WO2023280189A1 - 一种通信方法以及相关装置 - Google Patents

一种通信方法以及相关装置 Download PDF

Info

Publication number
WO2023280189A1
WO2023280189A1 PCT/CN2022/104031 CN2022104031W WO2023280189A1 WO 2023280189 A1 WO2023280189 A1 WO 2023280189A1 CN 2022104031 W CN2022104031 W CN 2022104031W WO 2023280189 A1 WO2023280189 A1 WO 2023280189A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
time
terminal
configuration information
mapping relationship
Prior art date
Application number
PCT/CN2022/104031
Other languages
English (en)
French (fr)
Inventor
王婷
吕永霞
王君
张立清
马江镭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023280189A1 publication Critical patent/WO2023280189A1/zh
Priority to US18/404,060 priority Critical patent/US20240205914A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the embodiments of the present application relate to a communication method and a related device.
  • the terminal and the base station In order to communicate between the terminal and the base station, the terminal and the base station need to perform beam scanning, beam management, and beam tracking, etc., so as to determine the best beam for obtaining the best communication quality.
  • performing the above-mentioned operations such as beam scanning, beam management, and beam tracking will result in large communication delay and large pilot overhead.
  • Embodiments of the present application provide a communication method and a related device for reducing communication delay.
  • the terminal acquires a mapping relationship, where the mapping relationship includes a mapping relationship between M parameter sets and M time periods, the parameter set includes a value of at least one parameter, and M is an integer greater than or equal to 2.
  • the terminal receives the first control information according to the mapping relationship in the first time period, and the first time period is included in the M time periods.
  • the terminal can determine the parameter set corresponding to each time period according to the mapping relationship, so as to receive the control information according to the corresponding parameter set, and the parameter set can have a corresponding relationship with the beam, so that there is no need to perform beam scanning, beam management and Beam tracking and other steps determine the beam directly according to the corresponding relationship, reducing communication delay.
  • the terminal obtains the mapping relationship by receiving configuration information, where the configuration information is used to indicate the mapping relationship.
  • the terminal can flexibly obtain the mapping relationship, satisfy the change of the parameter set, match the service transmission, and improve the communication performance.
  • a parameter set may have a corresponding relationship with a beam.
  • the beam may be the beam that can obtain the best communication quality
  • the parameter set corresponding to the time period determined by the terminal also determines the beam corresponding to the time period, so that beam scanning and beam tracking are not required to directly determine the best beam , reducing the communication delay.
  • At least one parameter in different parameter sets in the M parameter sets has a different value.
  • the parameters in the parameter set include at least one of control resource set configuration information, radio network temporary identifier RNTI, reference signal configuration information, and control information transmission manner.
  • control resource set configuration information is used to indicate the time-frequency position corresponding to the first control information
  • the wireless network temporary identifier is used to parse the first control information
  • the reference signal configuration information is used to indicate the time-frequency position corresponding to the reference signal.
  • the time-frequency position and/or sequence, and the transmission mode of the control information are used to indicate the transmission mode of the first control information.
  • control resource set configuration information is used to configure the control channel resource set
  • the wireless network temporary identifier is used to identify the terminal device
  • the reference signal configuration information is used to configure the reference signal
  • the control information transmission mode is used to indicate the control How the information is transmitted.
  • the time period includes any one of one or more time domain symbols, one or more time slots, and one or more subframes.
  • the control information transmission mode includes a first control information transmission mode and a second control information transmission mode
  • the first control information transmission mode is used to indicate that the first control information includes a plurality of sub-control information , the multiple pieces of sub-control information respectively correspond to multiple terminals
  • the second control information transmission mode is used to indicate that the first control information corresponds to one terminal.
  • control information transmission manner includes group control information transmission and single control information transmission.
  • the first control information is used to schedule signal transmission.
  • control resource set configuration information has a corresponding relationship with at least one of the RNTI, reference signal configuration information, and control information transmission manner.
  • one control resource set configuration information has a corresponding relationship with at least two RNTIs, at least two reference signal configuration information, and at least one of two control information transmission modes.
  • one piece of control resource set configuration information has a corresponding relationship with at least one item of one RNTI, one piece of reference signal configuration information, and one control information transmission manner.
  • the position of the target sub-control information in the multiple sub-control information in the first control information has an association relationship with the value of at least one parameter.
  • a position of the target sub-control information in the first control information is determined according to a value of at least one parameter.
  • the terminal performs channel estimation on the first control information according to the resource granularity of channel estimation, where the resource granularity of channel estimation is N1 control channel elements CCE or N2 resource block groups REG, where N1 and N2 are greater than Integer of 0.
  • the terminal receives indication information, where the indication information is used to indicate resource granularity.
  • the time period is associated with a time period and a time offset, or, the time period is associated with a time start position and a time length.
  • the time period is determined according to the time period and the time offset, or the terminal determines the time period according to the time start position and the time length.
  • the mapping relationship is associated with the time period, the time offset, and the time interval, or the mapping relationship is associated with the time start position, the time length, and the time interval.
  • the mapping relationship is determined according to the time period, the time offset, and the time interval, or the mapping relationship is determined according to the time start position, the time length, and the time interval.
  • the terminal receives configuration information, and the configuration information indicates at least one of time period, time offset, and time interval, or the terminal receives configuration information, and the configuration information indicates the time start position, time length, and time interval. At least one of the time intervals.
  • the time interval has a corresponding relationship with the moving speed of the terminal.
  • the terminal determines the time interval according to the movement speed of the terminal.
  • the network device obtains a mapping relationship, the mapping relationship includes a mapping relationship between M parameter sets and M time periods, the parameter set includes at least one parameter value, and M is an integer greater than or equal to 2.
  • the network device sends the first control information according to the mapping relationship in the first time period, and the first time period is included in the M time periods.
  • the network device sends control information corresponding to the parameter set to the terminal, thereby reducing communication delay.
  • the network device sends configuration information, where the configuration information is used to indicate a mapping relationship.
  • the network device may send the obtained mapping relationship through configuration information, so that the terminal obtains the mapping relationship, thereby receiving control information according to the mapping relationship, satisfying changes in parameter sets, matching service transmission, and improving communication performance.
  • a parameter set may have a corresponding relationship with a beam.
  • the beam may be the beam that can obtain the best communication quality
  • the parameter set corresponding to the time period determined by the terminal also determines the beam corresponding to the time period, so that beam scanning and beam tracking are not required to directly determine the best beam , reducing the communication delay.
  • At least one parameter in different parameter sets in the M parameter sets has a different value.
  • the parameters in the parameter set include at least one of control resource set configuration information, radio network temporary identifier RNTI, reference signal configuration information, and control information transmission manner.
  • dynamic terminal pairing is realized, more flexible control information transmission is realized, terminals are dynamically scheduled, beam switching delay is reduced, and communication performance is improved.
  • control resource set configuration information is used to indicate the time-frequency position corresponding to the first control information
  • the wireless network temporary identifier is used to parse the first control information
  • the reference signal configuration information is used to indicate the time-frequency position corresponding to the reference signal.
  • the time-frequency position and/or sequence, and the transmission mode of the control information are used to indicate the transmission mode of the first control information.
  • control resource set configuration information is used to configure the control channel resource set
  • the wireless network temporary identifier is used to identify the terminal device
  • the reference signal configuration information is used to configure the reference signal
  • the control information transmission mode is used to indicate the control How the information is transmitted.
  • the time period includes any one of one or more time domain symbols, one or more time slots, and one or more subframes.
  • the control information transmission mode includes a first control information transmission mode and a second control information transmission mode
  • the first control information transmission mode is used to indicate that the first control information includes a plurality of sub-control information , the multiple pieces of sub-control information respectively correspond to multiple terminals
  • the second control information transmission mode is used to indicate that the first control information corresponds to one terminal.
  • control information transmission manner includes group control information transmission and single control information transmission.
  • the transmission mode switching between the single control information and the group control information based on the dynamic period is realized, the control information overhead is reduced, the control information is transmitted according to the actual scheduling situation, and the communication performance is improved.
  • the first control information is used to schedule signal transmission.
  • control resource set configuration information has a corresponding relationship with at least one of the RNTI, reference signal configuration information, and control information transmission manner.
  • one control resource set configuration information has a corresponding relationship with at least two RNTIs, at least two reference signal configuration information, and at least one of two control information transmission modes.
  • one piece of control resource set configuration information has a corresponding relationship with at least one item of one RNTI, one piece of reference signal configuration information, and one control information transmission manner.
  • the position of the target sub-control information in the multiple sub-control information in the first control information has an association relationship with the value of at least one parameter.
  • a position of the target sub-control information in the first control information is determined according to a value of at least one parameter.
  • the network device sends indication information, and the indication information is used to indicate the resource granularity of channel estimation, and the terminal performs channel estimation on the first control information according to the resource granularity of channel estimation, and the resource granularity of channel estimation is N1 Control channel element CCE or N2 resource block groups REG, N1 and N2 are integers greater than 0.
  • the time period is associated with a time period and a time offset, or, the time period is associated with a time start position and a time length.
  • the time period is determined according to the time period and the time offset, or the terminal determines the time period according to the time start position and the time length.
  • the mapping relationship is associated with the time period, the time offset, and the time interval, or the mapping relationship is associated with the time start position, the time length, and the time interval.
  • the mapping relationship is determined according to the time period, the time offset, and the time interval, or the mapping relationship is determined according to the time start position, the time length, and the time interval.
  • the network device sends configuration information, and the configuration information indicates at least one of time period, time offset, and time interval, or the network device sends configuration information, and the configuration information indicates the time start position and time length and at least one of the time intervals.
  • a third aspect of the embodiments of the present application provides a terminal that can implement the method in the foregoing first aspect or any possible implementation manner.
  • the terminal includes corresponding units or modules for performing the above methods.
  • the units or modules included in the terminal can be implemented by means of software and/or hardware.
  • a fourth aspect of the embodiments of the present application provides a network device that can implement the method in the foregoing second aspect or any possible implementation manner.
  • the network device includes corresponding units or modules for performing the above methods.
  • the units or modules included in the base station may be implemented by means of software and/or hardware.
  • the fifth aspect of the embodiment of the present application provides a terminal, including a processor, the processor is coupled to a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the device executes the method in the first aspect.
  • the sixth aspect of the embodiment of the present application provides a network device, including a processor, the processor is coupled with a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the device executes the method in the second aspect .
  • the seventh aspect of the embodiment of the present application provides a computer-readable storage medium, on which a computer program or instruction is stored, and when the computer program or instruction is executed, the computer executes the method in the first aspect or the second aspect above.
  • Fig. 1 is a schematic diagram of a communication system applied to the communication method in the embodiment of the present application
  • FIG. 2 is a schematic diagram of another communication system where the communication method is applied in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of another communication system where the communication method is applied in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario of the communication method in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an application scenario of the communication method in the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method in an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a subframe structure in an embodiment of the present application.
  • Figure 7b is a schematic diagram of M time periods in the embodiment of the present application.
  • Fig. 7c is another schematic diagram of M time periods in the embodiment of the present application.
  • Figure 7d is another schematic diagram of M time periods in the embodiment of the present application.
  • Fig. 7e is another schematic diagram of M time periods in the embodiment of the present application.
  • Fig. 7f is another schematic diagram of M time periods in the embodiment of the present application.
  • FIG. 7g is a schematic diagram of the mapping relationship in the embodiment of the present application.
  • FIG. 7h is another schematic diagram of the mapping relationship in the embodiment of the present application.
  • FIG. 7i is another schematic diagram of the mapping relationship in the embodiment of the present application.
  • FIG. 7j is another schematic diagram of the mapping relationship in the embodiment of the present application.
  • FIG. 7k is another schematic diagram of the mapping relationship in the embodiment of the present application.
  • FIG. 71 is a schematic diagram of reference signal pattern information in the embodiment of the present application.
  • FIG. 8a is a schematic diagram of time-frequency resources in the embodiment of the present application.
  • Fig. 8b is a schematic diagram of target sub-control information in the embodiment of the present application.
  • FIG. 8c is another schematic diagram of the mapping relationship in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of processing control information in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device in an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a network device in an embodiment of the present application.
  • Embodiments of the present application provide a communication method and a related device, which are used to reduce the communication delay of a terminal.
  • long term evolution long term evolution
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex
  • new radio new radio
  • 5G fifth-generation
  • 6G sixth-generation
  • V2X vehicle to everything
  • 4G and 5G hybrid network system or a device-to-device (D2D) communication system, Machine to machine (M2M) communication system, Internet of Things (IoT), frequency division duplex (FDD) system, time division duplex (TDD) system, satellite communication system, wireless fidelity (wireless fidelity, WiFi) system, and other next-generation communication systems may also be non-3GPP communication systems, without limitation.
  • D2D device-to-device
  • M2M Machine to machine
  • IoT Internet of Things
  • FDD frequency division duplex
  • TDD time division duplex
  • satellite communication system wireless fidelity (wireless fidelity, WiFi) system
  • wireless fidelity wireless fidelity
  • WiFi wireless fidelity
  • next-generation communication systems may also be non-3GPP communication systems, without limitation.
  • the communication method provided by the embodiment of the present application can be applied to various communication scenarios, for example, it can be applied to one or more of the following communication scenarios: enhanced mobile broadband (enhanced mobile broadband, eMBB), ultra-reliable low-latency communication (ultra reliable low latency communication (URLLC), machine type communication (MTC), Internet of things (Internet of things, IoT), narrowband Internet of things (NB-IoT), customer front-end equipment (customer premise equipment, CPE), augmented reality (augmented reality, AR), virtual reality (virtual reality, VR), massive machine type communications (massive machine type communications, mMTC), device to device (device to device, D2D), vehicle Networking (vehicle to everything, V2X) and vehicle to vehicle (vehicle to vehicle, V2V), etc.
  • enhanced mobile broadband enhanced mobile broadband
  • eMBB ultra-reliable low-latency communication
  • URLLC ultra reliable low latency communication
  • MTC machine type communication
  • Internet of things Internet of things, IoT
  • IoT may include one or more of NB-IoT, MTC, and mMTC, etc., without limitation.
  • the embodiments of the present application are applicable to both homogeneous and heterogeneous network scenarios, and at the same time, there are no restrictions on transmission points, which can be multi-point coordinated transmission between a macro base station and a macro base station, between a micro base station and a micro base station, and between a macro base station and a micro base station , duplex system, access backhaul system and relay system, etc.
  • the embodiments of the present application are applicable to low-frequency scenarios above 6GHz, such as sub 6GHz, and are also applicable to high-frequency scenarios above 6GHz, terahertz, and optical communications.
  • the terminal in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • Terminal devices can also be handheld computers, mobile internet devices (MIDs), eMBB terminals, URLLC terminals, MTC terminals, NB-IoT terminals, CPE terminals, VR terminals, AR terminals, V2X terminals, and wireless terminals in industrial control.
  • Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, and smart homes Wireless terminals, sensors, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), computing devices or Other processing devices connected to wireless modems, vehicle-mounted terminals, vehicles with vehicle-to-vehicle (V2V) capabilities, and drones with unmanned aerial vehicle (UAV)-to-UAV communications capabilities , handheld devices with wireless communication functions, wearable devices, terminal devices in the 5G network or terminal devices in the public land mobile network (PLMN) that will evolve in the future, etc., this embodiment of the application does not limited.
  • PLMN public land mobile network
  • the terminal in this embodiment of the application may also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data, receiving control information and data from network devices, and sending electromagnetic waves to transmit data to network devices.
  • sensors such as smart printers, train detectors, and gas stations
  • its main functions include collecting data, receiving control information and data from network devices, and sending electromagnetic waves to transmit data to network devices.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal, and the network device may be an evolved base station (evolutional nodeB, eNodeB) in an LTE system, or a cloud radio access network (cloud radio access network) , CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or a network device in a future evolved network, a satellite base station, etc., this
  • the application examples are not limiting.
  • Network devices may also include nodes in the 6G system such as xNodeB, devices that may implement base station functions in the future, access nodes in the WiFi system, transmission points (transmitting and receiving point, TRP), transmission points (transmitting point, TP), Mobile switching centers and devices that undertake base station functions in Device-to-Device (D2D), vehicle-to-everything (V2X) or machine-to-machine (M2M) communications, etc. , not limited here.
  • the network device may also be a device supporting wired access, or a device supporting wireless access.
  • the network device may be an access network (access network, AN) or radio access network (radio access network, RAN) device, which is composed of multiple AN or RAN nodes.
  • the AN or RAN node can be: transmission reception point (transmission reception point, TRP), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), home base station (for example, home evolved NodeB , or home Node B, HNB), wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc., can also be 5G, such as ngNB, TRP or TP in the NR system, or it can also be one or a group of antenna panels of the base station in the 5G system.
  • 5G such as ngNB, TRP or TP in the NR system, or it can also be one or a group of antenna panels of the base station in the 5G system.
  • NR nodeB next-generation base station
  • gNB next-generation base station
  • BBU baseband unit
  • DU distributed unit
  • D2D machine-to-machine
  • M2M machine-to-machine
  • the network device in this embodiment of the present application may be any of the above-mentioned devices or a chip in the above-mentioned devices, which is not specifically limited here. Regardless of being a device or a chip, the network device can be manufactured, sold or used as an independent product. In this embodiment and subsequent embodiments, only network devices are used as an example for introduction.
  • the communication method shown in the embodiment of the present application may be applied to communication between a first communication device and a second communication device, where the first communication device may be a terminal or a network device.
  • the second communication device may be a terminal or a network device.
  • the following embodiments are described by taking the first communication device as a terminal and the second communication device as a network device as an example.
  • the communication method shown in the embodiment of the present application can be applied to the communication between the terminal and the network device, can also be applied to the communication between the terminal and the terminal device, and can also be applied to the communication between the network device and the network device Communication.
  • the communication between network devices may be coordinated multi-point transmission between a macro base station and a macro base station, between a micro base station and a micro base station, or between a macro base station and a micro base station.
  • FIG. 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • FIG. 1 is a cellular communication system 100 , which includes a network device 101 , a terminal device 102 , a terminal device 103 and a terminal device 104 .
  • Information can be sent between network devices and terminal devices through channels, and different channels can carry the same or different types of information.
  • the network device may send control information to the terminal device through the control channel, so as to realize the scheduling of the terminal device.
  • the network device 101 is the network device in the foregoing possible implementation
  • the terminal device 102, the terminal device 103, and the terminal device 104 are terminals in the foregoing possible realization.
  • Fig. 2 is another schematic diagram of a communication system applicable to the embodiment of the present application.
  • FIG. 2 it is an inter-satellite link communication system 200 applied in the embodiment of the present application, including satellite 1 and satellite 2 , and information exchange is performed between the two through channels, that is, communication between satellites.
  • the satellite can be used as a network device or as a terminal.
  • the communication system includes a communication subsystem and an acquisition, pointing and tracking (acquisition pointing tracking, APT) subsystem.
  • the communication subsystem includes a communication module and a transceiver antenna, which is responsible for the transmission of inter-satellite information and is the main body of the inter-satellite communication system;
  • the APT subsystem is responsible for the acquisition, alignment and tracking between satellites, and the acquisition is to determine the incoming wave of the incident signal Direction, aligning is to adjust the transmitting wave to aim at the receiving direction, and tracking is to continuously adjust the alignment and capture during the communication process.
  • the APT In order to reduce fading and interference effects in the channel as much as possible, and require high confidentiality and transmission rate, the APT must be adjusted in real time to continuously adapt to changes.
  • Fig. 3 is another schematic diagram of a communication system applicable to the embodiment of the present application.
  • a satellite communication system 300 applied in the embodiment of the present application, including a satellite base station 301 , a terminal type network element 302 , a terminal type network element 303 , and a terminal type network element 304 .
  • the satellite base station provides communication services for the terminal-type network element, and the terminal-type network element can be the above-mentioned various possible terminal devices.
  • the satellite base station transmits downlink data to the terminal, in which the data is encoded by channel coding, and the channel-coded data is transmitted to the terminal after constellation modulation; the terminal transmits uplink data to the satellite base station, and the uplink data can also be encoded by channel coding.
  • the data is transmitted to the satellite base station after constellation modulation.
  • wireless communication systems include but are not limited to: narrow band-internet of things (NB-IoT), global system for mobile communications (GSM), enhanced data rate GSM Evolution system (enhanced data rate for GSM evolution, EDGE), wideband code division multiple access system (wideband code division multiple access, WCDMA), code division multiple access 2000 system (code division multiple access, CDMA2000), time division synchronous code division multiple access System (time division-synchronization code division multiple access, TD-SCDMA), long term evolution system (long term evolution, LTE) and enhanced mobile broadband (enhanced mobile broadband, eMBB), URLLC and Internet of Things technology based on LTE evolution (LTE enhanced MTO, eMTC).
  • NB-IoT narrow band-internet of things
  • GSM global system for mobile communications
  • GSM Evolution system enhanced data rate for GSM evolution
  • EDGE enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000 system
  • FIG. 4 is another schematic diagram of a communication system applicable to the embodiment of the present application.
  • FIG. 4 it is a communication system 400 used in a wireless projection scene according to the embodiment of the present application, including a TV and a mobile phone, and information is exchanged between the TV and the mobile phone.
  • the embodiments of the present application can also be applied to various application scenarios such as data encoding and decoding in virtual reality (virtual reality, VR) games and mobile phone applications (application, APP).
  • VR virtual reality
  • APP mobile phone applications
  • TVs and mobile phones can be used to perform the corresponding functions of the network device in the embodiments of the present application, or can also be used to perform the corresponding functions of the terminal devices in the embodiments of the present application. This is not limited.
  • the embodiment of the present application can also be applied to URLLC.
  • URLLC is widely used in the fields of automatic driving, industrial manufacturing, Internet of Vehicles, and smart grid.
  • the terminals in the factory are specifically some equipment used for manufacturing, and the terminals can be controlled through the wireless network. Since the manufacturing operations in the factory have high requirements for precision, there are also requirements for communication delay and stability.
  • the terminal may need to perform periodic motion.
  • terminal 1 performs periodic elliptical motion in the workshop
  • terminal 2 performs periodic reciprocating motion in the workshop.
  • the relative position of the terminal and the base station changes during the movement process, so the beam that can obtain the best communication quality will also change accordingly.
  • the present application provides a communication method.
  • Some nouns or terms used in this application are explained below, and the nouns or terms and their related explanations are also part of the content of the invention.
  • Physical downlink control channel (physical downlink control channel, PDCCH) and physical reception link control channel (physical reception link control channel, PRXCH);
  • PDCCH is mainly used to carry downlink control information (DCI), carrying control information related to data transmission, such as resource allocation information for data transmission, format information of uplink resources or downlink resources in time slots, uplink data channels and downlink Power control information for data channels and signals, etc.
  • DCI downlink control information
  • control information related to data transmission such as resource allocation information for data transmission, format information of uplink resources or downlink resources in time slots, uplink data channels and downlink Power control information for data channels and signals, etc.
  • the time domain resources of PDCCH are located in the first 1 to 3 symbols of each slot, and the symbol length is indicated by a physical control format indicator channel (PCFICH).
  • PCFICH physical control format indicator channel
  • a more flexible PDCCH resource allocation scheme is required.
  • the time-frequency domain resource position occupied by PDCCH is defined as the control channel resource set (CORESET), and CORESET can be controlled by high-level signaling. configuration.
  • a control channel element is a basic constituent unit of the PDCCH.
  • One CCE occupies N resource element groups (resource element group, REG) in the time-frequency domain.
  • REG resource element group
  • a REG corresponds to an OFDM symbol in the time domain and a resource block (resource block, RB) in the frequency domain, including 12 consecutive resource elements (resource element, RE);
  • a certain PDCCH can be composed of 1 or 2 , 4, 8, and 16 CCEs, the specific value of which is determined by the size of the DCI payload (DCI payload size) and the required encoding rate.
  • the number of CCEs constituting the PDCCH is called an aggregation level (AL).
  • the base station can select an appropriate aggregation level according to the channel state, and the aggregation level is higher when the channel state is poor.
  • a physical layer control channel—PRxCCH can be introduced.
  • the function of this PRxCCH is similar to the PDCCH in LTE and 5G, specifically, a channel for transmitting control information used to schedule data transmission. It should be understood that, generally, standard protocols are described from the perspective of terminal equipment, so the downlink control channel of the physical layer can be described as a receive link control channel of the physical layer.
  • PDSCH Physical downlink shared channel
  • PRxSCH physical reception link shared channel
  • PDSCH is a physical layer channel that carries downlink service data.
  • the PDSCH transmission process may include scrambling, modulation, layer mapping, antenna port mapping, virtual resource block mapping, physical resource block mapping, etc.
  • a physical layer data channel—PRxSCH can be introduced.
  • the function of this PRxSCH is similar to PDSCH in LTE and 5G.
  • the channel may be used as a channel for the terminal device to receive data, and/or as a channel for the network device to transmit data. It should be understood that generally, standard protocols are described from the perspective of terminal equipment, so the downlink data channel of the physical layer can be described as a receiving data channel of the physical layer.
  • a physical uplink control channel (physical uplink control channel, PUCCH) is mainly used to carry uplink control information (uplink control information, UCI). Specifically, it may include information that the terminal device applies to the network device for uplink resource configuration, information that responds to whether the downlink service data is correctly received by the terminal device, and channel state information (channel state information, CSI) of the downlink channel reported by the terminal device.
  • uplink control information uplink control information, UCI
  • UCI uplink control information
  • a physical layer control channel—physical transmission link control channel (physical transmission link control channel, PTxCCH) may be introduced.
  • the PTxCCH functions similarly to the PUCCH in LTE and 5G.
  • the channel is used as a channel for terminal equipment to transmit control information, and/or as a channel for network equipment to receive control information.
  • the control information may include at least one of the following: hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ), acknowledgment/non-acknowledgement (acknowledge/negative acknowledgment, ACK/NACK) information, channel state information, and scheduling request.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • ACK/NACK acknowledgment/non-acknowledgement
  • channel state information channel state information
  • a physical uplink shared channel (PUSCH) is used to transmit uplink service data.
  • the PUSCH can be dynamically scheduled by the DCI, or can be configured by high-level parameters for scheduling-free transmission, or can be semi-persistently scheduled by the DCI after high-level parameters are configured.
  • the PUSCH transmission process may include processes such as scrambling, modulation, layer mapping, conversion precoding, precoding, resource mapping, and symbol generation.
  • a physical layer data channel—physical transmission link shared channel (physical transmission link shared channel, PTxSCH) may be introduced.
  • the function of this PTxSCH is similar to PUSCH in LTE and 5G.
  • the channel is used as a channel for the terminal device to transmit data, and/or as a channel for the network device to receive data. It should be understood that, generally, standard protocols are described from the perspective of terminal equipment, so the uplink data channel of the physical layer can be described as a physical layer sending data channel.
