信息比特取值为第一比特;
    当确定所述第一传输单元对应所述第二波束赋形方式指示、且所述第二传输单元对应所述第一波束赋形方式指示,所述信息比特取值为第二比特。
  49. 根据权利要求47或48所述的装置,其特征在于,
    多个映射方式与所述信息比特的多个取值之间具有预设的第二对应关系,所述映射方式为所述多个传输单元和所述多个波束赋形方式指示之间的对应关系;
    所述处理单元,具体用于根据所述第二对应关系和每个所述传输单元对应的波束赋形方式指示,确定所述UCI的信息比特取值。
  50. 根据权利要求42至49中任一项所述的装置,其特征在于,所述目标传输资源包括以下一项或多项:目标循环移位CS值、目标调制星座点、目标正交掩码OCC,
    所述多个CS值与所述信息比特的多个取值具有预设的第三对应关系、所述多个调制星座点与所述信息比特的多个取值具有预设的第四对应关系、所述多个OCC与所述信息比特的多个取值具有预设的第五对应关系;
    所述收发单元,具体用于根据所述多个CS值在所述多个传输资源上接收信号,所述处理单元,具体用于根据所述第三对应关系以及所述目标CS值,确定所述UCI的信息比特取值;和/或,
    所述收发单元,具体用于根据所述多个调制星座点在所述多个传输资源上接收信号,所述处理单元,具体用于根据所述第四对应关系以及所述目标调制星座点,确定所述UCI的信息比特取值;和/或
    所述收发单元,具体用于根据所述多个OCC在所述多个传输资源上接收信号,所述处理单元,具体用于根据所述第五对应关系以及所述目标OCC,确定所述UCI的信息比特取值。
  51. 根据权利要求42至50中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述多个CS值和/或所述多个调制星座点生成多个序列;
    所述收发单元,具体用于根据所述多个序列在所述多个传输单元上接收信号;
    所述处理单元,还用于根据所述接收信号确定第一序列,所述第一序列是基于所述目标CS值和/或所述目标调制星座点生成的。
  52. 根据权利要求42至51中任一项所述的装置,其特征在于,
    所述收发单元,还用于向所述终端设备发送频域资源的指示,所述频域资源的指示用于指示多个频域资源;
    所述收发单元,具体用于使用所述多个频域资源接收信号;
    所述处理单元,具体用于根据所述接收信号确定目标频域资源,所述目标频域资源为所述多个频域资源中的一个或多个。
  53. 根据权利要求52所述的装置,其特征在于,
    所述多个频域资源与所述信息比特的多个取值具有预设的第六对应关系,
    所述处理单元,具体用于根据所述目标频域资源以及所述第六对应关系,确定所述UCI的信息比特取值。
  54. 根据权利要求52或53所述的装置,其特征在于,所述多个频域资源通过以下任意一项确定:
    所述通信装置指示的所述多个频域资源的信息;或者,
    所述通信装置指示的部分频域资源的信息、以及频域资源间隔,所述频域资源间隔包括所述部分频域资源与所述多个频域资源中其他频域资源之间的间隔;或者,
    所述通信装置指示的一个频域资源的信息、以及预设规则。
  55. 根据权利要求42至54中任一项所述的装置,其特征在于,所述处理单元为处理器,所述收发单元为收发器。
  56. 根据权利要求42至55中任一项所述的装置,其特征在于,所述装置为以下任一项:网络设备、芯片或芯片系统。
  57. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至13中任一项所述的方法,或者,以使得所述装置实现如权利要求14至26中任一项所述的方法。
  58. 根据权利要求57所述的装置,其特征在于,所述装置包括所述存储器。
  59. 一种通信装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至13中任一项所述的方法,或者,以使得所述装置实现如权利要求14至26中任一项所述的方法。
  60. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法,或者,执行如权利要求14至26中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至13中任一项所述的方法,或者,使得所述通信装置执行如权利要求14至26中任一项所述的方法。
  62. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至13中任一项所述的方法,或者,使得计算机执行如权利要求14至26中任一项所述的方法。
PCT/CN2021/108564 2020-08-06 2021-07-27 通信的方法和装置 WO2022028273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010785815.0A CN114070476A (zh) 2020-08-06 2020-08-06 通信的方法和装置
CN202010785815.0 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028273A1 true WO2022028273A1 (zh) 2022-02-10

