WO2020030113A1 - 传输上行控制信息的方法和通信装置 - Google Patents

传输上行控制信息的方法和通信装置 Download PDF

Info

Publication number
WO2020030113A1
WO2020030113A1 PCT/CN2019/099990 CN2019099990W WO2020030113A1 WO 2020030113 A1 WO2020030113 A1 WO 2020030113A1 CN 2019099990 W CN2019099990 W CN 2019099990W WO 2020030113 A1 WO2020030113 A1 WO 2020030113A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
harq
ack
mcs
offset value
Prior art date
Application number
PCT/CN2019/099990
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020030113A1 publication Critical patent/WO2020030113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and a communication device for transmitting uplink control information.
  • the current technology uses a unified feedback mechanism to feedback uplink control information (UCI), such as hybrid automatic repeat request response (HARQ-ACK), channel state information (CSI), etc. Without distinguishing UCI feedback.
  • UCI uplink control information
  • HARQ-ACK hybrid automatic repeat request response
  • CSI channel state information
  • the present application provides a method and a communication device for transmitting uplink control information, which can feedback UCI according to the service type corresponding to UCI and improve UCI transmission performance.
  • a method for sending uplink control information is provided.
  • the method may be executed by a terminal device or a chip applied to the terminal device.
  • the terminal device is used as an example for description below.
  • the method includes: determining a first modulation and coding scheme (modulation and coding scheme, MCS) table, the first MCS table is an MCS table corresponding to downlink data transmission corresponding to the first HARQ-ACK; and according to the first MCS A table to determine the transmission parameters of the first HARQ-ACK, where the transmission parameters of the first HARQ-ACK include the total number of downlink assignment indexes (DAI) of the first HARQ-ACK, the first HARQ-ACK -One or more of the MCS offset value of the ACK and the coding rate of the first HARQ-ACK; determining the number of resources occupied by the first HARQ-ACK according to the transmission parameter of the first HARQ-ACK Or modulating the number of coding symbols; sending the first HARQ-ACK on a first uplink
  • the terminal device can determine the HARQ-ACK transmission parameter for performing HARQ feedback on the downlink data transmission according to the MCS table used for the downlink data transmission, so that the HARQ-ACK can be adapted The delay and / or reliability requirements of the corresponding service type.
  • the first uplink channel is an uplink data channel
  • the transmission parameter of the first HARQ-ACK includes an MCS offset value of the first HARQ-ACK
  • determining the transmission parameter of the first HARQ-ACK according to the first MCS table includes: determining the first HARQ-ACK transmission parameter according to a first mapping relationship set and a value in an MCS offset value bit field. MCS offset value of a HARQ-ACK.
  • the first mapping relationship set is one of N mapping relationship sets
  • the first MCS table is one of M MCS tables
  • the N mapping relationship sets correspond to the M MCS tables
  • the first mapping relationship set corresponds to the first MCS table
  • the mapping relationship set includes a correspondence between a value of a MCS offset value bit field and an MCS offset value when the number of HARQ-ACK bits is different, M and N are integers greater than 1.
  • the MCS offset value bit field is a bit field in downlink control information (DCI) that schedules the downlink data transmission.
  • DCI downlink control information
  • the MCS offset value of the first HARQ-ACK may be determined according to the number of bits in the first HARQ-ACK, the first mapping relationship set, and the value in the MCS offset value bit field.
  • N mapping relationship sets may be pre-defined or pre-configured by a system or a network device.
  • MCS offset value bit field in this application may be a Beta-offset byte in the prior art.
  • the MCS offset value bit field may be a first MCS offset value bit field in the D MCS offset value bit fields included in the DCI.
  • the D MCS offset value bit fields correspond to the M MCS tables.
  • the first uplink channel is an uplink data channel
  • the transmission parameter of the first HARQ-ACK includes an MCS offset value of the first HARQ-ACK
  • determining the transmission parameter of the first HARQ-ACK according to the first MCS table includes: determining the first HARQ based on the pre-configured P MCS offset value groups according to the first MCS table. -MCS offset value of ACK.
  • the P MCS offset value groups correspond to M MCS tables
  • the first MCS offset value group corresponds to the first MCS table
  • the first MCS offset value group is one of the P MCS offset value groups.
  • Each MCS offset value group includes a corresponding MCS offset value when the number of HARQ-ACK bits is different.
  • the MCS offset value of the first HARQ-ACK may be an MCS offset in the first MCS offset value group. value.
  • the P MCS offset value groups further include a second MCS offset value group, and the second MCS offset value group corresponds to a second MCS table.
  • the network device may pre-configure the P MCS offset value groups through high-level signaling, and the P MCS offset value groups may also be predetermined by a protocol.
  • the first uplink channel is an uplink control channel
  • transmission parameters of the first HARQ-ACK include a coding rate of the first HARQ-ACK.
  • determining the transmission parameter of the first HARQ-ACK according to the first MCS table includes: determining, from S coding rates, the first HARQ- corresponding to the first MCS table. ACK encoding rate.
  • the S coding rates correspond to M MCS tables including the first MCS table, and M and S are integers greater than 1.
  • the network devices may pre-configure the S coding rates through high-level signaling. It can be understood that the S coding rates may also be predetermined by the protocol.
  • the first uplink channel is an uplink data channel
  • transmission parameters of the first HARQ-ACK include a total number of DAIs of the first HARQ-ACK.
  • determining the transmission parameter of the first HARQ-ACK according to the first MCS table includes: determining a total number of DAI of the first HARQ-ACK according to a first DAI bit field in the DCI. .
  • the first DAI bit field is one of the Q DAI bit fields in the DCI
  • the first MCS table is one of the M MCS tables
  • the Q DAI bit fields and the M Each MCS table corresponds
  • the first DAI bit field corresponds to the first MCS table
  • the downlink control information is used to schedule the downlink data transmission
  • M and Q are integers greater than 1.
  • the terminal device may determine the DAI of the first HARQ-ACK according to the value in the first DAI bit field in the DCI, the number of bits of the first HARQ-ACK, and the mapping relationship between the value of the DAI bit field and the total number of DAI. total.
  • each DAI bit field may include two subfields, one of which indicates the total number of DAIs of HARQ-ACK based on TB-based, and one indicates the code block group-based (CBG- based on the total number of DAI of HARQ-ACK.
  • the terminal device may determine the total number of DAIs of the first HARQ-ACK according to the first MCS table and whether the first HARQ-ACK is TB-based HARQ-ACK or CBG-based HARQ-ACK.
  • each subfield may be 2 bits, and a DAI bit field may be 4 bits, but this is not limited in the embodiment of the present application.
  • a method for receiving uplink control information includes: determining a first modulation and coding scheme MCS table, where the first MCS table is an MCS table corresponding to downlink data transmission corresponding to a first hybrid automatic repeat request HARQ-ACK; and according to the first MCS table To determine the transmission parameters of the first HARQ-ACK, where the transmission parameters of the first HARQ-ACK include the total number of downlink allocation indexes DAI of the first HARQ-ACK, and the MCS offset value of the first HARQ-ACK And one or more of the coding rate of the first HARQ-ACK; determining the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to transmission parameters of the first HARQ-ACK; Receiving the first HARQ-ACK on the first uplink channel by using the number of resources occupied by the first HARQ-ACK or the number of modul
  • a method for sending uplink control information is provided.
  • the method may be executed by a terminal device or a chip applied to the terminal device.
  • the terminal device is used as an example for description below.
  • the method includes: determining a first channel quality indicator (CQI) table corresponding to first channel state information (CSI); and determining the transmission of the first CSI according to the first CQI table.
  • the transmission parameter of the first CSI includes one or two of a modulation and coding scheme MCS offset value of the first CSI and a coding rate of the first CSI; transmission according to the first CSI A parameter that determines the number of resources occupied by the first CSI or the number of modulation and coding symbols; and sending the first CSI on a first uplink channel.
  • the first CQI table may indicate a service type corresponding to the first CSI
  • the terminal device may determine the transmission parameter of the first CSI according to the service type corresponding to the first CSI. Further, the terminal device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter. The terminal device may then send the first CSI on the first uplink channel.
  • the network device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter, and then receive the first CSI on the first uplink channel.
  • the terminal device can determine the transmission parameters of the CSI according to the CQI table used when reporting the CSI, so that it can adapt to the delay and / or reliability of the service type corresponding to the CSI. demand.
  • the first uplink channel is an uplink data channel
  • the transmission parameter of the first CSI includes an MCS offset value of the first CSI
  • the first The MCS offset value of a CSI includes the MCS offset value of the first part of the first CSI and the MCS offset value of the second part of the first CSI.
  • determining the transmission parameter of the first CSI according to the first CQI table includes: determining according to a first mapping relationship set in a first mapping relationship set group and a value in an MCS offset value bit field. Determining the MCS offset value of the first part, and determining the MCS offset value of the second part according to the first mapping relationship set and the value in the MCS offset value bit field in the second mapping relationship set group,
  • Each mapping relationship set group includes V mapping relationship sets, the first mapping relationship set is one of the V mapping relationship sets, the V mapping relationship sets correspond to T CQI tables, and the first A CQI table is one of the T CQI tables, the first CQI table corresponds to the first mapping relationship set, and each mapping relationship set in the first mapping relationship set group represents a first part of the CSI
  • each mapping relationship set in the second mapping relationship set group represents the number of bits of the second part of the CSI
  • T and V are integers greater than 1.
  • the MCS offset value bit field is a first MCS offset value bit field in F MCS offset value bit fields, F is an integer greater than 1, and the F MCS offset value bit fields are in accordance with the T CQI tables correspond.
  • the first uplink channel is an uplink control channel
  • the transmission parameter of the first CSI includes a coding rate of the first CSI.
  • determining the transmission parameter of the first CSI according to the first CQI table includes: determining the MCS offset value of the first CSI based on the two pre-configured MCS offset value sets according to the first CQI table. .
  • Each MCS offset value set may include W MCS offset value groups.
  • the W MCS offset value groups correspond to T CQI tables.
  • the T CQI tables include the first CQI table. W and T are greater than 1. Integer.
  • the first MCS offset value group in each MCS offset value set corresponds to the first CQI table, and each MCS offset value group includes an MCS offset value corresponding to a case where the number of CSI bits is different.
  • the MCS offset value of CSI part1 may be an MCS offset value in the first MCS offset value group in the first MCS offset value set, and the MCS offset value of CSI part2 may be the second MCS offset value set.
  • the multiple MCS offset value groups in each MCS offset value set further include a second MCS offset value group, and the second MCS offset value group corresponds to the second CQI table.
  • the two MCS offset value sets may be pre-configured by a network device through high-level signaling.
  • the first uplink channel is an uplink control channel
  • the transmission parameter of the first CSI includes a coding rate of the first CSI.
  • determining the transmission parameter of the first CSI according to the first CQI table includes: determining, from Y encoding rates, the encoding rate of the first CSI corresponding to the first CQI table, the The Y coding rates correspond to T CQI tables including the first CQI table, and T and Y are integers greater than 1.
  • the network device may pre-configure the Y coding rates through high-level signaling. It can be understood that the Y coding rates may also be predetermined by the protocol.
  • a method for receiving uplink control information may be executed by a network device, and may also be executed by a chip applied to the network device.
  • the method includes: determining a first channel quality indication CQI table corresponding to the first channel state information CSI; and determining a transmission parameter of the first CSI according to the first CQI table, where the transmission parameter of the first CSI includes the One or two of the modulation and coding scheme MCS offset value of the first CSI and the coding rate of the first CSI; determining the number of resources occupied by the first CSI or The number of modulation and coding symbols; and receiving the first CSI on the first uplink channel according to the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • a method for sending uplink control information is provided.
  • the method may be executed by a terminal device or a chip applied to the terminal device.
  • the terminal device is used as an example for description below.
  • the method includes: determining transmission parameters of the first CSI; determining the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameters of the first CSI; and transmitting the first CSI on the first uplink channel.
  • the first CSI is aperiodoc channel state information (A-CSI) triggered by DCI and reported on a short-format physical uplink control channel (PUCCH).
  • the transmission parameters of the first CSI include one or two of an MCS offset value of the first CSI and a coding rate of the first CSI.
  • the first uplink channel is an uplink data channel
  • the transmission parameter of the first CSI includes an MCS offset value of the first CSI.
  • the transmission parameter of the first CSI includes: determining the first CSI in the first CSI according to the first mapping relationship set and the value in the MCS offset value bit field of the two mapping relationship sets included in the first mapping relationship set group.
  • the MCS offset value of CSI part1 and the value in the first mapping relationship set and the MCS offset value bit field of the two mapping relationship sets included in the second mapping relationship set are used to determine the MCS of CSI part2 in the first CSI. Offset value.
  • each of the first mapping relationship set group and the second mapping relationship set group includes two mapping relationship sets, and in each mapping relationship set group, the first mapping relationship set corresponds to the first CSI and the second mapping relationship set corresponds to the first Two CSI correspond.
  • Each mapping relationship set in the first mapping relationship set represents a correspondence between the value of the MCS offset value bit field and the MCS offset value in the case of a different number of bits in CSI part1, and the second mapping relationship set
  • Each mapping relationship set in the table indicates the correspondence between the value of the MCS offset value bit field and the MCS offset value in the case of different CSI part2 bit numbers.
  • the terminal device may determine the MCS offset of CSI part1 in the first CSI according to the first mapping relationship set in the first mapping relationship set group, the number of bits of CSI part1 in the first CSI, and the value in the MCS offset value bit field.
  • Value, the MCS offset value of CSI part2 in the first CSI may be determined according to the first mapping relationship set in the second mapping relationship set group, the number of bits of CSI part2 in the first CSI, and the value in the offset value bit field.
  • mapping relationship sets may be pre-defined or pre-configured by a system or a network device.
  • the MCS offset value bit field is a first MCS offset value bit field in two MCS offset value bit fields.
  • the first MCS offset value bit field in the two MCS offset value bit fields corresponds to the first CSI
  • the second MCS offset value bit field in the two MCS offset value bit fields corresponds to the second CSI.
  • the first uplink channel is an uplink data channel
  • the transmission parameter of the first CSI includes an MCS offset value of the first CSI.
  • the transmission parameter of the first CSI includes: determining an MCS offset value of the first CSI from two pre-configured MCS offset value sets.
  • Each MCS offset value set may include two MCS offset value groups, and the two MCS offset value groups respectively correspond to the first CSI and the second CSI.
  • the first MCS offset value group in each MCS offset value set corresponds to the first CSI
  • the second MCS offset value group in each MCS offset value set corresponds to the second CSI.
  • Each MCS offset value group in the first MCS offset value set in the 2 MCS offset value sets includes the MCS offset value corresponding to the number of bits of CSI part1, and in the 2 MCS offset value sets
  • Each MCS offset value group in the second MCS offset value set includes the MCS offset value corresponding to the case where the number of bits of CSI part2 is different.
  • the terminal device may determine the MCS offset value of the CSI part1 in the first CSI according to the number of bits of the CSI part1 in the first CSI and the MCS offset value set corresponding to the first CSI in the first MCS offset value set.
  • the number of bits of the CSI part2 in the first CSI and the MCS offset value set corresponding to the first CSI in the second MCS offset value set determine the MCS offset value of the CSI in the first CSI.
  • the network device may pre-configure the two sets of MCS offset values through high-level signaling.
  • the first uplink channel is an uplink control channel
  • the transmission parameter of the first CSI includes a coding rate of the first CSI.
  • the transmission parameters of the first CSI include: determining a first encoding rate from two pre-configured encoding rates, that is, an encoding rate of the first CSI.
  • the first coding rate corresponds to the first CSI
  • the second coding rate of the two coding rates corresponds to the second CSI.
  • the network device may pre-configure the two coding rates through high-level signaling. It can be understood that the two coding rates may also be predetermined by the protocol.
  • a method for receiving uplink control information may be executed by a network device, and may also be executed by a chip applied to the network device.
  • the method includes: determining transmission parameters of the first CSI; determining the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameters of the first CSI; and according to the number of resources occupied by the first CSI or the number of modulation and coding symbols, Receive a first CSI on a first uplink channel.
  • the first CSI is A-CSI triggered by DCI and reported on a short format physical uplink control channel (physical uplink control channel (PUCCH)).
  • the transmission parameters of the first CSI include one or two of an MCS offset value of the first CSI and a coding rate of the first CSI.
  • a communication device includes a unit for performing the first aspect or the method in any possible implementation manner of the first aspect, or includes performing the third aspect or the third aspect.
  • the units included in the communication device may be implemented by software and / or hardware.
  • a communication device includes a unit for performing the second aspect or the method in any one of the possible implementation manners of the second aspect, or includes a unit for performing the fourth aspect or the fourth aspect.
  • the units included in the communication device may be implemented by software and / or hardware.
  • a communication device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the apparatus executes the first aspect to the first
  • the method in the six aspects or any one of the possible implementation manners of the first to sixth aspects.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the communication device further includes a transceiver or a transceiver circuit, configured to complete a function of transmitting and receiving information.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed, the first to sixth aspects or the first aspect are implemented.
  • the method in any one of the possible implementation manners of the sixth aspect.
  • the present application provides a computer program product including a computer program.
  • the computer program When the computer program is executed, implement the method in any one of the possible implementation manners of the first aspect to the sixth aspect or the first aspect to the sixth aspect.
  • the present application provides a chip system including an input-output interface and at least one processor, where the at least one processor is configured to call an instruction in a memory to perform the foregoing first aspect to the sixth aspect or Operation of the method in any one of the foregoing possible implementation manners of the first to sixth aspects.
  • system chip may further include at least one memory and a bus, and the at least one memory is configured to store instructions executed by the processor.
  • the input / output interface is implemented in an interface circuit manner.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink control information provided by the present application.
  • FIG. 3 is a schematic flowchart of another method for transmitting uplink control information provided by this application.
  • FIG. 4 is a schematic flowchart of a method for transmitting uplink control information provided by the present application.
  • FIG. 5 is a schematic block diagram of a communication device according to the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by the present application.
  • the technical solutions in the embodiments of the present application may be applied to a new radio interface (NR) in a fifth-generation (5G) mobile communication system or a future mobile communication system.
  • NR new radio interface
  • 5G fifth-generation
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), and wireless communications Functional handheld device, computing device, or other processing device connected to a wireless modem, in-vehicle device, wearable device, terminal device in a 5G network, or terminal in a future evolved public land mobile network (PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PLMN personal digital assistants
  • the equipment and the like are not limited in the embodiments of the present application.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device.
  • the network device may be a base station (node B, NB), an evolutionary base station (evolutionary node B, eNB), or an NR in a 5G mobile communication system.
  • the base station in the future, the base station in the future mobile communication system, or the access node in the WiFi system, etc.
  • the embodiments of this application do not limit the specific technologies and specific device forms used by the network equipment. Unless otherwise specified, in this application, the expressions of 5G system and NR system are interchangeable.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • This application layer contains applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the application can be run to provide the program according to the embodiment of the application.
  • the communication may be performed by using the method described above.
  • the method execution subject provided in the embodiments of the present application may be a terminal device or a network device, or a function module in the terminal device or the network device that can call a program and execute the program.
  • FIG. 1 is a schematic diagram of a system 100 applicable to an embodiment of the present application.
  • the system 100 includes a network device 101.
  • the system 100 further includes a terminal device 102 and a terminal device 103 located within the coverage of the network device 101.
  • the network device 101 can communicate with the terminal device 102 and the terminal device 103. It should be understood that only two terminal devices within the coverage of the network device 101 are taken as an example in FIG. 1. Obviously, there may be more terminal devices within the coverage of the network device 101.
  • MCS modulation and coding schemes
  • eMBB enhanced mobile broadband
  • MCS table # 1 256 multiplexed LTE Quadrature amplitude modulation (QAM) table
  • MCS table # 2 multiplexed LTE 64QAM table
  • URLLC ultra free and low latency communication
  • SE spectrum efficiency
  • the elements in the new 64QAM table correspond to a higher spectral efficiency than the normal 64QAM table.
  • the spectral efficiency of the elements in the table is lower, or the lower limit of the encoding rate range covered by the new 64QAM table is lower than the lower limit of the encoding rate range covered by the normal 64QAM table, which can indicate a lower code rate transmission, which is suitable for guaranteeing URLLC High reliability.
  • the MCS table can indirectly indicate the service type, and the terminal device can determine the service type corresponding to the downlink data transmission according to the MCS table corresponding to the downlink data transmission.
  • the MCS form is MCS form # 3
  • it can be determined that the corresponding downlink data transmission service type is URLLC service
  • the MCS form is one of MCS form # 1 and MCS form # 2
  • the corresponding downlink data transmission can be determined
  • the service type is eMBB service.
  • HARQ-ACK transmission parameters (such as the total number of DAIs and MCS offset values) of HARQ feedback for downlink data transmission of different service types may have different requirements.
  • a set of transmission parameters for transmitting HARQ-ACK such as the total number of DAIs and MCS offset values, is obviously not flexible enough. For example, it cannot adapt to the delay and / or reliability of different service types. And other needs.
  • this application provides a method for transmitting uplink control information.
  • a corresponding transmission is set for a HARQ-ACK corresponding to downlink data transmission using a specific MCS table.
  • the parameters can be adapted to the delay and / or reliability requirements of different service types.
  • this application does not limit the MCS table to the MCS table of the NR configuration described above, nor does it limit the correspondence between the MCS table and the service type to the MCS table of the NR configuration and the service type described above. Correspondence. It should be understood that this application is also applicable to a case where the system is configured with other multiple MCS forms and the multiple forms correspond to multiple service types.
  • FIG. 2 shows a schematic flowchart 200 of a method for transmitting uplink control information according to an embodiment of the present application.
  • the method 200 can be applied to the system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the network device determines a first MCS table.
  • the network device may determine the MCS table (that is, the first MCS table) according to the service type corresponding to the first downlink data transmission. For example, when the service type corresponding to the first downlink data transmission is a URLLC service, it may be determined that the first MCS table is MCS table # 3.
  • the first MCS table is one of M MCS tables, and M is a positive integer greater than 1.
  • the M MCS tables also include a second MCS table, and the first MCS table and the second MCS table have different types of services implicitly indicated.
  • the M MCS tables may be predefined by a protocol or a system.
  • the first downlink data transmission may include dynamically scheduled PDCSH, unlicensed PDCSH, and SPS PDSCH.
  • the first MCS table may be configured to the terminal device by a semi-static configuration.
  • the network device may configure the first MCS table through a high-level parameter MCS-table.
  • the network device may dynamically configure the first MCS table.
  • the network device may use a new RNTI (denoted as X-RNTI) to scramble the DCI for scheduling the first downlink data transmission to notify the terminal device of the first downlink data.
  • the corresponding MCS form is MCS Form # 3.
  • the terminal device may feedback whether the first downlink data transmission is correctly received to the network device through HARQ-ACK.
  • the HARQ feedback corresponding to the first downlink data transmission is recorded as: the first HARQ-ACK.
  • the terminal device determines a first MCS table.