  • Downlink control information is control information related to PDSCH and PUSCH transmitted on PDCCH. Only when the terminal device correctly decodes the DCI information, can it correctly process PDSCH data or PUSCH data.
  • the terminal device Since the terminal device does not know in advance which format of DCI the received PDCCH carries, nor does it know which candidate PDCCH is used for transmission of the DCI, the terminal device must perform PDCCH blind detection to receive the corresponding DCI. Before the terminal device successfully decodes the PDCCH, the terminal device may try decoding on every possible candidate PDCCH until the terminal device detects a successful PDCCH, or reaches the number of DCI expected to be received by the terminal device or reaches the limit of blind detection times of the terminal device.
  • a terminal device When a terminal device receives a PDCCH, it cannot determine which format the received DCI belongs to, and thus cannot correctly process data transmitted on channels such as PDSCH and PUSCH. Therefore, the terminal device must perform blind detection on the format of the DCI.
  • the terminal device Since the terminal device generally does not know the format of the current DCI, nor does it know where the information it needs is located, but the terminal device knows what format it expects, and the expected information in different formats corresponds to different expected RNTI and CCE, Therefore, the terminal device can know whether the received DCI is what it needs by using the expected RNTI and CCE to perform CRC check on the received DCI, and also know the corresponding DCI format and modulation mode, so as to further contact the DCI.
  • the above process is the terminal device blind detection process.
  • the error detection function of the terminal device is usually implemented by adding cyclic redundancy check (cyclic redundancy check, CRC) bits to the information bits of the DCI, and different types of wireless network identifiers (radio network temporary identifier, RNTI) for scrambling, thereby implicitly encoding the RNTI in the CRC bits.
  • CRC cyclic redundancy check
  • RNTI radio network temporary identifier
  • the terminal device needs to perform blind detection on the multiple CCEs.
  • a search space search space
  • the search space can be simply understood as that when a terminal device performs blind detection of PDCCH, it performs blind detection with several CCEs as the granularity.
  • the aggregation level AL of CCEs defined in the search space is 4 or During the inspection, first perform a blind inspection with 4 CCEs as the granularity, and then conduct a blind inspection with 8 CCEs as the granularity.
  • the network device will use the CCE position index (CCE index) parameter in addition to the AL in the above 4 or 8 when identifying the PDCCH , where the position index of the CCE is calculated according to the time-frequency domain information and the aggregation level of the PDCCH.
  • CCE index CCE position index
  • the terminal device Since the terminal device cannot exactly know the aggregation level of the CCE occupied by the PDCCH and the starting position index of the CCE, but before receiving the PDCCH, the terminal device receives high-level signaling indicating the time-frequency domain information of the PDCCH, etc., and For example, the terminal device determines that the aggregation level of the PDCCH may be 4 or 8 according to the protocol or the instruction of the network device.
  • the terminal device can calculate the starting position index of the CCE in the PDCCH according to the time-frequency domain information of the PDCCH with the aggregation level as 8, that is, the position index of the CCE, and perform blind detection on the corresponding CCE.
  • the terminal obtains the mapping relationship
  • the terminal moves periodically, and the trajectory of the movement can also be predicted, it is possible to determine the beam corresponding to the terminal at each position that can obtain the best communication quality, and the beam corresponding to the terminal at each position for receiving control.
  • the parameters of the information, the above-mentioned control information is used to schedule the transmission of communication signals between the base station and the terminal. After the above-mentioned beams and parameters are determined, a mapping relationship may be obtained, and the mapping relationship indicates the corresponding relationship between the above-mentioned beams and parameters and time.
  • the movement track of the terminal may be acquired through positioning information, perception, artificial intelligence (artificial intelligent, AI), or neural network technology, and the like. According to the movement trajectory of the terminal, the corresponding relationship between beams and parameters and time can be determined.
  • the mapping relationship can be obtained by the base station, for example, the base station sends a signaling to the terminal to indicate the mapping relationship, or the mapping relationship is pre-stored on the terminal side, or can also be obtained in other ways, for example, the terminal determines the mapping relationship according to AI, specifically There is no limit here.
  • the mapping relationship includes a mapping relationship between M parameter sets and M time periods, where each parameter set includes the value of at least one parameter, and M is an integer greater than or equal to 2.
  • the time period may include any one of one or more time domain symbols, one or more time slots, and one or more subframes.
  • a time period may be 2 subframes, or 2 milliseconds (ms).
  • the M time periods may be Q1 radio frames, Q2 subframes, Q3 time domain symbols or Q4 milliseconds.
  • Q1, Q2, Q3, and Q4 are positive integers.
  • each subframe can correspond to a number.
  • the subframes are respectively numbered 1, 2, 3, 4, 5, 6, 7, 8, and 9, and the numbering of the subframes can also be periodic, that is, the next subframe of the subframe numbered 9 is numbered as 0, and perform numbering of subsequent subframes according to the above numbering rule.
  • the above-mentioned M time periods include a first time period and a second time period
  • the values of parameters in the parameter set include the first value and the second value
  • the terminal obtains the corresponding relationship between parameters and time periods, including: The first time period corresponds to the first value, and the second time period corresponds to the second value.
  • the first value is different from the second value.
  • a method for at least one device in a terminal and a base station to determine a time period is provided as follows. At least one device in the terminal and the base station may determine the time period according to at least one of the following methods.
  • the M time periods may be determined according to the time period and the time offset, that is, the M time periods are associated with the time period and the time offset.
  • the time period indicates the total duration of the M time periods
  • the time offset indicates the offset between the M time periods and the reference point.
  • the base station may send configuration information including at least one of time period and time offset.
  • the terminal may receive configuration information including at least one of time period and time offset sent by the network device, and the terminal determines at least one of time period and time offset according to the configuration information.
  • the reference point can be a subframe with any number, and the reference point is described below as subframe 0:
  • the terminal receives the mapping relationship from the base station at the first subframe 9, the reference point is the next subframe 0 of the subframe that receives the mapping relationship . If the time offset is 2 subframes, and the subframe after 2 subframes of the reference point is subframe 2, then the subframe 2 is the starting position of M time periods, where the starting position indicates that the terminal starts from the The subframe starts to receive control information according to the mapping relationship. If the period of the M time periods is 10 subframes, then the M time periods include the above subframe 2 to the next subframe 1, that is, 10 subframes.
  • the base station may send configuration information of the reference point.
  • the terminal determines the reference point according to the configuration information.
  • the reference point is the first subframe 0. If the time offset is 2 subframes, and the subframe 2 subframes after the reference point is the first subframe 2, then the subframe 2 is the starting position of the M time segments. If the period of the M time periods is 10 subframes, then the M time periods include the above subframe 2 to the next subframe 1, that is, 10 subframes.
  • the reference point may also be the subframe where the terminal receives the mapping relationship. Please refer to Figure 7d, if the terminal receives the mapping relationship from the base station at the first subframe 9, the reference point is the subframe 9 that received the mapping relationship, if the time offset is 2 subframes, at the reference point The subframe after 2 subframes is subframe 1, and then the subframe 1 is the starting position of M time segments.
  • the M time periods may also be determined according to the time start position and the time length, that is, the M time periods are associated with the time start position and the time length.
  • the time start position indicates the start position of the M time segments
  • the time length indicates the total duration of the M time segments.
  • the base station may send configuration information including at least one of time start position and time length.
  • the terminal may receive configuration information including at least one of time start position and time length sent by the network device, and determine at least one of the start position and time length according to the configuration information.
  • the time start position can be a subframe with any number, and the time start position is subframe 2 for description below:
  • the time start position is the next subframe of the subframe where the mapping relationship is received frame 2. That is, the subframe 2 is the starting position of the M time segments. If the period of the M time periods is 10 subframes, then the M time periods include the above subframe 2 to the next subframe 1, that is, 10 subframes.
  • the time starting position is the first subframe 2.
  • the subframe 2 is the starting position of M time segments. If the period of the M time periods is 10 subframes, then the M time periods include the above subframe 2 to the next subframe 1, that is, 10 subframes.
  • a method for at least one device in a terminal and a base station to determine a mapping relationship is provided as follows. At least one device in the terminal and the base station may determine the mapping relationship according to at least one of the following methods.
  • the mapping relationship may be determined by a time offset, a time period, and a change interval, that is, the mapping relationship is associated with the time offset, time period, and change interval.
  • the change interval may also be referred to as a time interval, which is used to represent the duration or action time of the parameter set.
  • a time interval may include any of one or more time domain symbols, one or more time slots, and one or more subframes.
  • a time interval may be 2 subframes, or 2 milliseconds (ms).
  • the base station may send configuration information of the time interval.
  • the terminal determines the time interval according to the configuration information.
  • the time interval may be predefined by the protocol, such as 2 subframes, 1 subframe, and so on.
  • the terminal receives configuration information, and the configuration information indicates at least one of time period, time offset and time interval.
  • the network device sends configuration information, and the configuration information indicates at least one of time period, time offset and time interval.
  • the time interval has a corresponding relationship with the movement speed of the terminal.
  • the terminal determines the time interval according to the moving speed of the terminal.
  • the corresponding time interval is time interval T1; when the terminal's motion speed is in interval 2, the corresponding time interval is time interval T2; when the terminal's motion speed is in interval 3, the corresponding time interval
  • the interval is the time interval T3; or it may be other situations, which will not be repeated here.
  • the change interval is P time units, that is, when the time interval is P time units, it indicates that every P time units from the first time period of the M time periods corresponds to a parameter set.
  • the time unit may be any one of subframe, time slot, time domain symbol, 1 millisecond, 1 second, and 1 microsecond, or may be other situations, which are not specifically limited here.
  • subframe 2 and subframe 3 correspond to parameter set 1.
  • subframe 4 and subframe 5 corresponds to parameter set 2
  • subframe 6 and subframe 7 correspond to parameter set 3
  • subframe 8 and subframe 9 correspond to parameter set 4
  • subframe 0 and subframe 1 correspond to parameter set 5.
  • the mapping relationship between time periods and parameter sets may be periodic, that is, after M time periods end, another M time periods begin.
  • the terminal can determine the corresponding relationship between each subframe and the parameter set according to the periodic law of the mapping relationship, so that at the subframe where the mapping relationship is obtained, Receive the first control information according to the mapping relationship.
  • the terminal can determine according to the law that the subframe 9 that has received the mapping relationship corresponds to the parameter set 4, and the next subframe 0 and subframe 1 correspond to the parameter set 5, so that the terminal can receive the mapping relationship in the subframe At 9, the first control information is received according to the parameter set 4 .
  • the mapping relationship may be determined by the time start position, the time length, and the change interval, that is, the mapping relationship may also be associated with the time start position, the time length, and the change interval.
  • the change interval may also be referred to as a time interval, which is used to represent the duration or action time of the parameter set.
  • a time interval may include any of one or more time domain symbols, one or more time slots, and one or more subframes.
  • a time interval may be 2 subframes, or 2 milliseconds (ms).
  • the base station may send configuration information of the time interval.
  • the terminal determines the time interval according to the configuration information.
  • the time interval may be predefined by the protocol, such as 2 subframes, 1 subframe, and so on.
  • the terminal receives configuration information, and the configuration information indicates at least one of time start position, time length and time interval.
  • the network device sends configuration information, and the configuration information indicates at least one of time start position, time length and time interval.
  • the change interval is P time units, that is, when the time interval is P time units, it indicates that every P time units from the first time period of the M time periods corresponds to a parameter set.
  • the time unit may be any one of subframe, time slot, time domain symbol, 1 millisecond, 1 second, and 1 microsecond, or may be other situations, which are not specifically limited here.
  • the time interval has a corresponding relationship with the movement speed of the terminal.
  • the terminal determines the time interval according to the moving speed of the terminal.
  • the corresponding time interval is time interval T1; when the terminal's motion speed is in interval 2, the corresponding time interval is time interval T2; when the terminal's motion speed is in interval 3, the corresponding time interval
  • the interval is the time interval T3; or it may be other situations, which will not be repeated here.
  • subframe 2 and subframe 3 correspond to parameter set 1.
  • subframe 4 and subframe 5 corresponds to parameter set 2
  • subframe 6 and subframe 7 correspond to parameter set 3
  • subframe 8 and subframe 9 correspond to parameter set 4
  • subframe 0 and subframe 1 correspond to parameter set 5.
  • the mapping relationship between time periods and parameter sets may be periodic, that is, after M time periods end, another M time periods begin.
  • the terminal can determine the corresponding relationship between each subframe and the parameter set according to the periodic law of the mapping relationship, so that at the subframe where the mapping relationship is obtained, Receive the first control information according to the mapping relationship.
  • the terminal can determine according to the law that the subframe 9 that has received the mapping relationship corresponds to the parameter set 4, and the next subframe 0 and subframe 1 correspond to the parameter set 5, so that the terminal can receive the mapping relationship in the subframe At 9, the first control information is received according to the parameter set 4 .
  • the time period is 10 subframes
  • the change interval is 2 subframes
  • the time offset is 2 subframes.
  • the time period is 4 subframes
  • the change interval is as follows Describe the case of 4 subframes and a time offset of 0 subframes:
  • M time periods include subframe 0 to the next Subframe 3, and subframe 0 and subframe 1 correspond to parameter set 1, and subframe 2 and subframe 3 correspond to parameter set 2.
  • the parameters in the parameter set may include at least one of control resource set configuration information, RNTI, reference signal configuration information, and control information transmission manner.
  • control resource set configuration information is used to configure the control channel resource set, that is, to indicate the time-frequency position corresponding to the control information.
  • control resource set configuration information can indicate time-frequency resources corresponding to different time-frequency positions, for example, control resource set configuration information 1 indicates the time-frequency resource located at time-frequency position 1, and control resource set configuration information 2 indicates time-frequency resources located at For the time-frequency resource at time-frequency position 2, the control resource set configuration information 3 indicates the time-frequency resource at time-frequency position 3, the control resource set configuration information 4 indicates the time-frequency resource at time-frequency position 4, and the control resource set configuration information 5 indicates The time-frequency resource at time-frequency position 5.
  • the base station can send control information according to the time-frequency resource at a certain time-frequency position, for example, it can send control information according to the time-frequency resource at time-frequency position 1, then the terminal can configure the time-frequency information indicated by control resource set information 1 Position 1, the control information is received at the time-frequency position 1.
  • the time-frequency position indicated by the configuration information of a control resource set includes multiple control channel elements (control channel element, CCE), and the multiple CCEs can be divided into different CCE groups, where different CCE groups can be correspond to different beams or precoding matrices respectively.
  • CCE control channel element
  • the time-frequency position indicated by the configuration information of a control resource set includes multiple REG resource elements (resource element group, REG), and the multiple REGs can be divided into different REG groups, where different REG groups can be correspond to different beams or precoding matrices respectively.
  • REG resource element group
  • a CCE group may correspond to multiple discrete resource blocks (resource block, RB) on the bandwidth, and correspond to a precoding matrix indicator (precoding matrix indicator, PMI). If the channel is uneven, the CCE group may correspond to consecutive RBs and correspond to one PMI.
  • the RNTI is used to identify the terminal equipment.
  • the RNTI may be used by the terminal to parse the first control information, for example, CRC bits of the control information are scrambled through the RNTI.
  • the reference signal configuration information is used to configure the reference signal.
  • the reference signal configuration information may be used to indicate the time-frequency position or sequence corresponding to the reference signal, or the reference signal configuration information may also be used to indicate the time-frequency position and sequence corresponding to the reference signal.
  • the transmission mode of the control information is used to indicate the transmission mode of the first control information.
  • the values of the above parameters may correspond to one or more terminals.
  • the values of the parameters of different terminals may be the same, or may be different, which is not limited here.
  • control information transmission mode includes a first control information transmission mode and a second control information transmission mode, that is, includes single control information transmission and group control information transmission.
  • the first control information transmission manner that is, the group control information transmission is used to indicate that the first control information includes multiple sub-control information. For example, please refer to FIG. 8b.
  • the first control information includes sub-control information 1, sub-control information 2, sub-control information 3, sub-control information 4, and sub-control information 5, wherein sub-control information 1 corresponds to terminal 2, and sub-control information Information 2 corresponds to terminal 3, sub-control information 3 corresponds to terminal 4, sub-control information 4 corresponds to terminal 1, sub-control information 5 corresponds to terminal 5, multiple sub-control information are located in different positions, and the terminal in this embodiment is terminal 1 as an example , the terminal 1 needs to acquire the sub-control information 4, that is, the sub-control information 4 is the target sub-control information.
  • the second control information transmission manner that is, single control information is used to indicate that the first control information corresponds to one terminal.
  • the parameters in the parameter set include the configuration information of the control resource set
  • the base station may send multiple control resource set configuration information to the terminal, and indicate the mapping relationship, that is, the correspondence between M time periods and control resource set configuration information.
  • the mapping relationship is the change of control resource set configuration information over time, for example, M pieces of control resource set configuration information corresponding to M time periods may be configured.
  • Multiple identifiers of control resource set configuration information can be arranged in order, for example, the identifier corresponding to control resource set configuration information 1 is 1, the identifier corresponding to control resource set configuration information 2 is 2, and the identifier corresponding to control resource set configuration information 3 is 3.
  • the identifier corresponding to the control resource set configuration information 4 is 4, and the identifier corresponding to the control resource set configuration information 5 is 5, then the identifier strings of 1, 2, 3, 4, 5 can be obtained, or in other order, For example, 2, 3, 5, 4, 1, etc., which are not limited in this application.
  • the identification string indicates the time sequence of the configuration information of the above-mentioned control resource set.
  • the arrangement order of the identification strings may also be other orders, which are not specifically limited here.
  • parameter set 1 includes control resource set configuration information 1
  • time period 2 corresponds to parameter set 2
  • parameter set 2 includes control resource set configuration information 2
  • time period 3 corresponds to parameter set 3
  • parameter set 3 includes control resource set configuration Information 3
  • parameter set 3 includes control resource set configuration information 3
  • time period 4 corresponds to parameter set 4
  • parameter set 4 includes control resource set configuration information 4
  • time period 5 corresponds to parameter set 5
  • parameter set 5 includes control resources Set configuration information5.
  • the base station may indicate to the terminal the correspondence between the M time periods and the configuration information of the control resource set.
  • the base station sends a plurality of control resource set configuration information for the terminal, and indicates the corresponding relationship between the time period and the control resource set configuration information, such as the change of the control resource set configuration information over time, and the time granularity can be one or more symbols , 1 or more time slots, one or more subframes, etc.
  • the corresponding relationship between the time period and the configuration information of the control resource set is: 0, 3, 2, 1 and so on.
  • the terminal can determine that the control resource set configuration information corresponding to the first time period is control resource set configuration information 0, the control resource set configuration information corresponding to the second time period is control resource set configuration information 3, and the third time period corresponds to The control resource set configuration information is control resource set configuration information 2, and the control resource set configuration information corresponding to the fourth time period is control resource set configuration information 1.
  • the base station may configure, to the terminal, a block identifier (block index) of the scheduling information of the terminal in group (group) control information, and/or a terminal identifier (UE index).
  • block index a block identifier
  • UE index a terminal identifier
  • control resource set configuration information may have a corresponding relationship with the beam.
  • the beam may be a beam capable of obtaining the best communication quality.
  • control resource set configuration information 1 corresponds to beam 1
  • control resource set configuration information 2 corresponds to beam 2
  • control resource set configuration information 3 corresponds to beam 3
  • control resource set configuration information 4 corresponds to beam 4
  • control resource set configuration information 5 corresponds to beam 5.
  • the terminal obtains the control resource set configuration information corresponding to the time period, it also obtains the corresponding beam information.
  • the above-mentioned beam 1, beam 2, beam 3, beam 4, and beam 5 may be beam identifiers.
  • control resource set configuration information 1, the control resource set configuration information 2, the control resource set configuration information 3, the control resource set configuration information 4, and the control resource set configuration information 5 may be the same or different. , or may be partly the same and partly different, which is not limited here.
  • control resource set configuration information may include the control resource set identifier. There may be a corresponding relationship between the control resource set identifier and the beam identifier.
  • control resource set ID 1 corresponds to beam 1
  • control resource set ID 2 corresponds to beam 2
  • control resource set ID 3 corresponds to beam 3
  • control resource set ID 4 corresponds to beam 4.
  • the beam in this embodiment of the present application may refer to a sending beam or a receiving beam.
  • the sending end can use the sending beam to send signals, and the receiving end can use the receiving beam to receive signals.
  • the sending end can determine the sending beam, and then use the sending beam to transmit the signal.
  • the receiving end can determine the receiving beam, and then use the receiving beam to receive signals.
  • the sending end can determine the receiving beam according to the sending beam.
  • At least one device in the terminal and the base station can determine beams corresponding to M time periods according to the mapping relationship and the corresponding relationship between control resource set configuration information and beams, so as to realize beam communication and improve communication performance.
  • the embodiments of the present invention can realize dynamic terminal pairing, realize more flexible transmission of control information, dynamically schedule terminals, reduce beam switching delay, and improve communication performance.
  • the parameters in the parameter set include RNTI;
  • the base station can configure multiple RNTIs for the terminal, and indicate the mapping relationship, that is, the corresponding relationship between M time periods and RNTIs.
  • the RNTI may be a group RNTI, which may be used to identify a group of terminals.
  • a group of terminals includes one or more terminals.
  • the mapping relationship is the change of RNTI with time
  • M RNTIs corresponding to M time periods may be configured.
  • the identifiers of multiple RNTIs can be arranged in order. For example, the identifier corresponding to RNTI1 is 6, the identifier corresponding to RNTI2 is 7, the identifier corresponding to RNTI3 is 8, the identifier corresponding to RNTI4 is 9, and the identifier corresponding to RNTI5 is 0, then you can get
  • the identification strings of 6, 7, 8, 9, 0, or other sequences, such as 7, 9, 8, 0, 6, etc., are not limited in this application.
  • the identification string indicates the order of the above RNTI in time, and the identification string will be included in the mapping relationship. Since the time period also has a sequence, the identification string can indicate the mapping relationship between the parameter set and the time period.
  • the sequence of identifying character strings may also be other sequences, which are not specifically limited here.
  • time period 1 corresponds to the parameter set 1
  • parameter set 1 Include RNTI1
  • time period 2 corresponds to parameter set 2
  • parameter set 2 includes RNTI2
  • time period 3 corresponds to parameter set 3
  • parameter set 3 includes RNTI3
  • time period 4 corresponds to parameter set 4
  • parameter set 4 includes RNTI4
  • time Section 5 corresponds to parameter set 5, which includes RNTI5.
  • the base station may indicate to the terminal the correspondence between the M time periods and the RNTI.
  • Method 1 The base station sends a piece of control resource set configuration information to the terminal, one piece of control resource set configuration information corresponds to multiple RNTIs, and indicates the corresponding relationship between time periods and RNTIs.
  • the RNTI changes with time, and the time granularity may be one or more symbols, one or more time slots, one or more subframes, and so on.
  • Method 2 The base station sends multiple control resource set configuration information for the terminal, one control resource set configuration information corresponds to one RNTI, and indicates the corresponding relationship between the time period and the RNTI, such as the change of the RNTI with time, the time granularity can be one or more symbol, 1 or more slots, one or more subframes, etc.
  • the corresponding relationship between the time period and the RNTI is: 0, 3, 2, 1 and so on.
  • the terminal can determine that the RNTI corresponding to the first time period is RNTI0, the RNTI corresponding to the second time period is RNTI3, the RNTI corresponding to the third time period is RNTI2, and the RNTI corresponding to the fourth time period is RNTI1.
  • the base station may configure block identification information (such as block index) and/or terminal identification (such as UE index) in the scheduling information of the terminal in group control information to the terminal.
  • block identification information such as block index
  • terminal identification such as UE index
  • the above configuration can be configured for each RNTI, that is, the RNTI has a corresponding relationship with the block identification information and/or the terminal identification, so as to realize that the paired UE group changes with time.
  • the RNTI may have a corresponding relationship with the beam.
  • the beam may be a beam capable of obtaining the best communication quality.
  • RNTI1 corresponds to beam 1
  • RNTI2 corresponds to beam 2
  • RNTI3 corresponds to beam 3
  • RNTI4 corresponds to beam 4
  • RNTI5 corresponds to beam 5.
  • the terminal obtains the RNTI corresponding to the time period, it also obtains the corresponding beam information.
  • the above-mentioned beam 1, beam 2, beam 3, beam 4 and beam 5 may be beam identifiers.
  • RNTI1, RNTI2, RNTI3, RNTI4, and RNTI5 may be the same, or may be different, or may be partly the same or partly different, which is not limited here.
  • the beam in this embodiment of the present application may refer to a sending beam or a receiving beam.
  • the sending end can use the sending beam to send signals, and the receiving end can use the receiving beam to receive signals.
  • the sending end can determine the sending beam, and then use the sending beam to transmit the signal.
  • the receiving end can determine the receiving beam, and then use the receiving beam to receive signals.
  • the sending end can determine the receiving beam according to the sending beam.
  • At least one device in the terminal and the base station can determine beams corresponding to M time periods according to the mapping relationship and the correspondence between RNTI and beams, so as to realize beam communication and improve communication performance.
  • the embodiments of the present invention can realize dynamic terminal pairing, realize more flexible transmission of control information, dynamically schedule terminals, reduce beam switching delay, and improve communication performance.
  • the parameters in the parameter set include reference signal configuration information
  • the base station may send multiple pieces of reference signal configuration information to the terminal, and indicate the mapping relationship, that is, the correspondence between M time periods and reference signal configuration information.
  • the mapping relationship is the change of reference signal configuration information over time, for example, M pieces of reference signal configuration information corresponding to M time periods may be configured.
  • the identifiers of multiple reference signal configuration information can be arranged in order, for example, the identifier corresponding to reference signal configuration information 1 is 11, the identifier corresponding to reference signal configuration information 2 is 12, the identifier corresponding to reference signal configuration information 3 is 13, and the identifier corresponding to reference signal configuration information 3 is 13.
  • the identifier corresponding to the configuration information 4 is 14, and the identifier corresponding to the reference signal configuration information 5 is 15, then the identifier strings of 11, 12, 13, 14, 15 can be obtained, or other sequences, such as 12, 14, 13 , 11, 15, etc., which are not limited in this application.
  • the identification string indicates the time sequence of the above-mentioned reference signal configuration information, and the identification string will be included in the mapping relationship. Since the time segment also has a sequence, the identification string can indicate the mapping between the parameter set and the time segment Of course, in actual implementation, the sequence of the identification strings can also be other sequences, which are not limited here.
  • time period 1 corresponds to parameter set 1
  • Parameter set 1 includes reference signal configuration information 1
  • time period 2 corresponds to parameter set 2
  • parameter set 2 includes reference signal configuration information 2
  • time period 3 corresponds to parameter set 3
  • parameter set 3 includes reference signal configuration information 3
  • time Segment 4 corresponds to parameter set 4, which includes reference signal configuration information 4
  • time segment 5 corresponds to parameter set 5, which includes reference signal configuration information 5.
  • the base station may indicate to the terminal the correspondence between the M time periods and the reference signal configuration information.
  • Method 1 The base station sends a control resource set configuration information to the terminal.
  • One control resource set configuration information corresponds to multiple reference signal configuration information, and indicates the corresponding relationship between the time period and the reference signal configuration information, such as the change of the reference signal configuration information over time , the time granularity can be one or more symbols, one or more time slots, one or more subframes, etc.
  • Method 2 Send multiple control resource set configuration information for the terminal, one control resource set configuration information corresponds to one reference signal configuration information, and indicate the corresponding relationship between the time period and the reference signal configuration information, such as the change of the reference signal configuration information over time,
  • the time granularity may be one or more symbols, one or more time slots, one or more subframes, etc.
  • the corresponding relationship between the time period and the reference signal configuration information is: 0, 3, 2, 1 and so on.
