WO2017041305A1 - 一种控制信息发送、接收方法、用户设备及网络设备 - Google Patents
一种控制信息发送、接收方法、用户设备及网络设备 Download PDFInfo
- Publication number
- WO2017041305A1 WO2017041305A1 PCT/CN2015/089470 CN2015089470W WO2017041305A1 WO 2017041305 A1 WO2017041305 A1 WO 2017041305A1 CN 2015089470 W CN2015089470 W CN 2015089470W WO 2017041305 A1 WO2017041305 A1 WO 2017041305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uci
- occupied
- coded
- physical uplink
- bit sequence
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
- H04L1/0073—Special arrangements for feedback channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a control information sending method, a control information receiving method, a user equipment, and a network device.
- LTE-A Long Term Evolution Advanced
- the carrier aggregation technology is introduced.
- each downlink component carrier needs to be in the uplink direction.
- the channel state information is fed back, and the data scheduled on each downlink component carrier also needs to feed back its hybrid automatic retransmission acknowledgement information in the uplink direction, and thus appears in an uplink subframe and needs to report channel state information and mix.
- Automatically retransmit the acknowledgment information wherein the channel state information to be reported may correspond to one or more downlink carriers, and the hybrid automatic retransmission acknowledgment information to be reported may also correspond to one or more downlink carriers.
- Channel State Information includes periodic CSI and aperiodic CSI.
- the reporting mode of the periodic CSI on the PUCCH has multiple types, and the reporting content corresponding to different reporting types is different. The performance requirements of different reporting types are different because the reporting requirements of different reporting types are different.
- the base station semi-statically configures the periodic CSI reporting mode, the reporting period, and the subframe offset of each carrier by using the high-layer signaling, and the user equipment determines the reporting type corresponding to the CSI to be reported according to the reporting mode indicated by the high-level signaling, and according to the high-level letter
- the reported reporting period and the subframe offset are used to determine the reporting time of the CSI of each reporting type. For each carrier, only one reporting type CSI is reported for one reporting time.
- the reporting mode of the periodic CSI of different carriers may be the same or different. In the carrier aggregation scenario, channel state information of multiple downlink carriers needs to be reported in one subframe, and thus a subframe is reported from different carriers. CSI for different reporting
- the information of the channel CSI that is reported to be greater than one carrier is corresponding to multiple downlink carriers, and the reporting type of the periodic CSI corresponding to each downlink carrier may be the same or different; the hybrid automatic retransmission acknowledgement information to be reported may also correspond to One or more downlink carriers.
- the performance requirements of the CSI/PMI and the hybrid automatic retransmission acknowledgement information are also inconsistent due to the inconsistent performance requirements of the CSIs of different reporting types. How to ensure that the CSI and hybrid automatic retransmission acknowledgement information of different reporting types are met. Performance requirements are a problem that needs to be addressed.
- UCI Uplink Control Information
- this type of UCI can meet the performance goal in order to meet the performance target.
- the user equipment uses a higher transmit power when transmitting UCI, but for the UCI with lower performance requirements, the transmit power is too high. High, thereby wasting the transmission power of the user equipment, making power utilization inefficient.
- This scheme is not applicable for power limited user equipment. If the power of the user equipment is limited, the user equipment cannot increase the transmission power, and thus the UCI of the type with higher performance target cannot be achieved by the method of increasing the transmission power.
- the embodiments of the present invention provide a control information sending method, a control information receiving method, a user equipment, and a network device, so that different UCIs meet respective performance target requirements, and the UCI is improved according to the highest performance requirement.
- the first aspect provides a method for transmitting control information, including: acquiring resources occupied by the first uplink control information UCI, and acquiring resources occupied by the second UCI; and according to the resources occupied by the first UCI, the first UCI performs channel coding to obtain a coded bit sequence of the first UCI, and Performing channel coding on the second UCI to obtain a coded bit sequence of the second UCI according to the resource occupied by the second UCI, where the first UCI includes a first reporting type CSI and a hybrid automatic retransmission acknowledgement a message HARQ-ACK, the second UCI includes a CSI of a second reporting type; or the first UCI includes a hybrid automatic repeat acknowledgement message HARQ-ACK, the second UCI including a first reported type of CSI and/or a second reporting type CSI; mapping the encoded bit sequence of the first UCI and the encoded bit sequence of the second UCI to a physical uplink channel; and transmitting the physical uplink channel.
- the resource is a number of modulation symbols
- performing channel coding on the first UCI according to the resource occupied by the first UCI Encoding a bit sequence of the first UCI, and performing channel coding on the second UCI to obtain a coded bit sequence of the second UCI according to the resource occupied by the second UCI, including: modulating according to the first UCI occupancy Obtaining, by the number of symbols, the number of coded bits occupied by the first UCI, and acquiring the number of coded bits occupied by the second UCI according to the number of modulation symbols occupied by the second UCI; and occupying according to the first UCI
- the number of coded bits is used to perform channel coding on the first UCI, obtain a coded bit sequence of the first UCI, and perform channel coding on the second UCI according to the number of coded bits occupied by the second UCI, to obtain the first Two coded bit sequences of UCI.
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q′ is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the number of coded bits occupied by the first UCI is obtained according to the number of modulation symbols occupied by the first UCI
- the method includes: obtaining the number of coded bits occupied by the first UCI in the following manner:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the resource is a coded bit number
- the first UCI is channel coded according to the resource occupied by the first UCI to obtain the Encoding a bit sequence of a UCI
- performing channel coding on the second UCI to obtain a coded bit sequence of the second UCI according to the resource occupied by the second UCI, including: coding bits occupied according to the first UCI Performing channel coding on the first UCI, obtaining a coded bit sequence of the first UCI, and performing channel coding on the second UCI according to the number of coded bits occupied by the second UCI to obtain the second UCI Encoded bit sequence.
- the acquiring by the following, the resource occupied by the first UCI, Number of bits Q 1 : or
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI,
- Q m is the modulation order.
- the coded bit of the first UCI is And mapping the sequence and the coded bit sequence of the second UCI to the physical uplink channel, including: converting the coded bit sequence of the first UCI into the code vector sequence of the first UCI, and encoding the second UCI Converting a bit sequence into a coded vector sequence of the second UCI; and interleaving the coded vector sequence of the first UCI and the coded vector sequence of the second UCI to obtain a coded bit sequence of the UCI; A coded bit sequence is mapped to the physical upstream channel.
- the coding vector sequence of the first UCI and the coding vector sequence of the second UCI are interleaved Obtaining a coded bit sequence of the UCI, comprising: writing the code vector sequence of the first UCI into a matrix in a row; and dividing the code vector sequence of the second UCI into the matrix, except that the code is written a location other than the UCI code vector sequence; reading the sequence in the order of the columns The coded bits of each column in the matrix are used to obtain a coded bit sequence of UCI.
- the coded bit of the first UCI is Mapping the coded bit sequence of the second UCI to the physical uplink channel, comprising: modulating the coded bit sequence of the first UCI and the coded bit sequence of the second UCI to obtain a coded vector sequence; or Modulating a coded bit sequence of the first UCI and the coded bit sequence of the second UCI to obtain a coded vector sequence of the first UCI and a coded vector sequence of the second UCI, respectively; and the coded vector sequence or the first
- the coded vector sequence of the UCI and the coded vector sequence of the second UCI are mapped to the physical uplink channel in a pre-frequency domain post-time domain manner or a first time domain post-frequency domain manner.
- the CSI of the first reporting type includes At least one of the following: type Types 3; Types 5; Types 6; Types 2a; periodic CSI for beam indication;
- the CSI of the second reporting type includes at least one of the following: Types 2; Types 2b; Types 2c; Types 4; Types 1; Types 1a.
- the first UCI further includes a scheduling request SR.
- a second aspect provides a control information receiving method, including: receiving a physical uplink channel; acquiring a coded bit sequence of a first UCI and a coded bit sequence of a second UCI in the physical uplink channel; acquiring a first uplink Controlling the resources occupied by the UCI, and acquiring the resources occupied by the second UCI; performing channel decoding on the coded bit sequence of the first UCI according to the resources occupied by the first UCI to obtain the first UCI, and according to the second The resource occupied by the UCI performs channel decoding on the coded bit sequence of the second UCI to obtain the second UCI;
- the first UCI includes a first reporting type CSI and a hybrid automatic retransmission acknowledgement message HARQ-ACK
- the second UCI includes a second reporting type CSI
- the hybrid automatic repeat acknowledgement message HARQ-ACK is included
- the second UCI includes a CSI of a first reporting type and/or a CSI of a second reporting type.
- the resource is a number of modulation symbols
- performing channel translation on the coded bit sequence of the first UCI according to the resource occupied by the first UCI Obtaining a first UCI, and performing channel decoding on the coded bit sequence of the second UCI according to the resource occupied by the second UCI to obtain the second UCI, including: acquiring, according to the resource occupied by the first UCI a modulation symbol corresponding to the first UCI on the physical uplink channel, and acquiring a modulation symbol corresponding to the second UCI on the physical uplink channel according to the resource occupied by the second UCI; corresponding to the first UCI Modulating a channel, performing channel decoding on the first UCI, obtaining the first UCI transmitted by the UE, and performing channel decoding on the second UCI according to the modulation symbol corresponding to the second UCI, to obtain a location of the UE transmission.
- Said second UCI Said second UCI.
- acquiring the resources occupied by the first UCI includes:
- the number of modulation symbols Q' 1 occupied by the first UCI is determined according to one of the following manners:
- Obtaining the resource occupied by the second UCI including: determining, according to one of the following manners, the number of modulation symbols Q' 2 occupied by the second UCI:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q′ is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel. Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the number of coded bits occupied by the first UCI is obtained as follows:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the resource is a coded bit number
- the coded bit sequence of the first UCI is channel-decoded according to the resource occupied by the first UCI Obtaining the first UCI, and performing channel decoding on the coded bit sequence of the second UCI according to the resource occupied by the second UCI to obtain the second UCI, including:
- the acquiring the resource occupied by the first UCI includes: acquiring the code occupied by the first UCI in the following manner Number of bits Q 1 :
- Acquiring the resource occupied by the second UCI includes: obtaining the coded bit number Q 2 occupied by the second UCI in the following manner:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI,
- Q m is the modulation order.
- the coded bit sequence of the first UCI according to the resource occupied by the first UCI Performing channel decoding to obtain a first UCI, and performing channel decoding on the coded bit sequence of the second UCI according to the resource occupied by the second UCI to obtain the second UCI, including: acquiring UCI on the physical uplink channel a coded bit sequence; deinterleaving the coded bit sequence of the UCI to obtain a code vector sequence of the first UCI and a code vector sequence of the second UCI; converting the code vector sequence of the first UCI into the first UCI A bit sequence is encoded and the encoded vector sequence of the second UCI is converted to a coded bit sequence of the second UCI.
- the coded bit sequence of the UCI is deinterleaved to obtain a coded vector sequence of the first UCI and a second
- the encoded vector sequence of the UCI includes: sequentially reading the coded bits of each column in the matrix in the order of the columns to obtain a coded bit sequence of the UCI; obtaining a coded vector sequence of the first UCI in the matrix according to the row; A code vector sequence of the second UCI is obtained in a matrix other than the code vector sequence from which the first UCI has been obtained.
- the coded bit sequence of the first UCI in the physical uplink channel is acquired
- the coded bit sequence of the second UCI includes: obtaining, in the physical uplink channel, a coded vector sequence or a code of the first UCI in a manner of a first time domain followed by a frequency domain or a first frequency domain followed by a time domain a vector sequence and a code vector sequence of the second UCI; demodulating the code vector sequence, or demodulating the code vector sequence of the first UCI and the code vector sequence of the second UCI to obtain the code of the first UCI a bit sequence and a coded bit sequence of the second UCI.
- the CSI of the first reporting type includes at least one of the following: Type Types 3; Types 5; Types 6; Types 2a;
- the CSI of the second reporting type includes at least one of the following:
- the first UCI further includes a scheduling request SR.
- a third aspect provides a user equipment, including: a processing module, configured to acquire a resource occupied by the first uplink control information UCI, and acquire a resource occupied by the second UCI; and according to the resource occupied by the first UCI,
- the first UCI performs channel coding to obtain a coded bit sequence of the first UCI, and performs channel coding on the second UCI to obtain a coded bit sequence of the second UCI according to resources occupied by the second UCI, where
- the first UCI includes a CSI of a first reporting type and a hybrid automatic retransmission acknowledgement message HARQ-ACK
- the second UCI includes a CSI of a second reporting type
- the first UCI includes a hybrid automatic retransmission acknowledgement message a HARQ-ACK
- the second UCI includes a CSI of a first reporting type and/or a CSI of a second reporting type
- the resource is a number of modulation symbols
- the processing module is configured to obtain, according to the number of modulation symbols occupied by the first UCI, The number of coded bits occupied by the first UCI, and the number of coded bits occupied by the second UCI is obtained according to the number of modulation symbols occupied by the second UCI; according to the number of coded bits occupied by the first UCI
- the first UCI performs channel coding, obtains a coded bit sequence of the first UCI, and performs channel coding on the second UCI according to the number of coded bits occupied by the second UCI.
- the encoded bit sequence of the second UCI is a number of modulation symbols
- the processing module is specifically configured to determine the first UCI according to one of the following manners The number of modulation symbols occupied Q' 1 :
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to one of the following ways:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q′ is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the processing module is configured to obtain, according to the following manner, the number of coded bits occupied by the first UCI :
- processing module is specifically configured to acquire the code of the second UCI occupation according to the following manner Number of code bits:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the resource is a coded bit number
- the processing module is configured to use, according to the number of coded bits occupied by the first UCI, A UCI performs channel coding to obtain a coded bit sequence of the first UCI, and performs channel coding on the second UCI according to the number of coded bits occupied by the second UCI to obtain a coded bit sequence of the second UCI.
- the processing module is configured to obtain, according to the following manner, the number of coded bits occupied by the first UCI Q 1 :
- the processing module is specifically configured to obtain the coded bit number Q 2 occupied by the second UCI in the following manner:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI,
- Q m is the modulation order.
- the processing module is specifically configured to be used Converting the encoded bit sequence of the first UCI into the encoded vector sequence of the first UCI, and converting the encoded bit sequence of the second UCI into the encoded vector sequence of the second UCI;
- the coded vector sequence of the UCI and the coded vector sequence of the second UCI are interleaved to obtain a coded bit sequence of the UCI; and the coded bit sequence of the UCI is mapped to the physical uplink channel.
- the processing module is specifically configured to write the coding vector sequence of the first UCI into a matrix by row And encoding the code vector sequence of the second UCI into a position other than the code vector sequence written in the first UCI in the matrix; sequentially reading out the columns in the matrix in the order of the columns The bits are encoded to obtain a coded bit sequence of UCI.
- the processing module is specifically configured to be used Modulating a coded bit sequence of the first UCI and a coded bit sequence of the second UCI to obtain a coded vector sequence; or modulating the coded bit sequence of the first UCI and the coded bit sequence of the second UCI Obtaining a code vector sequence of the first UCI and a code vector sequence of the second UCI, respectively; performing the coded vector sequence or the coded vector sequence of the first UCI and the coded vector sequence of the second UCI in a pre-frequency domain time domain
- the way to the physical upstream channel is either the way of the first time domain or the frequency domain.
- the first report obtained by the processing module includes at least one of the following: Type Types 3; Types 5; Types 6; Types 2a; periodic CSI for beam indication; CSI of the second reporting type includes the following At least one: Types 2; Types 2b; Types 2c; Types 4; Types 1; Types 1a.