  • the first MCS table is an MCS table corresponding to the first downlink data transmission corresponding to the first HARQ-ACK.
  • HARQ-ACK in this application includes ACK or NACK.
  • the terminal device when the terminal device feeds back the first downlink data transmission, it may first determine the MCS table corresponding to the first downlink data transmission, and then determine the transmission parameters of the first HARQ-ACK according to the first MCS table (as follows) As described in Article S206).
  • the terminal device determines that the first MCS table may specifically be: if a new RNTI (noted as X-RNTI) is not configured by the upper layer, it may be determined that the first MCS table is a table configured by the higher layer parameter MCS-table ; If the upper layer is configured with X-RNTI, determine the first MCS table according to the RNTI scrambled to the first DCI, the format of the first DCI, and the type of search space where the PDCCH transmitting the first DCI is located, where the first DCI is Schedule the DCI for the first downlink data transmission.
  • X-RNTI a new RNTI
  • the first DCI when the first DCI is not a back-off DCI or a search space where the PDCCH transmitting the first DCI is not a common search space, and the RNTI that scrambles the first DCI is X-RNTI, it may be determined that An MCS table is MCS table # 3, which is the MCS table corresponding to the URLLC service; when the first DCI is not a rollback DCI or the search space where the PDCCH transmitting the first DCI is not a public search space, and the first DCI When the scrambled RNTI is not X-RNTI, the first MCS is one of MCS table # 1 and MCS table # 2; when the DCI is a fallback DCI and the search space of the DCI is a public search space, the first The MCS form is one of MCS form # 1 and MCS form # 2.
  • fallback DCI refers to a special DCI format, for example, DCI format 0_0 or 1_0 in NR, which is characterized by the existence of all bit fields in the DCI and the position and width of each bit field. Pre-defined, no high-level parameter configuration required.
  • the network device determines a transmission parameter of the first HARQ-ACK according to the first MCS table.
  • the terminal device determines a transmission parameter of the first HARQ-ACK according to the first MCS table.
  • the network device determines the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to the transmission parameters of the first HARQ-ACK.
  • the terminal device determines the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to the transmission parameters of the first HARQ-ACK.
  • the network device may determine the transmission parameter of the first HARQ-ACK according to the service type implicitly indicated in the first MCS table. It is equivalent to say that the MCS table has a correspondence relationship with the HARQ-ACK transmission parameters. Accordingly, the terminal device may determine the transmission parameter of the first HARQ-ACK according to the corresponding relationship.
  • the transmission parameters of the first HARQ-ACK may include one or more of a total number of DAIs of the first HARQ-ACK, an MCS offset value of the first HARQ-ACK, and a coding rate of the first HARQ-ACK.
  • the total number of DAIs of the first HARQ-ACK is used to determine the first HARQ-ACK codebook, and the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols can be further determined; the MCS offset of the first HARQ-ACK The value is used to determine the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols; the coding rate of the first HARQ-ACK is used to determine the number of bits encoded by the HARQ-ACK, and the number of bits occupied by the first HARQ-ACK can be further determined.
  • the number of resources or the number of modulation and coding symbols are used to determine the first HARQ-ACK codebook, and the number of resources occupied
  • the unit of the number of resources occupied by the first HARQ-ACK determined according to the total number of DAIs of the first HARQ-ACK and / or the MCS offset value of the first HARQ-ACK in this application may be a resource element.
  • the unit of the number of resources occupied by the first HARQ-ACK determined according to the encoding rate of the first HARQ-ACK may be a resource block (RB).
  • S206 and S210 may be combined into: the network device determines the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to the first MCS table; S208 and S212 may also be combined into: the terminal device according to the first The MCS table determines the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols.
  • the terminal device sends a first HARQ-ACK on the first uplink channel.
  • the terminal device before sending the first HARQ-ACK, the terminal device needs to perform channel coding, rate matching and modulation on the first HARQ-ACK, modulate the first HARQ-ACK on the corresponding modulation and coding symbol, and then The modulation and coding symbols are mapped on the corresponding RE for transmission.
  • the network device receives the first HARQ-ACK on the first uplink channel according to the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols.
  • the network device performs demodulation, inverse rate matching, and channel decoding on the first HARQ-ACK on the first uplink channel according to the determined number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols, to obtain the first HARQ-ACK.
  • HARQ-ACK original bit information the network device performs demodulation, inverse rate matching, and channel decoding on the first HARQ-ACK on the first uplink channel according to the determined number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols.
  • the first HARQ-ACK is used to perform HARQ feedback on the first downlink data transmission.
  • the MCS table used for the first downlink data transmission is the first MCS table, and the first MCS table may be implicitly indicated.
  • the service type corresponding to the first HARQ-ACK and the terminal device may determine the transmission parameter corresponding to the first HARQ-ACK according to the service type corresponding to the first HARQ-ACK. Further, the terminal device may determine the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to the transmission parameter. The terminal device may then send the first HARQ-ACK on the first uplink channel.
  • the network device may determine the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to the transmission parameter, and then receive the first HARQ-ACK on the first uplink channel.
  • the terminal device can determine the HARQ-ACK transmission parameter for performing HARQ feedback on the downlink data transmission according to the MCS table used for the downlink data transmission, so as to be able to adapt to the HARQ-ACK.
  • the delay and / or reliability requirements of the corresponding service type can be determined.
  • the first uplink channel may be a data channel or a control channel.
  • the terminal device may determine the first HARQ-ACK codebook according to the total number of DAI of the first HARQ-ACK, and then according to The first HARQ-ACK codebook size determines the number of bits of the first HARQ-ACK. Further, the terminal device may determine that the first HARQ-ACK is on the first uplink channel according to the number of bits of the first HARQ-ACK, the transmission block size TBS of the first uplink channel, and the MCS offset value of the first HARQ-ACK.
  • the terminal device may schedule the coding rate indicated by the uplink grant (UL Grant) of the first uplink channel according to the MCS offset value of the first HARQ-ACK, Calculate the encoding rate of the first HARQ-ACK, and then determine the number of resources occupied by the transmission of the first HARQ-ACK on the first uplink channel according to the number of bits of the first HARQ-ACK and the calculated encoding rate of the first HARQ-ACK Or the number of modulation and coding symbols.
  • UL Grant uplink grant
  • the terminal device may schedule the coding rate indicated by the uplink grant (UL Grant) of the first uplink channel according to the MCS offset value of the first HARQ-ACK, Calculate the encoding rate of the first HARQ-ACK, and then determine the number of resources occupied by the transmission of the first HARQ-ACK on the first uplink channel according to the number of bits of the first HARQ-ACK and the calculated encoding rate of the first HARQ-ACK Or the number of modulation and coding
  • the number of bits of the first HARQ-ACK is less than or equal to 2
  • the number of time-frequency resources reserved for the first HARQ-ACK needs to be calculated.
  • the calculation of the reserved time-frequency resources is based on the number of the first HARQ-ACK bits. Equal to 2 determined.
  • the terminal device may determine the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols according to the coding rate of the first HARQ-ACK. For details, refer to the existing technology. More details.
  • the specific implementation manner of S208 is described by taking the two scenarios where the first uplink channel is an uplink data channel (for example, the first PUSCH) and an uplink control channel (for example, the first PUCCH) respectively.
  • S206 is similar to S208, so it will not be described in detail below.
  • the first uplink channel is an uplink data channel, that is, the first uplink channel is a first PUSCH
  • the transmission parameters of the first HARQ-ACK may include the total number of DAIs of the first HARQ-ACK, or the MCS offset value of the first HARQ-ACK, or the total number of DAIs of the first HARQ-ACK and the first MCS offset value of HARQ-ACK.
  • the terminal device may determine the MCS offset of the first HARQ-ACK according to any one of the modes 1 to 3. value.
  • the terminal device may determine the MCS offset value of the first HARQ-ACK according to the first mapping relationship set and the value in the MCS offset value bit field. More specifically, the terminal device may determine the MCS offset value of the first HARQ-ACK according to the first mapping relationship set, the number of bits of the first HARQ-ACK, and the value in the MCS offset value bit field.
  • the MCS offset value bit field is a bit field in the DCI that schedules the first downlink data transmission.
  • the first mapping relation set is one of the N mapping relation sets, and N is a positive integer greater than 1.
  • the N mapping relation sets correspond to the M MCS tables, the first mapping relation set corresponds to the first MCS table, and the mapping relation sets represent MCS offset values under different HARQ-ACK bit numbers. Correspondence between the value of the bit field and the MCS offset value.
  • the N mapping relationship sets further include a second mapping relationship set, and the second mapping relationship set corresponds to a second MCS table.
  • the first MCS form is MCS form # 3
  • the second MCS form may be MCS form # 1 or MCS form # 2.
  • the second MCS form may be MCS form # 3.
  • the system or network device may define or configure two mapping relationship sets in advance, that is, mapping relationship set # 1 and mapping relationship set # 2, mapping relationship set # 1 corresponds to MCS table # 3, and mapping relationship set # 2 corresponds to MCS form # 1 and MCS form # 2. If the first MCS table is MCS table # 3, it can be determined that the first mapping relationship set is mapping relationship set # 1.
  • the terminal device may determine the MCS offset value of the first HARQ-ACK according to the value in the mapping relationship set # 1 and the value in the MCS offset value bit field, and the number of bits of the first HARQ-ACK.
  • the MCS offset value may be different if the value in the MCS offset value bit field is the same.
  • the terminal device may first determine the first mapping relationship set according to the first MCS table, and then determine the first HARQ-ACK according to the value in the MCS offset value bit field and the first mapping relationship set. MCS offset value.
  • the terminal device may first determine N candidate MCS offset values according to the values in the MCS offset value bit field and the N mapping relation sets, and then determine the third candidate MCS offset value from the N candidate MCS offset values according to the first MCS table.
  • MCS offset value of a HARQ-ACK may be first determine the first mapping relationship set according to the first MCS table, and then determine the first HARQ-ACK according to the value in the MCS offset value bit field and the first mapping relationship set.
  • the relevant input parameters include the first MCS table, N mapping relationship sets, the number of bits of the HARQ-ACK, and the value of the MCS offset value bit field.
  • an intermediate variable may be determined according to one, two, or three of the foregoing input parameters, and then the MCS offset value of the first HARQ-ACK may be determined according to the intermediate variable and the remaining input parameters; or The MCS offset value of the first HARQ-ACK may be directly obtained according to the above four input parameters.
  • This application does not limit the steps and sequence of how to obtain the MCS offset value of the first HARQ-ACK according to the four input parameters.
  • mapping relationship represented by the mapping relationship set # 1 is shown in Table 1
  • mapping relationship represented by the mapping relationship set # 2 is shown in Table 2 as an example.
  • A11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, and a34 in Table 1 are positive real numbers
  • B31, b32, b33 and b34 are positive real numbers.
  • the MCS offset value of the first HARQ-ACK can be determined to be a21; if the MCS mapping relationship corresponding to the first MCS table is Set is mapping relationship set # 2, then according to Table 2, it can be determined that the MCS offset value of the first HARQ-ACK is b21.
  • the terminal device determines the MCS offset value of the first HARQ-ACK according to the first mapping relationship set described in Mode 1 and the first MCS offset value bit fields in the D MCS offset value bit fields.
  • the D MCS offset value bit fields are bit fields in the DCI that schedules the first downlink data transmission, and D is an integer greater than 1.
  • the D MCS offset value bit fields correspond to the M MCS tables, the D MCS offset value bit fields include a first MCS offset value bit field, and the first MCS table corresponds to a first MCS offset value bit field.
  • the D MCS offset value bit fields further include a second MCS offset value bit field, and the second MCS offset value bit field corresponds to a second MCS table.
  • first MCS offset value bit field in the second manner may correspond to the MCS offset value bit field in the first manner.
  • the terminal device determines the MCS offset value of the first HARQ-ACK based on the pre-configured P MCS offset value groups according to the first MCS table. Among them, P is a positive integer greater than 1.
  • the P MCS offset value groups correspond to M MCS tables
  • the first MCS offset value group corresponds to the first MCS table
  • the first MCS offset value group is one of the P MCS offset value groups.
  • Each MCS offset value group includes a corresponding MCS offset value when the number of HARQ-ACK bits is different.
  • the MCS offset value of the first HARQ-ACK may be an MCS offset in the first MCS offset value group. value.
  • the P MCS offset value groups further include a second MCS offset value group, and the second MCS offset value group corresponds to a second MCS table.
  • each MCS offset value group includes MCS offset values in the case that the number of HARQ-ACK bits is 1 to 2, 3 to 11, and greater than 11.
  • One MCS offset value group may correspond to MCS table # 3
  • the second MCS offset value group may correspond to MCS table # 1 and MCS table # 2.
  • the terminal device may determine the MCS offset value of the first HARQ-ACK from the first MCS offset value group in combination with the number of bits of the first HARQ-ACK.
  • the network device may pre-configure the P MCS offset value groups through high-level signaling, and the P MCS offset value groups may also be predetermined by a protocol.
  • the high-level signaling involved in this article may be radio resource control (RRC) signaling or medium access control (MAC) control element (CE).
  • the terminal device may determine the total number of DAIs of the first HARQ-ACK according to the first or second mode.
  • the terminal device determines the total number of DAIs of the first HARQ-ACK according to the first DAI bit field in the DCI.
  • the DCI is used to schedule the first downlink data transmission
  • the first DAI bit field is one of the Q DAI bit fields in the DCI
  • Q is a positive integer greater than 1
  • the Q DAI bit fields correspond to the M MCS tables
  • the first DAI bit fields correspond to the first MCS table.
  • the Q DAI bit fields further include a second DAI bit field
  • the second DAI bit field corresponds to a second MCS table.
  • the terminal device may determine the total number of DAIs of the first HARQ-ACK according to the mapping relationship between the value in the first DAI bit field and the value of the DAI bit field and the total number of DAIs. It should be understood that the mapping relationship between the value of the DAI bit field and the total number of DAIs may be a mapping relationship specified in the prior art. In addition, the number of bits in each DAI bit field may be two.
  • each DAI bit field may include two sub-fields, one of which indicates the total number of DAI of HARQ-ACK based on TB-based, and one indicates the code block group based (CBG-based ) Total number of DAI for HARQ-ACK.
  • the terminal device may determine the total number of DAIs of the first HARQ-ACK according to the first MCS table and whether the first HARQ-ACK is TB-based HARQ-ACK or CBG-based HARQ-ACK.
  • each subfield may be 2 bits, and a DAI bit field may be 4 bits, but this is not limited in the embodiment of the present application.
  • the terminal device may determine the first total number of DAIs corresponding to the first MCS table among the total number of DAIs according to the first MCS table.
  • the first total number of DAIs is the total number of DAIs of the first HARQ-ACK.
  • R is a positive integer greater than 1.
  • the total number of the R DAIs corresponds to the M MCS tables.
  • the total number of R DAIs also includes a second total number of DAIs, and the second total number of DAIs corresponds to a second MCS table.
  • the network device may pre-configure the total number of R DAIs through high-level signaling. It can be understood that the total number of the R DAIs may also be predetermined by the agreement.
  • the first uplink channel is an uplink control channel, that is, the first uplink channel is a first PUCCH
  • the first HARQ-ACK transmission parameter may include a coding rate of the first HARQ-ACK.
  • the terminal device may determine, according to the first MCS table, a first coding rate corresponding to the first MCS table among S coding rates, that is, a coding rate of the first HARQ-ACK.
  • S is a positive integer greater than 1.
  • the S coding rates correspond to the M MCS tables.
  • the S coding rates also include a second coding rate, and the second coding rate corresponds to a second MCS table.
  • the network devices may pre-configure the S coding rates through high-level signaling. It can be understood that the S coding rates may also be predetermined by the protocol.
  • the manner in which the terminal device described above determines the transmission parameter of the first HARQ-ACK according to the first MCS table is only an exemplary description, but should not constitute any limitation to the present application.
  • the network device may use other methods to associate the MCS table with the transmission parameters of the HARQ-ACK, and the terminal device may determine the transmission parameters of the HARQ-ACK corresponding to the specific MCS table in a corresponding manner.
  • the scheme of associating HARQ-ACK transmission parameters with the MCS table is mainly introduced above.
  • the transmission parameters of HARQ-ACK may be associated with the RNTI scrambled DCI.
  • the DCI is used to schedule the downlink corresponding to the HARQ-ACK. data transmission.
  • the terminal device may determine the first MCS table according to the scramble code RNTI of the DCI scheduling the first downlink data transmission, and the format and search space of the DCI.
  • the scramble code RNTI is X-RNTI and the DCI is not a fallback DCI or is not in the public search space
  • the first MCS table is MCS table # 3, otherwise it is one of MCS table # 1 and MCS table # 2. That is, in the case where the X-RNTI is configured at the upper layer, the RNTI scrambled DCI is associated with the MCS table for downlink data transmission.
  • the RNTI of the scrambled DCI can be associated with the transmission parameter of the HARQ-ACK corresponding to the downlink data transmission scheduled by the DCI, and according to the difference of the RNTI of the scrambled DCI, the corresponding HARQ-ACK transmission parameter can be configured.
  • a terminal device may first determine an RNTI corresponding to the HARQ-ACK, and then determine a HARQ-ACK transmission parameter according to the determined RNTI.
  • the network device may use a method similar to the above embodiment to associate the RNTI of the scrambled DCI with the HARQ-ACK transmission parameter corresponding to the downlink data transmission scheduled by the DCI.
  • the terminal device may use a similar method to determine the HARQ-ACK transmission parameter corresponding to the downlink data transmission scheduled by the DCI according to the RNTI of the scrambled DCI.
  • the N mapping relationship sets in Mode 1 in the scenario above can be associated with the scrambled DCI RNTI, so that the HARQ-ACK corresponding to the downlink data transmission scheduled by the DCI can be determined according to the scrambled DCI RNTI. MCS offset value.
  • the HARQ-ACK transmission parameters are specifically related to the scrambled DCI RNTI can refer to the description above, and will not be repeated here.
  • the downlink channel measurement mechanism of NR is: the network device sends a channel state information reference signal (channel-information reference signal, CSI-RS), the terminal device measures the CSI-RS to obtain channel information, and feeds back CSI including CQI.
  • the NR is configured with 3 CQI tables, of which 2 are 256QAM tables (denoted as CQI table # 1) and 64QAM tables (denoted as CQI table # 2) for multiplexing LTE; 1 is for extremely high reliability and low latency Communication URLLC's new 64QAM form (denoted as CQI Form # 3).
  • the target block error rate (BLER) corresponding to CQI table # 1 and CQI table # 2 is 10%
  • the target BLER corresponding to CQI table # 3 is 0.001%. That is, the CQI table can indirectly indicate the service type, and the terminal device can determine the service type according to the CQI table used. For example, if the CQI table is CQI table # 3, the service type may be determined as a URLLC service; if the CQI table is one of CQI table # 1 and CQI table # 2, the service type may be determined as an eMBB service.
  • transmission parameters such as MCS offset values, coding rates, etc.
  • transmission parameters may have different requirements.
  • a set of transmission parameters for transmitting CSI is configured, which is obviously not flexible enough, for example, it cannot adapt to the delay and / or reliability requirements of different service types.
  • this application provides a method for transmitting uplink control information.
  • a CQI table By associating a CQI table with CSI transmission parameters, setting corresponding transmission parameters for CSI using a specific CQI table can adapt to delays and delays of different service types. / Or reliability requirements.
  • this application does not limit the CQI table to the CQI table of the NR configuration described above, nor does it limit the correspondence between the CQI table and the service type to the CQI table of the NR configuration and the service type described above. Correspondence. It should be understood that this application is also applicable to a case where the system configures other multiple CQI tables and the multiple tables correspond to multiple service types.
  • FIG. 3 shows a schematic flowchart 300 of a method for transmitting uplink control information according to an embodiment of the present application.
  • the method 300 can be applied to the system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the network device determines a first CQI table.
  • the network device may determine the first CQI table according to a service type corresponding to a service to be scheduled (for example, a second downlink data transmission). For example, when the service type corresponding to the second downlink data transmission is a URLLC service, it may be determined that the first CQI table is CQI table # 3.
  • the first CQI table is one of T CQI tables, and T is a positive integer greater than 1.
  • the T CQI tables also include a second CQI table, and the first CQI table and the second CQI table have different types of services implicitly indicated.
  • the T CQI tables may be predefined by a protocol or a system.
  • the second downlink data transmission may include dynamically scheduled PDCSH, unlicensed PDCSH, and SPS PDSCH.
  • the network device may configure the first CQI table to the terminal device by using a semi-static configuration. For example, the network device may configure the first CQI table by using a high-level parameter. Alternatively, the network device may dynamically configure the first CQI table. For example, the network device may configure the T CQI tables in advance, and when it wants the terminal device to report the CQI according to the first CQI table, the first CQI table may be activated through DCI or other signaling.
  • the terminal device may feedback the CQI corresponding to the first CQI table through the first CSI.
  • the terminal device determines a first CQI table corresponding to the first CSI.
  • the first CQI table may be determined first, and then the transmission parameter of the first CSI is determined according to the first CQI table (as described in S306 below).
  • the implementation of S304 corresponds to the implementation of S302. For details, refer to the description of S302, and details are not described herein again.
  • the network device determines a transmission parameter of the first CSI according to the first CQI table.
  • the terminal device determines a transmission parameter of the first CSI according to the first CQI table.
  • the network device determines the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter of the first CSI.
  • the terminal device determines the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter of the first CSI.
  • the transmission parameters of the first CSI include the MCS offset value of the first CSI, or the coding rate of the first CSI, or the MCS offset value of the first CSI and the coding rate of the first CSI.
  • the MCS offset value of the first CSI includes the MCS offset value of the first part of the first CSI and the MCS offset value of the second part of the first CSI, that is, the MCS offset of the CSI part1 in the first CSI. Value and the MCS offset value of CSI part2 in the first CSI.
  • the MCS offset value of CSI part1 in the first CSI can be used to determine the number of resources occupied by CSI part1 in the first CSI or the number of modulation and coding symbols
  • the MCS offset value of CSI part2 in the first CSI can be used to determine the first The number of resources or modulation and coding symbols occupied by CSI part2 in a CSI.
  • the encoding rate of the first CSI is used to determine the number of bits after the first CSI is encoded, and further, the number of resources occupied by the first CSI or the number of modulation and coding symbols may be determined.
  • the unit of the number of resources occupied by the first CSI determined according to the MCS offset value of the first CSI in this application may be RE.
  • a unit of the number of resources occupied by the first CSI determined according to the encoding rate of the first CSI may be a resource block (RB).
  • S306 and S310 can be combined into: the network device determines the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the first CQI table; S308 and S312 can also be combined into: the terminal device according to the first CQI table To determine the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • the terminal device sends the first CSI on the first uplink channel.
  • the terminal device Before the terminal device sends the first CSI, it needs to perform channel coding, rate matching, and modulation on the first CSI, modulate the first CSI on the corresponding modulation and coding symbol, and then map the modulation and coding symbol to the corresponding On the RE.
  • the network device receives the first CSI on the first uplink channel according to the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • the network device performs demodulation, inverse rate matching, and channel decoding on the first CSI on the first uplink channel according to the determined number of resources occupied by the first CSI or the number of modulation and coding symbols to obtain the original bits of the first CSI. information.
  • the first CQI table may indicate a service type corresponding to the first CSI
  • the terminal device may determine the transmission parameter of the first CSI according to the service type corresponding to the first CSI. Further, the terminal device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter. The terminal device may then send the first CSI on the first uplink channel.
  • the network device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter, and then receive the first CSI on the first uplink channel.
  • the terminal device can determine the transmission parameters of the CSI according to the CQI table used when reporting the CSI, so that it can adapt to the delay and / or reliability of the service type corresponding to the CSI. demand.