Family

ID=80119922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108564 WO2022028273A1 (zh) 2020-08-06 2021-07-27 通信的方法和装置

Country Status (2)

Country Link
CN (1) CN114070476A (zh)
WO (1) WO2022028273A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727329A (zh) * 2022-06-07 2022-07-08 四川创智联恒科技有限公司 一种NR5G PUCCH Format0处理优化方法
WO2023226992A1 (zh) * 2022-05-25 2023-11-30 华为技术有限公司 通信的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042283A1 (en) * 2007-12-21 2010-02-18 Kell Edward T Aircraft integrated support system (iss)
US10574425B2 (en) * 2016-06-28 2020-02-25 Lg Electronics Inc. Method for receiving downlink signal and user equipment, and method for transmitting downlink signal and base station
CN111108795A (zh) * 2017-09-11 2020-05-05 苹果公司 用于新无线电的多传输接收点操作中的上行链路控制信令的装置和方法以及解调参考信号设计
CN111201819A (zh) * 2017-10-06 2020-05-26 株式会社Ntt都科摩 用户终端以及无线通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042283A1 (en) * 2007-12-21 2010-02-18 Kell Edward T Aircraft integrated support system (iss)
US10574425B2 (en) * 2016-06-28 2020-02-25 Lg Electronics Inc. Method for receiving downlink signal and user equipment, and method for transmitting downlink signal and base station
CN111108795A (zh) * 2017-09-11 2020-05-05 苹果公司 用于新无线电的多传输接收点操作中的上行链路控制信令的装置和方法以及解调参考信号设计
CN111201819A (zh) * 2017-10-06 2020-05-26 株式会社Ntt都科摩 用户终端以及无线通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226992A1 (zh) * 2022-05-25 2023-11-30 华为技术有限公司 通信的方法和装置
CN114727329A (zh) * 2022-06-07 2022-07-08 四川创智联恒科技有限公司 一种NR5G PUCCH Format0处理优化方法

Also Published As

Publication number Publication date
CN114070476A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US11742992B2 (en) Method and device for transmitting or receiving HARQ-ACK feedback in wireless communication system
US11128416B2 (en) Feedback information transmission method and apparatus
US11083014B2 (en) Method and apparatus for indicating channel occupancy time in wireless communication system
CN109565862B (zh) 无线蜂窝通信系统中的信道发送方法和设备
US9814030B2 (en) Method and apparatus for transmitting or receiving reference signal in wireless communication system
KR20210116518A (ko) 커버리지 향상 및 상이한 서비스 유형들의 지원을 위한 링크 적응
US11870566B2 (en) Method and device for transmitting and receiving control information in wireless cellular communication system
US11690052B2 (en) Method and apparatus for transmitting and receiving control information and data information in wireless communication system
US11652578B2 (en) Method and apparatus for determining transmission timing in wireless communication system
KR20210002035A (ko) 무선 통신 시스템에서 하향 링크 및 상향 링크 다중 빔 동작을 위한 방법 및 장치
US11489643B2 (en) Apparatus and methods for communicating configuration information over a radio resource channel
US11387950B2 (en) Method and apparatus for transmitting data based on grant free in wireless communication system
KR20220113394A (ko) 무선 통신 시스템에서 그룹 기반 다중 빔 동작을 위한 방법 및 장치
US20220095375A1 (en) Device and method for channel access in wireless communication system
US11742995B2 (en) Method and apparatus for transmitting data based on grant free in wireless communication system
US11870584B2 (en) Method and apparatus for grant free based data transmission in wireless communication system
WO2022028273A1 (zh) 通信的方法和装置
US20230028762A1 (en) Method and device for repeatedly transmitting uplink control channel in wireless cellular communication system
EP3672348B1 (en) Method and apparatus for transmitting and receiving control information in wireless communication system
US20210243711A1 (en) Synchronization method and device for group casting in wireless communication system
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2021018209A1 (zh) 一种dmrs端口指示方法及装置
US20220408429A1 (en) Method and apparatus for transmitting uplink control information through multiple uplink channels in wireless communication system
US11303391B2 (en) Method and apparatus for transmitting uplink channels in wireless communication system
US20220124767A1 (en) Method and apparatus for transmitting and receiving hybrid automatic retransmission request acknowledgement information in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853555

Country of ref document: EP

Kind code of ref document: A1