- the first UCI acquired by the processing module It also includes a scheduling request SR.
- a network device including: a receiving module, configured to receive a physical uplink channel; and a processing module, configured to acquire a coded bit sequence of the first UCI and a second UCI in the physical uplink channel Encoding a bit sequence; acquiring a resource occupied by the first uplink control information UCI, and acquiring a resource occupied by the second UCI; performing channel decoding on the coded bit sequence of the first UCI according to the resource occupied by the first UCI UCI, and performing channel decoding on the coded bit sequence of the second UCI according to the resource occupied by the second UCI to obtain the second UCI;
- the first UCI includes a CSI of a first reporting type and a hybrid automatic retransmission acknowledgement message HARQ-ACK
- the second UCI includes a CSI of a second reporting type
- the first UCI includes a hybrid automatic retransmission acknowledgement.
- Message HARQ-ACK the second UCI includes a CSI of a first reporting type and/or a CSI of a second reporting type.
- the resource is a number of modulation symbols
- the processing module is configured to acquire, according to the resource occupied by the first UCI, a physical uplink channel. a modulation symbol corresponding to the first UCI, and acquiring, according to the resource occupied by the second UCI, a modulation symbol corresponding to the second UCI on a physical uplink channel; according to a modulation symbol pair corresponding to the first UCI
- the first UCI performs channel decoding to obtain the first UCI transmitted by the UE, and performs channel decoding on the second UCI according to the modulation symbol corresponding to the second UCI, to obtain the second transmission by the UE.
- the processing module is specifically configured to determine the first UCI according to one of the following manners The number of modulation symbols occupied Q' 1 :
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to one of the following ways:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q′ is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the processing module is configured to obtain, according to the following manner, the number of coded bits occupied by the first UCI:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the resource is a coded bit number
- the processing module is configured to use, according to the number of coded bits occupied by the first UCI,
- the first UCI performs channel decoding, obtains a coded bit sequence of the first UCI, and performs channel decoding on the second UCI according to the number of coded bits occupied by the second UCI to obtain the second UCI. Encoded bit sequence.
- the processing module is configured to obtain, according to the following manner, the number of coded bits occupied by the first UCI Q 1 :
- O 1 is the number of information bits of the first UCI to be transmitted
- O 2 is the number of information bits of the second UCI to be transmitted
- Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot
- the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel
- Q m is the modulation order.
- the processing module is configured to acquire a coded bit of the UCI on the physical uplink channel. a sequence; deinterleaving the coded bit sequence of the UCI to obtain a code vector sequence of the first UCI and a code vector sequence of the second UCI; converting the code vector sequence of the first UCI into the coded bit sequence of the first UCI And converting the encoded vector sequence of the second UCI to The encoded bit sequence of the second UCI.
- the processing module is specifically configured to sequentially read coded bits of each column in the matrix in a column order. Obtaining a coded bit sequence of UCI; obtaining a code vector sequence of the first UCI in a row in the matrix; obtaining a second UCI in the matrix except for a position other than the code vector sequence of the first UCI Coding vector sequence.
- the processing module is specifically used in the physical Obtaining, in the uplink channel, a coded vector sequence or a coded vector sequence of the first UCI and a coded vector sequence of the second UCI in a manner of a first time domain post-frequency domain or a first frequency domain followed by a time domain; the coding vector The sequence is demodulated, or the code vector sequence of the first UCI and the code vector sequence of the second UCI are demodulated to obtain a coded bit sequence of the first UCI and a coded bit sequence of the second UCI.
- the processing module obtains the first report
- the CSI of the type includes at least one of the following: Type Types 3; Types 5; Types 6; Types 2a; Periodic CSI for Beam Indication;
- CSI of the second reporting type includes at least one of the following: Types 2; Types 2b; Types 2c; Types 4; Types 1; Types 1a.
- the processing module obtains the first UCI It also includes a scheduling request SR.
- FIG. 1 is a flowchart of a method for transmitting control information according to Embodiment 1 of the present invention
- FIG. 2 is a schematic structural diagram of a physical uplink control channel format 4 or 5;
- FIG. 3 is a schematic structural diagram of a modified PUCCH format 3
- FIG. 4 is a schematic diagram of mapping a first UCI and a second UCI to a PUCCH
- FIG. 5 is a schematic structural diagram of a structure of a user equipment according to Embodiment 1 of the present invention.
- FIG. 6 is a second schematic structural diagram of a user equipment according to Embodiment 1 of the present invention.
- FIG. 7 is a flowchart of a control information transmission and reception according to Embodiment 2 of the present invention.
- FIG. 8 is a schematic structural diagram of a structure of a network device according to Embodiment 2 of the present invention.
- FIG. 9 is a second schematic structural diagram of a network device according to Embodiment 2 of the present invention.
- the UE uses higher transmit power when transmitting UCI, but for the UCI of the type with lower performance requirements, the transmit power is too high, thereby wasting the UE's transmit power, making power utilization inefficient, and power limited.
- the user device does not work for this scenario.
- the UE power is limited, the transmission power cannot be increased, and thus the UCI of the performance target is not required to achieve the performance requirement by increasing the transmission power.
- the first The UCI and the second UCI are independently coded, and the resources corresponding to the first UCI and the second UCI can be allocated according to the performance requirements of different UCIs, ensuring that different UCIs meet their respective performance target requirements, and avoiding the UCI improvement according to the highest performance requirements. Transmit power, which increases power utilization efficiency.
- GSM Global System for Mobile Communications
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- UE User Equipment
- RAN Radio Access Network
- the computer of the terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
- the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB) in LTE.
- BTS Base Transceiver Station
- NodeB base station
- eNB evolved base station
- e-NodeB evolved base station
- Embodiment 1 of the present invention provides a method for transmitting control information, as shown in FIG. 1 , and the specific processing flow thereof is as follows:
- Step 11 Acquire resources occupied by the first UCI, and acquire resources occupied by the second UCI.
- the first UCI is a channel state information (CSI) of the first reporting type and a Hybrid Automatic Repeat Request ACKnowledge (HARQ-ACK), or the first UCI is of the first reporting type.
- the CSI, the HARQ-ACK, and the Scheduling Request (SR), and the second UCI is the second reporting type CSI.
- the first UCI includes a HARQ-ACK
- the second UCI includes a CSI
- the CSI may be a first reporting type CSI or a second reporting type CSI.
- CSI includes the following types:
- Type 1 supports sub-band channel quality indicator (CQI) feedback selected by the UE.
- CQI sub-band channel quality indicator
- Type 1a (Type 1a), supports sub-band CQI and Precoding Matrix Indicator (PMI) feedback.
- PMI Precoding Matrix Indicator
- Type 2a (Type 2a), supports broadband PMI feedback.
- Type 3 supports Rank Indication (RI) feedback.
- Type 4 supports wideband CQI feedback.
- Type 5 supports RI and wideband PMI feedback.
- Type 6 supports Type RI and PTI feedback.
- the eighth type periodic CSI for beam indication.
- a periodic CSI reporting type is introduced in the LTE R13, and the reported content is an index of the beam, which may be referred to as a periodic CSI type corresponding to the beam indication.
- the performance requirements of some reporting types are higher than those of other reporting types.
- the different types of periodic CSIs of the multi-carrier are classified into two types, which are the CSI of the first reporting type and the second reporting type, respectively.
- CSI The CSI of the first reporting type includes: Types 3, 5, 6, 2a, at least one of the periodic CSI types corresponding to the beam indication; and the CSI of the second reporting type includes: Types 2, 2b, 2c, 4, Types 1, 1a At least one of them.
- the first UCI includes a CSI and a HARQ-ACK of a first reporting type; or the first UCI includes a CSI, a HARQ-ACK, and an SR of a first reporting type.
- the second UCI includes a CSI of a second escalation type.
- the first UCI includes HARQ-ACK.
- the second UCI includes the CSI, and the CSI may be the first reporting type CSI or the second reporting type CSI.
- the performance requirement of the first UCI reporting type is higher than the second UCI reporting type, and the first UCI reporting type may include the types 3, 5, 6, 2a and at least one of the periodic CSI types corresponding to the beam indication; the second UCI reporting type may include at least one of types 2, 2b, 2c, 4, 1, 1a.
- the resource occupied by the first UCI, the resource occupied by the first UCI, the resource may be the number of modulation symbols, or the number of coded bits.
- the resource occupied by the second UCI, the resource may be the number of modulation symbols, or the number of coded bits, which are respectively described in detail below.
- the resources occupied by the first UCI and the second UCI are the number of modulation symbols, the resources occupied by the first UCI and the second UCI may be obtained as follows:
- the first mode determining the number of modulation symbols occupied by the first UCI as Q' 1 according to the following formula 1 :
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted.
- the ⁇ offset is the value of the semi-static configuration of the higher layer signaling or a predetermined value.
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to the following formula 2 :
- Q' is the capacity of the physical uplink channel, which can be determined according to the following formula 3:
- the number of subcarriers allocated to the physical uplink channel can be determined by Equation 4 below.
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel can be determined by the following formula 5:
- the number of time domain symbols occupied by the physical uplink channel of one time slot, and the N DMRS is the number of symbols used for transmitting the DMRS pilot signal by one subframe of the physical uplink channel.
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted.
- the corresponding O 1 is the information length of the first UCI including the length of the CRC
- the corresponding O 2 is the information length of the second UCI including the length of the CRC.
- the number of time domain symbols occupied by the physical uplink channel for one time slot in the case of a normal cyclic prefix (CP), The value is 7, in the case of extended CP
- the value of the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical channel.
- the value of the N DMRS is 1;
- the value of the N SRS is the number of time domain symbols used for transmitting the SRS in the subframe.
- the value of the N SRS is 1.
- the value of the N SRS is 0.
- V SF is a value of a spreading factor (SF)
- N DMRS is 4.
- the physical uplink channel is a channel structure as shown in FIG. 3, the value of V SF is 3, and the value of N DMRS is 2.
- the second mode determining the number of modulation symbols occupied by the first UCI as Q' 1 according to the following formula 6:
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to the above formula 2 :
- Equation 6 For the meaning of the parameters in Equation 6, please refer to the detailed explanation in Equations 1 to 5 above.
- the third mode determining the number of modulation symbols Q' 1 occupied by the first UCI according to the following formula 7:
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to the following formula 8 or the above formula 2 :
- the number of time domain symbols used for transmitting the first UCI may be a value of a high-level semi-static notification, or may be a predetermined value, for example, the value is 4;
- the values are the same as those in the second mode described above, and are not described in detail here;
- Q' is consistent with the parameters of the first mode and will not be described in detail herein.
- the number of time domain symbols used for transmitting the first UCI which may be a value of a high-level semi-static notification, or may be a predetermined value, for example, the value is 4;
- the value is the same as that of the second method, and is not described in detail here;
- Q' is consistent with the first method and will not be described in detail here. Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the resources occupied by the first UCI and the second UCI are the number of coded bits, the resources occupied by the first UCI and the second UCI may be obtained as follows:
- the first way determining the number of coded bits Q 1 occupied by the first UCI according to the following formula 9:
- the number of coded bits Q 2 occupied by the second UCI is determined according to the following formula 10:
- the number of coded bits Q 2 occupied by the second UCI is determined according to the following formula 12:
- each parameter means that O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and
- Q is the capacity of the physical uplink channel, which can be determined according to the following formula 13:
- N PRB is the number of RBs allocated to the physical uplink channel
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel can be determined by the following formula 14:
- the number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI, Q m is the modulation order.
- the number of coded bits Q 2 occupied by the second UCI is determined according to the following formula 16:
- Q '1 is the number of a first modulation symbols occupied by UCI
- Q' 2 is the number of second modulation symbols occupied by UCI
- Q m is the modulation order.
- Step 12 Perform channel coding on the first UCI to obtain a coded bit sequence of the first UCI according to resources occupied by the first UCI, and perform channel coding on the second UCI according to resources occupied by the second UCI to obtain coded bits of the second UCI. sequence.
- the channel coding obtains the coded bit sequence of the second UCI, which can be performed in two ways according to different resources:
- the first mode is: when the resource is the number of modulation symbols, the number of coding bits occupied by the first UCI is calculated according to the number of modulation symbols occupied by the first UCI, and the second UCI occupation is calculated according to the number of modulation symbols occupied by the second UCI.
- Encoding the number of bits performing channel coding on the first UCI according to the number of coded bits occupied by the first UCI, obtaining a coded bit sequence of the first UCI, and performing channel coding on the second UCI according to the number of coded bits occupied by the second UCI The encoded bit sequence of the second UCI.
- the resource is the number of modulation symbols
- the resource is the number of modulation symbols
- first according to the obtained number of modulation symbols occupied by the first UCI and the number of modulation symbols occupied by the second upper UCI.
- coded bits of a UCI and the number of coded bits of the second UCI please refer to the detailed description in Equations 15 to 16 above.
- the second mode is: performing channel coding on the first UCI according to the number of coded bits occupied by the first UCI when the resource is the number of coded bits, obtaining the coded bit sequence of the first UCI, and according to the number of coded bits occupied by the second UCI
- the second UCI performs channel coding to obtain a coded bit sequence of the second UCI.
- channel coding is performed on the first UCI and the second UCI according to the obtained number of coded bits of the first UCI and the number of coded bits of the second UCI, to obtain a coded bit sequence of the first UCI. And the encoded bit sequence of the second UCI
- Step 12 performing channel coding on the first UCI to obtain a coded bit sequence of the first UCI according to the resource occupied by the first UCI, and performing channel coding on the second UCI according to the resource occupied by the second UCI to obtain a code of the second UCI.
- the specific implementation of the bit sequence is:
- Reed-Muller (32, O) is used when the total number of information bits of the first UCI to be transmitted or the total number of information bits of the second UCI to be transmitted is less than or equal to 11 bits.
- the code is encoded.
- double Red Miller RM (32, O) is used.
- the code is encoded, and the total number of information bits of the first UCI to be transmitted or the total number of information bits of the second UCI to be transmitted is greater than 22 bits using a Tail biting convolutional code (TBCC) or a Turbo code. Channel coding is performed and a CRC is attached.
- TBCC Tail biting convolutional code
- Turbo code Turbo code
- the resources occupied by the first uplink control information UCI are acquired, and the resources occupied by the second UCI are acquired, according to the first UCI occupation.
- the resource is obtained by performing channel coding on the first UCI to obtain a coded bit sequence of the first UCI, and performing channel coding on the second UCI to obtain a sequence of execution of the coded bit sequence of the second UCI according to resources occupied by the second UCI,
- the first UCI is obtained by performing channel coding on the first UCI according to the resources occupied by the first UCI, and obtaining the coded bit sequence of the first UCI to obtain the second UCI occupied by the resource occupied by the first UCI.
- the resource performs channel coding on the second UCI to obtain the sequence of the coded bit sequence of the second UCI, and may also acquire the resource occupied by the second uplink control information UCI according to the resource occupied by the second UCI. And performing channel coding on the second UCI to obtain a coded bit sequence of the second UCI, acquiring resources occupied by the first UCI, and occupying according to the first UCI.
- the resource is used to perform channel coding on the first UCI to obtain the sequence of the coded bit sequence of the first UCI.
- step 13 the coded bit sequence of the first UCI and the coded bit sequence of the second UCI are mapped to the physical uplink channel.
- step 13 the coded bit sequence of the first UCI and the coded bit sequence of the second UCI may be mapped to the physical uplink channel in the following manner:
- Step 1 Convert the coded bit sequence of the first UCI into the code vector sequence of the first UCI, and convert the coded bit sequence of the second UCI into the coded vector sequence of the second UCI.