  • the terminal can determine that the reference signal configuration information corresponding to the first time period is reference signal configuration information 0, the reference signal configuration information corresponding to the second time period is reference signal configuration information 3, and the reference signal configuration information corresponding to the third time period is The information is reference signal configuration information 2, and the reference signal configuration information corresponding to the fourth time period is reference signal configuration information 1.
  • the base station may configure, to the terminal, an information block identifier (block index) of the scheduling information of the terminal in group control information, and/or a terminal identifier (UE index).
  • block index information block identifier
  • UE index terminal identifier
  • the reference signal configuration information may have a corresponding relationship with beams.
  • the beam may be a beam capable of obtaining the best communication quality.
  • reference signal configuration information 1 corresponds to beam 1
  • reference signal configuration information 2 corresponds to beam 2
  • reference signal configuration information 3 corresponds to beam 3
  • reference signal configuration information 4 corresponds to beam 4
  • reference signal configuration information 5 corresponds to beam 5.
  • the terminal obtains the reference signal configuration information corresponding to the time period, it also obtains the corresponding beam information.
  • the above beam 1, beam 2, beam 3, beam 4 and beam 5 may be beam identifiers.
  • reference signal configuration information 1, the reference signal configuration information 2, the reference signal configuration information 3, the reference signal configuration information 4, and the reference signal configuration information 5 may be the same, or may be different, or may be partially The same, partly different, not limited here.
  • the reference signal configuration information may include a reference signal identifier. There may be a corresponding relationship between the reference signal identifier and the beam identifier.
  • reference signal identifier 1 corresponds to beam 1
  • reference signal identifier 2 corresponds to beam 2
  • reference signal identifier 3 corresponds to beam 3
  • reference signal identifier 4 corresponds to beam 4 .
  • the reference signal identifiers may correspond to different reference signal pattern information, or the reference signal identifier information may correspond to different reference signal time-frequency resource information, or the reference signal identifier information may correspond to different reference signal sequences.
  • the reference signal pattern information shown in FIG. 7l Exemplarily, the reference signal pattern information shown in FIG. 7l.
  • the shaded REs represent the REs of the reference signal, for example, the four patterns in Figure 7l are (a), (b), (c), and (d), which are used to indicate the time-frequency resources of the reference signal Where the RE.
  • the pattern identifiers corresponding to the four patterns can be 0, 1, 2, and 3, respectively.
  • the network device indicates the pattern identifier, and the terminal device can determine the RE where the time-frequency resource of the first reference signal is located according to the pattern identifier.
  • the beam in this embodiment of the present application may refer to a sending beam or a receiving beam.
  • the sending end can use the sending beam to send signals, and the receiving end can use the receiving beam to receive signals.
  • the sending end can determine the sending beam, and then use the sending beam to transmit the signal.
  • the receiving end can determine the receiving beam, and then use the receiving beam to receive signals.
  • the sending end can determine the receiving beam according to the sending beam.
  • At least one device in the terminal and the base station can determine beams corresponding to M time periods according to the mapping relationship and the corresponding relationship between control resource set configuration information and beams, so as to realize beam communication and improve communication performance.
  • the embodiments of the present invention can realize dynamic terminal pairing, realize more flexible transmission of control information, dynamically schedule terminals, reduce beam switching delay, and improve communication performance.
  • the parameters in the parameter set include the transmission mode of the control information
  • the base station can send the configuration information of the transmission mode of the control information to the terminal, and indicate the mapping relationship, that is, the corresponding relationship between the M time periods and the transmission mode of the control information.
  • the mapping relationship is the change of the control information transmission mode over time, for example, M control information transmission modes corresponding to M time periods may be configured.
  • the identifiers of multiple control information transmission modes can be arranged in order, for example, the identifier corresponding to the first control information transmission mode is 21, and the identifier corresponding to the second control information transmission mode is 22, then 21, 22, 21, 22, 21, or other sequences, such as 22, 22, 21, 22, 21, etc., which are not limited in this application.
  • the identification string indicates the order in time of the above-mentioned control information transmission methods, and the identification string will be included in the mapping relationship. Since the time period also has a sequence, the mapping between the parameter set and the time period can be indicated according to the identification string Of course, in actual implementation, the sequence of the identification strings can also be other sequences, which are not limited here.
  • time period 1 corresponds to parameter set 1
  • Parameter set 1 includes the first control information transmission mode
  • time period 2 corresponds to parameter set 2
  • parameter set 2 includes the second control information transmission mode
  • time period 3 corresponds to parameter set 3
  • parameter set 3 includes the first control information Transmission mode
  • time period 4 corresponds to parameter set 4
  • parameter set 4 includes the second control information transmission mode
  • time period 5 corresponds to parameter set 5
  • parameter set 5 includes the first control information transmission mode.
  • the base station may determine to adopt a single control information transmission mode or a group control information transmission mode according to periodic service characteristics of the terminal. For example, when the number of scheduled terminals is large, the transmission mode of group control information is adopted. When the number of scheduled terminals is small, a single control information transmission mode is adopted.
  • the terminal may perform single control information and/or group control information detection according to the instruction of the base station.
  • the terminal when the terminal detects group control information in the first symbol, it does not need to detect single control information.
  • the terminal does not detect group control information, if the terminal is configured to detect single control information, the terminal can detect single control information on the second symbol.
  • the base station may configure the corresponding relationship between the time period and the transmission mode of the control information to the terminal.
  • Method 1 The time domain resources corresponding to the single control information transmission mode and the group control information transmission mode are different.
  • a control channel resource set includes 2 symbols
  • the first symbol is used for group control information transmission
  • the second symbol is used for single control information transmission.
  • Sending 2 the RNTIs corresponding to the single control information transmission mode and the group control information transmission mode are different.
  • the base station may configure RNTI-1 of single control information and RNTI-2 of group control information to the terminal in one piece of control resource set configuration information.
  • the terminal adopts RNTI-1 when performing single control information detection, and adopts RNTI-2 when performing group control information detection.
  • the embodiment of the present invention can realize the transmission mode switching of single control information and group control information dynamically based on time period, reduce control information overhead, transmit control information according to actual scheduling conditions, and improve communication performance.
  • the parameter set includes a variety of parameters
  • the parameter set includes control resource set configuration information, RNTI, reference signal configuration information, and control information transmission manner.
  • the identification strings corresponding to various parameters can be configured in the mapping relationship, for example, the identification strings 1, 2, 3, 4, 5 corresponding to the configuration control resource set configuration information; the identification strings 6, 7, 8, 9, 0; the identification strings 11, 12, 13, 14, 15 corresponding to the configuration reference signal configuration information; the identification strings 21, 22, 21, 22, 21 corresponding to the transmission mode of the configuration control information.
  • the parameter set 1 includes control resource set configuration information 1, RNTI1, reference signal configuration information 1, and control information transmission Mode 1
  • parameter set 2 includes control resource set configuration information 2
  • control information transmission mode 2 includes control resource set configuration information 2
  • parameter set 3 includes control resource set configuration information 3
  • control Information transmission mode 1 parameter set 4 includes control resource set configuration information 4, RNTI4, reference signal configuration information 4, and control information transmission mode 2
  • parameter set 5 includes control resource set configuration information 5, RNTI5, reference signal configuration information 5, And control information transmission mode 1.
  • control resource set configuration information has a corresponding relationship with at least one of the RNTI, reference signal configuration information, and control information transmission manner.
  • the terminal receives multiple control resource set configuration information, and one control resource set configuration information of the multiple control resource set configuration information corresponds to at least one item of one RNTI, one reference signal configuration information, and one control information transmission mode.
  • a piece of control resource set configuration information includes at least one item of an RNTI, a piece of reference signal configuration information, and a transmission manner of control information.
  • control resource configuration information in parameter set 1 to parameter set 5 is all control resource configuration information 1, and parameter set 1 includes RNTI1, parameter set 2 includes RNTI2, parameter set 3 includes RNTI3, and parameter set 4 includes RNTI4, parameter set 5 includes RNTI5.
  • the terminal receives one control resource set configuration information, and one control resource set configuration information corresponds to at least two RNTIs, two reference signal configuration information, and at least one of at least two control information transmission modes.
  • one control resource set configuration information includes at least two RNTIs, at least two reference signal configuration information, and at least one of at least two control information transmission modes.
  • control resource configuration information in parameter set 1 to parameter set 5 is all control resource configuration information 1
  • parameter set 1 includes reference signal configuration information 1
  • parameter set 2 includes reference signal configuration information 2
  • parameter set 3 The reference signal configuration information 3 is included in the parameter set 4
  • the reference signal configuration information 4 is included in the parameter set 5
  • the reference signal configuration information 5 is included in the parameter set 5.
  • the control resource set configuration information may be associated with the position of the target sub-control information in the first control information, or That is, the position of the target sub-control information in the first control information can be determined according to the control resource set configuration information.
  • the terminal determines an information block position of the sub-control information of the terminal in the first control information, and the information block position has a corresponding relationship with the parameter set.
  • the terminal may determine the information block position of the sub-control information of the terminal in the first control information according to the values of the parameters in the parameter set.
  • the RNTI may be associated with the position of the target sub-control information in the first control information, that is, the RNTI may be Determine the position of the target sub-control information in the first control information.
  • the reference signal configuration information may be associated with the position of the target sub-control information in the first control information, that is, The position of the target sub-control information in the first control information may be determined according to the reference signal configuration information.
  • control information transmission mode may have a corresponding relationship with the time-frequency position where the first control information is located, for example, in the time-frequency resource indicated by the control resource set configuration information, including the first symbol and the second symbol , when the transmission mode of the first control information is the first control information transmission mode, the first control information is in the first symbol, and when the transmission mode of the first control information is the second control information transmission mode, the first control information is in the second symbol.
  • the transmission mode of the first control information may have a corresponding relationship with the RNTI, for example, when the transmission mode of the first control information is the first control information transmission mode, the value of the RNTI is RNTI1; when the transmission mode of the first control information When the mode is the second control information transmission mode, the value of the RNTI is RNTI2.
  • parameter set 1, parameter set 2, parameter set 3, parameter set 4 and parameter set 5 may be the same, or may be different, or may be partly the same or partly different, which are not limited here .
  • At least one of the RNTI, reference signal configuration information, and control information transmission manner may also be configured in the control resource set configuration information.
  • RNTI1 and control resource set configuration information 1 correspond to time period 1
  • RNTI1 may be configured in control resource set configuration information 1, that is, control resource set configuration information 1 and RNTI1 have a corresponding relationship.
  • the terminal determines that the control set configuration information 1 has a corresponding relationship with time period 1, it also determines that RNTI1 has a corresponding relationship with time period 1, so that there is no need to set the identification character used to indicate the mapping relationship between RNTI1 and time period 1 string.
  • the terminal needs to obtain the corresponding relationship between each identification character and the value of the parameter. For example, when the terminal obtains the identification character "1" of the configuration information of the control resource set, the terminal can determine that the identification character "1" corresponds to the control Resource set configuration information 1. For example, when the terminal acquires the identification character "6" of the RNTI, the terminal may determine that the identification character "6" corresponds to RNTI6. For example, when the terminal acquires the identification character "11" of the reference signal configuration information, the terminal may determine that the identification character "11" corresponds to the reference signal configuration information 11.
  • the correspondence between identification characters and parameter values may be pre-configured in the terminal, or may be acquired by the terminal together with the mapping relationship.
  • the terminal receives the first control information according to the mapping relationship in the first time period
  • the terminal After acquiring the mapping relationship, the terminal receives first control information from the base station according to the mapping relationship in a first time period, where the first control information is used to schedule transmission of communication signals.
  • the terminal receives the first control information according to the mapping relationship at subframe 2 as shown in FIG. 8c, and the above subframe 2 is the first time period .
  • parameter set 1 includes control resource set configuration information 1, RNTI1, reference signal configuration information 1, and control information transmission mode 1.
  • the terminal can determine the time-frequency position and/or sequence corresponding to the reference signal according to the reference signal configuration information 1, so as to perform channel estimation.
  • the network device and/or the terminal may determine the resource granularity of the joint channel estimation of the control information, where the resource granularity may be the number of CCEs or the number of REGs.
  • the resource granularity of channel estimation may be N1 CCEs or N2 resource block groups (resource element, REG), where N1 and N2 are integers greater than 0.
  • the terminal receives indication information, where the indication information is used to indicate resource granularity of channel estimation.
  • the network device may send indication information.
  • the terminal determines the corresponding time-frequency position of the first control information according to the control resource set configuration information 1, and performs blind detection on the first control information according to the RNTI1, so as to obtain the first control information.
  • the terminal When the transmission mode of the first control information is the first control information transmission mode, the terminal needs to acquire the position of the target sub-control information in the first control information, and the target sub-control information is the sub-control information corresponding to the terminal.
  • the base station may send the identifier corresponding to the target sub-control information to the terminal, and the terminal acquires the target sub-control information according to the identifier.
  • the base station may also send to the terminal the identifiers of the terminals that need to be scheduled by the first control information, and the correspondence between the terminals that need to be scheduled and the positions of the sub-control information, so that each terminal determines the location of the corresponding sub-control information. Location.
  • the terminal may also determine the target sub-group according to the corresponding relationship. The position of the control information in the first control information.
  • the terminal may determine the location of the target sub-control information according to the value of at least one parameter in the parameter set, that is, the value of at least one parameter in the parameter set has an association relationship with the location of the target sub-control information.
  • the RNTI1 may have an association relationship with the location of the target sub-control information, that is, the terminal may determine the location of the target sub-control information after acquiring the RNTI1.
  • the time-frequency positions of the control information corresponding to the first control information transmission mode and the second control information transmission mode are different.
  • the first control information transmission mode when the first control information transmission mode is adopted, the first control information may be located in the first time-domain symbol in the time-frequency position indicated by the control resource set configuration information 1 .
  • the second control information transmission mode when the second control information transmission mode is adopted, the first control information may be located in the second time-domain symbol in the time-frequency position indicated by the control resource set configuration information 1 .
  • control information transmission mode may also be associated with the value of the RNTI.
  • the RNTI1 may be used to perform blind detection on the first control information.
  • the RNTI2 may be used to perform blind detection on the first control information.
  • the parameter set can also have a corresponding relationship with the beam that can obtain the best communication quality.
  • the terminal can determine the corresponding beam according to the corresponding relationship, so as to directly communicate according to the beam , no steps such as beam tracking and beam scanning are required, which reduces the communication delay of the terminal.
  • the terminal determines the corresponding beam 1 according to the control resource set configuration information 1, RNTI1, reference signal configuration information 1, and control information transmission mode 1 in the parameter set 1, so that in subframe 2 and subframe 3, according to the Beam 1 communicates.
  • DCIs may have different purposes, for example, including DCI for allocation of transmission resources in uplink or downlink, DCI for adjusting uplink power control, and DCI for downlink dual-stream space division multiplexing etc.
  • Different DCI formats can be used to distinguish DCIs for different purposes.
  • the information used to schedule signal transmission can be classified into three types, and the control information can include at least one of the three types.
  • the first type of information is information used for channel estimation, for example, information used to indicate the location of time-frequency resources, information indicating the sequence of demodulation reference signals, and the like.
  • the second type of information is information used to decode the physical downlink shared channel (PDSCH), such as modulation and coding scheme (modulation and coding scheme, MCS), HARQ process number (HARQ process number) and new data indicator (new data indicator, NDI) and so on.
  • PDSCH physical downlink shared channel
  • modulation and coding scheme modulation and coding scheme, MCS
  • HARQ process number HARQ process number
  • new data indicator new data indicator
  • the third type of information is used to send uplink control information (Uplink Control Information, UCI) information, such as PUCCH resources, transmit power control (transmit power control, TPC), code block group transmission information (code block group transmission information, CBG) configuration , channel state information (channel state information, CSI) trigger information and sounding reference signal (sounding reference signal, SRS) trigger information, etc.
  • UCI Uplink Control Information
  • the above-mentioned first type of information can be transmitted as the first type of control information
  • the second type of information can be transmitted as the second type of control information
  • the third type of information can be transmitted as the third type of control information
  • the first type of information and the second type of information are transmitted as the first type of control information
  • the third type of information is transmitted as the second type of control information
  • the first type of information is transmitted as the first type of control information
  • the second type of information and the third type of information is transmitted as the second type of control information.
  • the terminal device can implement: parallel processing of channel estimation and blind detection of the second DCI, and/or parallel processing of decoding PDSCH and determining the third DCI, and/or decoding PDSCH and preparing PUCCH, CSI processing and SRS Parallel processing of processing. That is, after performing blind detection on the first type of control information, the demodulation reference signal of the physical downlink shared channel can be determined to perform channel estimation. At this time, blind detection of the second type of control information may be performed synchronously with channel estimation.
  • the PDSCH is decoded.
  • the decoding of the PDSCH and the determination of the third type of control information can be performed synchronously, or the decoding of the PDSCH can also be processed synchronously with the determination of the third type of control information, preparation of the PUCCH, CSI processing, and SRS processing.
  • the UCI is sent last, thereby reducing the communication delay.
  • the foregoing first control information may be at least one of the first type of control information, the second type of control information, and the third type of control information.
  • the terminal receives second control information according to the mapping relationship in a second time period.
  • the terminal receives the second control information according to the mapping relationship in the second time period.
  • the second time period may be a subframe after the above-mentioned subframe 2, for example, it may be the next subframe 4 of the above-mentioned subframe 2. Then the terminal receives the second control information in this subframe 4. According to the mapping relationship, it is determined that the second control information needs to be received according to the parameter set 2.
  • step 603 is an optional step, and may not be executed in actual implementation.
  • the terminal can determine the corresponding parameter set in each time period according to the mapping relationship, and receive control information according to the corresponding parameter set in the time period, and because the parameter set has a corresponding relationship with the beam, the terminal can determine according to the parameter set The beam with the best communication quality can be obtained, which further reduces the communication delay.
  • a terminal 1000 in the embodiment of the present application includes an acquiring unit 1001 and a receiving unit 1002 .
  • the acquisition unit 1001 is used to acquire the mapping relationship, the mapping relationship includes the mapping relationship between M parameter sets and M time periods, the parameter set includes the value of at least one parameter, and M is an integer greater than or equal to 2.
  • the receiving unit 1002 is configured to receive first control information according to the mapping relationship in a first time period, where the first time period is included in the M time periods.
  • a parameter set may have a corresponding relationship with a beam.
  • the beam may be the beam that can obtain the best communication quality
  • the parameter set corresponding to the time period determined by the terminal also determines the beam corresponding to the time period, so that beam scanning and beam tracking are not required to directly determine the best beam , reducing the communication delay.
  • At least one parameter in different parameter sets in the M parameter sets has a different value.
  • the parameters in the parameter set include at least one of control resource set configuration information, radio network temporary identifier RNTI, reference signal configuration information, and control information transmission manner.
  • control resource set configuration information is used to indicate the time-frequency position corresponding to the first control information
  • the wireless network temporary identifier is used to parse the first control information
  • the reference signal configuration information is used to indicate the time-frequency position corresponding to the reference signal.
  • the time-frequency position and/or sequence, and the transmission mode of the control information are used to indicate the transmission mode of the first control information.
  • control resource set configuration information is used to configure the control channel resource set
  • the wireless network temporary identifier is used to identify the terminal device
  • the reference signal configuration information is used to configure the reference signal
  • the control information transmission mode is used to indicate the control How the information is transmitted.
  • the time period includes any one of one or more time domain symbols, one or more time slots, and one or more subframes.
  • the control information transmission mode includes a first control information transmission mode and a second control information transmission mode
  • the first control information transmission mode is used to indicate that the first control information includes a plurality of sub-control information , the multiple pieces of sub-control information respectively correspond to multiple terminals
  • the second control information transmission mode is used to indicate that the first control information corresponds to one terminal.
  • control information transmission manner includes group control information transmission and single control information transmission.
  • the first control information is used to schedule signal transmission.
  • control resource set configuration information has a corresponding relationship with at least one of the RNTI, reference signal configuration information, and control information transmission manner.
  • a position of target sub-control information in the multiple sub-control information in the first control information has a corresponding relationship with a value of at least one parameter.
  • a position of the target sub-control information in the first control information is determined according to a value of at least one parameter.
  • the terminal performs channel estimation on the first control information according to the resource granularity of channel estimation, where the resource granularity of channel estimation is N1 control channel elements CCE or N2 resource block groups REG, where N1 and N2 are greater than Integer of 0.
  • the time period has an associated relationship with the time period and the time offset, or, the time period has an associated relationship with the time start position and the time length.
  • the time period is determined according to the time period and the time offset, or the terminal determines the time period according to the time start position and the time length.
  • the mapping relationship is associated with the time period, the time offset, and the time interval, or the mapping relationship is associated with the time start position, the time length, and the time interval.
  • the mapping relationship is determined according to the time period, the time offset, and the time interval, or the mapping relationship is determined according to the time start position, the time length, and the time interval.
  • a network device 1100 in this embodiment of the present application includes an acquiring unit 1101 and a sending unit 1102 .
  • the acquiring unit 1101 is configured to acquire a mapping relationship, the mapping relationship includes a mapping relationship between M parameter sets and M time periods, the parameter set includes the value of at least one parameter, and M is an integer greater than or equal to 2.
  • the sending unit 1102 is configured to send the first control information according to the mapping relationship in a first time period, where the first time period is included in the M time periods.
  • a parameter set may have a corresponding relationship with a beam.
  • the beam may be the beam that can obtain the best communication quality
  • the parameter set corresponding to the time period determined by the terminal also determines the beam corresponding to the time period, so that beam scanning and beam tracking are not required to directly determine the best beam , reducing the communication delay.
  • At least one parameter in different parameter sets in the M parameter sets has a different value.
  • the parameters in the parameter set include at least one of control resource set configuration information, radio network temporary identifier RNTI, reference signal configuration information, and control information transmission manner.
  • control resource set configuration information is used to indicate the time-frequency position corresponding to the first control information
  • the wireless network temporary identifier is used to parse the first control information
  • the reference signal configuration information is used to indicate the time-frequency position corresponding to the reference signal.
  • the time-frequency position and/or sequence, and the transmission mode of the control information are used to indicate the transmission mode of the first control information.
  • control resource set configuration information is used to configure the control channel resource set
  • the wireless network temporary identifier is used to identify the terminal device
  • the reference signal configuration information is used to configure the reference signal
  • the control information transmission mode is used to indicate the control How the information is transmitted.
  • the time period includes any one of one or more time-domain symbols, one or more time slots, and one or more subframes.
  • the control information transmission mode includes a first control information transmission mode and a second control information transmission mode
  • the first control information transmission mode is used to indicate that the first control information includes a plurality of sub-control information , the multiple pieces of sub-control information respectively correspond to multiple terminals
  • the second control information transmission mode is used to indicate that the first control information corresponds to one terminal.
  • control information transmission manner includes group control information transmission and single control information transmission.
  • the first control information is used to schedule signal transmission.
  • control resource set configuration information has a corresponding relationship with at least one of the RNTI, reference signal configuration information, and control information transmission manner.
  • a position of target sub-control information in the multiple sub-control information in the first control information has a corresponding relationship with a value of at least one parameter.
  • a position of the target sub-control information in the first control information is determined according to a value of at least one parameter.
  • the terminal performs channel estimation on the first control information according to the resource granularity of channel estimation, where the resource granularity of channel estimation is N1 control channel elements CCE or N2 resource block groups REG, where N1 and N2 are greater than Integer of 0.
  • the time period is associated with a time period and a time offset, or, the time period is associated with a time start position and a time length.
  • the time period is determined according to the time period and the time offset, or the terminal determines the time period according to the time start position and the time length.
  • the mapping relationship is associated with the time period, the time offset, and the time interval, or the mapping relationship is associated with the time start position, the time length, and the time interval.
  • the mapping relationship is determined according to the time period, the time offset, and the time interval, or the mapping relationship is determined according to the time start position, the time length, and the time interval.
  • FIG. 12 is another schematic structural diagram of a terminal in the embodiment of the present application.
  • the interface 1202 is used to communicate with other devices.
  • Interface 1202 may be a transceiver or an input-output interface.
  • interface 1202 may be an interface circuit.
  • the communication device 1200 further includes a memory 1203 for storing instructions executed by the processor 1201 or storing input data required by the processor 1201 to execute the instructions or storing data generated by the processor 1201 after executing the instructions.
  • the methods performed by the communication device in the above embodiments may be implemented by calling a program stored in a memory (which may be the memory 1203 or an external memory) by the processor 1201 . That is, the communication device may include a processor 1201, and the processor 1201 executes the methods in the above method embodiments by calling a program in the memory.
  • the processor here may be an integrated circuit with signal processing capabilities, such as a CPU.
  • FIG. 13 is another schematic structural diagram of a base station in the embodiment of the present application.
  • the interface 1302 is used to implement communication with other devices.
  • Interface 1302 may be a transceiver or an input-output interface.
  • interface 1302 may be an interface circuit.
  • the communication device 1300 further includes a memory 1303 for storing instructions executed by the processor 1301 or storing input data required by the processor 1301 to execute the instructions or storing data generated after the processor 1301 executes the instructions.
  • the methods performed by the communication device in the above embodiments may be implemented by calling a program stored in a memory (which may be the memory 1303 or an external memory) by the processor 1301 . That is, the communication device may include a processor 1301, and the processor 1301 executes the methods in the above method embodiments by calling a program in the memory.
  • the processor here may be an integrated circuit with signal processing capabilities, such as a CPU.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法,用于降低通信时延。本申请实施例方法包括:终端获取映射关系,映射关系包括M个参数集合与M个时间段的映射关系,参数集合中包括至少一个参数的取值,M为大于或等于2的整数。终端在第一时间段根据映射关系接收第一控制信息,第一时间段包含于M个时间段。