  • the first uplink channel may be a data channel or a control channel.
  • the terminal device may according to the number of bits of the CSI part1 in the first CSI, the transmission block size TBS of the first uplink channel, and The MCS offset value of the CSI part1 in the first CSI determines the number of resources or modulation and coding symbols occupied by the CSI part1 transmission on the uplink channel in the first CSI.
  • the terminal device may determine that the CSI part2 in the first CSI is in the first uplink according to the number of bits of the CSI part2 in the first CSI, the transmission block size TBS of the first uplink channel, and the MCS offset value of the CSI part2 in the first CSI.
  • the terminal device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the coding rate of the first CSI. For details, refer to the existing technology, and details are not described herein again.
  • S308 is described by way of example for two scenarios where the first uplink channel is an uplink data channel (for example, the first PUSCH) and an uplink control channel (for example, the first PUCCH).
  • S306 is similar to S308, so it will not be described in detail below.
  • the first uplink channel is the first PUSCH
  • the transmission parameters of the first CSI may include the MCS offset value of the first CSI.
  • the terminal device may determine the MCS offset value of the first CSI according to any one of manners 1 to 3.
  • the terminal device determines the MCS offset value of CSI part1 in the first CSI according to the first mapping relationship set and the MCS offset value bit field in the V mapping relationship sets included in the first mapping relationship set group, and according to the first The first mapping relationship set and the value in the MCS offset value bit field of the V mapping relationship sets included in the two mapping relationship set groups determine the MCS offset value of CSI part2 in the first CSI.
  • the first mapping relationship set group and the second mapping relationship set group each include V mapping relationship sets, and the V mapping relationship sets in each mapping relationship set group correspond to the T CQI tables, and the The first mapping relationship set in the V mapping relationship sets corresponds to the first CQI table, and V is an integer greater than 1.
  • Each mapping relationship set in the first mapping relationship set represents a correspondence between the value of the MCS offset value bit field and the MCS offset value in the case of a different number of bits in CSI part1, and the second mapping relationship set
  • Each mapping relationship set in the table indicates the correspondence between the value of the MCS offset value bit field and the MCS offset value in the case of different CSI part2 bit numbers.
  • the first mapping relationship in the first mapping relationship set group is used to determine the MCS offset value of CSI part1 in the first CSI
  • the first mapping relationship in the second mapping relationship set group is used to determine the MCS of the CSI part2 in the first CSI. Offset value.
  • the V mapping relationship sets in each mapping relationship set group further include a second mapping relationship set, and the second mapping relationship set corresponds to the second CQI table.
  • the system or network device may predefine or preconfigure two mapping relationship set groups, and each mapping relationship set group includes two mapping relationship sets, that is, mapping relationship set # 1 and mapping relationship set # 2, and the mapping relationship.
  • Set # 1 may correspond to CQI table # 3
  • mapping relationship set # 2 may correspond to CQI table # 1 and CQI table # 2.
  • the first CQI table is CQI table # 3
  • it can be determined that the first mapping relationship set is mapping relationship set # 1.
  • each mapping relationship set in the first mapping relationship set group indicates that the number of bits of CSI part1 belongs to different intervals (such as 1 to 11 and> 11)
  • the value of the first bit field value is 00,01, respectively.
  • each mapping relationship set in the second mapping relationship set group indicates that the number of bits of CSI part2 belongs to different intervals (such as 1 to 11 and> 11)
  • the values of the first bit field are 00, 01, and 10 respectively.
  • MCS offset value at 11 o'clock is a mapping relationship set in the second mapping relationship set group.
  • the terminal device may according to the mapping relationship set # 1 and the value in the MCS offset value bit field in the first mapping relationship set group, and Combining the number of bits of CSI part1 to determine the MCS offset value of CSI part1, determining the value in the bit field of mapping relationship set # 1 and MCS offset value in the second mapping relationship set group, and combining the number of bits of CSI part2 to determine MAC offset value of CSI part2.
  • the MCS offset value may be different when the value in the MCS offset value bit field is the same.
  • the relevant input parameters include the first CQI table, two mapping relationship sets, the number of bits of the CSI in the first CSI, part1, and the CSI in the first CSI. The number of bits in part2 and the value of the MCS offset value bit field.
  • an intermediate variable may be determined according to one or more of the foregoing input parameters, and then the MCS offset value of the first CSI may be determined according to the intermediate variable and the remaining input parameters; The input parameter directly obtains the MCS offset value of the first CSI.
  • This application does not limit the steps and sequence of how to obtain the MCS offset value of the first CSI according to the five input parameters.
  • the terminal device determines the MCS offset value of the first CSI according to the first mapping relationship set and the first MCS offset value bit fields in the F MCS offset value bit fields in each mapping relationship set group described in the first manner.
  • the F MCS offset value bit fields are the bit fields in the DCI that schedules the first downlink data transmission.
  • the F MCS offset value bit fields correspond to the T CQI tables
  • the first CQI table corresponds to the first MCS offset value bit fields
  • F is an integer greater than 1.
  • the F MCS offset value bit fields may further include a second MCS offset value bit field, and the second MCS offset value bit field corresponds to a second CQI table.
  • first MCS offset value bit field in the second manner may correspond to the MCS offset value bit field in the first manner.
  • the terminal device determines the MCS offset value of the first CSI based on the first set of two MCS offset values according to the first CQI table.
  • Each MCS offset value set may include W MCS offset value groups, the W MCS offset value groups correspond to the T CQI tables, and W is an integer greater than 1.
  • the first MCS offset value group in each MCS offset value set corresponds to the first CQI table, and each MCS offset value group includes an MCS offset value corresponding to a case where the number of CSI bits is different.
  • the MCS offset value of CSI part1 may be an MCS offset value in the first MCS offset value group in the first MCS offset value set, and the MCS offset value of CSI part2 may be the second MCS offset value set.
  • the multiple MCS offset value groups in each MCS offset value set further include a second MCS offset value group, and the second MCS offset value group corresponds to the second CQI table.
  • each MCS offset value set includes two MCS offset value groups.
  • Each MCS offset value group in each MCS offset value set indicates the MCS offset value in the case where the number of CSI bits belongs to different intervals (such as 1 to 11 and> 11).
  • the first MCS offset value group may be associated with CQI table # 3
  • the second MCS offset value group may be associated with CQI table # 1 and CQI table # 2.
  • the terminal device can determine the MCS offset value of CSI part1 by combining the number of bits of CSI part1 and the first MCS offset value group in the first MCS offset value set.
  • the number of bits of CSI part2 and the first MCS offset value group in the second MCS offset value set can determine the MCS offset value of CSI part2.
  • the network device may pre-configure the two MCS offset value sets through high-level signaling.
  • the first uplink channel is an uplink control channel (ie, the first PUCCH)
  • the transmission parameters of the first CSI may include the encoding rate of the first CSI.
  • the terminal device may determine, according to the first CQI table, a first coding rate corresponding to the first CQI table among the Y coding rates, that is, a coding rate of the first CSI.
  • Y is a positive integer greater than 1.
  • the Y coding rates correspond to the T CQI tables.
  • the Y coding rates also include a second coding rate, and the second coding rate corresponds to a second CQI table.
  • the network device may pre-configure the Y coding rates through high-level signaling. It can be understood that the Y coding rates may also be predetermined by the protocol.
  • FIG. 4 shows a schematic flowchart 400 of a method for transmitting uplink control information according to an embodiment of the present application.
  • the method 400 can be applied to the system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the network device determines a transmission parameter of the first CSI.
  • the terminal device determines a transmission parameter of the first CSI.
  • the first CSI is A-CSI triggered by DCI and reported on the short-format PUCCH.
  • the first CSI indicates a first service type.
  • the first service type may be a URLLC service, but this embodiment of the present application does not limit this.
  • the CQI table corresponding to the first CSI is CQI table # 3.
  • the transmission parameters of the first CSI include one or two of an MCS offset value of the first CSI and a coding rate of the first CSI. It should be understood that the MCS offset value of the first CSI includes the MCS offset value of CSI part1 in the first CSI and the MCS offset value of CSI part2 in the first CSI.
  • all CSIs that do not satisfy the configuration of the first CSI may be referred to as second CSI.
  • the CSIs that do not meet the following configuration at the same time are all second CSI: (1) DCI trigger; (2) reporting on the short format PUCCH; (3) A-CSI.
  • the service types indicated by the second CSI and the first CSI are different.
  • the CSIs that do not meet the following configurations at the same time are all second CSI: (1) DCI trigger; (2) reporting on the short form PUCCH; (3) A-CSI; (4) the CQI table corresponding to the CSI is CQI Form # 3.
  • the network device may configure corresponding transmission parameters for the first CSI and the second CSI.
  • the network device determines the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter of the first CSI.
  • the terminal device determines the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter of the first CSI.
  • the transmission parameters of the first CSI include the MCS offset value of the first CSI or the encoding rate including the first CSI, or the MCS offset value of the first CSI and the encoding rate of the first CSI.
  • the MCS offset value of the first CSI includes the MCS offset value of the first part of the first CSI and the MCS offset value of the second part of the first CSI, that is, the MCS offset of the CSI part1 in the first CSI. Value and the MCS offset value of CSI part2 in the first CSI.
  • the MCS offset value of CSI part1 in the first CSI may be used to determine the number of resources occupied by CSI part1 in the first CSI or the number of modulation and coding symbols
  • the MCS offset value of CSI part2 in the first CSI may be used to determine the first The number of resources or modulation and coding symbols occupied by CSI part2 in CSI.
  • the encoding rate of the first CSI is used to determine the number of bits after the first CSI is encoded, and further, the number of resources occupied by the first CSI or the number of modulation and coding symbols may be determined.
  • the unit of the number of resources occupied by the first CSI determined according to the MCS offset value of the first CSI in this application may be RE.
  • a unit of the number of resources occupied by the first CSI determined according to the coding rate of the first CSI may be an RB.
  • S402 and S406 can be combined into: the network device determines the number of resources occupied by the first CSI or the number of modulation coding symbols; S404 and S408 can also be combined into: the terminal device determines the number of resources occupied by the first CSI or modulation coding Number of symbols.
  • S410 The terminal device sends the first CSI on the first uplink channel.
  • the terminal device Before the terminal device sends the first CSI, it needs to perform channel coding, rate matching, and modulation on the first CSI, modulate the first CSI on the corresponding modulation and coding symbol, and then map the modulation and coding symbol to the corresponding On the RE.
  • the network device receives the first CSI according to the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • the network device performs demodulation, inverse rate matching, and channel decoding on the first CSI on the first uplink channel according to the determined number of resources occupied by the first CSI or the number of modulation and coding symbols to obtain the original bits of the first CSI. information.
  • the first CSI and the second CSI respectively correspond to a set of transmission parameters.
  • the terminal device determines the transmission parameter of the first CSI, and according to the transmission of the first CSI The parameter determines the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • the terminal device may then send the first CSI on the first uplink channel.
  • the network device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameter, and then receive the first CSI on the first uplink channel. Therefore, according to the method in the embodiment of the present application, the terminal device can flexibly feedback the CSI.
  • the first uplink channel may be a data channel or a control channel.
  • the terminal device may determine the number of bits in the first CSI CSI part1, the transmission block size TBS of the first uplink channel, and The MCS offset value of the CSI part1 in the first CSI determines the number of resources or modulation and coding symbols occupied by the CSI part1 transmission on the uplink channel in the first CSI.
  • the terminal device may determine that the CSI part2 in the first CSI is in the first uplink according to the number of bits of the CSI part2 in the first CSI, the transmission block size TBS of the first uplink channel, and the MCS offset value of the CSI part2 in the first CSI.
  • the terminal device may determine the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the coding rate of the first CSI. For details, refer to the existing technology, and details are not described herein again.
  • the specific implementation manner of S404 will be described with examples for two scenarios where the first uplink channel is an uplink data channel (for example, the first PUSCH) and an uplink control channel (for example, the first PUCCH).
  • S402 is similar to S404, so it will not be described in detail below.
  • the first uplink channel is the first PUSCH
  • the transmission parameters of the first CSI may include the MCS offset value of the first CSI.
  • the terminal device may determine the MCS offset value of the first CSI according to any one of manners 1 to 3.
  • the terminal device determines the MCS offset value of CSI part1 in the first CSI according to the first mapping relationship set and the value in the MCS offset value bit field of the two mapping relationship sets included in the first mapping relationship set group, and according to the first The first mapping relationship set and the value in the MCS offset value bit field of the two mapping relationship sets included in the two mapping relationship set group determine the MCS offset value of CSI part2 in the first CSI.
  • each of the first mapping relationship set group and the second mapping relationship set group includes two mapping relationship sets, and in each mapping relationship set group, the first mapping relationship set corresponds to the first CSI and the second mapping relationship set corresponds to the first Two CSI correspond.
  • Each mapping relationship set in the first mapping relationship set represents a correspondence between the value of the MCS offset value bit field and the MCS offset value in the case of a different number of bits in CSI part1, and the second mapping relationship set
  • Each mapping relationship set in the table indicates the correspondence between the value of the MCS offset value bit field and the MCS offset value in the case of different CSI part2 bit numbers.
  • the terminal device may determine the MCS offset of CSI part1 in the first CSI according to the first mapping relationship set in the first mapping relationship set group, the number of bits of CSI part1 in the first CSI, and the value in the MCS offset value bit field.
  • Value, the MCS offset value of CSI part2 in the first CSI may be determined according to the first mapping relationship set in the second mapping relationship set group, the number of bits of CSI part2 in the first CSI, and the value in the offset value bit field.
  • mapping relationship sets may be pre-defined or pre-configured by a system or a network device.
  • the terminal device determines the MCS offset value of the first CSI according to the first mapping relationship set in the two sets of mapping relationship sets described in Mode 1 and the first MCS offset value bit fields in the two MCS offset value bit fields.
  • the first MCS offset value bit field in the two MCS offset value bit fields corresponds to the first CSI
  • the second MCS offset value bit field in the two MCS offset value bit fields corresponds to the second CSI
  • the terminal device determines the MCS offset value of the first CSI from the two pre-configured MCS offset value sets.
  • Each MCS offset value set may include two MCS offset value groups, and the two MCS offset value groups respectively correspond to the first CSI and the second CSI.
  • the first MCS offset value group in each MCS offset value set corresponds to the first CSI
  • the second MCS offset value group in each MCS offset value set corresponds to the second CSI.
  • Each MCS offset value group in the first MCS offset value set in the 2 MCS offset value sets includes the MCS offset value corresponding to the number of bits of CSI part1, and in the 2 MCS offset value sets
  • Each MCS offset value group in the second MCS offset value set includes the MCS offset value corresponding to the case where the number of bits of CSI part2 is different.
  • the terminal device may determine the MCS offset value of the CSI part1 in the first CSI according to the number of bits of the CSI part1 in the first CSI and the MCS offset value set corresponding to the first CSI in the first MCS offset value set.
  • the number of bits of the CSI part2 in the first CSI and the MCS offset value set corresponding to the first CSI in the second MCS offset value set determine the MCS offset value of the CSI in the first CSI.
  • the network device may pre-configure the two sets of MCS offset values through high-level signaling.
  • the first uplink channel is an uplink control channel (ie, the first PUCCH)
  • the transmission parameters of the first CSI may include the encoding rate of the first CSI.
  • the terminal device may determine the first encoding rate from the two pre-configured encoding rates, that is, the encoding rate of the first CSI.
  • the first coding rate corresponds to the first CSI
  • the second coding rate of the two coding rates corresponds to the second CSI.
  • the network device may pre-configure the two coding rates through high-level signaling. It can be understood that the two coding rates may also be predetermined by the protocol.
  • the size of the sequence numbers of the processes in the above method 200, method 300, and method 400 does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device may be a terminal device or a chip applied to the terminal device.
  • the communication device 500 includes a processing unit 510 and a sending unit 520.
  • the processing unit 510 is configured to determine a first modulation and coding scheme MCS table, where the first MCS table is an MCS table corresponding to downlink data transmission corresponding to the first hybrid automatic repeat request response HARQ-ACK Determining the transmission parameter of the first HARQ-ACK according to the first MCS table, and the transmission parameter of the first HARQ-ACK includes a total number of downlink allocation indexes DAI of the first HARQ-ACK, the first One or more of an MCS offset value of the HARQ-ACK and a coding rate of the first HARQ-ACK; and determining a resource occupied by the first HARQ-ACK according to a transmission parameter of the first HARQ-ACK Number or number of modulation and coding symbols.
  • the sending unit 520 is configured to send the first HARQ-ACK on a first uplink channel.
  • each unit in the communication apparatus 500 is respectively configured to perform each action or processing procedure performed by the terminal device in the foregoing method 200, and therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • detailed description is omitted.
  • the processing unit 510 is configured to determine a first channel quality indication CQI table corresponding to the first channel state information CSI; and determine a transmission parameter of the first CSI according to the first CQI table,
  • the transmission parameter of the first CSI includes one or two of a modulation and coding scheme MCS offset value of the first CSI and an encoding rate of the first CSI; according to the transmission parameter of the first CSI, Determine the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • the sending unit 520 is configured to send the first CSI on a first uplink channel.
  • each unit in the communication device 500 is respectively configured to perform each action or processing procedure performed by the terminal device in the foregoing method 300, and therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • detailed description is omitted.
  • the processing unit 510 is configured to determine transmission parameters of the first channel state information CSI, where the transmission parameters of the first CSI include a modulation and coding scheme MCS offset value and One or two of the coding rates of the first CSI; and determining the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameters of the first CSI.
  • the sending unit 520 is configured to send the first CSI on a first uplink channel.
  • each unit in the communication device 500 is respectively configured to perform each action or processing procedure performed by the terminal device in the foregoing method 400, and therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • detailed description is omitted.
  • FIG. 6 is a schematic block diagram of a communication apparatus 600 according to an embodiment of the present application.
  • the communication apparatus may be a network device or a chip applied to a network device.
  • the communication device 600 includes a processing unit 610 and a receiving unit 620.
  • the processing unit 610 is configured to determine a first modulation and coding scheme MCS table, where the first MCS table is an MCS corresponding to downlink data transmission corresponding to the first hybrid automatic repeat request HARQ-ACK A table; determining the transmission parameters of the first HARQ-ACK according to the first MCS table, where the transmission parameters of the first HARQ-ACK include the total number of downlink allocation indexes DAI of the first HARQ-ACK, the first One or more of an MCS offset value of a HARQ-ACK and a coding rate of the first HARQ-ACK; and determining a value occupied by the first HARQ-ACK according to a transmission parameter of the first HARQ-ACK Number of resources or number of modulation and coding symbols.
  • the receiving unit 620 is configured to receive the first HARQ-ACK on the first uplink channel according to the number of resources occupied by the first HARQ-ACK or the number of modulation and coding symbols.
  • each unit in the communication apparatus 600 is respectively configured to perform each action or processing procedure performed by the network device in the foregoing method 200, and therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • detailed description is omitted.
  • the processing unit 610 is configured to determine a first channel quality indication CQI table, where the first CQI table corresponds to the first channel state information CSI; and determine the first channel quality information according to the first CQI table.
  • a CSI transmission parameter, and the first CSI transmission parameter includes one or two of a modulation and coding scheme MCS offset value of the first CSI and a coding rate of the first CSI;
  • the first CSI is described.
  • each unit in the communication device 600 is respectively configured to perform each action or processing procedure performed by a network device in the foregoing method 300, and therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • detailed description is omitted.
  • the processing unit 610 is configured to determine transmission parameters of the first channel state information CSI, where the transmission parameters of the first CSI include a modulation and coding scheme MCS offset value and One or two of the coding rates of the first CSI; and determining the number of resources occupied by the first CSI or the number of modulation and coding symbols according to the transmission parameters of the first CSI.
  • the receiving unit 620 is configured to send the first CSI on the first uplink channel according to the number of resources occupied by the first CSI or the number of modulation and coding symbols.
  • each unit in the communication device 600 is respectively configured to perform each action or processing procedure performed by the network device in the foregoing method 400, and therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • detailed description is omitted.
  • FIG. 7 shows a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 includes a processor 720.
  • the communication device 700 further includes a transceiver 710 and a memory 730.
  • the transceiver 710, the processor 720, and the memory 730 communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the transceiver 710 may be implemented by means of a transceiver circuit.
  • the communication device 700 may be used to implement the functions of any implementation manner implemented by the communication device 500. Specifically, when the processor 720 calls and runs the computer program from the memory, the processor 720 may be configured to execute the data processing function of the terminal device in each of the methods described above, and control the transceiver 710 to perform the information sending and receiving function of the corresponding terminal device. . It should be understood that the processor 720 of the communication device 700 may correspond to the processing unit 510 in the communication device 500, and the transceiver 710 of the communication device 700 may correspond to the sending unit 520 in the communication device 500.
  • the communication device 700 may also be used to implement the functions of any implementation manner implemented by the communication device 600 described above. Specifically, when the processor 720 calls and runs the computer program from the memory, the processor 720 may be configured to perform data processing functions of the network device in each of the methods described above, and control the transceiver 710 to perform information transmission and reception functions of corresponding network devices . It should be understood that the processor 720 of the communication device 700 may correspond to the processing unit 510 in the communication device 600, and the transceiver 710 of the communication device 700 may correspond to the receiving unit 620 in the communication device 600.
  • the embodiments of the present application may be applied to a processor, or implemented by a processor.
  • the processor can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (ASICs) ), Ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGA field programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software in the decoding processor.
  • the software device may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the terminal device chip implements the functions of the processing unit 510 or the processor 720 described above.
  • the terminal device chip may also send the above-mentioned first HARQ-ACK or first CSI to other modules (such as a radio frequency module or an antenna) in the terminal device, and the first HARQ-ACK or the first CSI is sent to other modules in the terminal device through Internet equipment.
  • the network device chip When the embodiment of the present application is applied to a network device chip, the network device chip implements the functions of the processing unit 610 or the processor 720 described above.
  • the network device chip may also receive the first HARQ-ACK or the first CSI from another module (such as a radio frequency module or an antenna) in the network device.
  • the first HARQ-ACK or the first CSI is sent by the terminal device to the network device. .
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • a and B can be understood as the association between A and B, or A and B have an association relationship.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输上行控制信息的方法和通信装置,能够根据UCI对应的业务类型对UCI进行反馈,提高UCI的传输性能。该方法包括:确定与下行传输对应的MCS表格,该MCS表格可以指示该下行数据传输的业务类型。根据该MCS表格,确定对该下行数据传输进行HARQ反馈的第一HARQ-ACK的传输参数,第一HARQ-ACK的传输参数包括第一HARQ-ACK的DAI总数、第一HARQ-ACK的MCS偏移值和第一HARQ-ACK的编码速率中的一种或多种。根据第一HARQ-ACK的传输参数,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目以及在第一上行信道上发送所述第一HARQ-ACK。