- Step 2 Perform channel interleaving on the code vector sequence of the first UCI and the code vector sequence of the second UCI to obtain a coded bit sequence of the UCI.
- the first UCI and the second UCI may not be limited to:
- the first UCI includes a CSI and a HARQ-ACK of a first reporting type
- the second UCI is a CSI of a second reporting type.
- the first UCI may also include only the HARQ-ACK, and the second UCI may include only the CSI, where the CSI may be the CSI of the first reporting type and the CSI of the second reporting type.
- Coding vector sequence for the first uplink control information And a second uplink control information coding vector sequence Perform channel interleaving.
- Coding vector sequence for the first UCI And the second UCI coding vector sequence Cascading the coding vector sequence of the first UCI And the second UCI coding vector sequence Write to the following matrix:
- the coded information bits of each column in the matrix are sequentially read out to obtain the coded bit sequences h 0 , h 1 , h 2 , . . . , h Q1+Q2-1 of the UCI .
- the coded bits of each column in the matrix are read out in turn, which means that the column by column means that the first column is read first, and the second column is read after reading the first column.
- Step 3 Map the coded bit sequence of the UCI obtained after channel interleaving to the physical uplink channel.
- the frequency domain post-time domain mode or the first-time domain post-frequency domain mode is mapped to the physical uplink channel.
- the resource mapping diagrams of the first uplink control information and the second uplink control information are respectively shown in FIG. 4 .
- the second mode the coded bit sequence of the first UCI and the coded bit sequence of the second UCI are cascaded to obtain a cascoded bit sequence, and the cascoded bit sequence is modulated to obtain a coded vector sequence.
- the coded vector sequence is transmitted to the base station by performing a pre-frequency domain post-time domain manner or a first-time domain post-frequency domain manner.
- the coded bit sequence of the first UCI and the coded bit sequence of the second UCI are modulated to obtain a coded vector sequence of the first UCI and a coded vector sequence of the second UCI, respectively, and the coded vector sequence of the first UCI is obtained. And concatenating the code vector sequence of the second UCI to obtain a code vector sequence.
- step 14 the physical uplink channel is transmitted.
- the physical uplink channel is sent to the relay, or the physical uplink channel is sent to the base station.
- a user equipment is also proposed in Embodiment 1 of the present invention.
- the user equipment can implement the foregoing method embodiments. Therefore, the specific content can refer to the description in the foregoing embodiment.
- the user equipment includes a processing module 501 and a sending module 502.
- the processing module 501 is configured to acquire the resource occupied by the first uplink control information UCI, and acquire the resource occupied by the second UCI; perform channel coding on the first UCI according to the resource occupied by the first UCI to obtain the first Encoding a bit sequence of the UCI, and performing channel coding on the second UCI to obtain a coded bit sequence of the second UCI according to the resource occupied by the second UCI, where the first UCI includes a first report type CSI and hybrid automatic repeat acknowledgement message HARQ-ACK, the second UCI includes CSI of a second reporting type, or the first UCI includes a hybrid automatic repeat acknowledgement message HARQ-ACK, and the second UCI includes the first a CSI of a reporting type and/or a CSI of a second reporting type; mapping the encoded bit sequence of the first UCI and the encoded bit sequence of the second UCI to a physical uplink channel.
- the foregoing processing module 501 is specifically configured to determine, according to one of the methods described in the foregoing embodiments, the number of modulation symbols Q' 1 occupied by the first UCI.
- the foregoing processing module 501 is specifically configured to obtain the coded bit number Q 1 occupied by the first UCI in the following manner:
- the processing module 501 is specifically configured to obtain the coded bit number Q 2 occupied by the second UCI in the following manner:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI,
- Q m is the modulation order.
- the foregoing processing module 501 is specifically configured to obtain the number of coded bits occupied by the first UCI in the following manner:
- the foregoing processing module 501 is specifically configured to obtain, according to the following manner, the number of coded bits occupied by the second UCI:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols representing UCI used, Q m is the modulation order.
- the resource is a coded bit number.
- the processing module 501 is configured to perform channel decoding on the first UCI according to the number of coded bits occupied by the first UCI, to obtain the coded bit of the first UCI. And performing channel decoding on the second UCI according to the number of coded bits occupied by the second UCI to obtain a coded bit sequence of the second UCI.
- the foregoing processing module 501 is specifically configured to obtain the coded bit number Q 1 occupied by the first UCI in the following manner:
- the processing module 501 is specifically configured to acquire the coded bit number Q 2 occupied by the second UCI in the following manner:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI,
- Q m is the modulation order.
- the first UCI acquired by the processing module 501 further includes a scheduling request SR.
- the CSI of the first reporting type obtained by the processing module 501 includes at least one of the following types: Type Types 3; Types 5; Types 6; Types 2a; periodic CSI for beam indication;
- the CSI of the second reporting type includes at least one of the following: Types 2; Types 2b; Types 2c; Types 4; Types 1; Types 1a.
- the processing module 501 is configured to acquire, according to the number of modulation symbols occupied by the first UCI, the number of coded bits occupied by the first UCI, and according to the second UCI Acquiring the number of modulation symbols, acquiring the number of coded bits occupied by the second UCI; performing channel coding on the first UCI according to the number of coded bits occupied by the first UCI, obtaining a coded bit sequence of the first UCI And performing channel coding on the second UCI according to the number of coded bits occupied by the second UCI to obtain a coded bit sequence of the second UCI.
- the foregoing processing module 501 is specifically configured to obtain the number of coded bits occupied by the first UCI in the following manner:
- processing module 501 is configured to obtain, according to the following manner, the number of coded bits occupied by the second UCI:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the processing module 501 is configured to perform channel coding on the first UCI according to the number of coded bits occupied by the first UCI, to obtain a coded bit sequence of the first UCI. And performing channel coding on the second UCI according to the number of coded bits occupied by the second UCI to obtain a coded bit sequence of the second UCI.
- the processing module 501 is specifically configured to convert the coded bit sequence of the first UCI into the coded vector sequence of the first UCI, and convert the coded bit sequence of the second UCI into the second a coding vector sequence of the UCI; interleaving the coded vector sequence of the first UCI and the coded vector sequence of the second UCI to obtain a coded bit sequence of the UCI; mapping the coded bit sequence of the UCI to the physics Upstream channel.
- the processing module 501 is specifically configured to write the code vector sequence of the first UCI into a matrix in a row; and enter the code vector sequence of the second UCI into the matrix, Positions other than the code vector sequence of the first UCI; the coded bits of the columns in the matrix are sequentially read out in the order of the columns to obtain a coded bit sequence of the UCI.
- the foregoing processing module 501 is specifically configured to: modulate the coded bit sequence of the first UCI and the coded bit sequence of the second UCI to obtain a coded vector sequence; or encode the bit sequence of the first UCI And modulating the coded bit sequence of the second UCI to obtain a coded vector sequence of the first UCI and a coded vector sequence of the second UCI, respectively; and the coded vector sequence or the coded vector sequence of the first UCI and the second
- the coded vector sequence of the UCI is mapped to the physical uplink channel in a pre-frequency domain post-time domain manner or a first time domain post-frequency domain manner.
- the sending module 502 is configured to send the physical uplink channel.
- an embodiment of the present invention provides a user equipment, where the user equipment includes a processor 61 and a transmitter 62, where:
- the processor 61 is configured to acquire the resource occupied by the first uplink control information UCI, and acquire the resource occupied by the second UCI; perform channel coding on the first UCI according to the resource occupied by the first UCI to obtain the first Encoding a bit sequence of the UCI, and performing channel coding on the second UCI to obtain a coded bit sequence of the second UCI according to the resource occupied by the second UCI, where the first UCI includes a first report type CSI and hybrid automatic repeat acknowledgement message HARQ-ACK, the second UCI includes CSI of a second reporting type, or the first UCI includes a hybrid automatic repeat acknowledgement message HARQ-ACK, and the second UCI includes the first a CSI of a reporting type and/or a CSI of a second reporting type; mapping the encoded bit sequence of the first UCI and the encoded bit sequence of the second UCI to a physical uplink channel.
- the transmitter 62 is configured to send the physical uplink channel.
- the transmitter 62 can also perform other operations performed by the transmitting module 502 shown in FIG. 5, and the processor 61 can also perform other operations performed by the processing module 501 shown in FIG. 5.
- the processor can be a central processing unit (CPU) or a CPU And the combination of hardware chips.
- the processor can also be a network processor (NP). Either a combination of CPU and NP, or a combination of NP and hardware chips.
- NP network processor
- the hardware chip may be a combination of one or more of the following: an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and a complex programmable logic device (complex) Programmable logic device, CPLD).
- ASIC application-specific integrated circuit
- FPGA field-programmable gate array
- CPLD complex programmable logic device
- Embodiment 2 of the present invention provides a control information receiving method. It should be noted that the same or corresponding content in this embodiment can refer to the above description. As shown in FIG. 7, the specific processing flow is as follows.
- Step 71 Receive a physical uplink channel.
- Step 72 Acquire a coded bit sequence of the first UCI and a coded bit sequence of the second UCI in the physical uplink channel.
- Step 73 Acquire resources occupied by the first UCI, and acquire resources occupied by the second UCI.
- the first UCI is the first CSI and the HARQ-ACK, or the first UCI is the CSI, the HARQ-ACK, and the SR of the first reporting type, and the second UCI is the second reporting type CSI.
- the types included in the periodic CSI can be referred to above.
- the performance requirement of the first UCI reporting type is higher than the second UCI reporting type, and the first UCI reporting type may include the type 3, 5, 6, 2a and at least one of the periodic CSI types corresponding to the beam indication; the second UCI reporting type may include at least one of types 2, 2b, 2c, 4, 1, 1a.
- the resource occupied by the first UCI, the resource occupied by the first UCI, the resource may be the number of modulation symbols, or the number of coded bits.
- the resource occupied by the second UCI, the resource may be the number of modulation symbols, or the number of coded bits, which are respectively described in detail below.
- the first mode determining the number of modulation symbols occupied by the first UCI as Q' 1 according to the following formula 1 :
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted.
- the ⁇ offset is the value of the semi-static configuration of the higher layer signaling or a predetermined value.
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to the following formula 2 :
- Q' is the capacity of the physical uplink channel, which can be determined according to the following formula 3:
- the number of subcarriers allocated to the physical uplink channel can be determined by Equation 4 below.
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel can be determined by the following formula 5:
- the number of time domain symbols occupied by the physical uplink channel of one time slot, and the N DMRS is the number of symbols used for transmitting the DMRS pilot signal by one subframe of the physical uplink channel.
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted.
- the corresponding O 1 is the information length of the first UCI including the length of the CRC
- the corresponding O 2 is the information length of the second UCI including the length of the CRC.
- the number of time domain symbols occupied by the physical uplink channel for one time slot in the case of a normal cyclic prefix (CP), The value is 7, in the case of extended CP
- the value of the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical channel.
- the value of the N DMRS is 1;
- the value of the N SRS is the number of time domain symbols used for transmitting the SRS in the subframe.
- the value of the N SRS is 1.
- the value of the N SRS is 0.
- V SF is a value of a spreading factor (SF)
- N DMRS is 4.
- the physical uplink channel is a channel structure as shown in FIG. 3, the value of V SF is 3, and the value of N DMRS is 2.
- the second mode determining the number of modulation symbols occupied by the first UCI as Q' 1 according to the following formula 6:
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to the above formula 2 :
- Equation 6 For the meaning of the parameters in Equation 6, please refer to the detailed explanation in Equations 1 to 5 above.
- the third mode determining the number of modulation symbols Q' 1 occupied by the first UCI according to the following formula 7:
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to the following formula 8 or the above formula 2 :
- the number of time domain symbols used for transmitting the first UCI may be a value of a high-level semi-static notification, or may be a predetermined value, for example, the value is 4;
- the values are the same as those in the second mode described above, and are not described in detail here;
- Q' is consistent with the parameters of the first mode and will not be described in detail herein.
- the number of time domain symbols used for transmitting the first UCI which may be a value of a high-level semi-static notification, or may be a predetermined value, for example, the value is 4;
- the value is the same as that of the second method, and is not described in detail here;
- Q' is consistent with the first method and will not be described in detail here. Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the resources occupied by the first UCI and the second UCI are the number of coded bits, the resources occupied by the first UCI and the second UCI may be obtained as follows:
- the first way determining the number of coded bits Q 1 occupied by the first UCI according to the following formula 9:
- the number of coded bits Q 2 occupied by the second UCI is determined according to the following formula 10:
- the number of coded bits Q 2 occupied by the second UCI is determined according to the following formula 12:
- each parameter means that O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and
- Q is the capacity of the physical uplink channel, which can be determined according to the following formula 13:
- N PRB is the number of RBs allocated to the physical uplink channel
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel can be determined by the following formula 14:
- the number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of symbols used to transmit the second time domain of the UCI, Q m is the modulation order.
- the number of coded bits Q 2 occupied by the second UCI is determined according to the following formula 16:
- Q '1 is the number of a first modulation symbols occupied by UCI
- Q' 2 is the number of second modulation symbols occupied by UCI
- Q m is the modulation order.
- Step 74 Perform channel decoding on the coded bit sequence of the first UCI according to the resource occupied by the first UCI to obtain a first UCI, and perform channel decoding on the coded bit sequence of the second UCI according to the resource occupied by the second UCI to obtain a second. UCI.
- the first UCI includes a CSI and a HARQ-ACK of a first reporting type
- the second UCI includes a CSI of a second reporting type
- the first UCI includes a HARQ-ACK
- the second UCI includes a CSI of a first reporting type and/or a second Report the type of CSI.
- channel decoding is performed on the first UCI according to resources occupied by the first UCI.
- the first UCI and according to the resources occupied by the second UCI, performs channel decoding on the second UCI to obtain the second UCI, which may be performed in the following two manners according to different resources:
- the first mode is: when the resource is the number of modulation symbols, acquiring the modulation symbol corresponding to the first UCI on the physical uplink channel according to the resource occupied by the first UCI, and acquiring the physical uplink channel according to the resource occupied by the second UCI a second UCI corresponding modulation symbol, performing channel decoding on the first UCI according to the modulation symbol corresponding to the first UCI, obtaining a first UCI transmitted by the UE, and performing channel translation on the second UCI according to the modulation symbol corresponding to the second UCI
- the code obtains the second UCI transmitted by the UE.
- the resource is the number of modulation symbols
- the resource is the number of modulation symbols
- first according to the obtained number of modulation symbols occupied by the first UCI and the number of modulation symbols occupied by the second upper UCI
- the number of coded bits of a UCI and the number of coded bits of the second UCI are detailed in the following formula.
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the second mode when the resource is the number of coded bits, the first UCI is channel-decoded according to the number of coded bits occupied by the first UCI, and the coded bit sequence of the first UCI is obtained, and the number of coded bits occupied according to the second UCI is obtained.
- Channel decoding is performed on the second UCI to obtain a coded bit sequence of the second UCI.
- the resource occupied by the first UCI is acquired, and the resource occupied by the second UCI is acquired, according to the resource occupied by the first UCI, the first The UCI performs channel decoding to obtain the first UCI, and according to the resources occupied by the second UCI, performs channel decoding on the second UCI to obtain the execution sequence of the second UCI, and in the specific implementation process, may also obtain the first The resource occupied by the UCI, according to the resource occupied by the first UCI, performs channel decoding on the first UCI to obtain the first UCI, and acquires the capital occupied by the second UCI.
- the source performs channel decoding on the second UCI to obtain the second UCI, and may also perform the second UCI according to the resource occupied by the second UCI according to the resource occupied by the second UCI.