Description

一种通信方法以及相关装置
本申请要求于2021年7月7日提交中国国家知识产权局、申请号202110769413.6、申请名称为“一种通信方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及一种通信方法以及相关装置。
背景技术
在工业制造领域中,通常需要基于无线通信对终端进行管理。
为了进行终端和基站之间的通信,终端和基站需要进行波束扫描、波束管理以及波束跟踪等,从而确定出获得最佳通信质量的最佳波束。但是进行上述波束扫描、波束管理以及波束跟踪等操作会导致通信时延较大以及导频开销较大。
发明内容
本申请实施例提供了一种通信方法以及相关装置,用于降低通信时延。
本申请实施例第一方面提供了一种通信方法:
终端获取映射关系,其中,映射关系包括M个参数集合与M个时间段的映射关系,参数集合中包括至少一个参数的取值,M为大于或等于2的整数。终端在第一时间段根据映射关系接收第一控制信息,第一时间段包含于M个时间段。
本申请实施例中,终端可以根据映射关系确定与各个时间段对应的参数集合,从而根据对应的参数集合接收控制信息,并且参数集合可以与波束具有对应关系,从而无需进行波束扫描、波束管理以及波束跟踪等步骤,直接根据对应关系确定出波束,降低通信时延。
在一种可能的实现方式中,终端通过接收配置信息获取映射关系,该配置信息用于指示映射关系。
本申请实施例中,终端可以灵活的获取映射关系,满足参数集合的变化,匹配业务传输,提高通信性能。
在一种可能的实现方式中,参数集合可以与波束具有对应关系。
本申请实施例中,波束可以是能够获得最佳通信质量的波束,终端确定时间段对应的参数集合也确定了时间段对应的波束,从而不需要进行波束扫描以及波束跟踪,直接确定最佳波束,降低了通信时延。
在一种可能的实现方式中,M个参数集合中的不同参数集合中的至少一个参数的取值不同。
在一种可能的实现方式中,参数集合中的参数包括控制资源集配置信息、无线网络临时标识RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种。
本申请实施例中,可以实现动态的终端配对,实现更灵活的控制信息的传输,动态调度终端,降低波束切换时延,提高通信性能。
在一种可能的实现方式中,控制资源集配置信息用于指示第一控制信息对应的时频位 置,无线网络临时标识用于解析第一控制信息,参考信号配置信息用于指示参考信号对应的时频位置和/或序列,控制信息传输方式用于指示第一控制信息的传输方式。
在一种可能的实现方式中,控制资源集配置信息用于配置控制信道资源集合,无线网络临时标识用于标识终端设备,参考信号配置信息用于配置参考信号,控制信息传输方式用于指示控制信息的传输方式。
在一种可能的实现方式中,时间段包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。
在一种可能的实现方式中,控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,所述第一控制信息传输方式用于指示所述第一控制信息包括多个子控制信息,所述多个子控制信息分别对应多个终端,所述第二控制信息传输方式用于指示所述第一控制信息对应一个终端。
在一种可能的实现方式中,控制信息传输方式包括组控制信息传输以及单控制信息传输。
本申请实施例中,可以实现基于时间段动态的单控制信息和组控制信息的传输方式切换,降低控制信息开销,根据实际调度情况传输控制信息,提高通信性能。
在一种可能的实现方式中,第一控制信息用于调度信号传输。
在一种可能的实现方式中,控制资源集配置信息与RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种具有对应关系。
在一种可能的实现方式中,一个控制资源集合配置信息与至少两个RNTI、至少两个参考信号配置信息、以及两种控制信息传输方式中的至少一项具有对应关系。
在一种可能的实现方式中,一个控制资源集合配置信息与一个RNTI、一个参考信号配置信息、以及一种控制信息传输方式中的至少一项具有对应关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,多个子控制信息中的目标子控制信息在第一控制信息中的位置与至少一个参数的取值具有关联关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,根据至少一个参数的取值确定目标子控制信息在第一控制信息中的位置。
在一种可能的实现方式中,终端根据信道估计的资源粒度对第一控制信息进行信道估计,信道估计的资源粒度为N1个控制信道单元CCE或者N2个资源块组REG,N1和N2为大于0的整数。
在一种可能的实现方式中,终端接收指示信息,指示信息用于指示资源粒度。
在一种可能的实现方式中,时间段与时间周期以及时间偏移具有关联关系,或,时间段与时间起始位置以及时间长度具有关联关系。
在一种可能的实现方式中,根据时间周期以及时间偏移确定时间段,或,终端根据时间起始位置以及时间长度确定时间段。
在一种可能的实现方式中,映射关系与时间周期、时间偏移以及时间间隔具有关联关系,或,映射关系与时间起始位置、时间长度以及时间间隔具有关联关系。
在一种可能的实现方式中,根据时间周期、时间偏移以及时间间隔确定映射关系,或, 根据时间起始位置、时间长度以及时间间隔确定映射关系。
在一种可能的实现方式中,终端接收配置信息,配置信息指示时间周期、时间偏移和时间间隔中的至少一项,或者,终端接收配置信息,配置信息指示时间起始位置、时间长度和时间间隔中的至少一项。
在一种可能的实现方式中,时间间隔与终端的运动速度具有对应关系。或者,终端根据终端的运动速度确定时间间隔。
本申请实施例第二方面提供了一种通信方法:
网络设备获取映射关系,映射关系包括M个参数集合与M个时间段的映射关系,参数集合中包括至少一个参数的取值,M为大于或等于2的整数。网络设备在第一时间段根据映射关系发送第一控制信息,第一时间段包含于M个时间段。
本申请实施例中,网络设备向终端发送与参数集合对应的控制信息,从而降低通信时延。
在一种可能的实现方式中,网络设备发送配置信息,配置信息用于指示映射关系。
本申请实施例中,网络设备可以将获取到的映射关系通过配置信息发送,使得终端获取到映射关系,从而根据映射关系接收控制信息,满足参数集合的变化,匹配业务传输,提高通信性能。
在一种可能的实现方式中,参数集合可以与波束具有对应关系。
本申请实施例中,波束可以是能够获得最佳通信质量的波束,终端确定时间段对应的参数集合也确定了时间段对应的波束,从而不需要进行波束扫描以及波束跟踪,直接确定最佳波束,降低了通信时延。
在一种可能的实现方式中,M个参数集合中的不同参数集合中的至少一个参数的取值不同。
在一种可能的实现方式中,参数集合中的参数包括控制资源集配置信息、无线网络临时标识RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种。
本申请实施例中,实现动态的终端配对,实现更灵活的控制信息的传输,动态调度终端,降低波束切换时延,提高通信性能。
在一种可能的实现方式中,控制资源集配置信息用于指示第一控制信息对应的时频位置,无线网络临时标识用于解析第一控制信息,参考信号配置信息用于指示参考信号对应的时频位置和/或序列,控制信息传输方式用于指示第一控制信息的传输方式。
在一种可能的实现方式中,控制资源集配置信息用于配置控制信道资源集合,无线网络临时标识用于标识终端设备,参考信号配置信息用于配置参考信号,控制信息传输方式用于指示控制信息的传输方式。
在一种可能的实现方式中,时间段包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。
在一种可能的实现方式中,控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,所述第一控制信息传输方式用于指示所述第一控制信息包括多个子控制信息,所述多个子控制信息分别对应多个终端,所述第二控制信息传输方式用于指示所述 第一控制信息对应一个终端。
在一种可能的实现方式中,控制信息传输方式包括组控制信息传输以及单控制信息传输。
本申请实施例中,实现基于时间段动态的单控制信息和组控制信息的传输方式切换,降低控制信息开销,根据实际调度情况传输控制信息,提高通信性能。
在一种可能的实现方式中,第一控制信息用于调度信号传输。
在一种可能的实现方式中,控制资源集配置信息与RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种具有对应关系。
在一种可能的实现方式中,一个控制资源集合配置信息与至少两个RNTI、至少两个参考信号配置信息、以及两种控制信息传输方式中的至少一项具有对应关系。
在一种可能的实现方式中,一个控制资源集合配置信息与一个RNTI、一个参考信号配置信息、以及一种控制信息传输方式中的至少一项具有对应关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,多个子控制信息中的目标子控制信息在第一控制信息中的位置与至少一个参数的取值具有关联关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,根据至少一个参数的取值确定目标子控制信息在第一控制信息中的位置。
在一种可能的实现方式中,网络设备发送指示信息,指示信息用于指示信道估计的资源粒度,终端根据信道估计的资源粒度对第一控制信息进行信道估计,信道估计的资源粒度为N1个控制信道单元CCE或者N2个资源块组REG,N1和N2为大于0的整数。
在一种可能的实现方式中,时间段与时间周期以及时间偏移具有关联关系,或,时间段与时间起始位置以及时间长度具有关联关系。
在一种可能的实现方式中,根据时间周期以及时间偏移确定时间段,或,终端根据时间起始位置以及时间长度确定时间段。
在一种可能的实现方式中,映射关系与时间周期、时间偏移以及时间间隔具有关联关系,或,映射关系与时间起始位置、时间长度以及时间间隔具有关联关系。
在一种可能的实现方式中,根据时间周期、时间偏移以及时间间隔确定映射关系,或,根据时间起始位置、时间长度以及时间间隔确定映射关系。
在一种可能的实现方式中,网络设备发送配置信息,配置信息指示时间周期、时间偏移和时间间隔中至少一项,或者,网络设备发送配置信息,配置信息指示时间起始位置、时间长度和时间间隔中至少一项。
本申请实施例第三方面提供了一种终端,可以实现上述第一方面或任一种可能的实现方式中的方法。该终端包括用于执行上述方法的相应的单元或模块。该终端包括的单元或模块可以通过软件和/或硬件方式实现。
本申请实施例第四方面提供了一种网络设备,可以实现上述第二方面或任一种可能的实现方式中的方法。该网络设备包括用于执行上述方法的相应的单元或模块。该基站包括的单元或模块可以通过软件和/或硬件方式实现。
本申请实施例第五方面提供了一种终端,包括处理器,处理器与存储器耦合,存储器 用于存储指令,当指令被所述处理器执行时,使得装置执行如第一方面中的方法。
本申请实施例第六方面提供了一种网络设备,包括处理器,处理器与存储器耦合,存储器用于存储指令,当指令被所述处理器执行时,使得装置执行如第二方面中的方法。
本申请实施例第七方面提供了一种计算机可读存储介质,其上存储有计算机程序或指令,计算机程序或指令被执行时,使得计算机执行如上述第一方面或第二方面中的方法。
附图说明
图1为本申请实施例中通信方法应用的一个通信系统示意图;
图2为本申请实施例中通信方法应用的另一通信系统示意图;
图3为本申请实施例中通信方法应用的另一通信系统示意图;
图4为本申请实施例中通信方法的一个应用场景示意图;
图5为本申请实施例中通信方法的一个应用场景示意图;
图6为本申请实施例中通信方法的一个流程示意图;
图7a为本申请实施例中子帧结构的一个示意图;
图7b为本申请实施例中M个时间段的一个示意图;
图7c为本申请实施例中M个时间段的另一示意图;
图7d为本申请实施例中M个时间段的另一示意图;
图7e为本申请实施例中M个时间段的另一示意图;
图7f为本申请实施例中M个时间段的另一示意图;
图7g为本申请实施例中映射关系的一个示意图;
图7h为本申请实施例中映射关系的另一示意图;
图7i为本申请实施例中映射关系的另一示意图;
图7j为本申请实施例中映射关系的另一示意图;
图7k为本申请实施例中映射关系的另一示意图;
图7l为本申请实施例中参考信号图案信息的一个示意图;
图8a为本申请实施例中时频资源的一个示意图;
图8b为本申请实施例中目标子控制信息的一个示意图;
图8c为本申请实施例中映射关系的另一示意图;
图9为本申请实施例中对控制信息进行处理的示意图;
图10为本申请实施例中终端的一个结构示意图;
图11为本申请实施例中网络设备的一个结构示意图;
图12为本申请实施例中终端的另一结构示意图;
图13为本申请实施例中网络设备的另一结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类 似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种通信方法以及相关装置,用于降低终端的通信时延。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)以及新无线(new radio,NR)等第五代(5th generation,5G)系统以及第六代(the 6th generatio,6G)移动信息技术系统中,还可以应用于后续演进制式中,比如未来的通信系统或者其他的通信系统等,本申请对此不作限定。
另外,本申请的方法可以应用在车联网(vehicle to everything,V2X)系统,还可以应用于4G和5G混合组网的系统中,或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT)、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)系统、卫星通信系统、无线保真(wireless fidelity,WiFi)系统以及其他下一代通信系统,也可以为非3GPP通信系统,不予限制。本申请实施例提供的通信方法可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)、机器类型通信(machine type communication,MTC)、物联网(internet of things,IoT)、窄带物联网(narrow band internet of thing,NB-IoT)、客户前置设备(customer premise equipment,CPE)、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device to device,D2D)、车联网(vehicle to everything,V2X)以及车辆到车辆(vehicle to vehicle,V2V)等。
需要说明的是,本申请实施例中,IoT可以包括NB-IoT、MTC以及mMTC等中的一项或多项,不予限制。
本申请实施例对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站和宏基站与微基站间的多点协同传输、双工系统、接入回传系统以及中继系统等。本申请实施例适用于6GHz以上的低频场景,例如sub 6GHz,也适用于6GHz以上的高频场景、太赫兹以及光通信等。
本申请实施例中的终端可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是掌上电脑、移动互联网设备(mobile internet device,MID)、eMBB终端、URLLC终端、MTC终端、NB-IoT终端、CPE终端、VR终端、AR终端、V2X终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的 无线终端、运输安全中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、传感器、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、计算设备或连接到无线调制解调器的其它处理设备、车载终端、具有车与车的通信(vehicle to vehicle,V2V)能力的车辆、有无人机(unmanned aerial vehicle,UAV)对无人机通信能力的无人机、具有无线通信功能的手持设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
此外,本申请实施例中的终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据、接收网络设备的控制信息与数据,并发送电磁波,向网络设备传输数据。
本申请实施例中的网络设备可以是用于与终端通信的设备,该网络设备可以是LTE系统中的演进型基站(evolutional nodeB,eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的网络中的网络设备、卫星基站等,本申请实施例并不限定。网络设备还可以包括例如xNodeB的6G系统中的节点、未来可能实现基站功能的设备、WiFi系统中的接入节点,传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)或者机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,具体此处不做限定。网络设备还可以为支持有线接入的设备,也可以为支持无线接入的设备。示例性的,该网络设备可以为接入网(access network,AN)或者无线接入网(radio access network,RAN)设备,由多个AN或者RAN节点组成。AN或者RAN节点可以为:传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、无线保真(wireless fidelity,Wifi)接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR系统中的ngNB、TRP或者TP,或者也可以是5G系统中的基站的一个或一组天线面板。或者,还可以为构成下一代基站(NR nodeB,gNB)或传输点的网络节点,如基带单元(baseband unit,BBU)、分布式单元(distributed unit,DU)、D2D、V2X或机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备。或者也可以是未来的通信系统中的基站,或某种其它接入节点等。应当理解的是,本申请实施例中的网络设备可以是上述任意一种设备或上述设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该网络设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以网络设备为例进行介绍。
本申请实施例所示的通信方法可以应用于第一通信装置与第二通信装置之间的通信,其中,第一通信装置可以为终端或网络设备。第二通信装置可以为终端或网络设备。如下 实施例以第一通信装置为终端,第二通信装置为网络设备举例进行说明。需要说明的是,本申请实施例所示的通信方法可以应用于终端与网络设备之间的通信,也可以适用于终端与终端设备之间的通信,还可以应用于网络设备与网络设备之间的通信。其中,网络设备与网络设备之间的通信可以是宏基站与宏基站、微基站与微基站、宏基站与微基站之间的多点协同传输。
图1是适用于本申请实施例的通信系统的一个示意图。图1为蜂窝通信系统100,其中包括网络设备101、终端设备102、终端设备103以及终端设备104。网络设备和终端设备之间可以通过信道发送信息,不同的信道上可以承载相同或者不相同的种类的信息。其中,网络设备可以通过控制信道,向终端设备发送控制信息,来实现对终端设备的调度。例如,网络设备101为上述可能的实现中的网络设备,终端设备102、终端设备103以及终端设备104为上述可能的实现中的终端。
图2是适用于本申请实施例的通信系统的另一个示意图。如图2所示,为本申请实施例应用于的星间链路通信系统200,包括卫星1和卫星2,两者之间通过信道进行信息交互,即卫星与卫星之间的通信。其中,卫星可以是作为网络设备,也可以是作为终端。具体地,该通信系统包括通信子系统和捕获、指向和跟踪(acquisition pointing tracking,APT)子系统。其中,通信子系统包括通信模块以及收发天线,负责星间信息的传输,是星间通信系统的主体;APT子系统负责卫星之间的捕获、对准和跟踪,捕获为确定入射信号的来波方向,对准为调整发射波瞄准接收方向,跟踪为在通信过程中不断调整对准和捕获。为了尽量减少信道中的衰落和干扰影响,同时要求具有较高的保密性和传输率,必须实时地调整APT来不断适应变化。
图3是适用于本申请实施例的通信系统的另一个示意图。如图3所示,为本申请实施例应用于的卫星通信系统300,包括卫星基站301以及终端类型网元302、终端类型网元303以及终端类型网元304。卫星基站为终端类型网元提供通信服务,终端类型网元可以为上述各种可能实现的终端设备。卫星基站向终端传输下行数据,其中数据采用信道编码进行编码,信道编码后的数据经过星座调制后传输给终端;终端向卫星基站传输上行数据,上行数据也可以采用信道编码进行编码,编码后的数据经过星座调制后传输给卫星基站。
需要说明的是,上述无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)以及增强移动宽带(enhanced mobile broad band,eMBB),URLLC和基于LTE演进的物联网技术(LTE enhanced MTO,eMTC)。
图4是适用于本申请实施例的通信系统的另一个示意图。如图4所示,为本申请实施例用于无线投屏场景时的通信系统400,包括电视和手机,电视和手机之间进行信息的交互。此外,本申请实施例还可以应用于虚拟现实(virtual reality,VR)游戏、手机应用 程序(application,APP)中的数据编码、解码等多种应用场景。应理解,在上述应用场景中,电视以及手机等可以用于执行本申请实施例中网络设备的相应功能,或者也可以用于执行本申请实施例中终端设备的相应功能,本申请实施例对此不作限定。
本申请实施例还可以应用于URLLC中。URLLC在自动驾驶、工业制造、车联网以及智能电网等领域应用广泛,以工业制造领域为例,工厂中的终端具体是一些用于进行生产制造的设备,可以通过无线网络实现对终端的控制,由于在工厂中的生产制造作业对精度有着较高的要求,因此对通信延迟以及稳定性也提出了要求。
请参阅图5,在工业车间中,终端可能需要进行周期性的运动。例如,终端1在车间中做周期性的椭圆运动,终端2在车间中做周期性的往复运动。终端在运动的过程与基站的相对位置发生改变,因此能够获得最佳通信质量的波束也会随之发生改变。
基于上述通信系统,本申请提供了一种通信的方法。下面对本申请所使用的一些名词或术语进行解释说明,该名词或术语及其相关解释说明内容也作为发明内容的一部分。
一、物理下行控制信道(physical downlink control channel,PDCCH)和物理接收链路控制信道(physical reception link control channel,PRXCH);
PDCCH主要用于承载下行控制信息(downlink control information,DCI),承载数据传输相关的控制信息,如数据传输的资源分配信息、时隙内的上行资源或者下行资源的格式信息、上行数据信道以及下行数据信道和信号的功率控制信息等。
在LTE中,PDCCH的时域资源位于每个时隙的前1至3个符号,符号长度由物理控制格式指示信道(physical control format indicator channel,PCFICH)指示。在5G NR中,由于系统带宽更大,需要更加灵活的PDCCH资源分配方案,PDCCH占用的时频域资源位置定义为控制信道资源集合(control resource set,CORESET),CORESET可以由高层信令等方式配置。
控制信道单元(control channel element,CCE)是PDCCH的基本组成单位。一个CCE占用时频域上N个资源粒子组(resource element group,REG)。其中,一个REG对应时域上一个OFDM符号和频域上一个资源块(resource block,RB),包括12个连续的资源单元(resource element,RE);一个确定的PDCCH可以由1个、2个、4个、8个、16个CCE构成,其具体取值由DCI载荷的大小(DCI payload size)和所需的编码速率决定。构成PDCCH的CCE数量被称为聚合等级(aggregation level,AL)。基站可以根据信道状态选择合适的聚合等级,信道状态较差时聚合等级较高。
在一种可能的实现中,可以引入一种物理层控制信道—PRxCCH。该PRxCCH的功能类似于LTE和5G中的PDCCH,具体地,用于传输控制信息的信道,该控制信息用于调度数据传输。应理解,一般地,标准协议是从终端设备角度来描述的,因此物理层的下行控制信道可以描述为物理层接收链路控制信道。
二、物理下行共享信道(physical downlink shared channel,PDSCH)和物理接收链路共享信道(physical reception link shared channel,PRxSCH);
PDSCH是承载下行业务数据的物理层信道。
PDSCH发送流程可以包括加扰、调制、层映射、天线端口映射、虚拟资源块映射、物 理资源块映射等。
在一种可能的实现中可以引入一种物理层数据信道—PRxSCH。该PRxSCH的功能类似于LTE和5G中的PDSCH。具体地,该信道可以用于终端设备接收数据的信道,和/或用于网络设备传输数据的信道。应理解,一般地,标准协议是从终端设备角度来描述的,因此物理层的下行数据信道可以描述为物理层接收数据信道。
三、物理上行控制信道PUCCH和物理发送链路控制信道PTxCCH;
物理上行控制信道(physical uplink control channel,PUCCH)主要用于承载上行控制信息(uplink control information,UCI)。具体地,可以包括终端设备向网络设备申请上行资源配置的信息、答复下行业务数据是否被终端设备正确接收的信息以及终端设备上报的下行信道的信道状态信息(channel state information,CSI)。
在一种可能的实现中,可以引入一种物理层控制信道—物理发送链路控制信道(physical transmission link control channel,PTxCCH)。该PTxCCH的功能似于LTE和5G中的PUCCH。具体地,该信道用于终端设备传输控制信息的信道,和/或用于网络设备接收控制信息的信道。其中控制信息可以包括如下至少一项:混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)、确认/非确认(acknowledge/negative acknowledge,ACK/NACK)信息、信道状态信息以及调度请求等。应理解,一般地,标准协议是从终端设备角度来描述的,因此物理层的上行控制信道可以描述为物理层发送链路控制信道。
四、物理上行共享信道PUSCH和物理发送链路共享信道PTxSCH;