Description

传输上行控制信息的方法和通信装置
本申请要求于2018年08月10日提交中国专利局、申请号为201810911047.1、申请名称为“传输上行控制信息的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输上行控制信息的方法和通信装置。
背景技术
当前技术采用统一的反馈机制反馈上行控制信息(uplink control information,UCI),例如,混合自动重传请求应答(hybrid automatic repeat request acknowledge,HARQ-ACK)、信道状态信息(channel state information,CSI)等,而不对UCI的反馈进行区分。但是,对于不同特性的UCI,比如不同传输时延或者可靠性需求的UCI,采用相同的机制进行反馈显然不太合理。因此,需要针对不同的UCI的反馈进行区分。
发明内容
本申请提供一种传输上行控制信息的方法和通信装置,能够根据UCI对应的业务类型对UCI进行反馈,提高UCI的传输性能。
第一方面,提供了一种发送上行控制信息的方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备的芯片,下面以终端设备作为执行主体为例进行描述。该方法包括:确定第一调制与编码方案(modulation and coding scheme,MCS)表格,所述第一MCS表格是第一HARQ-ACK对应的下行数据传输所对应的MCS表格;根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引(downlink assignment index,DAI)总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目;在第一上行信道上发送所述第一HARQ-ACK。
因此,本申请实施例的传输上行控制信息的方法,终端设备可以根据下行数据传输所使用的MCS表格,确定对该下行数据传输进行HARQ反馈的HARQ-ACK的传输参数,从而能够适应HARQ-ACK对应的业务类型对时延和/或可靠性的需求。
结合第一方面,在第一方面的某些实现方式中,所述第一上行信道为上行数据信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的MCS偏移值。在此情况下,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:根据第一映射关系集和MCS偏移值比特域中的值,确定所述第一HARQ-ACK的MCS偏移值。
其中,所述第一映射关系集为N个映射关系集中的一个,所述第一MCS表格为M个 MCS表格中的一个,所述N个映射关系集与所述M个MCS表格对应,所述第一映射关系集与所述第一MCS表格对应,所述映射关系集包括HARQ-ACK的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,M和N为大于1的整数,所述MCS偏移值比特域是调度所述下行数据传输的下行控制信息(downlink control information,DCI)中的一个比特域。
具体地,可以根据第一HARQ-ACK的比特数、第一映射关系集和MCS偏移值比特域中的值,确定所述第一HARQ-ACK的MCS偏移值。
应理解,所述N个映射关系集可以是系统或者网络设备预先定义或预先配置的。此外,本申请中的MCS偏移值比特域可以是现有技术中的Beta-offset字节。
可选地,所述MCS偏移值比特域可以是所述DCI所包括的D个MCS偏移值比特域中的第一MCS偏移值比特域。D个MCS偏移值比特域与所述M个MCS表格对应。
结合第一方面,在第一方面的某些实现方式中,所述第一上行信道为上行数据信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的MCS偏移值。在此情况下,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:根据第一MCS表格,基于预先配置的P个MCS偏移值组确定第一HARQ-ACK的MCS偏移值。
其中,P和M为大于1的整数。P个MCS偏移值组与M个MCS表格对应,第一MCS偏移值组与第一MCS表格对应,第一MCS偏移值组为所述P个MCS偏移值组中的一个。每个MCS偏移值组包括HARQ-ACK的比特数不同的情况下对应的MCS偏移值,第一HARQ-ACK的MCS偏移值可以是第一MCS偏移值组中的一个MCS偏移值。另外,所述P个MCS偏移值组还包括第二MCS偏移值组,第二MCS偏移值组与第二MCS表格对应。
应理解,网络设备可以通过高层信令预先配置所述P个MCS偏移值组,所述P个MCS偏移值组也可以是协议预定的。
结合第一方面,在第一方面的某些实现方式中,所述第一上行信道为上行控制信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的编码速率。在此情况下,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:从S个编码速率中确定所述第一MCS表格对应的所述第一HARQ-ACK的编码速率。其中,所述S个编码速率与包括所述第一MCS表格的M个MCS表格对应,M和S为大于1的整数。
应理解,网络设备可以通过高层信令预先配置所述S个编码速率。可以理解的是,所述S个编码速率也可以是协议预定的。
结合第一方面,在第一方面的某些实现方式中,所述第一上行信道为上行数据信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的DAI总数。在此情况下,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:根据DCI中的第一DAI比特域,确定所述第一HARQ-ACK的DAI总数。
其中,所述第一DAI比特域为所述DCI中的Q个DAI比特域中的一个,所述第一MCS表格为M个MCS表格中的一个,所述Q个DAI比特域与所述M个MCS表格对应,所述第一DAI比特域与所述第一MCS表格对应,所述下行控制信息用于调度所述下行数据传输,M和Q为大于1的整数。
具体地,终端设备可以根据DCI中的第一DAI比特域中的值、第一HARQ-ACK的 比特数和DAI比特域的取值与DAI总数的映射关系确定所述第一HARQ-ACK的DAI总数。
可选地,每个DAI比特域可以包括两个子域,其中一个子域指示基于传输块(TB-based)的HARQ-ACK的DAI总数,一个指示基于码块组(code block group based,CBG-based)的HARQ-ACK的DAI总数。终端设备根据第一MCS表格、第一HARQ-ACK是TB-based HARQ-ACK还是CBG-based HARQ-ACK,可以确定第一HARQ-ACK的DAI总数。应理解,在此情况下,每个子域可以是2比特,一个DAI比特域可以是4比特,但本申请实施例对此不作限定。
第二方面,提供了一种接收上行控制信息的方法,该方法可以由网络设备执行,也可以由应用于网络设备的芯片执行。该方法包括:确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传应答请求HARQ-ACK对应的下行数据传输所对应的MCS表格;根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目;根据所述第一HARQ-ACK占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一HARQ-ACK。
应理解,第二方面的实现方式可以参照对第一方面的相应实现方式的说明,这里不再赘述。
第三方面,提供了一种发送上行控制信息的方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备的芯片,下面以终端设备作为执行主体为例进行描述。该方法包括:确定与第一信道状态信息(channel state inforamtion,CSI)对应的第一信道质量指示(channel quality indicator,CQI)表格;根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;根据所述第一CSI的传输参数,确定所述第一CSI占据的资源数目或者调制编码符号数目;在第一上行信道上发送所述第一CSI。
本申请实施例中,第一CQI表格可以指示第一CSI所对应的业务类型,终端设备可以根据第一CSI所对应的业务类型,确定第一CSI的传输参数。进一步的,终端设备可以根据该传输参数,确定第一CSI占据的资源数目或者调制编码符号数目。然后终端设备可以在第一上行信道上发送第一CSI。相应地,网络设备可以根据该传输参数,确定第一CSI占据的资源数目或者调制编码符号数目,然后在第一上行信道上对第一CSI进行接收。
因此,本申请实施例的传输上行控制信息的方法,终端设备可以根据上报CSI时所使用的CQI表格,确定CSI的传输参数,从而能够适应CSI对应的业务类型对时延和/或可靠性的需求。
结合第三方面,在第三方面的某些实现方式中,所述第一上行信道为上行数据信道,所述第一CSI的传输参数包括所述第一CSI的MCS偏移值,所述第一CSI的MCS偏移值包括所述第一CSI的第一部分的MCS偏移值和所述第一CSI的第二部分的MCS偏移值。其中,所述根据所述第一CQI表格,确定所述第一CSI的传输参数,包括:根据第一映射关系集组中的第一映射关系集和MCS偏移值比特域中的值,确定所述第一部分的 MCS偏移值,以及根据第二映射关系集组中的第一映射关系集和MCS偏移值比特域中的值,确定所述第二部分的MCS偏移值,
其中,每个映射关系集组包括V个映射关系集,所述第一映射关系集为所述V个映射关系集中的一个,所述V个映射关系集与T个CQI表格对应,所述第一CQI表格为所述T个CQI表格中的一个,所述第一CQI表格与所述第一映射关系集对应,所述第一映射关系集组中的每个映射关系集表示CSI的第一部分的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,所述第二映射关系集组中的每个映射关系集表示CSI的第二部分的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,T和V为大于1的整数。
可选地,所述MCS偏移值比特域为F个MCS偏移值比特域中的第一MCS偏移值比特域,F为大于1的整数,F个MCS偏移值比特域与所述T个CQI表格对应。
结合第三方面,在第三方面的某些实现方式中,所述第一上行信道为上行控制信道,所述第一CSI的传输参数包括所述第一CSI的编码速率。其中,所述根据所述第一CQI表格,确定所述第一CSI的传输参数,包括:根据第一CQI表格,基于预先配置的两个MCS偏移值集合确定第一CSI的MCS偏移值。
其中,每个MCS偏移值集合可以包括W个MCS偏移值组,W个MCS偏移值组与T个CQI表格对应,T个CQI表格包括第一CQI表格,W和T为大于1的整数。每个MCS偏移值集合中的第一MCS偏移值组与第一CQI表格对应,每个MCS偏移值组包括CSI的比特数不同情况下对应的MCS偏移值。CSI part1的MCS偏移值可以是第一个MCS偏移值集合中第一MCS偏移值组中的一个MCS偏移值,CSI part2的MCS偏移值可以是第二个MCS偏移值集合中第一MCS偏移值组中的一个MCS偏移值。另外,每个MCS偏移值集合中的多个MCS偏移值组还包括第二MCS偏移值组,第二MCS偏移值组与第二CQI表格对应。
应理解,所述两个MCS偏移值集合可以是网络设备通过高层信令预先配置的。
结合第三方面,在第三方面的某些实现方式中,所述第一上行信道为上行控制信道,所述第一CSI的传输参数包括所述第一CSI的编码速率。其中,所述根据所述第一CQI表格,确定所述第一CSI的传输参数,包括:从Y个编码速率中确定所述第一CQI表格对应的所述第一CSI的编码速率,所述Y个编码速率与包括所述第一CQI表格的T个CQI表格对应,T和Y为大于1的整数。
应理解,网络设备可以通过高层信令预先配置所述Y个编码速率。可以理解的是,所述Y个编码速率也可以是协议预定的。
第四方面,提供了一种接收上行控制信息的方法,该方法可以由网络设备执行,也可以由应用于网络设备的芯片执行。该方法包括:确定第一信道状态信息CSI对应的第一信道质量指示CQI表格;根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;根据所述第一CSI的传输参数,确定所述第一CSI占据的资源数目或者调制编码符号数目;根据所述第一CSI占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一CSI。
应理解,第四方面的实现方式可以参照对第三方面的相应实现方式的说明,这里不再 赘述。
第五方面,提供了一种发送上行控制信息的方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备的芯片,下面以终端设备作为执行主体为例进行描述。该方法包括:确定第一CSI的传输参数;根据第一CSI的传输参数,确定第一CSI占据的资源数目或者说调制编码符号数目;在第一上行信道上发送第一CSI。
其中,第一CSI为由DCI触发的且在短格式物理上行控制信道(physical uplink channel control,PUCCH)上报的非周期性信道状态信息(aperiodoc channel state information,A-CSI)。第一CSI的传输参数包括第一CSI的MCS偏移值和第一CSI的编码速率中的一种或两种。
结合第五方面,在第五方面的某些实现方式中,所述第一上行信道为上行数据信道,所述第一CSI的传输参数包括所述第一CSI的MCS偏移值。其中,所述第一CSI的传输参数,包括:根据第一映射关系集组所包括的2个映射关系集中的第一映射关系集和MCS偏移值比特域中的值,确定第一CSI中CSI part1的MCS偏移值,以及根据第二映射关系集组所包括的2个映射关系集中的第一映射关系集和MCS偏移值比特域中的值,确定第一CSI中CSI part2的MCS偏移值。
具体来讲,第一映射关系集组和第二映射关系集组均包括2个映射关系集,每个映射关系集组中第一映射关系集与第一CSI对应以及第二映射关系集与第二CSI对应。第一映射关系集组中的每个映射关系集表示在不同的CSI part1的比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,第二映射关系集组中的每个映射关系集表示在不同的CSI part2的比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系。终端设备可以根据第一映射关系集组中的第一映射关系集、第一CSI中CSI part1的比特数以及MCS偏移值比特域中的值,可以确定第一CSI中CSI part1的MCS偏移值,根据第二映射关系集组中的第一映射关系集、第一CSI中CSI part2的比特数以及偏移值比特域中的值,可以确定第一CSI中CSI part2的MCS偏移值。
应理解,所述2个映射关系集可以是系统或者网络设备预先定义或预先配置的。
可选地,所述MCS偏移值比特域为2个MCS偏移值比特域中的第一MCS偏移值比特域。其中,2个MCS偏移值比特域中的第一MCS偏移值比特域与第一CSI对应,2个MCS偏移值比特域中的第二MCS偏移值比特域与第二CSI对应。
结合第五方面,在第五方面的某些实现方式中,所述第一上行信道为上行数据信道,所述第一CSI的传输参数包括所述第一CSI的MCS偏移值。其中,所述第一CSI的传输参数,包括:从预先配置的2个MCS偏移值集合中确定第一CSI的MCS偏移值。
其中,每个MCS偏移值集合可以包括2个MCS偏移值组,2个MCS偏移值组分别与所述第一CSI和第二CSI对应。每个MCS偏移值集合中的第一MCS偏移值组与第一CSI对应,每个MCS偏移值集合中的第二MCS偏移值组与第二CSI对应。2个MCS偏移值集合中的第一个MCS偏移值集合中的每个MCS偏移值组包括CSI part1的比特数不同情况下对应的MCS偏移值,2个MCS偏移值集合中的第二个MCS偏移值集合中的每个MCS偏移值组包括CSI part2的比特数不同情况下对应的MCS偏移值。终端设备可以根据第一CSI中的CSI part1的比特数以及第一个MCS偏移值集合中与第一CSI对应的MCS偏移值集合确定第一CSI中的CSI part1的MCS偏移值,根据第一CSI中的CSI part2 的比特数以及第二个MCS偏移值集合中与第一CSI对应的MCS偏移值集合确定第一CSI中的CSI part2的MCS偏移值。
应理解,网络设备可以通过高层信令预先配置所述2组MCS偏移值。
结合第五方面,在第五方面的某些实现方式中,所述第一上行信道为上行控制信道,所述第一CSI的传输参数包括所述第一CSI的编码速率。其中,所述第一CSI的传输参数,包括:从预先配置的2个编码速率中确定第一编码速率,即第一CSI的编码速率。其中,第一编码速率与第一CSI对应,所述2个编码速率中的第二编码速率与第二CSI对应。
应理解,网络设备可以通过高层信令预先配置所述2个编码速率。可以理解的是,所述2个编码速率也可以是协议预定的。
第六方面,提供了一种接收上行控制信息的方法,该方法可以由网络设备执行,也可以由应用于网络设备的芯片执行。该方法包括:确定第一CSI的传输参数;根据第一CSI的传输参数,确定第一CSI占据的资源数目或者说调制编码符号数目;根据第一CSI占据的资源数目或者说调制编码符号数目,在第一上行信道上接收第一CSI。
其中,第一CSI为由DCI触发的且在短格式物理上行控制信道(physical uplink channel control,PUCCH)上报的A-CSI。第一CSI的传输参数包括第一CSI的MCS偏移值和第一CSI的编码速率中的一种或两种。
应理解,第六方面的实现方式可以参照对第五方面的相应实现方式的说明,这里不再赘述。
第七方面,提供了一种通信装置,该通信装置包括用于执行第一方面或第一方面中任意一种可能的实现方式中的方法的单元,或者包括用于执行第三方面或第三方面中任意一种可能的实现方式中的方法的单元,或者包括用于执行第五方面或第五方面中任意一种可能的实现方式中的方法的单元。该通信装置包括的单元可以通过软件和/或硬件方式实现。
第八方面,提供了一种通信装置,该通信装置包括用于执行第二方面或第二方面中任意一种可能的实现方式中的方法的单元,或者包括用于执行第四方面或第四方面中任意一种可能的实现方式中的方法的单元,或者包括用于执行第六方面或第六方面中任意一种可能的实现方式中的方法的单元。该通信装置包括的单元可以通过软件和/或硬件方式实现。
第九方面,提供了一种通信设备,包括,处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得所述装置执行第一方面至第六方面或第一方面至第六方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,所述通信设备还包括,收发器或收发电路,用于完成对信息的收发功能。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,实现上述第一方面至第六方面或上述第一方面至第六方面中任意一种可能的实现方式中的方法。
第十一方面,本申请提供了一种包含计算机程序的计算机程序产品。当该计算机程序被运行时,实现上述第一方面至第六方面或上述第一方面至第六方面中任意一种可能的实现方式中的方法。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括输入输出接口和至少一个处理器,该至少一个处理器用于调用存储器中的指令,以进行上述第一方面至第六方面或上述第一方面至第六方面中任意一种可能的实现方式中的方法的操作。
可选地,该系统芯片还可以包括至少一个存储器和总线,该至少一个存储器用于存储处理器执行的指令。
可选的,该输入输出接口以接口电路的方式实现。
附图说明
图1是适用于本申请实施例的通信系统的示意图。
图2是本申请提供的一种传输上行控制信息的方法的示意性流程图。
图3是本申请提供的另一种传输上行控制信息的方法的示意性流程图。
图4是本申请提供的一种传输上行控制信息的方法的示意性流程图。
图5是根据本申请的通信装置的示意性框图。
图6是本申请提供的通信装置的示意性框图。
图7是本申请提供的通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于第五代(5th generation,5G)移动通信系统中的新空口(new radio,NR)或者未来的移动通信系统等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是基站(node B,NB)、演进型基站(evolutional node B,eNB)、5G移动通信系统的NR中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。如无特别说明,在本申请中,5G系统和NR系统的表述可以互换。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且, 本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
为便于理解本申请实施例,首先结合图1简单介绍适用于本申请实施例的通信系统。图1为适用于本申请实施例的系统100的示意图。如图1所示,该系统100包括网络设备101,该系统100还包括位于网络设备101覆盖范围之内的终端设备102以及终端设备103。网络设备101可以与终端设备102和终端设备103进行通信。应理解,图1中仅以网络设备101覆盖范围内的两个终端设备作为示例。显然,网络设备101的覆盖范围内也可以有更多的终端设备。
NR为下行数据传输配置了3张调制与编码方案(modulation and coding scheme,MCS)表格,其中,2张是针对增强移动宽带(enhanced mobile broadband,eMBB)业务的:包括1张复用LTE的256正交振幅调制(quadrature amplitude modulation,QAM)表格(记为MCS表格#1)和一张复用LTE的64QAM表格(记为MCS表格#2);1张是针对极高可靠性低时延通信(ultra reliable and low latency communication,URLLC)的新的64QAM表格(记为MCS表格#3)。区别于正常的64QAM表格,新的64QAM表格对应的频谱效率(spectrum efficiency,SE)更低,可以理解为相同MCS索引(index)下,新的64QAM表格中的元素对应的频谱效率比正常的64QAM表格中的元素的频谱效率更低,或者说新的64QAM表格涵盖的编码速率取值范围下限比正常64QAM表格涵盖的编码速率取值下限更低,可以指示更低码率传输,适用于保障URLLC的高可靠性。也就是说,MCS表格可以间接指示业务类型,终端设备根据下行数据传输对应的MCS表格可以确定下行数据传输对应的业务类型。例如,若MCS表格为MCS表格#3,可以确定对应的下行数据传输的业务类型为URLLC业务;若MCS表格为MCS表格#1和MCS表格#2的一种,可以确定对应的下行数据传输的业务类型为eMBB业务。
为适应不同业务类型,对不同业务类型的下行数据传输进行HARQ反馈的HARQ-ACK的传输参数(比如DAI总数、MCS偏移值等)可能有不同需求。而现有技术中仅配置一套用于传输HARQ-ACK的传输参数,比如DAI总数、MCS偏移值等,这种方式显然不够灵活,例如,不能适应不同业务类型的时延和/或可靠性等需求。
有鉴于此,本申请提供了一种传输上行控制信息的方法,通过将MCS表格与HARQ-ACK的传输参数关联,对使用特定MCS表格的下行数据传输所对应的HARQ-ACK,设置对应的传输参数,可以适应不同业务类型的时延和/或可靠性等需求。
需要说明的是,本申请并不限定MCS表格为上文所描述的NR配置的MCS表格,也不限定MCS表格与业务类型的对应关系为上文所描述的NR配置的MCS表格与业务类型的对应关系。应理解,本申请也适用于系统配置其他多张MCS表格以及该多张表格对应多种业务类型的情形。
图2示出了本申请实施例的传输上行控制信息的方法的示意性流程图200。该方法200可以应用于图1所示的系统100,但本申请实施例不限于此。
S202,网络设备确定第一MCS表格。