- the channel decoding obtains the second UCI, acquires the resources occupied by the first UCI, and performs channel decoding on the first UCI to obtain the first UCI according to the resources occupied by the first UCI.
- the channel coding of the coded bit sequence of the first UCI is performed according to the resource occupied by the first UCI to obtain the first UCI
- the coded bit sequence of the second UCI is channel-decoded according to the resource occupied by the second UCI to obtain the second UCI.
- the method includes: acquiring a coded bit sequence of the UCI on the physical uplink channel, deinterleaving the coded bit sequence of the UCI, obtaining a coded vector sequence of the first UCI and a coded vector sequence of the second UCI, and converting the coded vector sequence of the first UCI Is a coded bit sequence of the first UCI, and converts the code vector sequence of the second UCI into a coded bit sequence of the second UCI.
- the coded bit sequence of the UCI is deinterleaved to obtain a coded vector sequence of the first UCI and a coded vector sequence of the second UCI, including: sequentially reading the coded bits of each column in the matrix in the order of the columns to obtain the UCI. Encoding a bit sequence; obtaining a code vector sequence of the first UCI in a matrix in a matrix; obtaining a code vector sequence of the second UCI in a matrix other than the code vector sequence from which the first UCI has been obtained.
- Obtaining a coded bit sequence of the first UCI and a coded bit sequence of the second UCI in the physical uplink channel including: in a physical uplink channel, a first time domain followed by a frequency domain or a first frequency domain followed by a time domain
- Obtaining a code vector sequence or a code vector sequence of the first UCI and a code vector sequence of the second UCI demodulating the code vector sequence, or demodulating the code vector sequence of the first UCI and the code vector sequence of the second UCI,
- a coded bit sequence of the first UCI and a coded bit sequence of the second UCI are obtained.
- the UCI is the reverse process in the first embodiment. For details, refer to the detailed description in the first embodiment.
- Embodiment 2 of the present invention further provides a network device, as shown in FIG. 8, including a receiving mode.
- the network device can perform the corresponding operations of the above method embodiments, and thus the same or corresponding content can be referred to above.
- the receiving module 801 is configured to receive a physical uplink channel.
- the processing module 802 is configured to acquire the coded bit sequence of the first UCI and the coded bit sequence of the second UCI in the physical uplink channel, acquire the resource occupied by the first uplink control information UCI, and acquire the occupied by the second UCI And performing channel decoding on the coded bit sequence of the first UCI according to the resource occupied by the first UCI to obtain a first UCI, and encoding a bit sequence of the second UCI according to resources occupied by the second UCI Channel decoding is performed to obtain the second UCI.
- the first UCI includes a CSI of a first reporting type and a hybrid automatic retransmission acknowledgement message HARQ-ACK
- the second UCI includes a CSI of a second reporting type
- the first UCI includes a hybrid automatic retransmission acknowledgement.
- Message HARQ-ACK the second UCI includes a CSI of a first reporting type and/or a CSI of a second reporting type.
- the processing module 802 is configured to acquire, according to the resource occupied by the first UCI, the modulation symbol corresponding to the first UCI on the physical uplink channel, and according to the second UCI
- the occupied resource acquires the modulation symbol corresponding to the second UCI on the physical uplink channel, performs channel decoding on the first UCI according to the modulation symbol corresponding to the first UCI, and obtains the first UCI transmitted by the UE.
- the processing module 802 is specifically configured to determine, according to one of the following manners, the number of modulation symbols Q' 1 occupied by the first UCI:
- the number of modulation symbols Q' 2 occupied by the second UCI is determined according to one of the following ways:
- O 1 is the number of information bits of the first UCI to be transmitted.
- O 2 is the number of information bits of the second UCI to be transmitted, and Q′ is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot, and the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel, Is the number of time domain symbols used to transmit the first UCI, Is the number of time domain symbols used to transmit the second UCI.
- the foregoing processing module 802 is specifically configured to obtain, according to the following manner, the number of coded bits occupied by the first UCI:
- Q '1 to the first number of modulation symbols occupied by UCI, Q' 2 to the second number of modulation symbols occupied by UCI, Q m is the modulation order.
- the resource is a coded bit number.
- the processing module 802 is specifically configured to: perform channel decoding on the first UCI according to the number of coded bits occupied by the first UCI, and obtain coded bits of the first UCI. And performing channel decoding on the second UCI according to the number of coded bits occupied by the second UCI to obtain a coded bit sequence of the second UCI.
- the foregoing processing module 802 is specifically configured to obtain the coded bit number Q 1 occupied by the first UCI in the following manner:
- O 1 is the number of information bits of the first UCI to be transmitted
- O 2 is the number of information bits of the second UCI to be transmitted
- Q is the capacity of the physical uplink channel.
- N PRB is the number of radio resource blocks RB allocated to the physical uplink channel;
- the number of time domain symbols used for transmitting the uplink control information for the physical uplink channel The number of time domain symbols occupied by the physical uplink channel in one slot
- the N DMRS is the number of symbols used to transmit the DMRS pilot signal in one subframe of the physical uplink channel
- Q m is the modulation order.
- the processing module 802 is specifically configured to acquire a coded bit sequence of the UCI on the physical uplink channel, and perform deinterleaving on the coded bit sequence of the UCI to obtain a coded vector sequence of the first UCI and a code of the second UCI. a vector sequence; converting the encoded vector sequence of the first UCI into a coded bit sequence of the first UCI, and converting the encoded vector sequence of the second UCI into a coded bit sequence of the second UCI.
- the foregoing processing module 802 is specifically configured to sequentially read coded bits of each column in the matrix in a column order to obtain a coded bit sequence of the UCI; and obtain a code vector sequence of the first UCI according to the row in the matrix; A code vector sequence of the second UCI is obtained in a position other than the code vector sequence in which the first UCI has been obtained in the matrix.
- the foregoing processing module 802 is specifically configured to obtain, in the physical uplink channel, a coding vector sequence or a coding vector of the first UCI in a manner of a first time domain post-frequency domain or a first frequency domain followed by a time domain. a sequence and a code vector sequence of the second UCI; demodulating the code vector sequence, or demodulating the code vector sequence of the first UCI and the code vector sequence of the second UCI to obtain the first A coded bit sequence of the UCI and a coded bit sequence of the second UCI.
- an embodiment of the present invention provides a network device, which may be a relay or a base station, where the network device includes a receiver 91 and a processor 92, where:
- the receiver 91 is configured to receive a physical uplink channel.
- the processor 92 is configured to acquire the coded bit sequence of the first UCI and the coded bit sequence of the second UCI in the physical uplink channel, acquire the resource occupied by the first uplink control information UCI, and acquire the occupied by the second UCI And performing channel decoding on the coded bit sequence of the first UCI according to the resource occupied by the first UCI to obtain a first UCI, and encoding a bit sequence of the second UCI according to resources occupied by the second UCI Performing channel decoding to obtain the second UCI;
- the first UCI includes a CSI of a first reporting type and a hybrid automatic retransmission acknowledgement message HARQ-ACK
- the second UCI includes a CSI of a second reporting type
- the first UCI includes a hybrid automatic retransmission acknowledgement.
- Message HARQ-ACK the second UCI includes a CSI of a first reporting type and/or a CSI of a second reporting type.
- receiver 91 can also perform other operations performed by the receiving module 801 shown in FIG. 8, and the processor 92 can also perform other operations performed by the processing module 801 shown in FIG.
- the processor can be a central processing unit (CPU) or a combination of a CPU and a hardware chip.
- CPU central processing unit
- the processor can be a central processing unit (CPU) or a combination of a CPU and a hardware chip.
- the processor can also be a network processor (NP). Either a combination of CPU and NP, or a combination of NP and hardware chips.
- NP network processor
- the hardware chip may be a combination of one or more of the following: an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and a complex programmable logic device (complex) Programmable logic device, CPLD).
- ASIC application-specific integrated circuit
- FPGA field-programmable gate array
- CPLD complex programmable logic device
- embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention may be employed in one or more A computer program product embodied on a computer usable storage medium (including but not limited to disk storage, read-only optical disk, optical storage, etc.) containing computer usable program code.
- a computer usable storage medium including but not limited to disk storage, read-only optical disk, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种控制信息发送、接收方法、用户设备及网络设备,该发送方法包括:获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道;发送所述物理上行信道,使得不同UCI达到各自的性能目标要求,同时避免了按照性能要求最高的UCI提高发射功率,从而提高了功率利用效率。
Description
本发明涉及通信技术领域,尤其是涉及一种控制信息发送方法、控制信息接收方法、用户设备以及网络设备。
高级长期演进(Long Term Evolution Advanced,LTE-A)系统中,由于引入载波聚合技术,当UE同时接入多个下行成员载波接收下行数据时,对每个下行成员载波都需要在上行链路方向反馈其信道状态信息,对每个下行成员载波上调度的数据也都需要在上行链路方向反馈其混合自动重传确认信息,因而会出现在一个上行子帧上同时需要上报信道状态信息和混合自动重传确认信息,其中需上报的信道状态信息可以对应一个或多个下行载波,需上报的混合自动重传确认信息也可以对应一个或多个下行载波。
信道状态信息(Channel State Information,CSI)包括周期CSI和非周期CSI。周期CSI在PUCCH上的上报模式有多种类型,不同上报类型对应的上报内容不同。由于周期CSI的不同上报类型对应的上报内容不同,不同上报内容对应的性能目标要求不一样,因而周期CSI的不同上报类型对应的性能目标要求不一样。基站通过高层信令半静态配置每个载波的周期CSI的上报模式、上报周期和子帧偏移,用户设备根据高层信令指示的上报模式,确定需要上报的CSI对应的上报类型,并根据高层信令指示的上报周期和子帧偏移,确定各上报类型的CSI的上报时刻,对每个载波,一个上报时刻只上报一个上报类型的CSI。不同载波的周期CSI的上报模式可能相同也可能不相同,而载波聚合场景下会出现在一个子帧上需上报多个下行载波的信道状态信息,因而会出现在一个子帧上报来自不同载波的不同上报类型的CSI。
随着LTE技术的继续演进,目前正在考虑支持32个载波进行聚合的场景,在LTE-R11版本中已经支持一个载波的周期CSI和自动重传确认消息(Hybrid Automatic Repeat Request ACKnowledge,HARQ-ACK)联合编码在物理上行
控制信道(Physical Uplink Control Channel,PUCCH)上传输,但是在LTE-R13版本中的载波聚合场景下,会出现在一个上行子帧上同时需要上报大于一个载波的信道状态信息和混合自动重传确认信息,其中需上报的大于一个载波的信道状态信息是对应多个下行载波时,其中各下行载波对应的周期CSI的上报类型可以相同也可以不同;需上报的混合自动重传确认信息也可以对应一个或多个下行载波。但是,由于不同上报类型的CSI对应的性能目标要求不一致,周期CQI/PMI和混合自动重传确认信息对应的性能目标要求也不一致,如何保证不同上报类型的CSI和混合自动重传确认信息均达到性能要求是一个需要解决的问题。一种解决方式为联合编码所有待传输的上行控制信息,包括多个载波对应的所有的CSI和相对应的HARQ-ACK,在相对应的子帧上,使用更多资源来传输或者提高发射功率,以使得性能目标要求较高的上行控制信息(Uplink Control Information,UCI)也能达到性能目标,换句话说,把低性能目标要求的UCI也当做高性能目标要求来传输。
但是,该方案为了满足性能目标要求较高的那类UCI也能达到性能目标,用户设备在发送UCI时采用了更高发射功率,但对于性能目标要求较低的那类UCI,该发射功率过高,从而浪费了用户设备的发射功率,使得功率利用效率不高。对于功率受限的用户设备该方案不适用。若用户设备功率受限,则用户设备无法提高发射功率,因而不能通过提高发射功率的方法使得性能目标要求较高的那类UCI也达到性能要求。
发明内容
本发明实施例提供了一种控制信息发送方法、控制信息接收方法、用户设备以及网络设备,使得不同UCI达到各自的性能目标要求,同时避免了按照性能要求最高的UCI提高发射功率。
第一方面,提供了一种控制信息发送方法,包括:获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并
根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI;或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI;将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道;发送所述物理上行信道。
结合第一方面,在第一方面的第一种可能的实现方式中,所述资源是调制符号个数;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,包括:根据所述第一UCI占用的调制符号个数,获取所述第一UCI占用的编码比特数,并根据所述第二UCI占用的调制符号个数,获取所述第二UCI占用的编码比特数;根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q′为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所
述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,根据所述第一UCI占用的调制符号个数获取所述第一UCI占用的编码比特数,包括:按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
根据所述第二UCI占用的调制符号个数获取所述第二UCI占用的编码比特数,包括:按照下述方式获取所述第二UCI占用的编码比特数:Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
结合第一方面,在第一方面的第四种可能的实现方式中,所述资源是编码比特数;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,包括:根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
结合第一方面~第一方面的第五种可能的实现方式中的任一一种可能的实现方式,在第一方面的第六种可能的实现方式中,将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道,包括:将所述第一UCI的编码比特序列转换为所述第一UCI的编码矢量序列,并将所述第二UCI的编码比特序列转换为所述第二UCI的编码矢量序列;通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列;将所述UCI的编码比特序列映射到所述物理上行信道。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列,包括:将所述第一UCI的编码矢量序列按行写入矩阵;将所述第二UCI的编码矢量序列按行入所述矩阵中除已写入所述第一UCI的编码矢量序列之外的位置;按列的顺序依次读出所述