物理上行共享信道(physical uplink shared channel,PUSCH)用于传输上行的业务数据。PUSCH可以由DCI动态调度,也可以由高层参数配置,进行免调度传输,或者还可以在高层参数配置后,由DCI进行半持续调度。
PUSCH的发送流程可以包括加扰、调制、层映射、转换预编码、预编码、资源映射以及符号生成等过程。
在一种可能的实现中,可以引入一种物理层数据信道—物理发送链路共享信道(physical transmission link shared channel,PTxSCH)。该PTxSCH的功能类似于LTE和5G中的PUSCH。具体地,该信道用于终端设备传输数据的信道,和/或用于网络设备接收数据的信道。应理解,一般地,标准协议是从终端设备角度来描述的,因此物理层的上行数据信道可以描述为物理层发送数据信道。
五、下行控制信息DCI;
下行控制信息(downlink control information,DCI)是在PDCCH上传输的,与PDSCH、PUSCH相关的控制信息。终端设备只有正确解码DCI信息,才能正确的处理PDSCH数据或PUSCH数据。
六、终端设备盲检。
由于终端设备事先并不知道接收到的PDCCH携带的是哪种格式的DCI,也不知道该DCI使用哪个候选PDCCH进行传输,所以终端设备必须进行PDCCH盲检以接收对应的DCI。在终端设备成功解码PDCCH之前,终端设备可能会在每一个可能的候选PDCCH上尝试解码,直到终端设备检测成功PDCCH,或者,达到终端设备期望接收的DCI数量或达到终端设备 的盲检次数限制。
或者换句话说,DCI有多种不同的格式,终端设备在接收PDCCH时,无法确定接收到的DCI属于哪一种格式的DCI,进而无法正确处理PDSCH、PUSCH等信道上传输的数据。因此,终端设备必须对DCI的格式进行盲检。由于终端设备一般不知道当前DCI的格式,也不知道自身需要的信息在那个位置,但是终端设备知道自身期待什么格式的信息,而期待的不同格式的信息对应着不同的期望的RNTI和CCE,因此终端设备可以通过对接收到的DCI,使用期望的RNTI和CCE做CRC校验,即可知道接收到的DCI是否是自身需要的,也知道相应的DCI格式、调制方式,从而进一步接触DCI,上述流程即为终端设备盲检过程。
应理解,通常通过在DCI的信息比特中添加循环冗余校验(cyclic redundancy check,CRC)比特来实现终端设备的检错功能,并且在CRC比特中使用不同类型的无线网络标识(radio network temporary identifier,RNTI)进行加扰,从而将RNTI隐式地编码在CRC比特中。还应理解,不同的RNTI能够同时用于标识终端设备和区分DCI的用途。
此外,对于终端设备的盲检过程,由于PDCCH由多个CCE组成,或者说DCI是承载与该多个CCE上的,所以终端设备需要对该多个CCE进行盲检。然而,如果终端设备以CCE为粒度逐个进行盲检,效率较低,因此,协议中规定了搜索空间(search space)。搜索空间可以简单的理解为,终端设备进行PDCCH盲检时,以几个CCE为粒度进行盲检,例如,若搜索空间中定义CCE的聚合等级AL的取值为4或者8,则终端设备盲检时,先按4个CCE为粒度盲检一遍,再按8个CCE为粒度盲检一遍。
具体地,当搜索空间中定义CCE的AL的取值为4或者8时,网络设备在标识PDCCH时,除了使用上述4或8中的AL外,还会使用CCE的位置索引(CCE index)参数,其中,CCE的位置索引是根据该PDCCH的时频域信息以及聚合等级等计算获得。由于终端设备不能确切的知道PDCCH占用的CCE的聚合等级,以及CCE的起始位置索引,但是终端设备在接收PDCCH之前,接收高层信令,该高层信令指示PDCCH的时频域信息等,并且终端设备根据协议或者网络设备的指示等,比如确定了该PDCCH的聚合等级可能为4,也可能为8,因此终端设备盲检时,可以首先,以聚合等级为4,根据PDCCH的时频域信息,计算该PDCCH中CCE的位置索引,其中包括CCE的起始位置索引,在对应的CCE上进行盲检;然后,在未检测到期望的DCI时或在未达到期望检测到的DCI数量时,终端设备可以再以聚合等级为8,根据PDCCH的时频域信息,计算该PDCCH中CCE的起始位置索引,也即CCE的位置索引,在对应的CCE上进行盲检。
下面以第一通信装置为终端,第二通信装置为基站为例,对本申请实施例中的通信方法进行介绍:
请参阅图6,下面对本申请实施例中的通信方法的一个流程进行描述:
601、终端获取映射关系;
由于终端是周期性移动的,并且移动的轨迹也可以被预测,因此可以确定终端在每个位置所对应的能够获得最佳通信质量的波束,以及终端在每个位置所对应的用于接收控制信息的参数,上述控制信息用于调度基站与终端之间的通信信号的传输。在确定出上述波束以及参数之后,可以获取映射关系,该映射关系指示了上述波束以及参数与时间的对应 关系。
另外,终端的运动轨迹可以通过定位信息、感知、人工智能(artificial intelligent,AI)、或神经网络技术等获取。根据终端的运动轨迹,可以确定波束以及参数与时间的对应关系。
该映射关系可以通过基站获取,比如基站向终端发送信令指示该映射关系,或者,该映射关系预存在终端侧,或者,也可以通过其他的方式获取,比如终端根据AI确定该映射关系,具体此处不做限定。
映射关系包括M个参数集合与M个时间段的映射关系,其中,每个参数集合中包括至少一个参数的取值,M为大于或等于2的整数。
其中,时间段可以包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。比如,一个时间段可以是2个子帧,或者2毫秒(ms)等。
M个时间段可以是Q1个无线帧、Q2个子帧、Q3个时域符号或者Q4毫秒。其中,Q1、Q2、Q3、以及Q4为正整数。
请参阅图7a,如图7a所示,终端与基站之间的通信在多个子帧中进行。每个子帧可以对应一个编号,示例性的,如果终端在图7a中最左侧的第一个子帧接收到来自基站的同步信号,可以将该子帧编号为0,则该子帧之后的子帧分别编号为1、2、3、4、5、6、7、8以及9,对子帧的编号也可以是周期性的,也即将编号为9的子帧的下一个子帧编号为0,并按照上述编号规律进行后续子帧的编号。
可选的,上述M个时间段包括第一时间段和第二时间段,参数集合中参数的取值包括第一取值和第二取值,终端获取参数与时间段的对应关系,包括:第一时间段对应第一取值,第二时间段对应第二取值。
可选的,第一取值与第二取值不同。
如下提供用于终端以及基站中的至少一种设备确定时间段的方法。终端以及基站中的至少一种设备可以根据如下至少一种方法确定时间段。
可选的,M个时间段可以根据时间周期以及时间偏移确定,也即M个时间段与时间周期以及时间偏移具有关联关系。其中,时间周期指示M个时间段的总时长,时间偏移指示M个时间段与基准点的偏移量。
可选的,基站可以发送包括时间周期以及时间偏移中至少一种信息的配置信息。终端可以接收网络设备发送的包括时间周期以及时间偏移中至少一种信息的配置信息,终端根据配置信息确定时间周期以及时间偏移中的至少一种情况。
基准点可以是任意编号的一个子帧,下面以基准点为子帧0进行描述:
如果映射关系是终端接收到的,请参阅图7b,如果终端在第一个子帧9处接收到来自基站的映射关系,则基准点为接收到映射关系的该子帧的下一个子帧0。如果时间偏移为2个子帧,在该基准点2个子帧之后的子帧为子帧2,则该子帧2为M个时间段的起始位置,其中,该起始位置表示终端从该子帧开始根据映射关系接收控制信息。若M个时间段的周期为10个子帧,则M个时间段包括上述子帧2至下一个子帧1,也即10个子帧。
可选的,基站可以发送基准点的配置信息。终端根据配置信息确定基准点。
或者,如果映射关系是预存在终端的,请参阅图7c,则基准点为第一个子帧0。如果时间偏移为2个子帧,在该基准点2个子帧之后的子帧为第一个子帧2,则该子帧2为M个时间段的起始位置。若M个时间段的周期为10个子帧,则M个时间段包括上述子帧2至下一个子帧1,也即10个子帧。
在另一种实现方式中,基准点也可以是终端接收到映射关系的子帧。请参阅图7d,如果终端在第一个子帧9处接收到来自基站的映射关系,则基准点为接收到映射关系的该子帧9,如果时间偏移为2个子帧,在该基准点2个子帧之后的子帧为子帧1,则该子帧1为M个时间段的起始位置。
可选的,M个时间段也可以根据时间起始位置以及时间长度确定,也即M个时间段与时间起始位置以及时间长度具有关联关系。其中,时间起始位置指示M个时间段的起始位置,时间长度指示M个时间段的总时长。
可选的,基站可以发送包括时间起始位置以及时间长度中至少一种信息的配置信息。终端可以接收网络设备发送的包括时间起始位置以及时间长度中至少一种信息的配置信息,根据配置信息确定起始位置以及时间长度中的至少一种情况。
时间起始位置可以是任意编号的一个子帧,下面以时间起始位置为子帧2进行描述:
如果映射关系是终端接收到的,请参阅图7e,如果终端在第一个子帧9处接收到来自基站的映射关系,则时间起始位置为接收到映射关系的该子帧的下一个子帧2。也即该子帧2为M个时间段的起始位置。若M个时间段的周期为10个子帧,则M个时间段包括上述子帧2至下一个子帧1,也即10个子帧。
或者,如果映射关系是预存在终端的,请参阅图7f,则时间起始位置为第一个子帧2。该子帧2为M个时间段的起始位置。若M个时间段的周期为10个子帧,则M个时间段包括上述子帧2至下一个子帧1,也即10个子帧。
如下提供用于终端以及基站中的至少一种设备确定映射关系的方法。终端以及基站中的至少一种设备可以根据如下至少一种方法确定映射关系。
可选的,映射关系可以通过时间偏移、时间周期以及变化间隔确定,也即映射关系与时间偏移、时间周期以及变化间隔具有关联关系。其中,变化间隔也可以称为时间间隔,用于表示参数集合的持续时间或者作用时间。时间间隔可以包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。比如,一个时间间隔可以是2个子帧,或者2毫秒(ms)等。
可选的,基站可以发送时间间隔的配置信息。终端根据配置信息确定时间间隔。
可选的,时间间隔可以是协议预定义的,比如2个子帧,1个子帧等。
可选的,终端接收配置信息,配置信息指示时间周期,时间偏移和时间间隔中至少一项。
可选的,网络设备发送配置信息,配置信息指示时间周期,时间偏移和时间间隔中至少一项。
可选的,时间间隔与终端的运动速度具有对应关系。或者,终端根据终端的运动速度确定所述时间间隔。
比如,当终端的运动速度位于区间1,对应的时间间隔为时间间隔T1;当终端的运动速度位于区间2,对应的时间间隔为时间间隔T2;当终端的运动速度位于区间3,对应的时间间隔为时间间隔T3;或者也可以是其他情况,此处不再赘述。
其中,当变化间隔为P个时间单元时,也即时间间隔为P个时间单元时,指示了从M个时间段的第一个时间段起的每P个时间单元,对应一个参数集合。其中,时间单元可以是子帧、时隙、时域符号、1毫秒、1秒以及1微秒中的任一种,或者也可以是其他情况,具体此处不做限定。
在上述图7b所示实施例的基础上,请参阅图7g,示例性的,变化间隔为2个子帧时,子帧2以及子帧3对应参数集合1,这之后,子帧4以及子帧5对应参数集合2,子帧6以及子帧7对应参数集合3,子帧8以及子帧9对应参数集合4,子帧0以及子帧1对应参数集合5。
可以理解的是,在上述图7g的基础上,请参阅图7h,时间段与参数集合的映射关系可以是周期性的,也即M个时间段结束之后,是另M个时间段的开始。在此基础上,由于变化间隔以及时间周期是不变的,因此终端可以根据映射关系的周期规律,确定出各个子帧分别与参数集合的对应关系,从而在获取到映射关系的子帧处,根据映射关系接收第一控制信息。以图7h为例,终端可以根据规律确定接收到映射关系的子帧9对应参数集合4,接下来的子帧0以及子帧1对应参数集合5,从而终端可以在接收到映射关系的子帧9处根据参数集合4接收第一控制信息。
或者,映射关系可以通过时间起始位置、时间长度以及变化间隔确定,也即映射关系也可以与时间起始位置、时间长度以及变化间隔具有关联关系。其中,变化间隔也可以称为时间间隔,用于表示参数集合的持续时间或者作用时间。时间间隔可以包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。比如,一个时间间隔可以是2个子帧,或者2毫秒(ms)等。
可选的,基站可以发送时间间隔的配置信息。终端根据配置信息确定时间间隔。
可选的,时间间隔可以是协议预定义的,比如2个子帧,1个子帧等。
可选的,终端接收配置信息,配置信息指示时间起始位置,时间长度和时间间隔中至少一项。
可选的,网络设备发送配置信息,配置信息指示时间起始位置,时间长度和时间间隔中至少一项。
其中,当变化间隔为P个时间单元时,也即时间间隔为P个时间单元时,指示了从M个时间段的第一个时间段起的每P个时间单元,对应一个参数集合。其中,时间单元可以是子帧、时隙、时域符号、1毫秒、1秒以及1微秒中的任一种,或者也可以是其他情况,具体此处不做限定。
可选的,时间间隔与终端的运动速度具有对应关系。或者,终端根据终端的运动速度确定所述时间间隔。
比如,当终端的运动速度位于区间1,对应的时间间隔为时间间隔T1;当终端的运动速度位于区间2,对应的时间间隔为时间间隔T2;当终端的运动速度位于区间3,对应的 时间间隔为时间间隔T3;或者也可以是其他情况,此处不再赘述。
在上述图7e所示实施例的基础上,请参阅图7i,示例性的,变化间隔为2个子帧时,子帧2以及子帧3对应参数集合1,这之后,子帧4以及子帧5对应参数集合2,子帧6以及子帧7对应参数集合3,子帧8以及子帧9对应参数集合4,子帧0以及子帧1对应参数集合5。
可以理解的是,在上述图7i的基础上,请参阅图7j,时间段与参数集合的映射关系可以是周期性的,也即M个时间段结束之后,是另M个时间段的开始。在此基础上,由于时间长度以及变化间隔是不变的,因此终端可以根据映射关系的周期规律,确定出各个子帧分别与参数集合的对应关系,从而在获取到映射关系的子帧处,根据映射关系接收第一控制信息。以图7j为例,终端可以根据规律确定接收到映射关系的子帧9对应参数集合4,接下来的子帧0以及子帧1对应参数集合5,从而终端可以在接收到映射关系的子帧9处根据参数集合4接收第一控制信息。
上面对时间周期为10个子帧,变化间隔为2个子帧,时间偏移为2个子帧的情况进行了描述,为了便于对本方案的进一步理解,下面对时间周期为4个子帧,变化间隔为4个子帧,时间偏移为0个子帧的情况进行描述:
请参阅图7k,示例性的,如果终端在第一个子帧0处接收到映射关系,并且基准点也为子帧0,则M个时间段包括接收到映射关系的子帧0至下一个子帧3,并且子帧0以及子帧1对应参数集合1,子帧2以及子帧3对应参数集合2。
可以理解的是,在实际的实现当中,上述图7a至图7k所示的实施例中,也可以包括更多的子帧,为了描述的简洁,不做过多赘述。
上面对确定M个时间段以及映射关系的方式分别进行了描述,下面对本申请实施例中的参数集合进行描述:
本申请实施例中,参数集合中的参数可以包括控制资源集配置信息、RNTI、参考信号配置信息以及控制信息传输方式中的至少一种。
其中,控制资源集配置信息用于配置控制信道资源集合,也即用于指示控制信息对应的时频位置。
请参阅图8a,不同的控制资源集配置信息可以指示对应不同时频位置的时频资源,例如控制资源集配置信息1指示位于时频位置1的时频资源,控制资源集配置信息2指示位于时频位置2的时频资源,控制资源集配置信息3指示位于时频位置3的时频资源,控制资源集配置信息4指示位于时频位置4的时频资源,控制资源集配置信息5指示位于时频位置5的时频资源。基站可以根据处于某个时频位置上的时频资源进行控制信息的发送,例如可以根据处于时频位置1的时频资源发送控制信息,则终端可以根据控制资源集配置信息1指示的时频位置1,在该时频位置1接收控制信息。
示例性的,在一个控制资源集配置信息所指示的时频位置中,包括多个控制信道单元(control channel element,CCE),多个CCE可以划分为不同的CCE组,其中不同的CCE组可以分别对应不同的波束或者预编码矩阵。
示例性的,在一个控制资源集配置信息所指示的时频位置中,包括多个REG资源单元 (resource element group,REG),多个REG可以划分为不同的REG组,其中不同的REG组可以分别对应不同的波束或者预编码矩阵。
示例性的,在信道平坦的情况下,CCE组可以对应带宽上的多个离散的资源块(resource block,RB),并且对应一个预编码矩阵指示符(precoding matrix indicator,PMI)。如果信道不平坦,则CCE组可以对应连续的RB,对应一个PMI。
其中,RNTI用于标识终端设备。RNTI可以用于终端解析第一控制信息,比如控制信息的CRC比特是通过RNTI进行加扰的。
其中,参考信号配置信息用于配置参考信号。参考信号配置信息可以用于指示参考信号对应的时频位置或序列,或者,参考信号配置信息也可以用于指示参考信号对应的时频位置以及序列。
其中,控制信息传输方式用于指示第一控制信息的传输方式。
需要说明的是,上述参数的取值可以对应一个或多个终端。例如,在同一时间段,不同的终端的参数的取值可以是一样的,或者也可以各自不同,此处不做限定。
其中,控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,也即包括单控制信息传输和组控制信息传输。其中第一控制信息传输方式,也即组控制信息传输用于指示第一控制信息包括多个子控制信息。示例性的,请参阅图8b,第一控制信息包括子控制信息1、子控制信息2、子控制信息3、子控制信息4以及子控制信息5,其中子控制信息1对应终端2,子控制信息2对应终端3,子控制信息3对应终端4,子控制信息4对应终端1,子控制信息5对应终端5,多个子控制信息位于不同位置,以本实施例中的终端为终端1为例,终端1需要获取子控制信息4,也即子控制信息4为目标子控制信息。第二控制信息传输方式,也即单控制信息用于指示第一控制信息对应一个终端。
下面对参数集合中所包含的参数的类型的不同情况进行分别描述:
一、参数集合中的参数包括控制资源集配置信息;
当参数集合中的参数包括控制资源集配置信息时,基站可以为终端发送多个控制资源集配置信息,并指示映射关系,即M个时间段与控制资源集配置信息的对应关系。
示例性的,映射关系为控制资源集配置信息随时间的变化,比如可以配置M个时间段对应的M个控制资源集配置信息。可以将多个控制资源集配置信息的标识按照顺序排列,例如控制资源集配置信息1对应的标识为1,控制资源集配置信息2对应的标识为2,控制资源集配置信息3对应的标识为3,控制资源集配置信息4对应的标识为4,控制资源集配置信息5对应的标识为5,则可以得到1,2,3,4,5的标识字符串,或者也可以是其他顺序,比如2,3,5,4,1等,本申请对此不做限定。该标识字符串指示上述控制资源集配置信息在时间上的顺序,映射关系中会包含该标识字符串,由于时间段也具有前后顺序,因此根据标识字符串可以指示参数集合与时间段之间的映射关系,当然在实际的实现中,标识字符串的排列顺序也可以是其他顺序,具体此处不做限定。
示例性的,在上述图7h所示实施例的基础上,当映射关系中的控制资源集配置信息对应的标识字符串为1,2,3,4,5时,时间段1对应参数集合1,参数集合1中包括控制资源集配置信息1,时间段2对应参数集合2,参数集合2中包括控制资源集配置信息2,时间 段3对应参数集合3,参数集合3中包括控制资源集配置信息3,参数集合3中包括控制资源集配置信息3,时间段4对应参数集合4,参数集合4中包括控制资源集配置信息4,时间段5对应参数集合5,参数集合5中包括控制资源集配置信息5。
可选的,基站可以指示终端,M个时间段与控制资源集配置信息的对应关系。
示例性的,基站为终端发送多个控制资源集配置信息,并指示时间段与控制资源集配置信息的对应关系,比如控制资源集配置信息随时间的变化,时间粒度可以是一个或多个符号,1个或多个时隙,一个或多个子帧等。
比如,时间段与控制资源集配置信息的对应关系为:0,3,2,1等。终端即可确定第一个时间段对应的控制资源集配置信息为控制资源集配置信息0,第二个时间段对应的控制资源集配置信息为控制资源集配置信息3,第三个时间段对应的控制资源集配置信息为控制资源集配置信息2,第四个时间段对应的控制资源集配置信息为控制资源集配置信息1。
进一步的,基站可以向终端配置该终端的调度信息在组(group)控制信息中的块标识(block index),和/或,终端标识(UE index)。如上的配置可以是针对每个控制资源集配置信息配置的,即控制资源集配置信息与块标识信息和/或终端标识具有对应关系,进而实现配对UE组随时间变化。
需要说明的是,当参数集合中的参数包括控制资源集配置信息时,控制资源集配置信息可以与波束具有对应关系。其中,该波束可以为能够获得最佳通信质量的波束。例如,控制资源集配置信息1对应波束1,控制资源集配置信息2对应波束2,控制资源集配置信息3对应波束3,控制资源集配置信息4对应波束4,控制资源集配置信息5对应波束5。终端在获取与时间段对应的控制资源集配置信息时,也获取到了对应的波束信息,需要说明的是,上述波束1、波束2、波束3、波束4以及波束5可以是波束的标识。
需要说明的是,控制资源集配置信息1、控制资源集配置信息2、控制资源集配置信息3、控制资源集配置信息4以及控制资源集配置信息5可以是相同的,或者也可以是不同的,或者也可以部分相同,部分不同,此处不做限定。
可选的,控制资源集配置信息中可以包括控制资源集标识。控制资源集标识与波束标识之间可以具有对应关系。
比如,控制资源集标识1对应波束1,控制资源集标识2对应波束2,控制资源集标识3对应波束3,控制资源集标识4对应波束4。
可选的,本申请实施例中的波束可以是指发送波束,也可以是指接收波束。在通信中,发送端可以用发送波束发送信号,接收端可以用接收波束接收信号。发送端可以确定发送波束,进而用发送波束传输信号。接收端可以确定接收波束,进而用接收波束接收信号。
可选的,发送波束与接收波束之间具有对应关系。接收端可以根据发送波束确定接收波束。
可选的,终端以及基站中的至少一种设备可以根据映射关系,以及控制资源集配置信息与波束的对应关系,确定M个时间段对应的波束,进而实现波束通信,提高通信性能。
本发明实施例可以实现动态的终端配对,实现更灵活的控制信息的传输,动态调度终端,降低波束切换时延,提高通信性能。
参数集合中的参数包括RNTI;
当参数集合中的参数包括RNTI时,基站可以为终端配置多个RNTI,并指示映射关系,即M个时间段与RNTI的对应关系。
其中,RNTI可以是组RNTI,可以用于标识一组终端。一组终端中包括一个或多个终端。
示例性的,映射关系为RNTI随时间的变化,比如可以配置M个时间段对应的M个RNTI。可以将多个RNTI的标识按照顺序排列,例如RNTI1对应的标识为6,RNTI2对应的标识为7,RNTI3对应的标识为8,RNTI4对应的标识为9,RNTI5对应的标识为0,则可以得到6,7,8,9,0的标识字符串,或者也可以是其他顺序,比如7,9,8,0,6等,本申请对此不做限定。该标识字符串指示上述RNTI在时间上的顺序,映射关系中会包含该标识字符串,由于时间段也具有前后顺序,因此根据标识字符串可以指示参数集合与时间段之间的映射关系,当然在实际的实现中,标识字符串的排列顺序也可以是其他顺序,具体此处不做限定。
示例性的,在上述图7g所示实施例的基础上,当映射关系中的RNTI对应的标识字符串为6,7,8,9,0时,时间段1对应参数集合1,参数集合1中包括RNTI1,时间段2对应参数集合2,参数集合2中包括RNTI2,时间段3对应参数集合3,参数集合3中包括RNTI3,时间段4对应参数集合4,参数集合4中包括RNTI4,时间段5对应参数集合5,参数集合5中包括RNTI5。
可选的,基站可以指示终端,M个时间段与RNTI的对应关系。
方法1:基站为终端发送一个控制资源集配置信息,一个控制资源集配置信息对应多个RNTI,并指示时间段与RNTI的对应关系。比如,RNTI随时间的变化,时间粒度可以是一个或多个符号,1个或多个时隙,一个或多个子帧等。
方法2:基站为终端发送多个控制资源集配置信息,一个控制资源集配置信息对应一个RNTI,并指示时间段与RNTI的对应关系,比如RNTI随时间的变化,时间粒度可以是一个或多个符号,1个或多个时隙,一个或多个子帧等。
比如,时间段与RNTI的对应关系为:0,3,2,1等。终端即可确定第一个时间段对应的RNTI为RNTI0,第二个时间段对应的RNTI为RNTI3,第三个时间段对应的RNTI为RNTI2,第四个时间段对应的RNTI为RNTI1。
进一步的,基站可以向终端配置该终端的调度信息在组(group)控制信息中的块标识信息(比如block index),和/或,终端标识(比如UE index)。如上的配置可以是针对每个RNTI配置的,即RNTI与块标识信息和/或终端标识具有对应关系,进而实现配对UE组随时间变化。
需要说明的是,当参数集合中的参数包括RNTI时,RNTI可以与波束具有对应关系。其中,该波束可以为能够获得最佳通信质量的波束。例如,RNTI1对应波束1,RNTI2对应波束2,RNTI3对应波束3,RNTI4对应波束4,RNTI5对应波束5。终端在获取与时间段对应的RNTI时,也获取到了对应的波束信息,需要说明的是,上述波束1、波束2、波束3、波束4以及波束5可以是波束的标识。
需要说明的是,RNTI1、RNTI2、RNTI3、RNTI4以及RNTI5可以是相同的,或者也可以是不同的,或者也可以部分相同,部分不同,此处不做限定。
可选的,本申请实施例中的波束可以是指发送波束,也可以是指接收波束。在通信中,发送端可以用发送波束发送信号,接收端可以用接收波束接收信号。发送端可以确定发送波束,进而用发送波束传输信号。接收端可以确定接收波束,进而用接收波束接收信号。
可选的,发送波束与接收波束之间具有对应关系。接收端可以根据发送波束确定接收波束。
可选的,终端以及基站中的至少一种设备可以根据映射关系,以及RNTI与波束的对应关系,确定M个时间段对应的波束,进而实现波束通信,提高通信性能。
本发明实施例可以实现动态的终端配对,实现更灵活的控制信息的传输,动态调度终端,降低波束切换时延,提高通信性能。
三、参数集合中中的参数包括参考信号配置信息;
当参数集合中的参数包括参考信号配置信息时,基站可以为终端发送多个参考信号配置信息,并指示映射关系,即M个时间段与参考信号配置信息的对应关系。
示例性的,映射关系为参考信号配置信息随时间的变化,比如可以配置M个时间段对应的M个参考信号配置信息。可以将多个参考信号配置信息的标识按照顺序排列,例如参考信号配置信息1对应的标识为11,参考信号配置信息2对应的标识为12,参考信号配置信息3对应的标识为13,参考信号配置信息4对应的标识为14,参考信号配置信息5对应的标识为15,则可以得到11,12,13,14,15的标识字符串,或者也可以是其他顺序,比如12,14,13,11,15等,本申请对此不做限定。该标识字符串指示上述参考信号配置信息在时间上的顺序,映射关系中会包含该标识字符串,由于时间段也具有前后顺序,因此根据标识字符串可以指示参数集合与时间段之间的映射关系,当然在实际的实现中,标识字符串的排列顺序也可以是其他顺序,具体此处不做限定。
示例性的,在上述图7g所示实施例的基础上,当映射关系中的参考信号配置信息对应的标识字符串为11,12,13,14,15时,时间段1对应参数集合1,参数集合1中包括参考信号配置信息1,时间段2对应参数集合2,参数集合2中包括参考信号配置信息2,时间段3对应参数集合3,参数集合3中包括参考信号配置信息3,时间段4对应参数集合4,参数集合4中包括参考信号配置信息4,时间段5对应参数集合5,参数集合5中包括参考信号配置信息5。