示例性的,网络设备可以根据第一下行数据传输对应的业务类型确定MCS表格(即, 第一MCS表格)。例如,当第一下行数据传输对应的业务类型为URLLC业务时,可以确定第一MCS表格为MCS表格#3。其中,第一MCS表格为M个MCS表格中的一个,M为大于1的正整数。另外,所述M个MCS表格还包括第二MCS表格,第一MCS表格与第二MCS表格所隐式指示的业务类型不同。所述M个MCS表格可以为协议或系统预定义的。
本申请中,第一下行数据传输可以包括动态调度的PDCSH、免授权的PDCSH和SPS PDSCH。
可选地,网络设备确定第一MCS表格后,可以通过半静态配置的方式向终端设备配置第一MCS表格,例如,网络设备可以通过高层参数MCS-table配置第一MCS表格。或者,网络设备可以动态配置第一MCS表格。比如,在第一MCS表格为MCS表格#3时,网络设备可以使用新的RNTI(记为X-RNTI)加扰调度该第一下行数据传输的DCI,以通知终端设备第一下行数据传输对应的MCS表格为MCS表格#3。
还应理解,网络设备进行第一下行数据传输后,终端设备可以通过HARQ-ACK向网络设备反馈第一下行数据传输是否被正确接收。本申请中,将对第一下行数据传输对应的HARQ反馈记作:第一HARQ-ACK。
S204,终端设备确定第一MCS表格。
如上文所述,第一MCS表格是第一HARQ-ACK对应的第一下行数据传输所对应的MCS表格。应理解,本申请中的HARQ-ACK包括ACK或NACK。本申请实施例中,终端设备对第一下行数据传输进行反馈时,可以首先确定第一下行数据传输对应的MCS表格,然后根据第一MCS表格确定第一HARQ-ACK的传输参数(如下文S206所述)。
与S202对应,在S204中,终端设备确定第一MCS表格具体可以是:如果高层没有配置新的RNTI(记为X-RNTI),则可以确定第一MCS表格为高层参数MCS-table配置的表格;如果高层配置了X-RNTI,则根据对第一DCI进行加扰的RNTI以及第一DCI的格式与传输第一DCI的PDCCH所在的搜索空间类型确定第一MCS表格,其中,第一DCI为调度第一下行数据传输的DCI。示例性的,当该第一DCI不是回退DCI或传输该第一DCI的PDCCH所在的搜索空间不是公共搜索空间,且对该第一DCI进行加扰的RNTI是X-RNTI时,可以确定第一MCS表格为MCS表格#3,即URLLC业务所对应的MCS表格;当该第一DCI不是回退DCI或传输该第一DCI的PDCCH所在的搜索空间不是公共搜索空间,且对该第一DCI进行加扰的RNTI不是X-RNTI时,第一MCS为MCS表格#1和MCS表格#2中的一个;当该DCI是回退DCI且该DCI的搜索空间是公共搜索空间,可以确定第一MCS表格为MCS表格#1和MCS表格#2中的一个。在本申请中,回退DCI是指一种特殊的DCI格式,例如,NR中的DCI format 0_0或1_0,其特征是该DCI中所有比特域是否存在以及每个比特域的位置、宽度都是预定义的,不需要高层参数配置。
S206,网络设备根据第一MCS表格,确定第一HARQ-ACK的传输参数。
S208,终端设备根据第一MCS表格,确定第一HARQ-ACK的传输参数。
S210,网络设备根据第一HARQ-ACK的传输参数,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目。
S212,终端设备根据第一HARQ-ACK的传输参数,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目。
网络设备可以根据第一MCS表格所隐式指示的业务类型,确定第一HARQ-ACK的传输参数。相当于是说,MCS表格与HARQ-ACK的传输参数具有对应关系。相应地,终端设备可以根据该该对应关系,确定第一HARQ-ACK的传输参数。
第一HARQ-ACK的传输参数可以包括第一HARQ-ACK的DAI总数,第一HARQ-ACK的MCS偏移值和第一HARQ-ACK的编码速率中的一种或多种。其中,第一HARQ-ACK的DAI总数用于确定第一HARQ-ACK码本,进一步地可以确定第一HARQ-ACK占据的资源数目或者说调制编码符号数目;第一HARQ-ACK的MCS偏移值用于确定第一HARQ-ACK占据的资源数目或者说调制编码符号数目;第一HARQ-ACK的编码速率用于确定HARQ-ACK编码后的比特数目,进一步可以确定第一HARQ-ACK占据的资源数目或者说调制编码符号数目。
应理解,本申请中根据第一HARQ-ACK的DAI总数和/或第一HARQ-ACK的MCS偏移值所确定的第一HARQ-ACK占据的资源数目的单位可以是资源粒子(resource element),根据第一HARQ-ACK的编码速率所确定的第一HARQ-ACK占据的资源数目的单位可以是资源块(resource block,RB)。
可以理解的是,上述S206和S210可以合并为:网络设备根据第一MCS表格,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目;S208和S212也可以合并为:终端设备根据第一MCS表格,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目。
S214,终端设备在第一上行信道上发送第一HARQ-ACK。
可以理解的是,终端设备在发送第一HARQ-ACK之前,需要对第一HARQ-ACK进行信道编码、速率匹配和调制,将第一HARQ-ACK调制在对应的调制编码符号上,然后将该调制编码符号映射到对应的RE上进行发送。
S216,网络设备根据第一HARQ-ACK占据的资源数目或者调制编码符号数目,在第一上行信道上接收第一HARQ-ACK。
具体地,网络设备根据确定的第一HARQ-ACK占据的资源数目或调制编码符号数目,在第一上行信道上对第一HARQ-ACK进行解调、反速率匹配和信道译码,获得第一HARQ-ACK的原始比特信息。
在本申请实施例中,第一HARQ-ACK用于对第一下行数据传输进行HARQ反馈,第一下行数据传输所使用的MCS表格为第一MCS表格,第一MCS表格可以隐式指示第一HARQ-ACK对应的业务类型,终端设备可以根据第一HARQ-ACK对应的业务类型,确定第一HARQ-ACK对应的传输参数。进一步的,终端设备可以根据该传输参数,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目。然后终端设备可以在第一上行信道上发送第一HARQ-ACK。相应地,网络设备可以根据该传输参数,确定第一HARQ-ACK占据的资源数目或者调制编码符号数目,然后在第一上行信道上对第一HARQ-ACK进行接收。
因此,本申请实施例的传输上行控制信息的方法,终端设备可以根据下行数据传输所使用的MCS表格,确定对该下行数据传输进行HARQ反馈的HARQ-ACK的传输参数,从而能够适应HARQ-ACK对应的业务类型对时延和/或可靠性的需求。
可选地,所述第一上行信道可以是数据信道也可以是控制信道。在第一上行信道为数 据信道时,若第一上行信道上还承载上行数据,那么在S212中,终端设备可以根据第一HARQ-ACK的DAI总数,确定第一HARQ-ACK码本,再根据第一HARQ-ACK码本大小确定第一HARQ-ACK的比特数。进一步地,终端设备可以根据第一HARQ-ACK的比特数、第一上行信道的传输块大小TBS、以及第一HARQ-ACK的MCS偏移值,确定第一HARQ-ACK在第一上行信道上传输占据的资源数目或者说调制编码符号数目。如果第一上行信道承载了A-CSI,但没有承载上行数据,终端设备可以根据第一HARQ-ACK的MCS偏移值和调度第一上行信道的上行授权(UL Grant)所指示的编码速率,计算第一HARQ-ACK的编码速率,然后根据第一HARQ-ACK的比特数和计算得到的第一HARQ-ACK的编码速率,确定第一HARQ-ACK在第一上行信道上传输占据的资源数目或调制编码符号数目。需要注意的是,当第一HARQ-ACK的比特数目小于等于2时,需要计算给第一HARQ-ACK预留的时频资源数目,计算预留时频资源是根据第一HARQ-ACK比特数目等于2确定的。
在第一上行信道为PUCCH的情况下,终端设备可以根据第一HARQ-ACK的编码速率确定第一HARQ-ACK占据的资源数目或者调制编码符号数目,具体地可以参照现有技术,此处不再赘述。
以下,针对第一上行信道为分别为上行数据信道(例如,第一PUSCH)和上行控制信道(例如,第一PUCCH)两种场景,对S208的具体实现方式进行举例说明。S206与S208类似,因此下文中将不再详述。
场景一:
第一上行信道为上行数据信道,即,第一上行信道为第一PUSCH
在此场景下,第一HARQ-ACK的传输参数可以包括第一HARQ-ACK的DAI总数,或包括第一HARQ-ACK的MCS偏移值,或包括第一HARQ-ACK的DAI总数和第一HARQ-ACK的MCS偏移值。
(1)在第一HARQ-ACK的传输参数包括第一HARQ-ACK的MCS偏移值的情况下,终端设备可以根据方式一至方式三中的任一种确定第一HARQ-ACK的MCS偏移值。
方式一
终端设备可以根据第一映射关系集和MCS偏移值比特域中的值,确定第一HARQ-ACK的MCS偏移值。更具体的,终端设备可以根据第一映射关系集、第一HARQ-ACK的比特数和MCS偏移值比特域中的值,确定第一HARQ-ACK的MCS偏移值。
其中,MCS偏移值比特域是调度第一下行数据传输的DCI中的一个比特域,第一映射关系集为N个映射关系集中的一个,N为大于1的正整数。所述N个映射关系集与所述M个MCS表格对应,第一映射关系集与第一MCS表格对应,所述映射关系集表示在不同的HARQ-ACK比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系。另外,所述N个映射关系集还包括第二映射关系集,第二映射关系集与第二MCS表格对应。例如,在第一MCS表格为MCS表格#3的情况下,第二MCS表格可以是MCS表格#1或者MCS表格#2。或者,在第一MCS表格为MCS表格#1或者MCS表格#2的情况下,第二MCS表格可以是MCS表格#3。
举例来说,系统或者网络设备可以预先定义或预先配置两个映射关系集,即,映射关 系集#1和映射关系集#2,映射关系集#1与MCS表格#3对应,映射关系集#2与MCS表格#1和MCS表格#2对应。若第一MCS表格为MCS表格#3,则可以确定第一映射关系集为映射关系集#1。终端设备可以根据映射关系集#1和MCS偏移值比特域中的值,并结合第一HARQ-ACK的比特数,确定第一HARQ-ACK的MCS偏移值。
应理解,对于不同比特数的HARQ-ACK,在MCS偏移值比特域中的值相同的情况下,MCS偏移值可能不同。
需要注意的是,在该实施例中,终端设备可以先根据第一MCS表格确定第一映射关系集,再根据MCS偏移值比特域中的值和第一映射关系集确定第一HARQ-ACK的MCS偏移值。或者,终端设备可以先根据MCS偏移值比特域中的值和N个映射关系集确定出N个候选MCS偏移值,再根据第一MCS表格从N个候选MCS偏移值中确定出第一HARQ-ACK的MCS偏移值。可以理解的是,为了得到第一HARQ-ACK的MCS偏移值,相关的输入参数包括第一MCS表格、N个映射关系集、HARQ-ACK的比特数以及MCS偏移值比特域的取值。具体实现时,可以根据上述各个输入参数中的一个、两个或三个确定出中间变量,然后再根据该中间变量以及剩余的输入参数再确定第一HARQ-ACK的MCS偏移值;或者也可以根据上述四个输入参数直接得到第一HARQ-ACK的MCS偏移值。本申请对如何根据上述四个输入参数得到第一HARQ-ACK的MCS偏移值的步骤和顺序不做限定。
为使本领域技术人员更好的理解本申请,以映射关系集#1所表示的映射关系如表1所示,映射关系集#2所表示的映射关系如表2所示为例,对方式一进行说明。表1中的a11,a12,a13,a14,a21,a22,a23,a24,a31,a32,a33和a34为正实数,表2中的b11,b12,b13,b14,b21,b22,b23,b24,b31,b32,b33和b34为正实数。
以MCS偏移值比特域中的值为“00”,且第一HARQ-ACK的比特数为4为例。若第一MCS表格对应的MCS映射关系集为映射关系集#1,那么根据表1所示,可以确定第一HARQ-ACK的MCS偏移值为a21;若第一MCS表格对应的MCS映射关系集为映射关系集#2,那么根据表2所示,可以确定第一HARQ-ACK的MCS偏移值为b21。
表1
Figure PCTCN2019099990-appb-000001
表2
Figure PCTCN2019099990-appb-000002
应理解,本申请不限定MCS偏移值比特域的位数和在不同的映射关系集中MCS偏移值比特域的可能取值与MCS偏移值的对应关系,表1和表2仅是示例性说明,并不应对本申请构成任何限定。
方式二
终端设备根据方式一中描述的第一映射关系集和D个MCS偏移值比特域中的第一MCS偏移值比特域,确定第一HARQ-ACK的MCS偏移值。
其中,D个MCS偏移值比特域是调度第一下行数据传输的DCI中的比特域,D为大于1的整数。D个MCS偏移值比特域与所述M个MCS表格对应,D个MCS偏移值比特域包括第一MCS偏移值比特域,第一MCS表格与第一MCS偏移值比特域对应。另外,所述D个MCS偏移值比特域还包括第二MCS偏移值比特域,第二MCS偏移值比特域与第二MCS表格对应。
应理解,方式二中的第一MCS偏移值比特域可以对应于方式一中的MCS偏移值比特域。
方式三
终端设备根据第一MCS表格,基于预先配置的P个MCS偏移值组确定第一HARQ-ACK的MCS偏移值。其中,P为大于1的正整数。
其中,P个MCS偏移值组与M个MCS表格对应,第一MCS偏移值组与第一MCS表格对应,第一MCS偏移值组为所述P个MCS偏移值组中的一个。每个MCS偏移值组包括HARQ-ACK的比特数不同的情况下对应的MCS偏移值,第一HARQ-ACK的MCS偏移值可以是第一MCS偏移值组中的一个MCS偏移值。另外,所述P个MCS偏移值组还包括第二MCS偏移值组,第二MCS偏移值组与第二MCS表格对应。
举例来说,可以配置两个MCS偏移值组,每个MCS偏移值组包括HARQ-ACK的比特数是1~2、3~11和大于11三种情况下的MCS偏移值,第一MCS偏移值组可以与MCS表格#3对应,第二MCS偏移值组可以与MCS表格#1和MCS表格#2对应。若第一MCS表格为MCS表格#3,则终端设备结合第一HARQ-ACK的比特数,可以从第一MCS偏移值组中确定出第一HARQ-ACK的MCS偏移值。
应理解,网络设备可以通过高层信令预先配置所述P个MCS偏移值组,所述P个MCS偏移值组也可以是协议预定的。本文所涉及的高层信令可以为无线资源控制(radio resource control,RRC)信令或媒体接入控制(medium access control,MAC)控制元素(control element,CE)等。
(2)在第一传输参数包括第一HARQ-ACK的DAI总数的情况下,终端设备可以根据方式一或方式二确定第一HARQ-ACK的DAI总数。
方式一
终端设备根据DCI中的第一DAI比特域,确定所述第一HARQ-ACK的DAI总数。
其中,所述DCI用于调度所述第一下行数据传输,所述第一DAI比特域为所述DCI中的Q个DAI比特域中的一个,Q为大于1的正整数,所述Q个DAI比特域与所述M个MCS表格对应,所述第一DAI比特域与所述第一MCS表格对应。另外,所述Q个DAI比特域还包括第二DAI比特域,第二DAI比特域与第二MCS表格对应。
终端设备可以根据第一DAI比特域中的值和DAI比特域的取值与DAI总数的映射关系确定所述第一HARQ-ACK的DAI总数。应理解,DAI比特域的取值与DAI总数的映射关系可以是现有技术中规定的映射关系。另外,每个DAI比特域的位数可以是2。
进一步地,每个DAI比特域可以包括两个子域,其中一个子域指示基于传输块(TB-based)的HARQ-ACK的DAI总数,一个指示基于码块组(code block group based,CBG-based)的HARQ-ACK的DAI总数。终端设备根据第一MCS表格、第一HARQ-ACK是TB-based HARQ-ACK还是CBG-based HARQ-ACK,可以确定第一HARQ-ACK的DAI总数。应理解,在此情况下,每个子域可以是2比特,一个DAI比特域可以是4比特,但本申请实施例对此不作限定。
方式二
终端设备可以根据第一MCS表格,确定R个DAI总数中与第一MCS表格对应的第一DAI总数。第一DAI总数即第一HARQ-ACK的DAI总数。其中,R为大于1的正整数。
其中,所述R个DAI总数与所述M个MCS表格对应。另外,所述R个DAI总数还包括第二DAI总数,第二DAI总数与第二MCS表格对应。
应理解,网络设备可以通过高层信令预先配置所述R个DAI总数。可以理解的是,所述R个DAI总数也可以是协议预定的。
场景二:
第一上行信道为上行控制信道,即,第一上行信道为第一PUCCH
在此场景下,第一HARQ-ACK传输参数可以包括第一HARQ-ACK的编码速率。
可选地,终端设备可以根据第一MCS表格,确定S个编码速率中与第一MCS表格对应的第一编码速率,即第一HARQ-ACK的编码速率。其中,S为大于1的正整数。
其中,所述S个编码速率与所述M个MCS表格对应。另外,所述S个编码速率还包括第二编码速率,第二编码速率与第二MCS表格对应。
应理解,网络设备可以通过高层信令预先配置所述S个编码速率。可以理解的是,所述S个编码速率也可以是协议预定的。
应理解,上文中介绍的终端设备根据第一MCS表格确定第一HARQ-ACK的传输参数的方式仅是示例性说明,但不应对本申请构成任何限定。在具体实施时,网络设备可以采用其他的方式将MCS表格与HARQ-ACK的传输参数关联起来,终端设备可以采用相应地方式确定与特定MCS表格对应的HARQ-ACK的传输参数。
上文中主要介绍了HARQ-ACK的传输参数与MCS表格关联的方案,可替换的, HARQ-ACK的传输参数可以与加扰DCI的RNTI关联,该DCI用于调度与该HARQ-ACK对应的下行数据传输。
如前文所述,在高层配置了X-RNTI的情况下,终端设备可以根据调度第一下行数据传输的DCI的扰码RNTI以及该DCI的格式与所在搜索空间,确定第一MCS表格。当扰码RNTI是X-RNTI且该DCI不是回退DCI或不在公共搜索空间时,可以确定第一MCS表格为MCS表格#3,否则为MCS表格#1和MCS表格#2中的其中一个。也就是说,在高层配置了X-RNTI的情况下,加扰DCI的RNTI与下行数据传输的MCS表格关联。因此,可以将加扰DCI的RNTI与该DCI所调度的下行数据传输对应的HARQ-ACK的传输参数关联,根据加扰DCI的RNTI的不同,可以配置对应的HARQ-ACK的传输参数。终端设备在传输HARQ-ACK时,可以首先确定与该HARQ-ACK对应的RNTI,然后再根据所确定的RNTI,确定HARQ-ACK的传输参数。
应理解,网络设备可以采用与上文中的实施例类似的方法,将加扰DCI的RNTI与该DCI所调度的下行数据传输对应的HARQ-ACK的传输参数关联。相应地,终端设备可以采用类似的方法,根据加扰DCI的RNTI,确定该DCI所调度的下行数据传输对应的HARQ-ACK的传输参数。比如,可以将上文中场景一下的方式一中的N个映射关系集与加扰DCI的RNTI关联,这样可以根据加扰DCI的RNTI,确定该DCI所调度的下行数据传输对应的HARQ-ACK的MCS偏移值。HARQ-ACK的传输参数具体如何与加扰DCI的RNTI关联,可以参照上文的描述,此处不再赘述。
NR的下行信道测量机制是:网络设备发送信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备测量CSI-RS得到信道信息,反馈包括CQI的CSI。NR配置了3张CQI表格,其中,2张是复用LTE的256QAM表格(记为CQI表格#1)和64QAM表格(记为CQI表格#2);1张是针对极高可靠性低时延通信URLLC的新的64QAM表格(记为CQI表格#3)。另外,CQI表格#1和CQI表格#2对应的目标误块率(block error rate,BLER)是10%,而CQI表格#3对应的目标BLER是0.001%。也就是说,CQI表格可以间接指示业务类型,终端设备可以根据所使用的CQI表格确定业务类型。例如,若CQI表格为CQI表格#3,可以确定业务类型为URLLC业务;若CQI表格为CQI表格#1和CQI表格#2中的一种,可以确定业务类型为eMBB业务。
针对业务类型的不同,进行CSI反馈时使用的传输参数(比如MCS偏移值、编码速率等),可能有不同需求。而现有技术中仅配置一套用于传输CSI的传输参数,这种方式显然不够灵活,例如,不能适应不同业务类型的时延和/或可靠性等需求。
有鉴于此,本申请提供了一种传输上行控制信息的方法,通过将CQI表格与CSI的传输参数关联,对使用特定CQI表格的CSI设置对应的传输参数,可以适应不同业务类型的时延和/或可靠性等需求。
需要说明的是,本申请并不限定CQI表格为上文所描述的NR配置的CQI表格,也不限定CQI表格与业务类型的对应关系为上文所描述的NR配置的CQI表格与业务类型的对应关系。应理解,本申请也适用于系统配置其他多张CQI表格以及该多张表格对应多种业务类型的情形。
图3示出了本申请实施例的传输上行控制信息的方法的示意性流程图300。该方法300可以应用于图1所示的系统100,但本申请实施例不限于此。
S302,网络设备确定第一CQI表格。
示例性的,网络设备可以根据即将调度的业务(例如,第二下行数据传输)对应的业务类型确定第一CQI表格。例如,当第二下行数据传输对应的业务类型为URLLC业务时,可以确定第一CQI表格为CQI表格#3。其中,第一CQI表格为T个CQI表格中的一个,T为大于1的正整数。另外,所述T个CQI表格还包括第二CQI表格,第一CQI表格与第二CQI表格所隐式指示的业务类型不同。所述T个CQI表格可以为协议或系统预定义的。
本申请中,第二下行数据传输可以包括动态调度的PDCSH、免授权的PDCSH和SPS PDSCH。
可选地,网络设备确定第一CQI表格后,可以通过半静态配置的方式向终端设备配置第一CQI表格,例如,网络设备可以通过高层参配置第一CQI表格。或者,网络设备可以动态配置第一CQI表格。比如,网络设备可以预先配置所述T个CQI表格,在其希望终端设备根据第一CQI表格上报CQI时,可以通过DCI或其他信令激活第一CQI表格。
可选地,终端设备可以通过第一CSI反馈与第一CQI表格对应的CQI。
S304,终端设备确定与第一CSI对应的第一CQI表格。
本申请实施例中,终端设备反馈第一CSI时,可以首先确定第一CQI表格,然后根据第一CQI表格确定第一CSI的传输参数(如下文S306所述)。S304的实现方式对应于S302的实现方式,具体可以参照S302的描述,这里不再赘述。
S306,网络设备根据第一CQI表格,确定第一CSI的传输参数。
S308,终端设备根据第一CQI表格,确定第一CSI的传输参数。
S310,网络设备根据第一CSI的传输参数,确定第一CSI占据的资源数目或者说调制编码符号数目。
S312,终端设备根据第一CSI的传输参数,确定第一CSI占据的资源数目或者说调制编码符号数目。
第一CSI的传输参数包括第一CSI的MCS偏移值,或包括第一CSI的编码速率,或包括第一CSI的MCS偏移值和第一CSI的编码速率。
应理解,第一CSI的MCS偏移值包括第一CSI的第一部分的MCS偏移值和所述第一CSI的第二部分的MCS偏移值,即第一CSI中CSI part1的MCS偏移值和第一CSI中CSI part2的MCS偏移值。其中,第一CSI中CSI part1的MCS偏移值可以用于确定第一CSI中CSI part1占据的资源数目或者说调制编码符号数目,第一CSI中CSI part2的MCS偏移值可以用于确定第一CSI中CSI part2占据的资源数目或者说调制编码符号数目。第一CSI的编码速率用于确定第一CSI编码后的比特数目,进一步可以确定第一CSI占据的资源数目或者说调制编码符号数目。
应理解,本申请中根据第一CSI的MCS偏移值所确定的第一CSI占据的资源数目的单位可以是RE。根据第一CSI的编码速率所确定的第一CSI占据的资源数目的单位可以是资源块(resource block,RB)。
可以理解的是,上述S306和S310可以合并为:网络设备根据第一CQI表格,确定第一CSI占据的资源数目或者调制编码符号数目;S308和S312也可以合并为:终端设备根据第一CQI表格,确定第一CSI占据的资源数目或者调制编码符号数目。