矩阵中各列的编码比特,以得到UCI的编码比特序列。
结合第一方面~第一方面的第五种可能的实现方式中的任一一种可能的实现方式,在第一方面的第八种可能的实现方式中,将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道,包括:将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,获得编码矢量序列;或将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列进行先频域后时域的方式或先时域后频域的方式,映射到物理上行信道。
结合第一方面~第一方面的第八种可能的实现方式中的任一一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第一上报类型的CSI包括下述中的至少一种:类型Types 3;Types 5;Types 6;Types 2a;用于波束指示的周期CSI;
所述第二上报类型的CSI包括下述中的至少一种:Types 2;Types 2b;Types 2c;Types 4;Types 1;Types 1a。
结合第一方面~第一方面的第九种可能的实现方式中的任一一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述第一UCI还包括调度请求SR。
第二方面,提供了一种控制信息接收方法,包括:接收物理上行信道;获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列;获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI;
其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包
括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
结合第二方面,在第二方面的第一种可能的实现方式中,所述资源是调制符号个数;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI,包括:根据所述第一UCI占用的资源获取在物理上行信道上的所述第一UCI对应的调制符号,并根据所述第二UCI占用的资源获取在物理上行信道上的所述第二UCI对应的调制符号;根据所述第一UCI对应的调制符号对所述第一UCI进行信道译码,获得UE传输的所述第一UCI,并根据所述第二UCI对应的调制符号对所述第二UCI进行信道译码,获得UE传输的所述第二UCI。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,获取第一UCI占用的资源,包括:
按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:
获取第二UCI占用的资源,包括:按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q′为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个
时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
结合第二方面的第二可能的实现方式,按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
按照下述方式获取所述第二UCI占用的编码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
结合第二方面,在第二方面的第四种可能的实现方式中,所述资源是编码比特数;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI,包括:
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,获取第一UCI占用的资源,包括:按照下述方式获取所述第一UCI占用的编码比特数Q1:
获取第二UCI占用的资源,包括:按照下述方式获取所述第二UCI占用的编码比特数Q2:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
结合第二方面~第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI,包括:在所述物理上行信道获取UCI的编码比特序列;对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述第一UCI的编码矢量序列转换为第一UCI的编码比特序列,并将所述第二UCI的编码矢量序列转换为第二UCI的编码比特序列。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列,包括:按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列;在所述矩阵中按照行获得第一UCI的编码矢量序列;在所述矩阵中除已获得所述第一UCI的编码矢量序列之外的位置获得第二UCI的编码矢量序列。
结合第二方面~第二方面的第五种可能的实现方式,在第二方面的第八种可能的实现方式中,获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列,包括:在所述物理上行信道中,以先时域后频域的方式或先频域后时域的方式获得编码矢量序列或所述第一UCI的编码
矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列解调,或将所述第一UCI的编码矢量序列和第二UCI的编码矢量序列解调,获得所述第一UCI的编码比特序列和所述第二UCI的编码比特序列。
结合第二方面~第二方面的第五种可能的实现方式,在第二方面的第九种可能的实现方式中,所述第一上报类型的CSI包括下述中的至少一种:类型Types 3;Types 5;Types 6;Types 2a;
用于波束指示的周期CSI;所述第二上报类型的CSI包括下述中的至少一种:
Types 2;Types 2b;Types 2c;Types 4;Types 1;Types 1a。
结合第二方面~第二方面的第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述第一UCI还包括调度请求SR。
第三方面,提供了一种用户设备,包括:处理模块,用于获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI;将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道;发送模块,用于发送所述物理上行信道。
结合第三方面,在第三方面的第一种可能的实现方式中,所述资源是调制符号个数;所述处理模块,具体用于根据所述第一UCI占用的调制符号个数,获取所述第一UCI占用的编码比特数,并根据所述第二UCI占用的调制符号个数,获取所述第二UCI占用的编码比特数;根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得
所述第二UCI的编码比特序列。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理模块,具体用于按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:
按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1;
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q′为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
以及所述处理模块,具体用于按照下述方式获取所述第二UCI占用的编
码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
结合第三方面,在第三方面的第四种可能的实现方式中,所述资源是编码比特数;所述处理模块,具体用于根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:
所述处理模块,具体用于按照下述方式获取所述第二UCI占用的编码比特数Q2:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一
UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
结合第三方面~第三方面的第五种可能的实现方式中的任一一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述处理模块,具体用于将所述第一UCI的编码比特序列转换为所述第一UCI的编码矢量序列,并将所述第二UCI的编码比特序列转换为所述第二UCI的编码矢量序列;通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列;将所述UCI的编码比特序列映射到所述物理上行信道。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述处理模块,具体用于将所述第一UCI的编码矢量序列按行写入矩阵;将所述第二UCI的编码矢量序列按行入所述矩阵中除已写入所述第一UCI的编码矢量序列之外的位置;按列的顺序依次读出所述矩阵中各列的编码比特,以得到UCI的编码比特序列。
结合第三方面~第三方面的第五种可能的实现方式中的任一一种可能的实现方式,在第三方面的第八种可能的实现方式中,所述处理模块,具体用于将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,获得编码矢量序列;或将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列进行先频域后时域的方式或先时域后频域的方式,映射到物理上行信道。
结合第三方面~第三方面的第八种可能的实现方式中的任一一种可能的实现方式,在第三方面的第九种可能的实现方式中,所述处理模块获得的第一上报类型的CSI包括下述中的至少一种:类型Types 3;Types 5;Types 6;Types 2a;用于波束指示的周期CSI;所述第二上报类型的CSI包括下述中的
至少一种:Types 2;Types 2b;Types 2c;Types 4;Types 1;Types 1a。
结合第三方面~第三方面的第九种可能的实现方式中的任一一种可能的实现方式,在第三方面的第十种可能的实现方式中,所述处理模块获取的第一UCI还包括调度请求SR。
第四方面,提供了一种网络设备,包括:接收模块,用于接收物理上行信道;处理模块,用于获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列;获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI;
其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
结合第四方面,在第四方面的第一种可能的实现方式中,所述资源是调制符号个数;所述处理模块,具体用于根据所述第一UCI占用的资源获取在物理上行信道上的所述第一UCI对应的调制符号,并根据所述第二UCI占用的资源获取在物理上行信道上的所述第二UCI对应的调制符号;根据所述第一UCI对应的调制符号对所述第一UCI进行信道译码,获得UE传输的所述第一UCI,并根据所述第二UCI对应的调制符号对所述第二UCI进行信道译码,获得UE传输的所述第二UCI。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述处理模块,具体用于按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:
获取第二UCI占用的资源,包括:
按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1;
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q′为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
结合第四方面的第二可能的实现方式,在第四方面的第三种可能的实现方式中,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
按照下述方式获取所述第二UCI占用的编码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
结合第四方面,在第四方面的第四种可能的实现方式中,所述资源是编码比特数;所述处理模块,具体用于根据所述第一UCI占用的编码比特数对所
述第一UCI进行信道译码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道译码,获得所述第二UCI的编码比特序列。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:
按照下述方式获取所述第二UCI占用的编码比特数Q2:
其中,O1为待传输的第一UCI的信息比特数,O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
结合第四方面~第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述处理模块,具体用于在所述物理上行信道获取UCI的编码比特序列;对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述第一UCI的编码矢量序列转换为第一UCI的编码比特序列,并将所述第二UCI的编码矢量序列转换为
第二UCI的编码比特序列。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,所述处理模块,具体用于按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列;在所述矩阵中按照行获得第一UCI的编码矢量序列;在所述矩阵中除已获得所述第一UCI的编码矢量序列之外的位置获得第二UCI的编码矢量序列。
结合第四方面~第四方面的第五种可能实现方式的任一种可能的实现方式,在第四方面的第八种可能的实现方式中,所述处理模块,具体用于在所述物理上行信道中,以先时域后频域的方式或先频域后时域的方式获得编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列解调,或将所述第一UCI的编码矢量序列和第二UCI的编码矢量序列解调,获得所述第一UCI的编码比特序列和所述第二UCI的编码比特序列。
结合第四方面~第四方面的第八种可能实现方式的任一种可能的实现方式,在第四方面的第九种可能的实现方式中,所述处理模块,获得的所述第一上报类型的CSI包括下述中的至少一种:类型Types 3;Types 5;Types 6;Types 2a;用于波束指示的周期CSI;所述第二上报类型的CSI包括下述中的至少一种:Types 2;Types 2b;Types 2c;Types 4;Types 1;Types 1a。
结合第四方面~第四方面的第九种可能的实现方式中的任一种可能的实现方式,在第四方面的第十种可能的实现方式中,所述处理模块,获得的第一UCI还包括调度请求SR。
通过采用上述技术方案,通过对第一UCI和第二UCI进行独立编码,可根据不同UCI的性能目标要求分配第一UCI和第二UCI对应的资源,保证了不同UCI达到各自的性能目标要求,同时避免了按照性能要求最高的UCI提高发射功率,从而提高了功率利用效率。
图1为本发明实施例一中,提出的控制信息发送方法流程图;
图2为物理上行控制信道格式4或5结构示意图;
图3为修改的PUCCH格式3结构示意图;
图4为第一UCI和第二UCI映射到PUCCH的示意图;
图5为本发明实施例一中,提出的用户设备结构组成示意图之一;
图6为本发明实施例一中,提出的用户设备结构组成示意图之二;
图7为本发明实施例二中,提出的控制信息传输接收流程图;
图8为本发明实施例二中,提出的网络设备结构组成示意图之一;
图9为本发明实施例二中,提出的网络设备结构组成示意图之二。
针对UE在发送UCI时采用了更高发射功率,但对于性能目标要求较低的那类UCI,该发射功率过高,从而浪费了UE的发射功率,使得功率利用效率不高,对于功率受限的用户设备该方案不适用。以及若UE功率受限,则无法提高发射功率,因而不能通过提高发射功率的方法使得性能目标要求较高的那类UCI也达到性能要求的问题,本发明提出的技术方案中,通过对第一UCI和第二UCI进行独立编码,可根据不同UCI的性能目标要求分配第一UCI和第二UCI对应的资源,保证了不同UCI达到各自的性能目标要求,同时避免了按照性能要求最高的UCI提高发射功率,从而提高了功率利用效率。
下面将结合各个附图对本发明实施例技术方案的主要实现原理、具体实施方式及其对应能够达到的有益效果进行详细地阐述。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通信系统(Global System for Mobile Communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE)等。
用户设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、
移动用户设备等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),本发明并不限定。
实施例一
本发明实施一提出一种控制信息发送方法,如图1所示,其具体处理流程如下述:
步骤11,获取第一UCI占用的资源,并获取第二UCI占用的资源。
其中,第一UCI是第一上报类型的信道状态信息(channel state information,CSI)和混合自动重传确认消息(Hybrid Automatic Repeat Request ACKnowledge,HARQ-ACK),或第一UCI为第一上报类型的CSI、HARQ-ACK和调度请求(Scheduling Request,SR),第二UCI为第二上报类型CSI。
或者第一UCI包括HARQ-ACK,第二UCI包括CSI,CSI可以是第一上报类型CSI,也可以是第二上报类型CSI。
CSI包括下述几种类型:
第一种类型:类型1(Type 1),支持UE选择的子带信道质量指示(Channel Quality Indicator,CQI)反馈。
第二种类型:类型1a(Type 1a),支持子带CQI和预编码矩阵指示(Precoding Matrix Indicator PMI)反馈。
第三种类型:类型2a(Type 2a),支持宽带PMI反馈。
第四种类型:类型3(Type 3)支持秩指示(Rank Indication,RI)反馈。
第五种类型:类型4(Type 4)支持宽带CQI反馈。
第六种类型:类型5(Type 5)支持RI和宽带PMI反馈。
第七种类型:类型6(Type 6)支持RI和PTI反馈。
第八种类型:用于波束指示的周期CSI。
在LTE R13中引入一种周期CSI上报类型,上报的内容是波束的索引,可以称之为波束指示所对应的周期CSI类型。
其中,系统对某些上报类型的性能要求高于其他上报类型的性能要求,例如上报类型type 3的性能目标要求为误块率BLER=10e-3,而type 4的性能目标要求为误块率BLER=10e-2。另外,在LTE系统中,混合自动重传确认信息的性能目标要求通常高于周期CQI/PMI,例如至少为误码率BER=10e-3。
基于系统对某些上报类型的性能要求不同,本发明实施例一提出的技术方案中,将多载波的不同类型的周期CSI分成两类,分别是第一上报类型的CSI和第二上报类型的CSI。第一上报类型的CSI包括::Types3、5、6、2a、波束指示所对应的周期CSI类型中至少一个;第二上报类型的CSI包括:Types 2、2b、2c、4、Types 1、1a中至少一个。
第一UCI包括第一上报类型的CSI和HARQ-ACK;或者第一UCI包括第一上报类型的CSI、HARQ-ACK和SR。第二UCI包括第二上报类型的CSI。
或者第一UCI包括HARQ-ACK。第二UCI包括CSI,CSI可以是第一上报类型CSI,也可以是第二上报类型CSI。
一种较佳地实施方式,本发明实施例一提出的技术方案中,对第一UCI上报类型的性能要求高于第二UCI上报类型,第一UCI上报类型可以包括类型3,5,6,2a和波束指示所对应的周期CSI类型中至少一种;第二UCI上报类型可以包括类型2,2b,2c,4,1,1a中至少一种。
其中在本步骤中,获取第一UCI占用的资源,第一UCI占用的资源,该资源可以是调制符号个数,或者是编码比特数。相应地,第二UCI占用的资源,该资源可以是调制符号个数,或者是编码比特数,下面分别进行详细阐述。
若第一UCI和第二UCI占用的资源,该资源是调制符号个数时,可以按照下述方式获取第一UCI和第二UCI占用的资源:
第一种方式:按照下述公式1确定第一UCI占用的调制符号个数为Q′1:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数。βoffset是高层信令半静态配置的值或是一个预定数值。
按照下述公式2确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1 公式2
其中,上述公式1和公式2中,Q′为所述物理上行信道的容量,可以按照下述公式3确定:
上述公式1至公式5中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数。当第一UCI,第二UCI需要附加CRC的时候,相应的O1是包括CRC的长度后的第一UCI的信息长度,相应的O2是包括CRC的长度后的第二UCI的信息长度。举一例说明,大于22比特的上行控制信息(HARQ-ACK,CSI等)小于等于119,会被附加CRC,CRC长度为8bits;大于119,会附加16bits的CRC,这里O1和O2为上行控制信息的比特数目+CRC比特数目。当O2=0,βoffset=1。
为一个时隙该物理上行信道占用的时域符号的个数,在正常循环前缀(CP)情况下,的值为7,在扩展CP的情况下的值为6,NDMRS为该物理信道一个子帧用于传输DMRS导频信号的符号的个数,当该物理上行控制信道为如图2所示的结构时,NDMRS的值为1;NSRS的值为该子帧用于传输SRS的时域符号的个数,当当前子帧有SRS传输时,NSRS的值为1,当当前子帧无SRS传输时,NSRS的值为0。例如当该物理上行信道为PUCCH格式3时,需要考虑扩频系数,VSF为扩频系数(Spread Factor,SF)的值,所以VSF的值为5,NDMRS的值为4,当该物理上行信道为如图3所示的信道结构时,VSF的值分别为3,NDMRS的值为2。
第二种方式:按照下述公式6确定第一UCI占用的调制符号个数为Q′1:
按照上述公式2确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1
其中,公式6中的参数含义请参见上述公式1~公式5中的详细阐述。
第三种方式:按照下述公式7确定第一UCI占用的调制符号个数Q′1:
按照下述公式8或上述公式2确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1。
其中,为用于传输第一UCI的时域符号的个数,该数值可以是高层半静态通知的值,也可以是一个预定的值,例如该值为4;的值与上述
第二种方式中的含义一致,此处不再详述;Q′与第一种方式种的参数一致,此处不再详述。
或Q′2=Q′-Q′1。
其中,为用于传输第一UCI的时域符号的个数,其可以是高层半静态通知的值,也可以是一个预定的值,例如该值为4;的值与方式二一致,此处不再详述;Q′与方式一一致,此处不再详述。为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
根据第一UCI占用的调制符号个数计算所述第一UCI占用的编码比特数,并根据第二UCI占用的调制符号个数计算第二UCI占用的编码比特数,包括:根据第一上报类型的CSI占用的调制符号个数计算第一UCI占用的编码比特数,并根据第二上报类型的CSI占用的调制符号个数计算所述第二UCI占用的编码比特数。
若第一UCI和第二UCI占用的资源,该资源是编码比特数时,可以按照下述方式获取第一UCI和第二UCI占用的资源:
第一种方式:按照下述公式9确定第一UCI占用的编码比特数Q1:
按照下述公式10确定第二UCI占用的编码比特数Q2:
Q2=Q-Q1 公式10
第二种方式:按照下述公式11确定第一UCI占用的编码比特数Q1:
按照下述公式12确定第二UCI占用的编码比特数Q2:
在上述公式9~公式12中,各参数含义为:O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,可以按照下述公式13确定:
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
第二种方式:按照下述公式15确定第一UCI占用的编码比特数Q1:
Q1=Q′1*Qm 公式15
按照下述公式16确定第二UCI占用的编码比特数Q2:
Q2=Q'2*Qm 公式16
其中,上述公式15和公式16中,Q′1为第一UCI占用的调制符号个数,Q′2为第二UCI占用的调制符号个数,Qm为调制阶数。
步骤12,根据第一UCI占用的资源,对第一UCI进行信道编码获得第一UCI的编码比特序列,并根据第二UCI占用的资源,对第二UCI进行信道编码获得第二UCI的编码比特序列。
在本步骤中,根据第一UCI占用的资源,对第一UCI进行信道编码获得第一UCI的编码比特序列,并根据第二UCI占用的资源,对第二UCI进行信
道编码获得所述第二UCI的编码比特序列,可以根据资源的不同,通过下述两种方式来执行:
第一种方式:在资源是调制符号个数时,根据第一UCI占用的调制符号个数计算第一UCI占用的编码比特数,并根据第二UCI占用的调制符号个数计算第二UCI占用的编码比特数,根据第一UCI占用的编码比特数对第一UCI进行信道编码,获得第一UCI的编码比特序列,并根据第二UCI占用的编码比特数对第二UCI进行信道编码,获得第二UCI的编码比特序列。
若资源为调制符号个数时,分别对第一UCI和第二UCI进行信道编码之前,首先,根据得到的第一UCI占用的调制符号个数和第二上UCI占用的调制符号个数计算第一UCI的编码比特数和第二UCI的编码比特数,具体请参见上述公式15~公式16中的详细阐述。
第二种方式:在资源为编码比特数时,根据第一UCI占用的编码比特数对第一UCI进行信道编码,获得第一UCI的编码比特序列,并根据第二UCI占用的编码比特数对第二UCI进行信道编码,获得第二UCI的编码比特序列。
其中,步骤12根据第一UCI占用的资源,对第一UCI进行信道编码获得第一UCI的编码比特序列,并根据第二UCI占用的资源,对第二UCI进行信道编码获得第二UCI的编码比特序列具体实施方式为:
当待传输的第一UCI的总的信息比特数或待传输的第二UCI的总的信息比特数小于或等于11比特时,使用雷德密勒(Reed-Muller,RM)(32,O)码进行编码,当待传输的第一UCI的总的信息比特数或待传输的第二UCI的总的信息比特数大于11比特小于等于22时,使用双雷德密勒RM(32,O)码进行编码,当待传输的第一UCI的总的信息比特数或待传输的第二UCI的总的信息比特数大于22比特使用咬尾卷积码(Tail biting convolutional code,TBCC)或Turbo码进行信道编码,且附加CRC。
为便于阐述,本发明实施例一提出的技术方案中,在上述步骤11和步骤12中,按照获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源,根据第一UCI占用的资源,对第一UCI进行信道编码获得第一UCI的编码比特序列,并根据第二UCI占用的资源,对第二UCI进行信道编码获得第二UCI的编码比特序列的执行顺序进行详细阐述,在具体实施过程中,也可以按照获取第一上行控制信息UCI占用的资源,根据第一UCI占用的资源,对第一UCI进行信道编码获得第一UCI的编码比特序列,获取第二UCI占用的资源,根据第二UCI占用的资源,对第二UCI进行信道编码获得第二UCI的编码比特序列的顺序执行,还可以按照获取第二上行控制信息UCI占用的资源,根据第二UCI占用的资源,对第二UCI进行信道编码获得第二UCI的编码比特序列,获取第一UCI占用的资源,根据第一UCI占用的资源,对第一UCI进行信道编码获得第一UCI的编码比特序列的顺序执行,具体实施方式请参见上文中的详细阐述,不再赘述。
步骤13,将第一UCI的编码比特序列和第二UCI的编码比特序列映射到物理上行信道。
在步骤13中,可以按照下述方式将第一UCI的编码比特序列和第二UCI的编码比特序列映射到物理上行信道:
第一种方式:在第一种处理方式中,其具体流程如下述:
步骤一:将第一UCI的编码比特序列转换为第一UCI的编码矢量序列,并将第二UCI的编码比特序列转换为第二UCI的编码矢量序列。
其中,Q′
1=Q1/Qm,Q′
2=Q2/Qm。
步骤二:对第一UCI的编码矢量序列和第二UCI的编码矢量序列进行信道交织,以得到UCI的编码比特序列。
将第一UCI的编码矢量序列按行写入矩阵,将第二UCI的编码矢量序列按行入矩阵中除已写入所述第一UCI的编码矢量序列之外的位置,按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列。
当采用上述方式进行交织时,第一UCI和第二UCI可以不限于:
第一UCI包括第一上报类型的CSI和HARQ-ACK,第二UCI为第二上报类型的CSI。
第一UCI还可以可以是仅包括HARQ-ACK,第二UCI可以是仅包括CSI,其中,CSI可以第一上报类型的CSI,第二上报类型的CSI.