可选的,基站可以指示终端,M个时间段与参考信号配置信息的对应关系。
方法1:基站为终端发送一个控制资源集配置信息,一个控制资源集配置信息对应多个参考信号配置信息,并指示时间段与参考信号配置信息的对应关系,比如参考信号配置信息随时间的变化,时间粒度可以是一个或多个符号,1个或多个时隙,一个或多个子帧等。
方法2:为终端发送多个控制资源集配置信息,一个控制资源集配置信息对应一个参考信号配置信息,并指示时间段与参考信号配置信息的对应关系,比如参考信号配置信息随时间的变化,时间粒度可以是一个或多个符号,1个或多个时隙,一个或多个子帧等。
比如,时间段与参考信号配置信息的对应关系为:0,3,2,1等。终端即可确定第一个时间段对应的参考信号配置信息为参考信号配置信息0,第二个时间段对应的参考信号配 置信息为参考信号配置信息3,第三个时间段对应的参考信号配置信息为参考信号配置信息2,第四个时间段对应的参考信号配置信息为参考信号配置信息1。
进一步的,基站可以向终端配置该终端的调度信息在组(group)控制信息中的信息块标识(block index),和/或,终端标识(UE index)。如上的配置可以是针对每个参考信号配置信息配置的,即参考信号配置信息与块标识信息和/或终端标识具有对应关系,进而实现配对UE组随时间变化。
需要说明的是,当参数集合中的参数包括参考信号配置信息时,参考信号配置信息可以与波束具有对应关系。其中,该波束可以为能够获得最佳通信质量的波束。例如,参考信号配置信息1对应波束1,参考信号配置信息2对应波束2,参考信号配置信息3对应波束3,参考信号配置信息4对应波束4,参考信号配置信息5对应波束5。终端在获取与时间段对应的参考信号配置信息时,也获取到了对应的波束信息,需要说明的是,上述波束1、波束2、波束3、波束4以及波束5可以是波束的标识。
需要说明的是,参考信号配置信息1、参考信号配置信息2、参考信号配置信息3、参考信号配置信息4以及参考信号配置信息5可以是相同的,或者也可以是不同的,或者也可以部分相同,部分不同,此处不做限定。
可选的,参考信号配置信息中可以包括参考信号标识。参考信号标识与波束标识之间可以具有对应关系。
比如,参考信号标识1对应波束1,参考信号标识2对应波束2,参考信号标识3对应波束3,参考信号标识4对应波束4。
其中,参考信号标识可以对应不同的参考信号图案信息,或者,参考信号标识信息可以对应不同的参考信号的时频资源信息,或者,参考信号标识信息可以对应不同的参考信号的序列。
示例性的,图7l所示的参考信号图案信息。其中,带阴影的RE表示参考信号的RE,比如,图7l中的4种图案分别为(a)、(b)、(c)、(d),该图案用于指示参考信号的时频资源所在的RE。4种图案对应的图案标识可以分别为0、1、2以及3。网络设备指示图案标识,终端设备可以根据图案标识确定第一参考信号的时频资源所在的RE。
可选的,本申请实施例中的波束可以是指发送波束,也可以是指接收波束。在通信中,发送端可以用发送波束发送信号,接收端可以用接收波束接收信号。发送端可以确定发送波束,进而用发送波束传输信号。接收端可以确定接收波束,进而用接收波束接收信号。
可选的,发送波束与接收波束之间具有对应关系。接收端可以根据发送波束确定接收波束。
可选的,终端以及基站中的至少一种设备可以根据映射关系,以及控制资源集配置信息与波束的对应关系,确定M个时间段对应的波束,进而实现波束通信,提高通信性能。
本发明实施例可以实现动态的终端配对,实现更灵活的控制信息的传输,动态调度终端,降低波束切换时延,提高通信性能。
四、参数集合中的参数包括控制信息传输方式;
当参数集合中的参数包括控制信息传输方式时,基站可以为终端发送控制信息传输方 式的配置信息,并指示映射关系,即M个时间段与控制信息传输方式的对应关系。
示例性的,映射关系为控制信息传输方式随时间的变化,比如可以配置M个时间段对应的M个控制信息传输方式。可以将多个控制信息传输方式的标识按照顺序排列,例如第一控制信息传输方式对应的标识为21,第二控制信息传输方式对应的标识为22,则可以得到21,22,21,22,21的标识字符串,或者也可以是其他顺序,比如22,22,21,22,21等,本申请对此不做限定。该标识字符串指示上述控制信息传输方式在时间上的顺序,映射关系中会包含该标识字符串,由于时间段也具有前后顺序,因此根据标识字符串可以指示参数集合与时间段之间的映射关系,当然在实际的实现中,标识字符串的排列顺序也可以是其他顺序,具体此处不做限定。
示例性的,在上述图7g所示实施例的基础上,当映射关系中的控制信息传输方式对应的标识字符串为21,22,21,22,21时,时间段1对应参数集合1,参数集合1中包括第一控制信息传输方式,时间段2对应参数集合2,参数集合2中包括第二控制信息传输方式,时间段3对应参数集合3,参数集合3中包括第一次控制信息传输方式,时间段4对应参数集合4,参数集合4中包括第二控制信息传输方式,时间段5对应参数集合5,参数集合5中包括第一控制信息传输方式。
可选的,基站可以根据终端的周期性业务特征确定采用单控制信息传输方式还是组控制信息传输方式。比如,当调度的终端数较多时,采用组控制信息传输方式。当调度的终端数较少的时候,采用单控制信息传输方式。
可选的,终端可以根据基站的指示进行单控制信息和/或组控制信息检测。
比如,当终端在第一个符号检测到组控制信息时,则无需检测单控制信息。当终端没有检测到组控制信息,如果配置终端检测单控制信息,则终端可以在第二个符号上检测单控制信息。
其中,基站可以向终端配置时间段和控制信息传输方式的对应关系。
方法1:单控制信息传输方式和组控制信息传输方式对应的时域资源不同。
比如,如果一个控制信道资源集包括2个符号,则第一个符号用于组控制信息传输,第二个符号用于单控制信息传输。
发送2:单控制信息传输方式和组控制信息传输方式对应的RNTI不同。
比如,基站可以在一个控制资源集配置信息中向终端配置单控制信息的RNTI-1和组控制信息的RNTI-2。终端在进行单控制信息检测时采用RNTI-1,进行组控制信息检测时采用RNTI-2。
本发明实施例可以实现基于时间段动态的单控制信息和组控制信息的传输方式切换,降低控制信息开销,根据实际调度情况传输控制信息,提高通信性能。
五、参数集合中包括多种参数;
当参数集合中的参数包括多种类型的参数时,例如参数集合中同时包括控制资源集配置信息、RNTI、参考信号配置信息以及控制信息传输方式。可以在映射关系中配置各种参数对应的标识字符串,例如配置控制资源集配置信息对应的标识字符串1,2,3,4,5;配置RNTI对应的标识字符串6,7,8,9,0;配置参考信号配置信息对应的标识字符串 11,12,13,14,15;配置控制信息传输方式对应的标识字符串21,22,21,22,21。示例性的,在上述图7h所示实施例的基础上,当映射关系中包括上述标识字符串时,参数集合1包括控制资源集配置信息1、RNTI1、参考信号配置信息1、以及控制信息传输方式1,参数集合2包括控制资源集配置信息2、RNTI2、参考信号配置信息2、以及控制信息传输方式2,参数集合3包括控制资源集配置信息3、RNTI3、参考信号配置信息3、以及控制信息传输方式1,参数集合4包括控制资源集配置信息4、RNTI4、参考信号配置信息4、以及控制信息传输方式2,参数集合5包括控制资源集配置信息5、RNTI5、参考信号配置信息5、以及控制信息传输方式1。
当然,上述仅为一个示例,在实际的实现中,也可以有其他的实现方式。
可选的,控制资源集配置信息与RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种具有对应关系。
可选的,终端接收多个控制资源集配置信息,多个控制资源集配置信息的一个控制资源集合配置信息对应一个RNTI,一个参考信号配置信息,一种控制信息传输方式中的至少一项。示例性的,一个控制资源集配置信息中包括一个RNTI、一个参考信号配置信息、以及一种控制信息传输方式中的至少一项。
例如,参数集合1至参数集合5中的控制资源配置信息都为控制资源配置信息1,而参数集合1中包括RNTI1,参数集合2中包括RNTI2,参数集合3中包括RNTI3,参数集合4中包括RNTI4,参数集合5中包括RNTI5。
可选的,终端接收一个控制资源集配置信息,一个控制资源集配置信息对应至少两个RNTI、两个参考信号配置信息、以及至少两种控制信息传输方式中的至少一项。示例性的,一个控制资源集合配置信息中包括至少两个RNTI、至少两个参考信号配置信息、以及至少两种控制信息传输方式中的至少一项。
又或者,参数集合1至参数集合5中的控制资源配置信息都为控制资源配置信息1,而参数集合1中包括参考信号配置信息1,参数集合2中包括参考信号配置信息2,参数集合3中包括参考信号配置信息3,参数集合4中包括参考信号配置信息4,参数集合5中包括参考信号配置信息5。
可选的,在实际的实现中,如果第一控制信息的传输方式为第一控制信息传输方式,控制资源集配置信息可以与目标子控制信息在第一控制信息中的位置存在关联关系,也即可以根据控制资源集配置信息确定出目标子控制信息在第一控制信息中的位置。
可选的,终端确定终端的子控制信息在第一控制信息中的信息块位置,信息块位置与参数集合具有对应关系。
比如,终端可以根据参数集合中的参数的取值确定终端的子控制信息在第一控制信息中的信息块位置。
可选的,在实际的实现中,如果第一控制信息的传输方式为第一控制信息传输方式,RNTI可以与目标子控制信息在第一控制信息中的位置存在关联关系,也即可以根据RNTI确定出目标子控制信息在第一控制信息中的位置。
可选的,在实际的实现中,如果第一控制信息的传输方式为第一控制信息传输方式, 参考信号配置信息可以与目标子控制信息在第一控制信息中的位置存在关联关系,也即可以根据参考信号配置信息确定出目标子控制信息在第一控制信息中的位置。
可选的,控制信息传输方式可以与第一控制信息所处的时频位置具有对应关系,例如,在控制资源集配置信息所指示的时频资源中,包括第一个符号和第二个符号,当第一控制信息的传输方式为第一控制信息传输方式时,第一控制信息处于第一个符号,当第一控制信息的传输方式为第二控制信息传输方式时,第一控制信息处于第二个符号。
可选的,第一控制信息传输方式可以与RNTI具有对应关系,例如,当第一控制信息的传输方式为第一控制信息传输方式时,RNTI的取值是RNTI1;当第一控制信息的传输方式为第二控制信息传输方式时,RNTI的取值是RNTI2。
需要说明的是,上述参数集合1、参数集合2、参数集合3、参数集合4以及参数集合5可以是相同的,或者也可以是不同的,或者可以部分相同,部分不同,此处不做限定。
可选的,RNTI、参考信号配置信息以及控制信息传输方式中的至少一种也可以配置在控制资源集配置信息中。例如,RNTI1和控制资源集配置信息1对应时间段1,则可以将RNTI1配置在控制资源集配置信息1中,也即控制资源集配置信息1与RNTI1具有对应关系。终端在确定到控制集配置信息1与时间段1具有对应关系的同时,也确定了RNTI1与时间段1具有对应关系,从而不需要再设置用于指示RNTI1与时间段1的映射关系的标识字符串。
可以理解的是,终端需要获取各个标识字符与参数的取值的对应关系,例如,当终端获取到控制资源集配置信息的标识字符“1”时,终端可以确定该标识字符“1”对应控制资源集配置信息1。例如,当终端获取到RNTI的标识字符“6”时,终端可以确定该标识字符“6”对应RNTI6。例如,当终端获取到参考信号配置信息的标识字符“11”时,终端可以确定该标识字符“11”对应参考信号配置信息11。标识字符与参数的取值的对应关系可以是预先配置在终端中,或者也可以是与映射关系一起被终端获取。
602、终端在第一时间段根据映射关系接收第一控制信息;
在获取了映射关系之后,终端在第一时间段根据映射关系接收来自基站的第一控制信息,该第一控制信息用于调度通信信号的传输。示例性的,在图7h所示实施例的基础上,请参阅图8c,终端在如图8c所示子帧2处根据映射关系接收第一控制信息,上述子帧2即为第一时间段。
由映射关系可知,在上述子帧2对应的参数集合为参数集合1,示例性的,参数集合1中包括控制资源集配置信息1、RNTI1、参考信号配置信息1以及控制信息传输方式1。终端可以根据参考信号配置信息1确定参考信号对应的时频位置和/或序列,从而进行信道估计。
可选的,网络设备和/或终端可以确定控制信息的联合信道估计的资源粒度,所述资源粒度可以是CCE的数量,或者,REG的数量。比如,信道估计的资源粒度可以是N1个CCE或者N2个资源块组(resource element,REG),其中,N1和N2为大于0的整数。
可选的,终端接收指示信息,所述指示信息用于指示信道估计的资源粒度。对应的,网络设备可以发送指示信息。
终端根据控制资源集配置信息1确定第一控制信息的对应的时频位置,并根据RNTI1对第一控制信息进行盲检,从而获取第一控制信息。
当第一控制信息的传输方式为第一控制信息传输方式时,终端需要获取目标子控制信息在第一控制信息中所处的位置,该目标子控制信息为对应该终端的子控制信息。基站可以向终端发送该目标子控制信息对应的标识,终端根据该标识获取目标子控制信息。或者,基站也可以向终端发送第一控制信息所需要调度的各个终端的标识,以及需要调度的各个终端分别与子控制信息的位置的对应关系,从而使得各个终端确定各自对应的子控制信息的位置。
又或者,如果控制资源集配置信息1、参考信息配置信息1以及RNTI1中的至少一种与目标子控制信息在第一控制信息中的位置存在对应关系,终端也可以根据该对应关系确定目标子控制信息在第一控制信息中的位置。
又或者,终端可以根据参数集合中的至少一个参数的取值确定目标子控制信息的位置,也即参数集合中的至少一个参数的取值与目标子控制信息的位置具有关联关系。示例性的,以参数集合1中的RNTI1为例,RNTI1可以与目标子控制信息的位置具有关联关系,也即终端获取了RNTI1之后可以确定出目标子控制信息的位置。
可选的,第一控制信息传输方式以及第二控制信息传输方式所对应的控制信息的时频位置是不同的。例如,当采用第一控制信息传输方式时,第一控制信息可以位于控制资源集配置信息1所指示的时频位置中的第一个时域符号中。当采用第二控制信息传输方式时,第一控制信息可以位于控制资源集配置信息1所指示的时频位置中的第二个时域符号中。
可选的,控制信息传输方式也可以与RNTI的取值具有关联关系,示例性的,当采用控制信息传输方式1时,对应的,可以采用RNTI1对第一控制信息进行盲检。当采用控制信息传输方式2时,对应的,可以采用RNTI2对第一控制信息进行盲检。
可选的,参数集合也可以与能够获得最佳通信质量的波束具有对应关系,终端在确定参数集合中参数的取值之后,可以根据对应关系确定出相应的波束,从而直接根据该波束进行通信,无需进行波束跟踪以及波束扫描等步骤,降低了终端的通信时延。示例性的,终端根据参数集合1中的控制资源集配置信息1、RNTI1、参考信号配置信息1以及控制信息传输方式1确定出相应的波束1,从而可以在子帧2以及子帧3根据该波束1进行通信。
需要说明的是,不同DCI的用途可以是不同的,例如,包括用于上行或者下行时进行传输资源分配的DCI、用于对上行功率控制进行调整的DCI、针对下行双流空分复用的DCI等等。针对不同用途的DCI,可以使用不同的DCI格式进行区分。在实际的实现中,用于调度信号传输的信息可以分成三种,控制信息中可以包括三种中的至少一种。第一种信息为用于进行信道估计的信息,例如用于指示时频资源位置的信息、以及指示解调参考信号的序列的信息等。
第二种信息为用于解码物理下行共享信道(physical downlink shared channel,PDSCH)的信息,比如调制与编码策略(modulation and coding scheme,MCS)、HARQ进程号(HARQ process number)以及新数据指示符(new data indicator,NDI)等。
第三种信息为用于发送上行控制信息(Uplink Control Information,UCI)信息,比 如PUCCH资源、发射功率控制(transmit power control,TPC)、码块组传输信息(code block group transmission information,CBG)配置、信道状态信息(channel state information,CSI)触发信息以及探测参考信号(sounding reference signal,SRS)触发信息等。
为了降低终端盲检的复杂度,可以将上述第一种信息作为第一类型控制信息进行传输,第二种信息可以作为第二类型控制信息传输,第三种信息可以作为第三类型控制信息传输;或者,第一种信息和第二种信息作为第一类型控制信息传输,第三种信息作为第二类型控制信息传输;或者,第一种信息作为第一类型控制信息传输,第二种信息和第三种信息作为第二类型控制信息传输。通过将DCI中包括的信息分部分传输,使得终端设备可以并行处理不同种类的信息,从而降低通信时延。
请参阅图9,如图9所示,以第一类型信息作为第一DCI,第二类型信息作为第二DCI,第三类型信息作为第三DCI。此时终端设备可以实现:信道估计与盲检第二DCI的并行处理,和/或,译码PDSCH与确定第三DCI的并行处理,和/或,译码PDSCH与准备PUCCH、CSI处理以及SRS处理的并行处理。即在对第一类型控制信息进行盲检之后,可以确定物理下行共享信道的解调参考信号,进行信道估计。这时,盲检第二类型控制信息可以与信道估计同步进行。之后,对PDSCH进行译码,这时,译码PDSCH与确定第三类型控制信息可以同步进行,或者译码PDSCH也可以与确定第三类型控制信息、准备PUCCH、CSI处理以及SRS处理同步处理,最后发送UCI,从而降低通信时延。
上述第一控制信息可以是第一类型控制信息、第二类控制信息以及第三类型控制信息中的至少一种。
603、终端在第二时间段根据映射关系接收第二控制信息。
终端在第二时间段根据映射关系接收第二控制信息,第二时间段可以是上述子帧2之后的子帧,例如可以是上述子帧2的下一个子帧4,则终端在该子帧4根据映射关系,确定出需要根据参数集合2接收第二控制信息。
可以理解的是,并非在所有时间段中都需要根据参数集合中的取值接收控制信息,示例性的,请参阅图8c,在第一时间段,也即子帧2中如果根据参数集合1接收了第一控制信息,由于下一个子帧,也即子帧3也对应参数集合1,因此在子帧3可以不再接收控制信息,而是执行业务。
需要说明的是,步骤603为可选步骤,在实际的实现中,也可以不执行。
本申请实施例中,终端可以根据映射关系确定在各个时间段对应的参数集合,并在时间段根据对应的参数集合接收控制信息,并且由于参数集合与波束具有对应关系,终端可以根据参数集合确定能够获取最佳通信质量的波束,进一步降低了通信时延。
上面对本申请实施例中的通信方法进行了描述,请参阅图10,下面对本申请实施例中的终端进行描述:
请参阅图10,如图10所示,本申请实施例中的终端1000包括获取单元1001以及接收单元1002。
获取单元1001,用于获取映射关系,映射关系包括M个参数集合与M个时间段的映射 关系,参数集合中包括至少一个参数的取值,M为大于或等于2的整数。
接收单元1002,用于在第一时间段根据所述映射关系接收第一控制信息,第一时间段包含于M个时间段。
在上述图10所示实施例的基础上,
在一种可能的实现方式中,参数集合可以与波束具有对应关系。
本申请实施例中,波束可以是能够获得最佳通信质量的波束,终端确定时间段对应的参数集合也确定了时间段对应的波束,从而不需要进行波束扫描以及波束跟踪,直接确定最佳波束,降低了通信时延。
在一种可能的实现方式中,M个参数集合中的不同参数集合中的至少一个参数的取值不同。
在一种可能的实现方式中,参数集合中的参数包括控制资源集配置信息、无线网络临时标识RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种。
在一种可能的实现方式中,控制资源集配置信息用于指示第一控制信息对应的时频位置,无线网络临时标识用于解析第一控制信息,参考信号配置信息用于指示参考信号对应的时频位置和/或序列,控制信息传输方式用于指示第一控制信息的传输方式。
在一种可能的实现方式中,控制资源集配置信息用于配置控制信道资源集合,无线网络临时标识用于标识终端设备,参考信号配置信息用于配置参考信号,控制信息传输方式用于指示控制信息的传输方式。
在一种可能的实现方式中,时间段包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。
在一种可能的实现方式中,控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,所述第一控制信息传输方式用于指示所述第一控制信息包括多个子控制信息,所述多个子控制信息分别对应多个终端,所述第二控制信息传输方式用于指示所述第一控制信息对应一个终端。
在一种可能的实现方式中,控制信息传输方式包括组控制信息传输以及单控制信息传输。
在一种可能的实现方式中,第一控制信息用于调度信号传输。
在一种可能的实现方式中,控制资源集配置信息与RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种具有对应关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,多个子控制信息中的目标子控制信息在第一控制信息中的位置与至少一个参数的取值具有对应关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,根据至少一个参数的取值确定目标子控制信息在第一控制信息中的位置。
在一种可能的实现方式中,终端根据信道估计的资源粒度对第一控制信息进行信道估计,信道估计的资源粒度为N1个控制信道单元CCE或者N2个资源块组REG,N1和N2为大于0的整数。
在一种可能的实现方式中,时间段与时间周期以及时间偏移具有关联关系,或,时间 段与时间起始位置以及时间长度具有关联关系。
在一种可能的实现方式中,根据时间周期以及时间偏移确定时间段,或,终端根据时间起始位置以及时间长度确定时间段。
在一种可能的实现方式中,映射关系与时间周期、时间偏移以及时间间隔具有关联关系,或,映射关系与时间起始位置、时间长度以及时间间隔具有关联关系。
在一种可能的实现方式中,根据时间周期、时间偏移以及时间间隔确定映射关系,或,根据时间起始位置、时间长度以及时间间隔确定映射关系。
请参阅图11,下面对本申请实施例中的基站进行描述:
如图11所示,本申请实施例中的网络设备1100包括获取单元1101以及发送单元1102。
获取单元1101,用于获取映射关系,映射关系包括M个参数集合与M个时间段的映射关系,参数集合中包括至少一个参数的取值,M为大于或等于2的整数。
发送单元1102,用于在第一时间段根据映射关系发送第一控制信息,第一时间段包含于M个时间段。
在上述图11所示实施例的基础上,
在一种可能的实现方式中,参数集合可以与波束具有对应关系。
本申请实施例中,波束可以是能够获得最佳通信质量的波束,终端确定时间段对应的参数集合也确定了时间段对应的波束,从而不需要进行波束扫描以及波束跟踪,直接确定最佳波束,降低了通信时延。
在一种可能的实现方式中,M个参数集合中的不同参数集合中的至少一个参数的取值不同。
在一种可能的实现方式中,参数集合中的参数包括控制资源集配置信息、无线网络临时标识RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种。
在一种可能的实现方式中,控制资源集配置信息用于指示第一控制信息对应的时频位置,无线网络临时标识用于解析第一控制信息,参考信号配置信息用于指示参考信号对应的时频位置和/或序列,控制信息传输方式用于指示第一控制信息的传输方式。
在一种可能的实现方式中,控制资源集配置信息用于配置控制信道资源集合,无线网络临时标识用于标识终端设备,参考信号配置信息用于配置参考信号,控制信息传输方式用于指示控制信息的传输方式。
在一种可能的实现方式中,时间段包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。
在一种可能的实现方式中,控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,所述第一控制信息传输方式用于指示所述第一控制信息包括多个子控制信息,所述多个子控制信息分别对应多个终端,所述第二控制信息传输方式用于指示所述第一控制信息对应一个终端。
在一种可能的实现方式中,控制信息传输方式包括组控制信息传输以及单控制信息传输。
在一种可能的实现方式中,第一控制信息用于调度信号传输。
在一种可能的实现方式中,控制资源集配置信息与RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种具有对应关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,多个子控制信息中的目标子控制信息在第一控制信息中的位置与至少一个参数的取值具有对应关系。
在一种可能的实现方式中,若第一控制信息包括多个子控制信息,根据至少一个参数的取值确定目标子控制信息在第一控制信息中的位置。
在一种可能的实现方式中,终端根据信道估计的资源粒度对第一控制信息进行信道估计,信道估计的资源粒度为N1个控制信道单元CCE或者N2个资源块组REG,N1和N2为大于0的整数。
在一种可能的实现方式中,时间段与时间周期以及时间偏移具有关联关系,或,时间段与时间起始位置以及时间长度具有关联关系。
在一种可能的实现方式中,根据时间周期以及时间偏移确定时间段,或,终端根据时间起始位置以及时间长度确定时间段。
在一种可能的实现方式中,映射关系与时间周期、时间偏移以及时间间隔具有关联关系,或,映射关系与时间起始位置、时间长度以及时间间隔具有关联关系。
在一种可能的实现方式中,根据时间周期、时间偏移以及时间间隔确定映射关系,或,根据时间起始位置、时间长度以及时间间隔确定映射关系。
请参阅图12,图12为本申请实施例中终端的另一结构示意图,如图12所示,该通信装置1200包括:处理器1201和接口1202,处理器1201与接口1202耦合。接口1202用于实现与其他设备进行通信。接口1202可以为收发器或输入输出接口。例如,接口1202可以是接口电路。可选地,该通信装置1200还包括存储器1203,用于存储处理器1201执行的指令或存储处理器1201运行指令所需要的输入数据或存储处理器1201运行指令后产生的数据。
以上实施例中通信装置执行的方法可以通过处理器1201调用存储器(可以是存储器1203,也可以是外部存储器)中存储的程序来实现。即,通信装置可以包括处理器1201,该处理器1201通过调用存储器中的程序,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。
请参阅图13,图13为本申请实施例中基站的另一结构示意图,如图13所示,该通信装置1300包括:处理器1301和接口1302,处理器1301与接口1302耦合。接口1302用于实现与其他设备进行通信。接口1302可以为收发器或输入输出接口。例如,接口1302可以是接口电路。可选地,该通信装置1300还包括存储器1303,用于存储处理器1301执行的指令或存储处理器1301运行指令所需要的输入数据或存储处理器1301运行指令后产生的数据。
以上实施例中通信装置执行的方法可以通过处理器1301调用存储器(可以是存储器1303,也可以是外部存储器)中存储的程序来实现。即,通信装置可以包括处理器1301,该处理器1301通过调用存储器中的程序,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (45)