S314,终端设备在第一上行信道上发送第一CSI。
可以理解的是,终端设备在发送第一CSI之前,需要对第一CSI进行信道编码、速率匹配和调制,将第一CSI调制在对应的调制编码符号上,然后将该调制编码符号映射到对应的RE上进行发送。
S316,网络设备根据第一CSI占据的资源数目或者调制编码符号数目,在第一上行信道上接收第一CSI。
具体地,网络设备根据确定的第一CSI占据的资源数目或调制编码符号数目,在第一上行信道上对第一CSI进行解调、反速率匹配和信道译码,获得第一CSI的原始比特信息。
本申请实施例中,第一CQI表格可以指示第一CSI所对应的业务类型,终端设备可以根据第一CSI所对应的业务类型,确定第一CSI的传输参数。进一步的,终端设备可以根据该传输参数,确定第一CSI占据的资源数目或者调制编码符号数目。然后终端设备可以在第一上行信道上发送第一CSI。相应地,网络设备可以根据该传输参数,确定第一CSI占据的资源数目或者调制编码符号数目,然后在第一上行信道上对第一CSI进行接收。
因此,本申请实施例的传输上行控制信息的方法,终端设备可以根据上报CSI时所使用的CQI表格,确定CSI的传输参数,从而能够适应CSI对应的业务类型对时延和/或可靠性的需求。
可选地,所述第一上行信道可以是数据信道也可以是控制信道。在第一上行信道为数据信道时,若第一上行信道上还承载上行数据,在S312中,终端设备可以根据第一CSI中CSI part1的比特数、第一上行信道的传输块大小TBS、以及第一CSI中CSI part1的MCS偏移值,确定第一CSI中CSI part1在上行信道上传输占据的资源数目或者说调制编码符号数目。以及,终端设备可以根据第一CSI中CSI part2的比特数、第一上行信道的传输块大小TBS、以及第一CSI中CSI part2的MCS偏移值,确定第一CSI中CSI part2在第一上行信道上传输占据的资源数目或者说调制编码符号数目。
在第一上行信道为PUCCH的情况下,终端设备可以根据第一CSI的编码速率确定第一CSI占据的资源数目或者调制编码符号数目,具体地可以参照现有技术,此处不再赘述。
以下,针对第一上行信道为上行数据信道(例如,第一PUSCH)和上行控制信道(例如,第一PUCCH)两种场景,对S308的具体实现方式进行举例说明。S306与S308类似,因此下文中将不再详述。
场景一:
第一上行信道为第一PUSCH
在此场景下,第一CSI的传输参数可以包括第一CSI的MCS偏移值。终端设备可以根据方式一至方式三中的任一种确定第一CSI的MCS偏移值。
方式一
终端设备根据第一映射关系集组所包括的V个映射关系集中的第一映射关系集和MCS偏移值比特域中的值,确定第一CSI中CSI part1的MCS偏移值,以及根据第二映射关系集组所包括的V个映射关系集中的第一映射关系集和MCS偏移值比特域中的值,确定第一CSI中CSI part2的MCS偏移值。
具体来讲,第一映射关系集组和第二映射关系集组均包括V个映射关系集,每个映射关系集组中的V个映射关系集与所述T个CQI表格对应,且所述V个映射关系集中的第 一映射关系集与第一CQI表格对应,V为大于1的整数。第一映射关系集组中的每个映射关系集表示在不同的CSI part1的比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,第二映射关系集组中的每个映射关系集表示在不同的CSI part2的比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系。第一映射关系集组中的第一映射关系用于确定第一CSI中CSI part1的MCS偏移值,第二映射关系集组中的第一映射关系用于确定第一CSI中CSI part2的MCS偏移值。另外,每个映射关系集组中的V个映射关系集还包括第二映射关系集,第二映射关系集与第二CQI表格对应。
举例来说,系统或者网络设备可以预先定义或预先配置两个映射关系集组,每个映射关系集组包括两个映射关系集,即,映射关系集#1和映射关系集#2,映射关系集#1可以与CQI表格#3对应,映射关系集#2可以与CQI表格#1和CQI表格#2对应。若第一CQI表格为CQI表格#3,则可以确定第一映射关系集为映射关系集#1。其中,第一映射关系集组中的每个映射关系集指示CSI part1的比特数属于不同区间(如1~11和>11)情况下,第一比特域取值的取值分别为00,01,10,11时对应的MCS偏移值。第二映射关系集组中的每个映射关系集指示CSI part2的比特数属于不同区间(如1~11和>11)情况下,第一比特域取值的取值分别为00,01,10,11时对应的MCS偏移值。在确定第一CQI表格对应的映射关系集为映射关系集#1的情况下,终端设备可以根据第一映射关系集组中的映射关系集#1和MCS偏移值比特域中的值,并结合CSI part1的比特数,确定CSI part1的MCS偏移值,根据第二映射关系集组中的映射关系集#1和MCS偏移值比特域中的值,并结合CSI part2的比特数,确定CSI part2的MAC偏移值。
应理解,对于不同比特数的CSI,在MCS偏移值比特域中的值相同的情况下,MCS偏移值可能不同。
可以理解的是,为了得到第一CSI的MCS偏移值,相关的输入参数包括第一CQI表格、两个映射关系集组、第一CSI中的CSI part1的比特数、第一CSI中的CSI part2的比特数以及MCS偏移值比特域的取值。具体实现时,可以根据上述各个输入参数中的一个或多个确定出中间变量,然后再根据该中间变量以及剩余的输入参数再确定第一CSI的MCS偏移值;或者也可以根据上述五个输入参数直接得到第一CSI的MCS偏移值。本申请对如何根据上述五个输入参数得到第一CSI的MCS偏移值的步骤和顺序不做限定。
方式二
终端设备根据方式一中描述的各映射关系集组中的第一映射关系集和F个MCS偏移值比特域中的第一MCS偏移值比特域,确定第一CSI的MCS偏移值。
其中,F个MCS偏移值比特域是调度第一下行数据传输的DCI中的比特域。F个MCS偏移值比特域与所述T个CQI表格对应,第一CQI表格与第一MCS偏移值比特域对应,F为大于1的整数。另外,所述F个MCS偏移值比特域还可以包括第二MCS偏移值比特域,第二MCS偏移值比特域与第二CQI表格对应。
应理解,方式二中的第一MCS偏移值比特域可以对应于方式一中的MCS偏移值比特域。
方式三
终端设备根据第一CQI表格,基于预先配置的两个MCS偏移值集合确定第一CSI的MCS偏移值。
其中,每个MCS偏移值集合可以包括W个MCS偏移值组,W个MCS偏移值组与所述T个CQI表格对应,W为大于1的整数。每个MCS偏移值集合中的第一MCS偏移值组与第一CQI表格对应,每个MCS偏移值组包括CSI的比特数不同情况下对应的MCS偏移值。CSI part1的MCS偏移值可以是第一个MCS偏移值集合中第一MCS偏移值组中的一个MCS偏移值,CSI part2的MCS偏移值可以是第二个MCS偏移值集合中第一MCS偏移值组中的一个MCS偏移值。另外,每个MCS偏移值集合中的多个MCS偏移值组还包括第二MCS偏移值组,第二MCS偏移值组与第二CQI表格对应。
举例来说,可以配置两个MCS偏移值集合,每个MCS偏移值集合中包括两个MCS偏移值组。每个MCS偏移值集合中的每个MCS偏移值组指示CSI的比特数属于不同区间(如1~11和>11)情况下的MCS偏移值,每个MCS偏移值集合中的第一MCS偏移值组可以与CQI表格#3关联,第二MCS偏移值组可以与CQI表格#1和CQI表格#2关联。若第一CQI表格为CQI表格#3,则终端设备结合CSI part1的比特数、第一个MCS偏移值集合中的第一MCS偏移值组,可以确定CSI part1的MCS偏移值,结合CSI part2的比特数、第二个MCS偏移值集合中的第一MCS偏移值组,可以确定CSI part2的MCS偏移值。
应理解,网络设备可以通过高层信令预先配置所述两个MCS偏移值集合。
场景二:
第一上行信道为上行控制信道(即,第一PUCCH)
在此场景下,第一CSI的传输参数可以包括第一CSI的编码速率。
可选地,终端设备可以根据第一CQI表格,确定Y个编码速率中与第一CQI表格对应的第一编码速率,即,第一CSI的编码速率。其中,Y为大于1的正整数。
其中,所述Y个编码速率与所述T个CQI表格对应。另外,所述Y个编码速率还包括第二编码速率,第二编码速率与第二CQI表格对应。
应理解,网络设备可以通过高层信令预先配置所述Y个编码速率。可以理解的是,所述Y个编码速率也可以是协议预定的。
图4示出了本申请实施例的传输上行控制信息的方法的示意性流程图400。该方法400可以应用于图1所示的系统100,但本申请实施例不限于此。
S402,网络设备确定第一CSI的传输参数。
S404,终端设备确定第一CSI的传输参数。
其中,第一CSI为由DCI触发的且在短格式PUCCH上报的A-CSI,第一CSI指示第一业务类型,第一业务类型可以是URLLC业务,但本申请实施例对此不作限定。进一步地,第一CSI对应的CQI表格为CQI表格#3。
第一CSI的传输参数包括第一CSI的MCS偏移值和第一CSI的编码速率中的一种或两种。应理解,第一CSI的MCS偏移值包括第一CSI中CSI part1的MCS偏移值和第一CSI中CSI part2的MCS偏移值。
需要说明的是,方法400中,不满足第一CSI的配置的CSI都可以称为第二CSI。也就是说,不同时满足下述配置的CSI都为第二CSI:(1)DCI触发;(2)在短格式PUCCH上报;(3)A-CSI。其中,第二CSI和第一CSI所指示的业务类型不同。进一步地,不同时满足下述配置的CSI都为第二CSI:(1)DCI触发;(2)在短格式PUCCH上报;(3) A-CSI;(4)该CSI对应的CQI表格为CQI表格#3。
本申请实施例中,网络设备可以针对第一CSI和第二CSI分别配置对应的传输参数。
S406,网络设备根据第一CSI的传输参数,确定第一CSI占据的资源数目或者说调制编码符号数目。
S408,终端设备根据第一CSI的传输参数,确定第一CSI占据的资源数目或者说调制编码符号数目。
第一CSI的传输参数包括第一CSI的MCS偏移值或包括第一CSI的编码速率,或包括第一CSI的MCS偏移值和第一CSI的编码速率。应理解,第一CSI的MCS偏移值包括第一CSI的第一部分的MCS偏移值和所述第一CSI的第二部分的MCS偏移值,即第一CSI中CSI part1的MCS偏移值和第一CSI中CSI part2的MCS偏移值。其中,第一CSI中CSI part1的MCS偏移值可以用于确定第一CSI中CSI part1占据的资源数目或者调制编码符号数目,第一CSI中CSI part2的MCS偏移值可以用于确定第一CSI中CSI part2占据的资源数目或者调制编码符号数目。第一CSI的编码速率用于确定第一CSI编码后的比特数目,进一步可以确定第一CSI占据的资源数目或者说调制编码符号数目。
应理解,本申请中根据第一CSI的MCS偏移值所确定的第一CSI占据的资源数目的单位可以是RE。根据第一CSI的编码速率所确定的第一CSI占据的资源数目的单位可以是RB。
可以理解的是,上述S402和S406可以合并为:网络设备确定第一CSI占据的资源数目或者调制编码符号数目;S404和S408也可以合并为:终端设备确定第一CSI占据的资源数目或者调制编码符号数目。
S410,终端设备在第一上行信道上发送第一CSI。
可以理解的是,终端设备在发送第一CSI之前,需要对第一CSI进行信道编码、速率匹配和调制,将第一CSI调制在对应的调制编码符号上,然后将该调制编码符号映射到对应的RE上进行发送。
S412,网络设备根据第一CSI占据的资源数目或者说调制编码符号数目,接收第一CSI。
具体地,网络设备根据确定的第一CSI占据的资源数目或调制编码符号数目,在第一上行信道上对第一CSI进行解调、反速率匹配和信道译码,获得第一CSI的原始比特信息。
本申请实施例的传输上行控制信息的方法,第一CSI和第二CSI分别对应一套传输参数,在需要传输第一CSI时,终端设备确定第一CSI的传输参数,根据第一CSI的传输参数确定第一CSI占据的资源数目或者调制编码符号数目。然后终端设备可以在第一上行信道上发送第一CSI。相应地,网络设备可以根据该传输参数,确定第一CSI占据的资源数目或者调制编码符号数目,然后在第一上行信道上对第一CSI进行接收。因此,根据本申请实施例的方法,终端设备能够灵活反馈CSI。
可选地,所述第一上行信道可以是数据信道也可以是控制信道。在第一上行信道为数据信道时,若第一上行信道上还承载上行数据,在S408中,终端设备可以根据第一CSI中CSI part1的比特数、第一上行信道的传输块大小TBS、以及第一CSI中CSI part1的MCS偏移值,确定第一CSI中CSI part1在上行信道上传输占据的资源数目或者说调制编码符号数目。以及,终端设备可以根据第一CSI中CSI part2的比特数、第一上行信道的 传输块大小TBS、以及第一CSI中CSI part2的MCS偏移值,确定第一CSI中CSI part2在第一上行信道上传输占据的资源数目或者说调制编码符号数目。
在第一上行信道为PUCCH的情况下,终端设备可以根据第一CSI的编码速率确定第一CSI占据的资源数目或者调制编码符号数目,具体地可以参照现有技术,此处不再赘述。
以下,针对第一上行信道为上行数据信道(例如,第一PUSCH)和上行控制信道(例如,第一PUCCH)两种场景,对S404的具体实现方式进行举例说明。S402与S404类似,因此下文中将不再详述。
场景一:
第一上行信道为第一PUSCH
在此场景下,第一CSI的传输参数可以包括第一CSI的MCS偏移值。终端设备可以根据方式一至方式三中的任一种确定第一CSI的MCS偏移值。
方式一
终端设备根据第一映射关系集组所包括的2个映射关系集中的第一映射关系集和MCS偏移值比特域中的值,确定第一CSI中CSI part1的MCS偏移值,以及根据第二映射关系集组所包括的2个映射关系集中的第一映射关系集和MCS偏移值比特域中的值,确定第一CSI中CSI part2的MCS偏移值。
具体来讲,第一映射关系集组和第二映射关系集组均包括2个映射关系集,每个映射关系集组中第一映射关系集与第一CSI对应以及第二映射关系集与第二CSI对应。第一映射关系集组中的每个映射关系集表示在不同的CSI part1的比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,第二映射关系集组中的每个映射关系集表示在不同的CSI part2的比特数的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系。终端设备可以根据第一映射关系集组中的第一映射关系集、第一CSI中CSI part1的比特数以及MCS偏移值比特域中的值,可以确定第一CSI中CSI part1的MCS偏移值,根据第二映射关系集组中的第一映射关系集、第一CSI中CSI part2的比特数以及偏移值比特域中的值,可以确定第一CSI中CSI part2的MCS偏移值。
应理解,所述2个映射关系集可以是系统或者网络设备预先定义或预先配置的。
方式二
终端设备根据方式一中描述的两组映射关系集中的第一映射关系集和2个MCS偏移值比特域中的第一MCS偏移值比特域,确定第一CSI的MCS偏移值。
其中,2个MCS偏移值比特域中的第一MCS偏移值比特域与第一CSI对应,2个MCS偏移值比特域中的第二MCS偏移值比特域与第二CSI对应。
方式三
终端设备从预先配置的2个MCS偏移值集合中确定第一CSI的MCS偏移值。
其中,每个MCS偏移值集合可以包括2个MCS偏移值组,2个MCS偏移值组分别与所述第一CSI和第二CSI对应。每个MCS偏移值集合中的第一MCS偏移值组与第一CSI对应,每个MCS偏移值集合中的第二MCS偏移值组与第二CSI对应。2个MCS偏移值集合中的第一个MCS偏移值集合中的每个MCS偏移值组包括CSI part1的比特数不同情况下对应的MCS偏移值,2个MCS偏移值集合中的第二个MCS偏移值集合中的每个MCS偏移值组包括CSI part2的比特数不同情况下对应的MCS偏移值。终端设备可以 根据第一CSI中的CSI part1的比特数以及第一个MCS偏移值集合中与第一CSI对应的MCS偏移值集合确定第一CSI中的CSI part1的MCS偏移值,根据第一CSI中的CSI part2的比特数以及第二个MCS偏移值集合中与第一CSI对应的MCS偏移值集合确定第一CSI中的CSI part2的MCS偏移值。
应理解,网络设备可以通过高层信令预先配置所述2组MCS偏移值。
场景二:
第一上行信道为上行控制信道(即,第一PUCCH)
在此场景下,第一CSI的传输参数可以包括第一CSI的编码速率。
可选地,终端设备可以从预先配置的2个编码速率中确定第一编码速率,即第一CSI的编码速率。其中,第一编码速率与第一CSI对应,所述2个编码速率中的第二编码速率与第二CSI对应。
应理解,网络设备可以通过高层信令预先配置所述2个编码速率。可以理解的是,所述2个编码速率也可以是协议预定的。
上述方法200、方法300和方法400中各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
图5是根据本申请实施例的通信装置500的示意性框图,该通信装置可以为终端设备也可以为应用于终端设备的芯片。如图5所示,该通信装置500包括:处理单元510和发送单元520。
在一种实现方式中,处理单元510用于确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传请求应答HARQ-ACK对应的下行数据传输所对应的MCS表格;根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目。发送单元520用于,在第一上行信道上发送所述第一HARQ-ACK。
应理解,在该实现方式中,通信装置500中各单元分别用于执行上述方法200中由终端设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
在另一种实现方式中,处理单元510用于,确定与第一信道状态信息CSI对应的第一信道质量指示CQI表格;根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;根据所述第一CSI的传输参数,确定第一CSI占据的资源数目或者调制编码符号数目。发送单元520用于,在第一上行信道上发送所述第一CSI。
应理解,在该实现方式中,通信装置500中各单元分别用于执行上述方法300中由终端设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
在又一种实现方式中,处理单元510用于,确定第一信道状态信息CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;根据所述第一CSI的传输参数,确定第一CSI占据的资源数 目或者调制编码符号数目。发送单元520用于,在第一上行信道上发送所述第一CSI。
应理解,在该实现方式中,通信装置500中各单元分别用于执行上述方法400中由终端设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
图6是根据本申请实施例的通信装置600的示意性框图,该通信装置可以为网络设备也可以为应用于网络设备的芯片。如图6所示,该通信装置600包括:处理单元610和接收单元620。
在一种实现方式中,处理单元610用于,确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传应答请求HARQ-ACK对应的下行数据传输所对应的MCS表格;根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目。接收单元620用于,根据所述第一HARQ-ACK占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一HARQ-ACK。
应理解,在该实现方式中,通信装置600中各单元分别用于执行上述方法200中由网络设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
在另一种实现方式中,处理单元610用于,确定第一信道质量指示CQI表格,所述第一CQI表格与第一信道状态信息CSI对应;根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;根据所述第一CSI的传输参数,确定第一CSI占据的资源数目或者调制编码符号数目;接收单元620用于,根据所述第一CSI占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一CSI。
应理解,在该实现方式中,通信装置600中各单元分别用于执行上述方法300中由网络设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
在又一种实现方式中,处理单元610用于,确定第一信道状态信息CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;根据所述第一CSI的传输参数,确定第一CSI占据的资源数目或者调制编码符号数目。接收单元620用于,根据第一CSI占据的资源数目或者调制编码符号数目,在第一上行信道上发送所述第一CSI。
应理解,在该实现方式中,通信装置600中各单元分别用于执行上述方法400中由网络设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
图7示出了根据本申请实施例的通信装置700的示意性结构图。如图7所示,该通信装置700包括处理器720。可选的,通信装置700还包括收发器710和存储器730。其中,收发器710、处理器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号。收发器710可以通过收发电路的方式来实现。
该通信装置700可以用于实现上述通信装置500所实现的任一种实现方式的功能。具体地,在该处理器720从存储器中调用并运行该计算机程序时,处理器720可用于执行上述各方法中终端设备的数据处理功能,并控制收发器710完成对应的终端设备的信息收发功能。应理解,通信装置700的处理器720可以对应于通信装置500中的处理单元510,通信装置700的收发器710可以对应于通信装置500中的发送单元520。
该通信装置700还可以用于实现上述通信装置600所实现的任一种实现方式的功能。具体地,在该处理器720从存储器中调用并运行该计算机程序时,处理器720可用于执行上述各方法中网络设备的数据处理功能,并控制收发器710完成对应的网络设备的信息收发功能。应理解,通信装置700的处理器720可以对应于通信装置600中的处理单元510,通信装置700的收发器710可以对应于通信装置600中的接收单元620。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请实施例可以应用于处理器中,或者由处理器实现。处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(central processing unit,CPU)、该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,当本申请的实施例应用于终端设备芯片时,该终端设备芯片实现上述处理单元510或上述处理器720的功能。该终端设备芯片还可以向终端设备中的其它模块(如射频模块或天线)发送上述第一HARQ-ACK或第一CSI,该第一HARQ-ACK或第一CSI经由终端设备的其它模块发送给网络设备。
当本申请的实施例应用于网络设备芯片时,该网络设备芯片实现上述处理单元610或上述处理器720的功能。该网络设备芯片还可以从网络设备中的其它模块(如射频模块或天线)接收上述第一HARQ-ACK或第一CSI,该第一HARQ-ACK或第一CSI是终端设备发给网络设备的。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请中,A与B对应可以理解为A与B关联,或者A与B具有关联关系。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,申请实施例中的“第一”和“第二”仅为了区分,不应对本申请构成任何限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (23)