其中,若该物理上行信道为PUCCH格式3,则矩阵中的Cmux=2;若该物理上行信道为如图3所示的修改的PUCCH格式3,则矩阵中的Cmux=4;若该物理上行信道为如图2所示的PUCCH格式4或5,则矩阵中的
为该物理上行信道用于传输上行控制信息的时域符号的个数;矩阵中的
为分配给该物理上行信道的子载波的个数,例如
顺序依次读出矩阵中各列的编码信息比特,得到UCI的编码比特序列h0,h1,h2,…,hQ1+Q2-1。
其中,依次读出矩阵中各列的编码比特,指column by column的方式,即采用先读第一列,读完第一列再读第二列的方式。
步骤三:将信道交织后得到的UCI的编码比特序列映射到物理上行信道。
将第一UCI的编码比特序列和第二UCI的编码比特序列进行调制,获得编码矢量序列,或将第一UCI的编码比特序列和第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将编码矢量序列或第一UCI的编码矢量序列和第二UCI的编码矢量序列进行先
频域后时域的方式或先时域后频域的方式,映射到物理上行信道。
当该物理上行信道为如图2所示的PUCCH格式时,通过该步骤,第一上行控制信息和第二上行控制信息的资源映射示意图分别如图4所示。
第二种方式:第一UCI的编码比特序列和第二UCI的编码比特序列进行级联,获得级联后的编码比特序列,将级联后的编码比特序列进行调制,获得编码矢量序列,将的编码矢量序列进行先频域后时域的方式或先时域后频域的方式,映射到物理上行信道传输给基站。
第三种方式:将第一UCI的编码比特序列和第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列,将第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行级联,获得编码矢量序列。
步骤14,发送物理上行信道。
将物理上行信道发送给中继,或者将该物理上行信道发送给基站。
相应地,如图5所示本发明实施例一还提出一种用户设备。该用户设备能够实现上述方法实施例,因此,具体内容可以参照上述实施例中的描述。该用户设备包括处理模块501和发送模块502。
处理模块501,用于获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI;将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道。
具体地,上述处理模块501,具体用于按照上述实施例所描述的方法中的
一种,确定所述第一UCI占用的调制符号个数Q′1。
具体地,上述处理模块501,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:
所述处理模块501,具体用于按照下述方式获取所述第二UCI占用的编码比特数Q2:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
具体地,上述处理模块501,具体用于按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
具体地,上述处理模块501,具体用于按照下述方式获取所述第二UCI占用的编码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占
用的调制符号个数,Qm为调制阶数。
所述资源是编码比特数;具体地,上述处理模块501,具体用于根据所述第一UCI占用的编码比特数对所述第一UCI进行信道译码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道译码,获得所述第二UCI的编码比特序列。
具体地,上述处理模块501,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:
具体地,上述处理模块501,具体用于按照下述方式获取所述第二UCI占用的编码比特数Q2:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
具体地,上述处理模块501获取的第一UCI还包括调度请求SR。
具体地,上述处理模块501获得的第一上报类型的CSI包括下述中的至少一种:类型Types 3;Types 5;Types 6;Types 2a;用于波束指示的周期CSI;
所述第二上报类型的CSI包括下述中的至少一种:Types 2;Types 2b;Types 2c;Types 4;Types 1;Types 1a。
其中,资源是调制符号个数;所述处理模块501,具体用于根据所述第一UCI占用的调制符号个数,获取所述第一UCI占用的编码比特数,并根据所述第二UCI占用的调制符号个数,获取所述第二UCI占用的编码比特数;根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
具体地,上述处理模块501,具体用于按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
以及所述处理模块501,具体用于按照下述方式获取所述第二UCI占用的编码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
其中,所述资源是编码比特数;所述处理模块501,具体用于根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
具体地,上述处理模块501,具体用于将所述第一UCI的编码比特序列转换为所述第一UCI的编码矢量序列,并将所述第二UCI的编码比特序列转换为所述第二UCI的编码矢量序列;通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列;将所述UCI的编码比特序列映射到所述物理上行信道。
具体地,上述处理模块501,具体用于将所述第一UCI的编码矢量序列按行写入矩阵;将所述第二UCI的编码矢量序列按行入所述矩阵中除已写入所述第一UCI的编码矢量序列之外的位置;按列的顺序依次读出所述矩阵中各列的编码比特,以得到UCI的编码比特序列。
具体地,上述处理模块501,具体用于将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,获得编码矢量序列;或将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列进行先频域后时域的方式或先时域后频域的方式,映射到物理上行信道。
发送模块502,用于发送所述物理上行信道。
参阅图6所示,本发明实施例提供一种用户设备,该用户设备包括处理器61和发射器62,其中:
处理器61,用于获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI;将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道。
发射器62,用于发送所述物理上行信道。
需要说明的是,发射器62还可以执行图5中所示的发送模块502所执行的其他操作,处理器61还可以执行图5中所示的处理模块501所执行的其他操作。
处理器可以是中央处理器(central processing unit,CPU),或者是CPU
和硬件芯片的组合。
处理器还可以是网络处理器(network processor,NP)。或者是CPU和NP的组合,或者是NP和硬件芯片的组合。
上述硬件芯片可以是以下一种或多种的组合:专用集成电路(application-specific integrated circuit,ASIC),现场可编程逻辑门阵列(field-programmable gate array,FPGA),复杂可编程逻辑器件(complex programmable logic device,CPLD)。
实施例二
本发明实施例二提出一种控制信息接收方法。需要说明的是,该实施例中相同或相应的内容可以参照上文的描述。如图7所示,其具体处理流程如下述。
步骤71,接收物理上行信道。
步骤72,获取物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列。
步骤73,获取第一UCI占用的资源,并获取第二UCI占用的资源。
其中,第一UCI是第一CSI和HARQ-ACK,或第一UCI为第一上报类型的CSI、HARQ-ACK和SR,第二UCI为第二上报类型CSI。
周期CSI包括的类型可参照上文所述。
一种可选的实施方式,本发明实施例二提出的技术方案中,对第一UCI上报类型的性能要求高于第二UCI上报类型,第一UCI上报类型可以包括类型3,5,6,2a和波束指示所对应的周期CSI类型中至少一种;第二UCI上报类型可以包括类型2,2b,2c,4,1,1a中至少一种。
其中在本步骤中,获取第一UCI占用的资源,第一UCI占用的资源,该资源可以是调制符号个数,或者是编码比特数。相应地,第二UCI占用的资源,该资源可以是调制符号个数,或者是编码比特数,下面分别进行详细阐述。
若第一UCI和第二UCI占用的资源,该资源是调制符号个数时,可以按
照下述方式获取第一UCI和第二UCI占用的资源:
第一种方式:按照下述公式1确定第一UCI占用的调制符号个数为Q′1:
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数。βoffset是高层信令半静态配置的值或是一个预定数值。
按照下述公式2确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1 公式2
其中,上述公式1和公式2中,Q′为所述物理上行信道的容量,可以按照下述公式3确定:
上述公式1至公式5中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数。当第一UCI,第二UCI需要附加CRC的时候,相应的O1是包括CRC的长度后的第一UCI的信息长度,相应的O2是包括CRC的长度后的第二UCI的信息长度。举一例说明,大于22比特的上行控制信息(HARQ-ACK,CSI等)小于等于119,会被附加CRC,CRC长度为8bits;大于119,会附加16bits的CRC,这里O1和O2为上行控制信息的比特数目+CRC比特数目。当O2=0,βoffset=1。
为一个时隙该物理上行信道占用的时域符号的个数,在正常循环前缀(CP)情况下,的值为7,在扩展CP的情况下的值为6,NDMRS为该物理信道一个子帧用于传输DMRS导频信号的符号的个数,当该物理上行控制信道为如图2所示的结构时,NDMRS的值为1;NSRS的值为该子帧用于传输SRS的时域符号的个数,当当前子帧有SRS传输时,NSRS的值为1,当当前子帧无SRS传输时,NSRS的值为0。例如当该物理上行信道为PUCCH格式3时,需要考虑扩频系数,VSF为扩频系数(Spread Factor,SF)的值,所以VSF的值为5,NDMRS的值为4,当该物理上行信道为如图3所示的信道结构时,VSF的值分别为3,NDMRS的值为2。
第二种方式:按照下述公式6确定第一UCI占用的调制符号个数为Q′1:
按照上述公式2确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1
其中,公式6中的参数含义请参见上述公式1~公式5中的详细阐述。
第三种方式:按照下述公式7确定第一UCI占用的调制符号个数Q′1:
按照下述公式8或上述公式2确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1。
其中,为用于传输第一UCI的时域符号的个数,该数值可以是高层半静态通知的值,也可以是一个预定的值,例如该值为4;的值与上述第二种方式中的含义一致,此处不再详述;Q′与第一种方式种的参数一致,
此处不再详述。
或Q′2=Q′-Q′1。
其中,为用于传输第一UCI的时域符号的个数,其可以是高层半静态通知的值,也可以是一个预定的值,例如该值为4;的值与方式二一致,此处不再详述;Q′与方式一一致,此处不再详述。为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
根据第一UCI占用的调制符号个数计算所述第一UCI占用的编码比特数,并根据第二UCI占用的调制符号个数计算第二UCI占用的编码比特数,包括:根据第一上报类型的CSI占用的调制符号个数计算第一UCI占用的编码比特数,并根据第二上报类型的CSI占用的调制符号个数计算所述第二UCI占用的编码比特数。
若第一UCI和第二UCI占用的资源,该资源是编码比特数时,可以按照下述方式获取第一UCI和第二UCI占用的资源:
第一种方式:按照下述公式9确定第一UCI占用的编码比特数Q1:
按照下述公式10确定第二UCI占用的编码比特数Q2:
Q2=Q-Q1 公式10
第二种方式:按照下述公式11确定第一UCI占用的编码比特数Q1:
按照下述公式12确定第二UCI占用的编码比特数Q2:
在上述公式9~公式12中,各参数含义为:O1为待传输的第一UCI的信
息比特数。O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,可以按照下述公式13确定:
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
第二种方式:按照下述公式15确定第一UCI占用的编码比特数Q1:
Q1=Q′1*Qm 公式15
按照下述公式16确定第二UCI占用的编码比特数Q2:
Q2=Q'2*Qm 公式16
其中,上述公式15和公式16中,Q′1为第一UCI占用的调制符号个数,Q′2为第二UCI占用的调制符号个数,Qm为调制阶数。
步骤74,根据第一UCI占用的资源对第一UCI的编码比特序列进行信道译码获得第一UCI,并根据第二UCI占用的资源对第二UCI的编码比特序列进行信道译码获得第二UCI。
第一UCI包括第一上报类型的CSI和HARQ-ACK,第二UCI包括第二上报类型的CSI,或者第一UCI包括HARQ-ACK,第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
在本步骤中,根据第一UCI占用的资源,对第一UCI进行信道译码获得
第一UCI,并根据第二UCI占用的资源,对第二UCI进行信道译码获得第二UCI,可以根据资源的不同,通过下述两种方式来执行:
第一种方式:在资源是调制符号个数时,根据第一UCI占用的资源获取在物理上行信道上的第一UCI对应的调制符号,并根据第二UCI占用的资源获取在物理上行信道上的第二UCI对应的调制符号,根据第一UCI对应的调制符号对第一UCI进行信道译码,获得UE传输的第一UCI,并根据第二UCI对应的调制符号对第二UCI进行信道译码,获得UE传输的第二UCI。
若资源为调制符号个数时,分别对第一UCI和第二UCI进行信道编码之前,首先,根据得到的第一UCI占用的调制符号个数和第二上UCI占用的调制符号个数计算第一UCI的编码比特数和第二UCI的编码比特数,具体请参见下述公式中的详细阐述。
按照下述方式获取第一UCI占用的编码比特数:
Q1=Q′1*Qm;
按照下述方式获取第二UCI占用的编码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
第二种方式:在资源为编码比特数时,根据第一UCI占用的编码比特数对第一UCI进行信道译码,获得第一UCI的编码比特序列,并根据第二UCI占用的编码比特数对第二UCI进行信道译码,获得第二UCI的编码比特序列。
为便于阐述,本发明实施例二上述提出的技术方案中,在上述步骤中,按照获取第一UCI占用的资源,并获取第二UCI占用的资源,根据第一UCI占用的资源,对第一UCI进行信道译码获得第一UCI,并根据第二UCI占用的资源,对第二UCI进行信道译码获得第二UCI的执行顺序进行详细阐述,在具体实施过程中,也可以按照获取第一UCI占用的资源,根据第一UCI占用的资源,对第一UCI进行信道译码获得第一UCI,获取第二UCI占用的资
源,根据第二UCI占用的资源,对第二UCI进行信道译码获得第二UCI的顺序执行,还可以按照获取第二UCI占用的资源,根据第二UCI占用的资源,对第二UCI进行信道译码获得第二UCI,获取第一UCI占用的资源,根据第一UCI占用的资源,对第一UCI进行信道译码获得第一UCI的顺序执行,具体实施方式请参见上文中的详细阐述,不再赘述。
其中,根据第一UCI占用的资源对第一UCI的编码比特序列进行信道译码获得第一UCI,并根据第二UCI占用的资源对第二UCI的编码比特序列进行信道译码获得第二UCI,包括:在物理上行信道获取UCI的编码比特序列,对UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列,将第一UCI的编码矢量序列转换为第一UCI的编码比特序列,并将第二UCI的编码矢量序列转换为第二UCI的编码比特序列。
其中,对UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列,包括:按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列;在矩阵中按照行获得第一UCI的编码矢量序列;在矩阵中除已获得第一UCI的编码矢量序列之外的位置获得第二UCI的编码矢量序列。
获取所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列,包括:在物理上行信道中,以先时域后频域的方式或先频域后时域的方式获得编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列,将编码矢量序列解调,或将第一UCI的编码矢量序列和第二UCI的编码矢量序列解调,获得第一UCI的编码比特序列和所述第二UCI的编码比特序列。
具体地,根据第一UCI占用的资源对第一UCI的编码比特序列进行信道译码获得第一UCI,并根据第二UCI占用的资源对第二UCI的编码比特序列进行信道译码获得第二UCI,是上述实施例一中的逆处理过程,具体请参见上述实施例一中的详细阐述,本发明实施例二不再赘述。
相应地,本发明实施二还提出一种网络设备,如图8所示,包括接收模
块801和处理模块802。该网络设备可以执行上述方法实施例的相应操作,因此,相同或相应的内容可以参照上文所述。
接收模块801,用于接收物理上行信道。
处理模块802,用于获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列;获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI。
其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
所述资源是调制符号个数;上述处理模块802,具体用于根据所述第一UCI占用的资源获取在物理上行信道上的所述第一UCI对应的调制符号,并根据所述第二UCI占用的资源获取在物理上行信道上的所述第二UCI对应的调制符号;根据所述第一UCI对应的调制符号对所述第一UCI进行信道译码,获得UE传输的所述第一UCI,并根据所述第二UCI对应的调制符号对所述第二UCI进行信道译码,获得UE传输的所述第二UCI。
上述处理模块802,具体用于按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:
按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:
Q′2=Q′-Q′1;
其中,O1为待传输的第一UCI的信息比特数。O2为待传输的第二UCI的信息比特数,Q′为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数。
具体地,上述处理模块802,具体用于按照下述方式获取所述第一UCI占用的编码比特数:
Q1=Q′1*Qm;
按照下述方式获取所述第二UCI占用的编码比特数:
Q2=Q'2*Qm;
其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
所述资源是编码比特数;具体地,上述处理模块802,具体用于根据所述第一UCI占用的编码比特数对所述第一UCI进行信道译码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道译码,获得所述第二UCI的编码比特序列。
具体地,上述处理模块802,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:
按照下述方式获取所述第二UCI占用的编码比特数Q2:
其中,O1为待传输的第一UCI的信息比特数,O2为待传输的第二UCI的信息比特数,Q为所述物理上行信道的容量,
为分配给所述物理上行信道的子载波的个数,NPRB为分配给所述物理上行信道的无线资源块RB的个数;为该物理上行信道用于传输上行控制信息的时域符号的个数,
为一个时隙所述物理上行信道占用的时域符号的个数,NDMRS为所述物理上行信道一个子帧用于传输DMRS导频信号的符号的个数,为用于传输所述第一UCI的时域符号的个数,为用于传输所述第二UCI的时域符号的个数,Qm为调制阶数。
具体地,上述处理模块802,具体用于在所述物理上行信道获取UCI的编码比特序列;对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述第一UCI的编码矢量序列转换为第一UCI的编码比特序列,并将所述第二UCI的编码矢量序列转换为第二UCI的编码比特序列。