  1. 一种通信方法,其特征在于,包括:
    终端获取映射关系,所述映射关系包括M个参数集合与M个时间段的映射关系,所述参数集合中包括至少一个参数的取值,所述M为大于或等于2的整数;
    所述终端在第一时间段根据所述映射关系接收第一控制信息,所述第一时间段包含于所述M个时间段。
  2. 一种通信方法,其特征在于,包括:
    网络设备获取映射关系,所述映射关系包括M个参数集合与M个时间段的映射关系,所述参数集合中包括至少一个参数的取值,所述M为大于或等于2的整数;
    所述网络设备在第一时间段根据所述映射关系发送第一控制信息,所述第一时间段包含于所述M个时间段。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参数集合与波束具有对应关系。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述M个参数集合中的不同参数集合中的所述至少一个参数的取值不同。
  5. 根据权利要求1至4所述的方法,其特征在于,所述参数集合中的参数包括控制资源集配置信息、无线网络临时标识RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,所述控制资源集配置信息用于指示所述第一控制信息对应的时频位置,所述无线网络临时标识用于解析所述第一控制信息,所述参考信号配置信息用于指示参考信号对应的时频位置和/或序列,所述控制信息传输方式用于指示所述第一控制信息的传输方式。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述时间段包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。
  8. 根据权利要求6或7所述的方法,其特征在于,所述控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,所述第一控制信息传输方式用于指示所述第一控制信息包括多个子控制信息,所述多个子控制信息分别对应多个终端,所述第二控制信息传输方式用于指示所述第一控制信息对应一个终端。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述控制资源集配置信息与所述RNTI、所述参考信号配置信息、以及所述控制信息传输方式中的至少一种具有对应关系。
  10. 根据权利要求8或9所述的方法,其特征在于,若所述第一控制信息包括所述多个子控制信息,所述多个子控制信息中的目标子控制信息的在所述第一控制信息中的位置与所述至少一个参数的取值具有对应关系。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述时间段与时间周期以及时间偏移具有关联关系;
    或,所述时间段与时间起始位置以及时间长度具有关联关系。
  12. 根据权利要求11所述的方法,其特征在于,所述映射关系与所述时间周期、所述 时间偏移以及变化间隔具有关联关系;
    或,所述映射关系与所述时间起始位置、所述时间长度以及变化间隔具有关联关系。
  13. 根据权利要求1所述的方法,其特征在于,终端在第一时间段根据所述映射关系接收第一控制信息包括:
    所述终端在所述第一时间段根据所述映射关系对所述第一控制信息进行信道估计,所述信道估计的资源粒度为N 1个的控制信道单元CCE或者N 2个预设数量的资源块组REG,所述N 1和N 2为大于0的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述终端获取映射关系包括:
    所述终端获取配置信息,所述配置信息用于指示所述映射关系。
  15. 根据权利要求5所述的方法,其特征在于,所述控制资源集配置信息用于配置控制信道资源集合,所述RNTI用于标识终端设备,所述参考信号配置信息用于配置参考信号,所述控制信息传输方式用于指示控制信息的传输方式。
  16. 根据权利要求15所述的方法,其特征在于,所述控制信息传输方式包括组控制信息传输以及单控制信息传输。
  17. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述终端接收指示信息,所述指示信息用于指示所述资源粒度。
  18. 根据权利要求12所述的方法,其特征在于,所述变化间隔与终端的运动速度具有对应关系。
  19. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送配置信息,所述配置信息用于指示所述映射关系。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送指示信息,所述指示信息用于指示对所述第一控制信息进行信道估计的资源粒度,所述信道估计的资源粒度为N 1个的控制信道单元CCE或者N 2个预设数量的资源块组REG,所述N 1和N 2为大于0的整数。
  21. 一种设备,其特征在于,所述设备用作终端,包括:
    获取单元,用于获取映射关系,所述映射关系包括M个参数集合与M个时间段的映射关系,所述参数集合中包括至少一个参数的取值,所述M为大于或等于2的整数;
    接收单元,用于在第一时间段根据所述映射关系接收第一控制信息,所述第一时间段包含于所述M个时间段。
  22. 一种设备,其特征在于,所述设备用作网络设备,包括:
    获取单元,用于获取映射关系,所述映射关系包括M个参数集合与M个时间段的映射关系,所述参数集合中包括至少一个参数的取值,所述M为大于或等于2的整数;
    发送单元,用于在第一时间段根据所述映射关系发送第一控制信息,所述第一时间段包含于所述M个时间段。
  23. 根据权利要求21或22所述的设备,其特征在于,所述参数集合与波束具有对应关系。
  24. 根据权利要求21至23中任一项所述的设备,其特征在于,所述M个参数集合中的 不同参数集合中的所述至少一个参数的取值不同。
  25. 根据权利要求21至24所述的设备,其特征在于,所述参数集合中的参数包括控制资源集配置信息、无线网络临时标识RNTI、参考信号配置信息、以及控制信息传输方式中的至少一种。
  26. 根据权利要求25所述的设备,其特征在于,所述控制资源集配置信息用于指示所述第一控制信息对应的时频位置,所述无线网络临时标识用于解析所述第一控制信息,所述参考信号配置信息用于指示参考信号对应的时频位置和/或序列,所述控制信息传输方式用于指示所述第一控制信息的传输方式。
  27. 根据权利要求21至26中任一项所述的设备,其特征在于,所述时间段包括一个或多个时域符号、一个或多个时隙以及一个或多个子帧中的任一种。
  28. 根据权利要求26或27所述的设备,其特征在于,所述控制信息传输方式包括第一控制信息传输方式以及第二控制信息传输方式,所述第一控制信息传输方式用于指示所述第一控制信息包括多个子控制信息,所述多个子控制信息分别对应多个终端,所述第二控制信息传输方式用于指示所述第一控制信息对应一个终端。
  29. 根据权利要求26至28中任一项所述的设备,其特征在于,所述控制资源集配置信息与所述RNTI、所述参考信号配置信息、以及所述控制信息传输方式中的至少一种具有对应关系。
  30. 根据权利要求28或29所述的设备,其特征在于,若所述第一控制信息包括所述多个子控制信息,所述多个子控制信息中的目标子控制信息的在所述第一控制信息中的位置与所述至少一个参数的取值具有对应关系。
  31. 根据权利要求21至30中任一项所述的设备,其特征在于,所述时间段与时间周期以及时间偏移具有关联关系;
    或,所述时间段与时间起始位置以及时间长度具有关联关系。
  32. 根据权利要求31所述的设备,其特征在于,所述映射关系与所述时间周期、所述时间偏移以及变化间隔具有关联关系;
    或,所述映射关系与所述时间起始位置、所述时间长度以及变化间隔具有关联关系。
  33. 根据权利要求21所述的设备,其特征在于,所述接收单元,具体用于在所述第一时间段根据所述映射关系对所述第一控制信息进行信道估计,所述信道估计的资源粒度为N 1个的控制信道单元CCE或者N 2个预设数量的资源块组REG,所述N 1和N 2为大于0的整数。
  34. 根据权利要求33所述的设备,其特征在于,
    所述获取单元,具体用于获取配置信息,所述配置信息用于指示所述映射关系。
  35. 根据权利要求25所述的设备,其特征在于,所述控制资源集配置信息用于配置控制信道资源集合,所述RNTI用于标识终端设备,所述参考信号配置信息用于配置参考信号,所述控制信息传输方式用于指示控制信息的传输方式。
  36. 根据权利要求35所述的设备,其特征在于,所述控制信息传输方式包括组控制信息传输以及单控制信息传输。
  37. 根据权利要求34所述的设备,其特征在于,
    所述接收单元,还用于接收指示信息,所述指示信息用于指示所述资源粒度。
  38. 根据权利要求32所述的设备,其特征在于,所述变化间隔与终端的运动速度具有对应关系。
  39. 根据权利要求22所述的设备,其特征在于,
    所述发送单元,还用于发送配置信息,所述配置信息用于指示所述映射关系。
  40. 根据权利要求39所述的设备,其特征在于,
    所述发送单元,还用于发送指示信息,所述指示信息用于指示对所述第一控制信息进行信道估计的资源粒度,所述信道估计的资源粒度为N 1个的控制信道单元CCE或者N 2个预设数量的资源块组REG,所述N 1和N 2为大于0的整数。
  41. 一种终端,其特征在于,包括:
    包括处理器、存储器以及收发接口,所述处理器与存储器耦合,所述存储器用于存储指令,当所述指令被所述处理器执行时,使得所述终端执行如权利要求1或3至18中任一项所述的方法。
  42. 一种网络设备,其特征在于,包括:
    包括处理器、存储器以及收发接口,所述存储器用于存储指令,当所述指令被所述处理器执行时,使得所述网络设备执行如权利要求2至12,或15至16、18至20中任一项所述的方法。
  43. 一种计算机可读储存介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时,使得计算机执行如权利要求1至20中任一项所述的方法。
  44. 一种包含指令的计算机软件产品,当其在计算机上运行时,使得如权利要求1至20中任一项所述的方法被执行。
  45. 一种通信系统,其特征在于,包括终端以及网络设备,所述终端用于执行如权利要求1或3至18中任一项所述的方法,所述网络设备用于执行如权利要求2至12,或15至16、18至20中任一项所述的方法。
PCT/CN2022/104031 2021-07-07 2022-07-06 一种通信方法以及相关装置 WO2023280189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/404,060 US20240205914A1 (en) 2021-07-07 2024-01-04 Communication method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110769413.6A CN115603874A (zh) 2021-07-07 2021-07-07 一种通信方法以及相关装置
CN202110769413.6 2021-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,060 Continuation US20240205914A1 (en) 2021-07-07 2024-01-04 Communication method and related apparatus