  1. 一种发送上行控制信息的方法,其特征在于,包括:
    确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传请求应答HARQ-ACK对应的下行数据传输所对应的MCS表格;
    根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;
    根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目;
    在第一上行信道上发送所述第一HARQ-ACK。
  2. 一种接收上行控制信息的方法,其特征在于,包括:
    确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传应答请求HARQ-ACK对应的下行数据传输所对应的MCS表格;
    根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;
    根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目;
    根据所述第一HARQ-ACK占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一HARQ-ACK。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一上行信道为上行数据信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的MCS偏移值;
    其中,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:
    根据第一映射关系集和MCS偏移值比特域中的值,确定所述第一HARQ-ACK的MCS偏移值,
    其中,所述第一映射关系集为N个映射关系集中的一个,所述第一MCS表格为M个MCS表格中的一个,所述N个映射关系集与所述M个MCS表格对应,所述第一映射关系集与所述第一MCS表格对应,所述映射关系集包括HARQ-ACK的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,M和N为大于1的整数,所述MCS偏移值比特域是调度所述下行数据传输的下行控制信息DCI中的一个比特域。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一上行信道为上行控制信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的编码速率;
    其中,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:
    从S个编码速率中确定所述第一MCS表格对应的所述第一HARQ-ACK的编码速率,所述S个编码速率与包括所述第一MCS表格的M个MCS表格对应,M和S为大于1的整数。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一上行信道为上行数据信道, 所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的DAI总数;
    其中,所述根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,包括:
    根据下行控制信息DCI的第一DAI比特域,确定所述第一HARQ-ACK的DAI总数,所述第一DAI比特域为所述DCI中的Q个DAI比特域中的一个,所述第一MCS表格为M个MCS表格中的一个,所述Q个DAI比特域与所述M个MCS表格对应,所述第一DAI比特域与所述第一MCS表格对应,所述下行控制信息用于调度所述下行数据传输,M和Q为大于1的整数。
  6. 一种发送上行控制信息的方法,其特征在于,包括:
    确定与第一信道状态信息CSI对应的第一信道质量指示CQI表格;
    根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;
    根据所述第一CSI的传输参数,确定所述第一CSI占据的资源数目或者调制编码符号数目;
    在第一上行信道上发送所述第一CSI。
  7. 一种接收上行控制信息的方法,其特征在于,包括:
    确定第一信道状态信息CSI对应的第一信道质量指示CQI表格;
    根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;
    根据所述第一CSI的传输参数,确定所述第一CSI占据的资源数目或者调制编码符号数目;
    根据所述第一CSI占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一CSI。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一上行信道为上行数据信道,所述第一CSI的传输参数包括所述第一CSI的MCS偏移值,所述第一CSI的MCS偏移值包括所述第一CSI的第一部分的MCS偏移值和所述第一CSI的第二部分的MCS偏移值;
    其中,所述根据所述第一CQI表格,确定所述第一CSI的传输参数,包括:
    根据第一映射关系集组中的第一映射关系集和MCS偏移值比特域中的值,确定所述第一部分的MCS偏移值,以及根据第二映射关系集组中的第一映射关系集和MCS偏移值比特域中的值,确定所述第二部分的MCS偏移值,
    其中,每个映射关系集组包括V个映射关系集,所述第一映射关系集为所述V个映射关系集中的一个,所述V个映射关系集与T个CQI表格对应,所述第一CQI表格为所述T个CQI表格中的一个,所述第一CQI表格与所述第一映射关系集对应,所述第一映射关系集组中的每个映射关系集表示CSI的第一部分的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,所述第二映射关系集组中的每个映射关系集表示CSI的第二部分的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,T和V为大于1的整数。
  9. 如权利要求6或7所述的方法,其特征在于,所述第一上行信道为上行控制信道,所述第一CSI的传输参数包括所述第一CSI的编码速率;
    其中,所述根据所述第一CQI表格,确定所述第一CSI的传输参数,包括:
    从Y个编码速率中确定所述第一CQI表格对应的所述第一CSI的编码速率,所述Y个编码速率与包括所述第一CQI表格的T个CQI表格对应,T和Y为大于1的整数。
  10. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传请求应答HARQ-ACK对应的下行数据传输所对应的MCS表格;
    所述处理单元还用于,根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;
    所述处理单元还用于,根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目;
    发送单元,用于在第一上行信道上发送所述第一HARQ-ACK。
  11. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一调制与编码方案MCS表格,所述第一MCS表格是第一混合自动重传应答请求HARQ-ACK对应的下行数据传输所对应的MCS表格;
    所述处理单元还用于,根据所述第一MCS表格,确定所述第一HARQ-ACK的传输参数,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的下行分配索引DAI总数、所述第一HARQ-ACK的MCS偏移值和所述第一HARQ-ACK的编码速率中的一种或多种;
    所述处理单元还用于,根据所述第一HARQ-ACK的传输参数,确定所述第一HARQ-ACK占据的资源数目或者调制编码符号数目;
    接收单元,用于根据所述第一HARQ-ACK占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一HARQ-ACK。
  12. 如权利要求10或11所述的通信装置,其特征在于,所述第一上行信道为上行数据信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的MCS偏移值;
    其中,所述处理单元具体用于:
    根据第一映射关系集和MCS偏移值比特域中的值,确定所述第一HARQ-ACK的MCS偏移值,其中,所述第一映射关系集为N个映射关系集中的一个,所述第一MCS表格为M个MCS表格中的一个,所述N个映射关系集与所述M个MCS表格对应,所述第一映射关系集与所述第一MCS表格对应,所述映射关系集包括HARQ-ACK的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,M和N为大于1的整数,所述MCS偏移值比特域是调度所述下行数据传输的下行控制信息DCI中的一个比特域。
  13. 如权利要求10或11所述的通信装置,其特征在于,所述第一上行信道为上行控制信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的编码速率;
    其中,所述处理单元具体用于:
    从S个编码速率中确定所述第一MCS表格对应的所述第一HARQ-ACK的编码速率, 所述S个编码速率与包括所述第一MCS表格的M个MCS表格对应,M和S为大于1的整数。
  14. 如权利要求10或11所述的通信装置,其特征在于,所述第一上行信道为上行数据信道,所述第一HARQ-ACK的传输参数包括所述第一HARQ-ACK的DAI总数;
    其中,所述处理单元具体用于:
    根据下行控制信息DCI的第一DAI比特域,确定所述第一HARQ-ACK的DAI总数,所述第一DAI比特域为所述DCI中的Q个DAI比特域中的一个,所述第一MCS表格为M个MCS表格中的一个,所述Q个DAI比特域与所述M个MCS表格对应,所述第一DAI比特域与所述第一MCS表格对应,所述下行控制信息用于调度所述下行数据传输,M和Q为大于1的整数。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于确定与第一信道状态信息CSI对应的第一信道质量指示CQI表格;
    所述处理单元还用于,根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;
    所述处理单元还用于,根据所述第一CSI的传输参数,确定所述第一CSI占据的资源数目或者调制编码符号数目;
    发送单元,用于在第一上行信道上发送所述第一CSI。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信道状态信息CSI对应的第一信道质量指示CQI表格;
    所述处理单元还用于,根据所述第一CQI表格,确定所述第一CSI的传输参数,所述第一CSI的传输参数包括所述第一CSI的调制与编码方案MCS偏移值和所述第一CSI的编码速率中的一种或两种;
    所述处理单元还用于,根据所述第一CSI的传输参数,确定所述第一CSI占据的资源数目或者调制编码符号数目;
    接收单元,用于根据所述第一CSI占据的资源数目或者调制编码符号数目,在第一上行信道上接收所述第一CSI。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第一上行信道为上行数据信道,所述第一CSI的传输参数包括所述第一CSI的MCS偏移值,所述第一CSI的MCS偏移值包括所述第一CSI的第一部分的MCS偏移值和所述第一CSI的第二部分的MCS偏移值;
    其中,所述处理单元具体用于:
    根据第一映射关系集组中的第一映射关系集和MCS偏移值比特域中的值,确定所述第一部分的MCS偏移值,以及根据第二映射关系集组中的第一映射关系集和MCS偏移值比特域中的值,确定所述第二部分的MCS偏移值,
    其中,每个映射关系集组包括V个映射关系集,所述第一映射关系集为所述V个映射关系集中的一个,所述V个映射关系集与T个CQI表格对应,所述第一CQI表格为所述T个CQI表格中的一个,所述第一CQI表格与所述第一映射关系集对应,所述第一映射关系集组中的每个映射关系集表示CSI的第一部分的比特数不同的情况下,MCS偏移 值比特域的取值与MCS偏移值的对应关系,所述第二映射关系集组中的每个映射关系集表示CSI的第二部分的比特数不同的情况下,MCS偏移值比特域的取值与MCS偏移值的对应关系,T和V为大于1的整数。
  18. 如权利要求15或16所述的通信装置,其特征在于,所述第一上行信道为上行控制信道,所述第一CSI的传输参数包括所述第一CSI的编码速率;
    其中,所述处理单元具体用于:
    从Y个编码速率中确定所述第一CQI表格对应的所述第一CSI的编码速率,所述Y个编码速率与包括所述第一CQI表格的T个CQI表格对应,T和Y为大于1的整数。
  19. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至5中任一项所述的方法。
  20. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求6至9中任一项所述的方法。
  21. 一种计算机可读存储介质,存储有计算机程序,当所述计算机程序被执行时,实现如权利要求1至9中任意一项所述的方法。
  22. 一种计算机程序产品,包括计算机程序,当所述计算机程序被运行时,如权利要求1至9中任一项所述的方法被执行。
  23. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5或6至9中任一项所述的方法。
PCT/CN2019/099990 2018-08-10 2019-08-09 传输上行控制信息的方法和通信装置 WO2020030113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810911047.1A CN110830158B (zh) 2018-08-10 2018-08-10 传输上行控制信息的方法和通信装置
CN201810911047.1 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020030113A1 true WO2020030113A1 (zh) 2020-02-13