具体地,上述处理模块802,具体用于按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列;在所述矩阵中按照行获得第一UCI的编码矢量序列;在所述矩阵中除已获得所述第一UCI的编码矢量序列之外的位置获得第二UCI的编码矢量序列。
具体地,上述处理模块802,具体用于在所述物理上行信道中,以先时域后频域的方式或先频域后时域的方式获得编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列解调,或将所述第一UCI的编码矢量序列和第二UCI的编码矢量序列解调,获得所述第一
UCI的编码比特序列和所述第二UCI的编码比特序列。
参阅图9所示,本发明实施例提供一种网络设备,该网络设备可以是中继,也可以是基站,该网络设备包括接收器91和处理器92,其中:
接收器91,用于接收物理上行信道。
处理器92,用于获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列;获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI;
其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
需要说明的是,接收器91还可以执行图8中所示的接收模块801所执行的其他操作,处理器92还可以执行图8中所示的处理模块801所执行的其他操作。
处理器可以是中央处理器(central processing unit,CPU),或者是CPU和硬件芯片的组合。
处理器还可以是网络处理器(network processor,NP)。或者是CPU和NP的组合,或者是NP和硬件芯片的组合。
上述硬件芯片可以是以下一种或多种的组合:专用集成电路(application-specific integrated circuit,ASIC),现场可编程逻辑门阵列(field-programmable gate array,FPGA),复杂可编程逻辑器件(complex programmable logic device,CPLD)。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个
其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、只读光盘、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (36)
- 一种控制信息发送方法,其特征在于,包括:获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI;将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道;发送所述物理上行信道。
- 如权利要求1所述的方法,其特征在于,所述资源是调制符号个数;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,包括:根据所述第一UCI占用的调制符号个数,获取所述第一UCI占用的编码比特数,并根据所述第二UCI占用的调制符号个数,获取所述第二UCI占用的编码比特数;根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
- 如权利要求2所述的方法,其特征在于,获取第一UCI占用的资源,包括:按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:获取第二UCI占用的资源,包括:按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:Q′2=Q′-Q′1;
- 如权利要求3所述的方法,其特征在于,根据所述第一UCI占用的调制符号个数获取所述第一UCI占用的编码比特数,包括:按照下述方式获取所述第一UCI占用的编码比特数:Q1=Q'1*Qm;根据所述第二UCI占用的调制符号个数获取所述第二UCI占用的编码比特数,包括:按照下述方式获取所述第二UCI占用的编码比特数:Q2=Q'2*Qm;其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占 用的调制符号个数,Qm为调制阶数。
- 如权利要求1所述的方法,其特征在于,所述资源是编码比特数;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,包括:根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
- 如权利要求5所述的方法,其特征在于,获取第一UCI占用的资源,包括:按照下述方式获取所述第一UCI占用的编码比特数Q1:获取第二UCI占用的资源,包括:按照下述方式获取所述第二UCI占用的编码比特数Q2:
- 如权利要求1~6中任一所述的方法,其特征在于,将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道,包括:将所述第一UCI的编码比特序列转换为所述第一UCI的编码矢量序列,并将所述第二UCI的编码比特序列转换为所述第二UCI的编码矢量序列;通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列;将所述UCI的编码比特序列映射到所述物理上行信道。
- 如权利要求7所述的方法,其特征在于,通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列,包括:将所述第一UCI的编码矢量序列按行写入矩阵;将所述第二UCI的编码矢量序列按行入所述矩阵中除已写入所述第一UCI的编码矢量序列之外的位置;按列的顺序依次读出所述矩阵中各列的编码比特,以得到UCI的编码比特序列。
- 如权利要求1~6任一所述的方法,其特征在于,将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道,包括:将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,获得编码矢量序列;或将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列进行先频域后时域的方式或先时域后频域的方式,映射到物理上行信道。
- 一种控制信息接收方法,其特征在于,包括:接收物理上行信道;获取所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列;获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI;其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
- 如权利要求10所述的方法,其特征在于,所述资源是调制符号个数;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI,包括:根据所述第一UCI占用的资源获取在物理上行信道上的所述第一UCI对应的调制符号,并根据所述第二UCI占用的资源获取在物理上行信道上的所述第二UCI对应的调制符号;根据所述第一UCI对应的调制符号对所述第一UCI进行信道译码,获得UE传输的所述第一UCI,并根据所述第二UCI对应的调制符号对所述第二UCI进行信道译码,获得UE传输的所述第二UCI。
- 如权利要求11所述的方法,其特征在于,获取第一UCI占用的资源,包括:按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:获取第二UCI占用的资源,包括:按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:Q′2=Q′-Q′1;
- 如权利要求12所述的方法,其特征在于,按照下述方式获取所述第一UCI占用的编码比特数:Q1=Q'1*Qm;按照下述方式获取所述第二UCI占用的编码比特数:Q2=Q'2*Qm;其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
- 如权利要求10所述的方法,其特征在于,所述资源是编码比特数;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码 比特序列进行信道译码获得所述第二UCI,包括:根据所述第一UCI占用的编码比特数对所述第一UCI进行信道译码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道译码,获得所述第二UCI的编码比特序列。
- 如权利要求14所述的方法,其特征在于,获取第一UCI占用的资源,包括:按照下述方式获取所述第一UCI占用的编码比特数Q1:获取第二UCI占用的资源,包括:按照下述方式获取所述第二UCI占用的编码比特数Q2:
- 如权利要求10~15任一所述的方法,其特征在于,根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码 获得所述第二UCI,包括:在所述物理上行信道获取UCI的编码比特序列;对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述第一UCI的编码矢量序列转换为第一UCI的编码比特序列,并将所述第二UCI的编码矢量序列转换为第二UCI的编码比特序列。
- 如权利要求16所述的方法,其特征在于,对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列,包括:按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列;在所述矩阵中按照行获得第一UCI的编码矢量序列;在所述矩阵中除已获得所述第一UCI的编码矢量序列之外的位置获得第二UCI的编码矢量序列。
- 如权利要求10~17任一所述的方法,其特征在于,获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列,包括:在所述物理上行信道中,以先时域后频域的方式或先频域后时域的方式获得编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列解调,或将所述第一UCI的编码矢量序列和第二UCI的编码矢量序列解调,获得所述第一UCI的编码比特序列和所述第二UCI的编码比特序列。
- 一种用户设备,其特征在于,包括:处理模块,用于获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源,对所述第一UCI进行信道编码获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的资源,对所述第二UCI进行信道编码获得所述第二UCI的编码比特序列,其中,所述第 一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI;将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列映射到物理上行信道;发送模块,用于发送所述物理上行信道。
- 如权利要求19所述的用户设备,其特征在于,所述资源是调制符号个数;所述处理模块,具体用于根据所述第一UCI占用的调制符号个数,获取所述第一UCI占用的编码比特数,并根据所述第二UCI占用的调制符号个数,获取所述第二UCI占用的编码比特数;根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
- 如权利要求20所述的用户设备,其特征在于,所述处理模块,具体用于按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:Q′2=Q′-Q′1;
- 如权利要求21所述的用户设备,其特征在于,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数:Q1=Q'1*Qm;根据所述第二UCI占用的调制符号个数获取所述第二UCI占用的编码比特数,包括:按照下述方式获取所述第二UCI占用的编码比特数:Q2=Q'2*Qm;其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
- 如权利要求19所述的用户设备,其特征在于,所述资源是编码比特数;所述处理模块,具体用于根据所述第一UCI占用的编码比特数对所述第一UCI进行信道编码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道编码,获得所述第二UCI的编码比特序列。
- 如权利要求23所述的用户设备,其特征在于,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:按照下述方式获取所述第二UCI占用的编码比特数Q2:
- 如权利要求19~24中任一所述的用户设备,其特征在于,所述处理模块,具体用于将所述第一UCI的编码比特序列转换为所述第一UCI的编码矢量序列,并将所述第二UCI的编码比特序列转换为所述第二UCI的编码矢量序列;通过对所述第一UCI的编码矢量序列和所述第二UCI的编码矢量序列进行交织,得到UCI的编码比特序列;将所述UCI的编码比特序列映射到所述物理上行信道。
- 如权利要求25所述的用户设备,其特征在于,所述处理模块,具体用于将所述第一UCI的编码矢量序列按行写入矩阵;将所述第二UCI的编码矢量序列按行入所述矩阵中除已写入所述第一UCI的编码矢量序列之外的位置;按列的顺序依次读出所述矩阵中各列的编码比特,以得到UCI的编码比特序列。
- 如权利要求19~24任一所述的用户设备,其特征在于,所述处理模块,具体用于将所述第一UCI的编码比特序列和所述第二UCI的编码比特序 列进行调制,获得编码矢量序列;或将所述第一UCI的编码比特序列和所述第二UCI的编码比特序列进行调制,分别获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列进行先频域后时域的方式或先时域后频域的方式,映射到物理上行信道。
- 一种网络设备,其特征在于,包括:接收模块,用于接收物理上行信道;处理模块,用于获取所述所述物理上行信道中的第一UCI的编码比特序列和第二UCI的编码比特序列;获取第一上行控制信息UCI占用的资源,并获取第二UCI占用的资源;根据所述第一UCI占用的资源对所述第一UCI的编码比特序列进行信道译码获得第一UCI,并根据所述第二UCI占用的资源对所述第二UCI的编码比特序列进行信道译码获得所述第二UCI;其中,所述第一UCI包括第一上报类型的CSI和混合自动重传确认消息HARQ-ACK,所述第二UCI包括第二上报类型的CSI,或者所述第一UCI包括混合自动重传确认消息HARQ-ACK,所述第二UCI包括第一上报类型的CSI和/或第二上报类型的CSI。
- 如权利要求28所述的设备,其特征在于,所述资源是调制符号个数;所述处理模块,具体用于根据所述第一UCI占用的资源获取在物理上行信道上的所述第一UCI对应的调制符号,并根据所述第二UCI占用的资源获取在物理上行信道上的所述第二UCI对应的调制符号;根据所述第一UCI对应的调制符号对所述第一UCI进行信道译码,获得UE传输的所述第一UCI,并根据所述第二UCI对应的调制符号对所述第二UCI进行信道译码,获得UE传输的所述第二UCI。
- 如权利要求29所述的设备,其特征在于,所述处理模块,具体用于按照下述方式中的一种,确定所述第一UCI占用的调制符号个数Q′1:获取第二UCI占用的资源,包括:按照下述方式中的一种,确定第二UCI占用的调制符号个数Q′2:Q′2=Q′-Q′1;
- 如权利要求30所述的设备,其特征在于,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数:Q1=Q'1*Qm;按照下述方式获取所述第二UCI占用的编码比特数:Q2=Q'2*Qm;其中,Q′1为所述第一UCI占用的调制符号个数,Q′2为所述第二UCI占用的调制符号个数,Qm为调制阶数。
- 如权利要求29所述的设备,其特征在于,所述资源是编码比特数;所述处理模块,具体用于根据所述第一UCI占用的编码比特数对所述第 一UCI进行信道译码,获得所述第一UCI的编码比特序列,并根据所述第二UCI占用的编码比特数对所述第二UCI进行信道译码,获得所述第二UCI的编码比特序列。
- 如权利要求32所述的设备,其特征在于,所述处理模块,具体用于按照下述方式获取所述第一UCI占用的编码比特数Q1:按照下述方式获取所述第二UCI占用的编码比特数Q2:
- 如权利要求28~33任一所述的设备,其特征在于,所述处理模块,具体用于在所述物理上行信道获取UCI的编码比特序列;对所述UCI的编码比特序列进行解交织,获得第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述第一UCI的编码矢量序列转换为第一UCI的编码比特序列,并将所述第二UCI的编码矢量序列转换为第二UCI的编码比特序列。
- 如权利要求34所述的设备,其特征在于,所述处理模块,具体用于 按列的顺序依次读出矩阵中各列的编码比特,以得到UCI的编码比特序列;在所述矩阵中按照行获得第一UCI的编码矢量序列;在所述矩阵中除已获得所述第一UCI的编码矢量序列之外的位置获得第二UCI的编码矢量序列。
- 如权利要求28~33任一所述的设备,其特征在于,获所述处理模块,具体用于在所述物理上行信道中,以先时域后频域的方式或先频域后时域的方式获得编码矢量序列或所述第一UCI的编码矢量序列和第二UCI的编码矢量序列;将所述编码矢量序列解调,或将所述第一UCI的编码矢量序列和第二UCI的编码矢量序列解调,获得所述第一UCI的编码比特序列和所述第二UCI的编码比特序列。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580069492.2A CN107210839B (zh) | 2015-09-11 | 2015-09-11 | 一种控制信息发送、接收方法、用户设备及网络设备 |
EP15903410.7A EP3340505B1 (en) | 2015-09-11 | 2015-09-11 | Control information sending method and user equipment |
PCT/CN2015/089470 WO2017041305A1 (zh) | 2015-09-11 | 2015-09-11 | 一种控制信息发送、接收方法、用户设备及网络设备 |
US15/916,536 US10797831B2 (en) | 2015-09-11 | 2018-03-09 | Control information sending method, control information receiving method, user equipment, and network device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/089470 WO2017041305A1 (zh) | 2015-09-11 | 2015-09-11 | 一种控制信息发送、接收方法、用户设备及网络设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/916,536 Continuation US10797831B2 (en) | 2015-09-11 | 2018-03-09 | Control information sending method, control information receiving method, user equipment, and network device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017041305A1 true WO2017041305A1 (zh) | 2017-03-16 |
Family
ID=58240531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/089470 WO2017041305A1 (zh) | 2015-09-11 | 2015-09-11 | 一种控制信息发送、接收方法、用户设备及网络设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10797831B2 (zh) |
EP (1) | EP3340505B1 (zh) |
CN (1) | CN107210839B (zh) |
WO (1) | WO2017041305A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110268663A (zh) * | 2018-01-12 | 2019-09-20 | 联发科技股份有限公司 | 新无线电的上行链路控制信息处理 |
EP3742650A4 (en) * | 2018-01-19 | 2021-01-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE |
WO2021056320A1 (zh) * | 2019-09-26 | 2021-04-01 | 华为技术有限公司 | 上行控制信息复用传输的方法和装置 |