Publications (1)

Publication Number Publication Date
WO2023280189A1 true WO2023280189A1 (zh) 2023-01-12

Family

ID=84801308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104031 WO2023280189A1 (zh) 2021-07-07 2022-07-06 一种通信方法以及相关装置

Country Status (3)

Country Link
US (1) US20240205914A1 (zh)
CN (1) CN115603874A (zh)
WO (1) WO2023280189A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118714650A (zh) * 2024-08-29 2024-09-27 四川创智联恒科技有限公司 控制信道的时频资源分配方法、装置及基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632840A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 波束资源的配置方法、基站和终端设备
CN110268672A (zh) * 2017-02-09 2019-09-20 高通股份有限公司 搜索多链路控制信道中的候选

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268672A (zh) * 2017-02-09 2019-09-20 高通股份有限公司 搜索多链路控制信道中的候选
CN108632840A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 波束资源的配置方法、基站和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO INC.: "Discussion on SS block composition, SS burst set composition and SS block index indication for NR", 3GPP DRAFT; R1-1705705_DISCUSSION ON SS BLOCK_BURST SET COMPOSITION AND SS BLOCK INDEX INDICATION FOR NR_FINAL2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 25 March 2017 (2017-03-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051252122 *

Also Published As

Publication number Publication date
CN115603874A (zh) 2023-01-13
US20240205914A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
EP3751891B1 (en) Method, terminal and base station in a wireless communication system supporting discontinuous reception, drx
EP2947806B1 (en) Data transmission/reception method and apparatus of low-cost terminal in mobile communication system
CN111869152B (zh) 波束指示方法、装置和系统
JP2022521690A (ja) 複数の送受信ポイントにわたってpdsch送信スケジューリングされたマルチpdcch用のharq ack
AU2015340135B2 (en) Method and apparatus for transmitting control channel in intra-cell carrier aggregation system
CN113498627B (zh) 信号接收或发送方法、装置和系统
CN111989963A (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
EP3545720B1 (en) Method and device for transmitting downlink control information
KR20220003593A (ko) 다운링크(dl) 반영구적 스케줄링을 갖는 복수의 물리적 다운링크 공유 채널(pdsch)에 대한 하이브리드 자동 반복 요청(harq) 피드백
US20200083933A1 (en) Data Transmission Method, Apparatus, and System
CN111886807A (zh) 为发送接收点的协调集合配置信道状态信息(csi)过程的技术
WO2022146594A1 (en) Dynamic timing advance adjustment schemes
US20240205914A1 (en) Communication method and related apparatus
US20230084145A1 (en) Communication method and apparatus
CN116584064A (zh) 向多个trp的可靠csi反馈
JP2024096837A (ja) Nrにおけるマルチtrp送信における複数のpucchを用いたharq-ack処理
CN112351451B (zh) 波束失败恢复方法及装置
US12088419B2 (en) Feedback method and apparatus
CN116803127A (zh) 多级时域可缩放上行链路信道资源
EP4282100A1 (en) Determining uplink control channel repetition factors
CN112789821B (zh) 用于时隙边界处物理共享信道拆分的方法和装置
KR20230092917A (ko) 피드백 구성을 위한 방법들, 단말 디바이스, 네트워크 디바이스, 및 컴퓨터 판독가능 매체들
CN116018771A (zh) 上行数据的发送方法、装置和系统
US20240334537A1 (en) Communication in a non-active time for a cell
EP4336766A1 (en) Method and apparatus for transmitting control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22836937

Country of ref document: EP

Kind code of ref document: A1