Family

ID=69413237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099990 WO2020030113A1 (zh) 2018-08-10 2019-08-09 传输上行控制信息的方法和通信装置

Country Status (2)

Country Link
CN (1) CN110830158B (zh)
WO (1) WO2020030113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226992A1 (zh) * 2022-05-25 2023-11-30 华为技术有限公司 通信的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473606B (zh) * 2020-03-31 2024-07-16 华为技术有限公司 一种通信方法和装置
US11894921B2 (en) * 2020-04-03 2024-02-06 Qualcomm Incorporated Facilitating MCS use with varying features for UCI transmission
WO2022077193A1 (en) * 2020-10-12 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus and computer program product for obtaining channel state information
CN112994848B (zh) * 2021-04-15 2022-10-04 珠海泰芯半导体有限公司 Mcs的调整方法、装置、存储介质及无线节点
CN114025382B (zh) * 2021-08-30 2023-06-02 山东浪潮科学研究院有限公司 一种新空口系统中物理资源块数量的处理方法及装置
CN113612595B (zh) * 2021-09-07 2023-12-08 中信科移动通信技术股份有限公司 上行控制信息传输方法及装置
CN114257340B (zh) * 2021-12-21 2024-04-16 锐捷网络股份有限公司 一种传输速率的确定方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052572A (zh) * 2013-03-11 2014-09-17 北京三星通信技术研究有限公司 一种下行传输方法和用户终端设备
CN105850066A (zh) * 2013-12-27 2016-08-10 Lg电子株式会社 报告信道状态信息的方法和装置
CN106233649A (zh) * 2014-04-25 2016-12-14 高通股份有限公司 Lte上行链路中的调制编码方案(mcs)表指示

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710376B (zh) * 2009-12-07 2015-03-18 华为技术有限公司 传输上行控制信息的方法和装置
EP3089512A4 (en) * 2013-12-27 2017-01-25 Sharp Kabushiki Kaisha Terminal device and base station device
US11863330B2 (en) * 2016-11-04 2024-01-02 Lg Electronics Inc. Method for HARQ feedback in wireless communication system and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052572A (zh) * 2013-03-11 2014-09-17 北京三星通信技术研究有限公司 一种下行传输方法和用户终端设备
CN105850066A (zh) * 2013-12-27 2016-08-10 Lg电子株式会社 报告信道状态信息的方法和装置
CN106233649A (zh) * 2014-04-25 2016-12-14 高通股份有限公司 Lte上行链路中的调制编码方案(mcs)表指示

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HITACHI LTD: "Further Evaluation and Discussion on 256QAM", 3GPP TSG-RAN WGI #74B RI -134764, 11 October 2013 (2013-10-11), XP050717814 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226992A1 (zh) * 2022-05-25 2023-11-30 华为技术有限公司 通信的方法和装置

Also Published As

Publication number Publication date
CN110830158B (zh) 2022-07-12
CN110830158A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020030113A1 (zh) 传输上行控制信息的方法和通信装置
US11464019B2 (en) Downlink control information transmission method, device and network equipment
US20210345373A1 (en) Uplink information transmission method and communications apparatus
WO2020020128A1 (zh) 用于多波束发送上行信道的方法、终端设备和网络侧设备
EP3820220B1 (en) Transmission method and device for uplink control information and computer storage medium
WO2019096060A1 (zh) 上行控制信息传输方法和设备
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
WO2019233339A1 (zh) 传输信息的方法和通信设备
WO2017041305A1 (zh) 一种控制信息发送、接收方法、用户设备及网络设备
JP2021512516A (ja) データ再伝送に関するコードブックフィードバック
WO2019137467A1 (zh) 上行信息传输方法及装置
US20200245323A1 (en) Uplink control channel transmission method, terminal device and network device
CN111836366A (zh) 上行传输方法和通信装置
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
WO2020030025A1 (zh) 用于上报csi的方法和装置
WO2021031906A1 (zh) 配置时域资源的方法和装置
CN113677014A (zh) 一种确定反馈信息传输位置的方法及设备
US12003327B2 (en) Wireless communication method and apparatus in wireless communication device
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2020143813A1 (zh) 传输信息的方法和装置
WO2021031754A1 (zh) 传输反馈信息的方法和装置
WO2021022662A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021068140A1 (zh) 无线通信的方法、终端设备和网络设备
CN111669251B (zh) 传输块大小的确定方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846455

Country of ref document: EP

Kind code of ref document: A1