US11463210B2 (en) | 2017-04-25 | 2022-10-04 | Qualcomm Incorporated | Transmitting uplink control information (UCI) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11005631B2 (en) * | 2015-09-24 | 2021-05-11 | Ntt Docomo, Inc. | Terminal, base station and radio communication method for separately encoding uplink control information |
US10575210B2 (en) * | 2015-10-30 | 2020-02-25 | Qualcomm Incorporated | Cyclic redundancy check length management |
EP3433946A1 (en) * | 2016-03-24 | 2019-01-30 | Nokia Solutions and Networks Oy | Beam based communication device and access point |
JPWO2017170814A1 (ja) * | 2016-03-31 | 2019-02-14 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
US11082176B2 (en) | 2016-11-04 | 2021-08-03 | Futurewei Technologies, Inc. | System and method for transmitting a sub-space selection |
US10827474B2 (en) * | 2017-05-09 | 2020-11-03 | Qualcomm Incorporated | Techniques and apparatuses for nesting a new radio system and a long term evolution system |
JP7241035B2 (ja) * | 2017-11-09 | 2023-03-16 | オッポ広東移動通信有限公司 | アップリンク制御チャネルリソース確定方法、端末及びネットワーク側装置 |
CN110933751B (zh) * | 2018-09-20 | 2023-04-07 | 维沃移动通信有限公司 | 上行控制信息的指示方法、接收方法、终端及网络设备 |
EP3893579A4 (en) * | 2018-12-25 | 2021-12-15 | Huawei Technologies Co., Ltd. | METHOD AND DEVICE FOR CAPTURING DOWNLINK CHANNEL INFORMATION |
US11606175B2 (en) * | 2019-07-13 | 2023-03-14 | Qualcomm Incorporated | Enhancement of physical uplink control channel (PUCCH) format |
US20220109534A1 (en) * | 2020-10-02 | 2022-04-07 | Qualcomm Incorporated | Uplink control information reporting |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103095398A (zh) * | 2011-11-04 | 2013-05-08 | 华为技术有限公司 | 传输控制信息的方法、用户设备和基站 |
CN103178926A (zh) * | 2011-12-21 | 2013-06-26 | 华为技术有限公司 | 传输控制信息的方法、用户设备和基站 |
CN103188033A (zh) * | 2011-12-29 | 2013-07-03 | 华为技术有限公司 | 编码上行控制信息的方法及装置 |
CN103828318A (zh) * | 2011-09-23 | 2014-05-28 | Lg电子株式会社 | 在无线通信系统中控制上行链路控制信息的方法和装置 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8750917B2 (en) * | 2007-05-18 | 2014-06-10 | Qualcomm Incorporated | Multiplexing and power control of uplink control channels in a wireless communication system |
KR101494002B1 (ko) * | 2007-06-11 | 2015-02-16 | 삼성전자주식회사 | 이동통신 시스템에서 자원 할당 및 그에 따른 수신 장치 및방법 |
KR100956494B1 (ko) * | 2007-06-14 | 2010-05-07 | 엘지전자 주식회사 | 제어신호 전송 방법 |
CN102187726B (zh) * | 2008-10-20 | 2014-07-23 | 交互数字专利控股公司 | 载波聚合 |
WO2010123304A2 (en) * | 2009-04-24 | 2010-10-28 | Samsung Electronics Co., Ltd. | Multiplexing large payloads of control information from user equipments |
US8553627B2 (en) * | 2009-10-02 | 2013-10-08 | Sharp Laboratories Of America, Inc. | Transmission diversity scheme on physical uplink control channel (PUCCH) with ACK/NACK differentiation |
US8750143B2 (en) * | 2010-04-02 | 2014-06-10 | Sharp Laboratories Of America, Inc. | Extended uplink control information (UCI) reporting via the physical uplink control channel (PUCCH) |
KR101790523B1 (ko) * | 2010-04-22 | 2017-10-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 |
US20110268045A1 (en) * | 2010-04-30 | 2011-11-03 | Youn Hyoung Heo | System and method for uplink control information transmission in carrier aggregation |
KR101422041B1 (ko) * | 2010-05-20 | 2014-07-23 | 엘지전자 주식회사 | 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치 |
WO2012018228A2 (en) * | 2010-08-03 | 2012-02-09 | Samsung Electronics Co., Ltd. | Transmission of uplink control signals in a communication system |
US8675528B2 (en) * | 2010-11-15 | 2014-03-18 | Sharp Laboratories Of America, Inc. | Configuring uplink control information (UCI) reporting |
US20120127869A1 (en) * | 2010-11-22 | 2012-05-24 | Sharp Laboratories Of America, Inc. | Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation |
WO2012111975A2 (ko) * | 2011-02-15 | 2012-08-23 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 |
WO2012122170A1 (en) * | 2011-03-07 | 2012-09-13 | Interdigital Patent Holdings, Inc. | Method and apparatus for sending uplink control information for multi-radio access technology operation |
US9345007B2 (en) * | 2011-04-04 | 2016-05-17 | Lg Electronics Inc. | Method for transmitting uplink control information in a wireless communication system and device for same |
EP2706715B1 (en) * | 2011-05-02 | 2020-03-04 | LG Electronics Inc. | Method and device for transmitting uplink control information having large payload in wireless access system |
US8744006B2 (en) * | 2011-10-03 | 2014-06-03 | Telefonaktiebolaget L M Ericsson (Publ) | Transmit diversity for pre-coded radio control signals |
US9014130B2 (en) * | 2011-10-27 | 2015-04-21 | Lg Electronics Inc. | Method and apparatus for transmitting control information through uplink |
WO2013137682A1 (ko) * | 2012-03-16 | 2013-09-19 | 엘지전자 주식회사 | 상향링크 제어정보 전송 방법 및 장치 |
US9357537B2 (en) * | 2012-06-19 | 2016-05-31 | Lg Electronics Inc. | Method and apparatus for transmitting uplink data |
CA2882876C (en) * | 2012-08-23 | 2021-01-26 | Interdigital Patent Holdings, Inc. | Providing physical layer resources to different serving sites |
US8923880B2 (en) * | 2012-09-28 | 2014-12-30 | Intel Corporation | Selective joinder of user equipment with wireless cell |
US9276726B2 (en) * | 2012-12-11 | 2016-03-01 | Samsung Electronics Co., Ltd. | Transmissions/receptions of uplink acknowledgement signals in wireless networks |
JP6439985B2 (ja) * | 2013-11-26 | 2018-12-19 | シャープ株式会社 | 端末装置、基地局装置、通信方法 |
US11818717B2 (en) * | 2014-12-31 | 2023-11-14 | Texas Instruments Incorporated | Method and apparatus for uplink control signaling with massive Carrier Aggregation |
-
2015
- 2015-09-11 CN CN201580069492.2A patent/CN107210839B/zh active Active
- 2015-09-11 WO PCT/CN2015/089470 patent/WO2017041305A1/zh active Application Filing
- 2015-09-11 EP EP15903410.7A patent/EP3340505B1/en active Active
-
2018
- 2018-03-09 US US15/916,536 patent/US10797831B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103828318A (zh) * | 2011-09-23 | 2014-05-28 | Lg电子株式会社 | 在无线通信系统中控制上行链路控制信息的方法和装置 |
CN103095398A (zh) * | 2011-11-04 | 2013-05-08 | 华为技术有限公司 | 传输控制信息的方法、用户设备和基站 |
CN103178926A (zh) * | 2011-12-21 | 2013-06-26 | 华为技术有限公司 | 传输控制信息的方法、用户设备和基站 |
CN103188033A (zh) * | 2011-12-29 | 2013-07-03 | 华为技术有限公司 | 编码上行控制信息的方法及装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3340505A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11463210B2 (en) | 2017-04-25 | 2022-10-04 | Qualcomm Incorporated | Transmitting uplink control information (UCI) |
US12034667B2 (en) | 2017-04-25 | 2024-07-09 | Qualcomm Incorporated | Transmitting uplink control information (UCI) |
CN110268663A (zh) * | 2018-01-12 | 2019-09-20 | 联发科技股份有限公司 | 新无线电的上行链路控制信息处理 |
EP3738248A4 (en) * | 2018-01-12 | 2021-04-14 | Mediatek Inc. | HANDLING UPLINK CONTROL INFORMATION FOR NEW RADIO |
CN114844612A (zh) * | 2018-01-12 | 2022-08-02 | 联发科技股份有限公司 | 上行链路控制信息处理方法及用户设备 |
EP3742650A4 (en) * | 2018-01-19 | 2021-01-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE |
US11197280B2 (en) | 2018-01-19 | 2021-12-07 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communications method, terminal device, and network device |
AU2018403272B2 (en) * | 2018-01-19 | 2023-10-26 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communication method, terminal device, and network device |
US11917625B2 (en) | 2018-01-19 | 2024-02-27 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communications method, terminal device, and network device |
WO2021056320A1 (zh) * | 2019-09-26 | 2021-04-01 | 华为技术有限公司 | 上行控制信息复用传输的方法和装置 |
CN114391230A (zh) * | 2019-09-26 | 2022-04-22 | 华为技术有限公司 | 上行控制信息复用传输的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107210839B (zh) | 2021-07-20 |
CN107210839A (zh) | 2017-09-26 |
EP3340505A1 (en) | 2018-06-27 |
EP3340505A4 (en) | 2018-08-29 |
US10797831B2 (en) | 2020-10-06 |
EP3340505B1 (en) | 2021-09-01 |
US20180198569A1 (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017041305A1 (zh) | 一种控制信息发送、接收方法、用户设备及网络设备 | |
KR102216224B1 (ko) | 데이터 공유 채널의 전송 파라미터의 결정 방법, 장치 및 시스템 | |
CN103095398B (zh) | 传输控制信息的方法、用户设备和基站 | |
JP6019091B2 (ja) | アップリンク制御情報のためのユーザ機器、基地局装置、および集積回路 | |
US11317387B2 (en) | Uplink control information transmission method and apparatus | |
AU2016400171B2 (en) | Information processing method, terminal device, network device, and communication system | |
CN106559878B (zh) | 上行控制信息uci发送、获取方法及装置 | |
CN107079324B (zh) | 基站装置、终端装置及通信方法 | |
KR20170097079A (ko) | 많은 수의 셀들을 갖는 반송파 집성에서 상향링크 정보의 전송 | |
CN111769902B (zh) | 传输信道状态信息的方法、用户设备和基站 | |
US9401793B2 (en) | Method and apparatus for encoding uplink control information | |
TWI719413B (zh) | 上行控制資訊的傳輸方法、接收方法、終端、基地台及裝置 | |
CN102255694A (zh) | 信道状态信息传输方法和设备 | |
US10291356B2 (en) | Decoding procedures in systems with codeblock segmentation | |
JP6999818B2 (ja) | チャネル状態情報伝送方法、通信機器および装置 | |
JP2020533902A5 (zh) | ||
WO2017028058A1 (zh) | 一种传输上行控制信息的方法及装置 | |
CN110831216B (zh) | 一种移动通信系统、终端、网络设备和上行信息复用方法 | |
JP2018516004A (ja) | 電力制御方法、端末、および基地局 | |
WO2017049641A1 (zh) | 一种信息传输方法、设备及系统 | |
WO2022206579A1 (zh) | 一种上行控制信息传输方法和装置 | |
WO2022206218A1 (zh) | 一种通信方法、装置及系统 | |
RU2772986C2 (ru) | Устройство и способ передачи информации управления восходящей линии связи | |
CN110971283A (zh) | 一种通信方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15903410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015903410 Country of ref document: EP |